
Findings of the Association for Computational Linguistics: EMNLP 2024, pages 9274–9284
November 12-16, 2024 ©2024 Association for Computational Linguistics

Natural Evolution-based Dual-Level Aggregation for Temporal Knowledge
Graph Reasoning

Bin Chen1, Chunjing Xiao2* , Fan Zhou1,3

1University of Electronic Science and Technology of China, Chengdu, China
2Henan University, Kaifeng, China

3Kash Institute of Electronics and Information Industry, Kashgar, China
binchen4110@gmail.com, chunjingxiao@gmail.com, fan.zhou@uestc.edu.cn

Abstract

Temporal knowledge graph (TKG) reasoning
aims to predict missing facts based on a given
history. Most of the existing methods unifiedly
model the evolution process of different events
and ignore their inherent asynchronous charac-
teristics, resulting in suboptimal performance.
To tackle this challenge, we propose a Natural
Evolution-based Dual-level Aggregation frame-
work (NEDA) for TKG reasoning. Specifically,
we design a natural division strategy to group
TKGs into different patches according to the
occurrence of a given target entity. Then, we
present a dual-level aggregation scheme to ex-
tract local representations from information
within patches and then aggregate these rep-
resentations with adaptive weights as the final
entity representations. By assigning varying
weights to different patches, this aggregation
scheme can incorporate the asynchronous char-
acteristics of event evolution for representation
computation, thus enhancing prediction perfor-
mance. Extensive experiments demonstrate
the significant improvement of our proposed
model.

1 Introduction

Temporal Knowledge Graphs (TKGs) are essential
for effectively capturing temporal facts and hold re-
markable values in diverse real-world applications,
such as information retrieval (Li et al., 2023), rec-
ommendation systems (Wang et al., 2018; Cheng
et al., 2024), and question answering (Huang et al.,
2019; Liu et al., 2022b). Each fact in TKGs is rep-
resented as a quadruple (s, r, o, t), such as (Lebron
James, join, LA Lakers, 2018). Due to the sig-
nificant practical value, reasoning over TKGs has
garnered multidisciplinary research interests (Li
et al., 2021; Xu et al., 2023; Han et al., 2020).

Reasoning over TKGs primarily has two settings:
interpolation and extrapolation. The former intends

*Corresponding Author: chunjingxiao@gmail.com

to infer missing facts that happened in the past.
While the extrapolation attempts to predict facts
that are likely to occur in the future. In this paper,
we focus on predicting future facts (i.e., extrap-
olation). Given a TKG from timestamp t0 to tn,
we aim to predict future facts at timestamp t with
t > tn, i.e., answer the queries such as (Lebron
James, play for, ?, 2024).

To answer such queries, existing solutions (Jin
et al., 2020; Li et al., 2021; Han et al., 2020) have at-
tempted to learn temporal evolutionary information
by modeling structural dependencies and sequential
patterns. However, they unifiedly model the evolu-
tion process of different events, ignoring evolution
discrepancies (i.e., asynchronous characteristics) of
events. Whereas, in the real world, event evolution
is typically asynchronous. Different events often
exhibit distinct life cycles (i.e., starting and end-
ing time) and evolution types (i.e., continuous and
discontinuous) (Jiang et al., 2023; Nolting et al.,
2023; Yang et al., 2023). The unified processing
schemes may incorporate irrelevant information
into the reasoning process or overlook critical in-
formation, leading to inferior performance.

Considering asynchronous evolution for TKG
reasoning is non-trivial and faces two main chal-
lenges: (1) For a given query on TKGs, identifying
the correlation between the query and each snap-
shot is challenging. As an event typically evolves
across multiple snapshots, each individual snap-
shot contains only limited topic information. This
makes determining their relevance a complex task.
However, to capture asynchronous evolution, it is
vital to ascertain their correlation and further elim-
inate unrelated snapshots (e.g., those before the
starting time) to accurately answer the query. (2)
Current approaches cannot accurately model the
evolution of events with long life-cycles, as they
fail to efficiently capture long-term historical infor-
mation. These methods primarily employ GCNs
and GRUs to model event evolution, which limits

9274

mailto:chunjingxiao@gmail.com

them to capturing only a short history window to
model structural dependencies and sequential pat-
terns (Li et al., 2021, 2022a). However, short-range
historical information is insufficient to encompass
the entire evolution process of events with long
life-cycles (Wang et al., 2023; Liang et al., 2022).
Therefore, capturing long-range historical informa-
tion is radical for effectively modeling the evolution
patterns of events with varying life-cycles.

To address these issues, we propose a Natu-
ral Evolution-based Dual-level Aggregation frame-
work (NEDA) for TKG reasoning, which can effi-
ciently capture the asynchronous evolution charac-
teristics of events to boost reasoning performance.
This framework primarily involves the patch con-
struction, which aims to group TKGs into different
patches, as well as the first-level aggregation (i.e.,
intra-patch encoder) and the second-level aggre-
gation (i.e., inter-patch attention), both of which
intend to compute entity representations by com-
bining the intra-patch and inter-patch information
with adaptive weights.

To summarize, the major contributions can be
listed as follows:

• We propose a Natural Evolution-based Dual-level
Aggregation framework (NEDA) for TKG rea-
soning. To the best of our knowledge, we are the
first to consider asynchronous characteristics of
event evolution for TKG reasoning.

• We design a natural division strategy and a dual-
level aggregation scheme to hierarchically aggre-
gate event information for entity representation
computation, which can efficiently capture the
asynchronous evolution characteristics and long-
range dependencies.

• We validate the effectiveness of NEDA on six
TKG datasets for TKG reasoning and achieve
state-of-the-art performance.

2 Preliminaries

In this section, we introduce the essential back-
ground of TKGs and formally formulate the task
of TKG reasoning under the extrapolation setting.
Temporal Knowledge Graph. Let E and R repre-
sent the set of entities and relations. A quadruple
(s, r, o, t) denotes a subject entity s ∈ E has a re-
lation r ∈ R with an object entity o ∈ E at times-
tamp t. For each quadruple (s, r, o, t), an inverse
relation quadruple (o, r−1, s, t) is often added to
the dataset. All quadruples (a.k.a. facts) that occur

within a period (t − ∆t, t], denoted as t for sim-
plicity, constitute a knowledge graph Gt. A TKG,
denoted as G = {G0, G1, · · · , Gt}, consists of a
series of knowledge graphs in chronological order.
Temporal Knowledge Graph Reasoning. TKG
reasoning mainly falls into two settings: interpola-
tion and extrapolation. The former aims to predict
the missing historical facts, while the latter concen-
trates on predicting future events based on given
historical facts. TKG reasoning under the extrapo-
lation setting has two sub-tasks: entity prediction
and relation prediction. In the context of extrap-
olation setting, entity prediction aims to infer the
missing object entity in quadruple (s, r, ?, t + 1)
or subject entity in quadruple (?, r, o, t+ 1) based
the given TKG i.e., G = {G1, G2, . . . , Gt}. Simi-
larly, relation prediction tries to predict the missing
relation in quadruple (s, ?, o, t+ 1). Note that the
target entity refers to the entity known in the given
query. For example, the given subject entity in
query (s, r, ?, t + 1) or the given object entity in
query (?, r, o, t+1). In this work, we mainly focus
on the task of entity prediction under the extrapola-
tion setting.

3 Method

In this section, we elaborate our proposed
NEDA for TKG reasoning. As illustrated in Fig-
ure 1, NEDA consists of three main modules: (1)
Patch Construction, which divides the historical
TKG for a given query into various explicit and
implicit patches according to the occurrence of the
target entity in this query, and further extracts con-
nected subgraphs centered at the target entity; (2)
Intra-Patch Encoder (i.e., the first-level aggrega-
tion), which extracts the local entity representations
by exploring structural and temporal dependencies
within patches. (3) Inter-patch Attention (i.e., the
second-level aggregation), which aggregates local
representations across patches to generate final en-
tity representations. Finally, the obtained repre-
sentations are adopted to compute the prediction
scores for each query.

3.1 Patch Construction

Explicit and Implicit Patch Division. To capture
asynchronous nature of event evolution, we divide
the historical TKG for each query into different
patches based on the occurrence of the target entity.
Specifically, consecutive snapshots where the target
entity appears are grouped into explicit patches, as

9275

Position
Embedding

 C
ross A

ttention

Q

K

V Final
Embedding

(b) Intra-patch Encoder (c) Inter-patch Attention

R
elation aw

are G
N

N
 Encoder

Local
Embedding

Dual Decoder

(d) Dual Decoder

Entity Prediction

Explicit

Implicit

Explicit

t0t0

t1t1

t2t2

t5t5
t6t6

t6t6

t5t5

t4t4

t3t3

t2t2

t1t1

t0t0

t3t3
t4t4

(a) Patch Construction

Figure 1: An illustration of NEDA.

the entity explicitly evolves over time in the patch.
Conversely, consecutive snapshots where the entity
does not appear form implicit patches. In implicit
patches, even though the target entity is absent, its
neighbors continue to evolve over time, impacting
the target entity when it reappears in the future.

An example of patch division is illustrated
in Figure 1 (a). As shown, given a query
q = (s, r, ?, t7) where entity s appears at times-
tamps {t0, t1, t2, t5, t6}, we group the snapshots
at {t0, t1, t2} and {t5, t6} into two explicit patches.
While, the snapshots at {t3, t4} are grouped into an
implicit patch.

This natural division strategy can facilitate the
consideration of asynchronous evolution character-
istics to enhance reasoning performance. In each
explicit patch generated by this strategy, since all
its snapshots contain the target entity, they can be
regarded as a cohesive segment that emphasizes
specific topics related to the target entity. Com-
pared to a single snapshot, the topics can be easily
extracted from the explicit patch because such co-
hesive segment contains more comprehensive topic
information. Consequently, the topic relevance
between the explicit patch and the query can be
effectively determined. This allows for the elim-
ination of unrelated patches and the highlighting
of relevant ones by adjusting the patch weights ac-
cording to topic relevance, thus advocating learned
representations and reasoning results.

Subgraph Extraction. Given that only nearby
neighbors substantially impact the evolution of the
target entity (Liang et al., 2022), we extract the
k-hop neighbors of the target entity within each
snapshot to form a k-hop subgraph for entity repre-

sentation computation. For explicit patches, since
the target entity consistently appears throughout
the snapshots within the patch, this phase can be
considered as a cohesive segment. Consequently,
we transform the subgraphs within the patch into a
connected subgraph, in which subgraphs at differ-
ent timestamps are connected into a whole graph by
linking the target entity among them. For implicit
patches, where the target entity is absent, we utilize
the time-aware exponentially weighted sampling
strategy (Han et al., 2020) to sample n important
neighbors of the target entity to form subgraphs.
Subsequently, we link the sampled neighbors to
generate connected subgraphs.

3.2 Intra-patch Encoder

Here, we extract local representations of entities
by exploiting complex structural and temporal de-
pendencies within patches. For explicit patches,
we directly compute the entity representation. For
implicit patches, we calculate the representations
of the neighboring entities, which serve as the con-
text for evolution, thereby enriching the representa-
tion of the target entity in the subsequent explicit
patch. In other words, the learned neighbor repre-
sentations in the current implicit patch are used to
initialize themselves in the next explicit patch.

To effectively exploit continuous evolution pat-
terns within patches, we design a relation-aware
GNN encoder to extract structural and temporal de-
pendencies in patches. This encoder first extracts
structural embedding by capturing the complex
structural dependencies among concurrent events
within the k-hop subgraph at a timestamp, and then
models the temporal correlations among target en-

9276

tities across various timestamps within the patch.
Structural Dependency. Given a connected sub-
graph Gp obtained by linking the k-hop subgraph
sequence {Gs

1, G
s
2, · · · , Gs

m}, we extract the struc-
tural dependencies in each Gs

i via the relational
graph attention network (Chen et al., 2024). Sup-
posing ri is the representation of relation r in Gs

i ,
the structural-dependency aggregator is defined as
follows:

αi,l
s,o =

exp
(
aTg

(
Wl

1

[
hls,i, hlo,i, ri

]))
∑

(o′,r′)∈NGs
i

exp
(

aTg
(

Wl
1

[
hls,i, hlo′,i, r′i

])) ,

hl+1
s,i =

∑

(o,r)∈NGs
i

αi,l
s,o(h

l
o,i + ri) + Wl

2hls,i, (1)

where hls,i and hlo,i denote the embeddings of en-
tities s and o at the l-th layer, αi,l

s,o represents the
influence coefficient between entity s and o via re-
lation r at the l-th layer, NGs

i
is a set consisting

of the neighbors of s and their corresponding rela-
tionship combinations, Wl

1,Wl
2 and a denote learn-

able weights, and g(·) is the Leaky ReLU function.
hlo,i + ri implies the translational property between
the subject entity and the corresponding object en-
tity via the relation r at the l-th layer. After L-layer
aggregation, we can obtain the structural embed-
ding hLs,i of the target entity for Gs

i , which captures
the structural dependencies within patches.
Temporal Correlation. To capture the temporal
correlation across different k-top subgraphs within
the patch, we link the structural embeddings (e.g.,
hLs,i) in different subgraphs computed by Equa-
tion 1, and then adopt a GNN to aggregate them to
produce the local representation of the target entity.
Supposing hLs,m and hLs,j are the structural embed-
dings of target entity s in Gs

m and Gs
j , respectively,

the local representation is computed by the GNN
encoder :

hL+1
s,m = σ

(∑

j∈[1,m−1]

1

m− 1
W3hLs,j + W4hLs,m

)
,

(2)
where m is the number of subgraphs in the patch,
W3 and W4 denote learnable weights, and σ(·) is
the sigmoid activation function.

3.3 Inter-patch Attention
Having the local representations computed by con-
sidering the information within patches, we here

further aggregate them by considering correlation
among the patches to generate the final entity rep-
resentation. Since different explicit patches are
separated by implicit patches, each explicit patch
tends to have relatively independent topics. Cor-
respondingly, different explicit patches may have
different correlations with the target query in terms
of topics. Hence, we assign different weights to
the local representations of the entity during the ag-
gregation process. This can efficiently capture the
asynchronous nature of event evolution, i.e., the im-
pact of patches preceding the start time of the query
event can be minimized by assigning them lower or
even zero weights, while emphasizing the relevant
patches by assigning them higher weights. To this
end, we design an inter-patch attention module to
assign adaptive weights to the local representations
and combine them as the final representation.

In particular, assuming there are M explicit
patches for the query (s, r, ?, tn), we stack the lo-
cal representations hL+1

s,m ∈ Rd from all explicit
patches computed by Equation 2 to form the input
embedding matrix P ∈ RM×d. Then, we add a
learnable position embedding Ps ∈ RM×d for the
input embedding matrix P. This operation enables
the model to preserve the sequential information of
the explicit evolution patches (Vaswani et al., 2017).
Therefore, we can obtain the input embedding as
X = P + Ps ∈ RM×d.

We then apply a cross-attention operation on X
to model distant and critical asynchronous tempo-
ral dependencies, and further adaptively aggregate
entity representations across patches to obtain the
final representation. Specifically, we perform train-
able linear transformations on X to derive the key
and value matrices for the attention mechanism, de-
noted as K and V, respectively. Further, we employ
a trainable query matrix Q ∈ R1×d to integrate the
comprehensive context of all the patches. Finally,
we compute the cross-attention among Q,K, and
V to model the global temporal dependencies:

hs = Softmax(
QKT

√
d

)V, (3)

where hs is the final representation of the target
entity s. This representation can involve asyn-
chronous characteristics by assigning different
weights to various patches and capture long-range
history information by hierarchically aggregate the
information of all the patches.

In summary, the intra-patch encoder extracts lo-
cal representations of entities by aggregating com-

9277

Dataset #Entities #Relation #Training #Validation #Test #Granularity #Snapshots

ICEWS18 23,033 256 373,018 45,995 49,545 24 hours 304
ICEWS14 7,128 230 74,845 8,514 7,371 1 day 365
ICEWS05-15 10,094 251 368,868 46,302 46,159 24 hours 4017
GDELT 7,691 240 1,734,399 238,765 305,241 15 mins 2751
ICEWS22 23,530 259 435,049 54,222 54,499 1 day 365
ICEWS23 13,076 233 112,969 14,340 14,297 1 day 100

Table 1: Statistics of the datasets.

plex structural and temporal information within
patches. Then the inter-patch attention aggregates
the local representations with adaptive weights to
generate the final representations, which will be
adopted for predictions. This dual-level aggrega-
tion scheme can capture asynchronous character-
istics of event evolution by utilizing our designed
inter-patch attention to assign adaptive weights to
different patches. The higher the correlation be-
tween the patch and the query, the greater the as-
signed weight will be. Also, this strategy can cap-
ture long-range history information by aggregating
information from all the patches.

3.4 Event Prediction and Learning Objective
Based on the extracted final representations, we fur-
ther compute the prediction scores for each query
(s, r, ?, tn) and present the learning objective for
model training.
Prediction Scores. We introduce the dual de-
coder (Li et al., 2022a), which performs predic-
tions from the perspective of both the repeated and
non-repeated patterns of events, to obtain the pre-
diction scores for each query (s, r, ?, tn) based on
the learnable representations. Formally, the proba-
bility of interaction between subject s and object o
under the relation r at timestamp tn can be calcu-
lated as follows:

p (o|s, r, tn) = Φ (hs, r, ho) , (4)

where Φ(·) is the dual decoder, hs and ho are the
final representations of subject s and object o, re-
spectively, and r denotes the representation of r.
Learning Objective. The cross-entropy function
is employed to calculate the loss during the training
process. The objective function is formulated as:

L = −
∑

tn∈T

∑

i∈Gtn

∑

j∈E
otni lnp(yji | s, p, tn), (5)

where otni represents the i-th ground truth object en-
tity for queries in snapshot Gtn , and p(yji | s, p, tn)
is the combined probability value of j-th object
entity for the i-th query in Gtn .

4 Experiments

In this section, we perform experiments on six TKG
datasets to evaluate the performance of our NEDA.
We aim to answer the following questions through
experiments.

• Q1: Superiority. How does NEDA perform com-
pared with the state-of-the-art baselines?

• Q2: Effectiveness. How do the different compo-
nents affect the NEDA’s performance?

• Q3: Scalability. How does NEDA perform when
there is limited training data available?

• Q4: Sensitivity. How does the performance of
NEDA fluctuate with different hyperparameters?

• Q5: Asynchrony. How does NEDA capture the
inherent asynchronous evolution characteristics
of events?

4.1 Basic Setting

Datasets & Evaluation Metrics. We conduct ex-
periments on four commonly used TKG datasets
including ICEWS14 (Garcia-Duran et al., 2018),
ICEWS18 (Jin et al., 2020), ICEWS05-15 (Garcia-
Duran et al., 2018), and GDLET (Leetaru and
Schrodt, 2013), as well as two benchmark datasets
we newly collected, ICEWS22 and ICEWS23.
The two datasets are obtained from the ICEWS
database1 and sorted out using the typical process-
ing method in the work (Jin et al., 2020). Table 1
presents the statistic results. In addition, we utilize
the widely used metrics MRR and Hits@{1,3,10}
to evaluate the performance. MRR represents the
average reciprocal values of the ranks assigned to
the true entity candidates across all queries, and
Hits@{1,3,10} represents the proportion of times
the true entity appears in the top 1,3 and 10 ranking
candidates. Following the works (Han et al., 2020;
Li et al., 2022a; Zhang et al., 2023), we use the
time-aware filtered setting to report the experimen-
tal results.

1https://dataverse.harvard.edu/dataverse/icews

9278

https://dataverse.harvard.edu/dataverse/icews

Method
ICEWS14 ICEWS18 ICEWS05-15

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-Net (2020) 39.86 30.11 44.02 58.21 29.78 19.73 32.55 48.46 43.67 33.55 48.83 62.72
xERTE (2020) 40.79 32.70 45.67 57.30 29.31 21.03 33.51 46.48 46.62 37.84 52.31 63.92
CyGNet (2021) 37.65 27.43 42.63 57.90 27.12 17.21 30.97 46.85 40.42 29.44 46.06 61.60
RE-GCN (2021) 42.00 31.63 47.20 61.65 32.62 22.39 36.79 52.68 48.03 37.33 53.90 68.51

TITer (2021) 41.73 32.74 46.46 58.44 29.98 22.05 33.46 44.83 47.60 38.29 52.74 64.86
TANGO (2021) 36.94 27.60 41.10 54.41 28.97 19.51 32.61 47.51 42.86 32.72 48.14 62.34

CEN (2022) 42.20 32.08 47.46 61.31 31.50 21.70 35.44 50.59 48.71 38.30 54.39 68.68
EvoKG (2022) 27.18 - 30.84 47.67 29.28 - 33.94 50.09 - - - -
TiRGN (2022) 44.33 33.73 49.85 64.46 33.58 23.10 37.90 54.20 49.84 39.07 55.75 70.11
CENET (2023) 38.58 30.18 41.79 55.20 31.43 23.47 34.05 47.27 46.34 38.14 49.89 62.53
GenTKG (2023) - 36.85 47.95 53.50 - 24.25 37.25 42.10 - - - -
RETIA (2023) 43.00 32.47 48.01 63.64 32.10 21.96 36.18 51.95 44.37 34.02 49.64 64.42
L2TKG (2023) 47.40 35.36 - 71.05 33.36 22.15 - 55.04 57.43 41.86 - 80.69

RPC (2023) 44.55 34.87 49.80 65.08 34.91 24.34 38.74 55.89 51.14 39.47 57.11 71.75

NEDA (Ours) 50.51 39.42 56.54 73.46 36.84 25.55 41.70 59.16 60.19 46.23 63.75 82.76

Table 2: Performance under time-aware metrics (in percentage) on ICEWS14, ICEWS18, and ICEWS05-15.

Method
GDELT ICEWS22 ICEWS23

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

RE-Net (2020) 19.55 12.38 20.80 34.00 30.06 20.25 33.86 50.37 27.52 18.36 30.81 45.25
xERTE (2020) 19.45 11.92 20.84 34.18 - - - - - - - -
CyGNet (2021) 20.22 12.35 21.66 35.82 26.07 16.25 29.90 45.52 24.79 15.53 28.42 42.81
RE-GCN (2021) 19.69 12.46 20.93 33.81 34.69 24.13 39.03 55.63 33.68 23.53 37.86 53.78

TITer (2021) 18.19 11.52 19.20 31.00 31.73 23.94 35.32 46.19 30.88 23.09 34.36 45.32
TANGO (2021) 19.66 12.50 20.93 33.55 30.13 20.48 33.89 49.10 28.02 19.23 31.23 45.20

CEN (2022) 21.17 13.44 22.71 36.40 34.06 23.79 38.38 54.19 32.37 22.76 36.48 51.01
EvoKG (2022) 19.28 - 20.55 34.44 - - - - - - - -
TiRGN (2022) 21.67 13.63 23.27 37.60 35.86 24.96 40.66 57.36 34.90 24.52 39.27 55.06
CENET (2023) - - - - 33.52 25.26 36.26 49.61 30.07 22.20 32.75 45.46
GenTKG (2023) - 13.90 22.55 30.45 - - - - - - - -
RETIA (2023) - - - - - - - - - - - -
L2TKG (2023) 20.53 12.89 - 35.83 - - - - - - - -

RPC (2023) 22.41 14.42 24.36 38.33 - - - - - - - -

NEDA (Ours) 23.07 14.71 25.03 40.12 39.23 27.58 44.59 62.12 38.06 26.94 43.05 59.71

Table 3: Performance under time-aware metrics (in percentage) on GDELT, ICEWS22, and ICEWS23.

Baseline Methods. We compare our method with
the following fourteen baselines: RE-Net (Jin et al.,
2020), xERTE (Han et al., 2020), CyGNet (Zhu
et al., 2021), RE-GCN (Li et al., 2021), TITer (Sun
et al., 2021), TANGO (Han et al., 2021),
CEN (Li et al., 2022b), TiRGN (Li et al., 2022a),
EvoKG (Park et al., 2022), CENET (Xu et al.,
2023), RETIA (Liu et al., 2023), L2TKG (Zhang
et al., 2023), RPC (Liang et al., 2023), and Gen-
TKG (Liao et al., 2023). For datasets ICEWS18,
ICEWS14, ICEWS05-15, and GDELT, the baseline
results are obtained from the previous papers. For
the newly collected ICEWS22 and ICEWS23, we
select the optimal hyper-parameters by performing
a grid search on all models.

Implementation Details. NEDA is implemented
based on Pytorch (Paszke et al., 2019) and
DGL (Wang, 2019) with the Adam opti-

mizer (Kingma and Ba, 2014) and learning rate
of 1e−3. For all the datasets, the embedding di-
mension d is set to 200, and both L and k are set
to 2. The optimal n is set to 4, 4, 11, 8, 4, and 4
for ICEWS14, ICEWS18, ICEWS05-15, GDELT,
ICEWS22 and ICEWS23, respectively. The pa-
rameter settings of the dual decoder are the same
as those in the work (Li et al., 2022a). To ensure
statistical significance, we report the mean results
of five times experiments. The experiments are run
on a machine with an NVIDIA GeForce RTX 3090
GPU and an Intel i7-13700KF CPU.

4.2 Performance Comparison (RQ1)
Table 2 and Table 3 show the comparison results on
the six TKG datasets, where the best performance
is highlighted in boldface and the second-best is
underlined. We have the following observations.
First, NEDA significantly outperforms all the base-

9279

lines in both MRR and Hits@{1,3,10}, which con-
firms the effectiveness of considering asynchronous
characteristics for TKG reasoning. For example,
compared to the second-best performances, for the
ICEWS datasets, NEDA achieves on average about
5.6%, 8.9%, and 3.9% performance improvements
on MRR, Hits@1, and Hits@10, respectively. Sec-
ond, the performance improvement of our method
on the GDELT dataset is smaller compared to the
ICEWS datasets. This can be attributed to the fact
that GDELT has more facts and corresponding top-
ics per patch on average compared to other datasets.
This makes it more difficult for our NEDA to sum-
marize the most important and relevant topics in
the patch.

4.3 Ablation Study (RQ2)

Here, we conduct ablation study to assess the ef-
fectiveness of different components in NEDA. Ta-
ble 4 illustrates the distinct impact attributed to
each component. As shown, incorporating implicit
patches is essential for computing the target entity’s
representation. This emphasizes the importance of
capturing the evolution of the surrounding environ-
ment, thereby enhancing the model’s prediction
accuracy. Constructing the connected subgraph
within each patch facilitates the extraction of com-
plex structural dependencies and temporal correla-
tions across different timestamps. Besides, inter-
patch attention with position embedding is partic-
ularly effective at capturing distant asynchronous
temporal dependencies, and adaptively aggregating
the local representation of each patch by distin-
guishing the global evolution characteristics and
patterns. Also, the design of the relation-aware
GNN encoder significantly enhances information
propagation within the connected subgraph in a
patch. It effectively exploits the structural and tem-
poral dependencies of events throughout their con-
tinuous evolution by identifying the crucial neigh-
boring entities and timestamps.

4.4 Performance under Limited Training
Data (RQ3)

Figure 2 reports the performance of our proposed
NEDA compared to the leading baseline, TiRGN,
with varying amounts of training data. The re-
sults indicate that NEDA consistently outperforms
TiRGN across various training data sizes. This
advantage persists even when data is severely lim-
ited, with only 10% or 20% of the data available
for training. By incorporating the asynchronous

Model ICE14 ICE18 ICE05-15 GDELT ICE22 ICE23

w/o IP 48.21 34.83 58.25 21.12 37.64 36.39
w/o CG 49.82 35.74 59.11 22.32 38.56 37.05
w/o PE 50.18 36.09 59.72 22.79 38.90 37.49
w/o Inter 48.97 35.17 58.39 21.83 38.01 36.53
w/o RGNN 47.55 34.01 57.31 20.63 36.84 35.81

NEDA 50.51 36.84 60.19 23.07 39.23 38.06

Table 4: Results of ablation studies with time-aware
MRR. w/o IP, w/o CG, w/o PE, w/o Inter, and w/o
RGNN represent removing the implicit patches, con-
nected subgraph, position embedding, inter-patch atten-
tion, and relation-aware GNN encoder, respectively.

characteristics of event evolution, NEDA success-
fully identifies the unique evolution patterns and
characteristics of each event. This capability holds
even with limited training data, enabling NEDA to
consistently deliver superior performance.

10 20 30 40 50 60 70 80 90 100
Training Data Proportion(%)

40

50

60

70

80

H
its

@
10

(%
)

ICEWS14
NEDA TiRGN

30

35

40

45

50

55

60

M
R

R
(%

)

NEDA TiRGN

10 20 30 40 50 60 70 80 90 100
Training Data Proportion(%)

35

40

45

50

55

60

65

H
its

@
10

(%
)

ICEWS18
NEDA TiRGN

20

25

30

35

40

45

M
R

R
(%

)

NEDA TiRGN

Figure 2: The impact of training data. The lines repre-
sent MRR, and the bars denote Hits@10.

4.5 Sensitivity Analysis (RQ4)

We here investigate the influence of two crucial
hyperparameters: the layer number of the rela-
tional graph attention network L and the number
of neighbors extracted in the implicit patch n on
the ICEWS14, ICEWS18, and GDELT datasets.

The sensitivity analysis results are reported in
Figure 3. Detailed findings are elucidated below:
Hyperparameter L controls the depth of neigh-
borhood information extraction for structural de-
pendencies. The experimental results with varying
L reveal that the performance of NEDA initially
improves as the layer number L increases, but it
experiences a sharp decline when L becomes ex-
cessively large. This phenomenon can be attributed
to the fact that an initial increase in L adequately
extracts structural dependencies within patches, but
an overly large L results in information from more
distant neighbors being disseminated to the target
entity, thereby introducing more noise.
Hyperparameter n regulates the strength of im-

9280

plicit evolution for prediction. As shown in Fig-
ure 3, a smaller n results in the loss of implicit evo-
lution information, whereas a larger n introduces
excessive implicit evolution information, overshad-
owing the more critical explicit evolution informa-
tion. Therefore, selecting an appropriate value for
n is crucial for the effectiveness of our model.

46.20
49.00
51.80

ICEWS14

32.20
35.10
38.00

M
R

R
(%

)

ICEWS18

1 2 3 4 5 6 7
L

17.70
21.00
24.30 GDELT

46.40
49.10
51.80

ICEWS14

33.20
35.60
38.00

M
R

R
(%

)

ICEWS18

0 2 4 6 8 10 12
n

20.70
22.15
23.60

GDELT

Figure 3: Sensitivity analysis of hyper-parameter L and
n on ICEWS14, ICEWS18, and GDELT.

4.6 Case Study (RQ5)

Here, we inspect how our proposed dual-level ag-
gregation scheme capture the asynchronous evolu-
tion characteristics of events. As shown in Table 5,
we select an event query (Rishi Sunak, hreaten,
United Kingdom, 2022-12-31) from the test set in
ICEWS22 as the prediction case, and we extract
the top 3 influential patches assigned the highest
weights by NEDA. We can observe that the histori-
cal events in these patches predominantly involve
interactions between Rishi Sunak and the United
Kingdom. As expected, these influential patches
and their associated events are highly relevant to
the query and play a critical role in the prediction.
This demonstrates that by identifying and assigning
the highest weights to the most relevant historical
event patches, the proposed dual-level aggregation
scheme can effectively capture the asynchronous
evolution characteristics of the event query.

5 Related Work

Depending on the timing of predicted events, TKG
reasoning models can be divided into two settings:
interpolation and extrapolation (Liang et al., 2022).
TKG reasoning under interpolation. The task in
the interpolation setting aims to infer missing facts
from the past (Xiong et al., 2022; Bai et al., 2021;
Wu et al., 2020). For example, TTransE (Jiang
et al., 2016) integrates temporal information by
treating both relations and time as translations of
entities, whereas HyTE (Dasgupta et al., 2018) as-
sociates each timestamp with specific hyperplanes.

ChronoR (Sadeghian et al., 2021) combines rela-
tion and temporal embeddings to create a com-
prehensive rotational embedding, which is then ap-
plied to the final entity representation. TILP (Xiong
et al., 2022) introduces a constrained random walk
mechanism and integrates an array of temporal op-
erators into the learning framework.

TKG reasoning under extrapolation. The ex-
trapolation methods try to predict future events (Li
et al., 2021; Lee et al., 2023; Zhu et al., 2021). Fol-
lowing the work (Li et al., 2022c), these approaches
can be divided into two main categories accord-
ing to the historical structural information used for
event prediction: candidate-based and query-based
methods.

Candidate-based methods try to utilize the his-
torical facts of all candidate entities without consid-
ering the query during the encoding process. The
query information is incorporated only in the decod-
ing stage (Li et al., 2021, 2022a; Zhang et al., 2023).
For instance, RE-GCN (Li et al., 2021) learns the
evolutionary representations for entities and rela-
tions by incorporating the gate recurrent unit to
extract sequential patterns and taking externally
injected static entity attributes into consideration.
TiRGN (Li et al., 2022a) learns sequential, repet-
itive, and periodic historical facts from local and
global perspectives, respectively. L2TKG (Zhang
et al., 2023) exploits the latent relation between
entities and learns latent relational graphs based on
similarities between entities.

Query-based methods focus on modeling the
query-specific historical dependencies for event
prediction (Zhu et al., 2021; Xu et al., 2023; Liu
et al., 2022a). Among them, CyGNet (Zhu et al.,
2021) calculates the occurrence frequencies of
events to narrow the candidate entities when mak-
ing predictions, while CENET (Xu et al., 2023)
utilizes contrastive learning to identify whether
an event has occurred before. DA-Net (Liu et al.,
2022a) tries to capture distributed attention on re-
peated facts across various historical timestamps to
better understand future events. In addition, some
recent approaches attempt to utilize the powerful
reasoning capabilities of LLMs for TKG reason-
ing (Liao et al., 2023; Luo et al., 2024). For ex-
ample, GenTKG (Liao et al., 2023) formulates a
generative forecasting framework with LLMs, and
ICL (Lee et al., 2023) uses in-context learning to
the potential of LLMs for TKG reasoning.

9281

2022.12.31 Rishi Sunak Threaten United Kingdom

2022.12.24 Daily Mail Criticize or denounce Rishi Sunak
Rishi Sunak Make statement Ministry (United Kingdom)

2022.12.05 – 2022.12.21

Citizen (United Kingdom) Accuse Rishi Sunak
Citizen (United Kingdom) Reject Rishi Sunak

Daily Mail Criticize or denounce Rishi Sunak
United Kingdom Consult Rishi Sunak

Rishi Sunak Consult United Kingdom

2022.11.27 – 2022.12.02
Rishi Sunak Make statement United Kingdom

Presidential Family (United Kingdom) Consult Rishi Sunak
Rishi Sunak Make statement United Kingdom

Table 5: Case study on the dual-level aggregation scheme on ICEWS22.

6 Conclusions

This paper proposes a Natural Evolution-based
Dual-level Aggregation framework (NEDA) to con-
sider the inherent asynchronous evolution charac-
teristics for TKG reasoning. A natural division
strategy is presented to split TKGs into different
patches according to the occurrence of a given
target entity. Besides, a dual-level aggregation
scheme is designed to extract local representations
from information within patches and further aggre-
gate them with adaptive weights to generate the
final entity representations. This hierarchical ag-
gregation can efficiently capture the event-specific
asynchronous characteristics and long-range his-
tory information to enhance reasoning performance.
Experimental results on six benchmarks demon-
strate the superiority of NEDA in TKG reasoning.

Limitations

While our proposed NEDA demonstrates superior
performance compared to the state-of-the-art base-
lines, it still has some limitations. Firstly, unlike
the baseline models that predict all queries in a
snapshot at once, our NEDA predicts each query
separately, leading to additional overhead. Sec-
ondly, our model only considers the most dominant
topic within a patch, ignoring other minor topics.
Performance could potentially be enhanced by con-
sidering multiple topics within a single patch.

Acknowledgements

This work was supported by National Natural Sci-
ence Foundation of China (Grant No.62176043 and
No.62072077), and Kashgar Science and Technol-
ogy Bureau (Grant No.KS2023025).

References
Luyi Bai, Wenting Yu, Mingzhuo Chen, and Xiangnan

Ma. 2021. Multi-hop reasoning over paths in tempo-
ral knowledge graphs using reinforcement learning.
Applied Soft Computing, 103:107144.

Bin Chen, Kai Yang, Wenxin Tai, Zhangtao Cheng,
Leyuan Liu, Ting Zhong, and Fan Zhou. 2024. Inter-
preting temporal knowledge graph reasoning (student
abstract). In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 23451–
23453.

Zhangtao Cheng, Jienan Zhang, Xovee Xu, Goce Tra-
jcevski, Ting Zhong, and Fan Zhou. 2024. Retrieval-
augmented hypergraph for multimodal social media
popularity prediction. In Proceedings of the 30th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 445–455.

Shib Sankar Dasgupta, Swayambhu Nath Ray, and
Partha Talukdar. 2018. Hyte: Hyperplane-based
temporally aware knowledge graph embedding. In
Proceedings of the 2018 conference on empirical
methods in natural language processing, pages 2001–
2011.

Alberto Garcia-Duran, Sebastijan Dumančić, and Math-
ias Niepert. 2018. Learning sequence encoders for
temporal knowledge graph completion. In EMNLP,
pages 4816–4821.

Zhen Han, Peng Chen, Yunpu Ma, and Volker Tresp.
2020. Explainable subgraph reasoning for forecast-
ing on temporal knowledge graphs. In International
Conference on Learning Representations.

Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and
Volker Tresp. 2021. Learning neural ordinary equa-
tions for forecasting future links on temporal knowl-
edge graphs. In Proceedings of the 2021 conference
on empirical methods in natural language processing,
pages 8352–8364.

Xiao Huang, Jingyuan Zhang, Dingcheng Li, and Ping
Li. 2019. Knowledge graph embedding based ques-
tion answering. In WSDM, pages 105–113.

9282

Tingsong Jiang, Tianyu Liu, Tao Ge, Lei Sha, Baobao
Chang, Sujian Li, and Zhifang Sui. 2016. Towards
time-aware knowledge graph completion. In COL-
ING, pages 1715–1724.

Xuhui Jiang, Chengjin Xu, Yinghan Shen, Xun Sun,
Lumingyuan Tang, Saizhuo Wang, Zhongwu Chen,
Yuanzhuo Wang, and Jian Guo. 2023. On the evolu-
tion of knowledge graphs: A survey and perspective.
arXiv preprint arXiv:2310.04835.

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren.
2020. Recurrent event network: Autoregressive struc-
ture inferenceover temporal knowledge graphs. In
EMNLP, pages 6669–6683.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Dong-Ho Lee, Kian Ahrabian, Woojeong Jin, Fred
Morstatter, and Jay Pujara. 2023. Temporal knowl-
edge graph forecasting without knowledge using in-
context learning. In The 2023 Conference on Empiri-
cal Methods in Natural Language Processing.

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt:
Global data on events, location, and tone, 1979–2012.
In ISA annual convention, volume 2, pages 1–49.
Citeseer.

Qian Li, Shu Guo, Yangyifei Luo, Cheng Ji, Lihong
Wang, Jiawei Sheng, and Jianxin Li. 2023. Attribute-
consistent knowledge graph representation learning
for multi-modal entity alignment. In The Web Con-
ference, pages 2499–2508.

Yujia Li, Shiliang Sun, and Jing Zhao. 2022a. Tirgn:
time-guided recurrent graph network with local-
global historical patterns for temporal knowledge
graph reasoning. In Proceedings of the Thirty-First
International Joint Conference on Artificial Intelli-
gence, IJCAI 2022, Vienna, Austria, 23-29 July 2022,
pages 2152–2158. ijcai. org.

Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng,
Yajuan Lyu, Yong Zhu, Long Bai, Wei Li, Jiafeng
Guo, and Xueqi Cheng. 2022b. Complex evolutional
pattern learning for temporal knowledge graph rea-
soning. In Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 290–296.

Zixuan Li, Zhongni Hou, Saiping Guan, Xiaolong Jin,
Weihua Peng, Long Bai, Yajuan Lyu, Wei Li, Jiafeng
Guo, and Xueqi Cheng. 2022c. Hismatch: Historical
structure matching based temporal knowledge graph
reasoning. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 7328–
7338.

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng
Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi
Cheng. 2021. Temporal knowledge graph reason-
ing based on evolutional representation learning. In
SIGIR, pages 408–417.

Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenx-
uan Tu, Siwei Wang, Sihang Zhou, and Xinwang Liu.
2023. Learn from relational correlations and periodic
events for temporal knowledge graph reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1559–1568.

Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenx-
uan Tu, Siwei Wang, Sihang Zhou, Xinwang Liu, and
Fuchun Sun. 2022. A survey of knowledge graph
reasoning on graph types: Static, dynamic, and mul-
timodal. arXiv preprint arXiv:2212.05767.

Ruotong Liao, Xu Jia, Yunpu Ma, and Volker Tresp.
2023. Gentkg: Generative forecasting on temporal
knowledge graph. In NeurIPS 2023 Workshop: New
Frontiers in Graph Learning.

Kangzheng Liu, Feng Zhao, Hongxu Chen, Yicong Li,
Guandong Xu, and Hai Jin. 2022a. Da-net: Dis-
tributed attention network for temporal knowledge
graph reasoning. In Proceedings of the 31st ACM In-
ternational Conference on Information & Knowledge
Management, pages 1289–1298.

Kangzheng Liu, Feng Zhao, Guandong Xu, Xianzhi
Wang, and Hai Jin. 2023. Retia: relation-entity twin-
interact aggregation for temporal knowledge graph
extrapolation. In IEEE International Conference on
Data Engineering. IEEE.

Lihui Liu, Boxin Du, Jiejun Xu, Yinglong Xia, and
Hanghang Tong. 2022b. Joint knowledge graph com-
pletion and question answering. In SIGKDD, pages
1098–1108.

Ruilin Luo, Tianle Gu, Haoling Li, Junzhe Li, Zicheng
Lin, Jiayi Li, and Yujiu Yang. 2024. Chain of his-
tory: Learning and forecasting with llms for tem-
poral knowledge graph completion. arXiv preprint
arXiv:2401.06072.

Soeren Nolting, Zhen Han, and Volker Tresp.
2023. Modeling the evolution of temporal knowl-
edge graphs with uncertainty. arXiv preprint
arXiv:2301.04977.

Namyong Park, Fuchen Liu, Purvanshi Mehta, Dana
Cristofor, Christos Faloutsos, and Yuxiao Dong. 2022.
Evokg: Jointly modeling event time and network
structure for reasoning over temporal knowledge
graphs. In Proceedings of the fifteenth ACM inter-
national conference on web search and data mining,
pages 794–803.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Ali Sadeghian, Mohammadreza Armandpour, Anthony
Colas, and Daisy Zhe Wang. 2021. Chronor: Rota-
tion based temporal knowledge graph embedding. In
AAAI, volume 35, pages 6471–6479.

9283

Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and
Kun He. 2021. Timetraveler: Reinforcement learning
for temporal knowledge graph forecasting. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 8306–
8319.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Hongwei Wang, Fuzheng Zhang, Jialin Wang, Miao
Zhao, Wenjie Li, Xing Xie, and Minyi Guo. 2018.
RippleNet: Propagating user preferences on the
knowledge graph for recommender systems. In
CIKM, pages 417–426.

Jiapu Wang, Boyue Wang, Meikang Qiu, Shirui Pan,
Bo Xiong, Heng Liu, Linhao Luo, Tengfei Liu,
Yongli Hu, Baocai Yin, et al. 2023. A survey
on temporal knowledge graph completion: Tax-
onomy, progress, and prospects. arXiv preprint
arXiv:2308.02457.

Minjie Yu Wang. 2019. Deep graph library: Towards
efficient and scalable deep learning on graphs. In
ICLR workshop on representation learning on graphs
and manifolds.

Jiapeng Wu, Meng Cao, Jackie Chi Kit Cheung, and
William L Hamilton. 2020. Temp: Temporal mes-
sage passing for temporal knowledge graph com-
pletion. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 5730–5746.

Siheng Xiong, Yuan Yang, Faramarz Fekri, and
James Clayton Kerce. 2022. Tilp: Differentiable
learning of temporal logical rules on knowledge
graphs. In The Eleventh International Conference on
Learning Representations.

Yi Xu, Junjie Ou, Hui Xu, and Luoyi Fu. 2023. Tem-
poral knowledge graph reasoning with historical con-
trastive learning. In AAAI, volume 37, pages 4765–
4773.

Yu Yang, Hongzhi Yin, Jiannong Cao, Tong Chen, Quoc
Viet Hung Nguyen, Xiaofang Zhou, and Lei Chen.
2023. Time-aware dynamic graph embedding for
asynchronous structural evolution. IEEE Transac-
tions on Knowledge and Data Engineering.

Mengqi Zhang, Yuwei Xia, Qiang Liu, Shu Wu, and
Liang Wang. 2023. Learning latent relations for tem-
poral knowledge graph reasoning. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12617–12631.

Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan
Cheng, and Yan Zhang. 2021. Learning from history:
Modeling temporal knowledge graphs with sequen-
tial copy-generation networks. In AAAI, volume 35,
pages 4732–4740.

9284

