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Abstract

Adapting keyphrase generation models to new
domains typically involves few-shot fine-tuning
with in-domain labeled data. However, annotat-
ing documents with keyphrases is often pro-
hibitively expensive and impractical, requir-
ing expert annotators. This paper presents
silk, an unsupervised method designed to ad-
dress this issue by extracting silver-standard
keyphrases from citation contexts to create syn-
thetic labeled data for domain adaptation. Ex-
tensive experiments across three distinct do-
mains demonstrate that our method yields high-
quality synthetic samples, resulting in signifi-
cant and consistent improvements in in-domain
performance over strong baselines.

1 Introduction

Keyphrase generation aims at automatically pre-
dicting a set of keyphrases —words or phrases
that represent the main concepts— given a source
text. Because they distill the important informa-
tion from documents, keyphrases are useful for
many applications in natural language processing
and information retrieval, most notably for doc-
ument indexing (Fagan, 1987; Zhai, 1997; Jones
and Staveley, 1999; Gutwin et al., 1999; Boudin
et al., 2020) and summarization (Zha, 2002; Wan
et al., 2007; Liu et al., 2021; Koto et al., 2022).
Keyphrase generation differs from its extractive
counterpart in that it requires the capability of pre-
dicting keyphrases that do not necessarily appear
in the source text (Liu et al., 2011; Meng et al.,
2017). Current models for this task are built upon
sequence-to-sequence models, and achieve remark-
able prediction performance when a large amount
of labeled data is available (Meng et al., 2021).

However, keyphrase-labeled data is notably
scarce even for resource-rich languages. To date,
there are only a handful of available datasets large
enough to train keyphrase generation models, there-
fore restricting their applicability to specific do-

Citation contextsCited paper

Huang et al. (2012) learns multi-
prototype embeddings by clustering the 
context window features of a word.
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2 Related Work

Several unsupervised methods generate dense
single prototype word embeddings. These
include Word2vec (Mikolov et al., 2013),
which learns embeddings that maximize the co-
sine similarity of embeddings of co-occurring
words, and Glove (Pennington et al., 2014) and
Swivel (Shazeer et al., 2016) that learn embed-
dings by factorizing the word co-occurrence ma-
trix. (Dhillon et al., 2015; Stratos et al., 2015)
use canonical correlation analysis (CCA) to learn
word embeddings that maximize correlation with
context. (Levy and Goldberg, 2014; Levy et al.,
2015) showed that SVD based methods can com-
pete with neural embeddings. (Lebret and Col-
lobert, 2013) use Hellinger PCA, and claim that
Hellinger distance is a better metric than Eu-
clidean distance in discrete probability space.

Multiple works have considered converting the
existing embeddings to interpretable ones. Mur-
phy et al. (2012) use non-negative matrix factor-
ization of the word-word co-occurrence matrix to
derive interpretable word embeddings. (Sun et al.,
2016; Han et al., 2012) change the loss function in
Glove to incorporate sparsity and non negativity
respectively to capture interpretability. (Faruqui
et al., 2015) propose Sparse Overcomplete Word
Vectors (SPOWV ), by solving an optimization
problem in dictionary learning setting to produce
sparse non-negative high dimensional projection
of word embeddings. (Subramanian et al., 2018)
use a k-sparse denoising autoencoder to produce
sparse non-negative high dimensional projection
of word embeddings, which they called SParse In-
terpretable Neural Embeddings (SPINE). How-
ever, all these methods lack a natural extension for
disambiguating the sense of a word in a context.

In a different line of work, Vilnis and McCal-
lum (2015) proposed representing words as Gaus-
sian distributions to embed uncertainty in dimen-
sions of the embedding to better capture concepts
like entailment. However, Athiwaratkun and Wil-
son (2017) argued that such a single prototype
model can’t capture multiple distinct meanings
and proposed Word2GM to learn multiple Gaus-
sian embeddings per word. The prototypes were
generalized to ellipical distributions in (Muzellec
and Cuturi, 2018). A major limitation with such
an approach is the restriction on the number of
prototypes per word that can be learned, which is
limited to 2 or 3 due to computational constraints.

Many words such as ‘Cell’ can have more than 5
senses. Another open issue is that of disambiguat-
ing senses of a polysemous word in a context –
there is no obvious way to embed phrases and sen-
tences with such embeddings.

Multiple works have proposed multi-prototype
embeddings to capture the senses of a polysemous
word. For example, Neelakantan et al. (2015) ex-
tends the skipgram model to learn multiple em-
beddings of a word, where the number of senses
of a word is either fixed or is learned through a
non-parametric approach. Huang et al. (2012)
learns multi-prototype embeddings by clustering
the context window features of a word. However,
these methods can’t capture concepts like entail-
ment. Tian et al. (2014) learns a probabilistic ver-
sion of skipgram for learning multi-sense embed-
dings and hence, can capture entailment. How-
ever, all these models suffer from computational
constraints and either restrict the number of pro-
totypes learned for each word to 2-3 or restrict the
words for which multiple prototypes are learned to
the top k frequent words in the vocabulary.

Prior attempts at representing polysemy in-
clude (Pantel and Lin, 2002), who generate global
senses by figuring out the best representative
words for each sense from co-occurrence graph,
and (Reisinger and Mooney, 2010), who gener-
ate senses for each word by clustering the con-
text vectors of the occurrences of the word. Fur-
ther attempts include Arora et al. (2018), who ex-
press single prototype dense embeddings, such as
Word2vec and Glove, as linear combinations of
sense vectors. However, their underlying linearity
assumption breaks down in real data, as shown by
Mu et al. (2017). Further, the linear coefficients
can be negative and have values far greater than 1
in magnitude, making them difficult to interpret.
Neelakantan et al. (2015) and Huang et al. (2012)
represent a context by the average of the embed-
dings of the words to disambiguate the sense of a
target word present in the context. On the other
hand, Mu et al. (2017) suggest representing sen-
tences as a hyperspace, rather than a single vector,
and represent words by the intersection of the hy-
perspaces representing the sentences it occurs in.

A number of works use naı̈ve Bayesian method
(Charniak et al., 2013) and topic models (Brody
and Lapata, 2009; Yao and Van Durme, 2011;
Pedersen, 2000; Lau et al., 2012, 2013, 2014) to
learn senses from local contexts, treating each in-

Huang et al. (2012) presented an 
RNN model that uses document-level
context information to construct more 
accurate word representations.

Model Dim = 100 Dim = 300 Dim = 600
n. v. adj. adv. All n. v. adj. adv. All n. v. adj. adv. All

SGE + C 37.2 31.6 37.1 42.2 36.6 39.2 35.0 39.0 55.4 40.9 39.7 35.7 39.9 56.2 41.6
HTLE 42.4 33.9 38.1 49.7 40.3 44.9 37.0 41.0 50.9 42.8 45.2 37.2 42.1 51.9 43.4

Table 4: GAP scores on the candidate ranking task on LS-SE07 for different part-of-speech categories.

that these two methods are consistent with how we
train HTLE and STLE.

The sampled method, similar to HTLE, uses the
HDP model to assign topics to word occurrences
during testing. The expected method, similar to
STLE, uses the HDP model to learn the probabil-
ity distribution of topics of the context sentence
and uses the entire distribution to compute the sim-
ilarity. For the Skipgram baseline we compute the
similarity SimSGE+Cpws, wtq as follows:

cosphpwsq,hpwtqq `
∞

c cosphpwsq,opwcqq
C

which uses the similarity between the substitution
word and all words in the context, as well as the
similarity of target and substitution words.

Table 3 shows the GAP scores of our models
and baselines.1 One can see that all models us-
ing multiple embeddings per word perform better
than SGE. Our proposed models outperform both
SGE and MSSG in both evaluation sets, with more
pronounced improvements for LS-CIC. We further
observe that our expected method is more robust
and performs better for all embedding sizes.

Table 4 shows the GAP scores broken down
by the main word classes: noun, verb, adjective,
and adverb. With 100 dimensions our best model
(HTLE) yields improvements across all POS tags,
with the largest improvements for adverbs and
smallest improvements for adjectives. When in-
creasing the dimension size of embeddings the im-
provements hold up for all POS tags apart from
adverbs. It can be inferred that larger dimension
sizes capture semantic similarities for adverbs and
context words better than other parts-of-speech
categories. Additionally, we observe for both eval-
uation sets that the improvements are preserved
when increasing the embedding size.

4 Related Work

While the most commonly used approaches learn
one embedding per word type (Mikolov et al.,

1We use the nonparametric rank-based Mann-Whitney-
Wilcoxon test (Sprent and Smeeton, 2016) to check for sta-
tistically significant differences between runs.

2013a; Pennington et al., 2014), recent studies
have focused on learning multiple embeddings per
word due to the ambiguous nature of language
(Qiu et al., 2016). Huang et al. (2012) cluster word
contexts and use the average embedding of each
cluster as word sense embeddings, which yields
improvements on a word similarity task. Nee-
lakantan et al. (2014) propose two approaches,
both based on clustering word contexts: In the
first, they fix the number of senses manually, and
in the second, they use an ad-hoc greedy procedure
that allocates a new representation to a word if
existing representations explain the context below
a certain threshold. Li and Jurafsky (2015) used
a CRP model to distinguish between senses of
words and train vectors for senses, where the num-
ber of senses is not fixed. They use two heuris-
tic approaches for assigning senses in a context:
‘greedy’ which assigns the locally optimum sense
label to each word, and ‘expectation’ which com-
putes the expected value for a word in a given con-
text with probabilities for each possible sense.

5 Conclusions

We have introduced an approach to learn topic-
sensitive word representations that exploits the
document-level context of words and does not re-
quire annotated data or linguistic resources. Our
evaluation on the lexical substitution task suggests
that topic distributions capture word senses to
some extent. Moreover, we obtain statistically sig-
nificant improvements in the lexical substitution
task while not using any syntactic information.
The best results are achieved by our hard topic-
labeled model which learns topic-sensitive repre-
sentations by assigning topics to target words.
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Huang et al. (2012) cluster word contexts 
and use the average embedding of each 
cluster as word sense embeddings […]
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Figure 6: Effect of depth in contextual word simi-
larity. Three hidden layers is optimal for this task.

if adding depth to our context-sensitive autoen-
coder will improve its performance in the contex-
tual word similarity task.

Figure 6 shows that as we increase the depth of
our autoencoders, their performances initially im-
prove. The CSAE-LGC model that uses both lo-
cal and global context benefits more from greater
number of hidden layers than CSAE-LC that only
uses local context. We attribute this to the use of
global context in CSAE-LGC that leads to more
accurate representations of words in their context.
We also note that with just a single hidden layer,
CSAE-LGC largely improves the performance as
compared to CSAE-LC.

6 Related Work

Representation learning models have been ef-
fective in many tasks such as language model-
ing (Bengio et al., 2003; Mikolov et al., 2013b),
topic modeling (Nguyen et al., 2015), paraphrase
detection (Socher et al., 2011), and ranking tasks
(Yih et al., 2013). We briefly review works that
use context information for text representation.

Huang et al. (2012) presented an RNN model
that uses document-level context information to
construct more accurate word representations. In
particular, given a sequence of words, the ap-
proach uses other words in the document as exter-
nal (global) knowledge to predict the next word in
the sequence. Other approaches have also mod-
eled context at the document level (Lin et al.,
2015; Wang and Cho, 2015; Ji et al., 2016).

Ji et al. (2016) presented a context-sensitive
RNN-based language model that integrates repre-
sentations of previous sentences into the language
model of the current sentence. They showed that
this approach outperforms several RNN language
models on a text coherence task.

Liu et al. (2015) proposed a context-sensitive
RNN model that uses Latent Dirichlet Alloca-
tion (Blei et al., 2003) to extract topic-specific
word embeddings. Their best-performing model
regards each topic that is associated to a word in a
sentence as a pseudo word, learns topic and word
embeddings, and then concatenates the embed-
dings to obtain topic-specific word embeddings.

Mikolov and Zweig (2012) extended a basic
RNN language model (Mikolov et al., 2010) by
an additional feature layer to integrate external in-
formation (such as topic information) about inputs
into the model. They showed that such informa-
tion improves the perplexity of language models.

In contrast to previous research, we integrate
context into deep autoencoders. To the best of
our knowledge, this is the first work to do so.
Also, in this paper, we depart from most previ-
ous approaches by demonstrating the value of con-
text information in sentence-level semantic simi-
larity and ranking tasks such as QA ranking tasks.
Our approach to the ranking problems, both for
Answer Ranking and Question Ranking, is dif-
ferent from previous approaches in the sense that
we judge the relevance between inputs based on
their context information. We showed that adding
sentential or document context information about
questions (or answers) leads to better rankings.

7 Conclusion and Future Work

We introduce an effective approach to integrate
sentential or document context into deep autoen-
coders and show that such integration is impor-
tant in semantic similarity tasks. In the future, we
aim to investigate other types of linguistic context
(such as POS tag and word dependency informa-
tion, word sense, and discourse relations) and de-
velop a unified representation learning framework
that integrates such linguistic context with repre-
sentation learning models.
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Figure 1: Illustration of the silk method for mining
silver-standard keyphrases (highlighted in red) from
citation contexts and generating synthetic samples for
adapting models to new domains.

mains (Ye and Wang, 2018; Wu et al., 2022; Garg
et al., 2023). Here, we are concerned with gener-
ating keyphrases from scientific papers, for which
datasets only exist in the broader scope of computer
science (Meng et al., 2017; Mahata et al., 2022)
and biomedicine (Houbre et al., 2022). This data
scarcity issue is all the more important since current
models demonstrate very limited generalization ca-
pabilities (Gallina et al., 2019, 2020; Meng et al.,
2021). All of this, coupled with the high compu-
tational cost of training models, underscores the
necessity of developing domain adaptation meth-
ods for keyphrase generation.

An effective strategy for addressing this chal-
lenge involves low-resource fine-tuning (Wu et al.,
2022; Meng et al., 2023), wherein a pre-trained
model is exposed to a limited amount of in-domain
data with annotated keyphrases. Nevertheless, an-
notating even a limited number of documents can
be prohibitively expensive, and often impractical
due to the necessity for expert annotators (Chau
et al., 2020). Finding a way to collect such data
in an unsupervised fashion would open up possi-
bilities for effortlessly adapting models to new do-
mains. Here, we propose silk, a method to do so
that relies on extracting silver-standard keyphrases
from citation contexts to generate synthetic labeled
data for domain adaptation (see Figure 1).
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Citation contexts —text passages within the cit-
ing document containing the reference— often
highlight the contributions of a cited paper, and
have be shown to be useful not only for paper
summarization (Nakov et al., 2004; Schwartz and
Hearst, 2006; Mei and Zhai, 2008; Abu-Jbara and
Radev, 2011; Mao et al., 2022, inter alia), but also
for tasks such as claim verification (Wadden et al.,
2020) or information extraction (Viswanathan et al.,
2021). In this paper, we advocate for using cita-
tion contexts, specifically in the mining of phrases
representing the key concepts of cited papers, to
generate synthetic data for adapting keyphrase gen-
eration models to new domains. Earlier research on
keyphrase extraction has emphasized the value of
citation context information as a feature for rank-
ing phrases (Das Gollapalli and Caragea, 2014;
Caragea et al., 2014). We take this idea further
and explore how it can be applied to create silver-
labeled in-domain data for fine-tuning keyphrase
generation models. Our contributions can be sum-
marized as follows:

(1) We propose silk, a method that leverages
citation contexts to create synthetic sam-
ples of documents paired with silver-standard
keyphrases for adapting keyphrase generation
models to new domains.

(2) We apply our method on three distinct sci-
entific domains —namely, Natural Language
Processing, Astrophysics and Paleontology—,
thereby creating new adaptation data for each
domain. We further provide three human-
labeled test sets to assess the performance of
keyphrase generation across these domains.
We view this effort as a significant contribu-
tion of our work.

(3) We conduct experiments on few-shot fine-
tuning a pre-trained model for keyphrase gen-
eration and report significant improvements in
in-domain performance using synthetic sam-
ples generated by silk. Additionally, we un-
dertake further experiments to validate the
quality of the synthetic samples through both
empirical (§5.1) and human (§5.3) evaluations,
and we examine whether our adapted mod-
els experience catastrophic forgetting of the
initial domain (§5.2) or exhibit bias towards
keyphrases from highly cited papers (§5.4).

Our code, model weights and data are available
at https://github.com/boudinfl/silk/.

2 Method

This section describes the implementation details
of our method for producing synthetic fine-tuning
data from citation contexts. Given a collection
of in-domain scientific documents D, we start by
extracting the subset of sentences that contain ci-
tation anchors to build a set of citation contexts C.
Heuristics are applied to filter out citation contexts
that either reference a document d ̸∈ D or whose
purpose of citing is ambiguous (i.e. containing mul-
tiple scattered citation anchors throughout the text).
For each cited document d ∈ D, we extract all
the phrases1 from its title td, abstract ad and corre-
sponding citation contexts cd to build a set of silver-
standard keyphrase candidates Pd. Our method for
generating synthetic samples from pairs of (d, Pd)
involves three steps, which are described below.

Step 1: Ranking Keyphrase Candidates
We rank each keyphrase candidate p ∈ Pd based
on three criteria:

• its salience, defined as the presence of p in td,
ad and cd. Here, we assume that a phrase si-
multaneously occurring in all elements holds
greater importance that a phrase found solely
in one or two of them. A boosting parame-
ter α = {1, 1.5, 2} is introduced to prioritize
phrases based on the number of elements in
which they appear.

• its relevance, computed as the cosine distance
between the embedding vectors of p and td.
We use the title as a high-level summary of the
document, and assume that relevant phrases
should be semantically close to it. We lever-
age SPECTER2 (Cohan et al., 2020), a BERT-
based model pre-trained on scientific docu-
ments, to compute the embedding vectors.

• its reliability, estimated by the number of ci-
tation contexts in which p occurs. We rely on
the citation context frequency as a means to
estimate how reliable a phrase is, the hypothe-
sis being that phrases that appears in multiple
citation contexts are more likely to be reliable.
Specifically, we use the log-frequency of p in
cd to squash the range of values in a log-scale.

1We use spacy (en_core_web_sm model) and consider the
noun phrases (/Adj*Noun+/) in their lemma forms as candi-
dates. Irrelevant candidates are filtered out using a stoplist of
high-frequency phrases.

2https://huggingface.co/sentence-transformers/
allenai-specter
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More formally, given a document d, the score of
a keyphrase candidate p is calculated as follows:

score(p, d) = α(p) · cos-sim
(
emb(p), emb(td)

)

· log
(
freqcc(p)

)
(1)

where emb(s) denotes the embedding vector out-
put of SPECTER for input text s, freqcc(p) is the
number of citation contexts in which p occurs.

Step 2: Selecting Silver-Standard Keyphrases
To select the optimal subset of phrases from Pd, we
define a set of constraints that mirrors the typical
characteristics found in gold standard keyphrases
of scientific papers. Building on past observations,
our objective is to select between 3 and 5 phrases
per document, comprising up to 3 phrases from
its content (i.e. occurring in td or ad) and the re-
mainder from the citation contexts. We promote
the selection of diverse keyphrases by introducing
a maximum cross-phrase similarity threshold pa-
rameter λx. This parameter prevents the inclusion
of redundant candidates, as determined by the co-
sine distance between their embedding vectors. Be-
cause candidates extracted from citation contexts
are inherently noisy, we introduce a second thresh-
old parameter λr to filter out spurious candidates
based on their relevance scores.

Step 3: Ordering Samples by Confidence
The final step involves ordering the cited docu-
ments based on how confident our method is in its
silver-standard keyphrases, and selecting the top-N
ranked documents as synthetic labeled data. Here,
we determine the confidence of our method by av-
eraging the scores of its silver-standard keyphrases,
as computed in Equation 1. We remind that our ob-
jective is to generate small, high quality in-domain
data for fine-tuning keyphrase generation models,
which advocates for a conservative approach.

3 Datasets

We use the widely adopted KP20k dataset (Meng
et al., 2017) as a starting point for pre-training
keyphrase generation models. This dataset con-
tains ≈ 514K scientific documents (titles and ab-
stracts) paired with author-assigned keyphrases in
the broader domain of computer science. We in-
vestigate the effectiveness of our domain adap-
tation method across three distinct scientific do-
mains: Natural Language Processing (nlp), Astro-
physics (astro), and Paleontology (paleo). These

domains differ with increasing distances from the
initial KP20k dataset, with nlp being the closest
and paleo standing as the furthest. This section
gives details about the data we use for each domain,
presents the statistics of the resulting synthetic in-
domain data we generate, and describes how we
collect3 annotated test data to validate the useful-
ness of our method for domain adaptation. We set
our method parameters (step 2 in §2) based on their
observed values in the validation split of KP20k,
specifically, λx = 0.85 and λr = 0.75.

3.1 Natural Language Processing (nlp)

For the nlp domain, we use the ACL Anthology
Sentence Corpus4 that contains the sentences of
65 662 papers from the ACL Anthology up until
2022. For quality reasons, we only consider sen-
tences from papers published in the last 20 years
(2003 and upwards) and occurring within the intro-
duction and related work sections. From these, we
extracted 260 324 citation contexts with the restric-
tion that they include at least one citation to a paper
within the ACL Anthology. For each cited paper,
we applied our method to extract silver-standard
keyphrases from citation contexts, resulting in a
confidence-ordered list of 6 199 synthetic samples.

As most papers in the ACL Anthology do not
provide keyphrases, we mainly relied on NLP-
related conferences and journals to compile the
test data for the nlp domain. More precisely, we
manually collected a set of 212 documents (title
and abstract) with author-assigned keyphrases from
a variety of sources (e.g. LREC, SIGIR, CIKM).

3.2 Astrophysics (astro)

For the astro domain, we use the unarXive 2022
dataset (Saier et al., 2023) that contains 1.9M full-
text papers from arXiv. We selected the subset
of 198 349 papers that belong to the Astrophysics
category (astro-ph), and extracted 133 320 citation
contexts originating from the introduction sections
of these papers. Applying our method for each
cited paper produces in a confidence-ordered list
of 2 680 synthetic samples.

For the astro test data, we manually collected a
set of 255 documents (title and abstract) paired with
author-assigned5 keyphrases from both arXiv and

3Detailed information on the sources can be found in A.4.
4https://kmcs.nii.ac.jp/resource/AASC/
5It should be noted that controlled vocabularies are also

used to index papers in astrophysics, but these are not consid-
ered in our study.
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journals. To ensure topic diversity, we uniformly
selected 20 documents from each astrophysics sub-
category in arXiv and retrieved documents from
broader-scope journals.

3.3 Paleontology (paleo)
To the best of our knowledge, there is no dataset
of scientific papers available for the paleo do-
main. Thus, we collected 12 353 open- or free-
access papers in PDF format from a wide range
of journals in Paleontology.6 We use GROBID7

for extracting the full-text from PDF papers, de-
tecting inline citations and parsing bibliography,
as it was shown to outperform other freely avail-
able tools (Meuschke et al., 2023; Rohatgi et al.,
2023). From the XML output of GROBID, we ex-
tracted 53 133 citation contexts from the introduc-
tory parts of the papers (i.e. “Introduction”, “Ma-
terials and Methods’’ and “Geological Settings”).
With such a small collection, applying our method
yields too few synthetic samples. To generate suf-
ficient data for fine-tuning keyphrase generation
models, we adjusted the threshold for candidate
relevance (i.e. λr = 0.75 → 0.60) and queried
the Semantic Scholar API8 to include cited papers
not present in our collection. These modifications
resulted in our method generating a confidence-
ordered list of 2 806 synthetic samples.

For the paleo test data, we manually collected
a set of 244 documents, each paired with author-
assigned keyphrases, sourced from approximately
10 different journals that encompass a wide spec-
trum of palaeontological topics (e.g. palaeogeogra-
phy, palaeoecology or stratigraphy).

3.4 Statistics and Analysis
In this section, our aim is to deepen our understand-
ing of the characteristics of the datasets we use for
each domain and to assess how the compiled test
data aligns with existing test datasets.

Table 1 summarizes the statistics of the datasets
for each domain we apply our method on. There
is a noticeable diversity in characteristics across
the datasets, with nlp showing the highest citation
rate per document and paleo the lowest. We sus-
pect there are two reasons for this. First, papers
within the nlp domain seem to garner higher aver-
age citations compared to papers in the other two
domains. Second, papers from paleo tend to cite

6See Table 13 in Appendix A for the detailed sources.
7https://github.com/kermitt2/grobid
8https://www.semanticscholar.org/

nlp astro paleo

# documents 65 662 198 349 12 353
# citation contexts 260 324 133 320 53 133

# cited doc 32 448 20 436 3 252
cites / doc 6.0 3.2 1.6

phrases / cited doc 72.9 76.8 87.4

↓ silk (top-1K - all) datasets ↑

doc len. (tokens) 149 202 278
keyphrase / doc 3.9 3.6 3.6 3.5 3.6 3.6

keyphrase len. 1.8 1.9 1.6
% abs keyphrases 23.7 21.8 16.7 14.8 4.3 5.3

Table 1: Statistics for the datasets and the top-1K syn-
thetics samples generated by silk for each domain.

works from both related domains (e.g. Biology, Ge-
ology) and sources outside our collection of gath-
ered papers. Conversely, the average number of
candidate keyphrases per document —those found
in the title, abstract, or citation contexts— remains
stable across the domains (≈80 candidates).

Upon examining the synthetic fine-tuning data
generated by our method (restricted to the top-1K),
we observe that nlp documents are nearly half
the length of those in the paleo domain, while
astro documents fall in-between. These differ-
ences in length directly impact the ratio of absent
keyphrases9, decreasing from 24% to below 10%.
These numbers further decrease when computed be-
yond the top-1K, as the number of citation contexts
declines and, consequently, as the pool of absent
keyphrase candidates reduces. Constraints we intro-
duced for selecting the optimal subset of phrases al-
low for an average of about 4 silver keyphrases per
document, predominantly unigrams and bigrams,
which is in line with both past observations and the
test data we compiled (see Table 2).

To analyze the disparities between the domains
we selected, and also how they depart from
KP20k (initial domain) and from other existing test
datasets for keyphrase generation, we compare the
main statistics of their test splits in Table 2. Here,
we include three additional datasets, Inspec (Hulth,
2003), NUS (Nguyen and Kan, 2007) and SemEval-
2010 (Kim et al., 2010), that are composed of sci-
entific abstracts in the computer science domain.
Together with KP20k, these are likely the most
commonly-used datasets for evaluating keyphrase

9We follow the definition of (Boudin and Gallina, 2021)
and consider keyphrases that do not match contiguous se-
quences of (stemmed) words in the source document as absent.
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Dataset #doc lendoc #kp lenkp %abs

KP20k 20K 176 5.2 2.0 41.5

nlp 212 210 4.1 2.0 36.7
astro 255 224 4.9 2.1 47.8
paleo 244 255 5.5 1.5 38.6

Inspec 500 134 9.8 2.3 21.4
NUS 211 182 11.7 2.1 45.2

SemEval 100 203 14.5 2.1 60.7

Table 2: Statistics for the test data we collected for each
domain in comparison with the commonly used test sets
for keyphrase generation.

generation models. Overall, we observe many sim-
ilarities between KP20k and the test data we col-
lected for each domain, whether in terms of the
number of gold keyphrases (≈5 per document),
their average length (≈2 tokens) or the ratio of
absent keyphrases (≈40%). This suggests a uni-
form trend in author-assigned keyphrases across
scientific domains, which should facilitate general-
ization for keyphrase generation models. It should
be noted that higher number of gold keyphrases
in NUS, SemEval-2010 and Inspec stems from
their distinct annotation processes, with the for-
mer two combining author- and reader-assigned
keyphrases and the latter relying on professional in-
dexers. Comparing the sizes of our domain-specific
test data with those of the test splits in existing
datasets shows that they are on a similar scale.

Lastly, we examine the differences between the
domains from a semantic perspective. Figure 2
shows a t-SNE visualization (van der Maaten and
Hinton, 2008) of the gold keyphrases in the test
data that we collected for each domain and those
of the KP20k test split. We clearly discern the
different domains within the vector space, roughly
dividing it into four clusters. The most notable
overlap occurs between nlp and KP20k (computer
science), whereas astro and paleo exhibit clear
separation. These visual insights support our initial
assumptions regarding the growing differences of
our selected domains from KP20k, with nlp being
the closest and paleo standing as the furthest.

4 Experimental Settings

4.1 Initial Model

We use BART (Lewis et al., 2020) as our initial pre-
trained language model and perform fine-tuning
on the KP20k training set for 15 epochs, follow-
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Figure 2: t-SNE 2-D projections of the gold keyphrases
from • KP20k, • nlp, • astro and • paleo. We lever-
age SPECTER to compute the keyphrase embeddings
and use the first 500 documents from KP20k for clarity.

ing (Wu et al., 2023). BART was shown to yield
state-of-the-art performance in keyphrase genera-
tion (Zhao et al., 2022; Wu et al., 2022; Meng et al.,
2023), surpassing other pre-trained language mod-
els, such as T5 (Wu et al., 2023). Following pre-
vious work, we fine-tune BART in a ONE2MANY

setting (Yuan et al., 2020), that is, given a source
text as input, the task is to generate keyphrases as
a single sequence of delimiter-separated phrases.
During fine-tuning, gold keyphrases are arranged
in the present-absent order which was found to give
the best results (Meng et al., 2021). At test time,
we use either greedy decoding and let the model
generate the most probable keyphrases, or beam
search (K=20) and assemble the top-k keyphrases
from all the beams as the model output. Imple-
mentation details and training times are provided
in Appendix A.2.

4.2 Domain Adaptation
For adapting our fine-tuned BART model to a spe-
cific domain, we continue fine-tuning it on the
synthetic labeled data generated by silk for 3
epochs. Specifically, we use the top-N most con-
fident silver-labeled examples to further fine-tune
BART, creating three gradually adapted models for
each domain by varying N ∈ {500, 1K, 2K}. We
compare the effectiveness of our domain adaptation
method with that of the only other unsupervised ap-
proach we are aware of, which is self-learning (Ye
and Wang, 2018; Meng et al., 2023). Self-learning
consists in using a model to generate pseudo-labels
for in-domain documents and then re-train itself on
this data. Here, we use our fine-tuned BART model
to generate keyphrases for the same documents as
those produced by silk, and further fine-tune it on
this self-labeled data for 3 epochs.
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4.3 Baselines

Although the focus of this work is domain adap-
tion, we also provide the results of several base-
lines as a point of reference. The first baseline
is MultiPartiteRank (Boudin, 2018), an unsuper-
vised method for keyphrase extraction that lever-
ages graph-based ranking and topical information.
Despite being limited to present keyphrases, Mul-
tiPartiteRank yields the best results among non
deep learning methods (Do et al., 2023). We use
the author’s implementation provided by the pke
toolkit (Boudin, 2016).10 The second baseline is
Yake (Campos et al., 2020), another unsupervised
method for keyphrase extraction that relies on sta-
tistical text features. We use the author’s implemen-
tation.11 The third baseline is KeyBART (Kulkarni
et al., 2022) in a zero-shot setting, a task-specific
language model trained to learn rich representa-
tions of keyphrases. We use the model weights
released by the authors.12 The fourth baseline is
One2Set (Ye et al., 2021), a Transformer-based
model that uses learned control codes to generate a
set of keyphrases. Trained on KP20k, this model
achieves strong performance, often on-par with
state-of-the-art models (Wu et al., 2023). We use
the model weights released by the authors.13

4.4 Datasets and Evaluation Metrics

We use the test split of KP20k for evaluating the
initial performance of the models, and our man-
ually collected test sets to assess their in-domain
performance. Detailed statistics for these datasets
are presented in Table 2. Following common prac-
tice, we evaluate the performance of the models
in terms of F1 score using exact match between
gold and predicted keyphrases. Stemming (Porter
stemmer) is applied to reduce the number of mis-
matches and duplicates are removed. We compute
the scores both at the top-k predicted keyphrases
with k ∈ 5, 10, and at the number M of keyphrases
predicted by the models as proposed in (Yuan et al.,
2020). For F1@k scores, if the number of predicted
keyphrases is below k, we append incorrect predic-
tions until it reaches exactly k keyphrases. We also
report scores for present and absent keyphrases sep-
arately to get more insights about the extractive and
generative capabilities of the models. We compute

10https://github.com/boudinfl/pke
11https://github.com/LIAAD/yake
12https://huggingface.co/bloomberg/KeyBART
13https://github.com/jiacheng-ye/kg_one2set

the Student’s paired t-test to assess the statistical
significance of our results at p < 0.05.

4.5 Performance of Models on KP20k

Table 3 presents the results of our fine-tuned BART
model (hereafter denoted as BART-FT) and the
baselines on the test split of KP20k. It should be
noted that MultiPartiteRank and Yake cannot be as-
sessed using F1@M as they require setting a top-k
parameter, and that One2Set cannot be assessed us-
ing F1@10 since it only outputs the most probable
keyphrases (≈7 per document). Overall, BART-FT
demonstrates superior performance, significantly
outperforming the baselines for both all and only
the present keyphrases. We observe that One2Set
achieves the best scores for the absent keyphrases,
confirming previous findings (Wu et al., 2023). In
light of these results, we argue that BART-FT is
a strong model for keyphrase generation, provid-
ing a solid basis for the application of our domain
adaptation method.

Model F1@M F1@5 F1@10

all pres abs all pres abs all pres abs

MPRank - 14.8 18.7 - 13.7 16.2 -

YAKE - 14.5 18.5 - 14.6 17.4 -

KeyBART 11.4 16.4 1.6 11.9 17.4 1.9 11.0 15.3 1.7

One2Set 23.2 35.1 5.5† 23.5 29.9 4.2 -
BART-FT 28.7† 37.3† 2.4 28.0† 35.5† 5.9† 25.4† 29.2† 5.8

Table 3: Performance comparison of our fine-tuned
BART model and baseline models on the KP20k test
set, with † indicating statistical significance. Scores for
present and absent keyphrases separately are reported.

5 Results

Table 4 presents the results of the keyphrase gener-
ation models and our domain adaptation method on
each domain.14 We observe that silk brings con-
sistent and significant improvements over BART-
FT on the three domains. The best overall perfor-
mance is achieved by fine-tuning the model with
the top-1K most confident synthetic samples, how-
ever gains are observed with just the top-500 sam-
ples. Self-learning for domain adaptation yields
only marginal gains at best and often degrades
performance. This suggests that the initial per-
formance of BART-FT on these domains is not
sufficient to generate high-quality pseudo-labels. A
closer look at the numbers shows that BART-FT

14See Table 14 in Appendix A for present/absent results.

603

https://github.com/boudinfl/pke
https://github.com/LIAAD/yake
https://huggingface.co/bloomberg/KeyBART
https://github.com/jiacheng-ye/kg_one2set


Model FT nlp astro paleo

F1@M F1@5 F1@10 F1@M F1@5 F1@10 F1@M F1@5 F1@10

MPRank - 17.1 14.3 - 13.4 11.7 - 13.5 13.8
YAKE - 20.3 18.1 - 11.5 11.8 - 9.6 11.3
KeyBART 11.8 12.8 11.0 11.8 11.4 10.6 8.2 8.0 8.8
One2Set 21.6 24.1 - 13.2 12.7 - 13.4 12.1 -

BART-FT 30.8 29.8 24.9 19.2 18.6 16.6 18.4 18.9 18.8

+self-learning 500 31.2 30.0 24.5 19.2 19.0 16.2 18.9 18.7 18.6
1K 30.7 30.7 24.1 19.7 19.6 16.6 19.5 19.2 18.8
2K 30.0 29.2 24.4 18.4 19.2 16.4 19.2 19.7 18.4

+silk (ours) 500 31.0 29.7 25.2 18.9 19.3 17.1 19.0 19.3 19.2
1K 33.7† 32.2† 25.2 19.3 20.5† 17.7† 19.6 20.4† 19.5
2K 31.0 31.0 24.3 20.4 21.5† 17.9† 17.7 19.1 18.0

Table 4: Performance of keyphrase generation models on the nlp, astro and paleo domains for all keyphrases (i.e.
present and absent combined). Values in bold indicate best scores and † indicates significance over BART-FT.

performs comparably on nlp as it does on KP20k
(see Table 3), but it gives substantially lower scores
on paleo and astro. This empirically confirms the
growing distance between KP20k and these three
domains, correlating model performance with the
distance from the initial domain.

Among the three domains, paleo poses the great-
est challenge for our method. We see two main
reasons for this. First, the limited size of our collec-
tion of full-text papers (≈12K), and the necessary
parameter adjustments made to accommodate it,
adversely affect the quality of the synthetic sam-
ples. Second, the paleo domain in itself appears to
be more challenging to handle due to its interdisci-
plinary nature, spanning subjects such as geology,
biology, history, and ecology, among others. Exam-
ining the performance of the baselines, we observe
the poor generalization of One2Set whose results
nearly drop by half for non-computer science do-
mains, and that is even surpassed by MultiPartiteR-
ank. This latter delivers consistent, albeit modest,
performance across domains which makes it rele-
vant as an estimator of lower-bound performance
for research on domain adaptation.

5.1 Confidence Ranking of synthetic samples

The purpose of silk is to generate small, high qual-
ity in-domain data for fine-tuning keyphrase genera-
tion models. Accordingly, synthetic samples are or-
dered by confidence (described in §2) and only the
top-N ranked samples are employed for adapting
models. To validate the quality of our ranking, and

consequently the effectiveness of our keyphrase
candidate scoring function (see Equation 1), we
compare the performance of BART-FT when we
continue the fine-tuning with the top-1K, bottom-
1K and a random selection of 1K samples. Results
are presented in Table 5. We note that, uniformly
across the three domains, the random and top-1K
ordering schemes lead to improvements, with top-
1K yielding the best results. In contrast, using the
least confident samples (bottom-1K) systematically
degrades the performance. Insights from these re-
sults are twofold: 1) our confidence ranking proves
to be beneficial for selecting high-quality synthetic
samples, and 2) even samples beyond the top-1K
are qualitative enough for domain adaptation.

Model nlp astro paleo

F1@M F1@10 F1@M F1@10 F1@M F1@10

BART-FT 30.8 24.9 19.2 16.6 18.4 18.8

+silk (top) 33.7† 25.2 19.2 17.7† 19.4 19.5

+silk (ran) 33.2† 25.1 19.3 17.4 19.4 19.4

+silk (bot) 27.8 21.4 16.5 15.1 16.9 17.3

Table 5: Performance of BART-FT fine-tuned on the
top-1K, bottom-1K and random-1K (averaged over 5
runs with different seed values) samples. † indicates
significance over BART-FT.

5.2 Forgetting of Domain Adaptation

Although continued training is effective for domain
adaptation, it has been found to adversely affect
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performance in the initial domain for language gen-
eration tasks (Li et al., 2022). Here, we investigate
whether this phenomenon, referred to in the litera-
ture as catastrophic forgetting (French, 1999), also
manifests in our adapted models. Table 6 presents
the results of our domain adapted BART-FT models
(using 1K synthetic samples) on the KP20k test set.
Overall, we observe no drop in performance for
our adapted models. Rather surprisingly, we notice
small improvements in F1@k scores over the initial
BART-FT model. Upon closer examination, these
gains derive from improved extractive capabilities,
while the scores for absent keyphrases consistently
degrade. We hypothesise that the domain adaption
process makes the model lose generative ability and
reinforces its extractive capability which translates
more effectively across domains.

Model F1@M F1@5 F1@10

all pres abs all pres abs all pres abs

BART-FT 28.7 37.3 2.4 28.0 35.5 5.9 25.4 29.2 5.8

+silk (nlp) 28.6 37.5 1.6 28.3 35.9 5.5 25.7 29.7 5.4

+silk (astro) 28.7 37.8 1.7 28.7 36.4 5.9 25.9 29.8 5.9

+silk (paleo) 28.4 37.5 1.4 28.6 36.2 5.7 25.8 29.7 5.6

Table 6: Performance comparison of BART-FT and its
adaptions (silk 1K) on the KP20k test set.

5.3 Qualitative analysis
We further examine the quality of the synthetic
samples produced with silk by conducting a man-
ual evaluation of the top-100 samples of the nlp
domain.15 Annotators were instructed to assess the
relevance of silver-standard keyphrases using a 3-
point scale: “not relevant”, “partially relevant” and
“relevant”. Additionally, we requested annotators
to assess the well-formedness of the keyphrases
with a binary rating. To quantify the qualitative
difference between silk keyphrases and automati-
cally generated ones, we perform a second round
of human evaluation for BART-FT utilizing the
same top-100 samples. Table 7 presents the re-
sults of our qualitative analysis. First, we note
that nearly all silk keyphrases are well-formed,
with any exceptions attributable to tagging errors
(e.g. “inter alia”). More importantly, we observe
that 80% of silk keyphrases are relevant, demon-
strating the effectiveness of our method. In contrast,
only 54.5% of the keyphrases generated by BART-
FT are deemed relevant, which explains why the

15Annotation guidelines and examples can be found in A.3.

self-learning approach to domain adaptation falls
short. We also note that BART-FT tends to generate
more keyphrases (≈5.5 per doc.), many of which
are broader terms that are often irrelevant for the
NLP domain (e.g. “natural language processing”,
“statistics” or “machine learning”).

Model #kp WFness Relevance

no yes no part. yes

BART-FT 545 6.2 93.8 35.0 10.5 54.5
silk 411 2.9 97.1 11.9 8.0 80.0

Table 7: Human evaluation results (%) in terms of well-
formedness and relevance of the top-100 nlp samples
generated by silk and re-annotated using BART-FT.

5.4 Bias towards Highly Cited Papers
Since our method leverages citation contexts, it pro-
duces synthetic samples that are inherently biased
towards highly cited papers and their correspond-
ing keyphrases. To investigate whether this bias
is present in the adapted BART-FT models, we
measure how frequently they generate keyphrases
found in the synthetic samples and compare this
number to that of our initial model. Results are
presented in Table 8. We observe only minor differ-
ences in the number of generated keyphrases from
the synthetic samples, suggesting no apparent bias.
Conversely, we notice that the adapted models pro-
duce fewer of these keyphrases, as evidenced by
the negative scores. We attribute this to the few-
shot fine-tuning, which may not sufficiently affect
the model weights to propagate bias, and reinforces
the extractive capabilities of the models, thereby
making them less sensitive to bias.

Model nlp astro paleo

+silk (500) -0.04 -0.02 -0.02
+silk (1K) -0.19 -0.01 -0.12
+silk (2K) -0.37 +0.18 -0.23

Table 8: Difference in the number of generated
keyphrases found in silk samples between BART-
FT and its adaptations; a negative number means the
adapted model generates fewer keyphrases from highly
cited papers.

6 Conclusion and Future Work

In this paper, we propose silk, an unsupervised
method that relies on citation contexts to create
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silver-standard data for adapting keyphrase genera-
tion models to new domains. We conduct experi-
ments across three distinct scientific domains and
demonstrate the effectiveness of our method for
domain adaptation by few-shot fine-tuning a pre-
trained model for keyphrase generation. Our results
show significant improvements in in-domain per-
formance with 1K synthetic samples over strong
baselines and self-supervised domain adaptation.
We further validate the quality of the synthetic sam-
ples created by silk through human evaluation and
analysis.

Our work addresses the issue of domain adap-
tation in keyphrase generation by introducing a
solution that leverages citation contexts. Consid-
ering that citing papers is the de-facto means for
discussing past work in scientific writing, we argue
that it is possible to generate silver-standard data
for most domains, provided that there is a mini-
mal number of papers available. Such data would
not only be useful for adapting existing models to
new domains but also for keeping them up-to-date,
given the rapid expansion of scientific literature
and the evolving terminology across all domains.

Limitations

While our proposed method is both straightforward
and effective, it is important to acknowledge its lim-
itations. First, we did not optimize each component
of our method, relying instead on heuristics for se-
lecting and filtering citation contexts and scoring
silver-standard keyphrases using a simple combi-
nation of criteria. Since our work focuses on gener-
ating synthetic data for domain adaptation, and we
did not search for the optimal fine-tuning parame-
ters, and also relied on a single pre-trained model
(BART-base). Even though we have conducted
extensive experiments across three domains, it re-
mains unclear how our findings generalize to other
or larger pre-trained models. Manually evaluating
the quality of automatically generated keyphrases
is inherently subjective. Although we developed
simple and detailed guidelines to minimize vari-
ability in assessments, it remains unclear how the
results from our qualitative analysis extend beyond
the top 100 samples in nlp or to the other two
domains.
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A Appendices

A.1 Related work

Keyphrase generation was first introduced by (Liu
et al., 2011) and subsequently formulated as a
sequence-to-sequence language generation task
by (Meng et al., 2017). They proposed an RNN-
based encoder-decoder model with attention and
copy mechanisms, which was later enhanced by
the addition of decoding constraints to improve
keyphrase diversity (Chen et al., 2018; Zhao and
Zhang, 2019; Bahuleyan and El Asri, 2020; Yuan
et al., 2020; Huang et al., 2021), or by learning
to encode the structural information of input docu-
ments (Ye and Wang, 2018; Chen et al., 2019; Kim
et al., 2021). Later work switched to Transformers-
based models (Meng et al., 2021; Ye et al., 2021;
Ahmad et al., 2021), reporting better performance.
Recently, pre-trained language models (PLMs)
have been used for keyphrase generation, predomi-
nantly through continued fine-tuning (Zhao et al.,
2022; Meng et al., 2023; Wu et al., 2023).

Our work also intersects with unsupervised mod-
els for keyphrase generation (Shen et al., 2022; Do
et al., 2023), which evaluate the informativeness
of keyphrases based on their semantic similarity to
the source document. Another direction to mitigate
the data scarcity issue in keyphrase generation in-
volves leveraging both labeled and unlabeled data
for training. Ye and Wang (2018) proposed a self-
learning approach to augment the training data with
synthetic samples. Similarly, Meng et al. (2023) ex-
tended this concept to adapt models to new domains
by generating domain-specific synthetic samples.
In a low-resource setting, Garg et al. (2023) intro-
duced a data augmentation method that leverages
the full text of the documents to add diversity to
the training samples.

Our work is closely related to the use of cita-
tion contexts in automated models for producing
keyphrases. For keyphrase extraction, Das Golla-
palli and Caragea (2014) proposed a graph-ranking
approach that leverages citation contexts while scor-
ing candidates, and Caragea et al. (2014) use the
occurrence of candidates in citation contexts as
a feature in a supervised model. For keyphrase
generation, Garg et al. (2022) proposed to append
citation contexts to enrich the input document.

A.2 Implementation Details

We use the BART-base model weights as our ini-
tial pre-trained language model and perform fine-

tuning on the KP20k training set for 15 epochs. We
use the AdamW optimizer with a learning rate of
1e-5 and a batch size of 24. Fine-tuning the model
using 2 Nvidia GeForce RTX 2080 took 62 hours.

For adapting BART-FT to a each domain, we
continue fine-tuning on N ∈ {500, 1K, 2K} syn-
thetic samples for 3 epochs. We use the AdamW
optimizer with a learning rate of 1e-6 and a batch
size of 16. Few-shot fine-tuning, conducted on
a MacBook Pro M1 Max, required an average of
5 minutes per model, totaling 3 hours for all 12
models per domain.

For MultiPartiteRank, we use the author’s im-
plementation provided by the pke toolkit.16 For
Yake, we use the author’s implementation.17 For
KeyBART, we use the model weights released by
the authors and the suggested parameter settings
(i.e. beam width = 50, maximum generated se-
quence length = 40 tokens).18 For One2Set, we
use the model weights released by the authors.19

A.3 Guidelines for manual evaluation

We evaluate the silver-standard keyphrases created
by silk and those generated by BART-FT along
two criteria: their relevance with respect to the
source document, and their well-formedness. An-
notators (authors of this paper) were given the title,
the abstract and access to the full-text paper when
evaluating the quality of the keyphrases. We per-
form manual evaluation on the top-100 synthetic
samples generated by silk, confined to the nlp
domain for which annotators have expertise.

Relevance is assessed on a 3-point scale, where
0 indicates that the keyphrase is not relevant,
1 that it is partially relevant (i.e. covering a
related concept) and 2 that it is relevant to the
source document.

Well-formedness is assessed on a binary scale,
with 0 indicating that the keyphrase lacks
proper form, such as being improperly
structured (e.g. “algorithms and data struc-
tures”) or not forming a self-contained phrase
(e.g. “large amount”), while 1 signifies that
the keyphrase is well-formed.

Orthographic variants occurring in a set of
keyphrases (e.g. “co-reference resolution” and

16https://github.com/boudinfl/pke
17https://github.com/LIAAD/yake
18https://huggingface.co/bloomberg/KeyBART
19https://github.com/jiacheng-ye/kg_one2set
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“coreference resolution”) are identified, and only
one of them is considered as relevant. We do not
consider abbreviations as variants of their expanded
forms. Broader terms such as “natural language
processing” or “neural networks” are generally con-
sidered as too generic and not relevant.

An example of output for silk and BART-FT is
shown is Table 9.

611



Get To The Point: Summarization with Pointer-Generator Networks (Bibkey: see-etal-2017-get)

Neural sequence-to-sequence models have provided a viable new approach for abstractive text summarization (meaning they are
not restricted to simply selecting and rearranging passages from the original text). However, these models have two shortcomings:
they are liable to reproduce factual details inaccurately, and they tend to repeat themselves. In this work we propose a novel
architecture that augments the standard sequence-to-sequence attentional model in two orthogonal ways. First, we use a hybrid
pointer-generator network that can copy words from the source text via pointing, which aids accurate reproduction of information,
while retaining the ability to produce novel words through the generator. Second, we use coverage to keep track of what has been
summarized, which discourages repetition. We apply our model to the CNN / Daily Mail summarization task, outperforming the
current abstractive state-of-the-art by at least 2 ROUGE points.

silk summarization, pointer-generator network, sequence-to-sequence model, copy mechanism, coverage mechanism
well-formedness: 1 1 1 1 1 relevance: 1 1 1 1 1

BART-FT summarization, sequence-to-sequence models, attentional models, cnn, daily mail, neural networks, text mining
well-formedness: 1 1 1 1 1 1 1 relevance: 1 1 1 1 1 0 0

Improving Neural Machine Translation Models with Monolingual Data (Bibkey: sennrich-etal-2016-improving)

Neural Machine Translation (NMT) has obtained state-of-the art performance for several language pairs, while only using parallel
data for training. Target-side monolingual data plays an important role in boosting fluency for phrase-based statistical machine
translation, and we investigate the use of monolingual data for NMT. In contrast to previous work, which combines NMT models
with separately trained language models, we note that encoder-decoder NMT architectures already have the capacity to learn the
same information as a language model, and we explore strategies to train with monolingual data without changing the neural
network architecture. By pairing monolingual training data with an automatic back-translation, we can treat it as additional
parallel training data, and we obtain substantial improvements on the WMT 15 task English German (+2.8-3.7 BLEU), and for
the low-resourced IWSLT 14 task Turkish->English (+2.1-3.4 BLEU), obtaining new state-of-the-art results. We also show that
fine-tuning on in-domain monolingual and parallel data gives substantial improvements for the IWSLT 15 task English->German.

silk neural machine translation, monolingual data, back-translation, data augmentation, synthetic parallel corpus
well-formedness: 1 1 1 1 1 relevance: 1 1 1 1 1

BART-FT neural machine translation, monolingual data, language models, back-translation, language modeling and
translation, parallel training data
well-formedness: 1 1 1 1 0 1 relevance: 1 1 1 1 0 0.5

Table 9: Examples of document (title and abstract) from the nlp domain with silver-standard keyphrases generated
by silk and automatically generated keyphrases from BART-FT.
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A.4 Sources used for collecting test data

Source Session / Volume #nb

SIGIR 2023 Language Models 6
Question Answering 3
Summarization & Text Generation 5
Short Research Papers§ 16

CIKM 2023 Natural Language 24
WSDM 2023 Language Models and Text Mining 6

SIGIR 2022 NLP and Semantics 8
Question Answering 4
Sentiment Analysis and Classification 5
Short Research Papers§ 14

CHI 2022 Natural Language 5
LREC 2022 Oral sessions§ 81

NLP Journal20 Volumes 2-5 35

Total 212

Table 10: Detailed information on the sources of the
test documents for the nlp domain. § indicates that
we manually selected the documents to filter out out-of-
domain ones.

Source Category / Year #nb

arXiv astro-ph.HE (High Energy Astro. Phenomena) 20
(oct→dec 2023) astro-ph.CO (Cosmology and Nongalactic Astro.) 20

astro-ph.IM (Instrumentation and Methods for Astro.) 20
astro-ph.SR (Solar and Stellar Astro.) 20
astro-ph.EP (Earth and Planetary Astro.) 20
astro-ph.GA (Astro. of Galaxies) 20

Frontiers in Astro. 2022-23 (selected using arXiv keywords) 76
Astrophysics 2022-23 59

Total 255

Table 11: Detailed information on the sources of the test
documents for the astro domain.

Source Year #nb

Palaeontologia Electronica 2023-24 21
Acta Palaeontologica Polonica 2023 22

Palaeontology 2023 26
Cretaceous Research 2024 20

Palaeogeography, Palaeoclimatology, Palaeoecology 2024 47
Papers in Palaeontology 2023 29

Proc. Royal Soc. B: Biological Sciences 2023 25
Biology Letters 2023 25

Palaeobiodiversity and Palaeoenvironments 2023 16

Total 244

Table 12: Detailed information on the sources of the test
documents for the paleo domain.
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Source Licence Year #nb

Acta Geologica Sinica open 2021-2023 21
Acta Palaeontologica Polonica open 2002-2023 1 398
Alcheringa: An Australasian Journal of Palaeontology open 2016-2023 32
Carnets de Geologie open 2015-2023 147
Cretacious Research open 2019-2023 81
Journal of paleontology open 2015-2023 144
Journal of Systematic Palaeontology open 2016-2023 34
Journal of Vertebrate Paleontology open 2013-2023 95
Lethaia open/free 2018-2023 239
Nature open 2010-2023 705
Palaeobiodiversity and Palaeoenvironments open 2002-2023 811
Palaeodiversity open 2016-2023 74
Palaeogeography, Palaeoclimatology, Palaeoecology open 2019-2023 201
Palaeontologia Electronica open 1998–2023 841
Palaeontology open/free 1999-2023 1 474
Paleobiology open 2013-2023 133
Paleoceanography and Paleoclimatology open 2014-2023 128
PalZ open/free 2009-2023 651
Papers in Palaeontology open 2015-2023 71
Plos Paleontology open 2011-2017 237
Proceedings of the Royal Society B: Biological Sciences (paleontology) open/free 2009-2023 354
PubMedfreef ulltext (query="Paleontology[MeSH Terms]") open/free 1955-2023 3 462
Research in Paleontology and Stratigraphy open 2019-2023 157
Royal Society Science (paleontology) open/free 2014-2023 270
Royal Society Biology Letters (paleontology) open/free 2009-2023 235
Swiss Journal of Palaeontology open/free 2011-2023 282
Trends in Ecology and Evolution (paleobiology) open 2020-2022 15
Zookeys (paleontology) open 2015-2023 61

Total 12 353

Table 13: Detailed information on the sources of the scientific papers collected for the Paleontology corpus.

Model FT nlp astro paleo

F1@M F1@5 F1@10 F1@M F1@5 F1@10 F1@M F1@5 F1@10

pres abs pres abs pres abs pres abs pres abs pres abs pres abs pres abs pres abs

MPRank - 20.4 - 16.2 - - 17.7 - 14.2 - - 16.4 - 15.7 -
Yake - 24.3 - 20.5 - - 15.4 - 14.3 - - 11.9 - 12.9 -
KeyBART 16.6 0.8 17.3 1.5 14.0 1.5 19.7 2.1 17.8 2.1 13.6 1.7 11.6 1.8 12.5 1.9 13.0 1.7
One2Set 36.1 3.3 28.3 2.8 - 20.1 1.6 17.3 1.2 - 18.6 0.3 16.5 0.2 -

BART-FT 38.8 2.0 36.8 3.7 27.9 3.6 26.7 0.2 25.6 1.4 20.2 1.4 23.5 0.5 24.3 1.3 22.6 1.2

+self-learning 500 38.9 2.0 36.9 3.0 27.7 3.0 26.5 0.0 26.0 0.7 19.9 0.7 24.1 0.5 23.8 1.2 22.6 1.1
1K 38.2 2.0 36.8 3.1 27.6 3.0 27.0 0.0 26.1 0.5 20.5 0.5 24.5 0.2 24.8 0.6 22.9 0.7
2K 37.2 2.6 36.8 3.2 27.8 3.0 25.3 0.2 25.3 0.5 20.2 0.7 24.3 0.2 25.7 0.6 22.7 0.6

+silk (ours) 500 39.1 0.5 36.2 2.8 28.2 2.9 26.4 0.2 26.7 1.1 21.1† 1.1 24.4 0.5 24.8 1.0 23.5 0.9
1K 41.7† 1.2 38.3 3.3 28.1 3.4 27.0 0.0 27.7† 1.1 21.7† 1.0 25.4 0.7 26.3† 0.6 23.5 0.5
2K 38.8 0.3 37.2 2.8 27.3 2.8 29.0 0.0 28.9† 0.2 22.2† 0.2 23.2 0.0 24.5 0.5 21.9 0.5

Table 14: Performance of keyphrase generation models on the nlp, astro and paleo domains for present and
absent keyphrases separately. Values in bold indicate best scores and † indicates significance over BART-FT.
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