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Abstract

Reinforcement learning from human feedback
(RLHF) has emerged as the primary method for
aligning large language models (LLMs) with
human preferences. The RLHF process typi-
cally starts by training a reward model (RM) us-
ing human preference data. Conventional RMs
are trained on pairwise responses to the same
user request, with relative ratings indicating
which response humans prefer. The trained RM
serves as a proxy for human preferences. How-
ever, due to the black-box nature of RMs, their
outputs lack interpretability, as humans cannot
intuitively understand why an RM thinks a re-
sponse is good or not. As RMs act as human
preference proxies, it is desirable for them to
be human-interpretable to ensure that their in-
ternal decision processes are consistent with
human preferences and to prevent reward hack-
ing in LLM alignment. To build RMs with
interpretable preferences, we propose a two-
stage approach: i) train an Absolute-Rating
Multi-Objective Reward Model (ArmoRM)
with multi-dimensional absolute-rating data,
each dimension corresponding to a human-
interpretable objective (e.g., honesty, verbosity,
safety); ii) employ a Mixture-of-Experts (MoE)
strategy with a gating network that automati-
cally selects the most suitable reward objec-
tives based on the context. We efficiently
trained an ArmoRM with Llama-3 8B and
a gating network consisting of a shallow
MLP on top of the ArmoRM. Our trained
model, ArmoRM-Llama3-8B, obtains state-of-
the-art performance on RewardBench, a bench-
mark evaluating RMs for language modeling.
Notably, the performance of our model sur-
passes the LLM-as-a-judge method with GPT-
4 judges by a margin, and approaches the
performance of the much larger Nemotron-4
340B reward model. Our code and model are
released at https://github.com/RLHFlow/
RLHF-Reward-Modeling.

*Equal contribution.

1 Introduction

In this paper, we explore the role of reward mod-
els (RMs) within the framework of Reinforcement
Learning from Human Feedback (RLHF). RMs
play a crucial role in aligning large language mod-
els (LLMs) as they provide a scalable way to inte-
grate human preferences into the models’ training
process, guiding the optimization of their policies.
To be more specific and provide more context, we
first review the most standard and popular RLHF
frameworks and the role of RMs in this frame-
work. Arguably the dominant RLHF approach is a
deep reinforcement learning (DRL)-based frame-
work, as developed in key studies (Christiano et al.,
2017; Ouyang et al., 2022; Bai et al., 2022). This
framework operates in three stages: 1) Preference
data collection; 2) Reward modeling based on the
Bradley-Terry model (Bradley and Terry, 1952);
3) Policy optimization using Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) and the
reward model constructed in stage 2. This frame-
work has achieved tremendous success in the post-
training of ChatGPT (Ouyang et al., 2022) and
Claude (Bai et al., 2022). These ideas also extend to
other approaches, such as rejection sampling fine-
tuning (Dong et al., 2023; Gulcehre et al., 2023)
and iterative direct preference learning (Xiong
et al., 2023; Guo et al., 2024; Xie et al., 2024).
In these approaches, the intermediate policy is typi-
cally iteratively deployed to collect new responses,
uses the reward model to label the responses, and
fine-tunes the model on the newly collected prefer-
ence data. In all of these RLHF frameworks, the
capacity of the reward model is crucial as it directly
affects the quality of the aligned LLMs.

The most popular reward modeling approach
is based on the maximum likelihood estimation
(MLE) of the Bradley-Terry (BT) model (Bradley
and Terry, 1952). Despite its widespread use, the
BT model is rather limited in the capacity of cap-
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Figure 1: Architecture of our reward model. It consists of an LLM backbone, a regression layer for multi-objective
reward modeling, and a gating layer that outputs coefficients to scalarize the reward objectives into a scalar score.

turing the complicated human preference (Munos
et al., 2023; Swamy et al., 2024; Ye et al., 2024).
In addition to the capacity issue, common RMs,
like the BT model, are typically black-box models
that output scores or preferences without providing
human-interpretable explanations, making it sub-
ject to the widely observed phenomenon of reward
hacking (Skalse et al., 2022; Singhal et al., 2023;
Chen et al., 2024), where the aligned LLMs gener-
ate high-reward responses (rated by the RM) that
do not align with actual human preferences (Gao
et al., 2023; Lin et al., 2023; Coste et al., 2023). A
notable example of this is the verbosity bias, where
aligned LLMs produce longer-than-necessary re-
sponses because the RM favors length, regardless
of quality (Singhal et al., 2023; Wang et al., 2024a;
Chen et al., 2024).

In this work, we aim to enhance reward models
by making them more interpretable (Molnar, 2020)
and steerable (Wong et al., 2021). Using the afore-
mentioned verbosity bias as an example, suppose
the RM’s output is decomposable, meaning that it
assigns a high score to a response due to two fac-
tors: 40% for its helpfulness and 60% for its length.
In this case, we can see that the RM may suffer
from the verbosity bias. Furthermore, if the RM
is steerable, we could adjust its decision-making
process to base its scoring 100% on helpfulness.
This would be regardless of response length, thus
mitigating the verbosity bias. Enhancing the inter-
pretability of RMs also allows humans to verify
whether RMs have similar internal decision pro-
cesses to humans when acting as proxies for hu-
man preferences. We believe that this human-AI
interaction process could ensure that RMs are con-
sistent with human values and preferences, making
RM-aligned LLMs more reliable and robust.

At a high level, we propose a two-stage ap-
proach that first trains a multi-objective RM and
then learns a gating layer that scalarizes reward ob-
jectives in a mixture-of-experts way. We then em-
pirically validate its effectiveness by training such
an RM with Llama-3 8B (Meta, 2024), and obtain
state-of-the-art performance on RewardBench, a
benchmark to evaluate RMs.

2 Related Works

2.1 RLHF Algorithms

The PPO-based RLHF framework is first popular-
ized in Christiano et al. (2017) and further devel-
oped by Bai et al. (2022); Ouyang et al. (2022)
to make ChatGPT and Claude, which leverages
a reward model to provide feedback during the
RLHF process. However, getting the PPO work
is challenging in the context of LLMs (Choshen
et al., 2019; Engstrom et al., 2020). Thus, much
efforts have been made in proposing alternative ap-
proaches to the PPO, such as the REINFORCE
algorithm variants (Li et al., 2023; Shao et al.,
2024). Another popular approach is the reward-
ranked fine-tuning algorithm (RAFT) (Dong et al.,
2023; Gulcehre et al., 2023) that was used in
LLaMA2 (Touvron et al., 2023), Llama-3 (Meta,
2024), Qwen2 (qwe, 2024) and Apple Intelligence.
To implement rejection sampling, we typically sam-
ple n responses per prompt and use a reward model
to rank them according to some criteria. Then,
we fine-tune the model on the high-rank responses
(e.g., the one with the highest reward value). This
algorithm is a strong baseline, especially in rea-
soning tasks (Aksitov et al., 2023; Havrilla et al.,
2024). All approaches mentioned above leverage
external reward models to provide supervision sig-
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nals during the RLHF process.
There is also a line of works studying direct

preference learning algorithms (Zhao et al., 2023;
Rafailov et al., 2023; Azar et al., 2023; Tang et al.,
2024; ?), which bypasses traditional reward mod-
eling to learn directly from preference datasets in
a supervised manner (hence the name direct pref-
erence learning). Direct Preference Optimization
(DPO) is the most representative one. However,
the original DPO is an offline algorithm without
further exploration of the environments. The subse-
quent studies demonstrate that the online iterative
variants surpass the original DPO with large mar-
gins (Xiong et al., 2023; Liu et al., 2023; Xu et al.,
2023; Rosset et al., 2024; Guo et al., 2024; Xie
et al., 2024; Zhang et al., 2024; ?; Dong et al.,
2024). Specifically, we can iteratively deploy the
intermediate policy to collect new responses and
use the external reward model to label them, and
further fine-tune the model on the newly collected
preference data using the DPO objective.

To summarize, all the existing popular RLHF
algorithms require an external reward model to
provide preference signals to achieve their best
performance.

2.2 Reward modeling in RLHF
Traditionally, reward models in RLHF have utilized
the Bradley-Terry (BT) model for preference esti-
mation (Bradley and Terry, 1952; Ouyang et al.,
2022; Bai et al., 2022; Wang et al., 2023b; Rafailov
et al., 2023). Despite its widespread use, the BT
model’s inability to handle complex, in-transitive
preferences has been highlighted in recent studies
(Munos et al., 2023; Swamy et al., 2024; Ye et al.,
2024). It is also argued that the DPO-aligned model
can serve as a reward function to provide token-
wise rewards (Rafailov et al., 2024; Zhong et al.,
2024), which are still confined to the BT model.
There are also works dropping the BT assumption
and directly modeling the probability of response
one being preferred over another one (Jiang et al.,
2023; Zhao et al., 2023; Liu et al., 2023; Dong
et al., 2024). These models are referred to as the
pairwise preference model, as they take two re-
sponses as the input. Another line of work explores
multi-objective reward models that attempt to cap-
ture the complicated human preferences more effec-
tively (Touvron et al., 2023; ?; Wang et al., 2023a,
2024a). However, the integration of these multi-
dimensional signals typically relies on naive meth-
ods such as linear combinations, indicating a need

for more sophisticated techniques.

3 Methodology

3.1 Multi-Objective Reward Modeling

Most existing reward models for LLM alignment
are trained with Bradley-Terry loss on pairwise
data with annotated preferences (Bai et al., 2022;
Touvron et al., 2023; Ouyang et al., 2022), using
the same approach as InstructGPT (Ouyang et al.,
2022). The pairwise preference annotations are
essentially binary labels, e.g., {0, 1}, indicating
which response is preferred by the annotator. We
call them relative ratings here. However, in some
recent high-quality datasets, the relative ratings
are converted from absolute ratings. For instance,
UltraFeedback (Cui et al., 2023) is curated with
5-objective absolute ratings: Overall Score, Instruc-
tion Following, Truthfulness, Honesty, and Help-
fulness (each objective has 5 distinct ratings based
on pre-defined rubrics). The dataset is further bina-
rized into pairwise comparisons, using the Overall
Score, or the average score of the remaining 4 ob-
jectives, for training reward models or DPO. The
original ratings are fine-grained, as each objective
has continuous integer rating scores (e.g., 1, 2, 3,
4, 5). However, the binarization process discards
some fine-grained information. For example, a pair
of examples with scores 1:5 is labeled in the same
way as another pair with scores 2:3. It is not jus-
tified that discarding the fine-grained preference
information is beneficial. Hence, we would like
to include all fine-grained information for reward
modeling.

As the training examples come with multi-
objective ratings, the straightforward approach for
learning with these ratings is multi-objective re-
gression1. Here, we briefly introduce the training
procedure. We consider each example to consist of
a prompt x (including contexts from previous con-
versation turns), response y, and a k-dimensional
rating vector r ∈ Rk, where each dimension cor-
responds to a reward objective such as helpful-
ness and truthfulness. Now, we take a pre-trained
decoder-only LLM without the original output lin-
ear layer as the feature extractor fθ. We pass x⊕ y,
the concatenation of x and y, through the decoder
layers and take the hidden state of the final de-
coder layer on the last token as a d-dimensional

1This approach is also adopted in Directional Preference
Alignment (Wang et al., 2024a) and HelpSteer (Wang et al.,
2023a).
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Table 1: Performance comparison on RewardBench. The benchmark consists of four primary categories (weight
1.0) and one category of prior sets (weight 0.5). The weighted average accuracy is computed as the overall score.

Method Base Model Score Chat Chat Hard Safety Reasoning Prior Sets (0.5 weight)

HelpSteer2 RM Nemotron-4 340B 89.3 95.8 87.1 91.5 93.7 67.4
ArmoRM + MoE Llama-3 8B 89.0 96.9 76.8 92.2 97.3 74.3
HelpSteer2 RM Llama-3 70B 86.3 91.3 80.3 92.8 90.7 66.5
Preference Model Llama-3 8B 85.7 98.3 65.8 89.7 94.7 74.6
LLM-as-a-judge GPT-4 Turbo 84.2 95.3 74.3 87.2 86.9 70.9
LLM-as-a-judge GPT-4o 83.3 96.6 70.4 86.7 84.9 72.6
Bradley-Terry Llama-3 8B 83.6 99.4 65.1 87.8 86.4 74.9
Bradley-Terry Yi-34B 81.4 96.9 57.2 88.2 88.5 71.4

feature. Also, we attach a new linear regression
layer w ∈ Rd×k on top of fθ, which outputs a k-
dimensional rating prediction. The model can be
simply trained with regression loss:

min
θ,w

Ex,y,r∈D∥w⊤fθ(x⊕ y)− r∥22 (1)

3.2 Mixture-of-Experts Scalarization of
Reward Objectives

An ArmoRM can predict multi-objective rewards
for each response. However, the multi-dimensional
outputs need to be reduced to a scalar for ranking or
pairwise comparisons of test examples. A straight-
forward approach is to take a linear combination of
multiple objectives (?) as in the literature of mul-
titask learning. However, using fixed combination
coefficients is too rigid for complex application
scenarios. For instance, for prompts that could eas-
ily trigger unsafe responses, the safety objective
should be assigned a large coefficient, as we wish
the reward model to rank unsafe responses lower
than safe ones. For prompts for math problem as-
sistance, the safety objective becomes less relevant,
and the helpfulness-related objectives should be the
primary focus.

With the insight mentioned above, we propose a
MoE-style scalarization of reward objectives, con-
ditioned on the prompt x. On the architecture level,
we just need to follow the common MoE practice
to add a gating layer, gϕ : Rd 7→ {v ∈ Rk | vi ≥
0 and

∑
vi = 1}, that outputs non-negative coeffi-

cients (summing up to 1) for the reward objectives
based on the feature extracted from the prompt,
fθ(x) ∈ Rd, i.e., the hidden state on the last token
of x. Notice that fθ(x) is provided for free in the
forward pass of fθ(x ⊕ y), making the pipeline
inference-efficient.

The gating layer gϕ can simply be a shallow
MLP (i.e., fully-connected network) that takes the
prompt feature fθ(x) and outputs a k-dimensional

vector, followed by a softmax function to ensure
the elements of the output vector are non-negative
and summing up to 1.

However, most reward objectives are highly cor-
related with verbosity, which indicates a strong ver-
bosity bias (Saito et al., 2023). Using non-negative
gating coefficients would make the final output in-
herit the bias. To resolve the issue, we adjust each
reward objective, ri, with a penalty using the ver-
bosity reward objective,

r′i ← ri − λirverbose (2)

where the penalty coefficient λi is chosen such
that for a proper correction metric (e.g., Pearson or
Spearman correlation coefficient) and a reference
data distribution D,

CorrD(r′i, rverbose) = 0 (3)

The adjusted reward vector is denoted as r′ ∈ Rk.
Finally, we multiply the gating coefficients to

the multi-objective rewards, to obtain a scalar score
s for the response y given prompt x,

R = gϕ(fθ(x))
⊤r′ (4)

To train the gating layer, we freeze the backbone
and the regression layer, and only train the gating
layer using the Bradley-Terry loss with an addi-
tional scaling variable, β ∈ R,

min
ϕ,β

E
[
− log

exp(βRchosen)

exp(βRchosen) + exp(βRrejected)

]

where Rchosen and Rrejected are the preference
scores for the chosen and rejected responses in
each pairwise example, (x, ychosen, yrejected).

4 Experiment

Implementation of ArmoRM We use the Llama-
3 8B (Meta, 2024) architecture and initialize the
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Table 2: Ablation study of the MoE gating network, evaluated on RewardBench.

Method Score Chat Chat Hard Safety Reasoning Prior Sets (0.5 weight)

ArmoRM + Fixed Weights 84.9 99.4 62.3 90.2 92.5 75.3
ArmoRM + Gating Weights 89.0 96.9 76.8 92.2 97.3 74.3

model backbone with parameters from a Bradley-
Terry RM of Llama-3 8B trained by Dong et al.
(2024). We append a linear layer to the backbone,
and train it with regression loss while keeping the
backbone frozen. The training involves 19 objec-
tives (including helpfulness, correctness, verbosity,
etc.) from 8 datasets, with details presented in
Appendix A.

Implementation of MoE The gating layer is
a ReLU MLP of 3 hidden layers with 1024 hid-
den units. For the correlation metric Corr in Eq.
(3), we adopt the Spearman correlation (Spearman,
1904), and use UltraFeedback (Cui et al., 2023)
as the reference data distribution D. The scaling
variable β is initialized with a value of 100, and the
gating layer is trained with the LLM backbone kept
frozen. The training is conducted on 10 pairwise
preference datasets, with details in Appendix A.

Evaluation Benchmark RewardBench (Lam-
bert et al., 2024) is the first benchmark constructed
to evaluate reward models for language model-
ing. It consists of a diverse set of tasks designed
to assess the performance of reward models for
LLM alignment, including four primary categories
(Chat, Chat Hard, Safety, Reasoning) and a cat-
egory of prior sets. Each category consists of
multiple datasets with pairwise preference data,
where each pair includes a chosen and a rejected
text response. The overall score is computed as a
weighted average over the five categories, where
the four primary categories have weights 1.0 and
the prior-sets category has weight 0.5.

Evaluation Results Table 1 compares the perfor-
mance of our approach (ArmoRM + MoE) against
other reward models. Several key observations can
be made from these results:
• Our model significantly outperforms the Llama-3

8B Bradley-Terry RM, which provides the LLM
backbone for our model. This demonstrates the
effectiveness of our ArmoRM design and the
MoE gating mechanism in improving the perfor-
mance of reward models.

• Our model also outperforms the LLM-as-a-judge
approach (Zheng et al., 2023) with GPT-4 judges

by a considerable margin, indicating that our
model could be used as a cheaper replacement
for GPT-4 in many annotation jobs.

• Our model of 8B parameters has performance
nearly on par with the Nemotron-4 340B RM
(Wang et al., 2024b), a giant reward model of
340B parameters. This highlights the power and
potential of our reward modeling approach.

Effect of MoE To examine the role of the MoE
gating network of ArmoRM, we conduct an abla-
tion study on this component using RewardBench
(Lambert et al., 2024). We learn fixed weights (as
a linear combination of the 19 objectives) in the
same setup as our MoE gating network (on top of
our multi-objective reward model with verbosity
debiasing). The key difference is that the gating
network is context-conditional (varying weights for
different prompts), while the fixed weights are coef-
ficients that do not change across prompts. We eval-
uate ArmoRM with both kinds of weights, and the
evaluation results in Table 2 demonstrate that the
gating weights significantly outperform the fixed
weights in two categories: Chat Hard and Rea-
soning, while performing roughly on par with the
fixed weights in the remaining categories (accuracy
gap < 3%). Notably, Chat Hard and Reasoning
are considered the hardest categories by the au-
thors of RewardBench, while the other categories
are relatively easy for recent reward models. The
significantly superior performance obtained by the
gating weights in the two hardest categories in-
dicates that the context-conditional nature of our
MoE gating mechanism is particularly effective in
handling complex and nuanced scenarios.

5 Conclusion

In this work, we addressed the critical issue of in-
terpretability in reward models for RLHF in the
context of aligning LLMs with human preferences.
We proposed a novel two-stage approach, consist-
ing of an ArmoRM and a MoE strategy with a gat-
ing network. Our ArmoRM, trained with Llama-3
8B, achieved state-of-the-art performance on Re-
wardBench, demonstrating the effectiveness of our
reward modeling approach.
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Limitations

Although our proposed two-stage approach for in-
terpretable reward modeling demonstrates state-of-
the-art performance on the RewardBench bench-
mark, there are some limitations to consider:
1. Model size: Due to computational resource lim-

itations, our ArmoRM was trained using the
Llama-3 8B model. While this model size is effi-
cient compared to larger models like Nemotron-
4 340B, we were unable to perform experiments
with models beyond 8B parameters. Future
work could explore the performance and scala-
bility of our approach with larger models, given
sufficient computational resources.

2. Evaluation benchmark: We evaluated our ap-
proach on the RewardBench benchmark, which
is currently the only available benchmark specif-
ically designed for assessing reward models in
language modeling tasks. As more evaluation
benchmarks for reward modeling become avail-
able, it will be important to assess the perfor-
mance and generalizability of our approach on
these new benchmarks to gain a more compre-
hensive understanding of its effectiveness.

3. Language and domain coverage: Our exper-
iments focused on English language tasks and
datasets due to the fact that most open-sourced
preference datasets are English-only, and there
is currently no reward modeling benchmark for
non-English tasks. The performance and gener-
alizability of our approach to other languages
and domains may vary and require further in-
vestigation. Future research could explore the
application of our approach to a wider range of
languages and domains, pending the availability
of suitable datasets and benchmarks, to assess
its robustness and adaptability.

4. Potential risks: While our approach aims to
improve the interpretability and effectiveness
of reward models for aligning LLMs with hu-
man preferences, it is important to consider the
potential risks associated with the deployment
of such models in real-world applications. If
the reward models are not carefully designed,
trained, and validated, they may inadvertently

introduce biases or reward undesirable behav-
iors in the aligned LLMs. This could lead to the
generation of content that is harmful, offensive,
or misaligned with human values. Moreover, the
interpretability of our approach, while beneficial
for understanding the model’s decision-making
process, may also be exploited by malicious
actors to identify and manipulate the model’s
weaknesses. Therefore, it is crucial to develop
rigorous testing and monitoring procedures to
ensure the safety and robustness of the aligned
LLMs before deploying them in sensitive appli-
cations. Ongoing research efforts should also
focus on developing methods to detect and miti-
gate potential risks associated with interpretable
reward models.

Despite these limitations, we believe that our
work represents an important step towards build-
ing more interpretable and effective reward models
for RLHF in the context of aligning LLMs with
human preferences. As computational resources,
datasets, and evaluation benchmarks continue to
evolve, future research can address these limita-
tions and further validate the effectiveness of our
approach in diverse settings.
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A Experimental Details

Software Our training code is built with PyTorch
(Paszke et al., 2019), HuggingFace’s Transform-
ers (Wolf et al., 2019) and Scikit-learn (Pedregosa
et al., 2011).

Hardware Training ArmoRM (the multi-
objective reward modeling stage) only involves
training the last linear layer (i.e., linear probing),
so we save features extracted from the backbone
locally and then conduct linear probing with
Scikit-learn’s linear regression solver on a CPU.
For the MoE stage, we also save features locally,
and then train the gating layer on a single NVIDIA
A6000 GPU for less than 10 minutes.

Hyperparameters The gating layer is trained us-
ing the AdamW optimizer (Loshchilov and Hutter,
2019) with a learning rate of 0.001 for 10,000 steps
with a batch size of 1024. We also apply a cosine
decay learning rate scheduler.

Licenses The model we use and fine-tune fol-
lows the Meta Llama3 license. All the datasets we
use are open-sourced and can be used for research
purposes (some could be used for commercial pur-
poses, such as HelpSteer (Wang et al., 2023a)).

Personally Identifying Info or Offensive Content
For all datasets used in this work, according to their
data curation process descriptions, they do not con-
tain any information that names or uniquely iden-
tifies individual people, except for some examples
that contain celebrity names. However, Beaver-
Tails (Ji et al., 2023), PKU-RLHF (Ji et al., 2023),
and HH-RLHF (Bai et al., 2022; Ganguli et al.,
2022) contain offensive content, which is deliber-
ately selected to build human preference datasets
that aim to teach LLMs which responses are safe
to generate.

Multi-Objective Training Datasets In the stage
of multi-objective reward modeling, we use train-
ing datasets with corresponding reward objectives
detailed below.
• HelpSteer (Wang et al., 2023a) (35k data):

– helpsteer-helpfulness
– helpsteer-correctness
– helpsteer-coherence
– helpsteer-complexity
– helpsteer-verbosity (This is the verbosity ob-

jective we use in Eq. (2) and (3))
• UltraFeedback (Cui et al., 2023) (240k data):

– ultrafeedback-overall-score
– ultrafeedback-instruction-following
– ultrafeedback-truthfulness
– ultrafeedback-honesty
– ultrafeedback-helpfulness

• BeaverTails-30k (Ji et al., 2023) (30k data):
– beavertails-is-safe

• CodeUltraFeedback (Weyssow et al., 2024)
(50k data):
– code-complexity
– code-style
– code-explanation
– code-instruction-following
– code-readability

• Prometheus (Kim et al., 2024a) (200k data):
– prometheus-score

• Argilla-Capybara2 (Daniele and Suphavadeepr-
asit, 2023) (15k data):
– argilla-overall-quality

• Argilla-OpenOrca3 (13k data):
– argilla-judge-lm

• Argilla-Math-Preference4 (2.4k data): This
dataset shares the objective ultrafeedback-
instruction-following with UltraFeedback

Multi-Objective Data Pre-processing When
merging multiple datasets with absolute ratings
(e.g., UltraFeedback and HelpSteer), we observe
some issues with the data. Here, we present the
issues and our approach to tackle them:
• Different Rating Scales: Different datasets may

have different scales for the ratings. For instance,
HelpSteer has a rating scale of 0-4, while Ul-
traFeedback’s is 1-10. We linearly transform
all ratings to make them between 0 and 1. For
BeaverTails with True/False ratings (indicating
safe or unsafe), we treat True as 1 and False as 0.

• Similar Objectives: There are some very sim-
ilar objectives from different datasets. For ex-
ample, the Helpfulness objective appears in both
HelpSteer and UltraFeedback, and the Correct-
ness objective of HelpSteer is quite similar to
the Truthfulness of UltraFeedback. After care-
fully examining the datasets, we decided to treat
similar objectives as separate objectives, as they
are rated by different judges following different
rubrics. For instance, data from HelpSteer are

2https://hf.co/datasets/argilla/
Capybara-Preferences-Filtered

3https://hf.co/datasets/argilla/
distilabel-intel-orca-dpo-pairs

4https://hf.co/datasets/argilla/
distilabel-math-preference-dpo
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rated by 200 U.S.-based human annotators fol-
lowing customized rubrics, and UltraFeedback
data are labeled with GPT-4 following another
set of rubrics.

• Missing Labels of the Merged Dataset: When
merging multiple datasets, each example of the
merged dataset only has a subset of ratings; for
example, each example from HelpSteer only has
5 ratings originating from the HelpSteer dataset,
and it does not have ratings for other objec-
tives (e.g., the objectives from UltraFeedback or
BeaverTails). Hence, when optimizing the regres-
sion loss, we simply ignore the missing rating
dimensions of each example and only compute
the loss on the remaining dimensions.

Training Data of MoE In the stage of the gating
layer, we use the following preference datasets:
• HelpSteer (Wang et al., 2023a) (37k pairs)
• UltraFeedback (Cui et al., 2023) (340k pairs)
• SHP (Ethayarajh et al., 2022) (93k pairs)
• HH-RLHF (Bai et al., 2022; Ganguli et al., 2022)

(157k pairs)
• PKU-SafeRLHF-30K (Ji et al., 2023)
• Argilla-Capybara (15k pairs)
• Argilla-Math-Preferences (2.4k pairs)
• CodeUltraFeedback (Weyssow et al., 2024) (50k

pairs)
• PRM-Phase-2 (Lightman et al., 2023) (80k pairs)
• Prometheus2-Preference-Collection (Kim et al.,

2024b) (200k pairs)

Preference Data Pre-processing For datasets
that are not binarized into response pairs (e.g.,
HelpSteer, UltraFeedback, SHP), we take the bina-
rized versions pre-processed in Dong et al. (2024).

AI Assistant GitHub Copilot was used during
coding, and Claude and ChatGPT were used for
correcting grammar issues during paper writing.
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