
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics
Volume 2: Short Papers, pages 477–487

March 17-22, 2024 c©2024 Association for Computational Linguistics

Dynamic Masking Rate Schedules for MLM Pretraining

Zachary Ankner 1,2 Naomi Saphra3 Davis Blalock1

Jonathan Frankle1 Matthew Leavitt4
1MosaicML 2Massachusetts Institute of Technology

3Harvard University 4DatologyAI

Abstract

Most works on transformers trained with the
Masked Language Modeling (MLM) objective
use the original BERT model’s fixed mask-
ing rate of 15%. We propose to instead dy-
namically schedule the masking rate through-
out training. We find that linearly decreas-
ing the masking rate over the course of pre-
training improves average GLUE accuracy by
up to 0.46% and 0.25% in BERT-base and
BERT-large, respectively, compared to fixed
rate baselines. These gains come from ex-
posure to both high and low masking rate
regimes, providing benefits from both set-
tings. Our results demonstrate that masking
rate scheduling is a simple way to improve the
quality of masked language models, achiev-
ing up to a 1.89x speedup in pretraining for
BERT-base as well as a Pareto improvement
for BERT-large.

1 Introduction

BERT (Devlin et al., 2019) is a popular encoder-
only Transformer (Vaswani et al., 2017) architec-
ture that is pretrained using a Cloze-inspired (Tay-
lor, 1953) masked language modeling (MLM) ob-
jective. During MLM training, we mask out a sub-
set of the input tokens and train the model to recon-
struct the missing tokens. The proportion of tokens
to be masked out is determined by the masking rate
hyperparameter.

Most practitioners use a fixed masking rate of
0.15 (Devlin et al., 2019), but Wettig et al. (2022)
found that the standard 15% masking rate is sub-
optimal for a variety of model settings and rec-
ommended a higher rate. We build on their work
by studying the impact of dynamically scheduled
masking rates.

Correspondence to ankner@mit.edu.

Hyperparameter scheduling—i.e., changing the
learning rate, dropout rate, batch size, sequence
length, etc., during training—is a common prac-
tice in deep learning (Loshchilov and Hutter, 2017;
Smith, 2017; Howard and Ruder, 2018; Morerio
et al., 2017; Smith et al., 2018; Li et al., 2022).
Masking rate is a good candidate for hyperparam-
eter scheduling for a number of reasons. First, a
high masking rate, like a high dropout rate, directly
reduces the amount of feature information available
during a training step. This information removal
may smooth the loss landscape, which permits sim-
ulated annealing if performed earlier in training.
Furthermore, a higher masking rate adds training
signal, as loss is computed for a larger portion of
tokens, similar to a larger sequence length or batch
size. We therefore study whether scheduling the
masking rate during training could lead to model
quality improvements, as scheduling these other
hyperparameters does.

We present a series of experiments to assess the
effects of masking rate scheduling on the quality of
BERT-base (Devlin et al., 2019). We evaluate our
masking rate scheduled models on MLM loss and
downstream tasks. Our contributions are:

• We introduce a method of masking rate
scheduling1 for improving MLM pretraining
(Section 3.1), and find that performance im-
proves only when starting at a higher ratio and
decaying it (Section 3.3).

• We show that the improvement from schedul-
ing the masking rate is a Pareto improvement
over fixed masking rates (Section 3.2, Ap-
pendix E), and that our method transfers to
other pretraining objectives (Appendix H).

1After submitting this work, we were made aware of recent
work (Yang et al., 2023) that also applies dynamic masking
rates to MLM pretraining. Our method for scheduling masking
rates differs slightly but our analysis of the technique substan-
tially differs by focusing on understanding how scheduling
improves MLM performance. We discuss these differences in
Section 4.

477

ankner@mit.edu

• We find that dynamic scheduling attains both
the improved linguistic performance of a
lower masking rate (Section 3.5) and im-
proved language modeling of a higher mask-
ing rate (Section 3.6).

2 Methods

We perform typical MLM pretraining, with the key
difference that a scheduler sets the masking rate
dynamically.

2.1 Masked language modeling
An MLM objective trains a language model to re-
construct tokens that have been masked out from an
input sequence. Let x ∼ X be the input sequence,
and pmask be the probability with which tokens are
masked from the model, i.e., the masking rate. A
maskM = {m1, ...,mk} is defined as the indices
of the tokens to be masked, where the probability
of a given token index being included in the mask is
a Bernoulli random variable with parameter pmask.
Following Devlin et al. (2019), we replace 80% of
the masked tokens with a [MASK] token, substitute
10% with another random token, and leave 10%
unchanged. The training objective is defined as:

L(x) =
1

|M|
∑

i∈M
log p(xmi |x−M) (1)

2.2 Schedulers
Let Ttotal be the total number of steps the model
takes during training and t be the current step. Let
pi and pf be the initial and final masking rate re-
spectively. For each step, we set the masking rate
pmask,t according to the following schedules. We
test several nonlinear schedules as well, but find no
consistent advantage over the simpler linear sched-
ule (Appendix G).

Constant scheduling. Constant scheduling,
which we call constant-{pmask}, is the standard
approach to setting the masking rate for MLM
pretraining (typically pmask = 0.15) where the
same masking rate is used throughout all of
training. The masking rate is set as:

pmask,t = pi = pf

Linear scheduling. In the linear schedule
linear-{pi}-{pf}, the masking rate is set to a
linear interpolation between the initial and final
masking rate:

pmask,t = pi +
t

Ttotal
∗ (pf − pi)

3 Experiments and Results

In this section, we evaluate the performance of
masking rate scheduling on a collection of down-
stream tasks and determine why our schedule is
successful.

We pretrain all models on the Colossal Cleaned
Common Crawl (C4) dataset (Raffel et al., 2019),
and then fine-tune and evaluate on the GLUE
benchmark (Wang et al., 2018). We use BERT-base
and BERT-large models as implemented in Hug-
gingFace (Wolf et al., 2020), and train models with
the Composer library (Tang et al., 2022). We list
further details of our experimental setup in Ap-
pendix A.

3.1 Improvement in downstream tasks
We first examine the effects of the best linear
schedule on downstream performance on GLUE
(Table 1). We focus on comparing between
linear-0.3-0.15 and constant-0.3-0.3 for
BERT-base, and between linear-0.4-0.25 and
constant-0.4-0.4 for BERT-large. These set-
tings provide the best-performing linear and con-
stant schedules, respectively. (Results for other
schedule hyperparameters are in Appendix C.) For
BERT-base, we find that linear-0.3-0.15 im-
proves performance over the baseline on 3 of the
8 GLUE tasks and achieves parity on all other
tasks, leading to an average GLUE accuracy of
84.29%, a statistically significant improvement
over the constant-0.3-0.3 baseline of 84.12%.
For BERT-large we find that linear-0.4-0.25
improves performance over the baseline on 4 of
the 8 GLUE tasks and achieves parity on all other
tasks, leading to an average GLUE accuracy of
87.22%, a statistically significant improvement
over the constant-0.4-0.4 baseline of 86.97%.
These results show that scheduling the masking rate
during pretraining produces higher-quality models
for downstream tasks.

3.2 Improvement in training efficiency
In addition to improving final model quality, pre-
training with masking rate scheduling is more ef-
ficient in wall clock time. For BERT-base, lin-
ear scheduling matches the mean GLUE score
of the best constant-0.15 checkpoint in 37K
steps and matches the best constant-0.3 check-
point in 42K steps, which correspond to speedups
of 1.89x and 1.65x, respectively. Furthermore,

478

SCHEDULE MNLI-M/MM QNLI QQP RTE SST-2 MRPC COLA STS-B AVG

BERT-base
CONSTANT-0.15 84.3/84.71 90.38 88.31 76.65 92.91 91.94 55.89 89.38 83.83
CONSTANT-0.3 84.5/84.83 90.82 88.31 76.56 92.79 92.18 57.24 89.85 84.12
LINEAR-0.3-0.15 (OURS) 84.61/85.13 90.89 88.34 76.25 92.71 91.87 58.96 89.87 84.29

BERT-large
CONSTANT-0.4 87.43/87.68 93.03 88.84 83.25 94.48 93.64 63.53 90.82 86.97
LINEAR-0.4-0.25 87.69/87.9 93.33 89.23 83.14 94.59 93.86 64.07 91.21 87.22

Table 1: Downstream performance for different masking rate schedules. For each model we report the average
accuracy for each task in GLUE. Bold indicates no significant difference from best-performing schedule, P > 0.05,
t-test.

10K 20K 30K 40K 50K 60K 70K
Pretraining Step

80

81

82

83

84

A
cc

ur
ac

y

Average GLUE Accuracy

Constant-0.3

Linear-0.3-0.15

Constant-0.15

1.65x1.89x

Figure 1: Average GLUE accuracy evaluated over the
course of pretraining for BERT-base. The horizontal
lines correspond to the difference in steps required for
linear-0.3-0.15 to achieve the best constant sched-
ule performance.

linear-0.3-0.15 is a Pareto improvement over
both constant baselines; for each pretraining step
evaluated, linear-0.3-0.15 matches or exceeds
the baseline with no increase in training time (Fig-
ure 1). For BERT-large, linear-0.4-0.25 is also
a Pareto improvement over constant-0.4 (Ap-
pendix E). Appendix F contains further details on
evaluating model speedups.

3.3 High to low, not low to high

To better understand how masking rate scheduling
affects training dynamics, we investigate whether
the scheduler must always gradually decrease the
masking rate, in line with an interpretation based
on simulated annealing (Kirkpatrick et al., 1983).
If we find that either decreasing or increasing lead
to similar improvements, then we instead would
attribute the success of our method to just the
range of masking rates covered. We find that

SCHEDULE AVG GLUE ACCURACY

CONSTANT-0.15 83.83
LINEAR-0.15-0.3 83.71
LINEAR-0.3-0.15 84.29

Table 2: Average GLUE accuracy for increas-
ing/decreasing schedules with the same range of mask-
ing rates. Bold indicates no significant difference from
the highest-performing schedule, P > 0.05, t-test.

the reversed schedule linear-0.15-0.3 performs
significantly worse than the decreasing sched-
ule linear-0.3-0.15 on GLUE for BERT-base,
and in fact has performance comparable to the
constant-0.15 baseline (Table 2).

3.4 Masking and loss are both necessary for
improved performance

Is the added signal from a dynamic masking rate
necessary, or does the removal of information from
the inputs determine the majority of the gain? Here,
we distinguish two possible sources of benefit from
our schedule: benefits from smoothing the loss sur-
face; and benefits from adding training examples by
increasing the number of masked words to predict.
To test whether the latter is necessary, we pretrain a
BERT-base model linearly scheduling the masking
rate from 30% to 15%, but we only compute the
loss on a subset of the masked tokens such that the
loss is defined over 15% of the input tokens (refer-
enced as subset-linear-0.3-0.15). We find that
subset-linear-0.3-0.15 under-performs both
linear-0.3-0.15 and constant-0.15 (Table 3).
This result suggests that obfuscating the input se-
quence according to a dynamic masking rate does
not by itself improve modeling performance, and
thus the increased signal is also necessary.

479

SCHEDULE AVG GLUE ACCURACY

CONSTANT-0.15 83.83
SUBSET-LINEAR-0.3-0.15 83.71
LINEAR-0.3-0.15 84.29

Table 3: Average GLUE score for scheduling masking
rate while holding constant the number of tokens used
in training. Bold results show no significant difference
(t-tested p < 0.05) from the highest-performing sched-
ule.

SCHEDULE AVG BLIMP ACCURACY

LINEAR-0.3-0.15 82.70
CONSTANT-0.15 82.44
CONSTANT-0.3 82.13

Table 4: Average accuracy across BLiMP tasks. Bold
indicates mean + standard error matches best average.

3.5 Improvement in grammar capabilities
In order to better understand scheduling’s effects on
the linguistic capabilities of MLMs, we evaluated
our models on the BLiMP benchmark (Warstadt
et al., 2020); this benchmark tests understanding of
syntax, morphology, and semantics.

We find the average BLiMP accuracy of
linear-0.3-0.15 significantly improves over
constant-0.3 and matches constant-0.15 (Ta-
ble 4). These results suggest that a dynamic sched-
ule enables the linguistic capabilities of a lower
masking rate.

3.6 Improvement in the pretraining objective
How does a decreasing schedule affect a model’s
language modeling ability? When evaluating
models at a 15% masking rate, we find that
linear-0.3-0.15 and constant-0.3 have the
same average MLM loss of 1.56. However,
constant-0.15 performs significantly worse, with
a best MLM loss of 1.59.

Although scheduling only temporarily sets the
masking ratio close to 30%, scheduled models
match the superior language modeling capabilities
of 30% masking throughout the entire pretraining
duration.

4 Related work

Masked Language Modeling Since ELMo (Pe-
ters et al., 2018), self-supervised pretraining has be-
come the dominant paradigm for many NLP tasks,
and BERT has been established as a basic standard
for transfer learning. Many works have changed

the BERT model architecture while retaining the
original MLM objective, including the 15% con-
stant masking rate (Liu et al., 2019; Lan et al.,
2020; Zaheer et al., 2020; He et al., 2021). Other
encoder-only models have modified the MLM ob-
jective itself to mask out spans of tokens instead of
individual tokens (Joshi et al., 2020; Zhang et al.,
2019; Levine et al., 2021). We note that both archi-
tectural changes and span masking are compatible
with our masking rate scheduling.

ELECTRA (Clark et al., 2020) proposes an al-
ternate denoising objective to masking; using a
separate “generator” encoder language model, they
replace a subset of tokens in the input sequence.
While the gradual improvement of the generator
may implicitly parallel a masking rate schedule,
explicit scheduling may still be beneficial since
accuracy can be sensitive to masking rate (Ap-
pendix G). Additionally, the generator is trained
using an MLM objective, and as such could benefit
from masking rate scheduling.

There has also been previous work exploring
whether the standard 15% masking rate is optimal.
Wettig et al. (2022) empirically investigate the op-
timal fixed masking rate and demonstrate that for
larger BERT models higher masking rates are more
performant.

Most closely related to our method is Yang et al.
(2023), which also examines dynamic masking
rates for MLM pretraining. Although there is sig-
nificant overlap in the proposed methodologies,
their work sets the final masking rate to be close
to 0%, while we found that maintaining a higher
final masking rate of 15% was necessary for perfor-
mance improvements. Additionally, our analysis
differs significantly from theirs. While both their
work and ours evaluate downstream performance
improvements, Yang et al. (2023) also investigates
how dynamic masking rates affect performance
when the training duration is extended and study
nonrandom token masks. Our analysis, by con-
trast, focuses on why masking rate scheduling im-
proves performance. To this end, we investigat-
ing whether dynamic masking rates must follow
a decaying scheduling (Section 3.3), whether the
observed gains are due to the additional training
signal or the added noise (Section 3.4), the impact
of differing masking rate schedules on grammat-
ical capabilities (Section 3.5), and the impact of
dynamic masking rates on the pre-training objec-
tive itself (Section 3.6).

480

Hyperparameter scheduling Although learn-
ing rate is the most commonly-scheduled hyperpa-
rameter (Loshchilov and Hutter, 2017; Smith, 2017;
Howard and Ruder, 2018), other hyperparameter
schedules are common. Our approach is also not
the first to schedule a hyperparameter that removes
information content from the model; prior work has
suggested scheduling dropout (Morerio et al., 2017;
Zhou et al., 2020) and input resolution (Howard
and Gugger, 2020). Scheduling has also been ap-
plied to hyperparameters that control the training
signal to the model such as batch size (Smith et al.,
2018) and sequence length (Li et al., 2022). Mask-
ing rate combines both of these properties, making
it a particularly good candidate for scheduling.

5 Discussion and Conclusions

In addition to our method’s improvement on the av-
erage final downstream performance, we find that
scheduling is a Pareto improvement for all exam-
ined pretraining durations over the typical constant
masking rate baselines on GLUE. Our analysis sug-
gests that this benefit comes from the combined
advantages of higher and lower masking rates. We
also demonstrate that our approach generalizes to
other pretraining objectives (Appendix H).

Our method of beginning with a larger masking
ratio and decaying, which we found necessary (Sec-
tion 3.3), parallels the motivation behind simulated
annealing (Kirkpatrick et al., 1983). Simulated
annealing is a general method for avoiding local
minima by smoothing the loss surface early in train-
ing through the addition of noise early in training.
However, we found that the increasing noise early
in training is not the only source of advantage. We
also benefit from increasing the signal by predict-
ing more masked tokens (Section 3.4).

Overall, our work demonstrates that masking
rate scheduling is a simple and reliable way to
improve the quality and efficiency of MLM pre-
training.

Limitations

In this work, we restrict ourselves to English-only
pretraining and finetuning. For other languages
with free word order, there may be less information
about the overall sentence structure when masking
at a higher rate because the position of a word pro-
vides less information. As such our technique may
not generalize or be suitable for other languages.

Additionally, we only investigate masking rate

scheduling in the encoder setting. Further applying
our method to encoder-decoder settings where the
model is partially trained with a reconstruction loss,
such as T5, is a direction for future research.

Finally, we only evaluate models on the GLUE
benchmark. While our evaluation is in line with
previous work, a more comprehensive set of tasks
could provide a better evaluation.

Acknowledgments

While performing this work, Naomi Saphra was
employed by New York University and Matthew
Leavitt was employed by MosaicML. This work
was supported by Hyundai Motor Company (un-
der the project Uncertainty in Neural Sequence
Modeling) and the Samsung Advanced Institute
of Technology (under the project Next Generation
Deep Learning: From Pattern Recognition to AI).

References
Kevin Clark, Minh-Thang Luong, Quoc V. Le, and

Christopher D. Manning. 2020. Electra: Pre-
training text encoders as discriminators rather than
generators. In International Conference on Learn-
ing Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Luca Di Liello, Matteo Gabburo, and Alessandro Mos-
chitti. 2022. Effective pretraining objectives for
transformer-based autoencoders. In Findings of the
Association for Computational Linguistics: EMNLP
2022, pages 5533–5547, Abu Dhabi, United Arab
Emirates. Association for Computational Linguis-
tics.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Yosef Hochberg. 1988. A sharper Bonferroni proce-
dure for multiple tests of significance. Biometrika,
75(4):800–802.

J. Howard and S. Gugger. 2020. Deep Learning for
Coders with Fastai and Pytorch: AI Applications
Without a PhD. O’Reilly Media, Incorporated.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification. In

481

https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.findings-emnlp.405
https://doi.org/10.18653/v1/2022.findings-emnlp.405
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.1093/biomet/75.4.800
https://doi.org/10.1093/biomet/75.4.800
https://books.google.no/books?id=xd6LxgEACAAJ
https://books.google.no/books?id=xd6LxgEACAAJ
https://books.google.no/books?id=xd6LxgEACAAJ
https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031

Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 328–339, Melbourne, Australia.
Association for Computational Linguistics.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving Pre-training by Representing
and Predicting Spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vec-
chi. 1983. Optimization by simulated annealing. sci-
ence, 220(4598):671–680.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Karim Lasri, Alessandro Lenci, and Thierry Poibeau.
2022. Word order matters when you increase mask-
ing.

Yoav Levine, Barak Lenz, Opher Lieber, Omri Abend,
Kevin Leyton-Brown, Moshe Tennenholtz, and
Yoav Shoham. 2021. Pmi-masking: Principled
masking of correlated spans. In International Con-
ference on Learning Representations.

Conglong Li, Minjia Zhang, and Yuxiong He. 2022.
The stability-efficiency dilemma: Investigating se-
quence length warmup for training GPT models.
In Advances in Neural Information Processing Sys-
tems.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. SGDR:
Stochastic gradient descent with warm restarts. In
International Conference on Learning Representa-
tions.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Pietro Morerio, Jacopo Cavazza, Riccardo Volpi, Rene
Vidal, and Vittorio Murino. 2017. Curriculum
dropout. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV).

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics,
pages 2699–2712, Online. Association for Compu-
tational Linguistics.

Leslie N. Smith. 2017. Cyclical learning rates for train-
ing neural networks. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV),
pages 464–472.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V.
Le. 2018. Don’t decay the learning rate, increase the
batch size. In International Conference on Learning
Representations.

Hanlin Tang, Ravi Rahman, Mihir Patel, Moin Nadeem,
Abhinav Venigalla, Landan Seguin, Daya S. Khudia,
Davis Blalock, Matthew L Leavitt, Bandish Shah,
Jamie Bloxham, Evan Racah, Austin Jacobson,
Cory Stephenson, Ajay Saini, Daniel King, James
Knighton, Anis Ehsani, Karan Jariwala, Nielsen
Niklas, Avery Lamp, Ishana Shastri, Alex Trott,
Milo Cress, Tyler Lee, Brandon Cui, Jacob Portes,
Laura Florescu, Linden Li, Jessica Zosa-Forde, Vlad
Ivanchuk, Nikhil Sardana, Cody Blakeney, Michael
Carbin, Hagay Lupesko, Jonathan Frankle, and
Naveen Rao. 2022. Composer: A PyTorch Library
for Efficient Neural Network Training.

Wilson L. Taylor. 1953. "Cloze procedure": a new
tool for measuring readability. Journalism Quar-
terly, 30:415–433. Place: US Publisher: Associa-
tion for Education in Journalism & Mass Communi-
cation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the As-
sociation for Computational Linguistics, 8:377–392.

Alexander Wettig, Tianyu Gao, Zexuan Zhong, and
Danqi Chen. 2022. Should you mask 15% in
masked language modeling?

482

https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://openreview.net/forum?id=H1eA7AEtvS
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.48550/ARXIV.2211.04427
https://doi.org/10.48550/ARXIV.2211.04427
https://openreview.net/forum?id=3Aoft6NWFej
https://openreview.net/forum?id=3Aoft6NWFej
https://openreview.net/forum?id=JpZ5du_Kdh
https://openreview.net/forum?id=JpZ5du_Kdh
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Skq89Scxx
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/WACV.2017.58
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
https://github.com/mosaicml/composer
https://github.com/mosaicml/composer
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.48550/ARXIV.2202.08005
https://doi.org/10.48550/ARXIV.2202.08005

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

Dongjie Yang, Zhuosheng Zhang, and Hai Zhao. 2023.
Learning better masking for better language model
pre-training. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 7255–
7267, Toronto, Canada. Association for Computa-
tional Linguistics.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Advances in
Neural Information Processing Systems, volume 33,
pages 17283–17297. Curran Associates, Inc.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1441–
1451, Florence, Italy. Association for Computational
Linguistics.

Wangchunshu Zhou, Tao Ge, Furu Wei, Ming Zhou,
and Ke Xu. 2020. Scheduled DropHead: A regu-
larization method for transformer models. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 1971–1980, Online. As-
sociation for Computational Linguistics.

A Training Details

Modeling details. We use a BERT-base and
BERT-large model as implemented in Hugging-
Face (Wolf et al., 2020), which have 110 million
and 345 million parameters respectively. To man-
age the training of models we use the Composer
library (Tang et al., 2022). All training is con-
ducted on 8 NVIDIA A100 GPUs. BERT-base and
BERT-large take approximately 10 hours and 24
hours to train respectively.

Pretraining. For our BERT-base experiments,
we perform 3 trials of MLM pretraining on a 275
million document subset of the Colossal Cleaned
Common Crawl (C4) dataset (Raffel et al., 2019).
For BERT-large experiments, we perform 2 trials
of MLM pretraining for 2 epochs of the C4 dataset.

For all models, following a learning rate warm-up
period of 6% of the total training duration, we lin-
early schedule the learning rate from 5e-4 to 1e-5.
We use the AdamW optimizer (Loshchilov and Hut-
ter, 2019) with parameters β1 = 0.9, β2 = 0.98,
ε = 1e-6, and a decoupled weight decay of 1e-5.
All models are trained using a sequence length
of 128 and a batch size of 4096.

Downstream evaluation. We fine-tune and eval-
uate all models on the GLUE benchmark (Wang
et al., 2018) which is composed of a variety of
tasks evaluating different natural language tasks.
All fine-tuning results are repeated for 5 trials for
each pretraining trial.

B Significance testing

For a given task, to determine whether a masking
rate schedule has performance comparable to the
masking rate schedule with the best mean perfor-
mance across seeds, we compute a one-sided t-test
of the hypothesis "Schedule X performs worse
than schedule Y ", where X is the schedule being
compared and Y is the schedule with the best mean
performance. Since we are computing multiple
pair-wise t-tests, we correct the pairwise t-tests us-
ing the Hochberg step-up procedure (Hochberg,
1988). If the corrected P-value is less than 0.05
we reject the null hypothesis and conclude that the
schedule with the greater mean performance signif-
icantly outperforms the alternative schedule.

C Sweeping Schedule Hyperparameters

In scheduling the masking rate, we introduce two
new parameters: the initial masking rate and the
final masking rate. To determine the optimal con-
figuration of these parameters for the BERT-base
experiments, we performed the following search
over parameter configurations. For all experiments,
we used the same training setup as presented in
Appendix A and selected the best hyperparameters
based on the model’s performance on the GLUE
benchmark. We first determined the optimal con-
stant rate, by pretraining with constant masking
rates in {15%, 20%, 25%, 30%, 35%}. After de-
termining that 30% was the optimal masking rate
for constant masking schedules (Table 5), we fixed
30% to be the starting masking rate for our lin-
ear schedules and swept over final masking rates
of {15%, 20%, 25%, 35%, 40%, 45%}. From this
sweep, we determined that linear-0.3-0.15 was

483

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2023.acl-long.400
https://doi.org/10.18653/v1/2023.acl-long.400
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/P19-1139
https://doi.org/10.18653/v1/2020.findings-emnlp.178
https://doi.org/10.18653/v1/2020.findings-emnlp.178

SCHEDULE MNLI-M/MM QNLI QQP RTE SST-2 MRPC COLA STS-B AVG

Constant
CONSTANT-0.15 84.3/84.71 90.38 88.31 76.65 92.91 91.94 55.89 89.38 83.83
CONSTANT-0.2 84.46/84.95 90.64 88.24 76.73 92.59 91.63 56.45 89.6 83.92
CONSTANT-0.25 84.28/84.79 90.61 88.3 76.27 92.54 92.06 56.74 89.84 83.94
CONSTANT-0.3 84.5/84.83 90.82 88.31 76.56 92.79 92.18 57.24 89.85 84.12
CONSTANT-0.35 84.4/84.99 90.84 88.31 77.81 92.86 91.67 55.62 89.88 84.04

Table 5: Downstream performance for different constant schedule configurations. For each model, we report the
average accuracy for each task in GLUE. Bold indicates no significant difference from the highest-performing
schedule, P > 0.05, t-test.

SCHEDULE MNLI-M/MM QNLI QQP RTE SST-2 MRPC COLA STS-B AVG

Decreasing
LINEAR-0.3-0.15 84.61/85.13 90.89 88.34 76.25 92.71 91.87 58.96 89.87 84.29
LINEAR-0.3-0.2 84.57/84.89 90.87 88.33 77.04 92.84 91.38 57.29 89.78 84.11
LINEAR-0.3-0.25 84.63/84.93 90.84 88.33 76.1 92.84 92.02 57.33 89.19 84.02

Increasing
LINEAR-0.3-0.35 84.31/84.85 90.73 88.28 76.9 92.91 91.68 55.85 89.7 83.91
LINEAR-0.3-0.4 84.19/84.71 90.74 88.31 76.82 92.49 91.79 55.67 87.83 83.62
LINEAR-0.3-0.45 84.07/84.68 90.85 88.29 77.02 92.43 91.98 55.84 89.92 83.9

Table 6: Downstream performance for different linear schedule configurations. For each model, we report the
average accuracy for each task in GLUE. Bold indicates no significant difference from the highest-performing
schedule, P > 0.05, t-test.

the optimal linear schedule. Furthermore, decreas-
ing masking rate schedules consistently outperform
constant masking rate schedules (Table 6).

For computational reasons, we did not perform
the corresponding sweep over scheduling rates for
BERT-large. Instead, we follow the recommenda-
tion of Wettig et al. (2022) and use a 40% masking
rate as the best constant masking rate. We then pro-
pose linear-0.4-0.15 as our dynamic schedule
following the optimal setting of a 15% decreasing
dynamic schedule observed from our sweep over
hyperparameters for BERT-base.

D Grammatical Understanding

In this section, we further detail the
BLiMP (Warstadt et al., 2020) benchmark.

BLiMP sub-tasks are organized into collections
of super-tasks that categorize a given linguistic phe-
nomenon. Each sub-task is composed of minimal
pairs of correct (positive) sentences and incorrect
(negative) examples. The model correctly evaluates
an example pair if it assigns a higher probability to
the positive sentence in the pair than the negative
sentence. However, we note that BERT is not a true
language model as it does not produce a probabil-
ity score over a sequence of tokens. Accordingly,
following Salazar et al. (2020), we use the pseudo-

log-likelihood (PLL) to score each sentence. The
PLL is computed by iteratively masking each po-
sition in the input sequence and then summing the
log likelihood of each masked token.

We present and discuss the average model per-
formance for BERT-base across all tasks in Sec-
tion 3.5, finding that linear-0.3-0.15 outper-
forms constant-0.3 and has similar performance
to constant-0.15. In table 7, we present the
performance on each individual super-task. We
find that linear-0.3-0.15 and constant-0.15
have accuracies within one standard error of each
other across all super-tasks in BLiMP. Additionally,
linear-0.3-0.15 outperforms constant-0.3 on
5 out of the 12 BLiMP super-tasks and achieves
parity on all other tasks.

Lasri et al. (2022) found that in a synthetic set-
ting, higher masking rates increase model depen-
dence on positional information and thus improve
syntactic understanding. Interestingly, we find the
opposite effect: constant-0.15 significantly out-
performs constant-0.3 on BLiMP. This observa-
tion, combined with the improved overall perfor-
mance of scheduling, suggests that the improve-
ment in grammar from scheduling is not simply
due to being exposed to a higher masking rate.

484

SCHEDULE

TASK LINEAR-0.3-0.15 CONSTANT-0.15 CONSTANT-0.3

ANAPHOR AGREEMENT 98.72 98.77 98.63
ARGUMENT STRUCTURE 76.13 76.59 75.36
BINDING 76.13 75.76 74.91
CONTROL RAISING 78.31 79.17 77.13
DETERMINER 95.51 95.72 95.43
ELLIPSIS 85.38 84.63 85.88
FILLER GAP 79.71 78.37 77.38
IRREGULAR FORMS 91.02 90.0 90.87
ISLAND EFFECTS 78.11 76.17 78.34
NPI LICENSING 80.62 80.26 81.63
QUANTIFIERS 81.08 81.79 79.93
SUBJECT VERB AGREEMENT 90.17 90.37 89.47
OVERALL 82.7 82.44 82.13

Table 7: Average accuracy for each super-task in BLiMP. Bold indicates mean + standard error matches best
average.

E BERT-Large Downstream
Performance Throughout Pretraining

18K 54K 90K 126K 162K
Pretraining Step

82

83

84

85

86

87

A
cc

ur
ac

y

Average GLUE Accuracy

Linear-0.4-0.25

Constant-0.4

Figure 2: Average GLUE accuracy evaluated over the
course of pretraining for BERT-large.

In this section we report the average GLUE
performance from different pretraining check-
points of linear-0.4-0.25 and constant-0.4
for BERT-large (Figure 2). We find that
linear-0.4-0.25 is a Pareto improvement over
constant-0.4 for each pretraining step evalu-
ated. This means that linear-0.4-0.25 exceeds
or matches baseline performance for no increase in
training time.

F Computing Scheduling Speedup

To compute the efficiency gain of linear scheduling,
we evaluate all models on GLUE after every 10K
pretraining steps. We then perform a regression on
the number of model steps and the corresponding

10K 20K 30K 40K 50K 60K 70K
Pretraining Step

80

81

82

83

84

A
cc

ur
ac

y

Average GLUE Accuracy

Constant-0.3

Linear-0.3-0.15

Constant-0.15

Figure 3: Pretraining step vs interpolated average
GLUE accuracy for BERT-base.

average GLUE performance using a model of the
form:

c1 − c2exp{(−(c3t)
c4}

where ci are the regression variables and t is the
pretraining step. After fitting a model to each sched-
ule’s step vs. GLUE performance, we compute the
expected speedup by solving for the step in which
one schedule achieves the best GLUE performance
of the schedule being compared. We show the
regressed pretraining step vs GLUE performance
curves in Figure 3. We evaluate speedup as a func-
tion of pretraining step instead of wall-clock time
because dynamic schedules and constant schedules
have identical throughput.

G Nonlinear Schedules

Let Ttotal be the total number of steps the model
takes during training and ti be the current model

485

SCHEDULE MNLI-M/MM QNLI QQP RTE SST-2 MRPC COLA STS-B AVG

Constant
CONSTANT-0.15 84.3/84.71 90.38 88.31 76.65 92.91 91.94 55.89 89.38 83.83
CONSTANT-0.3 84.5/84.83 90.82 88.31 76.56 92.79 92.18 57.24 89.85 84.12

Dynamic
LINEAR-0.3-0.15 84.61/85.13 90.89 88.34 76.25 92.71 91.87 58.96 89.87 84.29
COSINE-0.3-0.15 84.55/84.97 90.94 88.39 77.67 92.91 91.94 57.45 89.64 84.27
STEP-0.3-0.15 84.65/85.09 90.85 88.37 77.71 92.76 91.56 57.47 89.59 84.23

Table 8: Downstream performance for different scheduler functions. For each model we report the average accu-
racy for each task in GLUE.

SCHEDULE MNLI-M/MM QNLI QQP RTE SST-2 MRPC COLA STS-B AVG

RTS-CONSTANT-0.15 83.06/83.46 90.64 88.22 75.38 92.06 91.21 56.87 89.92 83.42
RTS-CONSTANT-0.3 83.09/83.72 90.64 88.27 75.74 91.9 91.15 55.41 90.02 83.33
RTS-LINEAR-0.3-0.15 83.54/83.91 90.83 88.37 74.15 92.06 91.76 57.53 90.21 83.60

Table 9: Downstream performance for different random substitution rate schedules. For each model, we report the
average accuracy for each task in GLUE. Bold indicates no significant difference from best-performing schedule,
P > 0.05, t-test.

Training duration

M
as

ki
ng

 R
at

e

Masking Rate Schedules

Constant

Decreasing Linear

Increasing Linear

Decreasing Cosine

Increasing Cosine

Decreasing Step

Increasing Step

Figure 4: Various masking rate schedules we consid-
ered. Schedules can be constant, increasing or decreas-
ing, and change following a linear, cosine, or step func-
tion.

step. Let pi and pf be the initial and final masking
rate respectively. For each step, we set the masking
rate pmask according to the following schedules. In
Figure 4 we provide a graphical representation of
the different schedules experimented with which
we detail below.

Cosine scheduling. We directly adopt cosine
scheduling as proposed in (Loshchilov and Hutter,

2017). We perform cosine scheduling by annealing
the masking rate following half a cycle of a cosine
curve. The masking rate is then defined as:

pmask,t = pi+
(pf − pi)

2
∗(1+cos ((1− t

Ttotal
)π))

We refer to cosine schedules as
cosine-{pi}-{pf}.

Step-wise scheduling. Step wise scheduling is
defined by a decay rate, γ, and a set of timesteps,
Γ = {t1, ..., tm}, for when the masking rate is
decayed. The schedule is then defined as:

pmask,t =

{
γ ∗ pmask,t−1, t ∈ Γ

pmask,t−1

Our experiments are restricted to step-wise sched-
ules that apply the decay to the masking rate only
once, halfway through the training duration. As
such, for ease of notation, we ignore the decay
rate when talking about step-wise schedules and
instead describe our step-wise schedules in terms
of their initial and final masking rates. We refer to
step-wise schedules as step-{pi}-{pf}.

G.1 Results

Following the same pretraining and evalua-
tion setup (Section A), we evaluate the perfor-
mance of cosine-0.3-0.15 and step-0.3-0.15.
We find that for linear, cosine, and step-wise
scheduling there is no statistically significant

486

difference in average GLUE performance (Ta-
ble 8). We find that linear-0.3-0.15 outper-
forms cosine-0.3-0.15 on 3 tasks, underper-
forms on 1 task, and achieves parity on the rest of
the tasks in GLUE. Similarly, linear-0.3-0.15
outperforms step-0.3-0.15 on 2 tasks, underper-
forms on 1 task, and achieves parity on the rest of
the tasks in GLUE. In the context of these results,
we conclude that the scheduler type is less signif-
icant than the schedule parameters, and as such
conduct the primary experiments in our paper with
respect to the simple linear scheduler.

H Generalization to Other Objectives

H.1 Set-Up

In order to further demonstrate the success of dy-
namically scheduling the pretraining objective for
encoder transformers, we evaluate dynamically
scheduling the token substitution in the Random
Token Substitution (RTS) objective (Di Liello et al.,
2022). In the RTS objective a subset of tokens, de-
fined by the random token substitution rate, are
randomly substituted with another token in the vo-
cabulary. The model is then trained to classify
whether a token was randomly substituted or is the
original token. The random token substitution rate
was originally set to be a constant 15%. In our
work, we experiment both with a constant 30% and
linearly decreased from 30% to 15% random token
substitution rate.

All other hyperparameters and data choices are
the same as the ones we used for MLM training of
BERT-base (Appendix A).

H.2 Results

Improvement in final performance We ex-
amine the effect of scheduling the random
token substitution rate on downstream GLUE
performance (Table 9). As rts-constant-0.15
is the better-performing constant schedule for
RTS, we focus our comparison on this baseline.
We find that rts-linear-0.3-0.15 outperforms
rts-constant-0.15 on 6 out of the 8 tasks in
GLUE, and only performs worse on 1 task, leading
to an average improvement on GLUE of 0.18%.
This result demonstrates that the improved gains
from dynamically scheduling the pretraining
objective for BERT style models also generalize to
the RTS task.

50K 60K 70K
Pretraining Step

83.00

83.25

83.50

83.75

A
cc

ur
ac

y

Average GLUE Accuracy

Rts-constant-0.15
Rts-linear-0.3-0.15
Rts-constant-0.3

Figure 5: Pretraining step vs interpolated average
GLUE accuracy for RTS with BERT-base.

Performance throughout pretraining We ex-
amine the effect at different points of pre-
training of scheduling the random token substi-
tution rate. Specifically, we compute the down-
stream GLUE accuracy for the different sched-
ules at 50K, 60K, and 70K of training. We
find that rts-linear-0.3-0.15 is a Pareto im-
provement over both rts-constant-0.3 and
rts-constant-0.15, meaning linear scheduling
performs better for each intermediate checkpoint
evaluated (Figure 5).

487

