
A Question Answering System Supported by Information Extraction*

Rohini Srihari
Cymfony Inc.

5500 Main Street
Williamsville, NY 14221

rohini@cymfony.com

Wei Li
Cymfony Inc.

5500 Main Street
Williamsville, NY14221

wei@cymfony.com

Abstract

This paper discusses an information
extraction (IE) system, Textract, in natural
language (NL) question answering (QA) and
examines the role of IE in QA application. It
shows: (i) Named Entity tagging is an
important component for QA, (ii) an NL
shallow parser provides a structural basis for
questions, and (iii) high-level domain
independent IE can result in a QA
breakthrough.

Introduction

With the explosion of information in Internet,
Natural language QA is recognized as a
capability with great potential. Traditionally,
QA has attracted many AI researchers, but most
QA systems developed are toy systems or games
confined to lab and a very restricted domain.
More recently, Text Retrieval Conference
(TREC-8) designed a QA track to stimulate the
research for real world application.

Due to little linguistic support from text
analysis, conventional IR systems or search
engines do not really perform the task of
information retrieval; they in fact aim at only
document retrieval. The following quote from the
QA Track Specifications (www.research.att.com/
-singhal/qa-track-spec.txt) in the TREC
community illustrates this point.

Current information retrieval systems allow
us to locate documents that might contain the
pertinent information, but most of them leave
it to the user to extract the useful information
from a ranked list. This leaves the (often

unwilling) user with a relatively large
amount of text to consume. There is an urgent
need for tools that would reduce the amount
of text one might have to read in order to
obtain the desired information. This track
aims at doing exactly that for a special (and
popular) class of information seeking
behavior: QUESTION ANSWERING. People
have questions and they need answers, not
documents. Automatic question answering
will definitely be a significant advance in the
state-of-art information retrieval technology.

Kupiec (1993) presented a QA system
MURAX using an on-line encyclopedia. This
system used the technology of robust shallow
parsing but suffered from the lack of basic
information extraction support. In fact, the most
siginifcant IE advance, namely the NE (Named
Entity) technology, occured after Kupiec (1993),
thanks to the MUC program (MUC-7 1998).
High-level IE technology beyond NE has not
been in the stage of possible application until
recently.

AskJeeves launched a QA portal
(www.askjeeves.com). It is equipped with a
fairly sophisticated natural language question
parser, but it does not provide direct answers to
the asked questions. Instead, it directs the user to
the relevant web pages, just as the traditional
search engine does. In this sense, AskJeeves has
only done half of the job for QA.

We believe that QA is an ideal test bed for
demonstrating the power of IE. There is a natural
co-operation between IE and IR; we regard QA
as one major intelligence which IE can offer IR.

* This work was supported in part by the SBIR grants F30602-98-C-0043 and F30602-99-C-0102 from Air Force
Research Laboratory (AFRL)/IFED.

166

An important question then is, what type of
IE can support IR in QA and how well does it
support it? This forms the major topic of this
paper. We structure the remaining part of the
paper as follows. In Section 1, we first give an
overview of the underlying IE technology which
our organization has been developing. Section 2
discusses the QA system. Section 3 describes the
limitation of the current system. Finally, in
Section 4, we propose a more sophisticated QA
system supported by three levels of IE.

1 Overview of Textract IE

The last decade has seen great advance and
interest in the area of IE. In the US, the DARPA
sponsored Tipster Text Program [Grishman
1997] and the Message Understanding
Conferences (MUC) [MUC-7 1998] have been
the driving force for developing this technology.
In fact, the MUC specifications for various IE
tasks have become de facto standards in the IE
research community. It is therefore necessary to
present our IE effort in the context of the MUC
program.

MUC divides IE into distinct tasks,
namely, NE (Named Entity), TE (Template
Element), TR (Template Relation), CO
(Co-reference), and ST (Scenario Templates)
[Chinchor & Marsh 1998]. Our proposal for
three levels of IE is modelled after the MUC
standards using MUC-style representation.
However, we have modified the MUC IE task
definitions in order to make them more useful
and more practical. More precisely, we propose a
hierarchical, 3-level architecture for developing a
kernel IE system which is domain-independent
throughout.

The core of this system is a state-of-the-art
NE tagger [Srihari 1998], named Textract 1.0.
The Textract NE tagger has achieved speed and
accuracy comparable to that of the few deployed
NE systems, such as NetOwl [Krupka &
Hausman 1998] and Nymble [Bikel et al 1997].

It is to be noted that in our definition of NE,
we significantly expanded the type of
information to be extracted. In addition to all the
MUC defined NE types (person, organization,
location, time, date, money and percent), the
following types/sub-types of information are also
identified by the TextractNE module:

• duration, frequency, age
• number, fraction, decimal, ordinal, math

equation
• weight, length, temperature, angle, area,

capacity, speed, rate
• product, software
• address, email, phone, fax, telex, www
• name (default proper name)

Sub-type information like company,
government agency, school (belonging to the
type organization) and military person, religious
person (belonging to person) are also identified.
These new sub-types provide a better foundation
for defining multiple relationships between the
identified entities and for supporting question
answering functionality. For example, the key to
a question processor is to identify the asking
point (who, what, when, where, etc.). In many
cases, the asking point corresponds to an NE
beyond the MUC definition, e.g. the
how+adjective questions: how long (duration or
length), how far (length), how often (frequency),
how old (age), etc.

Level-2 IE, or CE (Correlated Entity), is
concerned with extracting pre-defined multiple
relationships between the entities. Consider the
person entity as an example; the TextractCE
prototype is capable of extracting the key
relationships such as age, gender, affiliation,
position, birthtime, birth__place, spouse,
parents, children, where.from, address, phone,
fax, email, descriptors. As seen, the information
in the CE represents a mini-CV or profile of the
entity. In general, the CE template integrates and
greatly enriches the information contained in
MUC TE and TR.

The final goal of our IE effort is to further
extract open-ended general events (GE, or level 3
IE) for information like who did what (to whom)
when (or how often) and where. By general
events, we refer to argument structures centering
around verb notions plus the associated
information of time/frequency and location. We
show an example of our defined GE extracted
from the text below:

Julian Hill, a research chemist whose
accidental discovery of a tough, taffylike
compound revolutionized everyday life after
it proved its worth in warfare and courtship,

167

died on Sunday in Hockessin, Del.

[1] <GE_TEMPLATE> :=
PREDICATE: die
ARGUMENTI: Julian Hill
TIME: Sunday
LOCATION: Hockessin, Del

Figure 1 is the overall system architecture for
the IE system Textract that our organization has
been developing.

Kernet IE Modu tes L|ngui_sti_cLM_odu!es
I I I I

I I I I

,,l l I ,
! I

I I I I

'l J ' I I
! I
I I
I I I I

,i I i ', I ,
I ! I I , l ° i , ,

I I I I
I I

F L - - - - - - ~ L - - - - - - . - - - - - - |

Apptication Modutes
NE: NIiml~ EnlilyTitl~klll QA: Que~tlon Answering
CE: Come,led Entity ExtrmClkm BR: In~ll lgenl ~ws lng
GE: Gcn~mI Evenl Ex~ct~on AS; Au io ~ SU l l en
co : ce - mfcmnc ~1 momia l l s ~ p~

Figure 1: Textract IE System Architecture

The core of the system consists of three
kernel IE modules and six linguistic modules.
The multi-level linguistic modules serve as an
underlying support system for different levels of
IE. The IE results are stored in a database which
is the basis for IE-related applications like QA,
BR (Browsing, threading and visualization) and
AS (Automatic Summarization). The approach
to IE taken here, consists of a unique blend of
machine learning and FST (finite state
transducer) rule-based system [Roche & Schabes
1997]. By combining machine learning with an
FST rule-based system, we are able to exploit the

best of both paradigms while overcoming their
respective weaknesses [Srihari 1998, Li & Srihari
2000].

2 NE-Supported QA

This section presents the QA system based on
Named Entity tagging. Out of the 200 questions
that comprised the TREC-8 QA track
competition, over 80% asked for an NE, e.g. who
(PERSON), when (T I M E [DATE), where
(LOCATION), how far (LENGTH). Therefore,
the NE tagger has been proven to be very helpful.
Of course, the NE of the targeted type is only
necessary but not complete in answering such
questions because NE by nature only extracts
isolated individual entities from the text.
Nevertheless, using even crude methods like "the
nearest NE to the queried key words" or "the NE
and its related key words within the same line (or
same paragraph, etc.)", in most cases, the QA
system was able to extract text portions which
contained answers in the top five list.

Figure 2 illustrates the system design of
TextractQA Prototype. There are two
components for the QA prototype: Question
Processor and Text Processor. The Text Matcher
module links the two processing results and tries
to find answers to the processed question.
Matching is based on keywords, plus the NE
type and their common location within a same
sentence.

Ques t i on Prc~:essor

i

: : eXt P r ~ _ ~ ? ~

i
i ~ .

i
. . . . i

Figure 2: Textract/QA 1.0 Prototype Architecture

The general algorithm for question
answering is as follows:

168

Process Question
Shallow parse question
Determine Asking Point
Question expansion (using word lists)

Process Documents
Tokenization, POS tagging, NE Indexing
Shallow Parsing (not yet utilized)

Text Matcher
Intersect search engine results with NE
rank answers

2.1 Question Processing

The Question Processing results are a list of
keywords plus the information for asking point.
For example, the question:

[2] Who won the 1998 Nobel Peace Prize?

contains the following keywords: won, 1998,
Nobel, Peace, Prize. The asking point Who refers
to the NE type person. The output before
question expansion is a simple 2-feature template
as shown below:

[3] asking_point: PERSON
key_word: { won, 1998, Nobel,

Peace, Prize }

The following is an example where the
asking point does not correspond to any type of
NE in our definition.

[3] Why did David Koresh ask the FBI for a
word processor ?

The system then maps it to the following
question template :

[4] asking_point:
key_word:

REASON
{ ask, David, Koresh,
FBI, word, processor }

The question processor scans the question to
search for question words (wh-words) and maps
them into corresponding NE types/sub-types or
pre-defined notions like REASON.

We adopt two sets of pattern matching rules
for this purpose: (i) structure based pattern
matching rules; (ii) simple key word based
pattern matching rules (regarded as default rules).

It is fairly easy to exhaust the second set of rules
as interrogative question words/phrases form a
closed set. In comparison, the development of
the first set of rules are continuously being
fine-tuned and expanded. This strategy of using
two set of rules leads to the robustness of the
question processor.

The first set of rules are based on shallow
parsing results of the questions, using Cymfony
FST based Shallow Parser. This parser identifies
basic syntactic constructions like BaseNP (Basic
Noun Phrase), BasePP (Basic Prepositional
Phrase) and VG (Verb Group).

The following is a sample of the first set of
rules:

[6] Name NP (city I country I company) -->
CITYICOUNTRYICOMPANY

[7] Name NP(person_w) --> PERSON
[8] Name NP(org_w) --> ORGANIZATION
[9] Name NP(NOT person_w, NOT org_w)

--> NAME

Rule [6] checks the head word of the NP. It
covers cases like VG[Name] NP[a country] that
VG[is developing] NP[a magnetic levitation
railway system]. Rule [7] works for cases like
VG[Name] NP[the first private citizen] VG[to

fly] PP[in space] as citizen belongs to the word
class person_w. Rule [9] is a catch-all rule: if the
NP is not of class person (person_w) or
organization (org_w), then the asking point is a
proper name (default NE), often realized in
English in capitalized string of words. Examples
include Name a film that has won the Golden
Bear in the Berlin Film Festival.

The word lists org_w and person_w are
currently manually maintained based on
inspection of large volumes of text. An effort is
underway to automate the learning of such word
lists by utilizing machine learning techniques.

We used the following pattern
transformations to expand our ruleset:

(Please) name NP[X]
--> what/which Aux(be) (the name of) NP[X]
--> NP(what/which...X)

In other words, the four rules are expanded to
12 rules. For example, Rule [10] below
corresponds to Rule [6]; Rule [11] is derived

169

from Rule [7].

[10] what/which Aux(be) NP (city [country [
company) -->
CITY I COUNTRY [COMPANY

[11] NP(what/which ... person_w) -->
PERSON

Rule [10] extracts the asking point from
cases like NP[What] Aux[is] NP[the largest
country] PP[in the world]. Rule [11] covers the
following questions: NP[What costume
designer] VG[decided] that NP[Michael
Jacksonl VG[should only wear] NP[one glove],
NP[Which former Ku Klux Klan member]
VG[won] NP[an elected office] PP[in the U.S.],
NP[What Nobel laureate] VG[was expelled]
PP[from the Philippines] PP[before the
conference] PP[on East Timor], NP[What
famous communist leader] VG[died] PP[in
Mexico City], etc.

As seen, shallow parsing helps us to capture a
variety of natural language question expressions.
However, there are cases where some simple key
word based pattern matching would be enough to
capture the asking point. That is our second set
of rules. These rules are used when the first set of
rules has failed to produce results. The following
is a sample of such rules:

[12] who/whom --> PERSON
[13] when --> TIME/DATE
[14] where/what place --> LOCATION
[15] what time (of day) --> TIME
[16] what day (of the week) --> DAY
[17] what/which month --> MONTH
[18] what age/how old --> AGE
[19] what brand --> PRODUCT
[20] what --> NAME
[21] how far/tall/high --> LENGTH
[22] how large/hig/small --> AREA
[23] how heavy --> WEIGHT
[24] how rich --> MONEY
[25] how often --> FREQUENCY
[26] how many --> NUMBER
[27] how long --> LENGTH/DURATION
[28] why/for what --> REASON

In the stage of question expansion, the
template in [4] would be expanded to the
template shown in [29]:

[29] asking_point:

key_word:

{because{because of]
due to{thanks to{since I
in order{to VB}
{ asklaskslasked[asking,
David,Koresh,FBI,
word, processor}

The last item in the asking._point list attempts
to find an infinitive by checking the word to
followed by a verb (with the part-of-speech tag
VB). As we know, infinitive verb phrases are
often used in English to explain a reason for some
action.

2.2 Text Processing

On the text processing side, we first send the
question directly to a search engine in order to
narrow down the document pool to the first n, say
200, documents for IE processing. Currently,
this includes tokenization, POS tagging and NE
tagging. Future plans include several levels of
parsing as well; these are required to support CE
and GE extraction. It should be noted that all
these operations are extremely robust and fast,
features necessary for large volume text
indexing. Parsing is accomplished through
cascaded finite state transducer grammars.

2.3 Text Matching

The Text Matcher attempts to match the question
template with the processed documents for both
the asking point and the key words. There is a
preliminary ranking standard built-in the matcher
in order to find the most probable answers. The
primary rank is a count of how many unique
keywords are contained within a sentence. The
secondary ranking is based on the order that the
keywords appear in the sentence compared to
their order in the question. The third ranking is
based on whether there is an exact match or a
variant match for the key verb.

In the TREC-8 QA track competition,
Cymfony QA accuracy was 66.0%. Considering
we have only used NE technology to support QA
in this run, 66.0% is a very encouraging result.

3 Limitation

The first limitation comes from the types of
questions. Currently only wh-questions are
handled although it is planned that yes-no
questions will be handled once we introduce CE

170

and GE templates to support QA. Among the
wh-questions, the why-question and
how-question t are more challenging because the
asking point cannot be simply mapped to the NE
types/sub-types.

The second limitation is from the nature of
the questions. Questions like Where can l f ind
the homepage for Oscar winners or Where can I
find info on Shakespeare's works might be
answerable easily by a system based on a
well-maintained data base of home pages. Since
our system is based on the processing of the
underlying documents, no correct answer can be
provided if there is no such an answer (explicitly
expressed in English) in the processed
documents. In TREC-8 QA, this is not a problem
since every question is guaranteed to have at least
one answer in the given document pool.
However, in the real world scenario such as a QA
portal, it is conceived that the IE results based on
the processing of the documents should be
complemented by other knowledge sources such
as e-copy of yellow pages or other manually
maintained and updated data bases.

The third limitation is the lack of linguistic
processing such as sentence-level parsing and
cross-sentential co-reference (CO). This problem
will be gradually solved when high-level IE
technology is introduced into the system.

4 Future Work: Multi-level IE Supported QA

A new QA architecture is under development; it
will exploit all levels of the IE system, including
CE and GE.

The first issue is how much CE can
contribute to a better support of QA. It is found
that there are some frequently seen questions
which can be better answered once the CE
information is provided. These questions are of
two types: (i) what/who questions about an NE;
(ii) relationship questions.

Questions of the following format require CE
templates as best answers: who/what is NE? For
example, Who is Julian Hill? Who is Bill
Clinton? What is Du Pont? What is Cymfony?
To answer these questions, the system can simply

1 For example, How did one make a chocolate cake?
How+Adjective questions (e.g. how long, how big,
how old, etc.) are handled fairly well.

retrieve the corresponding CE template to
provide an "assembled" answer, as shown below.

Q: Who is Julian Hill?
A: name: Julian Werner Hill

type: PERSON
age: 91
gender: MALE
position: research chemist
affiliation: Du Pont Co.
education: Washington University;

MIT

Q: What is Du Pont?
A: name: Du Pont Co,

type: COMPANY
staff: Julian Hill; Wallace Carothers.

Questions specifically about a CE
relationship include: For which company did
Julian Hill work? (affiliation relationship) Who
are employees of Du Pont Co.? (staff
relationship) What does Julian Hill do?
(position/profession relationship) Which
university did Julian Hill graduate from?
(education relationship), etc. 2

The next issue is the relationships between
GE and QA. It is our belief that the GE
technology will result in a breakthrough for QA.

In order to extract GE templates, the text
goes through a series of linguistic processing as
shown in Figure 1. It should be noted that the
question processing is designed to go through
parallel processes and share the same NLP
resources until the point of matching and ranking.

The merging of question templates and GE
templates in Template Matcher are fairly
straightforward. As they both undergo the same
NLP processing, the resulting semantic templates
are of the same form. Both question templates
and GE templates correspond to fairly
standard/predictable patterns (the PREDICATE
value is open-ended, but the structure remains
stable). More precisely, a user can ask questions
on general events themselves (did what) and/or
on the participants of the event (who, whom,
what) and/or the time, frequency and place of
events (when, how often, where). This addresses

2 An alpha version of TextractQA supported by both
NE and CE has been implemented and is being tested.

171

by far the most types of general questions of a
potential user.

For example, if a user is interested in
company acquisition events, he can ask questions
like: Which companies ware acquired by
Microsoft in 1999? Which companies did
Microsoft acquire in 1999? Our system will then
parse these questions into the templates as shown
below:

[31] <Q_TEMPLATE> :=
PREDICATE: acquire
ARGUMENT1: Microsoft
ARGUMENT2: WHAT(COMPANY)
TIME: 1999

If the user wants to know when some
acquisition happened, he can ask: When was
Netscape acquired? Our system will then
translate it into the pattern below:

[32] <QTEMPLATE> :=
PREDICATE: acquire
ARGUMENT1: WHO
ARGUMENT2: Netscape
TIME: WHEN

Note that WHO, WHAT, WHEN above are
variable to be instantiated. Such question
templates serve as search constraints to filter the
events in our extracted GE template database.
Because the question templates and the extracted
GE template share the same structure, a simple
merging operation would suffice. Nevertheless,
there are two important questions to be answered:
(i) what if a different verb with the same meaning
is used in the question from the one used in the
processed text? (ii) what if the question asks
about something beyond the GE (or CE)
information? These are issues that we are
currently researching.

References

Bikel D.M. et al. (1997) Nymble: a High-Performance
Learning Name-finder. "Proceedings of the Fifth
Conference on Applied Natural Language
Processing", Morgan Kaufmann Publishers, pp.
194-201

Chinchor N. and Marsh E. (1998) MUC- 7 Information
Extraction Task Definition (version 5.1),
"Proceedings of MUC-7".

Grishman R. (1997) TIPSTER Architecture Design
Document Version 2.3. Technical report, DARPA

Krupka G.R. and Hausman K. (1998) IsoQuest Inc.:
Description of the NetOwl (TM) Extractor System
as Used for MUC-7, "Proceedings of MUC-7".

Kupiec J. (1993) MURAX: A Robust Linguistic
Approach For Question Answering Using An
On-Line Encyclopaedia, "Proceedings of
SIGIR-93 93" Pittsburgh, Penna.

Li, W & Srihari, R. 2000. Flexible Information
Extraction Learning Algorithm, Final Technical
Report, Air Force Research Laboratory, Rome
Research Site, New York

MUC-7 (1998) Proceedings of the Seventh Message
Understanding Conference (MUC-7), published on
the website _http://www.muc.saic.com/

Roche E. and Schabes Y. (1997) Finite-State
Language Processing, MIT Press, Cambridge, MA

Srihari R. (1998) A Domain Independent Event
Extraction Toolkit, AFRL-IF-RS-TR-1998-152
Final Technical Report, Air Force Research
Laboratory, Rome Research Site, New York

172

