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Abstract 

This paper discusses an information 
extraction (IE) system, Textract, in natural 
language (NL) question answering (QA) and 
examines the role of IE in QA application. It 
shows: (i) Named Entity tagging is an 
important component for QA, (ii) an NL 
shallow parser provides a structural basis for 
questions, and (iii) high-level domain 
independent IE can result in a QA 
breakthrough. 

Introduction 

With the explosion of information in Internet, 
Natural language QA is recognized as a 
capability with great potential. Traditionally, 
QA has attracted many AI researchers, but most 
QA systems developed are toy systems or games 
confined to lab and a very restricted domain. 
More recently, Text Retrieval Conference 
(TREC-8) designed a QA track to stimulate the 
research for real world application. 

Due to little linguistic support from text 
analysis, conventional IR systems or search 
engines do not really perform the task of 
information retrieval; they in fact aim at only 
document retrieval. The following quote from the 
QA Track Specifications (www.research.att.com/ 
-singhal/qa-track-spec.txt) in the TREC 
community illustrates this point. 

Current information retrieval systems allow 
us to locate documents that might contain the 
pertinent information, but most of  them leave 
it to the user to extract the useful information 
from a ranked list. This leaves the (often 

unwilling) user with a relatively large 
amount of  text to consume. There is an urgent 
need for tools that would reduce the amount 
of  text one might have to read in order to 
obtain the desired information. This track 
aims at doing exactly that for  a special (and 
popular) class of  information seeking 
behavior: QUESTION ANSWERING. People 
have questions and they need answers, not 
documents. Automatic question answering 
will definitely be a significant advance in the 
state-of-art information retrieval technology. 

Kupiec (1993) presented a QA system 
MURAX using an on-line encyclopedia. This 
system used the technology of robust shallow 
parsing but suffered from the lack of basic 
information extraction support. In fact, the most 
siginifcant IE advance, namely the NE (Named 
Entity) technology, occured after Kupiec (1993), 
thanks to the MUC program (MUC-7 1998). 
High-level IE technology beyond NE has not 
been in the stage of possible application until 
recently. 

AskJeeves launched a QA portal 
(www.askjeeves.com). It is equipped with a 
fairly sophisticated natural language question 
parser, but it does not provide direct answers to 
the asked questions. Instead, it directs the user to 
the relevant web pages, just as the traditional 
search engine does. In this sense, AskJeeves has 
only done half of the job for QA. 

We believe that QA is an ideal test bed for 
demonstrating the power of IE. There is a natural 
co-operation between IE and IR; we regard QA 
as one major intelligence which IE can offer IR. 

* This work was supported in part by the SBIR grants F30602-98-C-0043 and F30602-99-C-0102 from Air Force 
Research Laboratory (AFRL)/IFED. 
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An important question then is, what type of 
IE can support IR in QA and how well does it 
support it? This forms the major topic of this 
paper. We structure the remaining part of the 
paper as follows. In Section 1, we first give an 
overview of the underlying IE technology which 
our organization has been developing. Section 2 
discusses the QA system. Section 3 describes the 
limitation of the current system. Finally, in 
Section 4, we propose a more sophisticated QA 
system supported by three levels of IE. 

1 Overview of Textract IE 

The last decade has seen great advance and 
interest in the area of IE. In the US, the DARPA 
sponsored Tipster Text Program [Grishman 
1997] and the Message Understanding 
Conferences (MUC) [MUC-7 1998] have been 
the driving force for developing this technology. 
In fact, the MUC specifications for various IE 
tasks have become de facto standards in the IE 
research community. It is therefore necessary to 
present our IE effort in the context of the MUC 
program. 

MUC divides IE into distinct tasks, 
namely, NE (Named Entity), TE (Template 
Element), TR (Template Relation), CO 
(Co-reference), and ST (Scenario Templates) 
[Chinchor & Marsh 1998]. Our proposal for 
three levels of IE is modelled after the MUC 
standards using MUC-style representation. 
However, we have modified the MUC IE task 
definitions in order to make them more useful 
and more practical. More precisely, we propose a 
hierarchical, 3-level architecture for developing a 
kernel IE system which is domain-independent 
throughout. 

The core of this system is a state-of-the-art 
NE tagger [Srihari 1998], named Textract 1.0. 
The Textract NE tagger has achieved speed and 
accuracy comparable to that of the few deployed 
NE systems, such as NetOwl [Krupka & 
Hausman 1998] and Nymble [Bikel et al 1997]. 

It is to be noted that in our definition of NE, 
we significantly expanded the type of 
information to be extracted. In addition to all the 
MUC defined NE types (person, organization, 
location, time, date, money and percent), the 
following types/sub-types of information are also 
identified by the TextractNE module: 

• duration, frequency, age 
• number, fraction, decimal, ordinal, math 

equation 
• weight, length, temperature, angle, area, 

capacity, speed, rate 
• product, software 
• address, email, phone, fax, telex, www 
• name (default proper name) 

Sub-type information like company, 
government agency, school (belonging to the 
type organization) and military person, religious 
person (belonging to person) are also identified. 
These new sub-types provide a better foundation 
for defining multiple relationships between the 
identified entities and for supporting question 
answering functionality. For example, the key to 
a question processor is to identify the asking 
point (who, what, when, where, etc.). In many 
cases, the asking point corresponds to an NE 
beyond the MUC definition, e.g. the 
how+adjective questions: how long (duration or 
length), how far (length), how often (frequency), 
how old (age), etc. 

Level-2 IE, or CE (Correlated Entity), is 
concerned with extracting pre-defined multiple 
relationships between the entities. Consider the 
person entity as an example; the TextractCE 
prototype is capable of extracting the key 
relationships such as age, gender, affiliation, 
position, birthtime, birth__place, spouse, 
parents, children, where.from, address, phone, 
fax, email, descriptors. As seen, the information 
in the CE represents a mini-CV or profile of the 
entity. In general, the CE template integrates and 
greatly enriches the information contained in 
MUC TE and TR. 

The final goal of our IE effort is to further 
extract open-ended general events (GE, or level 3 
IE) for information like who did what (to whom) 
when (or how often) and where. By general 
events, we refer to argument structures centering 
around verb notions plus the associated 
information of time/frequency and location. We 
show an example of our defined GE extracted 
from the text below: 

Julian Hill, a research chemist whose 
accidental discovery of a tough, taffylike 
compound revolutionized everyday life after 
it proved its worth in warfare and courtship, 
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died on Sunday in Hockessin, Del. 

[1] <GE_TEMPLATE> := 
PREDICATE: die 
ARGUMENTI: Julian Hill 
TIME: Sunday 
LOCATION: Hockessin, Del 

Figure 1 is the overall system architecture for 
the IE system Textract that our organization has 
been developing. 
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Figure 1: Textract IE System Architecture 

The core of the system consists of three 
kernel IE modules and six linguistic modules. 
The multi-level linguistic modules serve as an 
underlying support system for different levels of 
IE. The IE results are stored in a database which 
is the basis for IE-related applications like QA, 
BR (Browsing, threading and visualization) and 
AS (Automatic Summarization). The approach 
to IE taken here, consists of a unique blend of 
machine learning and FST (finite state 
transducer) rule-based system [Roche & Schabes 
1997]. By combining machine learning with an 
FST rule-based system, we are able to exploit the 

best of both paradigms while overcoming their 
respective weaknesses [Srihari 1998, Li & Srihari 
2000]. 

2 NE-Supported QA 

This section presents the QA system based on 
Named Entity tagging. Out of the 200 questions 
that comprised the TREC-8 QA track 
competition, over 80% asked for an NE, e.g. who 
(PERSON), when ( T I M E [  DATE), where 
(LOCATION), how far (LENGTH). Therefore, 
the NE tagger has been proven to be very helpful. 
Of course, the NE of the targeted type is only 
necessary but not complete in answering such 
questions because NE by nature only extracts 
isolated individual entities from the text. 
Nevertheless, using even crude methods like "the 
nearest NE to the queried key words" or "the NE 
and its related key words within the same line (or 
same paragraph, etc.)", in most cases, the QA 
system was able to extract text portions which 
contained answers in the top five list. 

Figure 2 illustrates the system design of 
TextractQA Prototype. There are two 
components for the QA prototype: Question 
Processor and Text Processor. The Text Matcher 
module links the two processing results and tries 
to find answers to the processed question. 
Matching is based on keywords, plus the NE 
type and their common location within a same 
sentence. 
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Figure 2: Textract/QA 1.0 Prototype Architecture 

The general algorithm for question 
answering is as follows: 
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Process Question 
Shallow parse question 
Determine Asking Point 
Question expansion (using word lists) 

Process Documents 
Tokenization, POS tagging, NE Indexing 
Shallow Parsing (not yet utilized) 

Text Matcher 
Intersect search engine results with NE 
rank answers 

2.1 Question Processing 

The Question Processing results are a list of 
keywords plus the information for asking point. 
For example, the question: 

[2] Who won the 1998 Nobel Peace Prize? 

contains the following keywords: won, 1998, 
Nobel, Peace, Prize. The asking point Who refers 
to the NE type person. The output before 
question expansion is a simple 2-feature template 
as shown below: 

[3] asking_point: PERSON 
key_word: { won, 1998, Nobel, 

Peace, Prize } 

The following is an example where the 
asking point does not correspond to any type of 
NE in our definition. 

[3] Why did David Koresh ask the FBI for a 
word processor ? 

The system then maps it to the following 
question template : 

[4] asking_point: 
key_word: 

REASON 
{ ask, David, Koresh, 
FBI, word, processor } 

The question processor scans the question to 
search for question words (wh-words) and maps 
them into corresponding NE types/sub-types or 
pre-defined notions like REASON. 

We adopt two sets of pattern matching rules 
for this purpose: (i) structure based pattern 
matching rules; (ii) simple key word based 
pattern matching rules (regarded as default rules). 

It is fairly easy to exhaust the second set of rules 
as interrogative question words/phrases form a 
closed set. In comparison, the development of 
the first set of rules are continuously being 
fine-tuned and expanded. This strategy of using 
two set of rules leads to the robustness of the 
question processor. 

The first set of rules are based on shallow 
parsing results of the questions, using Cymfony 
FST based Shallow Parser. This parser identifies 
basic syntactic constructions like BaseNP (Basic 
Noun Phrase), BasePP (Basic Prepositional 
Phrase) and VG (Verb Group). 

The following is a sample of the first set of 
rules: 

[6] Name NP (city I country I company) --> 
CITYICOUNTRYICOMPANY 

[7] Name NP(person_w) --> PERSON 
[8] Name NP(org_w) --> ORGANIZATION 
[9] Name NP(NOT person_w, NOT org_w) 

--> NAME 

Rule [6] checks the head word of the NP. It 
covers cases like VG[Name] NP[a country] that 
VG[is developing] NP[a magnetic levitation 
railway system]. Rule [7] works for cases like 
VG[Name] NP[the first private citizen] VG[to 

fly] PP[in space] as citizen belongs to the word 
class person_w. Rule [9] is a catch-all rule: if the 
NP is not of class person (person_w) or 
organization (org_w), then the asking point is a 
proper name (default NE), often realized in 
English in capitalized string of words. Examples 
include Name a film that has won the Golden 
Bear in the Berlin Film Festival. 

The word lists org_w and person_w are 
currently manually maintained based on 
inspection of large volumes of text. An effort is 
underway to automate the learning of such word 
lists by utilizing machine learning techniques. 

We used the following pattern 
transformations to expand our ruleset: 

(Please) name NP[X] 
--> what/which Aux(be) (the name of) NP[X] 
--> NP(what/which...X) 

In other words, the four rules are expanded to 
12 rules. For example, Rule [10] below 
corresponds to Rule [6]; Rule [11] is derived 
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from Rule [7]. 

[10] what/which Aux(be) NP (city [ country [ 
company) --> 
CITY I COUNTRY [ COMPANY 

[11] NP(what/which ... person_w) --> 
PERSON 

Rule [10] extracts the asking point from 
cases like NP[What] Aux[is] NP[the largest 
country] PP[in the world]. Rule [11] covers the 
following questions: NP[What costume 
designer] VG[decided] that NP[Michael 
Jacksonl VG[should only wear] NP[one glove], 
NP[Which former Ku Klux Klan member] 
VG[won] NP[an elected office] PP[in the U.S.], 
NP[What Nobel laureate] VG[was expelled] 
PP[from the Philippines] PP[before the 
conference] PP[on East Timor], NP[What 
famous communist leader] VG[died] PP[in 
Mexico City], etc. 

As seen, shallow parsing helps us to capture a 
variety of natural language question expressions. 
However, there are cases where some simple key 
word based pattern matching would be enough to 
capture the asking point. That is our second set 
of rules. These rules are used when the first set of 
rules has failed to produce results. The following 
is a sample of such rules: 

[ 12] who/whom --> PERSON 
[13] when --> TIME/DATE 
[14] where/what place --> LOCATION 
[15] what time (of day) --> TIME 
[16] what day (of the week) --> DAY 
[17] what/which month --> MONTH 
[18] what age/how old --> AGE 
[19] what brand --> PRODUCT 
[20] what --> NAME 
[21] how far/tall/high --> LENGTH 
[22] how large/hig/small --> AREA 
[23] how heavy --> WEIGHT 
[24] how rich --> MONEY 
[25] how often --> FREQUENCY 
[26] how many --> NUMBER 
[27] how long --> LENGTH/DURATION 
[28] why/for what --> REASON 

In the stage of question expansion, the 
template in [4] would be expanded to the 
template shown in [29]: 

[29] asking_point: 

key_word: 

{because{because of] 
due to{thanks to{since I 
in order{to VB} 
{ asklaskslasked[asking, 
David,Koresh,FBI, 
word, processor} 

The last item in the asking._point list attempts 
to find an infinitive by checking the word to 
followed by a verb (with the part-of-speech tag 
VB). As we know, infinitive verb phrases are 
often used in English to explain a reason for some 
action. 

2.2 Text Processing 

On the text processing side, we first send the 
question directly to a search engine in order to 
narrow down the document pool to the first n, say 
200, documents for IE processing. Currently, 
this includes tokenization, POS tagging and NE 
tagging. Future plans include several levels of 
parsing as well; these are required to support CE 
and GE extraction. It should be noted that all 
these operations are extremely robust and fast, 
features necessary for large volume text 
indexing. Parsing is accomplished through 
cascaded finite state transducer grammars. 

2.3 Text Matching 

The Text Matcher attempts to match the question 
template with the processed documents for both 
the asking point and the key words. There is a 
preliminary ranking standard built-in the matcher 
in order to find the most probable answers. The 
primary rank is a count of how many unique 
keywords are contained within a sentence. The 
secondary ranking is based on the order that the 
keywords appear in the sentence compared to 
their order in the question. The third ranking is 
based on whether there is an exact match or a 
variant match for the key verb. 

In the TREC-8 QA track competition, 
Cymfony QA accuracy was 66.0%. Considering 
we have only used NE technology to support QA 
in this run, 66.0% is a very encouraging result. 

3 Limitation 

The first limitation comes from the types of 
questions. Currently only wh-questions are 
handled although it is planned that yes-no 
questions will be handled once we introduce CE 
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and GE templates to support QA. Among the 
wh-questions, the why-question and 
how-question t are more challenging because the 
asking point cannot be simply mapped to the NE 
types/sub-types. 

The second limitation is from the nature of 
the questions. Questions like Where can l f ind 
the homepage for Oscar winners or Where can I 
find info on Shakespeare's works might be 
answerable easily by a system based on a 
well-maintained data base of home pages. Since 
our system is based on the processing of the 
underlying documents, no correct answer can be 
provided if there is no such an answer (explicitly 
expressed in English) in the processed 
documents. In TREC-8 QA, this is not a problem 
since every question is guaranteed to have at least 
one answer in the given document pool. 
However, in the real world scenario such as a QA 
portal, it is conceived that the IE results based on 
the processing of the documents should be 
complemented by other knowledge sources such 
as e-copy of yellow pages or other manually 
maintained and updated data bases. 

The third limitation is the lack of linguistic 
processing such as sentence-level parsing and 
cross-sentential co-reference (CO). This problem 
will be gradually solved when high-level IE 
technology is introduced into the system. 

4 Future Work: Multi-level IE Supported QA 

A new QA architecture is under development; it 
will exploit all levels of the IE system, including 
CE and GE. 

The first issue is how much CE can 
contribute to a better support of QA. It is found 
that there are some frequently seen questions 
which can be better answered once the CE 
information is provided. These questions are of 
two types: (i) what/who questions about an NE; 
(ii) relationship questions. 

Questions of the following format require CE 
templates as best answers: who/what is NE? For 
example, Who is Julian Hill? Who is Bill 
Clinton? What is Du Pont? What is Cymfony? 
To answer these questions, the system can simply 

1 For example, How did one make a chocolate cake? 
How+Adjective questions (e.g. how long, how big, 
how old, etc.) are handled fairly well. 

retrieve the corresponding CE template to 
provide an "assembled" answer, as shown below. 

Q: Who is Julian Hill? 
A: name: Julian Werner Hill 

type: PERSON 
age: 91 
gender: MALE 
position: research chemist 
affiliation: Du Pont Co. 
education: Washington University; 

MIT 

Q: What is Du Pont? 
A: name: Du Pont Co, 

type: COMPANY 
staff: Julian Hill; Wallace Carothers. 

Questions specifically about a CE 
relationship include: For which company did 
Julian Hill work? (affiliation relationship) Who 
are employees of  Du Pont Co.? (staff 
relationship) What does Julian Hill do? 
(position/profession relationship) Which 
university did Julian Hill graduate from? 
(education relationship), etc. 2 

The next issue is the relationships between 
GE and QA. It is our belief that the GE 
technology will result in a breakthrough for QA. 

In order to extract GE templates, the text 
goes through a series of linguistic processing as 
shown in Figure 1. It should be noted that the 
question processing is designed to go through 
parallel processes and share the same NLP 
resources until the point of matching and ranking. 

The merging of question templates and GE 
templates in Template Matcher are fairly 
straightforward. As they both undergo the same 
NLP processing, the resulting semantic templates 
are of the same form. Both question templates 
and GE templates correspond to fairly 
standard/predictable patterns (the PREDICATE 
value is open-ended, but the structure remains 
stable). More precisely, a user can ask questions 
on general events themselves (did what) and/or 
on the participants of the event (who, whom, 
what) and/or the time, frequency and place of 
events (when, how often, where). This addresses 

2 An alpha version of TextractQA supported by both 
NE and CE has been implemented and is being tested. 

171 



by far the most types of general questions of a 
potential user. 

For example, if a user is interested in 
company acquisition events, he can ask questions 
like: Which companies ware acquired by 
Microsoft in 1999? Which companies did 
Microsoft acquire in 1999? Our system will then 
parse these questions into the templates as shown 
below: 

[31] <Q_TEMPLATE> := 
PREDICATE: acquire 
ARGUMENT1: Microsoft 
ARGUMENT2: WHAT(COMPANY) 
TIME: 1999 

If the user wants to know when some 
acquisition happened, he can ask: When was 
Netscape acquired? Our system will then 
translate it into the pattern below: 

[32] <QTEMPLATE> := 
PREDICATE: acquire 
ARGUMENT1: WHO 
ARGUMENT2: Netscape 
TIME: WHEN 

Note that WHO, WHAT, WHEN above are 
variable to be instantiated. Such question 
templates serve as search constraints to filter the 
events in our extracted GE template database. 
Because the question templates and the extracted 
GE template share the same structure, a simple 
merging operation would suffice. Nevertheless, 
there are two important questions to be answered: 
(i) what if a different verb with the same meaning 
is used in the question from the one used in the 
processed text? (ii) what if the question asks 
about something beyond the GE (or CE) 
information? These are issues that we are 
currently researching. 
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