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Abstract

Multimodal Sentiment Analysis (MSA) aims
to identify human attitudes from diverse modal-
ities such as visual, audio and text modalities.
Recent studies suggest that the text modality
tends to be the most effective, which has en-
couraged models to consider text as its core
modality. However, previous methods primar-
ily concentrate on projecting modalities other
than text into a space close to the text modality
and learning an identical representation, which
does not fully make use of the auxiliary infor-
mation provided by audio and visual modalities.
In this paper, we propose a framework, Sequen-
tial Fusion of Text-close and Text-far Represen-
tations (SFTTR), aiming to refine multimodal
representations from multimodal data which
should contain both representations close to
and far from the text modality. Specifically,
we employ contrastive learning to sufficiently
explore the information similarities and differ-
ences between text and audio/visual modali-
ties. Moreover, to fuse the extracted represen-
tations more effectively, we design a sequen-
tial cross-modal encoder to sequentially fuse
representations that are close to and far from
the text modality. Experiments on three pub-
lic benchmark datasets, MOSI, MOSEI, and
CH-SIMS, demonstrate the superiority of the
proposed method over the state-of-the-arts1.

1 Introduction

Sentiment analysis has made remarkable advance-
ments from the traditional textual sentiment clas-
sification which primarily relies on language to
the more intricate Multimodal Sentiment Analysis
(MSA) models (Zeng et al., 2022). Multimodal
data provides not only verbal information, such
as textual features but also non-verbal informa-
tion, including acoustic and visual features (Hu
et al., 2022). For instance, without audio and vi-

1The code is released at https://github.com/Mi7914/
SFTTR

Figure 1: Previous methods versus our method.

sual modalities, it is difficult to recognize the sen-
timent of “Yeah, I think so”. Thus, combining dif-
ferent modalities together may help the machine to
make decisions from different perspectives, thereby
achieving more accurate predictions (Ngiam et al.,
2011).

However, multimodal learning (Baltrušaitis et al.,
2018) processes heterogeneous information col-
lected from multiple sources, which gives rise to
two emergent issues: intra-modal representation
and inter-modal fusion. Intra-modal representation
learning mainly exploits consistency and comple-
mentarity of multiple modalities to bridge the gap
between heterogeneous modalities. However, mul-
tiple works over-rely on text modality to improve
the performance, so previous methods project au-
dio and visual modalities into spaces close to the
text modality to eliminate redundancy. But they
neglect the fact that different modalities reveal dis-
tinctive characteristic of sentiment from different
perspectives, and not take full advantage of the
auxiliary information of visual and audio modali-
ties. Accordingly, the key challenge of multimodal
learning lies in two aspects: how to integrate com-
monality while preserving diversity of each individ-
ual modality and how to align different modality
distributions interactively for inter-modal fusion
(Zhang et al., 2022).

https://github.com/Mi7914/SFTTR
https://github.com/Mi7914/SFTTR
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Based on the above motivation, we propose Se-
quential Fusion of Text-close and Text-far Rep-
resentations for Multimodal Sentiment Analysis
(SFTTR), Figure 1 illustrates the difference be-
tween previous methods and our proposed method.
The main contributions are summarized as follows:

• A novel framework of Sequential Fusion
of Text-close and Text-far Representations
(SFTTR) is proposed. For intra-modal repre-
sentation, we propose to decompose multiple
modalities to two disjoint parts: Text-close
and Text-far representations so as to extract
similarities and differences between text and
audio/visual modalities.

• For inter-modal fusion, we propose a novel
sequential cross-modality encoder to sequen-
tially fuse Text-close and Text-far representa-
tions.

• Experimental results on three public bench-
mark datasets, MOSI, MOSEI and CH-SIMS
demonstrate that SFTTR achieves a new state-
of-the-art performance.

2 Related Work

2.1 Multimodal Sentiment Analysis

There are many research directions in MSA, such
as multimodal fusion (Yang et al., 2020), modal
alignment (Tsai et al., 2019), context modeling
(Mao et al., 2020) and so on. Early works of the
first mainly operate geometric manipulation in the
feature spaces (Zadeh et al., 2017). The recent
works develop the reconstruction loss (Hazarika
et al., 2020), or hierarchical mutual information
maximization (Han et al., 2021) to optimize mul-
timodal representation. For the modal alignment,
Tsai et al. (2019) and Luo et al. (2021) leverage
cross-modality and multi-scale modality represen-
tation to implement modal alignment, respectively.
Lastly, studies of multimodal context integrate the
unimodal context, in which (Chauhan et al., 2019)
adapts context-aware attention, Ghosal et al. (2018)
uses multi-modal attention, and Poria et al. (2017)
proposes a recurrent model with multi-level mul-
tiple attentions to capture contextual information
among utterances.

2.2 Contrastive Representation Learning

Contrastive learning has achieved great success
in representation learning by contrasting positive

pairs against negative pairs (Chen et al., 2020; Ak-
bari et al., 2021; Hassani and Khasahmadi, 2020).
Through a contrastive loss between augmented
views of the same image sample, Chen et al. (2020)
present a self-supervised framework, SimCLR, to
learn visual representations. Khosla et al. (2020)
extend self-supervised contrastive learning to the
supervised setting, i.e., contrasting samples from
different classes. Due to utilizing multimodal
contrastive learning to train a Video-Audio-Text
Transformer (VATT) for the alignment of video-
text and video-audio pairs, Akbari et al. (2021)
achieve state-of-the-art on various computer vision
tasks, such as audio classification and visual action
recognition. Hassani and Khasahmadi (2020) pro-
pose to learn node and graph level representations
by contrasting encodings obtained from tdifferent
structural views of graphs and achieve the state-of-
the-art on various graph classification benchmarks.
Yang et al. (2023) design a contrastive learning
framework that utilizes the contrasts of modalities
both within a sample and between samples to en-
hance multimodal representation in a unified con-
trastive loss guided by a specific pairing pattern.

3 Method

3.1 Overall Architecture

The overall architecture of SFTTR is shown in Fig-
ure 2. As shown, SFTTR first extracts unified
modality features from the input. After obtain-
ing text, visual and audio features, we decompose
each encoded modality into Text-close features
(i.e., CT /CV /CA in Figure 2) and Text-far represen-
tations (i.e., FT /FV /FA in Figure 2) with different
projectors. Finally we update the six decomposed
features, fuse them in a sequential structure and
gradually complement with each other.

3.2 Multimodal Input

Regarding the multimodal input, each sample con-
sists of text (T ), audio (A), and visual (V ) sources.
Referring to previous works, we use the [CLS] tag
of BERT to encode text (i.e., T ), and two separate
transformer encoders to encode visual and audio
modalities (i.e., V and A), respectively.

3.3 Feature Decomposition

A well-known fact in the MSA research is that
the greater the difference between inter-modal
representations, the better the complementarity
of inter-modal fusion (Yu et al., 2020). Though
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Figure 2: Overall structure of SFTTR.

the unimodal extractors capture long-term tempo-
ral context, they are unable to deal with feature
redundancy due to modality gap (Zhang et al.,
2022). To address this, we decompose each en-
coded modality into Text-close representations (i.e.,
CT /CV /CA in Figure 2) and Text-far representa-
tions (i.e., FT /FV /FA in Figure 2) with different
projectors. Each projector consists of layer normal-
ization, a linear layer with the Tanh activation, and
a dropout layer. It inherently decomposes multi-
ple modalities to two disjoint parts: Text-close and
Text-far representations so as to extract informa-
tion similarities and differences between text and
audio/visual modalities.

Contrastive learning (CL) has gained significant
advances in representation learning by viewing
samples from various views (Gutmann and Hyväri-
nen, 2010; Khosla et al., 2020; Gao et al., 2021).
The principle of contrastive learning is that an an-
chor and its positive sample should be pulled closer,
while the anchor and negative samples should be
pushed apart in feature space. In our work, we
utilize contrastive learning to conduct modality de-
composition. Previous works (Tsai et al., 2019;
Yang et al., 2020) have demonstrated that textual
modality is more indicative than the other modal-
ities, to fully make use of the auxiliary informa-
tion provided by audio and visual modalities, in-
spired by Yang et al. (2023), instead of treating all
modalities equally as in other contrastive learning
schemes, here we choose the text similarity feature
Ci
T as an anchor, such that the visual and audio

similarity features Ci
V and Ci

A are pushed closer to
Ci
T , while in the meantime, the dissimilarity fea-

tures in all modalities are pushed away from Ci
T .

This allows the visual and audio similarity features
to be drawn closer to the anchor, while simulta-
neously distancing the dissimilarity features in all
modalities from it.

Specifically, denote the set of samples in a batch
as B, for each sample pair (i, j) in B, we first cal-
culate the cosine similarity score of them:

Cosi,j = sim([T i;V i;Ai], [T j ;V j ;Aj ]), (1)

Subsequently, for each sample i, we sort samples
with the same multimodal label yim in ascending or-
der of similarity scores to form the similar sample
set Si

0. In contrast, we sort samples that are differ-
ent from yim as the dissimilar sample set Si

1. We
randomly select two similar samples with high co-
sine similarity scores from Si

0 to form inter-sample
positive pairs with sample i, which is denoted as
Neighbouri(N i for short). In the following, N i

will be used to refer to Neighbouri. From the dis-
similar sample set Si

1, we select four samples to
form inter-sample negative pairs. We denote them
as Outlieri(Oi for short), where two samples have
low cosine similarity scores and the other two have
high scores. Choosing samples of high cosine sim-
ilarity to form Oi can increase the difficulty of
contrastive learning, prompting the model to better
distinguish between similar yet different samples.
This approach is particularly effective because it
forces the model to focus on subtle differences,
thereby enhancing its ability to discern nuanced
features that are crucial for accurate classification.

Based on the samples obtained through these
steps, the inter-sample positive/negative pairs for
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Figure 3: Structure of Cross-Modality Encoder (CME).

sample i are given by:
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The set P i and N i are given by:

P i = P i
intra ∪ P i

inter, (6)

N i = N i
intra ∪N i

inter, (7)

To simultaneously perform modality representa-
tion learning and decomposition, we use NT-Xent
contrastive loss framework (Chen et al., 2020) to
calculate the loss for sample i as follows:

licl =
∑

(a,p)∈P i

−log
exp(sim(a, p)/τ)∑

(a,k)∈(Ni
⋃

P i) exp(sim(a, k)/τ)
,

(8)

where (a, p) and (a, k) denote a pair of decom-
posed feature vectors either within a sample or
across different samples.

3.4 Multimodal Fusion and Output

3.4.1 Sequential Cross-Modality Fusion

The Text-close and Text-far representations that
we obtain contain information similarities and dif-
ferences between text and audio/visual modalities,
while few or no information concerning modal-
ity interactions. Therefore, we need to fuse them
into a joint representation for sentiment analysis.
However, simply concatenating them together ig-
nores modality interactions, which might intro-
duce redundant information and lead to suboptimal
problem (Zhang et al., 2018). Inspired by Zhang
et al. (2022), we propose a novel Sequential Cross-
Modality Encoder to exploit modality interactions.
On the one hand, the feature distribution of various
modalities varies due to heterogeneity, presenting
a significant challenge to multimodal fusion. On
the other hand, to preserve the temporal informa-
tion of the two modalities, we augment them with
positional embeddings. To bridge the large gap of
the statistical properties between two modalities,
we add two modality token embeddings to capture
statistical regularities. The structure of the Cross-
Modality Encoder (CME) is depicted in Figure 3,
where the sum of modality representations, posi-
tion embeddings, and modality token embeddings
is feed into a Transformer Encoder, outputting the
joint representation of modality A and B. While
there have been previous studies on cross-modality
fusion methods, our modules are more straight-
forward and easier to train without the need for
additional hyper-parameter tuning. Cross-Modality
Encoder can be written as Z = CME(A,B).

Besides, on the one hand, audio and visual
modalities tend to have stronger correlations in
sentiment expression. On the other hand, they may
include emotional information different from text
modality. Therefore, combining these two modali-
ties first may capture more emotional information
(Wang et al., 2021), which is rarely considered
in existing fusion methods. To remedy the defi-
ciency, we devise Sequential Cross-Modality En-
coder (SCME) to exploit interactions across modal-
ities. Text-far representations F{V,A,T} and Text-
close representations C{V,A,T} are fused in a se-
quential structure and gradually complement with
each other. It is worth noting that, for the sake
of brevity, we have provided simplified represen-
tations for the fusion of text-close representations
in formulas and figures. Under this design, each
pair of modalities interacts and correlates valuable



44

information step by step, thus obtaining a joint
multimodal representation M for final sentiment
analysis. The sequential structure of multimodal
fusion is given by:

ZVA = CME(FV , FA), (9)

ZVAT = CME(ZVA, FT ), (10)

M = CME(ZVAT , CV + CA + CT ), (11)

3.4.2 Overall Learning Objectives
After the multimodal fusion, we use a multilayer
perceptron (MLP) with the ReLU activation func-
tion as the classifier to get the final predictive result.
This choice is primarily driven by MLP’s ability to
capture complex nonlinear relationships within the
input data, which is particularly crucial for senti-
ment analysis tasks, where the underlying patterns
and nuances in the data are often highly non-linear
and multifaceted. We use the joint multimodal rep-
resentation M as the input to the classifier. Denote
the set of samples in a batch as B. For a given
sample i ∈ B, let its prediction from the classifier
be ŷim, we calculate the multimodal prediction loss
by mean squared error:

ŷim = MLP(M), (12)

Lpred =
1

n

n∑
i=1

(yim − ŷim)2, (13)

where n is the number of samples in a batch and
yim is the multimodal label.

In addition, for each sample i, we also feed the
6 decomposed features [Ci

T , C
i
V , C

i
A, F

i
T , F

i
V , F

i
A]

into MLP classifier separately to get the 6 predic-
tions denoted by the vector ûi. Specifically, we
compute the unimodal prediction loss by:

ûi = MLP([Ci
T , C

i
V , C

i
A, F

i
T , F

i
V , F

i
A]), (14)

ui = [yim, yim, yim, yiT , y
i
V , y

i
A], (15)

Luni =
1

n

n∑
i=1

∥ ui − ûi ∥2, (16)

where the vector ui = [yim, yim, yim, yiT , y
i
V , y

i
A]

represents the ground-truth labels for unimodal pre-
diction. In other words, each decomposed feature
is regularized to perform prediction individually.

Note that the Text-close features Ci
T , Ci

V , Ci
A are

mapped through the MLP to predict the multimodal
label yim, whereas the Text-far features F i

T , F i
V , F i

A

are mapped through the MLP to predict modality-
specific labels yiT , yiV , yiA(if available). Different
from previous works, when modality-specific la-
bels are not available, the unimodal prediction loss
will no longer be considered. The rationale behind
this design is that this may cause additional noise.
It is worth mentioning that in the dataset we used,
only the CH-SIMS include the modality-specific
labels.

The contrastive loss and the overall loss function
can be formulated as follows:

Lcl =
1

n

n∑
i=1

licl, (17)

Lall = Lpred + βuniLuni + βclLcl, (18)

where Lpred is the multimodal prediction loss, Luni

represents the unimodal prediction loss and Lcl

represents the contrastive loss. βuni and βcl are
hyper-parameters that balance the contribution of
each regularization component to the overall loss
Lall.

4 Experiments

4.1 Datasets
We conducted extensive experiments on three pop-
ular trimodal datasets (i.e., MOSI (Zadeh et al.,
2016), MOSEI (Zadeh et al., 2018b), and CH-
SIMS (Yu et al., 2020)).

MOSI. The dataset comprises 2,199 multimodal
samples encompassing visual, audio, and language
modalities. Specifically, the training set consists
of 1,284 samples, the validation set contains 229
samples, and the test set encompasses 686 samples.
Each individual sample is assigned a sentiment
score ranging from -3 (indicating strongly negative)
to 3 (indicating strongly positive).

MOSEI. The dataset comprises 22,856 video
clips collected from YouTube with a diverse fac-
tors (e.g., spontaneous expressions, head poses,
occlusions, illuminations). This dataset has been
categorized into 16,326 training instances, 1,871
validation instances, and 4,659 test instances. Each
instance is meticulously labeled with a sentiment
score ranging from -3 to 3. And the sentiment
scores from -3 to 3 indicate most negative to most
positive.

CH-SIMS. It is a Chinese multimodal sentiment
dataset that comprises 2,281 video clips collected
from various sources, such as different movies and
TV serials with spontaneous expressions, various
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CH-SIMS
Model Acc-5 ↑ Acc-3 ↑ Acc-2 ↑ F1 ↑ MAE ↓ Corr ↑
LF-DNN 41.62 66.91 78.87 79.87 0.420 0.612
MFN 39.47 65.73 77.9 77.88 0.435 0.582
LMF 40.53 64.68 77.77 77.88 0.441 0.576
TFN 39.30 65.12 78.38 78.62 0.432 0.591
MulT 37.94 64.77 78.56 79.66 0.453 0.561
MISA - - 76.54 76.59 0.447 0.563
MAG-BERT - - 74.44 71.75 0.492 0.399
Self-MM 41.53 65.47 80.04 80.44 0.425 0.595
ALMT 45.73 68.93 81.19 81.57 0.404 0.619
SFTTR 47.48 70.24 81.62 81.66 0.368 0.6815

Table 1: Results on CH-SIMS.

head poses, etc. It is divided into 1,368 training
samples, 456 validation samples, and 457 test sam-
ples. Each sample is manually annotated with a
sentiment score from -1 (strongly negative) to 1
(strongly positive).

4.2 Experimental Settings

We employ transformer encoders as our Vision En-
coder and Audio Encoder. Specifically, for layer
number in Transformer Encoder, we use two single-
layer transformer encoders (Vaswani et al., 2017)
on MOSI and CH-SIMS to extract the audio and
the visual information respectively. For MOSEI,
we use 3 transformer layers to build each decoder,
since MOSEI is much larger than the other two.
All vision encoders and audio encoders are trained
for 300 epochs with the learning rate of 0.0001 and
batch size of 128. In the multimodal stage, we
train SFTTR for MSA with the encoders obtained
above. When modality-specific labels are available,
we set the loss ratio to βcl = 0.1 and βuni = 0.01.
While when they are not available, the loss ratio
is set to be βcl = 0.1 and βuni = 0. For MOSI and
CH-SIMS, we train SFTTR with the learning rate
equals 0.0001 for 50 epochs. The batch size is set
to 16 for MOSI and 32 for CH-SIMS. For MOSEI,
we train the model for 25 epochs with a batch size
of 4. The learning rate is set to 0.00005. All exper-
iments were running with a single NVIDIA RTX
6000 GPU.

4.3 Evaluation Criteria

Following the previous works (Yu et al., 2020,
2021; Rahman et al., 2020; Hazarika et al., 2020),
we report our results in (multi-class) classification
and regression. For classification, we report the
multiclass accuracy and weighted F1 score. We
calculate the accuracy of 2-class prediction (Acc-
2), 3-class prediction (Acc-3), and 5-class (Acc-
5) prediction for CH-SIMS and the accuracy of
2-class prediction (Acc-2), 5-class prediction (Acc-

5), and 7-class prediction (Acc-7) for MOSI and
MOSEI. Besides, Acc-2 and F1-score of MOSI
and MOSEI have two forms: negative/non-negative
(non-exclude zero) (Zadeh et al., 2017; Yu et al.,
2021) and negative/positive (exclude zero) (Tsai
et al., 2019; Yu et al., 2021). For regression, we
report Mean Absolute Error (MAE) and Pearson
correlation (Corr). Except for MAE, higher values
indicate better performance for all metrics.

4.4 Baselines
To comprehensively validate the performance of
our SFTTR, we make a fair comparison with the
several advanced and state-of-the-art methods, they
can be grouped into 1) early multimodal fusion
methods like Tensor Fusion Network TFN (Zadeh
et al., 2017), Memory fusion network MFN (Zadeh
et al., 2018a), Low-rank Multimodal Fusion LMF
(Liu et al., 2018), and 2) methods that fuse multi-
modality through modeling modality interaction,
such as Multimodal Transformer MulT (Tsai et al.,
2019), ALMT(Zhang et al., 2023) which learns rep-
resentation from other features under the guidance
of language features and PMR (Lv et al., 2021)
exchanges information with each modality by intro-
ducing a message hub, and 3) the methods focusing
on the consistency and the difference of modality,
in which MISA(Hazarika et al., 2020) controls the
modal representation space, Self-MM (Yu et al.,
2021) and LF-DNN(Yu et al., 2020) learns from
unimodal representation using multi-task learning,
MAG-BERT (Rahman et al., 2020) designs a fu-
sion gate, FDMER (Yang et al., 2022) proposes a
feature disentangled method to deal with modality
heterogeneity by learning two distinct representa-
tions and PS-Mixer (Lin et al., 2023) realize better
communication between different modal data.

4.5 Performance Comparison
Table 1 and Table 2 list the comparison results of
our proposed method and state-of-the-art methods
on CH-SIMS, MOSI and MOSEI respectively. The
symbol ↑ denote higher values indicate better per-
formance, the symbol ↓ is opposite. Besides, the
best result is highlighted in bold.

It is worth noting that the scenarios in CH-SIMS
are more complex than MOSI and MOSEI. There-
fore, it is more challenging to model the multi-
modal data. However, as shown in the Table 1,
our proposed method, SFTTR, consistently outper-
forms all other baselines on the CH-SIMS dataset
on all metrics. For example, compared to ALMT,
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MOSI MOSEI
Model Acc-7 ↑ Acc-5 ↑ Acc-2 ↑ F1 ↑ MAE ↓ Corr ↑ Acc-7 ↑ Acc-5 ↑ Acc-2 ↑ F1 ↑ MAE ↓ Corr ↑
TFN 34.9 - -/80.8 -/80.7 0.901 0.698 51.6 - 78.50/81.89 78.96/81.74 0.573 0.714
LF-DNN 34.52 - 77.52/78.63 77.46/78.63 0.955 0.658 50.83 - 80.60/82.74 80.85/82.52 0.58 0.709
LMF 33.2 - -/82.5 -/82.4 0.917 0.695 51.59 - 80.54/83.48 80.94/83.36 0.576 0.717
MFN 34.1 - 77.4/- 77.3/- 0.965 0.632 51.34 - 78.94/82.86 79.55/82.85 0.573 0.718
MulT 40.0 - -/83.0 -/82.8 0.871 0.698 52.84 - 81.15/84.63 81.56/84.52 0.559 0.733
MISA 42.3 - 81.8/83.4 81.7/83.6 0.783 0.776 52.2 - 83.6/85.5 83.8/85.3 0.555 0.756
MAG-BERT 41.43 - 82.13/83.54 81.12/83.58 0.790 0.766 50.41 - 79.86/86.86 80.47/83.88 0.583 0.741
PMR 40.6 - -/83.6 -/83.4 - - 52.5 - -/83.3 -/82.6 - -
FDMER 44.1 - -/84.6 -/84.7 0.724 0.788 54.1 - -/86.1 -/85.8 0.536 0.773
PS-Mixer 44.31 - 80.3/82.1 80.3/82.1 0.794 0.748 53.0 - 83.1/86.1 83.1/86.1 0.537 0.765
MulT* - 42.68 -/- -/- - - - 54.18 -/- -/- - -
MISA* - 47.08 -/- -/- - - - 53.63 -/- -/- - -
SFTTR 46.5 52.62 82.94/84.6 82.92/84.63 0.709 0.795 53.7 55.48 82.89/85.99 83.15/85.92 0.536 0.772

Table 2: Results on MOSI and MOSEI. * represents the result is from Mao et al. (2022).

it achieved relative improvements with 6.25% on
Corr and 3.6% on MAE, respectively. Addition-
ally, the proposed model demonstrates exceptional
ability in multi-class classification, outperforming
ALMT by 1.75% on Acc-5 and 1.31% on Acc-
3. The superior classification performance demon-
strates that our designed learning method is more
effective than the compared methods. Furthermore,
the significant improvement in Acc-2 and F1 fur-
ther highlights the ability of our model to better
understand the CH-SIMS dataset than the other
baselines. Achieving such superior performance
on CH-SIMS with more complex scenarios demon-
strates SFTTR’s ability to extract effective senti-
ment information from various scenarios.

As seen in the results in Table 2, on the MOSI
dataset, our method outperforms all other base-
lines in all metrics except for the negative/positive
(NP) setting F1 score. Furthermore, on the task
of more difficult and finegrained sentiment clas-
sification (Acc-7), our model achieves a relative
improvement of 2.4% compared to the secondbest
result obtained by FDMR. For the MOSEI dataset,
our model also surpass most of the baselines in all
metrics. Specially, our method shows better per-
formance in MAE and the negative/positive (NP)
setting for F1 score. The Acc-7 and Corr are also
better or comparable to most baselines.

4.6 Ablation Study and Analysis

To verify the effectiveness of each component of
our SFTTR, in Table 3, we present the ablation
result of the subtraction of each component on the
CH-SIMS datasets. Among them, "-cl" denotes the
removal of the contrastive learning method. "-uni"
denotes the removal of the unimodal prediction
component. "-fusion" represents the absence of the
hierarchical cross-modality fusion. We observe that
deactivating the hierarchical cross-modality fusion

greatly decreases the performance, demonstrating it
is effective. Moreover, after the removal of the the
unimodal prediction task, the performance drops
again, also supporting that the hierarchical cross-
modality fusion and unimodal prediction task can
effectively improve the SFTTR’s ability to explore
the sentiment information in each modality.

Model Acc-5 ↑ Acc-3 ↑ Acc-2 ↑ F1 ↑ MAE ↓ Corr ↑
-cl 47.31 68.44 80.74 80.66 0.384 0.627
-uni 44.90 68.09 79.56 79.54 0.394 0.626
-fusion 44.41 68.44 80.39 80.12 0.402 0.631
SFTTR 47.48 70.24 81.62 81.66 0.368 0.6815

Table 3: Ablation study of SFTTR on CH-SIMS.

4.7 Visualization
Figure 4 shows the T-SNE visualization of all six
Text-close and Text-far representations of all test
samples on CH-SIMS, where (a) is the six decom-
posed features without SFTTR and (b) shows these
features with SFTTR. From it, we can observe the
distributions of Text-close features (i.e., in red, in
green and in blue) become closer to each other
while the Text-far features (i.e., in cyan, in yellow
and in magenta) become further away from their
corresponding Text-close features, proving the ef-
fectiveness of SFTTR to learn the similarities and
differences between modalities.

5 Conclusion and Future Work

In this paper, we propose a novel method for mul-
timodal sentiment analysis called SFTTR, consist-
ing of uni-modal extractor, contrastive feature de-
composition and sequential cross-modality fusion.
These modules cooperate closely to capture the
consistency and difference across modalities, fuse
Text-far modality representations first and Text-
close modality representations second, rather than
merging the whole representations directly. While
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(a) (b)

Figure 4: T-SNE visualization comparison of all six Text-close and Text-far representations between: (a)case
without SFTTR, and (b)case with SFTTR. The colors red, green, blue, cyan, yellow and magenta represent CT , CV ,
CA, FT , FV , FA respectively.

the proposed method achieved improved perfor-
mance on several popular datasets, there are some
limitations to consider. Firstly, as the number of
training samples increases, our method may require
more processing time. Additionally, the potential
sentiment-irrelevant and conflicting information
across modalities are not sufficiently alleviated. We
plan to address this in future work, and the focus
will be on designing a modules to capture the senti-
ment shifts for fine-grained sentiment prediction.
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