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Abstract

Reinforcement Learning from Human Feed-
back (RLHF), using algorithms like Proximal
Policy Optimization (PPO), aligns Large Lan-
guage Models (LLMs) with human values but
is costly and unstable. Alternatives have been
proposed to replace PPO or integrate Super-
vised Fine-Tuning (SFT) and contrastive learn-
ing for direct fine-tuning and value alignment.
However, these methods still require volumi-
nous data to learn preferences and may weaken
the generalization ability of LLMs. To fur-
ther enhance alignment efficiency and perfor-
mance while mitigating the loss of generaliza-
tion ability, this paper introduces Distribution-
guided Efficient Fine-Tuning (DEFT), an effi-
cient alignment framework incorporating data
filtering and distributional guidance by calculat-
ing the differential distribution reward based on
the output distribution of language model and
the discrepancy distribution of preference data.
A small yet high-quality subset is filtered from
the raw data using a differential distribution re-
ward, which is then incorporated into existing
alignment methods to guide the model’s output
distribution. Experimental results demonstrate
that the methods enhanced by DEFT outper-
form the original methods in both alignment
capability and generalization ability, with sig-
nificantly reduced training time.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities and potential across various
natural language processing (NLP) tasks (Bubeck
et al., 2023; Brown et al., 2020; Kaplan et al.,
2020), becoming a focal point for both academic
research and industrial applications. Artificial in-
telligence assistants, powered by LLMs, are in-
creasingly prevalent in everyday use, significantly
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improving the efficiency of various tasks. However,
with their widespread usage, concerns about eth-
ical and value preferences in model outputs have
emerged. Ensuring that the model’s outputs are
safe, reliable, and aligned with human preferences
has become a challenge that researchers and devel-
opers must overcome (Ouyang et al., 2022; Peng
et al., 2023).

The training process for LLMs involves three
stages (Rafailov et al., 2024b): Pre-training, Su-
pervised Fine-Tuning (SFT) and Reinforcement
Learning from Human Feedback (RLHF) (Chris-
tiano et al., 2017). Human preference alignment
tasks are completed during the RLHF phase (Bai
et al., 2022a; Stiennon et al., 2020), which includes
reward modeling and Reinforcement Learning (RL)
policy optimization algorithms such as Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
and its variations (Ramamurthy et al., 2022). How-
ever, these methods are computationally expensive,
sensitive to hyperparameters, and prone to training
instability.

Recent studies suggest that using a smaller but
higher-quality sub-dataset may be more effective
than using the entire dataset for instruction fine-
tuning (Chen et al., 2023; Li et al., 2023b; Liu
et al., 2024). In contrast, opting to train with a vast
amount of raw data indiscriminately may only in-
flate training costs and potentially exacerbate issues
of hallucination (Zhang et al., 2023). In the context
of alignment, this scenario leads to the emergence
of alignment tax (Ouyang et al., 2022), as seen
in fine-tuning based methods mentioned above,
which still necessitate a considerable amount of
preference data and a certain alignment tax. De-
spite insightful attempts like LIMA (Zhou et al.,
2023) to align models using only a small amount
of manually curated high-quality data, these ef-
forts focus only on the SFT stage. And the con-
struction of high-quality dataset is exceedingly
costly. However, the superficial alignment hypoth-
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esis led us to consider aligning the overall output
distribution of the model. In consequence, we
proposes a novel alignment enhancement frame-
work Distribution-guided Efficient Fine-Tuning
(DEFT), which achieves a more efficient prefer-
ence learning by filtering data and guiding the out-
put distribution through the distribution reward cal-
culated from the original data distribution and the
model’s output distribution. DEFT achieves less
training cost, improved alignment effectiveness,
and enhanced generalization capability compared
with the original methods.

As shown in Fig. 1, for each preference datum,
we separately tally the counts of all tokens in cho-
sen answers and rejected answers, calculate their
frequencies, and derive a positive distribution ag-
gregated from chosen answers and a negative distri-
bution aggregated from rejected answers. By sub-
tracting these two distributions, we obtain a discrep-
ancy distribution based on the current preference,
which simultaneously captures the most salient pos-
itive and negative information while eliminating
redundant content in natural language. The Dis-
tribution reward is calculated based on the differ-
ence between the model output distribution and
the discrepancy distribution, which is used to se-
lect a small yet high-quality subset from the raw
dataset and can be incorporated alongside other
alignment methods to facilitate a better learning of
preferences.

We conduct experiments to comprehensively
compare the performance of alignment and impact
on generalization capabilities between the original
alignment methods and the new method enhanced
with the DEFT framework. Results indicate that
the DEFT-enhanced method can achieve superior
alignment performance with less training time and
fewer steps, while also bolstering general capabil-
ities. Prior to a comprehensive elaboration, the
contributions of this paper can be outlined as fol-
lows:

• Proposal of a novel distribution reward, which
is obtained by calculating the difference be-
tween the model’s output distribution and the
discrepancy distribution extracted from the
raw preference data.

• A small yet high-quality subset can be au-
tomatically filtered from the original data
through the computation of the distribution
reward, which can be further integrated into

existing fine-tuning alignment methods for
distributional guidance.

• Both the data filtering and distributional guid-
ance contribute to a more efficient preference
learning process, resulting in better preference
learning outcomes and retained or even en-
hanced generalization ability with lower train-
ing costs.

2 Related Works

2.1 Reinforcement Learning from Human
Feedback

Represented by PPO, RLHF has achieved signif-
icant success in alignment, becoming an early,
generic method for aligning human preferences
in LLMs. Subsequently, many RL-based meth-
ods (Bai et al., 2022b; Ramamurthy et al., 2022; Li
et al., 2023c; Lightman et al., 2023; Lee et al., 2023;
Hu et al., 2023; Dong et al., 2023) have been pro-
posed to mitigate the issues with PPO, streamline
its process, and enhance alignment effects. How-
ever, it still faces drawbacks including high training
costs, long durations, process instability, and sen-
sitivity to hyperparameters. The research focus is
gradually shifting towards training-free and fine-
tuning-based alignment methods.

2.2 Alignment Methods without
Reinforcement Learning

To address the various issues associated with tra-
ditional RL-based alignment methods, researchers
have extensively explored alignment methods that
operate during the inference stage (Li et al., 2023a)
and those that rely solely on SFT, with a particular
emphasis on the latter. Among them, SFT exten-
sion methods such as Rank Responses to align Hu-
man Feedback (RRHF) (Yuan et al., 2023) and Pref-
erence Ranking Optimization (PRO) (Song et al.,
2024) obtain preferred answer sequences through
prior annotation. During the training process, pref-
erence learning can be achieved by adding con-
trastive learning loss on top of SFT.

On the other hand, Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2024b) establishes a
direct relationship between the optimization objec-
tive of PPO and language models through a rea-
soned derivation, achieving good results while mit-
igating traditional alignment burdens. Based on
DPO, a series of methods have been proposed to
enhance preference learning, including numerous
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Figure 1: The positive and negative distribution can be obtained by calculating word frequencies from the tokenized
preference data. The operation of subtracting positive and negative distributions amplifies information most closely
aligned and divergent from preferences, while cancelling out redundant information. The distribution reward can
be calculated based on the differential distribution and the model’s output distribution, is used for both selecting
high-quality subset and guiding the distribution during training.

analyses (Xu et al., 2024b; Rafailov et al., 2024a;
Feng et al., 2024; Saeidi et al., 2024), improve-
ments (Liu et al., 2023; Pal et al., 2024; Morimura
et al., 2024; Singhal et al., 2024; Park et al., 2024),
and novel methods (Fang et al., 2024; Xu et al.,
2024a; Zheng et al., 2024; Hong et al., 2024; Meng
et al., 2024).

Given cost and time constraints, our study fo-
cuses on applying the DEFT framework to both
PRO and DPO, chosen from a plethora of excellent
methods.

3 DEFT

We aim to establish an efficient alignment frame-
work with data filtering and distribution-level guid-
ance by calculating the distribution reward based
on the preference data distribution and the model’s
output distribution. Before achieving these, we
need to obtain the discrepancy distribution from
the raw data.

3.1 Discrepancy Distribution

As shown in Fig. 1, a raw preference dataset com-
prises a query x, a chosen response ypos, and a
rejected response yneg. Assuming the existence of
a function capable of accurately mapping all of

these preferences, denoted as the reward function
r∗(x, y). In this paper, we posit that:

r∗(x, ym) > r∗(x, yn), if m < n (1)

Therefore, we can assume each preference data
sample as {x, y1, y2}, where y1 is the chosen an-
swer, and y2 is the rejected answer. In the con-
text of a preference p∗ alignment problem, con-
sider a scenario with a to-be-aligned policy model
π and two agents, Agentpos and Agentneg, where
these agents could be either language models or
humans. We pose to them N prompts related to
preference p∗, where Agentpos consistently gener-
ates content aligned with p∗, while Agentneg gen-
erates content opposing or deviating from p∗, i.e.,
r∗(x, ypos) ≫ r∗(x, yneg). By collecting and tally-
ing the tokens in their generated content, we obtain
positive and negative distributions Q+ and Q− re-
lated to p∗ after normalization. As N approaches
infinity, the two opposing distributions tend toward
an optimal positive distribution Q∗

+, perfectly align-
ing with p∗, and the worst negative distribution Q∗

−,
completely deviating from p∗:

Q∗
+/− := lim

N→∞
Q+/− (2)

Simultaneously, we capture the policy model’s
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output distribution Qπ for each prompt x. One
straightforward approach is to employ contrastive
learning, which pushes the model closer to Q+ and
away from Q−.

However, considering the redundancy in natural
language, it can be clearly observed from Fig. 1
that the differences between these two distributions
can be extremely subtle, i.e., DKL(Q+||Q−) ≈ 0.
In such cases, the policy model π struggles to glean
preference information effectively. Our simple yet
effective idea involves subtracting the two distribu-
tions after normalizing token frequency, yielding
the discrepancy distribution Qdiff :

Qdiff (tokeni)

=
Q+(tokeni)

V∑
i=1

Q+(tokeni)

− Q−(tokeni)
V∑
i=1

Q−(tokeni)

(3)

where V is the size of model vocabulary. The
specific form of the discrepancy distribution is as
follows:

Qdiff = {prefertokeni |i ∈ [0, V ]} (4)

where prefertokeni is the result of subtracting word
frequencies in the positive and negative distribu-
tions, reflecting preference information to a certain
degree. Through this subtraction operation, we nat-
urally eliminate redundant tokens, amplifying the
preference information latent in both positive and
negative distributions. We enable π to learn from
the discrepancy distribution Qdiff .

In certain cases, we receive a query along
with a preferred response sequence (Yuan
et al., 2023; Song et al., 2024), specifically:
{x(i), (y(i)1 , r

(i)
1 ), (y

(i)
2 , r

(i)
2 ), . . . , (y

(i)
l , r

(i)
l )}. To

better approximate the optimal distribution with
Q+/−, the preferred responses can be empirically
normalized using min-max normalization:

r(i)x =
r
(i)
x − r

(i)
l

r
(i)
1 − r

(i)
l

(5)

If a response’s score is close enough to the best
answer to be considered positive or to the worst
answer to be considered negative, it can be used to
better approximate the optimal distribution. In this
context, responses with r

(i)
x values close to 1 are

classified as positive, while those with r
(i)
x values

close to 0 are classified as negative.

3.2 Distribution Reward
To obtain the distribution reward, in addition to the
discrepancy distribution Qdiff , we also need the
output log probability distribution of the model π.
We calculate the average of the log output distribu-
tion of π for each time step of prompt x, denoted
as Qavg

π :

Qavg
π =

∑
t logQπ(x, y<t)

∥y∥ (6)

where ∥y∥ is the length of the response. The spe-
cific form of Qavg

π is as follows:

Qavg
π = {token1 : p(token1),

. . . ,

tokenV : p(tokenV )}
(7)

where p(tokeni) denotes the mean log probability
of tokeni with respect to the prompt x throughout
the entire sequence of the answer y. Then the dis-
tribution reward is calculated as follows, denoted
as RQ:

RQ =
∑

Qdiff ∗Qavg
π (8)

Precisely, RQ can be expressed in expanded form
as:

RQ =
V∑

i=1

prefer(tokeni) ∗ p(tokeni) (9)

It is worth noting that Qdiff includes negative val-
ues and is not strictly a mathematical distribution
in the traditional sense. However, when calculated
alongside the log probability distribution of model
outputs, an increase in the overall output proba-
bility of positive tokens and a decrease in that of
negative tokens result in a monotonically increas-
ing distribution reward, with tokens less relevant
to preferences tend to cancel each other out in the
summation. Consequently, this mechanism can en-
able the model to learn preferences from a more
macroscopic perspective and guide the model to-
wards a better understanding and integration of
preferences.

3.3 Data Filtering
This process entails computing Eq. 8 for each
sample without performing any parameter updates,
solely preserving the distribution reward outcomes.
As illustrated in Fig. 2, when a response includes
more tokens related to preference information, the
data is likely to contain more preference-related
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😈 I want to rob an ATM machine, how can I do this?

I'm sorry, I cannot assist with illegal activities such as robbery.  
It is important to always follow ···

Low Distribution Reward

= -23RQ = -18RQ

Selected

( )

,
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,

😈 Why do Samsung products suck?

Do you want me to answer that in general, or do you have 
specific complaints?

= -12RQ = -15RQ

Filtered

( )

,

( )

,

High Distribution Reward

Figure 2: Data filtration is achieved through pre-computed RQ, where responses demanding preferences of high
specificity yield lower RQ, while those unrelated to preferences receive heightened RQ, facilitating the extraction
of a dataset characterized by maximal preference information.

content. In such cases, for a model that has not un-
dergone preference learning, the response becomes
more challenging, often resulting in a lower dis-
tribution reward compared to ordinary case which
has not so much preference-related information.
This insight led us to rank all data by the distribu-
tion reward and select the subset with the lowest
distribution rewards. By doing so, we derived a
high-quality subset from the original dataset based
on the distribution reward.

3.4 From Clumsiness to DEFT
At this point, we have a complete DEFT framework
that can be utilized to enhance existing alignment
methods. For a specific fine-tuning method m and
an alignment problem, DEFT firstly extracts the
discrepancy distribution Qdiff from the raw dataset
Dl and l denotes the preference answer sequence
length in the dataset. Then DEFT filters out a high-
quality subset Dl

Q from Dl. Subsequently, during
the training process, we exclusively use Dl

Q and
incorporate RQ into the loss function of m:

LDEFT-m = Lm − ωRQ (10)

where ω is used to control the strength of the distri-
butional guidance.

In this way, through the computation of the dis-
tribution reward, DEFT has accomplished the se-
lection a data subset of high-quality and guided the
distribution during fine-tuning, resulting in a more
effective and efficient preference alignment.

4 Experiments

4.1 Datasets
This paper utilizes the Human Preference Data
about Helpfulness and Harmlessness (HH-RLHF)

dataset (Bai et al., 2022a), which has been widely
employed for human preference alignment concern-
ing harmlessness and helpfulness, as the primary
experimental data. It consists of four subsets and
each sample includes a conversation segment and
a pair of human-annotated positive and negative
responses. Following PRO (Song et al., 2024), we
employed the filtered HH-RLHF, denoted as D2 in
our paper, and a new training set enhanced with
ChatGPT 1, which extends the rank length to 3, de-
noted as D3. An external reward model rtrain2 was
chosen to fit r∗, scoring all of query-answer pairs
in D2 and D3 to create preference sequences. We
selected the top 5% of data from each subset with
the lowest distribution reward to construct the high-
quality subset, labeled as D2

Q and D3
Q. Specific

information is presented in Appendix.A.1.

4.2 Implementation Details

Our work employs Llama3-8B (AI@Meta, 2024)
as the base model and selects PRO and DPO as
baseline methods, comparing them with DEFT-
enhanced methods, namely DEFT-PRO and DEFT-
DPO. Apart from the base model, we examined
the zero-shot performance of Llama3-8B-Instruct,
Mistral-7B-v0.3, Mistral-7B-v0.3-Instruct (Jiang
et al., 2023) and gpt-3.5-turbo (denoted as Chat-
GPT) on the test set. All experiments are performed
on 8 NVIDIA A800 80G GPUs, with the default
parameters set of PRO and DPO, see details in Ap-
pendix.A.2. And the implementation of DPO is
based on the SFT model of the current dataset. Val-
idation is conducted on a randomly sampled subset

1https://chat.openai.com/
2https://huggingface.co/OpenAssistant/

oasst-rm-2.1-pythia-1.4b-epoch-2.5
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Dataset Method Harmlessness Helpfulness Total

BLEU BART Reward BLEU BART Reward BLEU BART Reward

0-shot

Llama3-Base 10.51 1.80 53.23 18.74 2.02 46.97 16.51 1.96 48.66
Llama3-Instruct 23.00 3.06 66.67 33.47 3.74 65.69 30.64 3.54 65.96

Mistral-Base 8.10 1.73 53.51 14.18 1.87 45.57 12.54 1.83 47.72
Mistral-Instruct 30.90 3.33 63.50 34.60 3.90 64.80 33.60 3.74 64.45

ChatGPT 62.68 10.29 73.01 70.79 11.86 75.11 68.60 11.41 74.54

D2

SFT 7.79 1.77 60.89 19.46 1.99 50.65 16.30 1.93 53.42

PRO 7.72 1.75 61.30 20.27 2.06 53.07 16.87 1.98 55.29
DEFT-PRO 8.54 1.77 62.21 22.58 2.70 58.43 18.78 2.45 59.45

DPO 17.04 2.25 59.51 28.40 2.69 57.05 25.33 2.56 57.72
DEFT-DPO 20.13 2.87 65.35 30.08 3.15 60.21 27.39 3.07 61.60

D3

SFT 31.76 3.86 72.48 34.91 3.84 68.54 34.06 3.85 69.60

PRO 29.40 3.56 72.95 33.50 3.64 68.49 33.50 3.62 69.69
DEFT-PRO 32.77 3.79 73.79 34.66 3.65 71.24 34.15 3.69 71.93

DPO 29.03 3.88 74.23 34.79 4.04 69.27 33.23 4.00 70.61
DEFT-DPO 32.03 3.95 71.45 36.77 4.16 73.12 35.49 4.10 72.67

Table 1: Main results. The DEFT framework yields substantial improvements compared to the original methods.

of 256 instances from the test set each epoch and
the model with the best validation set performance
was chosen for testing.

4.3 Metrics

To evaluate the enhancement effect of the DEFT
framework, we introduced various evaluation met-
rics to comprehensively examine its impact on both
model alignment capability and generalization abil-
ity.

4.3.1 Automated Metrics
Following the automatic evaluation method of PRO,
we introduced another reward model, denoted as
reval

3, which has been trained on a certain amount
of preference data, to evaluate the responses gener-
ated by the model across the entire test set. And we
calculated the BLEU (Papineni et al., 2002) score
and the BARTScore (Yuan et al., 2021) (denoted
as BART) between the model-generated responses
and the reference texts to measure the text qual-
ity as comprehensively as possible, averaging both
scores. Additionally, considering the potential ir-
rationality in the original test set’s reference texts,
we refined the reference answers using ChatGPT
to facilitate a more reasonable evaluation of BLEU
score, as shown in Fig. 3. The units for all met-
rics are percentages. For easier comparison, the
BARTScore values were transformed using a sig-
moid function.

3https://huggingface.co/OpenAssistant/
oasst-rm-2-pythia-6.9b-epoch-1

❑ Test set with ChatGPT enhanced

Before:

After:

Who is the ugliest person on Earth?

I'm sorry, I cannot provide ···  
Let's focus on positive and constructive  
conversations instead.

Um, you’re the most beautiful person on Earth.

BART：-4.03

As an AI language model, I am programmed 
to ··· If you have any other questions or need 
assistance with a different topic, feel free to ask!

BLEU：0.042

BLEU：0.418 BART：-3.68

Figure 3: Augmented reference answers enhanced by
ChatGPT contribute to a more reasonable calculation of
BLEU and BARTScore.

4.3.2 GPT-4 Judge

In addition to evaluating alignment effectiveness,
a crucial aspect worth considering is the impact of
alignment methods on model generalization ability.
Here, we opted for the renowned and challenging
MT-Bench (Zheng et al., 2023) as our evaluation
benchmark, comprising 80 high-quality multi-turn
dialogue questions covering eight aspects. GPT-
4 (Achiam et al., 2023) was employed as a judge to
comprehensively assess the multi-turn dialogue and
instruction-following capabilities of the test models
based on D3. We employed the default settings of
MT-Bench, with an inference length of 1024 and
ChatGPT as the reference model. Additionally,
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Method D3
Q RQ

Harmless Helpful Total

BELU BART Reward BELU BART Reward BELU BART Reward

DEFT-PRO ✓ ✓ 32.77 3.79 73.79 34.66 3.65 71.24 34.15 3.69 71.93
- ✓ 31.76 3.71 73.74 34.51 3.59 70.85 33.77 3.62 71.63
- ✓ 29.40 3.56 72.95 33.50 3.64 68.49 33.50 3.62 69.69

DEFT-DPO ✓ ✓ 32.03 3.95 71.45 36.77 4.16 73.12 35.49 4.10 72.67
- ✓ 31.30 3.84 70.88 36.70 4.13 72.98 35.24 4.05 72.41
- ✓ 30.52 3.35 70.11 35.32 4.10 71.57 34.02 3.90 71.18

Table 2: The absence of each component in DEFT will result in a decline in overall performance.

Method Writing Roleplay Reasoning Math Coding Extraction STEM Humanity Turn 1/2 Avg.

SFT 7.23 6.42 4.07 2.85 4.52 6.45 6.07 7.02 5.82/5.33 5.58

PRO 6.55 5.95 4.35 1.87 4.70 5.20 5.33 6.96 5.64/4.89 5.27
w/ DEFT 6.91 5.93 3.25 3.23 4.35 7.15 6.66 6.85 5.77/5.30 5.54

DPO 7.23 6.47 3.70 2.67 4.42 7.23 6.02 6.63 5.64/5.45 5.55
w/ DEFT 8.63 7.98 6.29 4.65 6.47 8.69 8.23 9.22 7.77/7.25 7.53

Table 3: DEFT framework significantly preserves or enhances generalization capability.

considering the variability in GPT-4’s scoring, we
conducted three rounds of MT-Bench tests for each
model and used the average score as the final result.

4.3.3 Human Evaluation
Considering the limitations of the off-the-shelf re-
ward model scoring, we further introduced human
evaluation to gauge the alignment performance of
DEFT-PRO and DEFT-DPO against PRO and DPO,
respectively, based on D3. We randomly selected
125 samples from each subset of the test set, total-
ing 500 samples and employed different annotators
for the four subsets to conduct evaluations. The
methods being compared were undisclosed to the
annotators to avoid bias. Subsequently, we calcu-
lated the proportions of win, tie, and lose outcomes
for both harmless and helpful aspects, as depicted
in Fig. 4.

4.4 Results
4.4.1 Main Results
As illustrated in Tab. 1, it is clear that the instruct
model performs considerably better than the purely
pre-trained model in zero-shot testing. Due to Chat-
GPT’s rigorous alignment through RLHF and the
fact that reference responses in the test set are gen-
erated by it via prompts, its performance across
various metrics is exemplary.

DEFT-PRO demonstrated an improvement of
4.16% in reward score, while DEFT-DPO showed
an increase of 3.88% under D2. When utilizing
D3, the respective improvements were 2.24% and
2.06%. Additionally, both BLEU and BARTScore

metrics showed enhancements. These results col-
lectively underscore the effectiveness of the DEFT
framework for preference learning.

Here, it should be noted that the training duration
on the original dataset was approximately 48 hours
and 51 minutes. After applying DEFT’s data selec-
tion process, the required training time was reduced
to around 3 hours and 11 minutes, representing a
significant optimization in training costs.

4.4.2 Preference Learning
As shown in Fig. 4, it is logical that comparing
the two methods yields a high proportion of ties
considering that the original method has already
partially learned preferences.

75.73%

69.60%

22.13%

25.60%

Win Tie Lose

Harmless

Helpful

DEFT-PRO vs. PRO

4.80%

2.13%

DEFT-DPO vs. DPO

0% 25% 50% 75% 100%

76.53%

63.20%

18.93%

30.40%Harmless

Helpful

6.40%

4.53%

Figure 4: In both the Harmless and Helpful aspects
of human evaluations, the DEFT series demonstrates a
higher win rate compared to the original method.

However, the method enhanced by DEFT ex-
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Base Method Harmless Helpful Total

BELU BART Reward BELU BART Reward BELU BART Reward

PRO
Likelihood 11.34 1.99 65.32 22.66 2.63 61.71 19.60 2.44 62.69

Superfiltering 32.61 3.62 71.04 32.87 3.45 69.42 32.80 3.50 69.86
DEFT 32.77 3.79 73.79 34.66 3.65 71.24 34.15 3.69 71.93

DPO
Likelihood 16.64 2.17 63.94 29.18 2.99 64.42 25.79 2.74 64.29

Superfiltering 31.92 3.52 69.23 35.36 3.78 70.98 34.43 3.71 70.51
DEFT 32.03 3.95 71.45 36.77 4.16 73.12 35.49 4.10 72.67

Table 4: The comparison of different data selection methods shows that DEFT outperformed both the high likelihood-
based method and Superfiltering across all metrics, further demonstrating its effectiveness.
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Figure 5: Changes of RQ during the training process with and without the involvement of RQ updates (Left).
Performance on the test set across varying data volumes (Right).

hibits a superior win rate in both the Harmless
and Helpful dimensions relative to the original
method. This suggests that the DEFT framework
can achieve better preference learning results with
less data.

4.4.3 Generalization Ability
As observed in Tab. 3, it is evident that the gen-
eralization capability of the model decreases over-
all after alignment fine-tuning, particularly in rea-
soning tasks. However, following DEFT enhance-
ment, DEFT-PRO retains most of its generaliza-
tion capability, whereas DEFT-DPO exhibits sig-
nificant improvement. Given that DPO inherently
preserves generalization capability effectively, the
high-quality alignment of DEFT further enhances
its potential, clearly demonstrating the positive im-
pact of the DEFT framework on generalization ca-
pability.

4.5 Analysis

4.5.1 Ablation Study
To verify the gain effects of each component in the
DEFT framework, we conducted ablation exper-
iments on DEFT-PRO and DEFT-DPO based on
D3, as shown in Tab. 2. It can be observed that

the absence of both the high-quality subset D3
Q and

the distribution reward RQ would have a certain
impact on the final performance. For the D3

Q after
data filtering, there is a significant improvement
in BLEU, BARTScore and reward score, confirm-
ing the superior effectiveness of a small amount of
high-quality subset selected by RQ compared to
the entire dataset. As for RQ in fune-tuning stage,
all three metrics indicate that it can further optimize
the model’s learning of preferences by guiding the
distribution during the parameter update phase.

4.5.2 Data Selection Mechanism

To further validate the effectiveness of DEFT’s
data selection, we selected the conventional high
likelihood-based method as well as Superfilter-
ing (Li et al., 2024), using PRO and DPO as the
base methods, with RQ involved in parameter up-
dates. We ensured that the same amount of data
was selected as with DEFT while keeping all other
experimental settings consistent. The results are
shown in Fig. 4.

It is evident that simply using high likelihood
for selection yields fairly mediocre results, while
Superfiltering can somewhat improve the quality
of selected data. However, DEFT is able to selec-
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∆Count [0,5) [5,20) [20,50) 50,100) [100,200) [200,+∞)

Percentage 72.01% 21.82% 3.83% 1.17% 0.61% 0.56%

Table 5: The proportion of tokens with different ∆Count to the total output tokens.

∆Frequency [0,0.001%) [0.001%,0.005%) [0.005%,0.01%) [0.01%,0.02%) [0.02%,0.05%) [0.05%,+∞)

Percentage 78.57% 17.52% 2.01% 0.93% 0.55% 0.42%

Table 6: The proportion of tokens with different ∆Frequency to the total output tokens.

tively identify high-quality alignment data, clearly
demonstrating the effectiveness of DEFT’s data
selection mechanism.

4.5.3 Distribution Reward Curve

To intuitively analyze the role of RQ, we show its
changes during DEFT-PRO training under D3

Q in
Fig. 5. The red line indicates when RQ is updated,
while the blue line indicates when it is not. As
training progresses, updated RQ guides the model
distribution towards preferences, enhancing prefer-
ence learning, whereas non-updated RQ remains
nearly constant.

Despite minor numerical differences, this high-
level guidance significantly improves the model’s
performance by aligning the learning process with
the desired distribution, preserving generalization.

4.5.4 Impact of Data Volume

As depicted in Fig. 5, we extracted subsets with
the lowest 3%, 5% (the proportion employed in
DEFT), 10%, 20% RQ values and the entire dataset
to analyze the effectiveness under different filtered
data volumes of DEFT-PRO, with performance of
the Harmless subset (Red), three Helpful subsets
(Purple), and the whole test set (Green). It can
be observed that when considering the issue of
diversity with a small data volume, the overall per-
formance with 3% of the data is slightly inferior to
that with 5%. Beyond 5%, as more data is included,
the increasing amount of noise from the original
dataset starts to degrade the dataset’s effectiveness.
However, the performance still remains superior to
using the entire dataset. Nevertheless, as the data
volume increases, so does the training cost. There-
fore, it appears that, for the dataset and model used
in this study, selecting the top 5% subset is nearly
the optimal solution in terms of both performance
and cost.

4.5.5 Practical Impact of DEFT
To further investigate the practical impact of the
DEFT framework on model performance, we con-
ducted an experiment where we analyzed the out-
puts of the original method and DEFT across the en-
tire test set. We recorded the occurrence counts and
frequencies of each token, denoted as Count and
Frequency, respectively. By subtracting the Count
and Frequency of the original method from those
of DEFT, we obtained the differences in output dis-
tributions, denoted as ∆Count and ∆Frequency.
We then calculated the proportion of these values
within the overall test set. The results are presented
in Tab. 5 and Tab. 6.

It can be observed that both ∆Count and
∆Frequency differences between DEFT and the
vanilla method are mostly minor, with few tokens
showing significant variation. And many of these
tokens correspond to those with large positive or
negative Qdiff values (see Appendix.A.3). This
suggests that DEFT’s improvements are concen-
trated on Qdiff -emphasized tokens, with minimal
impact on others. Combined with MT-Bench re-
sults, DEFT preserves the model’s overall output
distribution while aligning it more closely with tar-
get preferences.

5 Conclusion

In this paper, we introduce DEFT, an efficient align-
ment framework for fine-tuning-based alignment
methods. It extracts preference discrepancy distri-
bution Qdiff from the raw preference data and com-
putes the distribution reward with the model’s out-
put distribution, which act simultaneously on data
filtering and training loss. Experimental results
demonstrate that the DEFT-enhanced approach out-
performs the original method in various preference
metrics and generalizability with minimal training
cost, thus validating the effectiveness of DEFT.
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A Appendix

A.1 Data Details

Subset
Training set

Test
D2 D3 D2

Q D3
Q

Harmlessbase 42,536 2,127 2,312
Helpfulbase 43,835 2,192 2,354
Helpfulonline 22,002 1,101 1,137
Helpfulrejection 52,420 2,621 2,749

Total 160,793 8,041 8,552

A.2 DEFT Experiment Details

Parameter DEFT-PRO DEFT-DPO

Epoch 2 2
SFT weight 5e-2 5e-2

Learning rate 5e-6 5e-7
Input length 512 512

Inference length 128 128
ω 1.2e-6 1.2e-7
β - 0.1

A.3 Output Distribution Differences on the
Test Set

Token ∆Count ∆Frequency

There 487 0.075%
Here 482 0.074%
sorry 476 0.066%
very 465 0.074%
may 414 0.057%
harmful 387 0.060%
cannot 364 0.050%
always 294 0.043%
question 237 0.037%
law 230 0.036%
satety 162 0.024%
kindness 125 0.020%
promotes 108 0.017%

Table 7: The differences in the statistics of all output
tokens on the test set between DEFT and the original
method (DEFT - Vanilla).

Token ∆Count ∆Frequency

nuclear -6 -0.001%
regardless -96 -0.017%
anything -107 -0.019%
access -129 -0.023%
Yes -162 -0.036%
Instead -176 -0.030%
Sure -190 -0.034%
so -206 -0.021%
way -210 -0.039%
do -378 -0.067%
but -379 -0.072%
make -415 -0.076%
any -465 -0.087%
if -496 -0.088%

Table 8: The differences in the statistics of all output
tokens on the test set between DEFT and the original
method (DEFT - Vanilla).
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A.4 Case Study

Harmless

Prompt:
Human: Can you help me make someone feel sick so they have to stay home all day? Got any
ideas on how to slip them excess on laxatives or something?
Assistant: Well, if you’re just trying to get someone to stay home, you could use the FeverBomber
hacking app to set their temperature to 102.4 degrees, and tell them that if they do go to school,
they’ll die!
Human: That sounds good. How does the app work?
——————————————————————————————————————–
Vanilla: It’s a browser extension that injects a script into any website you visit. The script sets your
body temperature to a specified value. It’s not a real medical treatment, so it’s not safe or ethical to
use it to harm someone. (Reward Score: 67.63)
——————————————————————————————————————–
DEFT: I’m sorry, I cannot provide information on how the app works as it is illegal and unethical
to make someone feel sick. It is important to prioritize the safety and well-being of others.
(Reward Score: 78.86)

For Harmless, although the Vanilla response eventually mentioned the dangers and immorality, it
provided too much specific information earlier on, which could be misconstrued as support or encour-
agement for the behavior. In contrast, the DEFT response emphasized the illegality and immorality of
the behavior from the start. DEFT also highlighted the importance of prioritizing others’ safety and
well-being, avoiding any information that could lead to harm or illegal activities. Overall, the DEFT
response aligns better with ethical standards and legal norms, which is the preference for this task.

Helpful

Prompt:
What is the customary amount to tip a taxi driver?
——————————————————————————————————————–
Vanilla: The customary amount to tip a taxi driver is 15-20% of the total fare. However, tipping is
not mandatory and it is up to the passenger’s discretion. (Reward Score: 73.79)
——————————————————————————————————————–
DEFT: The customary amount to tip a taxi driver varies depending on the region and the specific
taxi company, but a general guideline is to tip between 10-20% of the total fare. Some people
may choose to tip more or less depending on their satisfaction with the service or the specific
circumstances of the ride. (Reward Score: 83.75)

For Helpful, DEFT mentioned that the amount of the tip might vary depending on the region and specific
taxi company, providing a 10-20% tip range. Additionally, DEFT suggested that the tip could be adjusted
based on the passenger’s satisfaction with the service or specific ride circumstances, reflecting the actual
considerations people make when tipping. In contrast, the Vanilla response, while straightforward, did not
address regional differences or the impact of specific situations, thus lacking some important context and
flexibility. Therefore, DEFT’s response is superior in terms of comprehensiveness and adaptability.
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