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Abstract

Training automatic summary fact verifiers of-
ten faces the challenge of a lack of human-
labeled data. In this paper, we explore al-
ternative way of leveraging Large Language
Model (LLM) generated feedback to ad-
dress the inherent limitation of using human-
labeled data. We introduce FineSumFact,
a large-scale dataset containing fine-grained
factual feedback on summaries. We employ
10 distinct LLMs for diverse summary gen-
eration and Llama-3-70B-Instruct for feed-
back. We utilize this dataset to fine-tune
the lightweight open-source model Llama-3-
8B-Instruct, optimizing resource efficiency
while maintaining high performance. Our
experimental results reveal that the model
trained on extensive LLM-generated datasets
surpasses that trained on smaller human-
annotated datasets when evaluated using
human-generated test sets. Fine-tuning fact
verification models with LLM feedback can
be more effective and cost-efficient than using
human feedback. The dataset is available at
https://github.com/DISL-Lab/FineSumFact

1 Introduction

Recent advancements in large language models
(LLMs) have significantly enhanced the text sum-
marization performance (Tang et al., 2024; Zhang
et al., 2024). State-of-the-art models such as GPT-
4 excel at generating coherent summaries from
extensive datasets, processing input contexts ex-
ceeding 100k tokens, thereby significantly en-
hancing their summarization capabilities (Ravaut
et al., 2023). However, hallucination issues still
occur in summaries, highlighting the importance
of summary fact verification (Cao et al., 2022).

Verifying the fact of the summaries inevitably
necessitates considerable human effort, render-
ing the evaluation process both time-intensive
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Figure 1: Pipeline: our evaluator is trained with LLM
feedback generated on diverse input texts and sum-
maries and then tested on an unseen test set.

and cost-prohibitive. In manual evaluation, non-
expert human evaluators are often tasked with la-
beling summaries across diverse domains (Geiger
et al., 2020). In particular, this process gets more
costly and challenging to reproduce at a fine-
grained level evaluation, such as error localization
and explainable evaluation.

To mitigate the human cost involved, an al-
ternative way is to employ AI-assisted labeling
approaches (Desmond et al., 2021; Wang et al.,
2021) and the training of language models using
LLM-generated labels, also known as knowledge
distillation (Pangakis and Wolken, 2024). How-
ever, the application of knowledge distillation for
fact verification remains unexplored.

In this paper, we unveil the potential of using
LLM-generated fine-grained feedback to train an
efficient and effective fact verification model. As
shown in Figure 1, our pipeline consists of four

https://github.com/DISL-Lab/FineSumFact
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stages: (1) Summary Generation: we generate
diverse summaries using 10 different language
models on collected input documents, which span
from short to lengthy texts from non-dialogue
to dialogue sampled from 7 distinct data do-
mains; (2) Feedback Generation: we acquire
a large volume of fine-grained LLM feedback
using an off-the-shelf evaluator, FineSurE (us-
ing Llama-3-70B-Instruct) (Song et al., 2024),
producing sentence-level fact verification labels
along with error types; (3) Training with LLM
Feedback: we fine-tune a much smaller Llama-
3-8B-Instruct model with LLM feedback through
sequence-level knowledge distillation (Kim and
Rush, 2016), leading to an efficient automated
verifier; and (4) Inference: we evaluate the dis-
tilled model on unseen document-summary pairs
to check the agreement with human judgments.

Our key findings are: (1) Training with a large
amount of LLM-generated feedback can outper-
form using a limited set of human feedback in
automated evaluation; (2) Evaluation accuracy
improves considerably when trained with ex-
plainable feedback (e.g., reasoning, error types);
and (3) Increasing the volume of training data
with LLM feedback correlates positively with en-
hanced model performance.

2 Related Work
Fact Verification Datasets. Several datasets
collected human annotations for training sum-
mary fact verification models. REALSumm
(Bhandari et al., 2020) provides a rigorous evalu-
ation of 25 different summarizers, incorporating
detailed human evaluations. SummEval (Fabbri
et al., 2021) offers a comprehensive benchmark
with human annotations from both crowdsource
and expert annotators. In an effort to increase the
scale of benchmark datasets, prior works, such
as AggreFact (Tang et al., 2022) and SummaC
(Laban et al., 2022), aggregated many human an-
notations from the previous benchmark datasets
along with unified annotation schemes, focusing
solely on the news domain. A separate line of
research proposes a more fine-grained annota-
tion framework. FRANK (Pagnoni et al., 2021)
introduces sentence-level feedback by categoriz-
ing factual errors into seven distinct types within
the news domain, while TofuEval (Tang et al.,
2024) proposes a complementary error taxonomy
tailored to the dialogue domain, also providing
sentence-level feedback.

Fact Verification Methods. Various methods
and metrics have been studied to verify factual
consistency between documents and their sum-
maries. FalseSum (Utama et al., 2022) gener-
ates document-level Natural Language Inference
(NLI) examples with intentional factual incon-
sistencies to train evaluator models. QAFactE-
val (Fabbri et al., 2022) is a QA-based metric,
extracting information units from summaries and
generating questions based on these units. Most
recently, a few works simply rely on zero-shot
inference, such as G-Eval (Liu et al., 2023) and
FineSurE (Song et al., 2024).

Unlike prior studies, we construct a dataset
without human effort by employing a recent LLM-
based evaluator. We then train a lightweight open-
source model, addressing open questions on the
effectiveness of using LLM-based fine-grained
feedback for fact verification.

3 Preliminary

Dataset with Human Feedback. Datasets
with human fact labels are widely used to
train and test automated fact verifiers. For
a more complete evaluation, we aggregate
all the available human-labeled datasets for
sentence-level fact verification, including
AggreFact (Tang et al., 2022), DiaSumFact (Zhu
et al., 2023), TofuEval (Tang et al., 2024), and
Ramprasad’24 (Ramprasad et al., 2024). The ag-
gregated data contains 6,546 document-summary
pairs, each of which has sentence-level binary
labels – “0" for no error and “1" for a fact error.
85% of pairs are used for training a fact verifier
(one of our baselines) and the remaining 15%
of those are used for testing all the compared
verifiers. See the details in Appendix A.

4 Learning with LLM Feedback

We build a large-scale dataset with LLM feed-
back to train a fact verifier capable of general-
izing across various input contexts. Our dataset
contains 10,877 documents, encompassing mul-
tiple domains, varying lengths, and two types
(i.e., non-dialogue, dialogue). Particularly, the
domains represented in the dataset include news
(CNN/DM: Hermann et al. 2015), interview (Me-
diaSum: Zhu et al. 2021), daily (DialogSum:
Chen et al. 2021), meeting (MeetingBank: Hu
et al. 2023), knowledge (WikiHow: Koupaee
and Wang 2018), report (GovReport: Huang
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Type Method Sentence-level Summary-level System-level

bAcc Pearson Corr Rank Corr

QA-based (w. fine-tuned) QAFactEval - 0.506 (0.000) 0.864 (0.000)
NLI-based (w. fine-tuned) SummaC-Conv - 0.337 (0.000) 0.811 (0.000)

LLM-based (wo. fine-tuned) Zero-shot 57.4% 0.246 (0.000) 0.663 (0.000)

LLM-based (w. fine-tuned) Human Feedback 69.8% 0.534 (0.000) 0.684 (0.000)

LLM Feedback (Ours) 73.4% 0.625 (0.000) 0.865 (0.000)

Table 1: Agreement with human judgments in fact verification on test data, where the value in the parenthesis is the
p-value. All the LLM-based methods use Llama-3-8B-Instruct as the backbone. QAFactEval and SummaC do not
support sentence-level fact verification. Further analysis on inference speed can be found in 5.5.

et al. 2021), and medicine (PubMed: Cohan et al.
2018). Refer to Appendix D for detailed statistics
and analysis.

These source documents are used to construct
labeled data with LLM feedback to train our fact
verification model, following these three steps:

(1) Summary Generation: We generate sum-
maries using 10 different LLMs to ensure a di-
verse distribution of summaries that include vari-
ous types of fact errors. The summaries are gener-
ated by non-LLMs (BART-large-cnn, FLAN-T5-
large, Pegasus-Large), open-source LLMs (Phi-2,
Llama-2-13B-chat, Mistral-7B-Instruct, Mixtral-
7B-Instruct), and commercial LLMs (Claude-
Instant, GPT-3.5-turbo, GPT-4-turbo).

(2) Feedback Generation. Ensuring high-quality
feedback for fact-checking is essential. Hence,
we adopt an off-the-shelf LLM-based fact verifier,
FineSurE (Song et al., 2024), which produces
fact error types and provides reasoning for the
decisions. We use Llama-3-70B-Instruct as the
backbone of FineSure since it exhibited the best-
balanced accuracy of 92.0% in the sentence-level
fact check. The prompt of FineSurE is detailed
in Figure 4 of Appendix B. As illustrated in Fig-
ure 1, we acquire the feedback on nine fact error
categories along with the reasoning behind the
decision, including “no error" (NoE), “out of con-
text error" (OutE), “entity error" (EntE), “predi-
cate error" (PredE), “circumstantial error" (CirE),
“grammatical error" (GramE), “linking error"
(LinkE), “corefernce error" (CorefE), and “other
error" (See Appendix C for the error taxonomy).
As a result, we collect LLM feedback on 102,640
document-summary pairs as the training data.

(3) Training with LLM Feedback. We use
QLoRA (Dettmers et al., 2024) to fine-tune
Llama-3-8B-Instruct on our training dataset with
LLM feedback. We set the user prompt to be
the same as FineSurE (in Figure 4) and then

set the assistant prompt to be the JSON out-
put: [{"SENTENCE": "SUMMARY SENTENCE

1", "REASONING": "REASON", "CATEGORY":
"ERROR TYPE"}, ...], which is the LLM feed-
back we obtained from FineSurE. We fine-tune
the model for 8,000 iterations with a batch size
of 32 using 4 NVIDIA H100 GPUs. By doing so,
at inference time, we can parse the JSON output
to extract only the detected fact error type and
reasoning for each sentence.

In Appendix, Table 7 contrasts our dataset with
the aggregated data with human feedback. The
example of user and assistant prompts used for
fine-tuning are provided in Table 15.

5 Evaluation
Methods. We compare our fine-tuned model
with several counterparts: (1) QA- and NLI-
based methods, including QAFactEval (Fabbri
et al., 2022) and SummaC (Laban et al., 2022);
(2) Llama-3-8B-Instruct with zero-shot inference
with FineSurE’s prompt; (3) fine-tuned with hu-
man feedback. Contrary to (1) and (3), our model
is only exposed to fine-grained LLM-generated
feedback. In addition, for (3), it is not possible
to localize error types due to the lack of available
human error types annotated.

Metrics. We follow the widely used metrics in
recent works (Song et al., 2024; Liu et al., 2023),
verifying the agreement with human in three dif-
ferent levels: balanced accuracy (bAcc), an in-
dicator of sentence-level verification accuracy;
summary-level correlation, an indicator of agree-
ment with humans’ summary-level scores; system-
level correlation, an indicator of agreement with
humans’ ranking across different summarizers.
Detailed description is provided in Appendix F.

5.1 Agreement with Humans
Table 1 shows the agreement with human judg-
ment on test datasets, as described in Section A.3
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Error Category OutE EntE PredE CirE GramE LinkE CorefE Mean

Random Guessing 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3% 14.3%

Zero-shot 9.2% 29.0% 11.9% 7.6% 24.0% 0.0% 18.2% 14.3%

LLM Feedback (Ours) 28.5% 52.5% 40.5% 30.9% 22.2% 20.0% 0.0% 27.8%

Table 2: Factuality error localization on 7 error categories. “Zero-shot" is the results of Llama-3-8B-Instruct
with zero-shot inference, while “LLM Feedback" is Llama-3-8B-Instruct fine-tuned on LLM feedback. "Random
Guessing" is the performance of randomly selecting from the seven categories, i.e., 1/7=14.3%.
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Binary Label 73.0% 0.628 0.649
+ Reasoning 71.9% 0.628 0.825
+ Error Localization 73.4% 0.625 0.865

Table 3: Ablation on the granularity of LLM feedback.

of Appendix. Training with a large amount
of LLM-generated feedback outperforms us-
ing a limited set of human feedback. Although
fine-tuning on humans’ binary feedback exhibits
higher agreement than solely relying on zero-shot
inference, the improvement achieved via LLM
feedback is much greater due to the ease of ac-
quiring a larger volume of feedback. In addition,
even when compared with previous QA- and NLI-
based evaluators, our model maintains its domi-
nance at all levels of evaluation. The analysis per
data domain is detailed in Appendix E.

5.2 Factuality Error Localization

Another advantage of using LLM-based feedback
is its fine granularity, which allows for the spec-
ification of even factuality error types. Table 2
presents the accuracy of error localization across
seven categories. Despite the 57.4% of bAcc
achieved by zero-shot inference, it only achieves
very low performance in localization, which is
almost the same as the mean accuracy of ran-
dom guessing. However, when fine-tuned with
LLM feedback, the mean accuracy improves from
14.3% to 27.8%1. Therefore, fine-tuning with
LLM feedback enhances the error localization
capability over zero-shot inference.

5.3 Ablation on Feedback Granularity

We adjust the granularity of LLM feedback in
three ways: (1) using only the binary labels indi-
cating whether each sentence is factually correct
or not (see Figure 2); (2) adding a reasoning step
like the chain-of-thought in prompt engineering
(see Figure 3); and (3) transforming the task to

1The 0.0% of CorefE is due to its rarity in training data.
We leave this issue as future work.
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100.0% 73.4% 0.625 0.865
50.0% 69.4% 0.601 0.902
25.0% 71.6% 0.588 0.787
12.5% 68.6% 0.509 0.589

0.0% 57.4% 0.246 0.663

Table 4: Ablation on the size of LLM feedback.

error localization (see Figure 4). Table 3 shows
the change in agreement with humans as we add
more information to LLM feedback.

Solely relying on binary feedback exhibits
fairly high bAcc but results in the lowest system-
level correlation with humans. The addition of
reasoning slightly decreases bAcc but improves
system-level correlation. Further addition of error
categorization synergizes with the reasoning addi-
tion, resulting in the best bAcc and system-level
correlation. Therefore, adding more explainable
information to LLM feedback in fine-tuning
results in better agreement with humans.

5.4 Ablation on Feedback Size
To value the effectiveness of LLM feedback, we
ablate the size of training data in fine-tuning, as
summarized in Table 4. 25.0% of our training
data (25,660 LLM feedback) ensures better agree-
ment than using 5,853 human feedback in fine-
tuning. This explains that 5 LLM feedback are
likely worth 1 human feedback. Moreover, in-
creasing the volume of training data with LLM
feedback shows almost continuous improve-
ment in fact verification performance.

5.5 Inference Latency

Table 5 shows that our fine-tuned model is more
cost- and computing-efficient than other LLMs
while keeping high performance. From the
perspective of knowledge distillation, our model
achieved performance close to 95% of the teacher
model, Llama-3-70B-Instruct, while delivering
over 3x faster inference time. Furthermore, when
compared to the more affordable commercial
model, ChatGPT-3.5-Turbo, our model exhibited
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Llama-3-8B-Inst. Llama-3-70B-Inst. ChatGPT-3.5-Turbo ChatGPT-4-Turbo
(fine-tuned) (zero-shot) (zero-shot) (zero-shot)

bAcc 73.4% 77.3% 64.0% 79.3%

Inference Time 4.948s 15.761s 1.682s* 8.462s*

API Cost 0$ 0$ 0.59$ 13.30$

Table 5: Performance comparison with various LLMs. For inference, we used a batch size of 1 on a single NVIDIA
H100 GPU. Quantization was applied to the 70B model to enable it to run on a single GPU. Inference time
represents the time it takes for the LLM to generate a single piece of feedback. API cost refers to the expense
incurred in generating feedback for 693 test examples. GPT series models used are gpt-3.5-turbo-0125 and
gpt-4-turbo-2024-04-09. * indicates response time.

significantly better performance. It also achieved
approximately 1.7x faster inference time than
ChatGPT-4-Turbo, along with substantial advan-
tages in terms of API cost.

5.6 Understanding Why It Works
In this section, we discuss why training with
LLM-generated feedback outperforms human
feedback. Human evaluation becomes unreliable
when summary feedback is fine-grained, such
as identifying error types or providing explain-
able reasons. In the Appendix, Table 6 shows
that existing fine-grained human-labeled datasets
have an inter-annotator agreement (Kappa) be-
low 0.5, indicating low reliability of human la-
bels. Therefore, the quality difference between
LLM-generated labels and human labels is not
significant. Based on this observation, according
to the scaling law for LLM (Kaplan et al., 2020),
an increase in the amount of training data is ex-
pected to enhance the performance of our model.

6 Conclusion
We release FineSumFact, a large-scale training
dataset with LLM feedback, which can be used to
train a fact verification model. We test multiple
strategies to fine-tune LLMs w.r.t the granularity
and the size of LLM feedback. The results indi-
cate that fine-tuning with LLM feedback has the
potential to create an effective and efficient fact
verifier, addressing the lack of human feedback
in training automated fact verification models.

Limitations

We report two main limitations in our study.
Firstly, summary feedback was generated from

a single model, Llama-3-70B-Instruct. There-
fore, we are unable to reflect feedback from di-
verse distributions. If we generate feedback us-
ing various LLMs, we would be able to generate

more accurate feedback. Additionally, our train-
ing model, Llama-3-8B-Instruct, is fine-tuned us-
ing data comprised of summaries generated by 10
LLMs and feedback generated by Llama-3-70B-
Instruct. Consequently, from a knowledge distil-
lation perspective, the performance of the fine-
tuned model may not surpass that of the LLMs
used to generate the LLM feedback.

Secondly, as discussed in Section 5.2, our
dataset with LLM feedback presents some er-
ror category imbalance. Despite generating sum-
maries using 10 LLMs, there was a lack of di-
versity in terms of error types. In the generated
summary, there is significant inclusion of out-
of-context error (OutE) and entity error (EntE),
while coreference error (CorefE) is notably less
frequent. Therefore, it was challenging to analyze
performance by error type in error localization.
Generating summaries synthetically to include a
variety of error types could be a solution.

These challenges remain as future work.
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Dataset Source Annotators Kappa Annotation Scheme

AggreFact †
(Tang et al., 2022)

CNN/DM
XSUM mixed - binary

DiaSumFact
(Zhu et al., 2023)

SAMSum
QMSum 2 in-house students 0.49 {NoE, EntE, PredE, CirE, CorefE,

LinkE, Others}

TofuEval
(Tang et al., 2024)

MediaSum
MeetingBank 2 expert linguists 0.42

0.34

binary / {extrinsic information er-
ror, misreferencing error, stating opin-
ion as fact error, reasoning error,
tense/modality error, contradiction er-
ror, nuanced meaning shift error, oth-
ers}

Ramprasad’24
(Ramprasad et al., 2024)

BillSum
PubMed

2 expert attorneys
2 expert medical doctors

0.17
0.11

binary / {intrinsic, extrinsic, mixed, oth-
ers}

Table 6: Summary of the human-labeled datasets. We report Cohen’s kappa in the original by default. In
DiaSumFact, we report the average Cohen’s kappa across six annotation groups, each consisting of two annotators.
†: we do not report Cohen’s kappa since AggreFact integrates various datasets, some of which include Cohen’s
kappa values and others that do not.

Number of
Documents

Number of
Summaries

Number of
Summarizers

Number of
Domains

Doc. Length in
Words

Data with Human Feedback 2,499 5,853 17 6 81-2,989 (531)
Data with LLM Feedback (Ours) 10,877 102,640 10 7 5-3,847 (910)

Table 7: Comparison of training datasets with human and LLM feedback. Doc. Length in Words indicates the
min-max (average) of the document length in words.

A Human-labeled Dataset Details

Table 6 summarizes the details of the annotations
for each dataset in our human-labeled datasets.
The aggregation of these datasets covers various
domains and text types. We briefly describe the
human-labeled dataset we used.

A.1 Source Datasets

AggreFact (Tang et al., 2022) is a factuality eval-
uation bencmark that includes two datasets in the
news domain; CNN/DM (Hermann et al., 2015)
and XSum (Narayan et al., 2018). AggreFact in-
tegrates nine datasets from FactCC (Kryściński
et al., 2020), Wang’20 (Wang et al., 2020), Sum-
mEval (Fabbri et al., 2021), Polytope (Huang
et al., 2020), Cao’22 (Cao et al., 2022), XSum-
Faith (Maynez et al., 2020), FRANK (Pagnoni
et al., 2021), Goyal’21 (Goyal and Durrett, 2021),
and CLIFF (Cao and Wang, 2021).

DiaSumFact (Zhu et al., 2023) collects fine-
grained sentence-level factual error annotations
for evaluating dialogue summarization. It spans
two dialogue domains: daily conversations, con-
taining chit-chat, and meetings, sourced from
SAMSum (Gliwa et al., 2019) and QMSum
(Zhong et al., 2021), respectively.

TofuEval (Tang et al., 2024) contains two dia-
logue datasets for benchmarking automated eval-

uators in factuality. It covers two domains, Inter-
view (MediaSum) (Zhu et al., 2021) and Meeting
(MeetingBank) (Hu et al., 2023). Each summary
is a topic-based summary generated by LLMs
and includes sentence-level human annotations
for factuality evaluation.

Ramprasad’24 (Ramprasad et al., 2024) ad-
dresses the news domain as well as two special-
ized domains: medicine (PubMed) (Cohan et al.,
2018) and legal (BillSum) (Kornilova and Eidel-
man, 2019). It releases human annotations from
domain experts to assess the factuality of model-
generated summaries.

A.2 Label Consolidation
We aggregate human-labeled data at the sentence
level from existing studies, which differ in terms
of granularity and annotation schemes when la-
beling factual consistency. AggreFact and To-
fuEval provide majority-agreed binary labels for
each summary sentence, eliminating the need for
consolidation. However, Ramprasad’24 and Dia-
SumFact consist of two labels for each summary
sentence from two annotators, without majority
agreement. For these two datasets, if both annota-
tors agreed on ’no error’, the data was labeled as
’no error’. If they agreed on ’error’ it was labeled
as ’error’. If their results differed, the data was
not included in our dataset.
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Source Dataset # of Doc. # of Label 0 # of Label 1 Doc. Length in Words

Train Test Train Test Train Test Train Test

AggreFact 4,130 111 2,325 41 2,754 83 81-2,147 (470.5) 165-1,303 (501.4)
DiaSumFact 339 27 599 43 394 28 93-585 (274.1) 97-342 (238.7)
TofuEval 1,241 531 2,751 1,167 641 322 710-1,199 (963.7) 739-1,185 (919.3)
Ramprasad’24 143 24 421 65 19 6 682-2,989 (1,725.9) 916-2,349 (1,721.9)

Table 8: Statistics of train and test data annotated by humans according to the source. The number of documents (#
of Docs) is counted at the document level, while the number of labels (# of Labels) is counted at the sentence level.
The ’Doc. Length in Words column indicates ’min-max (average)’ of the document length in words.
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Error Type Pred # Correct # Accuracy

OutE 1,093 101 9.2%
EntE 579 168 29.0%

PredE 101 12 11.9%
CirE 395 30 7.6%

GramE 25 6 24.0%
LinkE 9 0 0.0%

CorefE 11 2 18.2%

Table 9: Error localization accuracy details in the zero-
shot setting. Among the 9 error types, "No Error" and
"Other Error" were excluded from the calculation. A
total of 2,213 sentences were predicted as errors, of
which 319 matched the correct error category.

A.3 Dataset Split

We aggregate a total of 6,546 document-summary
pairs of human feedback data, consisting of 1,772
from TofuEval, 4,241 from AggreFact, 336 from
DiaSumFact, and 167 from Ramprasad’24. Then,
we split it into 5,853 training set and 693 test
set. Data classified as the test set in the origi-
nal datasets are also included as test data in our
dataset. The test set is consistently used as ground
truth to evaluate all the models in Table 1. Refer
to Table 7 for a comparison between the entire set
of human feedback data and LLM feedback data.
The breakdown of human feedback data into train
and test sets is summarized in Table 8.

A.4 Testset for Error Localization

We construct an additional test set of 1,286
document-summary pairs from FRANK (Pagnoni
et al., 2021), which is a test set tailored for error
localization evaluation in Table 2. This dataset
consists of labels annotated by three human an-
notators for each summary sentence across seven
error types, identical to those in FineSurE (Song
et al., 2024). In sentence-level error localization,
if the model-predicted error type matched any one
of the three human annotations, it was considered
correct. Detailed error localization performance
of Table 2 is shown in Tables 9 and 10.
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Error Type Pred # Correct # Accuracy

OutE 281 80 28.5%
EntE 305 160 52.5%

PredE 42 17 40.5%
CirE 55 17 30.9%

GramE 45 10 22.2%
LinkE 40 8 20.0%

CorefE 1 0 0.0%

Table 10: Error localization accuracy details in the
fine-tuning setting. Among the 9 error types, "No
Error" and "Other Error" were excluded from the cal-
culation. A total of 769 sentences were predicted as
errors, of which 292 matched the correct error cate-
gory.

You will receive a document followed by a corresponding summary.
Your task is to assess the factuality of each summary sentence.

Evaluation Criteria:

Factual Consistency - the factual alignment between the summary sentence and the 
summarized source. A factually consistent summary contains only statements that are entailed 
by the source document.

Instruction:
First, compare each summary sentence with the document.
Second, answer "consistent" or "inconsistent" for each sentence in the summary.

Provide your answer in JSON format. The answer should be a list of dictionaries whose keys are 
"sentence" and "response":
[{"sentence": "first sentence", "response": "consistent"},
{"sentence": "second sentence", "response": "inconsistent"},
{"sentence": "third sentence", "response": "inconsistent"},]

Document:
{input document}

Summary with N sentences:
{summary sentence 1}
{summary sentence 2}

⋯
{summary sentence N}

JSON Output:

Figure 2: Prompt for fact verification ("Binary Label"
in Table 3).

B Fact Verification Prompts

We use three prompts to generate LLM feedback
on fact verification, progressively increasing their
granularity, as seen in our ablation of Table 3. The
first one focuses on fact-checking using binary la-
bels, as shown in Figure 2, while the second adds
reasoning to the first one, as shown in Figure 3,
and the third further incorporates error localiza-
tion, as shown in Figure 4.

Specifically, the first prompt asks the LLM to
assess the factual consistency of each summary
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You will receive a document followed by a corresponding summary. 
Your task is to assess the factuality of each summary sentence.

Evaluation Criteria:

Factual Consistency - the factual alignment between the summary sentence and the 
summarized source. A factually consistent summary contains only statements that are 
entailed by the source document.

Instruction:
First, compare each summary sentence with the document.
Second, provide a single sentence explaining whether the sentence is factually consistent.
Third, answer "consistent" or "inconsistent" for each sentence in the summary.

Provide your answer in JSON format. The answer should be a list of dictionaries whose 
keys are "sentence", "reason", and "response":
[{"sentence": "first sentence", "reason": "your reason", "response": "consistent"}, 
{"sentence": "second sentence", "reason": "your reason", "response": "inconsistent"}, 
{"sentence": "third sentence", "reason": "your reason", "response": "inconsistent"},]

Document:
{input document}

Summary with N sentences:
{summary sentence 1}
{summary sentence 2}

⋯
{summary sentence N}

JSON Output:

Figure 3: Prompt for fact verification ("Binary Label
+ Reasoning" in Table 3).

You will receive a document followed by a corresponding summary.
Your task is to assess the factuality of each summary sentence across nine categories:
* no error: the statement aligns explicitly with the content of the document and is factually 
consistent with it.
* out-of-context error: the statement contains information not present in the document.
* entity error: the primary arguments (or their attributes) of the predicate are wrong.
* predicate error: the predicate in the summary statement is inconsistent with the document.
* circumstantial error: the additional information (like location or time) specifying the 
circumstance around a predicate is wrong.
* grammatical error: the grammar of the sentence is so wrong that it becomes meaningless.
* coreference error: a pronoun or reference with wrong or non-existing antecedent.
* linking error: error in how multiple statements are linked together in the discourse (for example 
temporal ordering or causal link).
* other error: the statement contains any factuality error which is not defined here.

Instruction:
First, compare each summary sentence with the document.
Second, provide a single sentence explaining which factuality error the sentence has. 
Third, answer the classified error category for each sentence in the summary.

Provide your answer in JSON format. The answer should be a list of dictionaries whose keys are 
"sentence", "reason", and "category":
[{"sentence": "first sentence", "reason": "your reason", "category": "no error"},
{"sentence": "second sentence", "reason": "your reason", "category": "out-of-context error"},
{"sentence": "third sentence", "reason": "your reason", "category": "entity error"},]

Document:
{input document}

Summary with N sentences:
{summary sentence 1}
{summary sentence 2}

⋯
{summary sentence N}

JSON Output:

Figure 4: Prompt for fact verification ("Binary Label +
Reasoning + Error Localization" in Table 3, which is
exactly the same with FineSurE (Song et al., 2024)).

sentence against the source document, labeling
sentences as either "consistent" or "inconsistent."
The second prompt adds complexity by requiring
the LLM to not only judge consistency but also
provide a brief explanation for each sentence’s
classification. The third prompt further refines
the process by asking the LLM to categorize spe-
cific types of factual errors across nine categories,
allowing for detailed error identification.

C Factual Error Types

We follow the error taxonomy suggested by
Pagnoni et al. (2021) for feedback generation.
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Figure 5: Error category distribution of summaries
with LLM feedback for each summarizer, where the
error category is estimated using the automated fact
verification.

We provide explanations for each error category.

Out of Context Error (OutE) indicate that sum-
mary statements include information not found
in the document, which generally refers to an
extrinsic error.

Entity Error (EntE) means errors where the core
arguments such as subject and object are wrong.
This error typically occurs when the generated
summary swaps entities.

Predicate Error (PredE) refers to errors where
the predicate in summary statements is not con-
sistent with the document.

Circumstance Error (CirE) occurs when addi-
tional information specifying the context around
a predicate, such as location, time, or manner, is
incorrect.

Grammatical Error (GramE) encompasses er-
rors in summary statements where significant
grammatical mistakes make them meaningless.

Discourse Link Error (LinkE) refers to error
in how multiple statements are linked in the dis-
course, such as incorrect temporal ordering or
causal links.

Coreference Error (CorefE) is an error where
pronouns or references are incorrect antecedents,
causing ambiguity.

D LLM Feedback Data Details

D.1 Dataset Construction
We generate 102,640 summaries from a total
of 10,877 documents, including 18,846 from
CNN/DM, 16,744 from MediaSum, 18,990 from
DialogSum, 14,427 from MeetingBank, 19,202
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Source Dataset # of Doc. # of Label 0 # of Label 1 Doc. Length in Words

CNN/DM 18,846 69,215 8,486 54-2,133 (774.8)
MediaSum 16,744 57,334 11,714 96-3,809 (1,546.3)
DialogSum 18,990 36,148 17,545 50-1,084 (187.6)
MeetingBank 14,427 41,187 14,169 126-3,847 (1,164.65)
WikiHow 19,202 31,466 10,587 5-801 (83.7)
GovReport 3,045 14,378 728 180-3,777 (2,775.7)
PubMed 11,386 47,757 3,606 21-3,721 (1,823.5)

Table 11: Statistics of the training data labeled by LLM (Llama-3-70B-Inst.) according to the source. The number
of documents (# of Docs) is counted at the document level, while that of labels (# of Labels) is counted at the
sentence level. The ’Doc. Length in Words column indicates ’min-max (average)’ of the document length in words.

Model Name HuggingFace/API Checkpoints

Summary Generation
BARTlarge-cnn facebook/bart-large-cnn
FLAN-T5large google/flan-t5-large
Pegasuslarge google/pegasus-large
Phi-2 microsoft/phi-2
Llama-213B-chat meta-llama/Llama-2-13b-chat-hf
Mistral7B-Instruct mistralai/Mistral-7B-Instruct-v0.1
Mixtral8x7B-Instruct mistralai/Mixtral-8x7B-Instruct-v0.1
ClaudeInstant claude-instant-1.2
GPT-3.5turbo gpt-3.5-turbo-0125
GPT-4turbo gpt-4-turbo-2024-04-09

Feedback Generation
Llama-370B-Instruct meta-llama/Meta-Llama-3-70B-Instruct

Fine-tuning
Llama-38B-Instruct meta-llama/Meta-Llama-3-8B-Instruct

Table 12: The model checkpoints.

from WikiHow, 3,045 from GovReport, and
11,386 from PubMed. The summaries and feed-
back are generated by 10 different language mod-
els and Llama-3-70B-Instruct, respectively. This
dataset is exclusively used as a training set for
fine-tuning the model, not as a test set. We pro-
vide the statistics of the LLM feedback dataset
in Table 11. Table 12 provides the details of the
experiment’s models.

D.2 Error Category Distribution

We analyze the distribution of error categories
based on feedback provided by Llama-3-70B-
Instruct, evaluating summaries generated by 10
different LLMs. As shown in Table 13, the num-
ber of errors decreases as we move from non-
LLMs to open-source LLMs and then to com-
mercial LLMs. Additionally, we find that most
summarizers exhibit a higher proportion of out-of-
context errors and entity errors, while coreference
errors are the least frequent. We provide the sum-
mary error type distribution in Figure 5.

E Agreement with Humans per Domain

As shown in Table 14, the performance across
the News, Interview, and Meeting domains re-
veals varying levels of agreement with human
judgments in fact verification, with each domain

Summarizer No Error Error Error Ratio

Non-LLM
BARTlarge-cnn 25,629 10,310 22.29%
FLAN-T5large 16,360 5,738 20.61%
Pegasuslarge 18,850 3,737 14.20%

Open-Source LLM
Phi-2 10,917 11,559 33.96%
Llama-213B-chat 20,040 4,618 15.77%
Mistral7B-Instruct 36,979 7,780 14.81%
Mixtral7B-Instruct 36,608 9,717 17.34%

Commercial LLM
ClaudeInstant 42,054 4,771 9.25%
GPT-3.5turbo 41,405 3,631 7.46%
GPT-4turbo 40,791 2,929 6.28%

Table 13: Error Ratio according to summarizes, indi-
cates the proportion of summaries generated by each
summarizer that are identified as errors by the feed-
back generator (Llama-3-70B-Instruct).

presenting unique challenges and insights.

News Both QA-based and LLM-based methods
showed high agreement with human judgments,
demonstrating their effectiveness in handling
structured, fact-dense content typically found in
news articles.

Interview LLM Feedback performed notably
well, while QA-based and NLI-based methods
struggled, underscoring the difficulties posed by
the unstructured and conversational format of in-
terview content.

Meeting The results were similar to those in
the Interview domain, with the LLM Feedback
method outperforming others. However, the over-
all performances of each type were lower, reflect-
ing the inherent complexity in summarizing and
verifying content from meetings.

LLM-based methods stood out for their consis-
tent performance across different domains. This
robustness can be attributed to their fine-tuning
with aggregated datasets that span a wide variety
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Type Method News Interview Meeting

Summ. Sys. Summ. Sys. Summ. Sys.

QA-based QAFactEval 0.614* 0.886* 0.406* -0.257 0.382* -0.167

NLI-based SummaC-Conv 0.515* 0.683* 0.208* -0.086 0.168* -0.433

LLM-based
Zero-shot 0.402* 0.605* 0.198* 0.829* 0.181* 0.150

Human Feedback 0.287* 0.560* 0.443* 0.600 0.468* 0.083
LLM Feedback 0.573* 0.832* 0.528* 0.886* 0.529* 0.633

Table 14: Agreement with human judgments in fact verification on test data across three domains: News, Interview,
and Meeting. The agreement was measured at the summary level using Pearson correlation (Summ.) and at the
system level using rank correlation (Sys.) with a significance threshold of p-value < 0.05 (*). Results are reported
per domain only when the test examples exceed 20. Domains with insufficient data, specifically Daily, Legal, and
Medicine were excluded due to inflated p-values and statistically insignificant results.

of domains, enabling them to generalize effec-
tively across different types of content.

F Metrics

We follow the same settings as those presented in
recent studies (Song et al. 2024, Liu et al. 2023)
to assess the model’s performance and ensure
alignment with human judgment.

bAcc Balanced accuracy (bAcc) is used to ad-
dress class imbalance when summarizing the per-
formance of a model in a classification task. Dur-
ing sentence-level evaluation, human annotations
and fine-tuned LLM classify factual correctness
as ’0’ (No error) and incorrectness as ’1’ (Error).
The formula for bAcc is as follows:

bAcc =
TPR+ TNR

2
(1)

TPR(True Positive Rate), measures the pro-
portion of correct positive predictions made by
the fine-tuned LLM. TNR(True Negative Rate)
quantifies the proportion of correct negative pre-
dictions made.

Faithfulness score For the summary-level and
system-level evaluations, the percentage score of
faithfulness enables us to assess summaries by
aggregating sentence-level fact checks. Let us
assume Si = {si,1, . . . , si,N} represents the i-
th summary passage, consisting of N sentences,
where si,j denotes the j-th sentence in the i-th
summary passage. Additionally, let Si,fact ⊆ Si

represent the subset of sentences identified as fac-
tually correct within this summary. The percent-
age score of faithfulness for Si, with respect to the
original document Di, is computed as follows:

F (Di, Si) =
|Si,fact|
|Si|

(2)

Summary-level correlation To compute the
summary-level correlation, we define Fgt and
Fpred as the faithfulness scores of the ground
truth and the prediction, respectively. Let D =
{D1, . . . , Dk} represent the set of input docu-
ments, and S = {S1, . . . , Sk} denote the corre-
sponding set of summaries for these documents.
Then the summary-level correlation is computed
as follows:

Pearson([Fgt(D1, S1), . . . , Fgt(Dk, Sk)],

[Fpred(D1, S1), . . . , Fpred(Dk, Sk)])
(3)

System-level rank correlation To compute the
system-level rank correlation, we define Fm =
{Fm(D1, S1), . . . , Fm(Dk, Sk)} as the set of per-
centage scores obtained from the labels given by
the summarization model m. Then, we construct
a list of the average percentage scores for all sum-
marization models, denoted as

[
F̄m1 , F̄m2 , . . .

]
where, F̄mi = 1

|mi|
∑|mi|

j=1 Fmi(Dj , Sj). Using
this list and the Rank function, we create the
list [rankm1 , rankm2 , . . .], where rankm repre-
sents the rank of model m. By the same mecha-
nism, we construct the ground truth list of ranks[
rank∗m1

, rank∗m2
, . . .

]
using the human labels.

Finally, the summary-level correlation is com-
puted as follows:

Spearman([rankm1 , rankm2 , . . . ] ,[
rank∗m1

, rank∗m2
, . . .

]
).

(4)

The summary-level correlation indicates the
agreement between human judgments and LLM,
while the system-level rank correlation measures
how closely the model rankings align with those
provided by humans across various summarizers.
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Document ID: PubMed-28493

Input

You will receive a document followed by a corresponding summary.
Your task is to assess the factuality of each summary sentence across nine categories:
* no error: the statement aligns explicitly with the content of the document and is factually consistent with it.
* out-of-context error: the statement contains information not present in the document.
* entity error: the primary arguments (or their attributes) of the predicate are wrong.
* predicate error: the predicate in the summary statement is inconsistent with the document.
* circumstantial error: the additional information (like location or time) specifying the circumstance around a
predicate is wrong.
* grammatical error: the grammar of the sentence is so wrong that it becomes meaningless.
* coreference error: a pronoun or reference with wrong or non-existing antecedent.
* linking error: error in how multiple statements are linked together in the discourse (for example temporal
ordering or causal link).
* other error: the statement contains any factuality error which is not defined here.

Instruction:
First, compare each summary sentence with the document.
Second, provide a single sentence explaining which factuality error the sentence has.
Third, answer the classified error category for each sentence in the summary.

Provide your answer in JSON format. The answer should be a list of dictionaries whose keys are
"sentence", "reason", and "category":
[{"sentence": "first sentence", "reason": "your reason", "category": "no error"},
{"sentence": "second sentence", "reason": "your reason", "category": "out-of-context error"},
{"sentence": "third sentence", "reason": "your reason", "category": "entity error"},]

Document:
Chronic condition management has been structured around models that aim at facilitating and development of
care through initiatives of self - management , organisational restructuring and information system enhancement
. uk s health care framework for chronic condition care draws upon the chronic care model and innovation care
for chronic conditions framework . however , consideration to the clarity or vagueness of boundaries between
different hierarchical structures and awareness of each structure about its focus and contribution to overall
health system are not taken into account by these models . the proposed chronic condition management model
is different as it is targeted at primary care which plays a salient role of gate keeping . change implemented
here would lead to better clinical effectiveness , increase in efficiency of the system and reduction in cost . this
model does not directly call for policy change ; instead it recommends incorporating available evidence into
the policy . it calls for empowering the patient by providing health literacy and improving awareness , and for
collaboration and cooperation between primary , secondary , tertiary , community and social care services .
initiatives towards chronic condition management should be enacted at primary care due to its gate keeping role
in the uk s health care system .

Summary with 3 sentences:
[1] The proposed chronic condition management model emphasizes the role of primary care in the UK’s health
care system for managing chronic conditions.
[2] This model advises incorporating available evidence into policies, empowering patients with health literacy
and awareness, and fostering collaboration between primary, secondary, tertiary, community, and social care
services.
[3] The model does not call for direct policy changes, but rather for addressing the clarity or vagueness of
boundaries between hierarchical structures and making each structure aware of its focus and contribution to the
overall health system.

JSON Output:

Output

[
{"sentence": "The proposed chronic condition management model emphasizes the role of primary care in the
UK’s health care system for managing chronic conditions.", "reason": "The sentence accurately summarizes
the document’s information about the proposed model’s focus on primary care.", "category": "no error"},
{"sentence": "This model advises incorporating available evidence into policies, empowering patients with
health literacy and awareness, and fostering collaboration between primary, secondary, tertiary, community, and
social care services.", "reason": "The sentence accurately summarizes the document’s information about the
model’s recommendations.", "category": "no error"},
{"sentence": "The model does not call for direct policy changes, but rather for addressing the clarity or
vagueness of boundaries between hierarchical structures and making each structure aware of its focus and
contribution to the overall health system.", "reason": "The sentence incorrectly states that the model addresses
the clarity or vagueness of boundaries between hierarchical structures, which is a criticism of existing models,
not a feature of the proposed model.", "category": "out-of-context error"},
]

Table 15: An example of an input (user prompt) and its corresponding output (assistant prompt) used to fine-tune
the Llama-3-8B-Instruct model.
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