
J avox: A Toolkit for Bui lding Speech-Enabled Appl icat ions

M i c h a e l S. F u l k e r s o n and A l a n W . B i e r m a n n
D e p a r t m e n t of C o m p u t e r Science

Duke Univers i ty
D u r h a m , Nor th Caro l ina 27708, USA

{msf, awb}@cs, duke. edu

A b s t r a c t

JAVOX provides a mechanism for the development
of spoken-language systems from existing desktop
applications. We present an architecture that al-
lows existing Java 1 programs to be speech-enabled
with no source-code modification, through the use
of reflection and automatic modification to the ap-
plication's compiled code. The grammars used in
JAvox are based on the Java Speech Grammar For-
mat (JSGF); JAVOX grammars have an additional
semantic component based on our JAVOX Script-
ing Language (JSL). JAVOX has been successfully
demonstrated on real-world applications.

1 O v e r v i e w

JAVOX is an implemented set of tools that allows
software developers to speech-enable existing appli-
cations. The process requires no changes to the
program's source code: Speech capacity is plugged-
in to the existing code by modifying the compiled
program as it loads. JAVOX is intended to provide
similar functionality to that usually associated with
menus and mouse actions in graphical user interfaces
(GUIs). It is completely programmable - develop-
ers can provide a speech interface to whatever func-
tionality they desire. J i v o x has been successfully
demonstrated with several GUI-based applications.

Previous systems to assist in the development of
spoken-langnage systems (SLSs) have focused on
building stand-alone, customized applications, such
as (Sutton et al., 1996) and (Pargellis et al., 1999).
The goal of the JAVOX toolkit is to speech-enable
traditional desktop applications - this is similar to
the goals of the MELISSA project (Schmidt et al.,
1998). It is intended to both speed the develop-
ment of SLSs and to localize the speech-specific code
within the application. JAVOX allows developers to
add speech interfaces to applications at the end of
the development process; SLSs no longer need to be
built from the ground up.

We will briefly present an overview of how JAVOX
works, including its major modules. First, we

1Java and Java Speech are registered trademarks of Sun
Microsystems, Inc.

will examine TRANSLATOR, the implemented JAVOX
natural language processing (NLP) component; its
role is to translate from natural language utterances
to the JhVOX Scripting Language (JSL). Next, we
will discuss JSL in conjunction with a discussion of
EXECUTER, the interface between JAVOX and the
application. We will explain the JhvOX infrastruc-
ture and its current implementation in Java. In
conclusion, we will discuss the current state of the
project and where it is going.

2 B a s i c O p e r a t i o n

J i v o x can be used as the sole location of NLP for
an application; the application is written as a non-
speech-enabled program and JhvOX adds the speech
capability. The current implementation is written
in Java and works with Java programs. The linkage
between the application program and JhvOX is cre-
ated by modifying - at load time - all constructors in
the application to register new objects with JAVOX.
For this reason, the application's source code does
not need any modification to enable JAVOX. A thor-
ough discussion of this technique is presented in Sec-
tion 4. The schematic in Figure 1 shows a high-level
overview of the JAVOX architecture.

Issuing a voice command begins with a user ut-
terance, which the speech recognizer processes and
passes to the NLP component, TRANSLATOR. We
are using the IBM implementation of Sun's Java
Speech application program interface (API) (Sun
Microsystems, Inc., 1998) in conjunction with IBM's
VIAVOICE. The job of TRANSLATOR - or a differ-
ent module conforming to its API - is to translate
the utterance into a form that represents the corre-
sponding program actions. The current implemen-
tation of T R A N S L A T O R uses a context-free grammar,
with each rule carrying an optional JSL fragment.
A typical bottom-up parser processes utterances and
a complete JSL program results. The resulting JSL
is forwarded to EXECUTER, where the JSL code is
executed. For example, in a hypothetical banking
application, the utterance add $100 to the account
might be translated into the JSL command:

myBalance = myBalance + i00;

105

File Edit Tools

Typical
Desktop

Application

l

~ r

~ y

Operating
System

"~" : ~l (virtual machine)
,

Translator =, ~.

Executer I I 1 ~ ~
(J Speech I I
l J Recognizer J:

Javox
B"

!

i .

Figure 1: Schematic of the JAVOX architecture.

The job of EXECUTER - or a different module that
conforms to EXECUTER'S API - is to execute and
monitor upcalls into the running application. The
upcalls are the actual functions that would be made
by the appropriate mouse clicks or menu selections
had the user not used speech. For this reason, we are
currently concentrating our efforts on event-driven
programs, the class of most GUI applications. Their
structure is usually amenable to this approach. Our
implementation of EXECUTER performs the upcalls
by interpreting and executing JSL, though the tech-
nology could be used with systems other than JSL.
In the banking example, EXECUTER would identify
the myBalemce variable and increment it by $100.

The main JAVOX components, TRANSLATOR and
EXECUTER, are written to flexible APIs. Develop-
ers may choose to use their own custom components
instead of these two. Those who want a different
NLP scheme can implement a different version of
TRANSLATOR and - as long as it outputs JSL -
still use EXECUTER. Conversely, those who want a
different scripting system can replace JSL and still
use TRANSLATOR and even EXECUTER's low-level
infrastructure.

3 J a v o x G r a m m a r s

The JAVOX infrastructure is not tied to any par-
ticular NLP method; in fact, the JAVOX grammar
system is the second NLP implementation we have
used. It is presented here because it is straightfor-
ward, easy to implement, and surprisingly powerful.
JAVOX grammars axe based on Sun's Java Speech
Grammar Format (JSGF) (Sun Microsystems, Inc.,

1998). JSGF is a rule-based, speech-recognition
grammar, designed to specify acceptable input to
a recognizer. In JAVOX grammars, each J S G F rule
may be augmented with a fragment of JAVOX Script-
ing Language code - we refer to JAVOX grammars as
scriptable grammars. The result of parsing an utter-
ance with a JAVOX grammar is a complete piece of
JSL code, which is then interpreted to perform the
action specified by the user.

The process of speech-enabling an application in
JAVOX consists of writing a grammar that con-
tains the language to be used and the correspond-
ing actions to be performed. Building on top of
3SGF means - in many cases - only one file is
needed to contain all application-specific informa-
tion. JSL-specific code is automatically stripped
from the grammar at runtime, leaving an ordinary
JSGF grammar. This JSGF grammar is sent to a
Java-Speech-compliant recognizer as its input gram-
mar. In the current Java implementation, each Java
source file (Foo. j ava) can have an associated JAVOX
grammar file (Foo. gram) that contains all the infor-
mation needed to speak to the application. Encap-
sulating all natural language information in one file
also means that porting the application to different
languages is far easier than in most SLSs.

3.1 S e r i p t a b l e G r a m m a r s

Since JSGF grammars are primarily speech-
recognition grammars, they lack the ability to en-
code semantic information. They only possess a lim-
ited tag mechanism. Tags allow the recognizer to
output a canonical representation of the utterance
instead of the recognition verbatim. For example,

106

public <ACTION> = move [the] <PART> <DIR>;

public <PART> = eyes;

public <PART> = (cap I hat);

public <DIR> = up;

public <DIR> = down;

Grammar 1: A JSGF fragment from the Mr. Pota to Head domain.

the tag rm may be the output from both delete the
file and remove it.

Tags are not implemented in JAVOX grammars;
instead, we augment the rules of JSGF with frag-
ments of a scripting language, which contains much
richer semantic information than is possible with
tags. TRANSLATOR receives the raw utterance from
the recognizer and translates it into the appropriate
semantic representation. JAvox grammars do not
mandate the syntax of the additional semantic por-
tion. Though JSL is presented here, TRANSLATOR
has been used to form Prolog predicates and Visual
Basic fragments.

JSGF rules can be explicitly made public or are
implicitly private. Public rules can be imported by
other grammars and can serve as the result of a
recognition; a private rule can be used in a recog-
nition, but cannot be the sole result. The five rules
in Grammar 1 are from a JSGF-only grammar frag-
ment from the Mr. Pota to Head 2 domain (discussed
later). Grammar 1 allows eight sentences, such as
move the eyes up, move the eyes down, move the
cap up, move the cap down, and move cap up. Rule
names are valid Java identifiers enclosed within an-
gle brackets; the left-hand side (LHS) is everything
to the left of the equality sign and the right-hand side
(RHS) is everything to the right. JAVOX grammars
include the standard constructs available in JSGF,
these include:

I m p o r t s Any grammar file can be imported into
other grammar files, though only public rules
are exported. This allows for the creation
of grammar libraries. When using JSL, Java
classes can also be imported.

Comments Grammars can be documented using
Java comments: single-line comments (/ /) and
delimited ones (/* until * /) .

Parenthesis Precedence can be modified with
parentheses.

A l t e r n a t i v e s A vertical bar (I) can be used to sep-
arate alternative elements, as in the <PART> rule
of Grammar 1.

O p t i o n a l s Optional elements are enclosed within
brackets ([and]), such as t he in Grammar l 's
<ACTION> rule.

2Mr. Potato Head is a registered trademark of Hasbro, Inc.

K l e e n e S t a r O p e r a t o r A postfix Kleene star (*)
operator can be used to indicate that the pre-
ceding element may occur zero or more times.

P l u s O p e r a t o r A similar operator to indicate that
an element may appear one or more times.

A grammar's rules may be organized however the
developer wishes. Some may choose to have one
rule per utterance, while others may divide rules to
the parts-of-speech level or group them by semantic
value. In practice, we tend to write rules grouped by
semantic value for nouns and verbs and at the parts-
of-speech level for function words. Grammar 2 shows
the Mr. Pota to Head grammar augmented with JSL
fragments.

The semantic component of each rule is separated
from the RHS by a colon and delimited with a brace
and colon ({: until :}). Using Grammar 2, t h e
parse and translation for Move the cap up is shown
in Figure 2.

Each rule may have either one semantic fragment
or any number of named fields. A single fragment
is sufficient when there is a one-to-one correlation
between a lexical item and its representation in the
program. Occasionally, a single lexical item may re-
quire several components to adequately express its
meaning within a program. In Grammar 2, there
is a one-to-one correlation between the direction of
movement and the slideUp and slideDown func-
tions in the <DIR> rules. These functions can also
written as a single s l i d e function, with the direction
of the movement given by two parametric variables
(cos and s in) . In this situation, the direction rule
(<DIR.}/F>) needs to be expressed with two values,
each known as a named field. The word up may be
represented by the named fields cos and s in , with
the values 0 and 1 respectively.

Another issue in JSL - which does not arise in the
syntax-only JSGF - is the need to uniquely identify
multiple sub-rules of the same type, when they oc-
cur in the same rule. For example, in a geometry
grammar, two <POINT>s may be needed in a rule to
declare a <LINE>, as in:

public <LINE> = make a line from

<POINT> to <POINT> : ...

Uniquely numbering the sub-rules eliminates the
ambiguity as to which <POINT> is which. Numbering

107

p u b l i c
public
public
public
public
public
public

public

<ACTION> = move [the] <PART> <DIR> : {: <PART>.<DIR>(); :};
<PART> = eyes : {: Canvas.eyes0bj :};
<PART> = (cap I hat): {: Canvas.cap0bj :};
<DIR> = up : {: slideUp :};
<DIR> = down : {: slideDown :};
<ACTION_NF> = slide [the] <PART> <DIR> : {: <PART>.slide(<DIR:cos>,<DIR:sin>); :};
<DIR_NF> = up : cos {: 0 :}

sin {: 1 :};
<DIR_NF> = down : cos {: 0 :}

sin {: -I :};

Grammar 2: A JAVOX grammar fragment for the Mr. Potato Head domain.

|

T

• ¢aava,=. e~re -Ob:l

Up (e e =ZAdet~

Figure 2: The JAVOX translation process - NL to JSL - for Move the cap up.

can be used in both the RttS and the semantic por-
tion of a rule; numbering is not allowed in the LHS
of a rule. Syntactically, sub-rules are numbered with
a series of single quotes3:

public <LINE> = make a line from
<POINT'> to <POINT''> : ...

3.2 J a v o x S c r i p t i n g L a n g u a g e (JSL)

The JAVOX Scripting Language (JSL) is a stand-
alone programming language, developed for use with
the JAVOX infrastructure. JSL can be used to ma-
nipulate a running Java program and can be thought
of as an application-independent macro language.
The EXECUTER module interprets JSL and per-
forms the specified actions. The specifics of JSL
are not important to understanding JAVOX; for this
reason, only a brief summary is presented here.

JSL can read of modify the contents of an ob-
ject's fields (data members) and can execute meth-
ods (member functions) on objects. Unlike Java,
JSL is loosely-typed: Type checking is not done un-
til a given method is executed. JSL has its own
variables, which can hold objects from the host ap-
plication; a JSL variable can store an object of
any type and no casting is required. JSL supports
Java's primitive types, Java's reference types (ob-
jects), and Lisp-like lists. Though JSL does support

3This representation is motivated by the grammars of
(Hipp, 1992).

Java's primitive types, they are converted into their
reference-type equivalent. For example, an integer
is stored as a java. lang. Integer and is converted
back to an integer when needed.

JSL has the standard control flow mechanisms
found in most conventional programming languages,
including if-else, for and while loops. With the
exception of the evaluation of their boolean expres-
sions, these constructs follow the syntax and behav-
ior of their Java counterparts. Java requires that
if-else conditions and loop termination criteria be
a boolean value. JSL conditionals are more flexi-
ble; in addition to booleans, it evaluates non-empty
strings as true, empty strings as false, non-zero val-
ues as true, zero as false, non-null objects as true,
and n u l l as false.

In addition to Java's control flow mechanisms,
JSL also supports f o r e a c h loops, similar to those
found in Perl. These loops iterate over both JSL
lists and members of java.util.List, executing
the associated code block on each item. JSL lists
are often constructed by recursive rules in order to
handle conjunctions, as seen in Section 5.

4 Infrastructure

The JAVOX infrastructure has been designed to com-
pletely separate NLP code from the application's
code. The application still can be run without
JAVOX, as a typical, non-speech-enabled program
- it is only speech-enabled when run with JAVOX.

1 0 8

From the application's perspective, JAVOX operates
at the systems-level and sits between the applica-
tion and the operating system (virtual machine), as
shown in Figure 1. TRANSLATOR interfaces with the
speech recognizer and performs all necessary NLP.
EXECUTER interfaces directly with the application
and performs upcalls into the running program.

Java has two key features that make it an ideal
test platform for our experimental implementation:
reflection and a redefineable loading scheme. Re-
flection provides a running program the ability to
inspect itself, sometimes called introspection. Ob-
jects can determine their parent classes; every
class is itself an object in Java (an instance of
j ava.lang.Class). Methods, fields, constructors,
and all class attributes can be obtained from a Class
object. So, given an object, reflection can determine
its class; given a class, reflection can find its meth-
ods and fields. JAVOX uses reflection to (1) map
from the JSL-textual representation of an object
to the actual instance in the running program; (2)
find the appropriate j ava.lang.reflect.Methods
for an object /method-name combination; and (3)
actually invoke the method, once all of its arguments
are known.

Reflection is very helpful in examining the appli-
cation program's structure; however, prior to using
reflection, EXECUTER needs access to the objects in
the running program. To obtain pointers to the ob-
jects, JAVOX uses JOIE , a load-time transformation
tool (Cohen et al., 1998). J O I E allows us to modify
each application class as it is loaded into the virtual
machine. The JAVOX transform adds code to every
constructor in the application that registers the new
object with Execu te r . Conceptually, the following
line is added to every constructor:

Executer. register (this).

This modification is done as the class is loaded,
the compiled copy - on disk - is not changed. This
allows the program to still be run without JhVOX,
as a non-speech application. E X E C U T E R c a n - once
it has the registered objects - use reflection to ob-
tain everything else it needs to perform the actions
specified by the JSL.

5 E x a m p l e

Our longest running test application has been a
Mr. Potato Head program; that allows users to ma-
nipulates a graphical representation of the classic
children's toy. Its operations include those typically
found in drawing programs, to include moving, recol-
oring and hiding various pieces of Mr. Potato Head.
Grammar 3 shows a portion of application's gram-
mar needed to process the utterance Move the eyes
and glasses up. The result of parsing this utterance
is shown in Figure 3.

O n c e T R A N S L A T O R has processed an utterance, it
forwards the resulting JSL fragment to EXECUTER.
Figure 4 provides a reduced class diagram for the
Mr. Potato Head application; the arrows correspond
to the first i teration in the following trace. The
following steps are performed as the JSL fragment
from Figure 3 is interpreted:

1. A new variable - local to EXECUTER - named
$ i t e r is created. Any previously-declared vari-
able with the same name is destroyed.

2. The f o r e a c h loop starts by initializing the
loop variable to the first item in the list:
Canvas.eyes0bj. This object's name consists
of two parts; the steps to locate the actual in-
stance in the application are:

(a) The first part of the name, Canvas, is
mapped to the only instance of the Canvas
class in the context of this application.
JAVOX has a reference to the instance be-
cause it registered with EXECUTER when it
was created, thanks to a J O I E transforma-
tion.

(b) The second part of the name, eyes0b j , is
found through reflection. Every instance of
Canvas has a field named eyes0bj of type
BodyPaxt. This field is the eyes0bj for
which we are looking.

3. Once eyes0bj is located, the appropriate
method must be found. We determine -
through reflection - that there are two meth-
ods in the BodyPart class with the name move,
as seen in Figure 4.

4. We next examine the two arguments and de-
termine them to be both integers. Had the ar-
guments been objects, fields, or other method
calls, this entire procedure would be done re-
cursively on each.

5. We examine each possible method and deter-
mine that we need the one with two integer
arguments, not the one taking a single Po in t
argument.

6. Now that we have the object, the method, and
the arguments, the upcall is made and the
method is executed in the application. The re-
sult is that Mr. Pota to Head's eyes move up on
the screen.

7. This process is repeated for glass0bj and the
loop terminates.

After this process, both the eyes and glasses have
moved up 20 units and Executer waits for additional
input. The application continues to accept mouse
and keyboard commands, just as it would without
speech.

109

public <modPOS> = move <PARTS> <DIR> : {:
dim Slier;
foreach $iter (<PARTS>)

$iter.move(<DIR:X>,<DIR:Y>);
:};

public <PARTS> = [<ART>] <PART> : {: [<PART>] :};
public <PARTS> = <PARTS> [<CONJ>] [<ART>] <PART> : {:
public <DIR> = up : X {: 0 :} : Y {: -20 :};
public <DIR> = left : X {: -20 :} : Y {: 0 :};
public <ART> = (the [a I an);
public <CONJ> = (and I plus);
public <PART> = eyes : {: Canvas.eyesObj :};
public <PART> = glasses : {: Canvas.glassObj :};

[<PARTS> , <PART>] : } ;

Grammar 3: A detailed JAVOX grammar for the Mr. Potato Head domain.

• • r - - + - - ~ +

<pJu~> -~> "_ c=,',vam.eye=ob::l

I <=," :

<co~>--~ ~ : ¢+

" + + I
I < " = " I<=""I<""I I:

<°+- '+ l • =,.o. + , ._ ,

Figure 3: The translation process for the utterance Move the eyes and g/asses up.

6 D i s c u s s i o n and Future Work

In practice, building a JAvox-based, speech in-
terface - for limited-functionality applications - is
straightforward and reasonably quick. To date, we
have used three diverse applications as our test plat-
forms. Speech-enabling the last of these, an image
manipulation program, took little more than one
person-day. Though these applications have been
small; we are beginning to explore JAvOX's scala-
bility to larger applications. We are also develop-
ing a library of JAVOX grammars for use with the
standard Java classes. This resource will shorten
development times even more; especially compared
to building a SLS from the ground up.

One of the existing challenges is to work with
applications consisting entirely of dynamic objects,

those that cannot be identified at load time. Some
typical dynamic-object applications are drawing
programs or presentation software; in both cases,
the user creates the interesting objects during run-
time. We have implemented a system in JSL which
allows objects to be filtered based on an attribute,
such as color in the utterance: Move the blue square.

In situations where there is a one-to-one correla-
tion between a lexical item in the grammar and an
object in the program, it is often the case that the
lexical item is very similar to the element's identi-
fier. It is quite often the same word or a direct syn-
onym. Since JAVOX is primarily performing upcalls
based on existing functions within the program, it
also can be predicted what type of objects will co-
occur in utterances. In the Mr. Pota to Head applio

110

f-/,pp f~A-d o-, ...
~ Canv&i : ,TFr 4tma

/i I / i ¢snvas { }
/ i J ¢Snv" { } BOC~ylL-¢ { }
/ t L _ _ l=o~(~i==:~,

Figure 4: A simplified class diagram for the Mr. Potato Head application.

cation, we can assume that objects representing a
Point or in tegers will occur when the user speaks
of moving a BodyPart. We are developing a system
to exploit these characteristics to automatically gen-
erate JAVOX grammars from an application's com-
piled code. The automatically-generated grammars
are intended to serve as a starting point for develop-
ers - though they may certainly require some hand
crafting. Our current, grammar-generation tool as-
sumes the program is written with Java's standard
naming conventions. It is imaginable that additional
data sources - such as a sample corpus - will al-
low us to more accurately generate grammars for an
application. Though in its infancy, we believe this
approach holds vast potential for SLS development.

7 C o n c l u s i o n

JAVOX provides a fast and flexible method to add a
speech-interface to existing Java applications. The
application program requires no source-code modifi-
cation: The JAVOX infrastructure provides all NLP
capabilities. We have implemented a grammar and
scripting system that is straightforward enough that
inexperienced developers and those unfamiliar with
NLP can learn it quickly. We have demonstrated the
technology on several programs and are commencing
work on more ambitious applications. The current
implementation of JAVOX is available for download
at:

References
Geoff A. Cohen, Jeffrey S. Chase, and David L.

Kaminsky. 1998. Automatic program transforma-
tion with JOIE. In USENIX Annual Technical
Conference (N098), New Orleans, LA.

D. Richard Hipp. 1992. A New Technique for Pars-
ing Ill-formed Spoken Natural-language Dialog.
Ph.D. thesis, Duke University.

Andrew Pargellis, JeffKuo, and Chin-Hui Lee. 1999.
Automatic dialogue generator creates user de-
fined applications. In 6th European Conference on
Speech Communication and Technology, volume 3,
pages 1175--1178, Budapest, Hungary.

Paul Schmidt, Sibylle Rieder, Axel Theofilidis, Mar-
ius Groenendijk, Peter Phelan, Henrik Schulz,
Thierry Declerck, and Andrew Brenenkamp.
1998. Natural language access to software applica-
tions. In Proceedings of COLING-ACL-98, pages
1193-1197, Montreal, Quebec.

Sun Microsystems, Inc. 1998. Java speech API spec-
ification 1.0.

Stephen Sutton, David G. Novick, Ronald A. Cole,
Pieter Vermeulen, Jacques de Villiers, Johan
Schalkwyk, and Mark Fanty. 1996. Building
10,000 spoken-dialogue systems. In Proceedings of
the International Conference on Spoken Language
Processing (ICSLP), pages 709--712, Philadel-
phia, PA.

http ://www. cs. duke. edu/~msf/j avox

8 Acknowledgments

This work has been partially supported by the De-
fense Advanced Research Projects Agency under
contract F30602-99-C-0060.

1 1 1

