
CoNLL 2024

The 2nd BabyLM Challenge at the 28th Conference on
Computational Natural Language Learning

Proceedings of the Second BabyLM Challenge

November 15-16, 2024



©2024 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S
Suite 400 - 134
Kerrville, TX 78028
USA
Tel: +1-855-225-1962
acl@aclweb.org

ISBN 979-8-89176-222-0

i



Introduction

We are excited to welcome the second batch of babies to the 2024 BabyLM Challenge. The session
will be held at the Conference on Computational Natural Language Learning (CoNLL; colocated with
EMNLP) on November 15, 2024 in Miami, Florida, USA.

This year, the program includes an oral session for the award-winning papers, and a poster session for all
accepted submissions. There is also an introductory presentation from the organizers summarizing the
challenge, this year’s winning submissions, and trends across submissions.

We received 31 submissions this year. A research challenge of this scale requires the participation of
many parties, and we extend a big thank you to all of them. The participants’ efforts are essential to ad-
vancing the state of cognitively plausible and sample-efficient language modeling—and to democratizing
language modeling research.

We also extend our sincere thanks to the CoNLL organizers for hosting the BabyLM Challenge for the
second time this year. Their efforts to integrate the proceedings of this challenge have been significant,
and have in turn given a home to the significant efforts of the participants.

Finally, we thank our program committee members—largely sampled from the participants—for com-
mitting their time to help us curate an excellent program.

—The BabyLM Organizing Committee: Michael Y. Hu, Aaron Mueller, Candace Ross,
Adina Williams, Tal Linzen, Chengxu Zhuang, Ryan Cotterell, Alex Warstadt, Ethan Wilcox
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Abstract

The BabyLM Challenge is a community effort
to close the data-efficiency gap between hu-
man and computational language learners. Par-
ticipants compete to optimize language model
training on a fixed language data budget of 100
million words or less. This year, we released
improved text corpora, as well as a vision-and-
language corpus to facilitate research into cog-
nitively plausible vision language models. Sub-
missions were compared on evaluation tasks
targeting grammatical ability, (visual) question
answering, pragmatic abilities, and grounding,
among other abilities. Participants could sub-
mit to a 10M-word text-only track, a 100M-
word text-only track, and/or a 100M-word and
image multimodal track. From 31 submissions
employing diverse methods, a hybrid causal-
masked language model architecture outper-
formed other approaches. No submissions
outperformed the baselines in the multimodal
track. In follow-up analyses, we found a strong
relationship between training FLOPs and aver-
age performance across tasks, and that the best-
performing submissions proposed changes to
the training data, training objective, and model
architecture. This year’s BabyLM Challenge
shows that there is still significant room for in-
novation in this setting, in particular for image-
text modeling, but community-driven research
can yield actionable insights about effective
strategies for small-scale language modeling.

1 Introduction

This paper describes the second BabyLM Chal-
lenge and its findings. The broader goals and mo-
tivation of the challenge have remained constant
since the first iteration last year. At the heart of both
this year’s and last year’s challenge is the observa-
tion that children are incredibly data-efficient lan-
guage learners, whereas artificial neural-network-
based language models are not. On the one hand,
children are exposed to less than 100 million word
tokens by the age of 13 (Gilkerson et al., 2017),

at which point they have mastered their native lan-
guage(s). On the other hand, today’s ANN-based
language models are trained on trillions of words—
five to six orders of magnitude more than the typi-
cal human language learner. For a more in-depth
discussion on the issue of data efficiency, see the
findings of last year’s challenge (Warstadt et al.,
2023) as well as Wilcox et al. (2024), a position
piece written by many of the challenge organizers.

The learning discrepancy between humans and
models raises two important questions: First, how
is it that humans are able to learn language so ef-
ficiently? And second, what insights from human
language learning can be used to improve language
models? It is our hope that by creating a plat-
form for interested parties to experiment with data-
limited and cognitively inspired language model-
ing, we can continue to make progress on these
interrelated questions. In particular, our goal with
BabyLM is to contribute to:

1. Building more cognitively and developmen-
tally plausible models of human language ac-
quisition and processing, which can be used
for the scientific study of language.

2. Optimizing training pipelines prior to scaling,
allowing for faster iteration on architectures
and hyperparameters.

3. Enabling research on language model train-
ing to a wider group of interested researchers,
beyond highly-funded industry labs.

The main difference between this year’s and last
year’s challenge is twofold: First, this year we al-
lowed participants to bring their own datasets, as
long as they stayed within the 100 million word
limit for our Strict track, or the 10 million word
limit for our Strict-Small track. The motivation
behind this decision is that pretraining data qual-
ity has been linked to large improvement gains in
at-scale language models (Gunasekar et al., 2023),
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so this year we allowed participants to improve the
training data beyond the provided dataset, which
was effectively a dataset baseline. Second, this
year included a Multimodal track, in which par-
ticipants trained on aligned text-image data, and
tested their models in a novel text-image evalua-
tion pipeline. Non-linguistic information, such as
visual input, potentially plays a large role in child
language acquisition. While visual input is not
inherently necessary for successful language acqui-
sition (for example, blind children learn language
largely without issue), visual grounding has been
linked to faster language learning (Pérez-Pereira
and Castro, 1992; Campbell et al., 2024). Further-
more, visual grounding has long been hypothesized
to aid word learning: children learn nouns more eas-
ily than verbs (Gentner, 1982; McDonough et al.,
2011), arguably because the former are more easily
linked to visual stimuli than the latter. Additionally,
children learn concrete nouns easier than abstract
nouns (Bergelson and Swingley, 2013). However,
visual grounding also presents several challenges:
Words may be time-delayed with respect to their
referents, or one word may be uttered in a context
with multiple competing possible referents. With
this in mind, our hope was that the Multimodal
track would help to explore the space of possible
computational models for visual grounding during
language acquisition.

Findings and takeaways. This year, we received
31 submissions from 17 different countries making
diverse contributions. Examples included submis-
sions proposing novel architectures, new training
objectives, innovating on knowledge distillation
methods, and proposing curriculum learning meth-
ods, among others. We conduct a meta-analysis
of the results, which yields several concrete rec-
ommendations. The best-performing submissions
constructed their own training datasets, proposed
new model architecture, or new training objectives.
Performance on the BabyLM evaluations also cor-
related strongly with training FLOPs, suggesting
that high-compute training regimes still tend to reli-
ably perform better, even in low-data settings. The
BabyLM research community also showed growing
attention to tokenization and multilingual language
modeling, while maintaining interest in curriculum
learning and applying linguistic biases to language
models.

Our data (pretraining corpora and evaluation
data; [link]), preprocessing code [link], baselines

[link] and evaluation pipeline [link] are all publicly
available. We also release the submitted models of
those who agreed to release them, along with their
hyperparameters and results [link]. The leader-
board may be found here [link].

2 Competition Details

Tracks. The second BabyLM Challenge included
three competition tracks: Strict, Strict-Small, and
Multimodal. Additionally, we opened a standalone
Paper track, accepting research related to cogni-
tive modeling with language models or small-scale
pretraining, similar to a workshop.

The Strict and Strict-Small tracks required that
submissions be trained on 100M words or less
and 10M words or less, respectively. These tracks
no longer required that participants use the fixed
dataset from last year’s challenge, although we still
provided an updated version of this dataset, de-
scribed in Section 3. Models in these tracks were
evaluated on language-only evaluation tasks.

In the Multimodal track, participants trained mul-
timodal image-text models. Participants were al-
lowed to use any model and training procedure
they desired, as long as the model could assign
(pseudo) log-likelihoods to strings of text, condi-
tioned on an image. Again, participants were free
to construct their own datasets, including unlimited
visual inputs, as long as the text data was within
a 100M word budget. To facilitate easier partici-
pation in this track, we released a suggested multi-
modal dataset that consisted of 50% text-only and
50% paired image-text data. Submissions to this
track were evaluated on both language-only and
additional multimodal tasks.

3 Pretraining Corpus

This year, we updated the text-only dataset from the
previous competition and provided a novel image-
text dataset for the Multimodal track. Data for
both the text-only and multimodal datasets can be
downloaded from https://osf.io/ad7qg/.

For the text-only dataset updates, we increased
the proportion of child-oriented data (counting both
transcribed speech and written data) to 70% up
from 39% last year, and we increased transcribed
speech data to 58% up from 55% last year. We
have eliminated the Wikipedia portion of the data
(except for Simple English Wikipedia) due to being
the only non-spoken and non-child-level data, and
we have eliminated the QED portion due to qual-
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Dataset Description # Words (multimodal) # Words (strict) # Images

Localized Narrativesa Image Caption 27M – 0.6M
Conceptual Captions 3Mb Image Caption 23M – 2.3M
CHILDESc Child-directed speech 14.5M 29M –
British National Corpus (BNC), dialogue portiond Dialogue 4M 8M –
Project Gutenberg (children’s stories)e Written English 13M 26M –
OpenSubtitlesf Movie subtitles 10M 20M –
Simple English Wikipediag Written Simple English 7.5M 15M –
Switchboard Dialog Act Corpush Dialogue 0.5M 1M –

Total – 100M 100M 2.9M

Table 1: Datasets for the multimodal and strict tracks of the 2nd BabyLM Challenge. Word counts
are approximate and subject to slight changes. aPont-Tuset et al. (2020a) bSharma et al. (2018a)
cMacWhinney (2000) dConsortium (2007) eGerlach and Font-Clos (2018) fLison and Tiedemann (2016a)
ghttps://dumps.wikimedia.org/simplewiki/ hStolcke et al. (2000)

ity issues. We have also reduced our reliance on
OpenSubtitles, which can include scripted speech,
which is arguably less ecologically valid than other
spoken sources. CHILDES now comprises a sig-
nificantly larger portion of the new dataset. We use
the entire available English portion of CHILDES
including both caregiver and child utterances, in-
creasing the proportion of child-oriented discourse
from 5% last year to 29%.1 We also replaced
last year’s children’s stories and Project Guten-
berg data with a custom children’s stories dataset
sourced entirely from Project Gutenberg. We se-
lect child-appropriate books using the provided
subject metadata, and then select the 1000 most
common books, giving us a combined corpus of
26M words. For more details about other data
sources, see (Warstadt et al., 2023).

In addition, we provide a novel image-text
dataset to facilitate easier participation in the Mul-
timodal track. This dataset has two components:
First, we provide 50M words of text-only data,
drawn from the 100M BabyLM corpus via strati-
fied sampling (that is, we preserve the relative dis-
tribution from the different data sources). Second,
we provide paired text-image data that includes
50M words of text. This paired data comes from
two sources: 27M words from the Localized Nar-
ratives dataset (Pont-Tuset et al., 2020b) and 23M
words from the Conceptual Captions 3M (CC3M)
dataset (Sharma et al., 2018b). For the Localized
Narratives dataset, we used the text captions and
the images from the MS-COCO (Lin et al., 2014)
and Open Images (Kuznetsova et al., 2020) subsets.
For the CC3M dataset, we used the image-caption

1We thank Brian MacWhinney (personal correspondence)
for alerting us to the existence of this additional CHILDES
data.

pairs whose images were still valid in January 2024.
In the OSF directory at the above link, we provided
scripts to download the images. Table 1 gives an
overview of the datasets comprising the BabyLM
pretraining set, and descriptions of each data source
are provided in Appendix A.

3.1 Preprocessing

We released train, validation, and test splits for each
of the ten data sources in Strict and Strict-Small in
proportions 83.3%/8.3%/8.3%, respectively. The
10M word Strict-Small training set is sampled ran-
domly from the Strict training set: after prepro-
cessing, we downsampled and split each source by
randomly sampling chunks of 2000 lines or longer.
The code and instructions for downloading and pre-
processing the raw data are publicly available.2

We performed minimal preprocessing in terms
of filtering and reformatting text. Notably, we pre-
served newlines, meaning newlines do not con-
sistently delimit documents, paragraphs, or sen-
tences, as in some pretraining datasets. We used
WikiExtractor (Attardi, 2015) to extract text from
the xml Simple English Wikipedia dump dated
2022-12-01. We removed <doc> tags in Simple
English Wikipedia and selected the spoken sub-
set of the BNC by taking only lines from the xml
containing the <stext> tag and extracting the text
from the xml. We used code by Gerlach and Font-
Clos (2020) to download and preprocess data from
Project Gutenberg, which we additionally filtered
to contain only English texts by authors born after
1850. The OpenSubtitles and Wikipedia portions
of the pretraining corpus were shared with us in pre-
processed form, having had duplicate documents

2https://github.com/babylm/babylm_data_
preprocessing
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removed from OpenSubtitles and preprocessing
steps performed to Wikipedia similar to our Simple
English Wikipedia procedure.3 We used regular
expressions to remove speaker and dialog act anno-
tations from the Switchboard Dialog Act Corpus
and annotations from the CHILDES data. We pre-
served speaker annotations and scene descriptions
from CHILDES. We performed no preprocessing
on the remaining datasets.

4 Evaluation and Submission

As in last year, we distributed a shared evalua-
tion pipeline based on the LM Evaluation Harness
(Gao et al., 2021). For the Strict and Strict-Small
tracks, evaluation tasks were largely the same as
the previous year: we used BLiMP (Warstadt et al.,
2020), the BLiMP Supplement (Warstadt et al.,
2023), and a subset of (Super)GLUE tasks (Wang
et al., 2019, 2018a) as the public evaluation set.
BLiMP measures whether LMs prefer grammatical
to minimally-differing ungrammatical sentences
(i.e., minimal pairs) and spans a range of grammat-
ical phenomena including subject-verb agreement,
binding, and control/raising constructions. The
BLiMP supplement is a disjoint subset of minimal
pairs designed specifically for last year’s BabyLM
Challenge to test linguistic knowledge not covered
by BLiMP, such as dialogue and pragmatics. (Su-
per)GLUE is designed to measure natural language
understanding across a diverse array of subtasks;
its tasks include question answering and natural
language inference, among others.

For the Multimodal track, participants were re-
quired to evaluate on the evaluation benchmarks
from the text tracks; this was to establish whether
training on image data facilitated sample-efficient
language modeling. In addition, we included a
suite of multimodal evaluation tasks. The public
evaluation datasets included Visual Question An-
swering (VQA; Antol et al., 2015; Goyal et al.,
2017) and Winoground (Thrush et al., 2022). VQA
measures whether vision-language models (VLMs)
prefer correct answers to questions about visual
inputs, and Winoground measures whether LMs
prefer accurate descriptions of images among min-
imally differing options (e.g., given an image of
dirt on top of a light bulb, does the VLM prefer “a
lightbulb on top of dirt”, or “dirt on top of a light-

3We thank Haau-Sing Li for allowing us to use this prepro-
cessed data.

bulb”, and vice versa given another image where
the lightbulb is on top of dirt).

This year, we used the Elements of World Knowl-
edge (EWoK) dataset (Ivanova et al., 2024) as the
hidden task for the text tracks. This task measures
pragmatic, commonsense, and discourse knowl-
edge. For the Multimodal track, the hidden task
was DevBench (Tan et al., 2024); this benchmark
contains subtasks targeted at evaluating visual and
linguistic abilities that emerge at different stages of
children’s development, including subtasks where
(i) the model must pick the correct image associ-
ated with a given word; (ii) the model must pick
the correct image corresponding to a sentence; and
(iii) the model must assign appropriately higher
or lower similarity scores to more or less similar
images. The data for these tasks was released two
weeks before the model submission deadline. We
selected these tasks based on whether they cap-
ture distinct phenomena from the public evaluation
tasks, such that optimizing only for individual tasks
or narrow subsets of linguistic competencies would
not be overly rewarded.

Most of the evaluation tasks were zero-shot.
Zero-shot evaluation entails comparing the proba-
bilities of different sequences of text. Thus, all sub-
mitted models were required to assign a (pseudo)
log-likelihood to a sequence of tokens. Addition-
ally, the (Super)GLUE tasks required fine-tuning a
classification head appended to the model. Models
did not need to generate sequences for any evalu-
ation task; thus, both autoregressive and masked
language modeling architectures could be used.

4.1 Evaluation Pipeline

We provided code to unify the evaluation setup
across submissions. This was released as a public
repository on GitHub.4 The evaluation pipeline
supports models implemented in HuggingFace,
including Transformer-based architectures, struc-
tured state space models (e.g., Mamba; Gu and
Dao, 2024), and recurrent neural networks (Peng
et al., 2023), among other architectures. Note, how-
ever, that we did not restrict the model submissions
to HuggingFace-based models; participants were
allowed to use their own evaluation setup if desired,
so long as they were able to produce predictions

4https://github.com/babylm/
evaluation-pipeline-2024
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in the expected format.5 For model and result sub-
missions, users were required to (i) upload a link
to their model (on any file-hosting service), and
(ii) provide model predictions for each example
of each task; we provided a template specifying
the format of the predictions file in the evaluation
pipeline repository.

Data preprocessing. NLP tasks in our evalua-
tion pipeline often contained vocabulary that is not
contained in the BabyLM pretraining corpora. To
address this mismatch, we filtered each evaluation
task according to its lexical content. We first com-
puted two vocabularies by collecting all words that
appear at least twice in the Strict-Small corpus and
collecting all words that appear at least twice in the
Multimodal corpus. Then, we took the intersection
of these two vocabularies to obtain the final vocab-
ulary. Finally, we iterated through each example
in each evaluation task; if an example contained
any words that appeared less than twice in the final
vocabulary, we filtered the example. Otherwise,
each dataset is presented in its original format. See
Table 4 in Appendix B for details on the size of the
filtered datasets.

4.1.1 Evaluation Paradigms
Zero-shot evaluation. For zero-shot tasks—all
of them except (Super)GLUE—we modified
the lm-eval-harness repository, originally by
EleutherAI (Gao et al., 2021). This provides func-
tionality for scoring autoregressive decoder-only
LMs and encoder-decoder LMs. For encoder-only
LMs, we modified the repository to support masked
language model scoring as described in Salazar
et al. (2020), and as updated by Kauf and Ivanova
(2023).6 We also modified the pipeline to support
multimodal models and tasks.

Finetuning. Prior to the challenge, we experi-
mented with zero-shot learning and few-shot in-
context learning for (Super)GLUE. However, this
often resulted in random-chance accuracies from
our baselines; we therefore employed finetuning.
While finetuning technically adds to the training set
size, we consider this acceptable, as finetuning on a
single GLUE or MSGS task does not meaningfully
add to the domain-general linguistic abilities of

5Upon release of the evaluation pipeline, we announced
that we would provide support as needed to teams training
LMs not based in HuggingFace.

6We used the implementation of Misra (2022) in the
minicons library.

language models. For tasks requiring finetuning—
namely, (Super)GLUE (Wang et al., 2018b, 2019)—
we base our scripts on HuggingFace’s example fine-
tuning scripts for text classification.7 We modified
the script from last year’s pipeline to work with
more recent versions of HuggingFace transformers.
We provided a default set of hyperparameters that
we found to work well across our baseline models,
though participants were allowed to modify hyper-
parameters if they wished. We also provided sup-
port for fine-tuning models via low-rank adapters
(LoRA; Hu et al., 2022). This enabled the possi-
bility of faster and more compute-efficient model
adaptation for our tasks.

4.2 Submission process

Submission format. The submission form was
hosted via OpenReview. We required a link to the
models, as well as a link to the predictions of these
models for all examples for all tasks. The predic-
tions file was formatted as a JSON; each example
had an entry with an example ID as its key, and the
the prediction of the model as its value. For classi-
fication tasks, a prediction was a label ID integer.
For zero-shot tasks, predictions were the string that
received the highest probability according to the
model. The submission process for the competition
consisted of three components, which are outlined
below:

Paper submission. Each participant submitted a
paper detailing their research, methodology, experi-
mental design, and key findings. This was required
for all participants, even if they did not submit a
model to compete in the challenge.

Artifact submission. In addition to the paper,
participants who opted to compete and adhere to
the competition rules were required to provide
supplementary materials, including model outputs,
checkpoints, and pretraining data (unless the de-
fault pretraining dataset was used). Participants
were also required to upload their predictions for
all evaluation tasks.

Submission form. To facilitate comparability
and reproducibility, participants were asked to fill
in a standardized form that captured model meta-
data, including hyperparameters, submission de-

7https://github.com/huggingface/transformers/
blob/211f93aab95d1c683494e61c3cf8ff10e1f5d6b7/
examples/pytorch/text-classification/run_glue.py
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scriptions, and links to custom data if the standard
corpus was not used.

4.3 Baselines

As opposed to last year’s baselines, which were
selected and trained relatively naively, this year’s
baselines were based on the architectures of win-
ning submissions from last year’s challenge. For
the Strict and Strict-Small tracks, we released the
following baselines: LTG-BERT (encoder-only;
Samuel et al., 2023) and BabyLlama (decoder-only;
Timiryasov and Tastet, 2023a). Although a variant
of LTG-BERT (called ELC-BERT) won last year’s
challenge (Charpentier and Samuel, 2023), Wilcox
et al. (2024) showed that similar performance on
BabyLM evaluations can be achieved without the
additional modifications of ELC-BERT. Thus, we
chose LTG-BERT as the baseline, as it is a sim-
pler model. BabyLlama is architecturally similar
to Llama (albeit with far fewer parameters), and is
additionally trained using knowledge distillation.
For the Multimodal track, we released vision lan-
guage models based on GIT (Wang et al., 2022)
and Flamingo (Alayrac et al., 2022) architectures,
both of which are autoregressive.

Implementation details. For LTG-BERT, we ini-
tially used the code provided in the repository
linked in Samuel et al. (2023), but we encountered
unstable training due to loss spikes with this setup.
We therefore used the LTG-BERT model released
on HuggingFace, and trained it using the Hugging-
Face trainer. While training was still relatively
unstable compared to other architectures, this pro-
cedure yielded performance in the expected range
relative to other baselines. For BabyLlama, we use
the code from the repository linked in Timiryasov
and Tastet (2023a), with small changes for com-
patibility with this year’s BabyLM corpus. For
the GIT and Flamingo baselines, we adapt the im-
plementation of Zhuang et al. (2024). Note that
these baselines are not necessarily meant to achieve
high scores on our evaluation tasks; rather, they
are meant to encourage participants to innovate
and improve beyond naive applications of existing
methods.

5 Competition Results

In this section, we discuss the overall results of the
competition (§5.1), track winners (§5.2), and this
year’s Outstanding Papers (§5.3).

0

5

10

15

M
ec

ha
ni

st
ic

 In
te

rp
re

ta
bi

lit
y

S
el

f−
S

yn
th

es
is

A
ct

iv
e 

Le
ar

ni
ng

D
at

a 
pr

ep
ro

ce
ss

in
g

D
at

a 
au

gm
en

ta
tio

n

H
yp

er
pa

ra
m

et
er

 tu
ni

ng

M
ul

tim
od

al
ity

Li
ng

ui
st

ic
 b

ia
s

A
rc

hi
te

ct
ur

al
 in

no
va

tio
ns

D
at

as
et

 c
re

at
io

n

Te
ac

he
r/

au
x 

m
od

el
s

T
ra

in
in

g 
ob

je
ct

iv
e

C
ur

ric
ul

um
 le

ar
ni

ng

N
um

be
r 

of
 S

ub
m

is
si

on
s

Track Multimodal Strict Strict−small

Figure 1: A breakdown of the various approaches used
in the 2024 BabyLM challenge, organized by category
and track. Curriculum learning again takes the top spot
as the most popular approach, followed by training ob-
jective innovations.

We received 31 papers and 64 models in total,
with two models submitted to the paper track. Table
2 shows the submission counts for each track. De-
spite efforts to make text–vision pretraining as ac-
cessible as possible, only three teams submitted to
the Multimodal track, for a total of 8 model submis-
sions. As none of these submissions outperformed
our baselines, we decided not to award a winner in
this track. Despite this disappointment, we hope
that our datasets and evaluation resources serve as
a basis for further exploration of text-image models
in the years to come.

We found that many submissions focused their
efforts on similar techniques. To better quantify
this, we devised, in Figure 1, a typology of the most
common approaches and assigned each submitted
model one or more labels. §6.3 provides more
detailed descriptions of each approach, as well as
results indicating which ones were most effective.

All participants are affiliated with universities
or independent research institutions. Participants’
home institutions are located in 16 different coun-
tries. The number of participants by country is
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# Models # Participants

Multimodal 8 3
Strict-Small 35 18
Strict 19 11

Total 64 31

Table 2: Total number of models and participants per
track. Participants who submitted to multiple tracks are
counted once in the total. Two models were submitted
to the Paper track only.

as follows (multinational submissions are counted
more than once): Germany (8), United States (6),
Netherlands (4), Italy (2), UK (2), Canada (1),
China (1), Greece (1), Hungary (1), Iran (1), Israel
(1), Japan (1), Norway (1), Singapore (1), Sweden
(1), Switzerland (1), and Taiwan (1).

5.1 Overall Results & Track Winners

The results from all submissions are shown in Fig-
ure 2, with the scores of the top-performing models
in each track detailed in Table 3. In the figure,
dashed gray lines show the performance of non-
competition models (either baselines or skylines),
and solid green lines show human performance on
evaluation metrics. For GLUE, we use the human
scores reported in Nangia and Bowman (2019) and
for BLiMP we use the individual human agree-
ment scores reported in Warstadt et al. (2020). For
Winoground, we plot the human group score re-
ported in Thrush et al. (2022), which is slightly
more stringent than our model evaluation setup as
it requires humans to make the correct judgments
over a set of several comparisons. For VQA, we
report the Question + Image score on real images
reported in Antol et al. (2015). Again, the human
task is arguably more difficult than our own eval-
uation as it assesses correctness in open-ended re-
sponses, rather than by comparing ground-truth
captions to distractors. Therefore, the difference
between the human and model scores on the vision
tasks is likely an underestimate of the true differ-
ence between their respective visual capabilities.

We start our discussion by noting several high-
level trends, before turning to the winning mod-
els. First, as with last year, we notice the same
overall pattern of scores between our three differ-
ent tracks—models in the Strict track tend to per-
form better than those in the Strict-Small (although
the variance is higher), and models in the Multi-

modal track perform worse. Ceteris paribus, more
data indeed helps models learn, and learning from
multimodal data remains challenging. Within text
evaluations, models also perform slightly better on
BLiMP compared to GLUE, which is a trend we
observed last year as well.

Did model performance improve over last year?
At the upper end of the distribution, the answer is
yes. This year, one model in the Strict-Small track
beats our Llama skyline on BLiMP, and the best
model in the Strict track is within just 2.5 percent-
age points shy of the human score on this task. In
addition to these few high-performing models, we
also observed a small upward shift in the distri-
bution of model scores compared to last year. For
example, last year only 5 models in the Strict-Small
track achieved a GLUE score of higher than 70; this
year that increased to 7 models. For the Strict track,
this number was 7 last year and 8 this year. One
explanation for this small upward shift is that this
year we allowed contestants to bring their own data
for the Strict and Strict-Small tracks, provided they
stayed within the data limits for each track. Many
contestants modified our provided data by procur-
ing new sources, generating data from auxiliary
language models, or filtering the existing data. As
we shall see in section 6.3, dataset creation was an
effective method, and we hypothesize that perfor-
mance increases on our benchmark tasks over last
year can be partially attributed to such data-related
improvements.

The introduction of EWoK as our hidden eval-
uation allowed us to observe that current systems
do not learn world knowledge within 100M words.
Most submissions perform near chance, at 50%
(where dots are colored purple); the maximum
score was 58.4%.8 This observation highlights a
potential area for future research. It may be that the
current BabyLM corpus—used by many of the sub-
mitting teams—simply does not contain the world
knowledge that EWoK is designed to test. One
other possibility is that existing architectures have
a bias towards learning linguistic phenomena more

8Many masked language model submissions initially re-
ported EWoK scores around 60–70%. This was likely due to a
default behavior of the LM evaluation harness, which assigns
a label of 0 when the probability of both sequences is the same.
When changing this behavior to instead uniformly sample a
label when the sequence probabilities are the same, most mod-
els get closer to 50–60% accuracy. We confirmed these scores
using a scoring script not based in the LM evaluation harness.
This only affected EWoK: we were able to closely reproduce
the participant-submitted scores for all other zero-shot tasks,
with or without uniform sampling.
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Figure 2: Overall results: At left, multimodal models on multimodal tasks; at right, all models on text tasks. N.B.
Human scores for multimodal evals differ somewhat from how we evaluate our models.

easily than relationships between concepts, physi-
cal properties, and other topics covered by EWoK.
Further work on data (perhaps including data attri-
bution methods) and algorithms will help elucidate
why EWoK is so challenging for BabyLM models.

Finally, the Multimodal track proved challeng-
ing, and no submission beat the baselines we re-
leased. We discuss this further in Section 5.2.

5.2 Winning Submissions
Strict and Strict-Small tracks. The winner of
both the Strict and Strict-Small tracks is GPT-
BERT, submitted by (Charpentier and Samuel,
2024). GPT-BERT merges the causal (CLM) and
masked language modeling (MLM) objectives from
GPT and BERT, respectively, using the following
key insight: by shifting MLM predictions one po-
sition to the right, the MLM predictions become
aligned with next-token predictions from CLM.
The authors use this insight to combine both ob-
jectives and seamlessly mix between MLM and
CLM.

To train on MLM and CLM simultaneously, the
authors duplicate the training data, masking and
processing each copy differently for causal and
masked language modeling. For each training
batch, the authors choose to draw data from the
CLM dataset copy with probability p and from the
MLM dataset with probability 1− p. The authors
explore a range of values for p, finding that a 1:7

causal-to-masked ratio tends to give good perfor-
mance across a variety of tasks. GPT-BERT modi-
fies the LTG-BERT architecture by adding gates on
attention heads, as well as the residual connection
reweighting proposed in ELC-BERT (Charpentier
and Samuel, 2023), the winner of Strict and Strict-
Small from last year.

A different submission to this year’s competition,
AntLM (Yu et al., 2024), also explored combining
CLM and MLM by alternating between the two
objectives on a per-epoch basis. The authors found
that the best schedule for training LTG-BERT was
6 epochs of CLM, followed by 60 epochs of MLM,
followed by 6 more epochs of CLM. While AntLM
gets lower scores than GPT-BERT, it performs
well overall, also beating our baselines. We con-
clude that 1) the LTG-BERT architecture remains
a strong backbone for small language models, pro-
vided one can train it effectively, and 2) combining
causal and masked language modeling objectives
clearly improves performance over single objective
baselines.

Multimodal track. We did not award a winner for
the Multimodal track this year. We received three
submissions, and none outperformed the baselines
we released. This speaks to the difficulty of mul-
timodal learning in general. Leveraging both the
text and vision modalities is challenging because
the model can often learn unimodal shortcuts to

8



Model

B
L

iM
P

B
L

iM
P

Su
pp

le
m

en
t

(S
up

er
)G

L
U

E

E
W

oK

Te
xt

Av
er

ag
e

V
Q

A

W
in

og
ro

un
d

D
ev

B
en

ch

Vi
si

on
Av

er
ag

e

St
ri

ct

GPT-BERT 86.1 76.8 81.5 58.4 75.7 – – – –
BabbleGPT 77.9 69.5 71.7 52.0 67.8
MLSM 69.6 65.4 74.8 52.6 65.6 – – – –
Best baseline: LTG-BERT 69.2 66.5 68.4 51.9 64.8 – – – –

St
ri

ct
-s

m
al

l GPT-BERT 81.2 69.4 76.5 54.6 70.4 – – – –
DeBaby 74.2 63.7 73.7 54.3 66.5 – – – –
BabyLlama-2 71.8 63.4 70.2 51.5 64.2 – – – –
Best baseline: BabyLlama 69.8 59.5 63.3 50.7 61.6 – – – –

M
ul

tim
od

al GIT-1vd125 66.5 60.9 65.6 52.2 61.3 51.9 57.8 48.1 52.6
Wake/Sleep 73.6 55.6 64.7 51.4 61.3 42.0 50.9 22.8 38.6
FlamingoCL 60.1 53.3 64.3 50.7 57.1 40.9 50.8 47.3 46.3
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Table 3: Macro averages for each benchmark across the top-performing systems (by overall score), best baseline,
and skylines.

solve tasks (Dancette et al., 2021), or the informa-
tion provided by different modalities may not be
aggregated properly (Gadzicki et al., 2020). Fur-
thermore, even if there are synergistic effects from
multimodal or paired inputs, such as gains in learn-
ing sample efficiency, these gains can be ephemeral
given more training time (Zhuang et al., 2024).

While this year’s Multimodal track presents what
is essentially a negative result, we hope that our
multimodal resources lower the barrier to entry for
future research in this area. Effective methods in
this space remain an unsolved challenge.

5.3 Outstanding Paper Awards

We presented Outstanding Paper awards to “From
Babble to Words: Pre-Training Language Mod-
els on Continuous Streams of Phonemes” (Goriely
et al., 2024) and “Exploring the effect of variation
sets on language model training efficiency” (Haga
et al., 2024).

We selected Goriely et al. (2024) for its explo-
ration of phonology, the study of sound or sign
patterns in language, to inform tokenization. The
authors incorporated phonemes into tokenization
by converting raw text into phonemic transcrip-
tions using the phonemizer package (Bernard and
Titeux, 2021). They carefully ablate character-
based, whitespace, and phoneme-aware tokeniza-

tion schemes, ultimately arriving at a negative re-
sult: the standard BPE tokenization algorithm (Sen-
nrich et al., 2016) outperforms other tokenization
schemes on BabyLM’s text benchmarks. However,
as one might expect, phoneme-aware tokenization
allows models to perform better at tasks that require
phonological knowledge, such as the recognition of
plausible pseudowords, or transcriptions of words
that are slightly mispronounced.

Haga et al. (2024) tackle the observation from
prior work that child-directed speech improves
the efficiency of training language models for cer-
tain downstream tasks, such as semantic extrac-
tion (You et al., 2021) and learning of syntactic
structure (Mueller and Linzen, 2023). They hy-
pothesize that the benefits from training on child-
directed speech could be due to the existence of
variation sets—consecutive rephrasings of the same
sentence—which are common in child-directed
speech. They construct synthetic variation sets by
prompting GPT-4 for paraphrases of sentences se-
lected from CHILDES. Haga et al. find that chang-
ing the proportion of synthetic variation sets in
the training data can indeed improve the perfor-
mance of language models on BabyLM’s evalua-
tion tasks, although the exact characterization of
this relationship remains unclear. We selected Haga
et al. (2024) for the novel connections it makes
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Figure 3: The relationship between training FLOPs and
final score.

between language modeling and specific theories
from cognitive science.

6 Discussion

In this section, we discuss several trends in this
year’s submissions (§6.1–6.3) and spotlight ap-
proaches (§6.4) which we believe point the way
towards novel and interesting work in this area.

6.1 Compute Budget

Although we did not collect systematic metadata
about last year’s models, we observed that our
top-performing submissions tended to be more
resource-intensive, particularly in the sense that
winning models were trained on a large number of
epochs. This raised questions about whether their
high performance was due to architectural innova-
tions or a large compute budget. We investigate this
issue further in Figure 3, by visualizing the rela-
tionship between models’ performance on our text-
only evaluations, and their total training FLOPs.
We observe a positive relationship across all three
tracks. To test this relationship, statistically, we fit
a linear mixed-effects regression model using the
lmer4 package in R, with the average score on the
text evaluations as our response variable, and log
training FLOPs, backbone architecture and track
as covariates. We included random slopes corre-
sponding with the model’s submission ID number,
which indicates the research group that submitted
it. We did not include interactions between the
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Figure 4: Scores aggregated by backbone architecture.
Colors indicate different submissions.

fixed effects or random slopes due to convergence
issues with the model. Inspecting the fitted model,
we find that more training FLOPs leads to better
performance (β = 2.7, p < 0.01), as expected.

6.2 Backbone Architecture
In Figure 4, we visualize the averaged text eval-
uation score broken down by each submission’s
backbone architecture. Relative to last year, we re-
ceived more submissions using Llama. DeBERTa
and HGRN (a type of RNN) lead to the highest
average scores, while the highest-scoring individ-
ual models were all based on LTG-BERT, similar
to last year. To test the impact of the backbone
model, we inspected the fixed effects associated
with model architecture from the linear regression
model described above. We found that no level
of backbone architecture leads to statistically sig-
nificant effects for α = 0.05, however, we did
find large coefficients and smaller p values for
several model architectures including DeBERTa
(β = 9.1, p = 0.06), GPT-2 (β = 8.5, p = 0.07),
Llama (β = 7.7, p = 0.07), and LTG-BERT
(β = 8.5, p = 0.06).

Our interpretation of this result is that there are
likely benefits from certain backbone architectures,
but that these effects might not be strong enough to
be picked up in a statistical analysis of 64 models.
Interestingly, recent work has noted that different
architectures and training setups often tend to con-
verge to neural representations with similar prop-
erties and capabilities (Huh et al., 2024), and we
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Figure 5: Scores on the BabyLM challenge, aggregated
by approach. Colors indicate different submissions,
which are plotted twice if they use more than one ap-
proach. Axes are zoomed to show variation in the 45-60
range more clearly.

speculate that a similar property might hold for the
best models in this year’s competition.

Furthermore, different backbone architectures
clearly have different variances in average text eval-
uation score (see Figure 4). This exposes another
axis of architecture quality: robustness in training.
For example, in this year’s competition, DeBERTa
(He et al., 2021) had high average scores, compared
to other architectures, and low variance between
scores in submissions. The winning architecture
this year was based on LTG-BERT, but LTG-BERT
also had the highest variance among all backbone
architectures. This suggests that picking the “best”
architecture might involve trading off between ar-
chitectures that can achieve high scores and archi-
tectures that are straightforward to optimize and
result in lower variance.

6.3 Common Methods

In Figure 5 we visualize the models based on the
approaches they employed. Each participant se-
lected the categories that best fit their model, and
categories were largely based on the typology of
approaches we designed for analyzing the results
of last year’s challenge, however, we also let par-

ticipants write-in approaches that we did not list.9

Note that models are counted twice if they use more
than one approach.

We find that modifications with the training ob-
jective, dataset creation, hyperparameter tuning,
and architectural innovations lead to the highest
average scores, although the latter also leads to
a lot of variance across models. As with last
year, curriculum learning, while popular, did not
lead to high scores, on average. To investigate
these trends more rigorously, we fit a mixed ef-
fects linear regression model in lme4. Our re-
sponse variable was the average score for text-
based evaluations, our covariates were dummy-
coded variables indicating the approaches used for
each model. We also included random intercepts
associated with each submission ID number, cor-
responding to the research group that created the
model. We did not include the interactions be-
tween the dummy variables due to convergence
issues with the model. We found effects to be
significant at α = 0.05 for four approaches: train-
ing objective innovations (β = 4.5, p < 0.001),
dataset creation (β = 4.8, p < 0.05), architectural
innovations (β = 3.5, p < 0.05), and linguistic
bias (β = −7.3, p < 0.001). Note that all coeffi-
cients are positive except for linguistic bias, mean-
ing that this approach lead to lower scores. We
also found a negative effect for curriculum learning
(β = −3.6, p = 0.055), although the effect is not
significant at the α = 0.05 level. That being said,
Figure 5 suggests that curriculum learning is not an
effective strategy for improving language models,
at least in the BabyLM setting.

6.4 Spotlighted Approaches

In this section, we highlight trends and new ap-
proaches used in this year’s submissions.

Recurrent Neural Networks (RNNs) RNNs (El-
man, 1990) made their debut in the BabyLM com-
petition this year. The most effective RNN ap-
proach used the HGRN architecture (Qin et al.,
2023), an RNN that adds complex forget gates on
top of the Gated Recurrent Unit (GRU) architec-
ture (Cho et al., 2014). As we noted in §6.2, the
backbone architecture, including both RNNs and
Transformers, did not have a statistically signifi-

9Although some participants wrote “controlled experi-
ments” and “evaluation methods,” we removed these from
our visualization, as every team that submitted a model tech-
nically used these approaches.
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cant impact on the models’ performance on down-
stream evaluations, which is to say that the average
performances across the best architectures were
close. Nevertheless, RNNs and Transformers do
have many differences, including their ability to
express complex functions and the cost of perform-
ing inferences (Merrill et al., 2020; Merrill and
Sabharwal, 2024). Because RNNs may be better
equipped to model human language at an algorith-
mic level and may be more compute effective in
certain settings, it was a notable finding from this
year’s challenge that their performance is roughly
equivalent to that of many Transformers.

Synthetic Data Several contestants explored us-
ing LLMs to create synthetic training data with
simple vocabularies and sentences. For example,
Haga et al. (2024), used GPT-4 to create variation
sets—synthetic data that was inspired by rephrases
in child-directed speech. Theodoropoulos et al.
(2024) extended the TinyStories approach (Eldan
and Li, 2023), sampling a dataset of stories using
the vocabulary of a three to four-year-old child by
prompting GPT-4.

Corpus Construction Since we allowed contes-
tants to construct their own datasets, many submis-
sions made adjustments to the baseline BabyLM
corpus. Common approaches included adding data
with simpler sentences and shorter words (Gha-
nizadeh and Dousti, 2024) or data better suited to
certain downstream evaluations (Charpentier and
Samuel, 2024). Edman et al. (2024) viewed train-
ing corpus construction from the perspective of sec-
ond language learning, skewing the training data
towards sources that explain the rules of a language.

Auxiliary Models Explorations of auxiliary
models and knowledge distillation were largely
based on the BabyLlama approach introduced
in last year’s BabyLM challenge (Tastet and
Timiryasov, 2024; Yam and Paek, 2024). BabyL-
lama (Timiryasov and Tastet, 2023b) trains an en-
semble of causal language models on a dataset and
then distills the ensemble into one final model via
knowledge distillation (Hinton et al., 2015). Exper-
iments revealed that BabyLlama’s two-step training
approach definitively outperforms simply training
one causal language model (Tastet and Timiryasov,
2024). Berend (2024) used an extra training phase
before pretraining, where the model learned to re-
cover the sparsely encoded latent representation of
an auxiliary model.

Tokenization Along with RNNs, a new trend
this year was linguistically inspired tokenization
(Goriely et al., 2024; Bunzeck et al., 2024). Teams
explored how graphemes and phonemes could be
incorporated into the language model tokenization
pipeline. The primary benefit of adding graphemes
and phonemes is to allow language models to per-
form tasks related to morphology or phonology
(how words look and sound): areas where language
models previously were limited (Lavechin et al.,
2023). Grapheme and phoneme-aware tokenization
schemes did not seem to help language models on
the base BabyLM evaluation tasks.

Multi-objective training A highly successful ap-
proach across several submissions was using mul-
tiple objectives during training. GPT-BERT and
AntLM, discussed in §5.2, used different methods
to combine the masked and causal language mod-
eling objectives, and both were highly successful
compared to other submissions.

Training Objective Curricula Finally, a promis-
ing variant of curriculum learning this year in-
volved creating curricula over training objectives.
Salhan et al. (2024) selectively masked different
parts of speech for masked language modeling over
the course of training. This approach goes beyond
changing the data order, which was the approach
used in most curriculum learning submissions we
received. We encourage participants for next year’s
challenge interested in curriculum learning to think
beyond data order.

7 Conclusion

The second BabyLM Challenge has demonstrated
that significant progress can be made in data-
efficient language modeling through community-
driven research efforts. With 31 submissions from
17 countries, the challenge revealed several key in-
sights: innovations in model architecture, training
objectives, and dataset construction proved partic-
ularly effective, with GPT-BERT, a hybrid causal-
masked language model architecture, emerging as
the strongest approach for the Strict and Strict-
Small tracks. However, the strong correlation be-
tween training FLOPs and performance suggests
that computational resources remain a crucial fac-
tor even in low-data settings.

While this year’s challenge added a multimodal
track, in an attempt to model grounded language
learning environments, no submissions outper-
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formed the baselines in this track. This suggests
that effectively integrating visual information dur-
ing language learning remains a significant chal-
lenge for current architectures. This year’s chal-
lenge also featured emerging research directions
not present in the previous iteration, with partici-
pants exploring linguistically-motivated tokeniza-
tion strategies and revisiting recurrent neural archi-
tectures.

Looking ahead, we envision the BabyLM Chal-
lenge continuing to evolve and expand its scope
beyond text-only and vision-language tracks. We
hope that future iterations will explore additional
modalities. such as speech, and extend to more lan-
guages, better reflecting the important fact that hu-
man language development proceeds equally well
in any natural language. By broadening the chal-
lenge’s focus while maintaining its core empha-
sis on data efficiency, we aim to inspire novel ap-
proaches that bridge the gap between artificial and
human language learning. The strong participa-
tion and innovative solutions seen in this year’s
challenge suggest that the BabyLM community is
well-positioned to tackle these ambitious goals, ul-
timately working toward language models that bet-
ter reflect the efficiency and adaptability of human
language acquisition.
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A Text Only Datasets

CHILDES. The Child Language Data Exchange System (CHILDES; MacWhinney, 2000) is a mul-
tilingual database compiling transcriptions from numerous researchers of adult–child interactions in a
range of environments, from structured laboratory activities to the home. Huebner and Willits (2021)
further process CHILDES, selecting only interactions with American English-speaking children ages 0–6,
removing all child utterances, and tokenizing the data. The resulting dataset10 contains about 5M words.

British National Corpus. The BNC (Consortium, 2007) is a 100M word multi-domain corpus of British
English from the second half of the 20th century. We select only the dialogue portion of the corpus,
totaling about 10M words.

Children’s Book Test. CBT is a compilation of over a hundred children’s books from Project Gutenberg
by Hill et al. (2016). The dataset was originally released with a set of questions for testing named entity
prediction, which we do not include in the pretraining data.

Children’s Stories Text Corpus. This dataset consists of manually selected children’s stories from
Project Gutenberg. It was compiled by Bensaid et al. (2021) for the development of a story generation
system.

Project Gutenberg. The Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2020) is a
curated and preprocessed selection of over 50k literary books in the public domain from Project Gutenberg
totaling over 3B tokens.11 This distribution comes with extensive metadata that allows us to filter texts by
language and date.

OpenSubtitles. This dataset (Lison and Tiedemann, 2016b) is a compilation of publicly available
subtitles from TV and movies on a third-party website.12 We use only the English portion.

Wikipedia. Wikipedia is a volunteer-authored encyclopedia hosted by the Wikimedia Foundation. We
use only the English portion.

Simple English Wikipedia. Simple English is classified as a separate language in Wikipedia, thus the
texts here are disjoint from those in English Wikipedia. The texts use shorter sentences and high-frequency
vocabulary and avoid idioms.

Switchboard Corpus. The Switchboard Corpus (Godfrey et al., 1992) is a collection of transcribed
telephone conversations between pairs of strangers. We accessed the text through the Switchboard Dialog
Act Corpus (Stolcke et al., 2000).

A.1 Text–Image Datasets

The corpus for the Multimodal track consisted of 50M words from the above datasets, as well as 50M
more from image-caption datasets. These include the following:

Localized Narratives. Localized Narratives (Pont-Tuset et al., 2020a) is an image-caption dataset.
Images are labeled by human annotators; the annotators were asked to describe an image with their voice
while hovering their mouse over the region being described. We use the MS-COCO and Open Images
subsets.

Conceptual Captions. Conceptual Captions (Sharma et al., 2018b) is an image-capture dataset consist-
ing of automatically scraped and filtered images and captions/annotations from billions of web pages.

10https://github.com/phueb/BabyBERTa/blob/master/data/corpora/aochildes.txt
11https://gutenberg.org/
12http://opensubtitles.org/
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B Evaluation Data Details

As described in Section 4.1, we filtered out evaluation examples containing words that did not appear at
least twice in both the Strict-Small and Multimodal pretraining corpora. Here, we present the number of
training and test examples for each evaluation task after filtering.

Note that we only control for lexical content: other factors, such as sentence length, syntactic
complexity, and overall linguistic style, remain distinct between our corpus and these tasks. In the future,
it would be helpful for researchers to focus on designing tasks on which both children and language
models can be reasonably evaluated.

Note, too, that this filtering step implies that we cannot directly compare results obtained from the
BabyLM Challenge to prior evaluations using the full datasets. We also cannot directly compare to results
from last year’s challenge, though we believe the overlap between the evaluation sets across the BabyLM
Challenges is likely high.

Task Subtask |Train| |Test|
BLiMP – – 59875

B
L

iM
P

Su
pp

le
m

en
t

Hypernym – 842
Question-Answer Congruence (easy) – 64
Question-Answer Congruence (tricky) – 165
Subject-Auxiliary Inversion – 3867
Turn-taking – 280

(S
up

er
)G

L
U

E

CoLA 8551 522
SST-2 67349 436
MRPC 3668 204
QQP 363846 20215
MNLI 392702 4908
MNLI-mismatched – 4916
QNLI 104743 2732
RTE 2490 139
BoolQ 9427 1635
MultiRC 27243 2424
WSC 554 52

E
W

oK

Agent Properties – 2210
Material Dynamics – 770
Material Properties – 170
Physical Dynamics – 120
Physical Interactions – 556
Physical Relations – 818
Quantitative Properties – 314
Social Interactions – 294
Social Properties – 328
Social Relations – 1548
Spatial Relations – 490

Task Subtask |Train| |Test|
VQA – – 25230

Winoground – – 746

D
ev

B
en

ch Visual Vocabulary – 433
Test of Receptive Grammar (TROG) – 79
THINGS – 12340

Table 4: Number of training and test examples for each BabyLM evaluation task. We present the number of
examples for the text-only tasks (left) and the multimodal tasks (right). We show the number of examples after
filtering based on the pre-training corpus vocabulary (Section 4.1). Note that only the (Super)GLUE has training
examples; the rest of the tasks are zero-shot.

C Subtask Results

Here, we present a more detailed breakdown of results by subtask. Each task has a subsection containing
a table where results are described, as well as a textual description containing and overview of the main
takeaways for each task.

C.1 BLiMP and BLiMP Supplement
GPT-BERT was the best-performing model on the BLiMP tasks in both the Strict and Strict-Small tracks.
The only subtask where it did not perform best among all models was for Hypernym, where the LTG-BERT
baseline was best. BabbleGPT and AntLM were the runners-up in the Strict track, whereas DeBaby and
BabyLlama-2 were the runners-up in the Strict-Small track. In general, submissions to the Multimodal
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track did not consistently outperform the baseline models; Wake/Sleep outperformed the best baseline
(Flamingo) on BLiMP, but no submission outperformed Flamingo on the BLiMP Supplement.

In general, the average BLiMP score across subtasks was effective in distinguishing between high-
and low-performing systems: there is high variance across submissions, and those that perform best on
BLiMP also tend to perform comparatively well on other tasks.

Similarly to last year, we observe that the HYPERNYM test suite is beyond the ability of language
models of this scale. All models (including last year’s skylines) perform very close to chance, suggesting
either that their preferences are virtually random guessing, or they show systematic biases that essentially
cancel out due to counterbalancing in the test data. However, we hesitate to conclude that these models
have no knowledge of lexical entailment relations for two reasons: First, these test sentences are somewhat
unnatural logical statements that are out-of-domain for the models; and second, there is less reason a
priori to believe that logically invalid statements have lower probabilities than valid statements.

Among the QUESTION–ANSWER CONGRUENCE test suites, we find that the “tricky” set is still highly
discriminative, probably due in part to its adversarial nature. This tells us that most models are easily
fooled by locally coherent distractor answers and pay too little attention to cross-sentential long-distance
dependency between a wh-word and a congruent answer. Only the top-performing models in the Strict
track score better than chance, and the RoBERTa skyline outperforms all models by a wide margin.

The tests for SUBJECT–AUXILIARY INVERSION are relatively easy: the best models reach near-perfect
accuracy, and all models score relatively high compared to other test suites.

Finally, TURN TAKING is highly discriminative, with some models performing at or near chance, while
the best model achieves accuracy over 90%.

BLiMP BLiMP Supplement

Model
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e
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e
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m
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Su
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t–

au
x

in
ve

rs
io

n

Tu
rn

ta
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ng

St
ri

ct

GPT-BERT 86.1 76.8 48.8 90.6 59.4 96.3 88.9
BabbleGPT 77.8 69.5 47.9 81.2 52.1 81.9 84.3
AntLM 74.9 66.0 49.3 79.7 43.6 78.3 79.3
Base baseline: LTG-BERT 69.2 66.5 55.0 75.0 53.3 87.5 61.4

St
ri

ct
-s

m
al

l GPT-BERT 81.2 69.4 47.1 73.4 54.5 86.3 85.7
DeBaby 74.2 63.7 53.3 79.7 49.1 84.1 52.1
BabyLlama-2 73.2 63.1 49.8 59.4 41.2 90.3 75.0
Best baseline: BabyLlama 69.8 59.5 49.6 54.7 41.2 86.0 66.1

M
ul

tim
od

al Wake/Sleep 73.6 55.6 49.5 50.0 30.9 85.3 62.1
GIT-1vd125 66.5 60.9 48.2 57.8 44.2 86.5 67.9
GITCL 64.0 51.2 48.9 50.0 20.0 83.7 53.6
Best baseline: Flamingo 70.9 65.0 48.8 75.0 43.6 86.2 71.4

Table 5: BLiMP Supplement accuracies for each subtask for the top performing systems (by overall score), best
baseline, and skylines. For each subtask, we mark the best performing system for each track, and the best performing
system overall.

C.2 GLUE/SuperGLUE

Scores on (Super)GLUE tasks (Table 6) show that GPT-BERT is the best-performing system in both
the Strict and Strict-Small tracks. Notably, its performance in the Strict-Small track is better than the
runners-up in the Strict track, suggesting that this approach is highly data-efficient and/or well-tuned for
small-scale language modeling. BabbleGPT and AntLM were again the runners-up for (Super)GLUE in
the Strict track, and DeBaby was again the runner-up for the Strict-Small track. MLSM is now second
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runner-up in the Strict-Small track. Once again, no submissions outperformed the best baseline (Flamingo)
in the Multimodal track. This largely confirms findings from the BLiMP and BLiMP Supplement tasks.

Model

M
ac

ro
av

er
ag

e

C
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M
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P
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L
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E

B
oo
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M
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W
SC

St
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ct

GPT-BERT 81.5 62.4 94.0 94.4 89.1 85.2 85.3 90.8 69.1 78.4 73.3 75.0
Babble-GPT 71.7 37.8 89.4 83.8 84.0 75.3 76.4 82.9 66.2 63.7 65.1 63.5
AntLM 66.3 22.2 89.4 84.9 84.2 74.8 74.4 83.2 55.4 65.8 59.9 34.6
Best baseline: LTG-BERT 68.4 34.6 91.5 83.1 86.7 77.7 78.1 78.2 46.8 61.7 52.6 61.5

St
ri

ct
-s

m
al

l GPT-BERT 76.5 48.9 92.2 91.5 87.1 80.2 80.5 86.4 64.0 72.5 69.3 69.2
DeBaby 73.7 41.8 89.2 91.2 86.6 78.1 77.6 85.5 69.8 71.1 64.2 55.8
MLSM 73.3 45.2 90.6 82.2 86.6 76.4 77.4 84.7 60.4 69.4 67.6 65.4
Best baseline: BabyLlama 63.3 2.2 86.2 82.0 83.6 72.4 74.2 82.8 49.6 65.0 60.1 38.5

M
ul

tim
od

al GIT-1vd125 65.6 30.7 89.7 81.5 83.3 72.7 72.6 78.4 51.8 64.2 54.7 42.3
Wake/Sleep 64.7 12.2 79.8 78.4 80.5 69.4 70.6 79.8 52.5 63.1 65.8 59.6
FlamingoCL 64.3 31.8 88.3 82.4 81.9 70.4 71.4 69.9 46.0 66.5 56.2 42.3
Best baseline: Flamingo 69.5 36.7 90.4 84.2 85.1 75.8 76.4 83.8 60.4 69.1 60.5 42.3

Table 6: (Super)GLUE results for each subtask for the top performing systems (by overall score), best baseline, and
skylines. For each subtask, we mark the best performing system for each track, and the best performing system
overall.

C.3 Multimodal Tasks

Model
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GIT-1vd125 54.9 51.9 57.8
GITCL 49.6 44.0 55.2
Wake/Sleep 46.5 42.0 50.0
Best baseline: GIT 54.8 54.1 55.5

Table 7: Results for the public multimodal tasks for the top performing systems (by average score), and the best
baseline. For each subtask, we mark the best performing system for each track, and the best performing system
overall.
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FlamingoCC 49.0 66.4 34.2 46.5
GITCL 48.2 73.1 39.5 32.1
GIT-1vd125 48.1 84.9 35.5 23.8
Best baseline: Flamingo 59.5 80.7 38.2 32.6

Table 8: Results for the DevBench tasks for the top performing systems (by average score), and the best baseline.
For each subtask, we mark the best performing system for each track, and the best performing system overall.
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Abstract
In this work, we explain our approach em-
ployed in the BabyLM Challenge, which uses
various methods of training language models
(LMs) with significantly less data compared
to traditional large language models (LLMs)
and are inspired by how human children learn.
While a human child is exposed to far less lin-
guistic input than an LLM, they still achieve
remarkable language understanding and gener-
ation abilities. To this end, we develop a model
trained on a curated dataset consisting of 10
million words, primarily sourced from child-
directed transcripts. The 2024 BabyLM Chal-
lenge initial dataset of 10M words is filtered to
8.5M. Next, it is supplemented with a randomly
selected subset of TVR dataset consisting of
1.5M words of television dialogues. The lat-
ter dataset ensures that similar to children, the
model is also exposed to language through me-
dia. Furthermore, we reduce the vocabulary
size to 32,000 tokens, aligning it with the lim-
ited vocabulary of children in the early stages of
language acquisition. We use curriculum learn-
ing and is able to match the baseline on certain
benchmarks while surpassing the baseline on
others. Additionally, incorporating common
LLM training datasets, such as MADLAD-400,
degrades performance. These findings under-
score the importance of dataset selection, vo-
cabulary scaling, and curriculum learning in
creating more data-efficient language models
that better mimic human learning processes.

1 Introduction

Language models (LMs) have revolutionized nat-
ural language processing, demonstrating remark-
able capabilities in understanding and generating
human-like text. However, the training of these
models typically requires vast amounts of data, of-
ten billions of words, which stands in stark con-
trast to how human children acquire language. The
BabyLM Challenge (Choshen et al., 2024) seeks to
bridge this gap by exploring methods to train LMs

more efficiently, using significantly less data while
still achieving high performance.

Human children develop impressive language
skills despite being exposed to far less linguis-
tic input than traditional large language models
(LLMs). This observation raises intriguing ques-
tions about the efficiency of human language ac-
quisition and the potential for more data-efficient
machine-learning approaches. Our research ad-
dresses these questions by mimicking the human
language acquisition process.

In this work, we present our approach to the
BabyLM Challenge, focusing on developing a
model that can learn effectively from a dataset more
closely aligned with the linguistic experiences of
a young child. Our primary contributions are as
follows:

1. Dataset curation: We carefully curated a
dataset of 10 million words, primarily sourced
from child-directed transcripts. This dataset
was then refined to 8.5 million words and sup-
plemented with 1.5 million words of televi-
sion dialogue, acknowledging the role of me-
dia exposure in modern language acquisition.

2. Vocabulary scaling: To better mimic the
limited vocabulary of children in the early
stages of language acquisition, we reduced
the model’s vocabulary size to 32,000 tokens.
This constraint forces the model to learn more
efficient representations and generalization
strategies. Also, this vocab size is similar to
the tokenizer used in Llama models (Touvron
et al., 2023).

3. Model architecture: We adopted the SmolLM
model (Allal et al., 2024) which uses a
decoder-only Transformer (Brown, 2020)
model with 125 million parameters, trained
for 5 epochs. This relatively compact model
size allows us to explore the limits of what

22



can be achieved with limited data and compu-
tational resources.

4. Experimental variations: We conducted sev-
eral experiments to evaluate the impact of dif-
ferent training strategies: a) We compared
model performance with and without the in-
clusion of television dialogue data. b) We
explored the potential benefits of curricu-
lum learning (Bengio et al., 2009), develop-
ing a method for scoring and sorting data
points based on complexity. c) We investi-
gated the impact of incorporating high-quality
monolingual datasets, such as MADLAD-
400 (Kudugunta et al., 2024), on model per-
formance.

The curriculum learning implementation in-
volved developing custom scoring functions to
assess sentence complexity based on factors like
word count, average word length, unique word ra-
tio, and punctuation usage, similar to (Nagatsuka
et al., 2023). These scores were then used to sort
the dataset, allowing for a structured learning pro-
gression.

By focusing on dataset selection, vocabulary
scaling, and curriculum learning, we present a
framework for developing more efficient language
models that could have significant implications for
both cognitive science and practical NLP applica-
tions.

The rest of this paper is as follows. Section 2 de-
tails our methodology. Next, Section 3 presents our
experimental results. After that, Section 4 discuss
the implications of our findings for future research
in data-efficient language model training, and Sec-
tion 6 concludes the paper.

2 Methodology

Our approach to the BabyLM Challenge involves
careful data preparation followed by the implemen-
tation of a curriculum learning strategy. This sec-
tion details our methods for dataset curation and
the subsequent application of curriculum learning.

We started with an initial dataset of approxi-
mately 10 million words, primarily sourced from
child-directed transcripts. This dataset was chosen
to closely mimic the linguistic input that young
children typically receive during their language ac-
quisition process.

To enhance the quality and relevance of our train-
ing data, we implemented a rigorous filtering pro-

cess as explained next:
Duplicate removal: Similar to (Rae et al., 2021),

we identified and removed exact duplicate sen-
tences from the dataset. This step helps to prevent
overfitting to specific phrases and ensures a more
diverse linguistic input.

Content refinement: After duplicate removal,
we further refined the dataset based on relevance
and quality criteria. For instance, we excluded
data points where the ratio of punctuation marks
to total words exceeded 0.33 and removed samples
with less than 10 characters, resulting in a reduced
dataset of approximately 8.5 million words.

Recognizing that modern-age children often ac-
quire language partially through media exposure,
we supplemented our refined dataset with televi-
sion dialogue. We carefully selected approximately
1.5 million words of television dialogue, focusing
on content appropriate for and often consumed by
young children.

The TV data from the TVR dataset (Lei et al.,
2020) was added to our refined 8.5 million word
dataset, resulting in a final training corpus of about
10 million words. The inclusion of TV dialogue
adds diversity to our dataset and better reflects the
varied sources of language input in a child’s envi-
ronment.

Following the data preparation phase, we imple-
mented a curriculum learning approach to optimize
the training process. This method is designed to
present the model with progressively more complex
linguistic inputs, mimicking the natural progres-
sion of language acquisition observed in human
learners.

We developed a set of scoring functions to assess
the complexity of each data point in our dataset.
These functions evaluate various linguistic features
as briefed next.

• Word count: A basic measure of sentence
length.

• Average word length: An indicator of vocab-
ulary complexity.

• Unique word ratio: A measure of lexical
diversity within a sentence.

• Punctuation count: An indirect measure of
syntactic complexity.

Each data point is passed through these scoring
functions, generating a set of individual scores that
capture different aspects of linguistic complexity.
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score(d) =
∑

f∈F
wff(d), (1)

where d is a data point which the score is computed
for, F is the set of functions used for scoring, and
wf is the weight of each scoring function, which
ranges between 0 and 1. The sum of all weights
should be equal to 1. We conducted experiments
with various weight configurations for each func-
tion and found that the unique word count function
had a greater influence on the final outcome. As
a result, we assigned it a weight of 0.4, while all
other functions were assigned a weight of 0.2.

Once the complexity score is calculated for each
data point, we sort the entire dataset in ascending
order of these scores. The sorted dataset forms the
basis of our curriculum learning approach.

Training begins with the least complex data
points (lowest scores). As training progresses,
more complex data points are introduced. By the
end of training, the model has been exposed to
the full range of linguistic complexity present in
the dataset. Throughout the training process, the
model’s learning rate decreases. Revisiting sim-
pler examples in later epochs with a lower learning
rate helps fine-tune the model’s understanding of
fundamental concepts while reducing the risk of
overfitting.

This gradual exposure to complexity allows the
model to build a foundational understanding of
simpler linguistic structures before tackling more
complex ones, potentially leading to more robust
and efficient learning.

3 Experiments

3.1 Experiments’ Setup

To evaluate the effectiveness of our approach in
the BabyLM Challenge, we conducted a series of
experiments designed to test various aspects of our
model1 and training methodology. Our experimen-
tal setup was guided by the goal of creating a data-
efficient language model that could perform well
on benchmark tasks while using significantly less
training data than traditional large language mod-
els.

We trained a decoder-only transformer model
with 125 million parameters. The model was
trained for 5 epochs, with the best-performing

1https://huggingface.co/universitytehran/
SmolLM-135M-10M-word

Hyperparameter Value

Architecture SmolLM
Model size 125M
Tokenizer vocab size 32,000
Batch size 32
Learning rate 5e-5
Weight decay 0.015
Learning rate scheduler Linear
Number of decoder layers 30
Number of attention heads 9

Table 1: Model and training parameters.

BLIMP BLIMP supplement

Without TV data 69.8 57.9
With TV data 72.2 59.1
MADLAD data 68.2 55.0

Table 2: The impact of adding 1.5M words of training
data from TVR and MADLAD datasets on the perfor-
mance of the model.

checkpoint selected based on the model’s perfor-
mance on the validation dataset. Our vocabulary
size was set to 32,000 tokens, aligning with our
strategy of mimicking the limited vocabulary of
children in the early stages of language acquisition.
The employed hyperparameters are summarized
in Table 1.

In the rest of this section, we present the re-
sults of these experiments, providing a detailed
analysis of our findings and their implications for
data-efficient language model training.

3.2 Results

In our initial investigation, we explored the impact
of utilizing television data as a rich linguistic re-
source within a constrained data environment. As
shown in Table 2, incorporating transcribed text
from television shows significantly enhances the
model’s performance on BLIMP and BLIMP Sup-
plement benchmarks. We selected 1.5M words
from the TVR and MADLAD datasets to replace
with those from the original dataset, while keeping
the overall dataset size unchanged. This observa-
tion suggests that the diverse language patterns,
dialogues, and narratives present in television con-
tent provide valuable linguistic information that
can be effectively leveraged to improve language
model capabilities.

As shown in Table 3, a key finding from our
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Vocab size BLIMP BLIMP supplement

30,000 71.1 57.3
32,000 72.2 59.1
50,000 69.0 54.4

Table 3: The impact of tokenizer vocabulary size on the
performance of the model.

experiments pertains to the optimal vocabulary size
for language model training. We discovered that
a vocabulary size of approximately 32,000 tokens
yields the best-performing models. Interestingly,
both smaller and larger vocabulary sizes resulted in
diminished performance compared to this optimal
range. This finding highlights the importance of
carefully considering vocabulary size as a crucial
hyperparameter in language model development.

To further validate this observation, we trained
our own tokenizer on English language data, specif-
ically targeting a vocabulary size of 32,000 tokens.
This custom tokenizer allowed us to tailor the vo-
cabulary to our specific dataset while maintaining
the optimal size identified in our experiments. All
models trained with tokenizers of various sizes
were trained on the same dataset, consisting of
8.5 million samples along with an additional 1.5
million samples from TV data.

The third significant finding from our research
demonstrates the efficacy of curriculum learning in
boosting model performance. We implemented a
curriculum learning approach by assigning scores
to each data point in our dataset using the scoring
functions discussed earlier in our methodology. By
training the model on this scored data, we observed
a notable improvement in overall performance.

This curriculum learning strategy enables the
model to gradually learn from simpler to more com-
plex examples, potentially leading to more robust
and generalizable language understanding. Our re-
sults suggest that carefully designed learning curric-
ula can play a crucial role in optimizing the training
process and ultimately enhancing the capabilities
of language models.

In an effort to explore alternative data sources,
we conducted experiments using the MAD-
LAD (Kudugunta et al., 2024) dataset as a sub-
stitute for our initially provided dataset. For the
selection of MADLAD data, we applied the same
set of filters used to curate the 8.5 million word
dataset. After filtering, we sampled a total of 10
million words from the MADLAD dataset. Con-

trary to our expectations, we observed a decrease
in performance across both the BLiMP and BLiMP
supplement benchmarks. Specifically, the model
trained on MADLAD (Kudugunta et al., 2024) data
achieved scores of 68.2 and 55.0 on these bench-
marks, respectively, which were lower than the
scores obtained using our original dataset.

This unexpected outcome led us to a crucial in-
sight regarding the nature of high-quality data in
language modeling. We posit that the definition of
high-quality data may vary significantly between
low-resource and rich-resource language modeling
scenarios. In low-resource environments, where
data scarcity is a primary constraint, the emphasis
may need to be placed on data that is particularly
rich in linguistic structures and diverse in its rep-
resentation of the target language. Conversely, in
rich-resource scenarios, the sheer volume of data
might compensate for potential variations in qual-
ity.

Table 4 compares our model against the base-
lines. Our model outperforms or matches the base-
lines across all benchmarks, except for the BLiMP
Supplement. Overall, our model’s performance
exceeds that of the best-scoring baseline.

4 Discussion

We hypothesize that data valuation and attribu-
tion methods could offer significant advantages
over current data selection techniques. While not
directly implemented in our study, methods such
as Influence functions (Koh and Liang, 2017) ,
Representer point (Yeh et al., 2018), and dynamic
approaches like TracIn (Pruthi et al., 2020) and
HyDRA (Chen et al., 2021), or RL-based meth-
ods for data valuation (Yoon et al., 2020), show
promise as potential tools for more effective data
curation. These techniques, originally designed to
quantify the impact of individual data points on
model performance, could potentially be adapted
to filter large datasets into smaller, higher-quality
subsets. Unlike traditional data selection meth-
ods such as number of characters (Raffel et al.,
2020), frequency (Laurençon et al., 2022), or using
a blocklist (Penedo et al., 2023) that may rely on
simplistic criteria, these advanced techniques could
provide a more nuanced understanding of data im-
portance. By identifying the most influential or
informative samples, they might enable researchers
to create more compact yet equally effective train-
ing sets. This approach could lead to reduced com-
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BLiMP BLiMP Supplement EWoK GLUE Macro Average

BabyLlama 69.8 59.5 50.7 63.3 60.8
LTG-BERT 60.6 60.8 48.9 60.3 57.7
Ours (w/o curriculum training) 71.5 58.6 50.4 62.8 60.8
Ours (w/ curriculum training) 72.2 59.1 50.7 63.9 61.5

Table 4: Comparison between our model and baselines on BLiMP (Warstadt et al., 2020), BLiMP supplement,
GLUE (Wang et al., 2018), and EWoK (Ivanova et al., 2024).

putational costs, faster training times, and poten-
tially more robust models. Furthermore, in fields
where data collection is resource-intensive, such
methods might guide more targeted and efficient
data gathering strategies. While further research
is needed to validate this hypothesis, exploring the
application of these methods in data curation could
open new avenues for improving the efficiency and
effectiveness of machine learning pipelines.

5 Limitations

Despite the promising results, this study has sev-
eral limitations. First, our approach relies on the
weights used for scoring data during curriculum
learning. With a different set of weights, perfor-
mance may even decline compared to not using
curriculum learning. Furthermore, these weights
may vary across different datasets, and finding their
near-optimal values could be computationally ex-
pensive. Second, the appropriate amount of TV
data was selected experimentally and may differ
for other datasets. Lastly, the effect of training
with this procedure on downstream tasks is unclear
and may negatively impact model performance in
those tasks. Future research should aim to address
these limitations by developing a reliable and ro-
bust method for determining score weights, select-
ing the appropriate portion of TV data, and assess-
ing the influence of this approach on downstream
task performance.

6 Conclusion

This study, conducted as part of the BabyLM
Challenge, has yielded several significant insights
into the development of data-efficient language
models that more closely mimic human language
acquisition. Our approach, focusing on careful
dataset curation, vocabulary scaling, and curricu-
lum learning, has demonstrated promising results
in training a language model with substantially less
data than traditional large language models.

These results have important implications for
both cognitive science and practical NLP applica-
tions. By demonstrating that effective language
models can be trained on significantly smaller
datasets, our work contributes to the ongoing dis-
cussion about data efficiency in AI and machine
learning. Furthermore, our findings suggest poten-
tial avenues for developing more cognitively plau-
sible models of language acquisition, which could
inform both AI research and our understanding of
human language learning.
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Abstract

Language models (LMs) exhibit significant
data inefficiency compared to human learners.
A child is able to master language while con-
suming less than 100 million words of input,
while language models require orders of mag-
nitude more tokens during training.

Our submission to the BabyLM Challenge
utilizes a combination of self-distillation and
reverse-distillation to train a sequence of en-
semble models with improved training char-
acteristics on a fixed-size 10 million-word
dataset.

Self-distillation is used to generate an ensemble
of models of a certain fixed size, while reverse
distillation is used to train a more expressive
larger model from a previously trained genera-
tion of relatively smaller models, while largely
preserving learned accuracy.

We find that ensembles consisting of two
smaller models and one identical born-again
model serves as an ideal ensemble for each
trained generation of model size. We demon-
strate that, although our method is not novel,
it provides consistent and modest performance
improvements on the BLiMP and GLUE bench-
marks.

1 Introduction

Brown et al. (2020) have demonstrated that large
language models (LLMs) have impressive capabili-
ties in various natural language processing tasks.

Moreover, the availability of open-source mod-
els such as Llama-2 (Touvron et al., 2023) has en-
abled researchers to fine-tune pre-trained models
for application-specific tasks.

Pre-training language models, however, remain
out of reach for most researchers due to prohibitive
computing and data requirements. For example,
state-of-the-art models like Chinchilla (Hoffmann
et al., 2022) and GPT-2 (Radford et al., 2019) are

Figure 1: We train an expanding series of models using
a moving window ensemble containing the previously
trained models (left to right) as teachers. The model
with sequence number 1 is trained on two predecessor
models of smaller size and one of the same size. While
models with sequence numbers 0 and 2 are trained in
a uniform ensemble of smaller-sized and equal-sized
models respectively

trained on approximately 1.4 trillion words and
200 billion words, respectively. This is in sharp
contrast with the 100 million words which a human
teenager might see during their lifetime (Warstadt
and Bowman, 2022).

The BabyLM Challenge is a shared task for
CoNLL 2024 (Choshen et al., 2024), meant to in-
centivize research into optimization of training on
constrained datasets. In the strict-small track of
this challenge, researchers are limited to using a
10 million word text-only dataset to be used for
pre-training.

In this paper, we explore the performance of
decoder-only architectures using self-distillation
and reverse-distillation starting from a base model
trained on the same dataset. Following the training
protocol described in Figure 1.

For our base model, we chose to start with the
preceding year’s decoder-only model BabyLlama
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(Timiryasov and Tastet, 2023) and retrained on it
on this year’s challenge dataset.

We subsequently trained an ensemble of teach-
ers of increasing sizes using self-distillation (SD)
and reverse-distillation (RD), attempting to charac-
terize the effect of model size and ensemble struc-
ture on the model’s performance while keeping the
dataset constant.

During Knowledge Distillation, a teacher net-
work, usually a higher capacity network is used to
train a student network, which may be of lower
capacity (Hinton et al., 2015). The emphasis
of Knowledge Distillation has typically been on
model compression, where a student network is
expected to be a more compact representation of
its teachers.

In self-distillation, as described by Furlanello
et al. (2018) in their work on Born-Again Neural
Networks, one observes that a neural network of
a given size can be re-initialized and trained with
guidance from previously trained instances of itself.
This process results in a student network that can
maintain or even improve upon the performance of
its teacher networks. Reverse distillation expands
on this idea by training a student network that is
larger than its teacher network, potentially enabling
better generalization and the capacity for further
training.

2 Related Work

Knowledge distillation (Hinton et al., 2015), a
technique central to our work, has emerged as
a popular approach for transferring knowledge
from large models to smaller, more efficient ones.
Furlanello et al. (2018) introduced the concept
of "Born Again Neural Networks," where neural
networks are trained using the predictions of an
already-trained model, illustrating the potential of
self-distillation. Gou et al. (2021) provided a com-
prehensive survey of various knowledge distilla-
tion techniques, categorizing them based on model
types and applications and demonstrating their use
in optimizing neural networks for various tasks,
including language modeling.

We build on work by Timiryasov and Tastet
(2023), which contributed to the area by explor-
ing knowledge distillation from an ensemble of
teacher models trained on small datasets, achieving
competitive results without performance degrada-
tion. Whereas BabyLlama compressed large mod-
els into a smaller model, we attempt to use born-

again ensembles of these smaller models to learn
successively larger models. We find our techniques
largely preserve and improve the base model’s accu-
racy. While BabyLlama compressed model outper-
forms its teachers, our model expansion preserves
these gains and allows us to continue learning with
larger models. The larger expanded models have
also been found to be more amenable to fine-tuning
downstream tasks.

3 Methodology

3.1 Models

Feature 58M 95M 360M
Hidden Layers 16 10 24
Attention Heads 8 12 8
Hidden Size 512 768 1024
Intermediate Size 1024 2048 3072
Teacher Quantization - - int8

Table 1: Model Variants and Architecture Details

We trained a series of decoder models with in-
creasing sizes—58M, 95M, and 360M—following
the training protocol outlined in Figure 1. Each
model size includes a sequence of three models,
all based on the decoder-only Llama architecture
(Vaswani, 2017). The architectural details for each
model variant are summarized in Table 1.

Sequence zero for a given model size is trained
using a teacher ensemble, which consists of three
models strictly smaller than the current model. Se-
quence one is trained with two smaller models
and one model of the same size. Sequence two
is trained with two models of the same size and one
smaller model. For each model size from 95M on-
ward, three teacher models are used. However, the
initial 58M model is trained in a strictly born-again
sequence.

Our base model is 58 M Sequence 0 is the base
model (Timiryasov and Tastet, 2023), which we
trained using this year’s dataset from scratch. (Note
that this starting model performs below the later
released contest baseline BabyLlama model). We
apply identical prepossessing and tokenization as
BabyLlama Model on the 10 million word dataset,
provided by BabyLM challenge organizers.

3.2 Hardware
The models 58M and and 95M were trained on
Nvidia T4 GPU, while the 360 M models were
trained on Nvidia A100 where the 360 M teach-
ers were quantized down to int8 when used for
inference during their teaching phase.
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Figure 2: Evaluation and training loss along with gradient norms for models in the sequence. We note that models
later in the teaching sequence and larger models have steeper decline losses than models earlier in the sequence.

3.3 Loss Function
We use the distillation trainer to construct teacher
ensembles, with a weighted sum of original cross-
entropy loss for training labels and a distillation
loss for matching the teacher ensemble’s targets
from Timiryasov and Tastet (2023).

L = αLcross-entropy + (1− α)LKullback Leibler (1)

We vary the composition of an ensemble of
teachers as described previously. Distillation
trainer parameters were chosen as in BabyLLama,
with a sequence length of 128, a temperature of 2.0,
and α = 0.5. Trainer hyper-parameters are listed
in Table 7.

4 Results

We evaluated the models on three benchmarks:
GLUE (Wang, 2018), BLiMP (Warstadt et al.,
2020), and EWoK (Ivanova et al., 2024). For the
GLUE benchmark, an additional fine-tuning phase
was included to enhance the model’s task-specific
performance. Detailed results are provided in Ap-
pendix A.

4.1 Training
Figure 2 illustrates the training dynamics observed
for each model in the sequence. Successive mod-
els and those of larger sizes consistently displayed
lower validation losses compared to their prede-
cessors. Training losses and gradient norms also
decreased more sharply in later sequence models.
While validation loss did not always correlate with
improved performance across all benchmarks, mod-
els later in the sequence generally performed better
on several tested benchmarks.

4.2 BliMP
The results of the BliMP benchmark for our stu-
dent/teacher models can be seen in Table 2. We
note that sequences of larger models tend to per-
form better on average on BLiMP tasks than the
smaller models. We note that Sequence 1 tends
to perform better than Sequence 0 for model sizes
95 and 360. We hypothesize that this effect might
be due to smaller models, as teachers might have
regularizing effects on teaching labels, while the
Sequence-0 model of the same size might help in
training the Sequence-1 model during training. Fur-
ther ablation studies would required to confirm the
optimal ensemble combination of teachers for a
model.

We note that the lower validation loss in suc-
cessive generations does not capture the drop in
BLiMP accuracy which we note between Sequence
1 and Sequence 2 of model size. Thus cross-entropy
and divergence loss are failing to capture nuances
being tested in the benchmarks.

Table 5 shows the results on the 14 BLiMP sub-
tasks. In Figure 5) We plotted the accuracy of the
BLiMP sub-tasks, which had the highest variance
in model accuracy. We note that larger models are
improving in accuracy; however, for anyone sub-
task, the improvements are not strictly monotonic.
For example, the wh_island subtask performance
has two peaks in accuracy: one for model 95 M
model of Sequence 1 and another for 360 M of
Sequence 2.

4.3 GLUE
Table 3 provides a detailed breakdown of the model
performance on each of the various GLUE sub-
tasks. GLUE benchmarks involve an initial task
fine-tuning phase before the benchmark metrics are
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Model Size Sequence # BLiMP Sup.
58 M 0 0.68709 0.5637
58 M 1 0.69058 0.56742
58 M 2 0.69051 0.58007
95 M 0 0.68926 0.57322
95 M 1 0.69395 0.57396
95 M 2 0.69147 0.56693
360 M 0 0.69605 0.58694
360 M 1 0.69815 0.58042
360 M 2 0.70102 0.58267

Table 2: Model accuracy by size and iteration number on
the blimp evaluation. We note that accuracy improves
with model size and that iterations that have two smaller
prior models in the teacher ensemble have higher accu-
racy for a given model size. Supplementary runs are
also provided for reference; however, we only observe a
trend of larger models being better in these results.

computed. The details of the list of fine-tuning
parameters for GLUE that are used are provided in
Table 6. Notably, due to computational constraints,
the models were fine-tuned for three epochs prior
to evaluation.

Figure 3 shows the qualitative performance of
all nine of our trained models. We observe that 6 of
the 11 tasks in GLUE models performed at approx-
imately the same level. However, models 360-1
and 360-2 show significant improvement in fine-
tuned accuracy on tasks in wsc, improving from
37% baseline performance to 48% and 50% respec-
tively. While models 95-1 and 95-2 roughly double
the baseline accuracy to approximately 60%. As
in BLiMP, we observe that task performance is not
monotonically increasing.

Other modest improvements are seen for models
95-1 and 95-2 task rte: from 50% in baseline accu-
racy to 53% for both of them. The best-performing
model on rte 360-0 has both these models in its
parent model and can preserve and improve upon
their accuracy.

Model 360-0 is the best performing model on
tasks cola, multirc, rte. While models 95 − 1,
95 − 2, 360 − 1, 360 − 2 have higher average
performance. Notably, the majority of the models
outperform the chosen baseline model in average
performance.

In both model classes 95 and 360, the sequence
1 models have the highest average performance.
Thus, we hypothesize, as in the case of BliMP, that
having two smaller models along with the same
sized model in the ensemble allows sequence 1

models with more excellent stability, with smaller
models having a regularizing effect on learned la-
bels, thus allowing sequence 1 models to preserve
knowledge of previous sequences. Thus, further
investigation into a measurement of catastrophic
forgetting between model sequences is required
(Kemker et al., 2018).

4.4 EWoK

Finetuning on the EWoK benchmark doesn’t show
any significant progress among models. The aver-
age accuracies for models have differences only at
hundredths of a percent (See Table 4 and Figure 4).
Further analysis of this benchmark is not included
in our results.

5 Conclusion

In this study, we have shown that we can train
an ensemble of born-again teacher networks and
use the ensemble of teachers to train larger student
models. We find that having a model of the same
size while having two models of smaller sizes in
the ensemble leads to consistent improvements in
the BLiMP benchmark. Similar improvements are
also noted on GLUE benchmarks, which included
an intermediate finetuning step.

We note that the accuracy of a smaller model is
not lost in the reverse distillation process, thus al-
lowing us to continue training with a larger models.

For several of the benchmark tasks, however,
we observe that improvements are non-monotonic
but trend upward. Thus, knowledge-distillation for
student models is not consistently noise-free.

This self-distillation and reverse-distillation pro-
cess can be repeated to grow the size of our en-
sembles. With larger models more amenable to
finetuning.

Further work is needed to quantify the limits of
this method of improvement compared to directly
training a large network and distilling it down to a
smaller model. Moreover, further work is required
to quantify measures of catastrophic forgetting, as
validation loss is often not predictive of benchmark
performance and particular sub-task/skill.

6 Limitations

This study used the BablyLM dataset out of the
box, but it could have benefited from more straight-
forward datasets available in a more consistent for-
mat. Further pre-processing and curriculum design
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would possibly provide improvements over cur-
rently applied methods.

Although the inspiration for this paper was based
on a hypothesis about a sequence of teaching selves
from (Minsky, 1988). The methods employed in
this paper are not guided by strong priors of biolog-
ical plausibility.

In contrast to human learning which often in-
volves multiple modalities including real-world in-
teractions, visual and audio perception in the for-
mation of the language faculty such grounding was
not utilized by our current method. Thus, no under-
standing of phonetics, visual concepts, or intuitive
physics was needed to bootstrap our model.

The sequence of teachers employed in this paper
trades off lack of data availability with the com-
puting required to train each subsequent round of
teachers from the ground up; further study is re-
quired to investigate if prior knowledge of teachers
can be incorporated in a less compute-intensive
manner, such that skills learned by teachers are not
lost in subsequent rounds of self-distillation and
reverse distillations.

While most metrics were preserved in such sub-
sequent rounds, some metrics did suffer from dis-
tillation and only recovered further down in the
sequence.

Moreover, the further down the sequence one
proceeds with increasing the model size, one runs
into computational challenges. Thus, we were re-
quired to use quantization to accommodate larger
models on our compute node. We also limited the
number of training and fine-tuning epochs to stay
within resource constraints.

Further study is also required to understand the
effects of chosen hyper-parameters as we increase
the size of the teachers in later stages of inference.

Finally, this approach depends on the availability
of a distilled smaller model as a starting point for
training. Further investigation is required on how
distillation back down to smaller models from our
larger models will preserve the newly learned skills
and if auto-regressive training of our sequences is
thus possible.

A Appendix

Figure 3 shows qualitative results on GLUE bench-
marks. See Table 3 for quantitative results on
GLUE. The finetuning parameters used for GLUE
are listed in Table 6.

Similar qualitative and quantitative results on

EWoK can be seen in Figure 4 and Table 4.
For BLiMP, we visualize subtasks with the high-

est variance across models in Figure 5 while Table
5 provides a full quantitive breakdown by subtasks.

Lastly Table 7 lists the trainer hyper-parameters
used to construct the ensembles.
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Figure 3: GLUE results for 9 models. All models were fine-tuned with standard params given by BabyLLM
organizers except the number of epochs parameter, which was set to 3

model qqp sst2 qnli mnli-mm mnli mrpc cola boolq multirc rte wsc avg
58-0* 0.8773 0.8830 0.8082 0.7390 0.7343 0.7108 0.7107 0.6416 0.6192 0.5036 0.3654 0.6903
58-1 0.8788 0.8693 0.8001 0.7421 0.7378 0.7059 0.6839 0.6483 0.6254 0.5036 0.4038 0.6908
58-2 0.8789 0.8693 0.8034 0.7459 0.7400 0.7353 0.6877 0.6489 0.6299 0.4748 0.3846 0.6908
95-0 0.8791 0.8739 0.8075 0.7445 0.7398 0.7108 0.7011 0.6520 0.6308 0.4676 0.3654 0.6884
95-1 0.8764 0.8601 0.8042 0.7447 0.7370 0.7010 0.6858 0.6391 0.6064 0.5324 0.5962 0.7076
95-2 0.8795 0.8532 0.8320 0.7486 0.7410 0.7108 0.6839 0.6489 0.5602 0.5252 0.5962 0.7072

360-0 0.8792 0.8624 0.8313 0.7467 0.7414 0.7010 0.7184 0.6330 0.6361 0.5540 0.3846 0.6989
360-1 0.8827 0.8739 0.8291 0.7478 0.7490 0.7059 0.7069 0.6428 0.6291 0.4892 0.4808 0.7034
360-2 0.8801 0.8624 0.8195 0.7496 0.7457 0.7059 0.6916 0.6379 0.6200 0.4820 0.5000 0.6995

Table 3: Performance of models on GLUE tasks, sorted by mean accuracy. The models were finetuned for 3 epochs
for each of the Glue Benchmarks. 58-0 is considered the baseline model with which we compare.

33



Model Ewok Average Accuracy
58-0 0.5041
58-1 0.5018
58-2 0.5002
95-0 0.4959
95-1 0.5001
95-2 0.5021

360-0 0.5008
360-1 0.5017
360-2 0.5013

Table 4: No significant improvement was found on EWOK tasks. Overall accuracy stayed the same, with minor
variations downwards.

Figure 4: Ewok results for 9 models. Standard parameters were used to run Ewok evaluations.
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Subtask 58-0 58-1 58-2 95-0 95-1 95-2 360-0 360-1 360-2
coordinate_structure_constraint_complex_left_branch 0.292 0.266 0.234 0.245 0.228 0.235 0.233 0.233 0.245
existential_there_quantifiers_2 0.427 0.403 0.337 0.367 0.361 0.341 0.387 0.457 0.437
irregular_past_participle_adjectives 0.976 0.917 0.896 0.965 0.953 0.947 0.968 0.974 0.979
left_branch_island_echo_question 0.559 0.614 0.546 0.581 0.420 0.427 0.528 0.445 0.553
left_branch_island_simple_question 0.479 0.456 0.427 0.417 0.420 0.423 0.467 0.438 0.447
matrix_question_npi_licensor_present 0.099 0.131 0.115 0.105 0.239 0.230 0.104 0.144 0.141
npi_present_1 0.230 0.268 0.274 0.275 0.265 0.276 0.312 0.283 0.315
npi_present_2 0.235 0.310 0.344 0.362 0.317 0.328 0.362 0.365 0.376
only_npi_licensor_present 0.821 0.997 0.997 1.000 0.994 0.986 0.985 0.965 0.992
only_npi_scope 0.508 0.547 0.503 0.485 0.591 0.601 0.544 0.517 0.519
principle_A_c_command 0.505 0.558 0.532 0.529 0.558 0.523 0.554 0.556 0.570
principle_A_domain_2 0.742 0.678 0.714 0.730 0.675 0.711 0.702 0.692 0.705
superlative_quantifiers_1 0.851 0.764 0.838 0.831 0.888 0.839 0.857 0.815 0.849
superlative_quantifiers_2 0.610 0.644 0.680 0.612 0.773 0.795 0.688 0.831 0.768
wh_island 0.526 0.506 0.523 0.546 0.601 0.533 0.600 0.598 0.601

Table 5: Break down of BliMP accuracy by subtasks. Results on BLiMP filtered subtasks for different models. We
note that later models tend to perform better. With a handful of metrics losing performance.

Figure 5: Blimp results for 9 models, grouped by sequence. All models were fine-tuned with standard parameters
given by BabyLLM organizers except the number of epochs parameter, which was set to 3. We show the sub-tasks
which have the highest variance across the models.
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Fine Tuning Hyper-parameters Value
Learning Rate 5e-5
Patience 3
Batch Size 64
Max Epochs 3
Seed 12

Table 6: GLUE fine-tuning hyper-parameters, due to
computational cost limitations, fine-tuning was only
performed for 3 epochs.
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Abstract
Language models are typically trained on large
corpora of text in their default orthographic
form. However, this is not the only option; rep-
resenting data as streams of phonemes can offer
unique advantages, from deeper insights into
phonological language acquisition to improved
performance on sound-based tasks. The chal-
lenge lies in evaluating the impact of phoneme-
based training, as most benchmarks are also
orthographic. To address this, we develop a
pipeline to convert text datasets into a continu-
ous stream of phonemes. We apply this pipeline
to the 100-million-word pre-training dataset
from the BabyLM challenge, as well as to stan-
dard language and grammatical benchmarks,
enabling us to pre-train and evaluate a model
using phonemic input representations. Our re-
sults show that while phoneme-based training
slightly reduces performance on traditional lan-
guage understanding tasks, it offers valuable
analytical and practical benefits.

phonemetransformers/FromBabbleToWords
(CC BY 4.0)

codebyzeb/PhonemeTransformers (CC BY
4.0)

codebyzeb/CorpusPhonemizer (CC BY 4.0)

1 Introduction

The use of orthographic text to train neural net-
works is so commonplace that it is considered the
default. This has not always been the case.

When neural networks were first applied to lan-
guage, models were primarily trained on contin-
uous streams of phonemes or graphemes, rather
than orthographic text with its written artefacts.
These early neural models demonstrated a strik-
ing ability to acquire phonology, syntax and se-
mantics (Elman, 1990; Seidenberg and McClel-
land, 1989; Prince and Smolensky, 1997). As tech-
nology scaled, subword representations became
the dominant representation, offering key advan-
tages such as reducing computation costs and better

character 
tokenization

no word 
boundaries


phonemic 
representation


h i  t h e r e

hi there

h a ɪ ð ɛ r

hithere haɪ ðɛr

Figure 1: An illustration of all three adjustments that
we make to convert text input to continuous streams of
phonemes.

capturing out-of-vocabulary items (Sennrich et al.,
2016). Written text became favored over speech
transcriptions due to matching the domain of down-
stream tasks and due to the abundance of diverse
texts available through web-scraping (Bansal et al.,
2022). Today, “large language models” (LLMs)
all use subword-based text inputs and perform im-
pressively on a variety of language understanding
tasks (Zellers et al., 2019; Hendrycks et al., 2020;
Suzgun et al., 2023).

The success of these models on downstream
tasks has motivated researchers to examine the in-
ternal representations of LLMs and analyze their
ability to learn grammatical generalizations (He-
witt and Manning, 2019; Hu et al., 2020; Manning
et al., 2020). However, their phonological capabil-
ities remain understudied due to the orthographic
nature of training data.

An alternative input representation for text-based
language models is to use phonemes rather than
graphemes, corresponding to how words are pro-
nounced, rather than how they are written. The use
of phonemes, such as those described by the Inter-
national Phonetic Alphabet (IPA), as an underlying
input representation, presents the following ana-
lytical and practical benefits over an orthographic
representation that is the modern-day default.
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Analytical: A phoneme-based representation is
useful when using language models to study
the distributional properties of phonemes (Mayer,
2020) and phonological systems of languages more
broadly (Eden, 2018). Many language acquisi-
tion studies prefer using phonemes as a representa-
tion that more closely represents the human learn-
ing environment, which facilitates statistical learn-
ing experiments ranging from word segmentation
(Çöltekin, 2017), to past-tense formation (Kirov
and Cotterell, 2018), and broader lexico-syntactic
knowledge (Lavechin et al., 2023).

Practical: IPA-encoded text has been found to
be beneficial for a variety of NLP tasks including
lyric generation (Ding et al., 2024), text-to-speech
(Sundararaman et al., 2021; Li et al., 2023) and low-
resource language modeling (Leong and White-
nack, 2022). Phonemes also benefit multi-lingual
language modeling by establishing a universal rep-
resentation shared between languages (Feng et al.,
2023; Zhu et al., 2024).

Despite the analytical and practical advantages
of training language models with phonemes, a key
question remains: Can modern language model
architectures encode grammatical knowledge and
succeed at language understanding tasks when
trained with phoneme-based representations?

Answering this question is challenging for two
reasons. First, training and evaluation data need
to be provided to a model in both a phonemic
and graphemic representation. Second, it is non-
trivial to select the transformations to convert or-
thographic text into phonemic representations and
to evaluate how these individually affect a model’s
performance across a wide variety of benchmarks.

In this work, we address these challenges as fol-
lows. We first present a method for converting
training data and evaluation benchmarks into a uni-
fied IPA representation. This enables language
models to be trained and evaluated on graphemic
and phonemic representations of the same data. We
then identify three key transformations which en-
able us to map from the written representation typi-
cally used to train language models to the phone-
mic representation often used in analytical studies
(see fig. 1). Finally, we conduct a careful ablation
of the three transformations: we train a language
model on the same corpus of 100 million words
with all combinations of the three transformations
(23 configurations), evaluating the model’s gram-

matical capabilities and its resulting performance
on downstream language understanding tasks.

We find that large language models are power-
ful statistical learners capable of learning grammar
from a phonemic input representation. Although
we observe a decrease in performance on some
tasks, the degradation is not as substantial as has
been anecdotally suggested by previous studies.
Our ablation studies indicate that the impact of
each transformation that we use to convert ortho-
graphic text to continuous phoneme streams de-
pends on the downstream task; tasks in the BLiMP
Supplement set are particularly sensitive to the use
of phonemes, while those in GLUE are sensitive to
character tokenization. A deeper analysis into these
ablations reveals that many evaluation instances
rely on information only present in written text
(such as punctuation). Finally, we take advantage
of the fact that we train models using phonemic
streams and evaluate our models for phonological
knowledge using the BabySLM benchmark. Our
models achieve the best scores on this benchmark
to date.

2 Related Work

The standard input representation for training large
language models consists of written text split into
subword units. By contrast, studies that train mod-
els using a phonemic input representation tend to
split words into individual phonemes, without word
boundaries (as spoken utterances are produced con-
tinuously, without clear pauses between words).

We identify three key transformations that bring
us from the standard input representation used
by language models to this alternative phoneme
stream representation:

• Character tokenization Treating each
phoneme or grapheme as a token, rather than
using subwords.

• Word boundary removal Removing whites-
pace or other word boundary cues from the
input.

• Phonemic transcription Converting words
to a phonemic representation.

Each transformation can be made independently or
in combination, as illustrated in fig. 1.

Previous literature has extensively explored
these three transformations but they have typically
been studied independently and been used for dif-
ferent downstream purposes.
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2.1 Training with Phonemes

Several language models have been trained with
phonemic input (Sundararaman et al., 2021; Gale
et al., 2023) but it remains a challenge to do so
due to the lack of large phonemic corpora. While
a number of well-known speech-based datasets
include phonemic transcriptions, such as Switch-
board (Godfrey et al., 1992) and TIMIT (Garo-
folo et al., 1993), these datasets are small com-
pared to the trillions of tokens contained in stan-
dard language model pre-training corpora (Elazar
et al., 2024). The majority of works that use phone-
mic representations typically rely on grapheme to
phoneme conversion tools (Bisani and Ney, 2008;
Hasegawa-Johnson et al., 2020) to generate coarse
phonemic transliterations of text data.

It is also a challenge to evaluate the broad capa-
bilities of language models trained with phonemes,
as most benchmarks assume a graphemic represen-
tation, even some that assess phonological knowl-
edge (Suvarna et al., 2024). One benchmark that
assesses both the syntactic and phonological capa-
bilities of language models is BabySLM (Lavechin
et al., 2023). We discuss this benchmark further in
section 5.1.

2.2 Character-based Language Models

The use of characters as the input representation,
rather than words or subwords, has been exten-
sively explored. Character-level language models
offer a simplified input stream compared to the stan-
dard approach of training on learned subword to-
kens. Many studies have developed specialized ar-
chitectures to train language models on characters
(Jozefowicz et al., 2016; Kim et al., 2016; Ma et al.,
2020; Al-Rfou et al., 2019) while other approaches
seek to establish ‘token-free’ training regimes to
eliminate the need for subwords entirely (Clark
et al., 2022; Xue et al., 2022).

Another alternative input representation is to
split words into morphemes, which provide the-
oretical benefits over subwords and have their own
analytical and practical benefits particularly for
morphologically rich languages (Üstün et al., 2018;
Nzeyimana and Niyongabo Rubungo, 2022; Fan
and Sun, 2023). Mapping orthographic text to mor-
phemes continues to be a challenging task, requir-
ing dedicated systems trained on labeled corpora
(Batsuren et al., 2022) and we do not consider mor-
phemes in this work.

2.3 Removal of Word Boundaries

When using a phonemic input representation to
model speech, word boundaries are not typically
included, as word boundaries are not explicitly
marked in the speech stream. The phoneme stream
representation (i.e., the combination of all three
transformations) is the typical representation for
word segmentation studies, where the task is to
learn word boundaries without supervision (Brent,
1999). A wide variety of statistical, dynamic pro-
gramming and neural approaches have been applied
to the task, with consequences for acquisition re-
search and low-resource language modeling (Blan-
chard et al., 2010; Çöltekin, 2017; Algayres et al.,
2022; Goriely et al., 2023).

2.4 Input Representation Comparisons

To the best of our knowledge, a full systematic
comparison of the three input transformations
has not yet been conducted. Hahn and Baroni
(2019) investigated the effect of removing word
boundaries and using a word-level or character-
level tokenization, evaluating on several psycholin-
guistic benchmarks. However, they only used
graphemic text from Wikipedia and did not ab-
late the two transformations, only comparing a
word-level model (with word boundaries) to a
character-level model (without word boundaries).
Nguyen et al. (2022) extend this work, comparing
character-level graphemic input (with and without
word boundaries) to character-level phonemic in-
put (with and without word boundaries) by train-
ing on the Librispeech corpus (Panayotov et al.,
2015). They also compare larger units of tokeniza-
tion (BPE and word-level) for both graphemic and
phonemic text, but only with word boundaries in-
cluded, missing out on several key combinations.

In our work, we provide a complete comparison
of these three input representation transformations
by considering all combinations, leading to new
input representations that have not been studied be-
fore (such as subword tokenization trained without
word boundaries). We also use a larger model than
previous work, a 12-layer transformer rather than a
3-layer LSTM.

3 Phoneme Stream Pipeline

To convert the data to a phonemic representation,
we developed the Corpus Phonemizer tool:1 a li-

1
https://github.com/codebyzeb/

Corpus-Phonemizer
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brary to convert various corpora across many differ-
ent languages to a unified phonemic representation
in IPA, prepare them as Huggingface datasets and
subsequently train Huggingface tokenizers.

3.1 Dataset Phonemization

Our toolkit leverages the phonemizer package
(Bernard and Titeux, 2021) with the espeak-ng
backend2 which uses a combination of a pronunci-
ation dictionary and pronunciation rules to convert
orthographic transcriptions to IPA. We select the
American English accent (en-US) for a consistent
pronunciation.

The tool outputs phonemes separated by spaces.3

For instance, the phonemic representation of “what
a conundrum!” is:

w 2 t ␣ 2 ␣ k @ n 2 n d ô @ m ␣

One limitation of our phonemization tool is that
‘a’ is not reduced to the shwah, ‘@’ as it would
be in continuous speech. We discuss the limita-
tions of this phonemization process in section 6.2.
Crucially, we lose punctuation marks, as they are
an artefact of orthographic text and equivalent in-
formation in speech would be conveyed through
prosody, stress, or non-linguistic signals such as
gestures, none of which are included in this simple
phonemic format. This has potential consequences
for downstream tasks that rely on such markers, as
discussed in section 5.3.

3.2 Tokenizer Preparation

Using the phonemic data transcribed by the Corpus
Phonemizer tool, our pipeline then implements the
three input transformations by preparing different
tokenizers:

• Character tokenization We either train the
tokenizer using the Byte-Pair Encoding (BPE)
algorithm (Sennrich et al., 2016) (✗) or create
a character-based tokenizer by extracting a
vocabulary from the data (✓).

• Word boundary removal We either train the
tokenizer with whitespace included (✗) or use
the tokenizer’s normalizer to strip whitespace
(✓).

• Phonemic transcription The tokenizer is ei-
ther trained on the original orthographic

2
https://github.com/espeak-ng/espeak-ng

3It is common practice to separate phonemes by spaces to
make tokenization simple, as some individual phonemes may
consist of several symbols, e.g. tS or 3I.

dataset (✗), or the phonemized version de-
scribed above (✓).

These transformations can be made indepen-
dently, allowing for all eight combinations of the
transformations to be implemented as individual
tokenizers. For the combination of BPE and no
word boundaries, the whitespace is removed before
training, so the model may learn ‘subwords’ that
cross word boundaries.

Each tokenizer also adds a dedicated “utterance
boundary” token UTT_BOUNDARY to the start of each
sentence, representing the pauses between spo-
ken utterances and serving as a dedicated start-of-
sentence token. When sentences are collated, it
also implicitly acts as an end-of-sentence token, as
discussed in appendix B.2.

4 Experimental Setup

We evaluate the effect of our proposed input ad-
justments by training a GPT-2 model (Radford
et al., 2019) using the BabyLM challenge frame-
work (Choshen et al., 2024). The model is trained
eight times with each combination of the three in-
put adjustments. Following the STRICT track of the
BabyLM challenge, we train on a provided corpus
of 100 million words and evaluate on a series of
benchmarks assessing the grammatical knowledge
and the downstream capabilities of each model. We
additionally evaluate on BabySLM (Lavechin et al.,
2023) which provides syntactic and lexical scores
specifically for speech-based models. Our phone-
mized dataset, trained models and tokenizers are
hosted on Huggingface.4

4.1 Dataset
The BabyLM 2024 pretraining data contains 100
million words sourced from nine different corpora
(Warstadt et al., 2023). Over 50% of the data con-
sists of transcribed or scripted speech and over 40%
comes from child-directed sources (written or spo-
ken). We apply minor cleaning operations to the
dataset, removing extraneous spaces and format-
ting anomalies using regular expressions.

4.2 Tokenizers
For each of the eight combinations of the three
transformations, we train a tokenizer on the ‘train’
portion of the BabyLM dataset. We compare the

4
https://huggingface.co/

collections/phonemetransformers/
from-babble-to-words-66e068b54765a48ff30273c9
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Baby Llama ✗ ✗ ✗ 16,000 what a con und rum ! 73.1 60.6 69.0 94.0 -
LTG-BERT ✗ ✗ ✗ 16,000 what a con und r um ! 69.3 66.5 68.4 75.8 -

✗ ✗ ✗ 16,000 what a con und rum ! 77.8 69.4 71.6 92.8 -
✗ ✓ ✗ 16,000 what acon un drum ! 73.9 64.3 68.6 73.9 -

✗ ✗ ✓ 16,000 w2t 2 k@n 2nd ô@m 74.7 59.6 68.6 85.8 67.3

GPT-2 ✗ ✓ ✓ 16,000 w2t 2k@n 2nd ô@m 71.7 56.7 65.5 74.7 71.2

✓ ✗ ✗ 115 w h a t a c o n u n d r u m ! 77.4 63.6 64.4 94.9 -

✓ ✓ ✗ 114 w h a t a c o n u n d r u m ! 75.1 64.8 64.8 88.3 -

✓ ✗ ✓ 51 w 2 t 2 k @ n 2 n d ô @ m 74.7 58.5 65.6 90.5 89.6
✓ ✓ ✓ 50 w 2 t 2 k @ n 2 n d ô @ m 72.5 57.6 65.4 83.9 87.8

Table 1: Results for the two BabyLM baseline models and the GPT-2 model trained under all eight conditions.
On the left, we compare the effects of each of the three transformations across all eight possible combinations, by
tokenizing the example phrase “what a conundrum!”. The ‘ ’ character denotes word boundaries. On the right, we
report BLiMP, GLUE and BabySLM scores achieved by each model, with the best scores in each column in bold.

output of the eight tokenizers in table 1. We used a
vocabulary size of 16,000 for the BPE tokenizers
to match the vocabulary size used by the two base-
line models provided by the BabyLM challenge
(described below).

Note that the vocabulary size for the character-
level tokenizers operating on phonemes is less than
half the vocabulary size of their orthographic equiv-
alents. This is because the phonemic data only con-
sists of the 47 phonemes produced by the American
English accent, but the orthographic data includes
numbers, punctuation and other symbols.

4.3 Model

Our experiments use the GPT-2 architecture. We
train the model using all eight tokenizers (using
the phonemized dataset for the phoneme-based to-
kenizers) for 400k steps, selecting the checkpoint
with the lowest perplexity.5 See appendix A for
a full description of the chosen model parameters
and training procedure.

We also report the results from two baseline
models which achieved the highest scores at the
2023 BabyLM challenge. These are Baby Llama,
an auto-regressive model, which was trained us-
ing knowledge distillation from an ensemble of

5The best checkpoint for five of the eight models was the
final checkpoint but a visual inspection of the curve revealed
that differences between the final checkpoints were minimal.

teachers (Timiryasov and Tastet, 2023) and LTG-
BERT, an architectural variation of the standard
auto-encoding BERT architecture optimized for
small, speech-based corpora (Samuel et al., 2023;
Charpentier and Samuel, 2023). Both models use
a BPE tokenizer with a vocabulary size of 16,000
and have a similar number of parameters to our
model.6

4.4 Evaluation

We follow the BabyLM Challenge’s framework and
evaluate on BLiMP (Warstadt et al., 2020), BLiMP
Supplement (Choshen et al., 2024) and a subset of
the (Super)GLUE tasks (Wang et al., 2018, 2019).
BLiMP assesses a model’s ability to distinguish
grammatical sentences from ungrammatical sen-
tences across 67 subtasks covering a range of lin-
guistic phenomena. BLiMP Supplement consists
of 5 BLiMP-style tasks covering additional linguis-
tic phenomena not tested by BLiMP. The GLUE
suite assesses a language model’s language under-
standing abilities on typical downstream tasks us-
ing fine-tuning.

We also evaluate our models on BabySLM
(Lavechin et al., 2023), a benchmark specifically
designed for probing speech-based LMs at a syn-
tactic level and a lexical level. The benchmark was

6Our GPT-2 model has 85M non-embedding parameters.
Baby Llama has 41M and LTG-Bert has 110M.
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also designed to compare text-based models (those
considered here, including both orthographic text
and phonemic transcriptions) to speech-based mod-
els (which learn directly from audio) by providing
parallel text and audio test instances. Finally, the
vocabulary items were chosen to be compatible
with children’s language experiences, aiming to
better reflect the input that children are exposed to
as they begin to acquire language.

The BabySLM syntactic metric is similar to
BLiMP, using pairs of grammatical and ungram-
matical sentences, but consists of shorter sentences
across just six simple syntactic phenomena. By
comparison, BLiMP complicated many grammati-
cal phenomena which may be rarely used even in
adult–adult spontaneous conversation.

The lexical metric consists of minimal pairs of
words and pseudo-words in a phonemic represen-
tation, representing a ‘real-word recognition’ task
to assess a model’s lexicon and phonemic capa-
bilities. For instance, the model should assign a
higher likelihood to the real-word t E m p ô @ tS
@ ô (temperature) compared to the pseudo-word t
E m p f @ tS @ ô (tempfature). This metric is re-
lated to the pronunciation of words, rather than the
spelling of words and so cannot be used to evaluate
models trained on orthographic text (which have
no concept of pronunciation).

To evaluate our phoneme-based models, we run
our phonemizer tool on all test instances across
these benchmarks (except for the BabySLM lexical
examples, which are already in IPA).

5 Results

In table 1, we report a summary of the results ob-
tained by the two BabyLM baseline models and our
GPT-2 model trained in all eight conditions. Due
to limited computational resources we only train
a single run per condition, limiting our ability to
critique them individually. Exact results may be
subject to variance across random seeds but we can
still observe trends over the whole set.

The base GPT-2 model with no input adjust-
ments outperforms the two baselines for BLiMP,
BLiMP Supplement and GLUE, validating our se-
lection of hyper-parameters and choice of architec-
ture as described in appendix A.

Comparing the GPT-2 model with no input trans-
formations (top row) to the same model with all
three transformations applied (bottom row), we no-
tice a decrease in performance across all bench-

Figure 2: Mean (with Min and Max range) percentage
difference achieved on each benchmark’s macro score
as a result of the three adjustments.

marks. Although this indicates that the GPT-2
architecture is best suited for the standard or-
thographic input representation (word boundaries,
graphemes and subword tokenization), the decrease
in performance when the three transformations are
applied is not substantial and scores remaining com-
petitive with the baseline models (all combinations
still outperform LTG-BERT on BLiMP). It is clear
that the model is still capable of learning grammat-
ical rules and excelling at downstream tasks when
the input consists of individual phonemes with no
word boundaries.

In section 5.1 we investigate this result further
through an ablation of the three transformations,
noting the effect of punctuation and context size.
In section 5.2 we focus on the BabySLM metrics,
which demonstrate a different pattern to the other
benchmarks. Finally, in section 5.3 we investigate
the consequences of removing punctuation in our
phonemic transcriptions.

5.1 Teasing Apart the Three Transformations

By running our GPT-2 model with all eight combi-
nations of the three input adjustments, we can tease
apart the effect of each transformation.

For each transformation, we can create four pairs
of runs that only differ with respect to that trans-
formation (e.g. the four runs with a phonemic tran-
scription and the four runs with orthographic text).
For each pair, we calculate the percentage increase
in each metric caused by the transformation. In
fig. 2 we plot the average of these four percentage
differences, allowing us to identify the overall ef-
fect of each transformation. We can also use the av-
eraged scores for each subtask within a benchmark
(such as the 67 BLiMP subtasks) to assess whether
differences are significant for BLiMP, BLiMP Sup-
plement, GLUE and BabySLM (Syntactic) using
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a paired t-test (see appendix B.1 for details and
p-values for each test conducted).

Character Tokenization We find that character
tokenization does not significantly decrease perfor-
mance on BLiMP or BLiMP Supplement compared
to subword tokenization. This validates previous
work which found that despite the higher compu-
tation costs, character-based language models are
just as capable of learning language (Al-Rfou et al.,
2019; Hahn and Baroni, 2019). We do find a sig-
nificant decrease for GLUE but this may be due to
the fact that many of the finetuning examples for
GLUE are very long and our model’s context size
is only 128 tokens, leading to severe truncation. As
character-based tokenizers output more tokens for
the same sentence than BPE tokenizers, this means
that for many GLUE tasks, necessary information
is lost.

Word boundary removal We find that removing
word boundaries significantly decreases the BLiMP
score, but the decreases for BLiMP Supplement
and GLUE are not significant.7 In their investi-
gation, Nguyen et al. (2022) found a decrease of
7-8% on their own phonemic version of BLiMP
when word boundaries were removed, but here we
observe only an average decrease of 3.7%. As
they only trained 3-layer LSTMs, it is possible that
larger models like ours are required to overcome
the loss of word boundaries.

Phonemic Transcription Finally, we find that
using a phonemic transcription instead of the origi-
nal written text significantly decreases performance
on BLiMP and GLUE, although the percentage de-
creases are small (3.5% and 1.5% respectively).
It also leads to the largest decrease of 11.3% for
BLiMP Supplement. We discuss a possible expla-
nation for this particular decrease in section 5.3.

5.2 BabySLM

Unlike the other benchmarks, our best BabySLM
score is not achieved by the model trained with the
standard orthographic input representation. Instead,
the best syntactic score of 94.9 is achieved by the
model that uses character-based tokenization (on
written text, with word boundaries) and the best
lexical score of 89.6 is achieved by the model that
uses character-based tokenization for phonemes. It

7Since there are only 5 tasks for BLiMP Supplement it is
difficult to get a p-value below 0.05.

is also worth noting that, to the best of our knowl-
edge, these are the best BabySLM scores to date
(see appendix B.3 for a detailed comparison).

Examining the effect of each condition, we find
that using a phonemic transcription on average re-
duces the syntactic score by 4.0%, which is in line
with the other benchmarks discussed above. Unlike
the other benchmarks, the character tokenization
condition always leads to an improvement for
both BabySLM scores: an average increase of 9.9%
for the syntactic score and 23.9% for the lexical
score. The sentences used for the syntactic test are
all very short compared to the BLiMP sentences
(4 words long on average) so a more fine-grained
representation may be more useful. For the lexical
test, where single words are compared that often
only differ by a single phoneme, it seems more
appropriate to use a character-based tokenization
as the model needs to learn the distributional prop-
erties of individual phonemes, which may be lost
in subword units.

The removal of word boundaries has a contrast-
ing effect on the two scores. It reduces the syntactic
score by 11.9% but increases the lexical score by
1.9%, the only benchmark where removing word
boundaries is a positive change. However, the best
individual lexical score was achieved by the model
that did include word boundaries, suggesting that
word boundaries are a helpful signal for a model
learning to distinguish words from non-words, pos-
sibly because they help separate short sequences of
phonemes that appear across word boundaries but
not within words.

For the syntactic score, the worst scores are
achieved by the models that learn subwords with-
out word boundaries. For these models, the BPE
algorithm is essentially acting as an unsupervised
word segmentation algorithm learning to split en-
tire sentences into useful units. With a vocabulary
size of 16,000, it seems we learn units smaller than
words (morpheme-sized units such as “un” in ta-
ble 1) but also units that cross word boundaries
(such as “acon” in table 1). The resulting implicit
subword boundaries seem to have particular con-
sequences when evaluating the shorter BabySLM
sentences. Using the BPE algorithm in this way
could be of interest for word segmentation studies.

5.3 The Effect of Punctuation
Punctuation is a feature of written text that is rarely
included in phonemic transcriptions, as it does
not typically change the way that words are pro-
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Figure 3: The overall BLiMP scores achieved by
GPT-2 in our eight conditions with and without the
UTT_BOUNDARY token (used to separate sentences) in-
cluded at the end of evaluation instances.

nounced. However, punctuation in written text does
carry important meaning about the structure and
tone of sentences. In speech, this information is
typically conveyed through intonation, stress and
rhythm. By simply stripping punctuation in our
phonemic transcriptions, we may be removing in-
formation that is important for a model’s ability to
learn and process language.

In some instances, naïvely stripping punctuation
can even lead to nonsense sentences. This may
explain the large dip in performance for BLiMP
Supplement, as three of the five subtasks rely on
punctuation to simulate question-answer pairs or
dialogue, such as:

A: What did you break?\nB: I broke a bowl.

In the example above, the line break, colon
and question mark are used to indicate speaker
turns and convey the question-answer nature of the
prompt. Removing the punctuation leads to a non-
sense sentence, especially when read aloud with no
pauses or change in tone to indicate the structure:

2 w 2 t d I d j u: b ô eI k b i: aI
b ô o U k 2 b oU l

Without punctuation, the names “A” and “B”
seem out of place. A model trained on written text
can use punctuation to possibly understand that
these are names, but a spoken model without punc-
tuation would struggle to process this sentence.

This reliance on punctuation seems to be the
leading cause of the drop in performance on
BLiMP Supplement. If we remove the three sub-
tasks where an understanding of punctuation is re-
quired to process the sentence, the effect of switch-
ing to a phonemic representation reduces the drop
in performance considerably from 11.3% to 0.9%.

There is another subtle yet crucial consequence
of removing punctuation: stripping punctuation
at the end of sentences, if not handled correctly,
can lead to significant decreases in performance on
these benchmarks. This is because without an end-
of-sentence marker, certain evaluation examples
are no longer valid. In order to mark the end of
the sentences without puncutation, we needed to
ensure that our dedicated sentence-separation token
was added to the end of each evaluation instance.
The effect of this adjustment is highlighted in fig. 3.
The increase in BLiMP score for our phonemic
models confirms that this change was necessary and
highlights the importance of carefully investigating
the role of tokenization in the evaluation of large
language models. We discuss this effect further in
appendix B.2.

6 Discussion

In this work, we set out to establish whether mod-
ern language model architectures can encode gram-
matical knowledge and succeed at language under-
standing tasks when trained with phonemic input
representations. By identifying three key transfor-
mations, carefully ablating them and evaluating our
models on a wide variety of benchmarks, we found
that these transformations do lead to decreased per-
formance on standard benchmarks, but that this
decrease is not substantial, and the effect of each
transformation varies according to the evaluation.
Generally, we conclude that language models are
capable learners and training with these input rep-
resentations is completely viable.

In this section, we consider explanations for the
difference in performance across the benchmarks
and discuss the limitations of phonemic transcrip-
tions and our monolingual approach. Our work
also has implications for human acquisition investi-
gations and studies that train models directly from
raw audio, which we discuss in appendix C.

6.1 The Effect of Input Transformations

There are many possible explanations for the de-
crease in performance for BLiMP, BLiMP Supple-
ment and GLUE. In section 4.4 and section 5.3
we discuss two possibilities; the fact that charac-
ter tokenization causes more substantial truncation
(affecting GLUE) and the fact that phonemic tran-
scriptions do not include punctuation (which partic-
ularly affects BLiMP Supplement). Another factor
to consider is that although we do not change the
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GPT-2 architecture or training parameters, the vo-
cabulary size does change, which affects the size of
the embedding layer. Character tokenization also
leads to reduced exposure to each sentence during
training (fewer epochs) because each sentence is
represented with more tokens, increasing the num-
ber of steps required for each epoch. Furthermore,
our initial choice of model parameters may have
implicitly favored the standard orthographic input
representation given that the language modeling
community has been collectively optimizing these
architectures to learn representations for written
text, not phonemic streams. Just as the BabyLM
challenge seeks to find solutions for low-resource
language modeling, we may require an equivalent
challenge to identify new methods and architec-
tures for a phonemic input representation.

We also found a different pattern for the
BabySLM benchmark, that certain transformations
increased performance. In some cases, the transfor-
mations were even necessary (the lexical measure
requiring a model to be trained on phonemic in-
put). Given that the BabySLM benchmark more
closely relates to child-language acquisition with
its shorter sentences and vocabulary taken from
child-directed speech, this result will be of interest
to studies using language models to study acquisi-
tion.

6.2 Limitations and advantages of phonemic
transcriptions

One difficulty in training models from ecological
long-form child-centered audio is the lack of cor-
pora available. Papers reporting research on day-
long recordings tend not to release the raw data due
to privacy concerns (e.g. Bergelson et al. (2023);
Léon and Cristia (2024)). Our method allows us to
convert text (which is much more readily available)
into a speech representation (phoneme streams),
meaning that we could quickly prepare a corpus of
100 million words.

There are also limitations in our transcription
generation process. The fact that phonemes are an
abstraction of speech means that we lose key infor-
mation contained in speech such as prosody, stress
and allophonic variation. Using a single accent to
generate our phonemes, we also lose inter-speaker
variability. Children also learn from non-linguistic
cues, multi-modal input and interaction. If any-
thing, it is a striking result that a model trained
only on a set of 51 discrete symbols is able to
demonstrate grammatical knowledge and perform

competitively at downstream linguistic tasks.

6.3 Multi-lingual evaluation

A final important remark is that our experiments
are conducted only in English. It is possible that
language models trained on phonemic data in other
languages would exhibit different trends in down-
stream performance. Although a multilingual anal-
ysis is outside the scope of our paper, we have ap-
plied our data processing pipeline to prepare phone-
mized datasets for 26 of the languages contained
in the CHILDES database and hope to release this
dataset in the near future.

7 Conclusion

Our study explores the effect of training lan-
guage models using phonemic input representa-
tions, which offer both analytical and practical
advantages. We develop a pipeline to convert or-
thographic datasets into a continuous stream of
phonemes and leverage this pipeline to train a lan-
guage model on phoneme streams and evaluate its
grammatical and language understanding abilities.
Our findings suggest that while phoneme-based in-
put representations result in a slight decrease in
model performance on traditional language under-
standing tasks, it is nonetheless a feasible training
paradigm, facilitating future language modeling
work, improving phonological interpretability and
enhancing speech-based applications.
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A Implementation Details

We implement all experiments using the PyTorch
framework (Paszke et al., 2019) and the
Transformers library (Wolf et al., 2020).

A.1 Hardware Details

We use a server with one NVIDIA A100 80GB
PCIe GPU, 32 CPUs, and 32 GB of RAM for all
experiments. Below, we report a subset of the out-
put of the lscpu command:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical,

48 bits virtual
Byte Order: Little Endian
CPU(s): 32
On-line CPU(s) list: 0-31
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R)

Silver 4210R CPU
@ 2.40GHz

CPU family: 6
Model: 85
Thread(s) per core: 1
Core(s) per socket: 1
Socket(s): 8
Stepping: 7
BogoMIPS: 4800.11

A.2 Model Parameters and Training
Procedure

Parameter Value

Layers 12
Heads 12
Dropout 0.1
Embedding Size 768
Inner Size 3072
Max Example Length 128
Learning Rate 0.001
Optimizer AdamW
Scheduler Type Linear
Max Steps 400,000
Warm-up Steps 90,000
Per Device Batch Size 32

Table 2: Hyperparameter settings for training the GPT-2
architecture. Vocabulary size varies according to the
tokenizer used, but all other parameters are constant
across experiments. Where values are not reported, they
may be assumed to be default values.

We describe the model and training parameters
in table 2. The model parameters were chosen to
match those of the Pythia-170M model from the
Pythia suite (Biderman et al., 2023). The model has
85M non-embedding parameters and is also equiv-
alent in size to GPT-Neo 125M and OPT-125M.

The Pythia models use the GPTNeoX architecture
which is slightly different to GPT-2. In initial exper-
iments, we found that GPT-2 performed better on
the benchmarks across all eight of our conditions.

Data is prepared into batches by first tokeniz-
ing the entire dataset, combining all tokens into
one long vector, and then splitting the vector into
chunks of 128 tokens. Only the very last example
is padded, if required. At each step during train-
ing, random chunks are selected and combined into
batches.

Checkpoints are taken every 50,000 steps dur-
ing training. At each checkpoint, the perplexity is
evaluated on the held-back evaluation set, and at
the end of training the checkpoint with the lowest
perplexity is returned as the best model.

B Evaluation Details

B.1 Significance Tests

It is difficult to determine whether the results for a
given benchmark are significant given that we only
train a single run for each of the eight conditions.
Instead, we calculate the significance of a particular
transformation by comparing the scores for each
subtask of a benchmark. We average the scores
achieved by the four models with a transformation
applied and average the scores achieved by the four
models without the transformation applied, giving
us paired results for each subtask. We then use a
paired student t-test to assess the significance of
the transformation. We give the p-values for our
significance tests in table 3.

Note that there are 67 subtasks for BLiMP, 5
for BLiMP Supplement, 9 for GLUE and 9 for
BabySLM (Syntactic). With only 5 pairs for
BLiMP Supplement, the test is under-powered and
low p-values are unlikely. There are no subtasks
for BabySLM (Lexical) so significance cannot be
computed in the same way.

B.2 The Effect of End-of-Sentence Tokens

By default, our tokenizers add a special start-of-
sentence token UTT_BOUNDARY to all sentences.
This corresponds to the <s> token often used by
tokenizers to help transformers with sentence-level
processing, and also represents utterance bound-
aries, which unlike word boundaries are a clear
cue present in speech and often included in word
segmentation studies (Feliciano de Faria, 2019).

Since sentences are collated together during
training, this means that these tokens also appear at
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BLiMP BLiMP Supplement GLUE BabySLM (Syntactic)
orthographic vs. phonemic 0.0001 0.0780 0.0149 0.1884
word boundaries vs. no word boundaries 0.0000 0.1831 0.0813 0.0118
character tokenization vs. subword tokenization 0.5069 0.4832 0.0010 0.1500

Table 3: p-values from the paired student t-tests for each experiment. Significant results are given in bold using an
alpha level of 0.05.

the end of every sentence, implicitly acting as end-
of-sentence tokens. As a result, the model may use
them to represent sentence-level information (espe-
cially given that these models are auto-regressive).
However, in most evaluation tasks, sentences are
presented individually (with padding) and so by
default the tokenizer does not add this token to the
end of sentences.

This has consequences for zero-shot evaluation
tasks where the grammaticality of the sentence de-
pends on the sentence being marked as complete,
which is the case for several of the BLiMP subtasks.
For instance, one subtask evaluates a model’s un-
derstanding of filler-gap dependencies by present-
ing grammatical “wh”-phrases with “that”-phrases
that are ungrammatical due to a missing depen-
dency. An example is given in table 4 along with
the tokens produced by two of our tokenizers. Cru-
cially, our phonemic transcriptions do not include
punctuation (see section 5.3) and for this task, with-
out an end-of-sentence marker, the “ungrammatical”
sentence is no longer ungrammatical, as it could
just be incomplete.

This means that the subtask remained a valid test
for our orthographic models (due to the inclusion
of punctuation to mark the end of the sentence),
but not the phonemic ones, since for the phonemic
models both the “grammatical” and “ungrammat-
ical” sentences could be considered grammatical.
Since this task is not balanced, any preference for
the word “that” over the “wh”-words would lead
to the model consistently choosing the “that” sen-
tences and achieving results below chance (which
is 0.5 for all BLiMP tasks).

In our initial experiments we found that the mod-
els trained on phonemes achieved scores between
0.06 and 0.14 for this task whereas the orthographic
models achieved scores between 0.35 and 0.53. We
then added the UTT_BOUNDARY token to the end of
every evaluation instance and found that the phone-
mic models could then achieve scores between 0.26
and 0.34 (with little change for the orthographic
models). These results also held for several other
BLiMP tasks with similar constructions.

We thus decided to ensure that the token was

added to the end of every evaluation instance for
all benchmarks reported in this paper for two rea-
sons. First, it acts as a necessary end-of-sentence
marker to ensure certain tests remain valid for the
phonemic models, and second, because the token
may encode useful sentence-level information for
all models (particularly for GLUE tasks, as only the
encoding of the final token is used for predictions).

We present the effect of this decision in fig. 3
which reports the overall BLiMP scores for our
eight conditions with and without the inclusion of
the UTT_BOUNDARY token at the end of each evalu-
ation sentence. There is a very large increase for
all four phonemic models with little change for the
orthographic models, confirming how crucial this
change was to make.

B.3 BabySLM Comparison

In table 1 we report the BabySLM scores achieved
by our models and in section 5.2 we mention that
these are the highest scores achieved on this bench-
mark to date. It is worth noting that this is only
in comparison to the baseline scores released with
the BabySLM benchmark (Lavechin et al., 2023),
as at the time of writing no other scores have been
published for this benchmark, given how recently
it was introduced.

In their study, Lavechin et al. (2023) achieved
their highest syntactic score of 70.4 using Baby-
BERTa (Huebner et al., 2021) trained on only 5
million words from CHILDES (MacWhinney and
Snow, 1985). All of our models beat this score,
with the highest achieving 94.9. BabyBERTa also
uses a BPE tokenizer whereas we found that a
character-based tokenizer consistently gave better
performance (see section 5.2). There is also an
architectural difference, BabyBERTa is an autoen-
coder trained using masked language modeling,
whereas our model is autoregressive, using next-
token prediction. The LTG-BERT baseline, which
is a similarly sized model also trained on 100 mil-
lion words, only achieves a score of 75.8. The Baby
Llama baseline, by comparison, achieves 94.0. It
is possible that the autoregressive architecture is
much more suited to the syntactic task than the
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Grammatical Ungrammatical

Original Patrick revealed what a lot of men wore. Patrick revealed that a lot of men wore.

BPE Text Tokenizer
<s> patrick revealed what

a lot of men wore .
<s> patrick revealed that

a lot of men wore .

BPE Phoneme Tokenizer
<s> pætôIk ôIvi:ld w2t

2 lAt 2v mEn wOô
<s> pætôIk ôIvi:ld Tæt

2 lAt 2v mEn wOô

Table 4: An example sentence pair from the wh_vs_that_with_gap subtask in BLiMP and the outputted tokens
from our two tokenizers that use subwords but do not remove word boundaries. The ‘ ’ character denotes word
boundaries and the ‘<s>’ token represents our UTT_BOUNDARY token which acts as an utterance boundary and a
start-of-sentence token.

autoencoder architecture of BERT.
When it comes to the lexical test, the high-

est score achieved by Lavechin et al. (2023) was
75.4 using a 3-layer LSTM trained on 1.2 million
words from the Providence corpus (Börschinger
et al., 2013) which they converted to a stream of
phonemes with no word boundaries using a sim-
ilar tool to ours. Our highest-scoring model was
also trained with character-based tokenization of
phonemes, but did include word boundaries, achiev-
ing a score of 89.6. Our model without word bound-
aries got the second-highest score with 87.8.

In both cases, our model is larger (12 layers) and
trained on much more data (100 million words)
than the BabySLM baselines. Also, our pre-
training dataset contains a wider variety of sen-
tences than just the child-directed utterances in
CHILDES. We are currently investigating the effect
of model size and training size on the BabySLM
scores. In initial experiments, we found that even a
6-layer model trained on only 7 million words from
CHILDES was able to achieve a lexical score of 82,
but this model also only achieved a syntactic score
of 70. We hypothesize that lexical-level knowledge
can be learned with less data and by smaller models
when compared to learning syntactic knowledge,
but this research is ongoing.

C Further Implications

C.1 Comparing Human Acquisition to
Language Model Learning

The capacity of LMs to learn language from text
alone has spurred interest in using such models
for acquisition and psychology studies, such as
comparing model learning trends to child learning
behaviour (Evanson et al., 2023) and using model
outputs to predict human reading times (Hollen-
stein et al., 2021).

To push this research further, recent efforts aim

to make language modeling more cognitively plau-
sible (Beinborn and Hollenstein, 2024) by reducing
the advantages that typical language models have
over humans during the learning process (Warstadt
and Bowman, 2022). One approach is to limit
and curate the dataset to that which a typical hu-
man may be exposed to, such as is done in the
BabyLM challenge (Warstadt et al., 2023). An-
other approach is to use an input representation
that more closely mimics speech rather than writ-
ten text (Dupoux, 2018). Finally, we must consider
whether the architectures themselves are suitable
linguistic theories, given that they were developed
for downstream tasks (Baroni, 2022).

In this work we contribute to all three approaches
by training a language model with streams of
phonemes and assess whether the language model
architecture used is advantaged or disadvantaged
by these changes according to a wide variety of
benchmarks. We hope that this leads to further
work studying acquisition using phoneme streams
as an input representation. However, while streams
of phonemes may seem more cognitively plausible
than written text, many studies go further than we
do and seek to train directly on raw audio.

C.2 Learning directly from audio

Our study focused on alternative input representa-
tions for text-based language models, but there is
also a field of work dedicated to training models di-
rectly from raw audio. In recent years, the Zero Re-
source Speech Challenge has helped pioneer the de-
velopment of models that learn unsupervised from
raw audio (Dunbar et al., 2022). Models such as
STELA (Schatz et al., 2021; Lavechin et al., 2022)
use a two-stage approach, learning a discrete sym-
bolic representation by clustering 10ms chunks of
audio, then feeding these to a multi-layered LSTM
language model.
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These models are also used to study acquisition,
regarding raw audio as an input representation that
is more cognitively plausible than phonemes; a con-
tinuous signal full of noise and non-linguistic infor-
mation that children must learn to filter. Whether
adults even use phonemes as a core linguistic rep-
resentation, and whether children learn phonemic
categories before other stages of acquisition both
continue to be a matter of debate (Kazanina et al.,
2018; Matusevych et al., 2023) and the symbolic
representations learned by models such as STELA
have a duration four times shorter than phonemes,
challenging the assumption that phonemic cate-
gories are precursors to later stages of acquisition.

The gap in linguistic performance between text-
based models and audio-based models continues
to be substantial. Lavechin et al. (2023) developed
BabySLM to compare text-based models to speech-
based models and highlighted this gap, but further
noted that even speech-based models may not al-
ways train on plausible input, many often using au-
diobooks as their training data (Kahn et al., 2020).
When training the STELA model on 1024 hours
of ecological long-form child-centered audio com-
pared to 1024 hours of audiobooks, Lavechin et al.
(2023) found that the model trained on long-form
audio achieved chance-level syntactic and lexical
capabilities, highlighting how far we are from pro-
ducing architectures that can learn from the same
signals as human children.
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Abstract

We present grapheme-llama and phoneme-
llama, character-based language models
trained for the 2024 BabyLM challenge.
Through these models, we explore an
under-researched approach to downsizing:
replacing subword-based tokenization with
character-level tokenization, drastically
reducing the vocabulary size. The grapheme
model is trained on a standard BabyLM dataset,
while the phoneme model uses a phoneme-
converted version of this dataset. Results
show that grapheme-based models perform
better overall, achieving scores comparable
to subword-based models on grammatical
benchmarks. Despite lower performance,
phoneme models also demonstrate promising
grammatical learning. We argue that our
results challenge conventional wisdom on
language modeling techniques and open up
novel research questions with character- and
phoneme-based models as objects of inquiry.

1 Introduction

While large language models continue to beat
benchmarks, their parameter numbers, amounts of
training corpora and training FLOPs are ever in-
creasing. More recently, however, a new research
focus on ecologically friendly, data-efficient and
possibly cognitively plausible language models –
so called BabyLMs – has emerged. But what makes
a language model a BabyLM? For the BabyLM chal-
lenges (Warstadt et al., 2023; Choshen et al., 2024),
BabyLMs are defined by extremely constrained data
settings. In this constrained data setting, the best
scoring models in the 2023 challenge employed
highly sophisticated and large-ish architectures:
ELC-BERT (Charpentier and Samuel, 2023) used
numerous architectural improvements over standard
encoders, while BabyLlama (Timiryasov and Tastet,
2023) was distilled from various larger teacher mod-
els. Models with architectures downsized similarly

to their training data (e.g. by Veysel Çağatan, 2023,
Bunzeck and Zarrieß, 2023 or Fields et al., 2023)
did not fare as well on standard benchmarks.

As our submission to the 2024 BabyLM chal-
lenge (Choshen et al., 2024), we present grapheme-
llama1 and phoneme-llama2. We replace the
standard subword-based tokenization algorithms
with naive character-based tokenization, leading to
a drastic decrease in vocabulary size. We show that
when such simplifications are combined with state-
of-the-art architectures like Llama (Touvron et al.,
2023b), the resulting models still achieve consid-
erable grammatical proficiency and provide useful
inductive biases for further fine-tuning. While the
grapheme model is trained on the standard 100M
BabyLM data, our phoneme model is trained on a
version of this data set converted to phonemes3.
Although it performs generally worse than its
grapheme counterpart, the phoneme model still
manages to learn the grammatical phenomena in a
matched BLiMP data set quite well. In the light of
these results, we offer some discussion points for
phoneme-based language modeling, the pitfalls it
is currently facing and its general potential. In sum,
we argue that these results open fruitful avenues
for further research on small language models and
question “common wisdom” in current language
modeling practices.

2 Related work

Small LMs/downsizing: Recently, there has
been a surge in interest in small-ish language mod-
els. The arguably first BabyLM, BabyBERTa

1https://huggingface.co/bbunzeck/
grapheme-llama

2https://huggingface.co/bbunzeck/
phoneme-llama

3In line with the G2P literature (cf. Moore and Skidmore,
2019; Ashby et al., 2021), we use (i) the term “phoneme”
loosely to refer to (symbols for) types of speech sounds and
(ii) the term “grapheme” loosely to refer to the letters of ortho-
graphic alphabets.
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(Huebner et al., 2021), followed a combined (i.e.
data and architecture) downsizing approach and
showed that dramatically less training data can
result in remarkable linguistic proficiency with a
small model architecture. On the other hand, cur-
rent “small” models often employ more complex
strategies to achieve compactness, e.g. distillation
with teacher and student models (Timiryasov and
Tastet, 2023), or reduction of number precision
(Wang et al., 2023). These models’ “smallness” is
only achieved after complex training procedures. In
contrast to these developments, the BabyLM 2023
submissions by Veysel Çağatan (2023), Bunzeck
and Zarrieß (2023) and Fields et al. (2023) used a
priori small models (in terms of parameter size) to
show the lower bounds of knowledge learnability
from small data. They all showed that very small
models (even models with a parameter size below
1M) can achieve scores equal to much larger base-
lines on standard evaluation tasks like BLiMP or
GLUE. As such, these successful experiments give
impetus for our current models: against common
wisdom, the reduction of certain models hyperpa-
rameters does not have to have a detrimental ef-
fect on performance (a fact also corroborated by
Muckatira et al., 2024). Comparable studies have
neither focused on character-level tokenization nor
on phoneme-based representations (see paragraphs
below for the most comparable studies available),
so we pioneer into this uncharted territory with our
models.

Character-level LMs: While research on LMs
with character-level tokenization is not exactly
scarce, they have yet to gain widespread adoption.
Character-based models have been inplemented for
different architectures: the Canine (Clark et al.,
2022) architecture is a character-level encoder, the
ByT5 (Xue et al., 2022) models employ a T5
encoder-decoder architecture with a Byte-level tok-
enizer and the Charformer models (Tay et al., 2022)
use a tokenization module (GBST) that learns latent
subword representations from characters. For all
three models it has been shown that their specific
pre-training regimens do provide useful inductive
biases for further fine-tuning and that such are more
robust to character-level noise than regular subword-
tokenization models. Moreover, phonological cate-
gories like consonants and vowels are retrievable
from Canine (see Agirrezabal et al., 2023) – prop-
erties of language that are by design not captured
by coarse-grained subword representations. From a

more application-driven standpoint, El Boukkouri
et al. (2020) have shown that character-level model-
ing can improve performance in the medical domain.
Finally, Edman and Bylinina (2023) showed in the
context of last year’s BabyLM challenge that first
training on a character-level vocabulary and then
expanding it to the subword-level provides mixed
effects on model performance, depending on the
context size. It should also be noted that there are
further approaches to language modeling without
complex tokenization algorithms: Rust et al. (2023)
show that LMs trained on pixel-based representa-
tions can help LMs excel at various syntactic and
semantic tasks in typologically diverse languages,
including non-Latin scripts.

Phoneme LMs: So far, phoneme-based LMs
have mostly been trained as encoders to provide
inductive biases for further fine-tuning on down-
stream tasks. PhonemeBERT (Sundararaman et al.,
2021), Mixed-Phoneme BERT (Zhang et al., 2022)
and XPhoneBERT (Nguyen et al., 2023) are exam-
ples for such models, which have been reported to
improve downstream performance on various tasks,
e.g. on text-to-speech. In contrast, the CharsiuG2P
model (Zhu et al., 2022) is an encoder-decoder ar-
chitecture explicitly pre-trained for grapheme-to-
phoneme conversion (G2P). Purely autoregressive
phoneme models have not received scientific atten-
tion, yet.

3 Methodology

3.1 Data
We train our models on the 100M BabyLM 2024
data set. This data set contains both (transcribed)
spoken and written language. It includes spoken
language from CHILDES (MacWhinney, 2000),
the BNC (Burnard, 2007), Switchboard (Stolcke
et al., 2000) and OpenSubtitles (Lison and Tiede-
mann, 2016), and written language from children’s
books in Project Gutenberg (Gerlach and Font-Clos,
2020) as well as a portion of the Simple English
Wikipedia. Because the raw data contains extensive
metadata and markup, we used an expanded version
of the cleaning script from Timiryasov and Tastet
(2023) to clean the data.

For our phoneme-based models, we then con-
vert the cleaned data from graphemes to phonemes
– a mapping from orthographic letters to sound-
symbols to represent the pronunciation of the text.
To convert our text to IPA (International Pho-
netic Association, 1999) symbols, we use the rule-
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based Gi2Pi system for G2P-conversion (Pine et al.,
2022)4, expanded by a manual replacement list that
we compiled for contractions that this tool does not
handle well. As the authors report no G2P accu-
racy for English, we conduct a manual evaluation
on three short texts. We find a word-error-rate of
5.8% (tokens=363, errors=21), which we deem as
sufficient for the sake of the current paper. For eval-
uation purposes, we also perform the same G2P
conversion on the BLiMP data. We make this data
set5 and our converted training data6 available on
the Hugging Face hub.

3.2 Training
We use the transformers library (Wolf et al.,
2020) to train four small, character-level llama mod-
els (Touvron et al., 2023b). All our models share
equivalent model internals and training hyperpa-
rameters:

• Training tokens: 100M
• Hidden layers: 8
• Attention heads: 8
• Embedding size: 512
• Context size: 64
• Number of parameters: 15M/14.9M

(grapheme-based/phoneme-based models)

We train two models on the original grapheme-
based BabyLM data and two models on our con-
verted phoneme-based data: for each data regimen,
one model with whitespaces separating lexical to-
kens and one without these whitespaces. As we ex-
periment with removing information about words
by not using sub-word tokenization, the models
without whitespaces can be seen as more extreme
variants of the same training setting – they have
(apart from beginning and end of sequences) no
access to word segmentation information at all. To
force the models to use more local information, we
restrict the context size to 64 tokens (although we
acknowledge that this might lead to detrimental
performance on tasks that require longer contexts,
especially EWoK and GLUE).

To implement character-level language model-
ing, we modify the tokenizers used for our models.

4We also tried a neural system (Zhu et al., 2022), but found
it to be much less performant and of slightly worse transcription
quality.

5https://huggingface.co/datasets/bbunzeck/
phoneme-blimp

6https://huggingface.co/datasets/bbunzeck/
phoneme-babylm-100M

Instead of the standard BPE tokenization algorithm,
we simply fill our tokenizers’ vocabularies with all
unique characters in the respective pre-training cor-
pora. For the grapheme-based models, this adds
up to a vocabulary size of approx. 360. For the
phoneme models, the vocabulary size is approx.
260. Next to the standard ASCII and IPA charac-
ters, these vocabularies are still so “large” due to a
number of emojis and other non-linguistic Unicode
characters included. Because some IPA symbols
are also ordinary letters of Latin alphabets, and also
due to the aforementioned non-alphabetic symbols,
the vocabularies of the models share 118 tokens.

As training hyperparameters, we chose a batch
size of 16, 200 warmup steps, and a learning rate set
to 3e-4 in accordance with Touvron et al. (2023a).
We train our models for five epochs, equaling
roughly 25–28 hours of per-model training time
on a single NVIDIA RTX A4000 GPU.

3.3 Model evaluation
In line with the BabyLM challenge, we evaluate our
models through the BabyLM evaluation pipeline
(Choshen et al., 2024; Gao et al., 2023). It includes
three tasks – BLiMP (Warstadt et al., 2020), EWoK
(Ivanova et al., 2024) and (Super)GLUE (Wang
et al., 2018, 2019).

BLiMP is a collection of minimal pairs (ungram-
matical vs. grammatical sentences) for English,
including mostly (morpho)syntactic phenomena,
but also semantic and (in the supplementary data)
discourse-pragmatic minimal pairs. Although it
suffers from a few shortcomings (partially nonsen-
sical sentences, cf. Vazquez Martinez et al., 2023;
a too restrictive binary notion of grammaticality
that does not allow creative language use, etc.), it
is a valuable resource and basically the linguistic
benchmark for the evaluation of language models.
If a model consistently manages to score the gram-
matical sentence as more plausible (i.e. through
lower perplexity) it is said to have mastered the cor-
responding phenomenon. We evaluate all of our
models on the regular BLiMP, and additionally on
a matched BLiMP that contains the BLiMP data
converted to match the data set the respective model
was trained on (grapheme/phoneme, whitespace/no
whitespace).

EWoK (Ivanova et al., 2024) is a benchmark that
is supposed to measure world knowledge by testing
models on their ability to match target texts with
plausible/implausible contexts. It covers domains
such as material properties, physical dynamics or
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social interactions. The sentence pairs function as
minimal pairs (of pairs) and can therefore be evalu-
ated in the same way as BLiMP examples. As both
our grapheme models and the BabyLM baselines
do not perform above chance on this benchmark,
we decided not to create a phoneme version.

The (Super)GLUE tasks (Wang et al., 2018,
2019) are focused on more fine-grained language
understanding and involve additional fine-tuning on
task examples. As such, they measure how well our
pre-training procedure supplies our models with
useful inductive biases for the acquisition of these
reasoning tasks, e.g. textual entailment or senti-
ment prediction. For reasons of time and resources,
we opted to do parameter-efficient fine-tuning with
LoRA (Hu et al., 2022) instead of full fine-tuning
runs. In contrast to the provided fine-tuning script,
we opted for only 16 epochs and a larger learning
rate of 5e-4, in hopes to help our models converge
faster. Due to a technical problem (and lack of
time), we could only run one fine-tuning epoch for
the MNLI sub-task. We also opted to not create a
phonemized (Super)GLUE data set, for the same
reasons as for EWoK.

4 Results

4.1 Zero-shot

The BLiMP results are collected in Table 1. With
regard to the standard grapheme and whitespace
BLiMP, the corresponding grapheme model also
performs best. With a score of almost 72%, our
character-based grapheme model is close to the
subtoken-based autoregressive baseline (BabyL-
lama, 73.1%), and beats the masked LM base-
line (LTG-BERT, 69.2%; not listed in Table 1).
While the model trained without whitespace per-
forms worse, the score of 59.88% is still far above
chance. The phoneme models, on the other hand,
only achieve scores that oscillate somewhat around
the chance baseline. This is not surprising, as the
overlap in vocabulary between the grapheme and
phoneme models is small – the phoneme models
can hardly retrieve any useful information from
grapheme input. On the BLiMP supplement, none
of our models achieve a score significantly higher
than the chance baseline.

When considering the matched BLiMP evalua-
tions, where we preprocess the BLiMP data in the
same way as the pre-training corpus data, we can
report much higher BLiMP scores. All four models
perform way above chance, although both the G2P

conversion and the deletion of all whitespace have
a detrimental effect on the scores. Interestingly,
the grapheme model without whitespaces achieves
the best score on the BLiMP supplement (56.28%),
although we can only speculate as to why (see Dis-
cussion for an attempt at explanation).

This picture gets even more complicated when
we consider the individual BLiMP paradigms.
The full BLiMP scores for the matched eval-
uation can be found in Appendix A. While
the grapheme whitespace model generally
performs best across the most paradigms,
each model still features some high scores.
For certain, highly-specific phenomena (e.g.
sentential_negation_npi_scope_filtered),
the non-whitespace phoneme model – our overall
weakest model – outperforms all other models.
It remains open to further inquiry whether these
scores are only training noise or caused by specific
linguistic factors only instantiated by this specific
combination of data preprocessing steps.

The evaluation results for EWoK (Table 2) dis-
play a very uniform picture. No model achieves
any considerable score above the chance baseline
for any phenomenon. This is also in line with the
results of the baseline models, which seemingly do
not learn any “world knowledge”, as measured by
EWoK.

4.2 Fine-tuning
The (Super)GLUE scores can be found in Table 3.
They follow no clear pattern. While the average
scores for the models are rather similar (and all
fairly low in comparison to the baselines, like 63.3%
for BabyLlama), the scores for the individual tasks
are highly varied. While the standard grapheme
model achieves the highest scores on six out of
eleven included tasks, all other models also get at
least one highest score. Averaged across all tasks,
the grapheme model without whitespace is even
better than its normal counterpart. The differences
between models are immense and no structured
conclusions about presumed effects of any vari-
able (grapheme/phoneme, whitespace/no whites-
pace) can be drawn. It is especially surprising
that the phoneme models, which do not contain
the full grapheme-model vocabulary and therefore
sometimes lead to somewhat corrupted/distorted
tokenized versions of the data (e.g. through miss-
ing tokens), still seem to impart quite useful induc-
tive biases for many of the included sub-tasks in
(Super)GLUE: Only for CoLA, MNLI and MNLI-
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BLiMP version Grapheme model Grapheme model, no whitesp. Phoneme model Phoneme model, no whitesp. BabyLlama

BLiMP 71.69% 59.88% 44.05% 54.02% 73.1%
BLiMP supplement 52.30% 50.12% 55.04% 44.47% 60.6%

Matched BLiMP 71.69% 68.88% 66.90% 64.88% 73.1%
Matched BLiMP supplement 52.30% 56.28% 55.42% 54.13% 60.6%

Table 1: BLiMP accuracies for our four models and BabyLlama baseline (random baseline = 50%)

EWoK subtask Grapheme model Grapheme model, no whitesp. Phoneme model Phoneme model, no whitesp. BabyLlama

agent-properties 49.46% 49.68% 50.23% 50.05% -
material-dynamics 49.22% 49.61% 49.87% 48.87% -
material-properties 48.24% 50.00% 50.00% 50.59% -
physical-dynamics 48.33% 51.67% 50.00% 50.00% -
physical-interactions 47.84% 50.18% 50.18% 51.44% -
physical-relations 50.73% 49.14% 49.63% 51.22% -
quantitative-properties 50.96% 52.55% 49.36% 49.04% -
social-interactions 49.66% 50.34% 51.02% 51.02% -
social-properties 51.52% 48.78% 50.30% 48.17% -
social-relations 49.68% 49.29% 50.00% 50.00% -
spatial-relations 46.73% 46.33% 51.43% 50.20% -

Average 49.30% 49.80% 50.20% 50.10% 52.1%

Table 2: EWoK accuracies for our four models and BabyLlama baseline (random baseline = 50%)

mm, the scores achieved by the (in theory unfitting)
phoneme models are close or equal to the random
chance baseline. For the other tasks, especially
SST2 and MRPC, scores are well above chance.
Here, it remains questionable whether the induc-
tive biases of our phoneme models actually affect
the performance on (Super)GLUE, or if the whole
fine-tuning process equals the adoption of some
heuristic shortcuts to solve the problems tested by
(Super)GLUE (see Gururangan et al., 2018; Be-
linkov et al., 2019 for discussions of artifacts in
NLI data), to which only CoLA, MNLI and MNLI-
mm are robust enough to resist.

5 Discussion

General remarks: There are two commonly pre-
sented arguments against character-level tokeniza-
tion (e.g. presented in Clark et al., 2022): (i) such
models achieve subpar results on evaluations; and
(ii) as the computational complexity of a trans-
former grows quadratically with the input size, the
token increase yields inefficient models. To (i) we
can only reply that our results speak for themselves.
The strong performance of such a small Llama
model on BLiMP shows that character-based mod-
els are able to learn the structure of a language as
well as its subword-based sister models. The com-
paratively lower performance on fine-tuning tasks
is likely caused by the small architecture, and could
be improved with more parameters. Also, the small
context size of our models might be a limiting fac-
tor for the fine-tuning tasks (and also the zero-shot
EWoK evaluation, as it contains fairly long sen-

tences). To (ii) we can reply that this is not such a
big concern, as we use small models and small-ish
context sizes, anyway. While this approach might
not be sufficient for models with billions of param-
eters, it surely is for BabyLMs.

Graphemes vs. phonemes: The comparison be-
tween our grapheme and phoneme models undoubt-
edly concludes with a win for the grapheme mod-
els. Across all benchmarks, they outperform the
phoneme models on average. No clear tendencies
spring to mind when analyzing the detailed results
– however, all four models achieve best scores on
some sub-tasks in benchmarks. Separating noise
from signal in these results remains an open task
for future studies. As of now, we can only speculate
why the phoneme models perform this worse. An
easy explanation could be the absence of punctu-
ation in phoneme models. As dots, commas and
other punctuation marks perform important seman-
tic functions in texts (see Crystal, 2015), their ab-
sence quite possibly has a negative effect on the
acquired grammatical system of a language model.

Another problem could lie in the quality of our
G2P system. Alphabetic writing systems generally
associate letters to sounds, and vice versa. How-
ever, especially for English, the correspondences
between graphemes and phonemes are not trivial
and (can seem) arbitrary (Pulgram, 1951; Venezky,
1967; Emerson, 1997; Roca, 2016). Graphemes
are arranged according to orthographic conventions
which usually do not directly reflect a language’s
underlying phonological system. Grapheme-to-
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GLUE subtask Grapheme model Grapheme model, no whitesp. Phoneme model Phoneme model, no whitesp. BabyLlama

CoLA (MCC) 0.098 0.0668 0.0325 0 -
SST-2 74.31% 74.08% 69.27% 72.94% -
MRPC (F1) 79.75% 80.62% 81.05% 81.29% -
QQP (F1) 66.54% 71.04% 62.40% 59.57% -
MNLI 52.59% 50.15% 46.92% 45.60% -
MNLI-mm 51.32% 50.24% 47.40% 46.30% -
QNLI 59.26% 63.84% 55.01% 52.82% -
RTE 44.60% 43.17% 51.08% 58.27% -
BoolQ 64.46% 64.65% 64.89% 63.85% -
MultiRC 57.63% 56.23% 57.26% 57.59% -
WSC 61.54% 61.54% 59.62% 62.46% -

Average 56.50% 56.60% 54.40% 54.70% 69.0%

Table 3: (Super)GLUE results for our models and BabyLlama baseline

phoneme conversion, as the computational attempt
to solve this problem, cannot be considered as
solved. Relatively high error rates of G2P tools
are still an issue in speech and language processing.
For example, the SIGMORPHON shared tasks on
“multilingual grapheme‑to‑phoneme conversion”
(Gorman et al., 2020; Ashby et al., 2021; McCarthy
et al., 2023) use the metrics word error rate (WER)
and phone error rate (PER) for evaluation. Word er-
ror rates of the best submissions in 2020 range from
24.89 (for Georgian) to 0.89 (for Vietnamese) (Gor-
man et al., 2020). As such, it might be more sensible
to train on manually transcribed speech. Unfortu-
nately, such corpora are small and rare, although
it might be interesting to see whether some varia-
tion in phoneme data can influence performance on
standard benchmarks.

Additionally, it remains questionable how
phoneme data should be represented for language
modeling. Splitting a transcription into a sequence
of characters for character-level tokenization in-
troduces some issues: Unicode defines IPA base
symbols as individual characters. Some diacritics
(which add information on fine phonetic detail to
base symbols) are defined as “Spacing Modifier
Letters”, others as “Combining Diacritical Marks”.
Thus an aspirated alveolar plosive [th] or a long
vowel [a:] are treated as two characters, while, de-
pending on the treatment of composed Unicode
characters, a de-voiced alveolar fricative [z

˚
] or a

raised vowel [afi] may be treated as one. Affricates
(combined sounds), for example, may be repre-
sented as a sequence of two characters joined by a
double diacritic [dZ

<
], or as a single ligature [ʤ].

Whitespace: Finally, the detrimental effect of

whitespace removal also deserves explanation and

discussion. Whitespace encodes important lin-

guistic information about word boundaries (or ap-

proximations thereof) -- information which is not

available in spoken language (there, pauses be-

tween stretches of connected speech serve dif-

ferent purposes). Instead, prosody (e.g. word

stress or intonation), provides cues to segmen-

tation at different levels of linguistic abstraction

(like words and phrases). This is, apart from

whitespace, not reflected in orthographic texts and

also often missing from phonetic transcriptions7.

As such, data without whitespaces is a develop-

mentally/cognitively/linguistically more plausible

form of input. As this added plausibility comes

with the loss of information, it is not surprising

that scores for non-whitespace models are gener-

ally lower. A notable exception is the high score

of the non-whitespace grapheme model for the

matched BLiMP supplement. This might be a side

effect of our very small context size. The BLiMP

supplement contains inter alia dialogue phenom-

ena with long dependencies. The models with-

out whitespace can take in more (non-whitespace)

characters, and in the light of our rather small con-

text size, it might be the case that the whitespace

models cannot process enough information to ac-

tually grasp these phenomena.

6 Conclusion

This paper has shown two things: (i) character-
based tokenization is a viable alternative for small
language models and (ii) phoneme-based LMs can
also perform reasonably well on common bench-
marks, although grapheme models are superior.
With the drawbacks (e.g. the computational com-
plexity increase in large models) of character-based
tokenization, we of course do not want to replace
sub-word tokenization. However, we believe that
our models deserve a place in the toolbox of devel-
opmentally more plausible language models. They
can be used to test what kind of linguistic knowledge

7Our phoneme data does not include word stress.
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can be learned from raw input and answer questions
about the learnability of linguistic knowledge from
an even poorer stimulus (Thomas, 2002; Berwick
et al., 2011) than the “stimulus” of subword models.
In combination with phoneme representations, they
open up new avenues of inquiry, e.g. for phenom-
ena on the phonological/phonetic or lexical levels
of linguistic analysis – phenomena which are not
captured by the coarse-grained structure of sub-
word tokens. Moreover, character-based language
models open new pathways into experiments with
multilingual models. The Latin script, for exam-
ple, offers a shared vocabulary for many languages,
whereas the IPA even offers a shared vocabulary for
practically all languages.

Limitations

As previously mentioned, our results are only snap-
shots of individual training runs. Repeated training
efforts with different initialization would be needed
to filter noise from actual tendencies.

Besides, in the light of the current BabyLM
challenge, we could only test these phenomena for
English. The differences between grapheme and
phoneme models may not generalize to other lan-
guages with different writing systems, languages
with different levels of phonemic correspondences
and systematicity in their orthography (like English
or French vs Spanish or Czech), and languages with
different morpho-phonological systems.
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A Full BLiMP scores

Phenomenon Graph. model Graph. model, no whitesp. Phon. model Phon. model, no whitesp.

BLiMP 71.69% 68.88% 66.90% 64.88%
BLiMP supplement 52.30% 56.28% 55.42% 54.13%

adjunct_island_filtered 73.17% 76.72% 35.24% 36.75%
anaphor_gender_agreement_filtered 85.48% 82.29% 86.30% 69.10%
anaphor_number_agreement_filtered 97.10% 88.51% 95.17% 87.00%
animate_subject_passive_filtered 68.60% 71.62% 68.83% 62.91%
animate_subject_trans_filtered 91.01% 90.57% 82.23% 77.79%
causative_filtered 69.07% 68.09% 66.01% 64.55%
complex_NP_island_filtered 43.38% 47.28% 38.30% 43.85%
coordinate_structure_constraint_complex_left_branch_filtered 46.36% 37.75% 36.31% 30.68%
coordinate_structure_constraint_object_extraction_filtered 62.38% 65.12% 65.86% 63.22%
determiner_noun_agreement_1_filtered 97.31% 97.74% 52.85% 52.85%
determiner_noun_agreement_2_filtered 96.99% 97.10% 85.61% 82.81%
determiner_noun_agreement_irregular_1_filtered 83.85% 78.12% 72.25% 70.78%
determiner_noun_agreement_irregular_2_filtered 90.00% 87.56% 84.15% 76.59%
determiner_noun_agreement_with_adj_2_filtered 92.24% 90.75% 79.81% 76.94%
determiner_noun_agreement_with_adj_irregular_1_filtered 82.45% 77.30% 73.96% 71.17%
determiner_noun_agreement_with_adj_irregular_2_filtered 82.38% 78.93% 72.26% 69.88%
determiner_noun_agreement_with_adjective_1_filtered 94.96% 91.00% 51.77% 51.55%
distractor_agreement_relational_noun_filtered 86.29% 45.05% 68.40% 57.11%
distractor_agreement_relative_clause_filtered 58.09% 43.17% 50.98% 57.41%
drop_argument_filtered 75.76% 75.98% 60.87% 62.07%
ellipsis_n_bar_1_filtered 51.50% 56.36% 54.36% 53.87%
ellipsis_n_bar_2_filtered 58.09% 63.29% 43.36% 49.64%
existential_there_object_raising_filtered 81.65% 72.66% 79.80% 68.10%
existential_there_quantifiers_1_filtered 99.46% 97.42% 96.77% 93.76%
existential_there_quantifiers_2_filtered 28.21% 33.92% 38.42% 43.69%
existential_there_subject_raising_filtered 83.98% 82.90% 84.31% 80.84%
expletive_it_object_raising_filtered 70.09% 73.12% 72.46% 70.22%
inchoative_filtered 55.79% 52.28% 44.91% 46.67%
intransitive_filtered 68.32% 67.17% 46.31% 50.58%
irregular_past_participle_adjectives_filtered 94.80% 88.14% 72.84% 63.58%
irregular_past_participle_verbs_filtered 81.53% 81.10% 85.14% 77.39%
irregular_plural_subject_verb_agreement_1_filtered 83.33% 76.62% 82.21% 72.14%
irregular_plural_subject_verb_agreement_2_filtered 89.46% 87.33% 88.00% 83.86%
left_branch_island_echo_question_filtered 65.15% 61.67% 63.15% 70.86%
left_branch_island_simple_question_filtered 60.15% 46.79% 57.83% 50.26%
matrix_question_npi_licensor_present_filtered 15.82% 12.38% 17.98% 31.75%
npi_present_1_filtered 50.39% 40.59% 46.75% 48.51%
npi_present_2_filtered 49.89% 50.33% 45.62% 48.69%
only_npi_licensor_present_filtered 98.07% 48.64% 76.87% 92.06%
only_npi_scope_filtered 50.90% 44.92% 61.05% 80.53%
passive_1_filtered 89.17% 90.60% 87.74% 86.79%
passive_2_filtered 88.15% 89.37% 83.61% 81.28%
principle_A_c_command_filtered 55.07% 59.51% 51.48% 59.41%
principle_A_case_1_filtered 100.00% 100.00% 100.00% 99.89%
principle_A_case_2_filtered 91.58% 92.57% 88.20% 78.80%
principle_A_domain_1_filtered 96.39% 98.25% 100.00% 100.00%
principle_A_domain_2_filtered 53.55% 50.71% 63.61% 51.80%
principle_A_domain_3_filtered 50.90% 50.90% 61.00% 55.58%
principle_A_reconstruction_filtered 41.88% 34.64% 53.67% 47.67%
regular_plural_subject_verb_agreement_1_filtered 93.48% 90.45% 88.76% 80.11%
regular_plural_subject_verb_agreement_2_filtered 90.37% 85.19% 82.65% 77.67%
sentential_negation_npi_licensor_present_filtered 96.19% 96.74% 99.35% 96.52%
sentential_negation_npi_scope_filtered 21.70% 23.08% 33.30% 40.76%
sentential_subject_island_filtered 40.89% 39.33% 58.17% 57.54%
superlative_quantifiers_1_filtered 66.70% 66.80% 70.99% 54.14%
superlative_quantifiers_2_filtered 76.37% 83.77% 69.98% 61.16%
tough_vs_raising_1_filtered 36.50% 28.80% 23.73% 29.32%
tough_vs_raising_2_filtered 81.41% 82.93% 80.76% 78.37%
transitive_filtered 80.07% 74.77% 70.85% 66.94%
wh_island_filtered 61.77% 63.54% 61.04% 38.75%
wh_questions_object_gap_filtered 78.70% 75.20% 80.33% 76.37%
wh_questions_subject_gap_filtered 92.32% 92.54% 92.43% 90.31%
wh_questions_subject_gap_long_distance_filtered 91.60% 93.35% 93.58% 94.87%
wh_vs_that_no_gap_filtered 95.82% 95.93% 96.17% 94.54%
wh_vs_that_no_gap_long_distance_filtered 94.86% 97.37% 96.57% 94.74%
wh_vs_that_with_gap_filtered 27.20% 26.01% 5.55% 7.07%
wh_vs_that_with_gap_long_distance_filtered 7.03% 4.18% 3.41% 4.62%
supplement_hypernym 51.19% 51.90% 51.07% 51.19%
supplement_qa_congruence_easy 48.44% 54.69% 56.25% 57.81%
supplement_qa_congruence_tricky 26.67% 39.39% 25.45% 25.45%
supplement_subject_aux_inversion 78.54% 77.22% 86.11% 79.75%
supplement_turn_taking 56.79% 58.21% 58.21% 56.43%
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Abstract
For specialized domains, there is often not a
wealth of data with which to train large ma-
chine learning models. In such limited data /
compute settings, various methods exist aiming
to do more with less, such as finetuning from a
pretrained model, modulating difficulty levels
as data are presented to a model (curriculum
learning), and considering the role of model
type / size. Approaches to efficient machine
learning also take inspiration from human learn-
ing by considering use cases where machine
learning systems have access to approximately
the same number of words experienced by a 13
year old child (100M words). We investigate
the role of 3 primary variables in a limited data
regime as part of the multimodal track of the
BabyLM challenge. We contrast: (i) curricu-
lum learning, (ii), pretraining (with text-only
data), (iii) model type. We modulate these vari-
ables and assess them on two types of tasks:
(a) multimodal (text+image), and (b) unimodal
(text-only) tasks. We find that curriculum learn-
ing benefits multimodal evaluations over non-
curriclum learning models, particularly when
combining text-only pretraining. On text-only
tasks, curriculum learning appears to help mod-
els with smaller trainable parameter counts. We
suggest possible reasons based on architectural
differences and training designs as to why one
might observe such results.

1 Introduction

Recent vision-language models (VLMs) have
achieved superior performance on numerous bench-
mark datasets (such as the Llama1 and Gemini mod-
els2), and continue advancing rapidly as models are
scaled up. The number of parameters of such mod-
els is often on the order of billions. These models
require multiple days of compute, and hundreds of
GPUs (e.g., Radford et al. (2021)), resulting in mas-
sive energy consumption (Luccioni et al., 2024).

1https://llama.meta.com/
2https://deepmind.google/technologies/gemini/

Furthermore, to train such large models, we require
massive amounts of pretraining data. For example,
70M image-text pairs were used to train the Flava
foundation model (Singh et al., 2022). Pretraining
VLMs on such large scale data is often infeasible
for independent researchers and university research
labs with limited compute.

In contrast to machine learning, human learning
is much more efficient, a finding which has led
researchers to consider which methods might pro-
mote more human-like learning in artificial neural
networks. This was originally argued for in early
work on curriculum learning (Bengio et al., 2009),
citing the fact that humans do not learn from ran-
domly sampled data, but benefit from learning over
structured chunks, typically increasing in difficulty
(a curriculum).

To this end, we explore the application of cur-
riculum learning to VLMs with limited input data
as part of the BabyLM challenge (Choshen et al.,
2024). For the multimodal track, which contains a
dataset of image-caption pairs, we take inspiration
from phase-based curriculum methodology used in
Ayyubi et al. (2023). We use Part-of-Speech (PoS)
linguistic features from the captions to categorize
samples into different phases, to generate a learn-
ing curriculum. However, instead of training the
model only one phase at a time (as used in Ayyubi
et al. (2023)), we train the model on the current and
previous phases such that the pool of data which
can be sampled increases at each phase.

From our experiments, we observe that:

• In a limited data setting, curriculum learning
can improve the performance of VLMs on
certain multimodal and text-only evaluation
benchmarks.

• Pretraining VLMs on developmentally plau-
sible text-only data prior to adapting to mul-
timodal data may help improve performance
on some evaluation tasks, but not others.
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2 Background

2.1 Curriculum Learning

Curriculum Learning (CL) takes inspiration from
the learning process in humans by presenting data
to a machine learning model in an easy-to-difficulty
manner (Elman, 1993; Bengio et al., 2009). CL
consists of two parts: (1) a scoring function to rank
data samples based on difficulty, and (2) a pacing
function, which controls the distribution of data
samples presented to the model. In the standard
CL implementation, the pacing function introduces
can be samples in ascending order of difficulty (or
decreasing difficulty in the case of anti-curriculum
learning (Hacohen and Weinshall, 2019; Wu et al.,
2021)).

While extensive research has shown that in cer-
tain cases, curriculum learning can provide per-
formance gains in vision (Hacohen and Weinshall,
2019; Wang et al., 2019b; Soviany, 2020) and Nat-
ural Language Processing (NLP) tasks (Nagatsuka
et al., 2021; Maharana and Bansal, 2022; Sun et al.,
2023), in other cases, the benefit is unclear (Cam-
pos, 2021; Martinez et al., 2023; Chobey et al.,
2023; Edman and Bylinina, 2023a). Importantly,
with the prevalence of vision-language models, it
is crucial to understand how the application of CL
modulates VLMs to work in the domain of limited
data and compute.

2.2 Curriculum Learning for Vision
Language Models

Some previous work has applied CL to multimodal
models where the data modality consists of images
and texts. Srinivasan et al. (2023) showed that
CL applied to a transformer model helps improve
performance on zero-shot image and text retrieval
tasks over a baseline CLIP model (Radford et al.,
2021). CL has also shown benefit in other multi-
modal domains, such as medical report generation
(Liu et al., 2023), image-captioning (Ayyubi et al.,
2023), and visual question answering (Li et al.,
2020). However, these works either rely on non
vision-transformer based image encoders (such as
an R-CNN), or conduct evaluation on a small set
of evaluation tasks. It is also unclear whether: (i)
training VLMs on image-caption data improves
model performance on text-only benchmarks; (ii)
how CL affects downstream performance in mod-
els with additional text pretraining compared to
randomly initialized models.

In this work, we present a study where we apply

CL to VLMs trained on small data. We hope to
provide the research community with a better un-
derstanding of the effects of CL on popular VLMs
such as the Generative Image Transformer (GIT)
(Wang et al., 2022) and Flamingo (Alayrac et al.,
2022) models. Furthermore, we also explore the
effect of CL on downstream model performance
on various zero-shot multimodal and text-based
benchmarks.

3 Methods

3.1 Data

We use the dataset provided as part of the BabyLM
multimodal track (Choshen et al., 2024). The data
consist of 100M words in total: 50M words from
varied text corpora (described in Choshen et al.
(2024)) and the other 50M words are text captions
taken from the Conceptual Captions (Sharma et al.,
2018) and Localized Narratives (Pont-Tuset et al.,
2020) image-caption datasets. In total, the mul-
timodal data consists of ∼ 2.9M image-caption
pairs.

One of the key experimental variables we ex-
amine is the impact of text pretraining. For mul-
timodal models, we compare the performance of
models trained on image-caption data (consisting
of 50M words), starting either from a randomly
initialized model or from a model pretrained on the
text-only corpora mentioned above (50M words).
Model variants not pretrained on the text-only cor-
pora only use the words in the captions of the asso-
ciated training images (i.e., models are trained on
only 50M words and the corresponding images).

3.2 Models

We train two VLMs: (1) GIT Wang et al. (2022)
and (2) Flamingo (Alayrac et al., 2022). We chose
these models because they were selected as refer-
ence baselines provided by the BabyLM challenge
(Choshen et al., 2024). Both GIT and Flamingo
models consist of vision encoders to encode image
inputs, and text decoders to generate free-form text.

We use the default configurations for the GIT 3

and Flamingo4 models provided in the BabyLM
challenge to compare the performance of our mod-
els to the baselines reported by the challenge.
Following the default configurations, we use pre-
trained vision encoders5 for both the GIT and

3https://huggingface.co/babylm/git-2024
4https://huggingface.co/babylm/flamingo-2024
5https://huggingface.co/facebook/dino-vitb16
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Flamingo models. Furthermore, according to de-
fault model configurations, we update all model
parameters for the GIT model, but for Flamingo,
we keep the vision encoder frozen, and update all
other parameters. GIT has a total of 198 million
parameters (198 million trainable parameters), and
Flamingo has 255 million total parameters (169
million trainable parameters because of the frozen
vision encoder).

Tokenizer: Pretrained tokenizers are trained on
data that exceed the limit imposed by the challenge.
Thus, we train a new WordPiece tokenizer (using
a bert-base-uncased model configuration) from
scratch on the text-only and caption data (100M
words total). We use the same tokenizer for both
GIT and Flamingo to avoid confounding model
performance differences with the tokenizer choice.

3.3 Curriculum Framework
We discuss the respective implementations of the
scoring and pacing functions for the curriculum
learning framework below.

Scoring function: A scoring function assigns a
difficulty score k ∈ R to each sample in the dataset,
where a sample xi is easier than a sample xi+1, if
kxi < kxi+1 .

Previous works have used a variety of scoring
functions to measure sample difficulty, such as the
loss scoring function in image classification (Ha-
cohen and Weinshall, 2019) and text classification
settings (Xu et al., 2020; Maharana and Bansal,
2022). Relatedly, in sample-efficient pretraining of
language models, average sentence rarity (Boraz-
janizadeh, 2023), sentence length (DeBenedetto,
2023) or other combinations of individual text
statistics (Edman and Bylinina, 2023b) have been
used to rank data samples (for a comprehensive sur-
vey, see Soviany et al. (2021)). More recently, in
multimodal settings, cross-modal similarity (Zhang
et al., 2022) has been used to rank examples to
improve model performance in image-captioning
tasks. All in all, it must be noted that determining
the difficulty of image-caption pairs is non-trivial
and an active research problem.

For our experiments, we explored the applicabil-
ity of linguistic information such as Part-of-Speech
(PoS) tags to determine difficulty of samples. We
took inspiration from the scoring function used by
Ayyubi et al. (2023), where a PoS tagger was used
to count the number of nouns in the caption, as an
indirect measure of the number of concepts present

Figure 1: Cumulative distribution of scores for all the
image-caption pairs. The dashed vertical lines deter-
mine each of the four quartiles, where each quartile
contains the samples that belong to a specific curricu-
lum phase.

in the image. The number of concepts, in turn,
determined the difficulty of the image-caption pair.

As the BabyLM challenge has limits on the num-
ber of words that can be used to train systems, we
trained our own PoS tagger to tag the image cap-
tions. To train the tagger, we first created a training
dataset by annotating the provided text-only and
caption data, with POS symbols6, using an off-the-
shelf PoS tagger from NLTK 7. Then we used this
newly created annotated training dataset to train a
custom PoS tagger on the permissible limited text
words. We implemented the PoS tagger using a
token classification model using BERTBASE as
the backbone model architecture. We trained the
tagger for 5 epochs8, using a batch size of 512 and
half-precision (FP16) training.

Distribution of difficulty scores: We show the
cumulative distribution of the scores assigned by
the PoS scoring function in Figure 1. For images
having multiple captions, we consider the maxi-
mum value of the difficulty (maximum number of
nouns) amongst all the captions for that image. We
use maximum difficulty to account for the most
complex interpretation of the image and avoid un-
derestimation of the difficulty value.

Ordering: In our experiments, we order the sam-
ples in ascending order of difficulty, to explore the

6These are non-word elements such as NN for noun, or JJ
for determiner

7https://www.nltk.org/api/nltk.tag.pos_tag.
html

8We observed that 5 epochs were sufficient to achieve
∼97.42% accuracy on a 10% held out validation dataset. We
then trained the tagger on all the data (train+validation).
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performance improvement of unimodal and mul-
timodal models when they are trained in a man-
ner similar to how humans acquire novel informa-
tion. Although previous work has shown that a
descending ordering of difficulty can be beneficial
for model performance for certain tasks (e.g., Ma-
harana and Bansal (2022)), we leave this for future
research given limited compute.

Pacing function: A pacing function controls the
rate at which samples of different training curricu-
lum phases are presented to the model. Multiple
different pacing strategies exist, such as fixed expo-
nential pacing, step pacing for image classification
(Hacohen and Weinshall, 2019), competence func-
tion (Platanios et al., 2019) for machine translation,
to name a few.

For our experiments, we design a simple pacing
function inspired by the phase-level pacing func-
tion (Ayyubi et al., 2023) and competence-based
pacing function (Platanios et al., 2019). We use
the quartiles from the cumulative distribution of
the sample difficulty scores (Figure 1), giving us
four blocks of difficulty levels. For simplicity, we
also train our model in four phases, where in each
training phase p, we train the model on samples
that have difficulty levels in the pth quartile. For
example, in Figure 1, the first phase (p1) contains
samples with difficulty level k ≤ 2, the second
phase contains samples with difficulty level k ≤ 3,
the third phase contains samples with k ≤ 5, while
the fourth phase contains all the samples in the
dataset. For each training phase, we randomly sam-
ple training batches from the set of data available
up to the corresponding training quartile. It must be
noted with each new block, the number of available
data points increases, which has an effect during
training, where earlier epochs are faster (because
of fewer samples) compared to later epochs.

This approach contrasts the phase-level curricu-
lum learning introduced by Ayyubi et al. (2023),
where the model is trained only on samples from a
specific block, which may cause the model to focus
more on samples in that specific block, while not re-
taining previously learned information from earlier
phases. Furthermore, our pacing function has the
added advantage of not requiring extensive hyper-
parameter tuning, such as the exponential pacing
function used by Hacohen and Weinshall (2019),
and is thus suitable for scenarios with limited com-
putational resources.

3.4 Models Variants

For both GIT and Flamingo, we train four model
variants, two of which are baseline models and
two are trained using curriculum learning. In each
pair, we train one model only on the image-caption
data starting from random initialization (except the
vision encoder which is pretrained), while we first
pretrain the other variant on the text-only corpus,
before training on image-caption data.

Baselines: For the first baseline variant, we train
the model on the image-caption dataset (50M
words) using standard i.i.d training. We refer to
this variant with C (denoting that the model is
trained on the image-caption data only) for both
GITBaseline and FlamingoBaseline. For the sec-
ond baseline variant, we first train the model on
the text-only dataset (containing 50M words) us-
ing standard i.i.d training. We then continue the
training procedure on image-caption dataset (con-
taining another 50M words) using standard i.i.d
training. We refer to this variant as T+C, for both
GITBaseline and FlamingoBaseline.

Our choice to also train the T+C model variant
stems from previous work showing that exposing
the model to developmentally plausible data, such
as child-directed speech, before exposing it to com-
plex data, can benefit model performance (Huebner
et al., 2021). Thus, we explore the difference in
model performance, when we first train the model
on the text-only dataset, before continuing the train-
ing procedure on the image-caption data.

Curriculum models: For curriculum variants,
we use CL on the image-caption pairs because we
hypothesize that applying CL on multimodal data
will improve model performance. We refer to these
variants trained only on the image-caption pairs as
C under GITCL and FlamingoCL. We also train
T+C variants of CL models, where we first pre-
train the model on the text-only dataset using stan-
dard i.i.d training, and then use curriculum learning
to continue the training procedure on the image-
caption pairs.

To summarize, we trained four variants for each
model, two of which were trained using standard
training (no curriculum), and the other two were
trained using curriculum learning. For GIT and
Flamingo baseline variants, we train the model
on the image-caption only (C) data, and both text
+ image-caption (T+C) data. Similarly, for the
curriculum variants, we train each model on, image-

68



caption data only (C) data, and both text + image
(T+C) data.

4 Training and Evaluation Details

Training Details: For the curriculum variants,
we train the model for two epochs per each diffi-
culty phase (of which there are four). We used a
learning rate of 1e−5, maximum token length of 50,
and 32 samples per batch 9, and Adam optimizer10

(Kingma and Ba, 2017).
When training the T+C variants of our baseline

and curriculum models, we first trained the model
on the text-only dataset for twenty epochs (instead
of eight epochs for image-caption data) and use the
same hyperparameter values. We used an NVIDIA
A5000 GPU with 24GB vRAM, with half-precision
(FP16) to train the models. We provide the total
time required to train each model variant in Ap-
pendix A. For all experiments, we set the random
seed to 0 to remove variation in the results due to
different random sampling and initialization. We
also hold out 5% of the full image-caption dataset
to validate the model. We show the validation loss
curves in Appendix B.

Evaluation: To evaluate the performance of our
models, we use the evaluation pipeline provided by
challenge (Gao et al., 2023; Choshen et al., 2024).
We report the performance of all the variants of the
GIT and Flamingo models on the multimodal,
and text-based evaluation tasks.

4.1 Multimodal evaluation datasets

Winoground : The Winoground dataset (Thrush
et al., 2022) evaluates a model’s ability to perform
visio-linguistic compositional reasoning. Specif-
ically, given two image-caption pairs, the goal is
to match the image to the corresponding caption,
where both captions contain an identical set of
words, but in a different order (e.g. It’s a fire truck
vs it’s a truck fire). The dataset consists of 400
examples with 800 unique images and captions. To
assess model performance, we use the unpaired
text-score metric as provided in the BabyLM eval-
uation pipeline.

9We use a batch size of 32 when training on the image-
caption data, but we use a value of 256 when pretraining
the model (T+C variant) on the text-only dataset as memory
requirements are lower.

10We use default hyperparameters for Adam: β1 = 0.9, β2

= 0.999, eps=1e−08, weight_decay=0.

VQAv2: The VQAv2 dataset (Goyal et al., 2017)
is a large-scale visual question answering dataset.
It contains open-ended questions about images, re-
quiring models to understand the visual content and
generate appropriate answers. We use accuracy as
the choice of metric as reported in the BabyLM
evaluation pipeline. For this task the model has
to select the best answer for a given image and
question, in the presence of 7 distractors.

DevBench: The DevBench dataset (Tan et al.,
2024) is a multimodal benchmark for developmen-
tal evaluation that evaluates how closely a model’s
outputs align with human responses. It includes
tasks such as object recognition, action recognition,
and visual question answering, using data from
both children and adults. The BabyLM pipeline
uses three tasks from the DevBench dataset: (1)
The (Lexical) Visual Vocabulary (lex-viz_vocab)
task involves selecting the correct image from sev-
eral image options based on a given word. (2)
The (Grammatical) Test of Reception of Grammar
(gram-trog) task involves choosing the correct im-
age based on a sentence, testing grammatical under-
standing using distractor images that correspond
to sentences with different word orderings (e.g. "a
white cat sitting on a brown couch" vs. "a brown
cat sitting on a white couch"). Finally, (3) the
(Semantic) THINGS Similarity (sem-things) task
uses Representational Similarity Analysis (RSA)
to compare the model’s image similarity judgments
with human responses.

4.2 Text-only evaluation datasets
BLIMP (and BLIMP Supplement): The BLIMP
dataset (Warstadt et al., 2020) is a benchmark for
evaluating syntactic and semantic knowledge in
language models. It consists of sentences with
systematic variations in syntax and semantics. The
BLIMP Supplement extends the original dataset
with additional challenging examples.

(Super)GLUE: The (Super)Glue benchmark
(Wang et al., 2018, 2019a) is a collection of diverse
natural language understanding tasks designed to
evaluate a model’s ability to perform well across
multiple domains and evaluates generalized lin-
guistic ability. The BabyLM challenge includes
tasks, COLA, SST2, MRPC, QQP, MNLI, MNLI-MM,
QNLI, RTE from the GLUE benchmark, and the tasks
BoolQ, RTE and WSC from SuperGLUE bench-
mark. To fine tune all our model variants, we use a
train batch size of 128, validation batch size of 16,
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C
Winoground 54.02 55.50 51.34 55.23 50.00 51.21 51.21 50.80

VQAv2 41.22 41.72 42.84 43.98 41.99 43.00 35.93 40.85

Table 1: Results for baseline and curriculum models on the Winoground and VQAv2 evaluation datasets. C: Model
trained on image-caption pairs only (50M words), T+C: the model is first trained on the text-only dataset (20
epochs) and then trained on image-caption pairs (50M+50M=100M words). Green cells: winning variants over
corresponding baseline variants.

Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C
lex-viz_vocab 72.27 75.63 78.15 73.11 66.39 52.94 58.82 54.62

gram-trog 32.89 38.16 32.29 39.47 34.21 34.21 34.21 35.53

sem-things 33.39 25.79 22.83 32.08 46.46 47.99 50.21 51.66

Avg: devbenchacc 46.18 46.52 44.63 48.22 49.02 45.05 47.75 47.27

Table 2: Accuracy results for baseline and curriculum models on the DevBench dataset. RSA scores are used
for sem-things C: Model trained on image-caption pairs only (50M words), T+C: the model is first trained on
the text-only dataset (20 epochs) and then trained on image-caption pairs (50M+50M=100M words). Green cells:
winning variants over corresponding baseline variants..

Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C
lex-viz_vocab 68.25 68.59 70.19 70.66 64.47 57.63 63.08 57.46

gram-trog 44.46 46.51 44.77 45.79 43.59 42.77 42.54 43.29

sem-things 33.39 25.79 22.83 32.08 46.46 47.99 50.21 51.66

Avg: devbenchhs 48.70 46.96 45.93 49.51 51.51 49.46 51.94 50.80

Table 3: Human similarity scores for baseline and curriculum models on the DevBench dataset. RSA scores are
used for sem-things. C: Model trained on image-caption pairs only (50M words), T+C: the model is first trained on
the text-only dataset (20 epochs) and then trained on image-caption pairs (50M+50M=100M words). Green cells:
winning variants over corresponding baseline variants.

learning rate of 5e−5, early stopping patience of 3,
maximum sequence length of 50, and maximum
number of epochs=10. We used default values for
all other hyperparameters provided in the BabyLM
evaluation pipeline.

EWOK: The EWOK dataset (Ivanova et al., 2024)
is a zero-shot dataset for evaluating compositional
generalization in language models. It consists of
sentences with compositional structures that re-
quire models to generalize to unseen combinations
of words and syntactic patterns.

5 Results

As unimodal and multimodal tasks are qualitatively
different, we analyze the three experimental vari-

ables of interest (curriculum, pretraining & model
type) in the context of each task type. Namely,
we report the results for all variants of GIT and
Flamingo models across two main task types that
differ with respect to their data inputs: (i) multi-
modal (image+captions), and (i) unimodal (text-
only).

5.1 Multimodal (image+captions)

We show the multimodal evaluations results in Ta-
ble 1 for Winoground and VQAv2, and in Tables 2
(accuracy) and 3 (human similarity) for DevBench.

5.1.1 Curriculum Learning
The GITCL model performs better than
GITBaseline on VQAv2 and DevBench datasets,
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C
BliMP Supp 44.29 52.89 48.61 51.24 44.24 52.59 45.71 53.28
BLiMP filtered 57.85 62.90 61.34 64.05 57.03 59.82 55.64 60.13

(Super)GLUEavg 59.96 61.12 59.79 61.46 59.82 62.79 60.53 64.29

EWOKavg 50.62 51.55 49.82 50.98 50.03 50.67 50.16 50.71

Table 4: Average results for the text-only evaluation datasets.C: Model trained on image-caption pairs only (50M
words), T+C: the model is first trained on the text-only dataset (20 epochs) and then trained on image-caption pairs
(50M+50M=100M words). Green cells: winning variants over corresponding baseline variants.

with and without pretraining on separate text
data. This is not the case for Winoground, which
we note has quite unique properties, such as
specifically probing model representations for
compositionality (see Section 4.1).

We find that FlamingoCL only performs better
than its associated baseline (FlamingoBaseline)
on the DevBench dataset when using accuracy,
and when evaluating using human response scores.
This result indicates that curriculum training may
benefit multimodal model performance when eval-
uated on benchmark datasets that focus on develop-
mentally plausible evaluation of language models.

5.1.2 Text Pretraining
Compared to training on just image-caption data,
pretraining with the text-only data (variant T+C)
produces higher scores across both GITBaseline

and GITCL models on Winoground and DevBench,
while the results are more mixed for Flamingo
models. However, in FlamingoCL on the VQAv2
dataset, we see the largest gain in performance due
to text pretraining (from 35.93 to 40.85, a gain of
∼ 5% in Table 1). On the DevBench evaluation
for GITCL, we also see the 2nd largest gain in
performance due to text pretraining (from 44.63 to
48.22 for accuracy, and from 45.93 to 49.51 when
using reference human similarity scores; a gain of
∼ 4%). Interestingly, the highest result of all mod-
els on the Winoground dataset are the GIT models
with text pretraining, suggesting that text-only pre-
training is a big contributor to the properties of the
Winoground evaluation benchmark (composition-
ality). However, one must be cautious about gen-
eralizing this finding as the performance increase
could simply result from the model being trained
on more data.

As we only use a single seed to report these re-
sults, we wanted to confirm that our observation
is not simply due to random chance. Thus, we

conduct more experiments where we train all GIT
variants using two more seeds, and observe a sim-
ilar pattern in our findings (text pretraining aids
model performance). We provide these results in
Appendix C.

5.1.3 Model Type

The two models differ in their application of at-
tention mechanism and model size, measured by
the number of trainable parameters (See Section
3.2). Flamingo has a frozen image encoder (un-
like GIT ) and cross-attention is applied prior to
each LM block in the Transformer stack (which in-
ternally contains the standard self-attention mecha-
nism). In contrast, GIT uses a projection module
to bring image embeddings into the same space as
the text embeddings and applies successive self-
attention on these vectors. We see multiple vari-
ants of GIT outperform Flamingo (especially
for Winoground, VQAv2, and lex-viz_vocab,
gram-trog subsets for DevBench). In the multi-
modal evaluation context, we believe this could be
due to the ability for GIT to update the parame-
ters of its vision encoder, perhaps additionally by
making use of the fact that image tokens can self-
attend to one another (unlike the cross-attention in
Flamingo, which does not have this property).

5.2 Unimodal (text-only)

We summarize the results for the unimodal (text-
only) evaluation in Table 4. This table contains
summary results for the three text-only evaluation
benchmarks (see Section 4.2). Table 9 contains de-
tailed results on the (Super)GLUE and EWOK bench-
marks. We also provide a detailed breakdown of
model performance for each text-based task in Ap-
pendix D.
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5.2.1 Curriculum Learning
Closely related to the observations for multimodal
benchmarks, we see that curriculum learning vari-
ants outperform corresponding baselines variants
on the unimodal (text-only) benchmarks. Although
both GITCL and FlamingoCL outperformed their
corresponding baselines (Tables 4 and 9), the effect
was greater in FlamingoCL.

5.2.2 Text Pretraining
We outline the averaged results in Table 4 and show
that for both Flamingo and GIT , text pretrain-
ing leads to a gain in performance. In fact, all
T+C variants (curriculum and baseline) for both
models showe better performance compared to C
variants. Coupled with curriculum learning, we ob-
serve performance benefits on all text-based evalu-
ation datasets. These results suggest that text pre-
training conveys a clear advantage for multimodal
models when they are evaluated on certain text-
based benchmarks.

5.2.3 Model Type
Unlike the multimodal results, considering the av-
erage results in Table 4, there was no consistent
pattern where one model type outperformed the
other. For example, on (Super)GLUE, both base-
line and CL T+C variants of Flamingo outper-
formed respective GIT variants. However, this
was not the case for BLIMP filtered, where we
observed the opposite pattern - all variants of GIT
outperformed all variants of Flamingo. Such a
result could result from the fact that both GIT and
Flamingo become more similar in their architec-
ture in the text-only evaluation setting. This can
stem relaxed requirement to incorporate image in-
formation, making both models resemble standard
autoregressive Transformer decoders (the trainable
parameter count changes in this context because
GIT ’s vision encoder was trainable in the multi-
modal case, while Flamingo’s was frozen). This
results in the trainable parameter count for GIT be-
ing 198M and 169M for Flamingo (Section 3.2).

5.3 Brief Summary of Results

For the multimodal evaluation, we observe that text
pretraining before image-caption training boosts
model performance compared to no text pretraing.
However, these observations must be cautiously
generalized across model types; text pretrain-
ing largely conveys a benefit in all GIT mod-
els, but this benefit is inconsistent for Flamingo.

For instance, the FlamingoCL variant benefits
from additional text-only pretraining over just
image-caption training (for VQAv2, gram-trog, and
sem-things), but this effect is unclear for the
FlamingoBaseline. For GIT model variants, cur-
riculum learning (combined with pretraining) re-
sulted in the best overall model scores on VQAv2
and DevBench (considering average scores in Ta-
bles 2 and 3).

For the text-only evaluation, removing the im-
age component from both the GIT and Flamingo
models effectively reduces them to text-only trans-
former architectures with differing number of pa-
rameters. This likely explains why the models
show similar performance across tasks despite their
original multimodal design. Nonetheless, we see
that in Table 4, the FlamingoCL T+C variant can
be more suited to learning representations leading
to better scores across the SuperGLUE benchmark,
and BLiMP supplement dataset. But on BLiMP
filtered (and less pronounced for EWOK), the T+C
variant of GITCL outperforms the T+C variant of
FlamingoCL.

Conclusion

In this study, we explore the application of a cur-
riculum learning (CL) approach to training vision-
language models (VLMs) in a limited data setting.
We use a custom trained Part-of-Speech (PoS) tag-
ger to determine the complexity of image-caption
pairs. We train two variants for each of the GIT
and Flamingo models using curriculum learn-
ing and compare their performance against vari-
ants trained using standard i.i.d training. We find
that while CL training shows potential, its benefits
are not universally applicable across all GIT and
Flamingo variants. However, for certain model
configurations, CL enhances performance on a
range of downstream, multimodal and text-based
tasks (zero-shot and finetuning). Importantly, pre-
training VLMs on developmentally plausible text
data prior to multimodal training can contribute to
performance gains. Nonetheless, generalizing this
result requires careful consideration, as factors such
as model architecture, training data composition,
and the nature of evaluation tasks can significantly
affect model performance.

Code and Data Availability

We release our code, model predictions, and model
checkpoints.
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A Comparison of Training Times

We show the comparison of the training times for
different baseline and curriculum variants in Table
5.

Model Variant Hours

GITBaseline
C ∼ 80

T+C ∼ 109

GITCL
C ∼ 50

T+C ∼ 79

FlamingoBaseline
C ∼ 79

T+C ∼ 105

FlamingoCL
C ∼ 46

T+C ∼ 72

Table 5: Comparison of training times amongst all
model variants. These training times include valida-
tion loss calculation after every epoch. The pretraining
on the text-only dataset (for the T+C variants) accounted
for about 29 hours for the GIT model and around 26
hours for the Flamingo model. Curriculum models
take fewer hours to train because of the dynamic nature
of the training data size that grows during training.

B Validation loss curves

We show the validation loss curves on a held out
5% of the image-caption data in Figure 2.

Figure 2: Validation loss curves for all the model
variants. GIT variants are shown in solid lines and
Flamingo variants are shown in dashed lines. The x-
axis denotes the epochs, and the value at the 0th epoch
denotes the validation loss of the model before being
trained on the image-caption pairs (i.e., before train-
ing on the first epoch). For the T+C variants, since the
model is pretrained on the text-only dataset before being
trained on the image-caption pairs, the loss starts at a
lower value compared to the model variants on image-
caption data only (C) that were randomly initialized.

C GIT model multimodal results across 3
seeds

We show the multimodal evaluation results for
the different GIT model variants in Tables 6 for
Winoground and VQAv2, 7 for accuracy on De-
vBench, and 8 human similarity scores on De-
vBench.

Tasks
GITBaseline GITCL

C T+C C T+C
Winoground 54.02 53.71 51.52 54.65

VQAv2 38.80 41.90 42.28 42.60

Table 6: Results for GIT baseline and GIT curriculum
models on the multimodal evaluation datasets averaged
across three seeds. C: Model trained on image-caption
pairs only (50M words), T+C: the model is first trained
on the text-only dataset (20 epochs) and then trained on
image-caption pairs (50M+50M=100M words). Green
cells: winning variants over corresponding baseline vari-
ants.
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Tasks
GITBaseline GITCL

C T+C C T+C
lex-viz_vocab 72.93 72.55 75.91 71.71

gram-trog 38.16 36.84 32.26 41.67

sem-things 30.88 25.61 17.34 30.78

Averageacc 47.32 45.00 41.84 48.05

Table 7: Accuracy results for GIT baseline and GIT
curriculum models on the devbench datasets averaged
across three seeds. C: Model trained on image-caption
pairs only (50M words), T+C: the model is first trained
on the text-only dataset (20 epochs) and then trained on
image-caption pairs (50M+50M=100M words). Green
cells: winning variants over corresponding baseline vari-
ants.

Tasks
GITBaseline GITCL

C T+C C T+C
lex-viz_vocab 68.64 68.07 68.65 68.71

gram-trog 44.90 44.61 43.72 45.71

sem-things 30.88 25.61 17.34 30.78

Averagehs 48.14 46.10 43.24 48.40

Table 8: Human similarity results for GIT baseline and
GIT curriculum models on the devbench datasets av-
eraged across three seeds. C: Model trained on image-
caption pairs only (50M words), T+C: the model is
first trained on the text-only dataset (20 epochs) and
then trained on image-caption pairs (50M+50M=100M
words). Green cells: winning variants over correspond-
ing baseline variants.

D Evaluation results on (Super)GLUE,
EWOK, and BLiMP

We show the results for all models and correspond-
ing variants on each individual subtask for the text-
only evaluation tasks in Tables 9 for (Super)GLUE
and EWOK, 10 for BLiMP Supplement, and 11 ,
12, 13, 14 for BLiMP.
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C
S
u
p
er
G
L
U
E

f
t

boolq 64.04 65.2 64.04 70.21 67.77 66.91 68.07 66.54
cola (mcc) 6.68 6.68 0.0 6.68 0.0 17.7 0.0 31.75
mnli 68.7 69.74 69.34 69.93 66.24 70.03 67.07 70.37
mnli-mm 69.43 70.22 69.26 70.77 66.9 70.2 66.35 71.42
mrpc (f1) 82.12 82.13 81.23 81.35 81.05 82.51 79.87 82.39
multirc 55.57 57.43 57.55 56.97 60.81 53.55 58.21 56.23
qnli 63.14 64.42 67.5 65.59 65.81 68.92 67.86 69.91
qqp (f1) 80.92 81.7 80.12 81.53 79.83 82.05 79.91 81.88
rte 46.04 48.92 46.04 46.04 46.04 52.52 56.12 46.04
sst2 84.40 87.39 84.17 88.53 85.09 87.84 83.94 88.30
wsc 38.46 38.46 38.46 38.46 38.46 38.46 38.46 42.31

E
W

O
K

agent prop 50.05 50.14 50.09 49.59 49.46 50.32 49.91 49.68
mat-dynam 51.56 52.21 51.30 50.65 49.48 52.21 50.52 54.42
mat-prop 50.59 52.35 47.06 49.41 46.47 53.53 51.76 51.18
phy-dynam 49.17 55.83 48.33 58.33 54.17 48.33 50.0 51.67
phy-inter 49.64 50.0 50.18 50.18 50.18 49.1 48.74 49.1
phy-relation 50.24 49.88 50.61 49.51 52.57 50.12 49.27 50.86
quant-prop 51.91 50.96 49.68 50.96 49.36 53.5 50.64 50.0
social-interac 50.34 50.34 50.34 49.66 49.32 49.32 49.66 50.0
social-prop 50.3 50.91 50.91 50.0 50.0 49.09 50.61 50.0
social-relation 50.32 51.42 49.94 50.0 49.29 50.0 50.45 50.06
spatial-relation 52.65 53.06 49.59 52.45 50.0 51.84 50.20 50.82

Table 9: Breakdown of model performance on each subtask for the(Super)Glue and EWOK datasets. Cells highlighted
in Green denote winning variants compared to corresponding baseline variants.

Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C

B
L

iM
P

Su
pp

le
m

en
t hypernym 47.86 48.81 49.76 48.93 49.17 48.93 48.1 51.19

qa_congruence_easy 29.69 51.56 35.94 50.0 32.81 51.56 37.5 53.12
qa_congruence_tricky 27.88 24.24 27.27 20.0 20.0 30.91 27.27 28.48
subject_aux_inversion 66.02 83.76 80.06 83.68 68.53 81.54 71.4 82.91
turn_taking 50.0 56.07 50.0 53.57 50.71 50.0 44.29 50.71
Average 44.29 52.89 48.61 51.24 44.24 52.59 45.71 53.28

Table 10: Breakdown of model performance on each subtask for the BLiMP Supplement dataset. Cells highlighted
in green denote winning variants compared to corresponding baseline variants.
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C

B
L

iM
P

determiner_noun
_agreement_with_adj
_irregular_1

64.62 74.51 71.87 76.32 50.56 62.53 49.86 67.69

principle_A_domain_3 51.75 51.97 48.67 51.22 48.46 48.57 49.31 45.59
sentential_negation
_npi_scope

47.65 61.31 57.52 55.57 56.83 54.54 55.57 50.86

complex_NP_island 41.13 51.89 41.61 54.37 58.87 43.5 62.17 41.13
irregular_plural
_subject_verb _agree-
ment_1

55.35 64.68 63.06 64.18 49.5 57.71 51.87 60.45

distractor_agreement
_relational_noun

41.62 46.7 47.21 51.27 52.03 46.83 49.37 47.46

matrix_question
_npi_licensor_present

3.98 44.78 4.2 33.05 84.5 59.85 35.84 39.5

passive_2 70.65 70.32 72.54 72.2 70.32 70.1 72.09 64.12
adjunct_island 78.45 64.12 48.38 66.38 55.6 59.81 63.25 56.03
wh_vs_that_with_gap 16.1 26.55 8.05 25.9 12.19 14.47 35.8 17.74
irregular_past _partici-
ple_adjectives

59.63 66.6 79.19 63.68 46.51 48.8 45.37 67.01

drop_argument 71.96 74.02 73.8 76.41 70.87 70.0 70.11 68.91
principle_A_domain_2 49.62 57.7 57.16 59.02 46.34 50.93 50.82 56.28
anaphor_gender
_agreement

45.21 46.04 36.77 47.79 74.46 47.79 42.33 39.55

wh_questions_subject
_gap_long_distance

93.0 85.53 97.9 89.5 81.68 88.8 61.38 89.96

only_npi_licensor
_present

61.68 74.72 93.99 52.72 72.22 92.52 97.05 58.28

intransitive 54.84 60.02 53.57 61.98 57.49 59.1 57.6 60.14
ellipsis_n_bar_1 43.64 49.88 52.37 59.6 38.4 61.97 51.0 52.12
regular_plural_subject
_verb_agreement_1

44.16 58.54 53.15 58.76 49.44 55.84 45.96 61.12

principle_A_domain_1 84.57 93.0 96.83 91.79 57.99 93.0 93.22 80.42
irregular_past _partici-
ple_verbs

63.8 65.39 58.6 59.45 61.04 66.56 49.26 68.05

sentential_subject _is-
land

54.63 62.12 67.33 56.71 53.69 51.93 49.84 63.89

Table 11: BLIMP - individual task results. Cells highlighted in Green denote winning variants compared to
corresponding baseline variants.
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C

B
L

iM
P

wh_vs_that_with_gap
_long_distance

13.52 10.0 5.49 10.22 15.6 8.46 40.77 12.2

principle_A_recons-
truction

54.6 50.36 53.05 35.26 56.05 53.26 50.47 55.43

regular_plural_subject_
verb _agreement_2

55.03 66.88 64.44 68.25 48.99 51.43 51.22 61.9

ellipsis_n_bar_2 29.59 51.93 31.76 53.26 37.92 45.41 33.57 55.68
determiner_noun
_agreement_with
_adj_irregular_2

65.36 75.71 70.12 77.5 60.0 65.12 57.26 68.33

passive_1 78.1 71.55 80.48 76.19 70.36 75.83 77.02 71.9
irregular_plural
_subject_verb _agree-
ment_2

59.64 68.61 71.86 67.94 48.88 60.09 55.83 69.06

existential_there _sub-
ject_raising

54.11 75.65 56.06 77.81 59.74 67.42 55.3 71.21

left_branch_island
_echo_question

52.69 18.69 61.14 18.27 22.39 23.34 6.65 33.37

expletive_it_object
_raising

63.9 63.77 62.32 62.45 63.37 64.16 61.92 63.77

coordinate_structure
_constraint_object
_extraction

36.14 33.4 51.74 53.74 40.99 50.26 46.36 61.54

causative 58.07 67.48 56.48 70.17 52.57 60.15 50.12 59.78
npi_present_2 38.4 61.38 45.19 58.64 46.28 61.6 26.15 44.64

Table 12: BLIMP - individual task results continued. Cells highlighted in Green denote winning variants compared
to corresponding baseline variants.
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C

B
L

iM
P

animate_subject_trans 46.05 44.53 22.64 38.68 30.55 49.84 64.46 66.31
transitive 69.93 73.04 71.08 75.23 52.65 63.59 60.25 58.99
determiner_noun _agree-
ment_with_adj_2

65.99 78.53 65.57 81.62 50.05 60.04 56.11 70.24

determiner_noun _agree-
ment_irregular_2

75.12 81.34 72.2 84.88 63.17 73.78 61.71 77.56

left_branch_island _sim-
ple_question

46.37 36.8 62.78 35.44 39.54 45.53 33.96 37.64

wh_vs_that_no_gap 85.13 91.17 94.19 94.89 90.36 93.26 64.0 93.26
tough_vs_raising_2 67.72 69.24 74.57 72.5 51.74 63.7 56.85 72.07
principle_A_case_1 99.78 100.0 99.78 100.0 93.31 98.79 98.25 98.03
wh_questions_subject_gap 81.51 85.41 91.43 88.86 82.63 89.2 72.16 87.53
only_npi_scope 35.72 50.3 69.3 46.12 79.81 61.05 75.03 39.67
distractor_agreement _rel-
ative_clause

43.51 46.73 40.07 44.78 54.31 48.91 53.16 48.56

existential_there _quanti-
fiers_2

58.29 17.34 38.31 30.63 19.87 34.03 21.08 18.33

determiner_noun _agree-
ment_1

74.27 81.92 71.69 84.39 56.51 70.72 58.56 75.03

superlative_quantifiers_1 61.08 71.71 48.52 85.39 51.17 39.43 57.3 37.59
determiner_noun _agree-
ment_with_adjective_1

64.84 80.49 69.77 81.89 56.81 63.88 57.56 71.28

sentential_negation
_npi_licensor_present

90.64 99.35 99.56 92.49 91.95 99.56 72.91 98.91

wh_questions_object_gap 55.65 49.71 73.69 57.97 73.11 64.96 72.53 60.3
determiner_noun _agree-
ment_2

69.92 80.88 71.21 82.92 52.52 66.38 57.14 75.94

existential_there _quanti-
fiers_1

78.06 92.15 77.96 94.52 75.48 66.77 74.73 68.6

inchoative 43.04 50.53 40.12 52.16 43.63 49.01 44.91 50.76
coordinate_structure
_constraint_complex_left
_branch

40.07 30.13 55.08 27.37 35.76 38.41 33.11 30.13

superlative_quantifiers_2 86.51 75.56 88.03 79.11 78.19 48.68 76.27 46.96
npi_present_1 40.48 52.59 53.14 57.43 48.4 57.98 50.72 57.87
wh_island 17.71 27.92 32.08 51.88 61.25 18.12 48.75 40.42
existential_there_object
_raising

70.44 66.13 67.73 60.96 68.23 70.94 66.26 67.98

Table 13: BLIMP - individual task results continued. Cells highlighted in Green denote winning variants compared
to corresponding baseline variants.
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Tasks
GITBaseline GITCL FlamingoBaseline FlamingoCL

C T+C C T+C C T+C C T+C

B
L

iM
P

wh_vs_that_no_gap_long
_distance

86.4 94.4 94.97 96.57 89.6 94.29 61.37 93.37

principle_A_c_command 69.13 71.88 66.07 75.58 57.61 75.69 66.17 78.12
animate_subject_passive 61.45 70.28 73.85 72.18 63.13 65.14 60.67 72.51
anaphor_number_agre-
ement

73.15 80.34 62.41 86.14 71.0 72.82 49.41 74.22

determiner_noun _agree-
ment_irregular_1

64.61 70.63 67.25 75.18 59.47 62.56 54.63 73.57

tough_vs_raising_1 33.12 49.89 28.69 46.62 51.9 46.41 47.36 39.45
principle_A_case_2 62.84 77.27 72.35 79.23 54.97 62.95 48.96 62.62

Table 14: BLIMP - individual task results continued. Cells highlighted in Green denote winning variants compared
to corresponding baseline variants.
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Abstract
This paper explores the potential of re-
current neural networks (RNNs) and other
subquadratic architectures as competitive al-
ternatives to transformer-based models in
low-resource language modeling scenarios.
We utilize HGRN2 (Qin et al., 2024), a
recently proposed RNN-based architecture,
and comparatively evaluate its effectiveness
against transformer-based baselines and other
subquadratic architectures (LSTM, xLSTM,
Mamba). Our experimental results show that
BABYHGRN, our HGRN2 language model,
outperforms transformer-based models in both
the 10M and 100M word tracks of the chal-
lenge, as measured by their performance on
the BLiMP, EWoK, GLUE and BEAR bench-
marks. Further, we show the positive impact of
knowledge distillation. Our findings challenge
the prevailing focus on transformer architec-
tures and indicate the viability of RNN-based
models, particularly in resource-constrained en-
vironments.

1 Introduction

In recent years, natural language processing (NLP)
has been revolutionized by transformer-based lan-
guage models (LMs), like BERT (Devlin et al.,
2019) or GPT (Brown et al., 2020) and their deriva-
tives, achieving state-of-the-art results (Touvron
et al., 2023; Abdin et al., 2024) across a wide
range of tasks such as machine translation, ques-
tion answering, and text generation. However, de-
spite their dominance, transformers come with no-
table limitations: they require extensive training
data (Hoffmann et al., 2022) and enormous compu-
tational resources, which pose challenges for their
use in resource-constrained environments.

These limitations led to an increasing interest in
more sample-efficient alternatives and approaches
with lower computational requirements (Wang
et al., 2020b). The shared task of the BabyLM
Challenge (Warstadt et al., 2023a) systematically

explores this trend by training LMs on datasets of
limited size (10M words in the "strict-small"
and 100M words in the "strict" setup). The re-
sulting models are then evaluated on linguistic and
general language understanding tasks.

While most participants in BabyLM Challenge
focus on adapting transformers to low-resource set-
tings, we propose revisiting recurrent neural net-
works (RNNs). Once foundational to sequence
modeling tasks (Lample et al., 2016; Howard and
Ruder, 2018), RNNs have been largely overshad-
owed by transformers due to their sequential nature
which does not easily allow for parallelization.
Potential of RNN-architectures. In this paper, we
investigate whether the inductive biases of RNN
architectures, such as their sequential processing
and memory states, provide advantages in data-
constrained settings. This question is especially rel-
evant given that state-of-the-art transformer models
depend on quadratic self-attention, which requires
calculating the inner product between all tokens.
In particular, we investigate the potential of the
HGRN2 (Qin et al., 2024), a novel subquadratic
RNN-based architecture based on hierarchical gat-
ing. We train our model using knowledge distilla-
tion (Hinton et al., 2015) and evaluate our approach,
BABYHGRN, against state-of-the-art transformer
models and other efficient RNN architectures (e.g.
xLSTM (Beck et al., 2024) or Mamba (Gu and Dao,
2024)). Our experiments demonstrate that our re-
sulting model yields better performance compared
to both transformer-based and other RNN-based
architectures.
We summarize our contributions as follows:

1. We conduct an exploratory evaluation of
transformer-based and other RNN-based
architectures (HGRN2, LSTM, xLSTM,
Mamba), contributing to the ongoing research
on sample-efficient language modeling.

2. We present a comprehensive evaluation of our
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Dataset Count Ratio (%)

Pile-CC 4,900,155 49.00
OpenWebText2 3,078,791 30.79
FreeLaw 946,382 9.46
USPTO Backgrounds 261,159 2.61
Wikipedia (en) 187,094 1.87
PubMed Central 142,698 1.43
PubMed Abstracts 118,427 1.18
Others 365,188 3.65

Total 9,999,894

Dataset Count Ratio (%)

Pile-CC 49,214,555 49.21
OpenWebText2 30,344,790 30.34
FreeLaw 9,471,436 9.47
USPTO Backgrounds 2,519,390 2.52
Wikipedia (en) 1,855,709 1.86
PubMed Central 1,449,273 1.45
PubMed Abstracts 1,175,838 1.18
Others 3,968,870 3.97

Total 99,999,861

Table 1: Composition of the 10M (left table) and 100M (right table) word datasets (word counts and ratio per
domain) we created from the PILE to train BABYHGRN.

proposed HGRN2 language model BABYH-
GRN. We show the impact of knowledge dis-
tillation and the choice of dataset.

3. We release all code, datasets, and experimen-
tal setups to the research community to facili-
tate reproducibility and further research1.

Our results show that BABYHGRN outperforms
transformer-based baselines on both tracks of the
BabyLM challenge.

2 BABYHGRN

We utilize HGRN2 as our backbone architecture
with a hidden size of 2048 and 18 layers, result-
ing in a total parameter count of 330M. We train
our model either with (1) the default dataset of
the BabyLM Challenge or (2) a sub-sampled split
of ThePile (Gao et al., 2020). Further, we em-
ploy knowledge distillation training using a teacher-
student setup. In the following, we will discuss the
details of our design choices.

2.1 Training Dataset

We curate our own training datasets for the strict
and strict-small tracks by sub-sampling the Pile
dataset (see Table 1). The Pile consists of 22
smaller datasets that cover a variety of domains, in-
cluding books, web pages, scientific literature, and
programming code. The main motivation behind
choosing the Pile dataset is its diverse composition,
which may offer several advantages for language
model training. Approximately 14% of the origi-
nal BabyLM dataset consists of child-related text
(e.g., the Children’s Book Test (Hill et al., 2016),

1https://github.com/HallerPatrick/BabyLM-2024

Children’s Stories Text Corpus2, and CHILDES
project (Macwhinney, 2000)), which may limit its
generalizability across diverse domains. In con-
trast, the broader scope of the Pile dataset could im-
prove resilience in zero-shot tasks and potentially
enhance adaptability for fine-tuning on specific ar-
eas of interest.

We create the splits by randomly sampling from
each chosen subset until we reached the pre-defined
thresholds. We depict details on our selected sub-
sets and corresponding word counts in Table 1.

To minimize computational overhead, we con-
catenate all samples and segment them into uni-
form chunks of 512 tokens. Subsequently, each
input sample is tokenized using Byte-Pair Encod-
ing (BPE), employing a vocabulary size of 16,000
tokens. We chose the BabyLlama tokenizer pro-
vided with the baseline models by the organizers3.

2.2 Training Objectives
We use standard next-token prediction as the lan-
guage modeling task and employ token-level cross-
entropy loss for training our models. For a se-
quence of tokens x = (x1, ..., xN ), the loss is cal-
culated as:

L(θ) = − 1

N

N∑

i=1

logP (xi|x1, ..., xi−1; θ)

where θ represents the model parameters and
P (xi | x1, ..., xi−1; θ) is the probability the model
assigns to the i-th token given all previous tokens.

We further improve our model through knowl-
edge distillation (Bucila et al., 2006; Hinton et al.,

2https://www.kaggle.com/datasets/edenbd/
children-stories-text-corpus

3https://huggingface.co/babylm/
babyllama-100m-2024
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2015), where we train a second HGRN2 model (stu-
dent) using predictions from our initially trained
model (teacher). While knowledge distillation
traditionally transfers knowledge from larger to
smaller models, using same-sized teacher and stu-
dent models has proven effective in recent work -
notably in the previous BabyLM Challenge where
an ensemble of teachers was used for knowledge
transfer (Timiryasov and Tastet, 2023).

The training process for the student model incor-
porates an additional loss term based on soft labels
produced by the teacher model. The total loss func-
tion for the student model can be expressed as:

Ltotal = (1− α)LCE + αLKD

whereLCE is the standard cross-entropy loss for the
student model, LKD is the knowledge distillation
loss, and α is a hyperparameter that balances the
two loss terms.

In our implementation, the knowledge distilla-
tion loss LKD is calculated using the Kullback-
Leibler divergence between the probability distri-
butions of the teacher and student models:

LKD = KL(σ(zt)||σ(zs))
where zt and zs are the output logits of the teacher
and student model respectively. And σ(z) is the
softmax function applied to the logits z.

2.3 Training Details
For fine-tuning on the (Super)Glue tasks, we follow
the provided hyperparameters by the shared task
organizer (see Appendix A). Except for the WSC
tasks, which had unusually low scores. We used a
maximum of 20 epochs, a patience of 6 epochs and
a learning rate of 1× 10−5 for our final submission
models.
Software. For training our model we use
the Pytorch (Ansel et al., 2024) library. Rel-
evant metrics are logged with Weights and
Biases (Biewald, 2020). We use Hugging-
Face datasets (Lhoest et al., 2021) library for
dataset loading and subsampling. All relevant
models were either directly imported with the
transformers (Wolf et al., 2020) library or im-
plemented as a custom model. For the HGRN2
model we used the FLA (Yang and Zhang, 2024)
library.
Hardware. All models were trained with
the torch.distributed package in data-parallel
mode. Models were trained on 4 RTX A6000 49GB
graphics cards on one node.

3 Empirical Evaluation

In Section 3.1, we shortly present the evaluation
benchmarks of the BabyLM Challenge and the
BEAR knowledge probe. In Sections 3.2 to 3.4,
we evaluate BABYHGRN compared with other ef-
ficient RNN architectures, its training dynamics,
and the influence of different datasets. Finally,
in Section 3.5, we evaluate BABYHGRN using
knowledge distillation.

3.1 Evaluation Datasets

The BabyLM challenge covers three benchmarks:
BLiMP (Warstadt et al., 2023b), EWoK (Ivanova
et al., 2024), and parts of GLUE (Wang et al., 2019)
and SuperGLUE (Wang et al., 2020a), respectively.
These benchmarks are designed to assess language
model performance such as grammatical knowl-
edge or complex reasoning tasks. Additionally, we
include the BEAR probe (Wiland et al., 2024) to
evaluate factual knowledge capabilities.
BLiMP (Benchmark of Linguistic Minimal Pairs)
is an English zero-shot benchmark evaluating the
grammatical knowledge of language models. It has
67 sub-tasks, each focusing on a specific syntactic
or semantic phenomenon. Specifically, the dataset
contains pairs of sentences and the model is tasked
to differentiate which of the sentences is grammati-
cally correct. Further, we consider the hidden task
"BLiMP Supplement" of the 2023 BabyLM Chal-
lenge (Warstadt et al., 2023a).
EWoK (Elements of World Knowledge) evaluates
basic world knowledge in language models. This
cognition-inspired approach tests whether language
models can identify plausible contexts given dif-
ferent fillers. EWoK was introduced as the hidden
task for the 2024 BabyLM Challenge.
GLUE (General Language Understanding Evalu-
ation) is a multi-task benchmark evaluating natu-
ral language understanding systems. It contains
nine tasks such as sentiment analysis, question an-
swering, or textual entailment. As models began
to surpass human performance on several GLUE
tasks, SuperGLUE was introduced as an extension,
including more challenging tasks.
BEAR (Wiland et al., 2024) tests relational knowl-
edge in language models using 7,731 instances
over 60 relations. BEAR compares the models’
log-likelihood for different factual statements of
which only one is true. We leverage the implemen-
tation by Ploner et al. (2024) to conduct the BEAR
probing experiments.
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Model #Params Epoch BLiMP BLiMP-Supp. EWoK Macro-Avg.

Transformer 360M 4 62.64 54.86 50.48 55.99

LSTM 300M 5 62.27 51.63 50.48 54.79
xLSTM 340M 3 51.20 48.77 49.89 50.02
Mamba 350M 2 64.44 55.39 50.39 56.74
HGRN2 360M 4 67.05 55.69 49.88 57.54

Table 2: Results from training on the 10M word corpus, comparing various RNN architectures to a Transformer-
based model (LLaMA architecture). Each model was trained for 5 epochs, with evaluations after each epoch, and
the best-performing model was selected.

Hyperparameter Value

Epochs 3
Batch Size 64
Learning Rates {1e-3, 1e-4, 1e-5, 1e-6}
Optimizer Adam
Sequence Length 512
Max Grad Norm 1.0
LR Scheduler Linear

Table 3: Pretraining hyperparameters used for all mod-
els and experiments.

3.2 Experiment 1: RNN Architecture
Selection

Our first experiment compares the HGRN archi-
tecture with other RNN-based and transformer ar-
chitectures. Specifically, we compare HGRN2, the
vanilla LSTM, xLSTM, Mamba, and a Transformer
baseline.
Experimental setup. We select configurations
such that all architectures have a similar parameter
count of 300 to 360 million. We use the configura-
tions as as originally proposed for xLSTM, Mamba,
and HGRN2. For the decoder-only transformer, we
use the LLaMA (Touvron et al., 2023) model and
follow the Pythia (Biderman et al., 2023) 410M
model configuration with 22 hidden layers. For
the vanilla LSTM, we set the hidden size to 4096
with two layers to match the parameter count of the
other architectures. We refer to Appendix B for a
detailed overview of all configurations.

For each architecture, we perform learning rate
selection for all considered architectures by exe-
cuting a grid search over commonly used learn-
ing rates ({1e-3, 1e-4, 1e-5, 1e-6}). We train
each model for 5 epochs on the strict-small
dataset of the BabyLM challenge. Further, we do
not employ any knowledge distillation and train

all LMs using the next-token prediction objective.
We report results on the zero-shot benchmarks of
BabyLM, namely BLiMP and EWoK, together with
their best hyperparameter configuration.
Results. Table 2 shows the number of parame-
ters of each considered architecture and the results
achieved during the exploration phase on the zero-
shot benchmarks4. We find that the HGRN2 ex-
hibits the best performance, closely followed by
Mamba. Both outperform the transformer model,
suggesting that these architectures offer advantages
in low-resource scenarios. The standard LSTM,
serving as a baseline for classical RNN architec-
tures, performs worse than the transformer but bet-
ter than the xLSTM5. Further, we observe that all
architectures perform best using a learning rate of
1e−3.

3.3 Experiment 2: Learning Dynamics of
HGRN2

To better understand the learning dynamics of the
selected HGRN2 architecture, we investigated how
its zero-shot performance on the BabyLM bench-
mark changes over the epochs during training.
Experimental setup. We re-use the best perform-
ing hyperparameters from Section 3.2. After each
epoch, we evaluate on BLiMP, BLiMP Supp. and
EWoK.
Results. The results of this experiment are illus-
trated in Figure 1. Our analysis reveals early peaks
in performance on BLiMP and EWoK and a later
peak on BLiMP Supplement. This finding indicates
that HRGN2 initially captures certain linguistic pat-
terns from the limited training data, although the

4We report the complete results of the parameter sweep
in Appendix C.

5We note considerable training instabilities during pre-
training of the xLSTM model, likely due to discrepancies
in model architecture or training setup from the original im-
plementation, which may have impacted performance in our
low-resource setting.
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Figure 1: Performance evaluation of epochs of pretrain-
ing, with the macro average at epoch 3 being the highest.

gains over random baseline are modest. Further
iterations yield only incremental improvements,
which may point to constraints in the model’s abil-
ity to leverage the available data fully.

3.4 Experiment 3: Impact of Training Dataset

In this experiment, we evaluate the impact of the
choice of training data. We compare models trained
over the default BabyLM dataset to models trained
using our custom dataset derived from the Pile (see
section 2.1).
Experimental Setup. We re-use our chosen hy-
perparameter configuration for the HGRN2 archi-
tecture from Section 3.3 and train two models on
(1) our derived Pile subset and (2) on the default
BabyLM dataset. We train models for 5 epochs,
evaluate after each epoch, and report results of the
best performing model. In this experiment we in-
clude both the 10M and 100M word datasets for a
full comparison.
Results. Table 4 summarizes the performance
across all benchmarks. For the 10M word track,
the HGRN2 model trained on our derived dataset
shows modest gains on BLiMP, EWoK, and BEAR,
but underperforms on the BLiMP-Supplemental
subset (↓3.47 pp). This suggests that at smaller
data scales, our dataset may lack certain syntactic
structures present in the original BabyLM dataset.
Furthermore, given the limited dataset size in the
10M word track, these numbers may lack statistical
significance.

In contrast, the 100M word track demonstrates
consistently stronger performance across all met-
rics, with particularly notable improvements on

Dataset BLiMP BLiMP-Supp. EWoK BEAR

BabyLM - 10M 67.05 55.69 49.88 5.29
Ours - 10M 67.49 52.22 50.62 5.36

BabyLM - 100M 69.44 55.56 50.31 6.17
Ours - 100M 72.89 57.43 50.61 7.38

Table 4: Zero-shot evaluation results comparing
HGRN2 models trained on the BabyLM dataset ver-
sus our proposed Pile subset. Both models were trained
with a learning rate of 1×10−3. All metrics are reported
as percentages.

BLiMP (↑3.45 pp) and BEAR (↑1.21 pp). Indicat-
ing that our dataset selection strategy enhances the
model’s ability to acquire both syntactic and factual
knowledge when given sufficient training data.

3.5 Experiment 4: BABYHGRN With
Knowledge Distillation

Based on the exploratory experiments of the pre-
vious subsections, we selected the HGRN2 model
trained on our proposed dataset for the BabyLM
challenge. We furthermore apply knowledge distil-
lation as outlined in Section 2.2 to our final model.
We refer to this model as BABYHGRN.

In this section, we evaluate BABYHGRN using
knowledge distillation learning and compare it with
two baselines (BabyLlama and LTG-BERT) and
a BABYHGRN version using only the next-token
prediction objective. We denote this ablation model
as BabyHGRNntp.
Hyperparameters. We increase the model size in
accordance with scaling laws for language mod-
els (Kaplan et al., 2020) from 360M to 1.0B. We re-
duce the learning rate from 1×10−3 to 4×10−4 ac-
cordingly, following the configuration found in Sec-
tions 3.2 and 3.3. Empirical work (Kaplan et al.,
2020; Hoffmann et al., 2022) suggests that lower
learning rates in larger models help mitigate insta-
bilities during training, promoting smoother con-
vergence and more efficient use of computational
resources.

3.5.1 Results
Table 5 and Table 6 summarize our experimental
results for the 10M and 100M word tracks, respec-
tively.
HGRN2 outperforms baselines. Most impor-
tantly, we find that our HGRN2 models show
competitive performance across both the 10M and
100M word tracks of the BabyLM challenge. On
the 10M words track, BabyHGRN achieves an over-
all macro average of 63.3% (↑2.5 pp vs. BabyL-
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BLiMP BLiMP-Supp. EWoK SuperGLUE Average BEAR

BabyLlama 69.8 59.5 50.7 63.3 60.8 5.4
LTG-BERT 60.6 60.8 48.9 60.3 57.7 5.7

BabyHGRNntp (ours) 69.4 55.6 50.7 63.0 59.7 5.6
BabyHGRN (ours) 72.1 58.6 51.3 65.8 63.3 7.5

Table 5: Evaluation results for the 10M words track ("strict-small"). The BabyLM score is computed as a macro
average over four datasets (BLiMP, BLiMP Supp., EWoK and SuperGLUE) but note that the macro average may
not be a representative overall score for each model, since the datasets are of widely varying size (e.g. the BLiMP
supplements is only 7% in size compared to the BLiMP). We additionally include the BEAR score for comparison
and evaluation of factual knowledge.

BLiMP BLiMP-Supp. EWoK SuperGLUE Average BEAR

BabyLlama 73.1 60.6 52.1 69.0 63.7 8.5
LTG-BERT 69.2 66.5 51.9 68.4 64.0 8.2

BabyHGRNntp (ours) 74.5 59.1 52.88 69.1 63.9 13.5
BabyHGRN (ours) 77.5 58.5 51.6 70.7 64.9 13.6

Table 6: Evaluation results for the 100M words track ("strict"). The BabyLM score is computed as a macro average
over four datasets (BLiMP, BLiMP Supp., EWoK and SuperGLUE). We additionally include the BEAR score for
comparison and evaluation of factual knowledge.

lama). As Table 5 shows, BabyHGRN particu-
larly outperforms the baselines on the BLiMP (↑2.4
pp vs. BabyLlama) and SuperGLUE (↑2.5 pp vs.
BabyLlama) tasks, and significantly improves the
BEAR score (↑1.8 pp vs. LTG-BERT).

On the 100M words track (refer to Table 6),
BabyHGRN outperforms the baselines with a
marco average of 64.9% (↑0.9 pp vs. LTG-BERT),
though the improvement is not as pronounced as in
the more data-constrained 10M scenario. Here,
BabyHGRN improves in particular the BLiMP
(↑4.4 pp vs. LTG-BERT) and SuperGLUE (↑1.7 pp
vs. BabyLlama) tasks, but falls short on BLiMP-
Supplement (↓7.4 pp vs. LTG-BERT)6.
Knowledge distillation is helpful. We also
note that our knowledge distillation approach
significantly improves performance of BABYH-
GRN, compared to the distillation-free approach
BabyHGRNntp. As Tables 5 and 6 show, Baby-
HGRN outperforms both, BabyLlama and LGT-
BERT, baselines. Further, we observe BABYH-
GRN outperforms BabyHGRNntp by 5.3 pp on
average in the data-constrained 10M setting, con-
firming the usefulness of distillation losses in such
settings.

6Detailed results for BLiMP, BLiMP-Supplement, EWoK
and (Super)Glue are provided in Appendix D.

BABYHGRN is better at learning factual knowl-
edge. While the accuracy on BEAR is relatively
low across all settings (compared to state-of-the-
art models such as LLaMA-3 with 68.6), we
observe that BABYHGRN strongly outperforms
transformer-based baselines in data-restricted set-
tings. For instance, BEAR shows a pronounced dif-
ference between BabyHGRN and BabyHGRNntp

on the 10M track, and a large difference between
the HGRN models and the baselines on the 100M
track. We primarily attribute this improvement to
the use of our custom dataset.

4 Related Work

In recent years, there has been a resurgence of inter-
est in recurrent neural network (RNN) architectures
for sequence modeling, particularly in the context
of large language models (LLMs). This renewed
focus has led to the development of several RNN-
based architectures that aim to combine the effi-
ciency of recurrent models with the expressiveness
of more complex architectures like transformers.

HGRN and HGRN2 The Hierarchically Gated
Recurrent Neural Network (HGRN) (Qin et al.,
2023) introduces a novel gating mechanism that
allows for more effective modeling of long-term
dependencies. The key innovation of HGRN is
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its hierarchical structure, in which forget gates
have monotonically increasing lower bound values
from bottom layers to upper layers. This design
enables lower layers to model short-term dependen-
cies while upper layers capture long-term relation-
ships in the data. HGRN achieves efficient training
by reformulating its recurrent computation as a par-
allel scan operation to enable parallelization across
sequence length while maintaining linear time com-
plexity.

Building upon HGRN, Qin et al. (2024) introduced
HGRN2 which further enhances the capabilities
of gated linear RNNs. HGRN2 addresses some
limitations of its predecessor by incorporating a
state expansion mechanism. This innovation sig-
nificantly increases the recurrent state size without
introducing additional parameters, leading to im-
proved expressiveness.

xLSTM Another recently proposed RNN-based ar-
chitecture is the Extended Long Short-Term Mem-
ory (xLSTM) (Beck et al., 2024). xLSTM builds
upon the classical LSTM (Hochreiter and Schmid-
huber, 1997) by introducing two key modifications:
exponential gating and modified memory struc-
tures. The exponential gating mechanism allows
the model to revise storage decisions more effec-
tively, addressing a key limitation of traditional
LSTMs. xLSTM introduces two variants: sLSTM
with a scalar memory and new memory mixing
technique, and mLSTM with a matrix memory and
covariance update rule, which is fully paralleliz-
able. The xLSTM approach demonstrates strong
performance across various modalities, including
language, vision (Alkin et al., 2024; Chen et al.,
2024), and audio (Yadav et al., 2024), while main-
taining linear scaling in sequence length and effi-
cient inference.

The Mamba architecture (Gu and Dao, 2024) im-
proves on state space models (SSMs) by intro-
ducing selective state spaces. Building on struc-
tured SSMs (Gu et al., 2022), Mamba achieves
linear-time sequence processing through input-
dependent SSM parameters, enabling selective in-
formation propagation across sequences. This
mechanism is conceptually similar to gating in clas-
sical RNNs (Hochreiter and Schmidhuber, 1997)
while maintaining modern computational benefits.
The architecture consists of repeated blocks that
combine selective SSMs with feed-forward com-
ponents, in contrast to more complex predecessors

like H3 (Fu et al., 2023) and Hyena (Poli et al.,
2023). Though attention-free, Mamba matches or
exceeds Transformer performance (Vaswani et al.,
2023) across various domains. Its recurrent com-
putation pattern eliminates the need for attention
caches during inference, leading to 5× faster in-
ference compared to similar-sized Transformers.
This combination of linear scaling and efficiency,
without sacrificing model quality, makes Mamba a
significant development in sequence modeling.

The development of HGRN2, xLSTM, and
Mamba is part of a broader trend in revisiting and
improving RNN architectures (Peng et al., 2023;
Sun et al., 2023).

5 Conclusion

We presented BabyHGRN, an RNN-based lan-
guage model that utilizes the HGRN2 architec-
ture. Our experimental results on the evaluation
datasets of the BabyLM Challenge and the BEAR
probe indicate that BabyHRGN is competitive. In-
deed, despite relatively little hyperparameter opti-
mization, our approach significantly outperforms
strong transformer-based baselines on the evalua-
tion datasets.

Revisiting our research question posed in Sec-
tion 1, we conclude that RNN-based language
models are indeed competitive in low-resource lan-
guage modeling scenarios. Based on these results,
we believe that advanced RNN-based architectures
such as HGRN and Mamba may hold promise for
research in sample-efficient language modeling.
Accordingly, future work could explore further op-
timizations of the underlying RNN architectures,
investigate their performance on a broader range
of tasks, and examine their scalability to larger
datasets and model sizes.
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Limitations

Our experiments with HGRN2 in the BabyLM
Challenge demonstrate the competitiveness of
RNN-based models with transformers in low-
resource scenarios. However, while we find our
results to be promising, it’s important to acknowl-
edge that there are several avenues for optimization
that we have yet to explore:

Dataset sampling The dataset we used to train
BabyHGRN was produced using a naive random
sampling of the PILE dataset. More sophisticated
approaches, such as importance sampling special-
ized for downstream tasks, would likely yield bet-
ter results, especially if optimized for the tasks
BabyLM evaluates on. In our work, we refrained
from such "dataset engineering" and focused solely
on a comparison of different RNN architectures.

Model configurations We utilized the configura-
tions provided by the authors of HGRN2 and xL-
STM. Further experimentation with different archi-
tectures and hyperparameters for the low-resource
scenario could well lead to improved performance
of these models.

Context length Optimizing the context length for
our specific tasks and data could potentially en-
hance the model’s capabilities. Work from previ-
ous years challenge (Edman and Bylinina, 2023;
Cheng et al., 2023) suggests that a smaller context
size improves performance on all benchmarks.

Knowledge distillation As previously discussed,
we only implemented a basic knowledge distilla-
tion approach to train BabyHGRN. More sophis-
ticated techniques, such as those employed by
Timiryasov and Tastet (2023) could further boost
performance.

Our work thus serves as a proof of concept,
demonstrating that RNNs can be competitive with
transformers in this domain, while leaving room
for further advancements.
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A Finetune Hyperparameters

Hyperparameter Value

Initial learning rate 5e-5
Batch size 64
Maximum epochs 10
Evaluate every (epochs) 1
Patience 3

Figure 2: Default hyperparameters for fine-tuning on
the (Super)Glue tasks.

B Model Configurations

Transformer Value

Hidden Size 1024
Intermediate Size 4096
Hidden Layers 22
Attention Heads 32

LSTM Value

Hidden Size 9120
Embedding Size 512
LSTM Layers 2
Dropout 0.1

xLSTM Value

Embedding Size 1024
Num Blocks 48
mLSTM Heads 4
sLSTM Heads 4
sLSTM BLocks at [3, 5, 7, 40, 42, 44]

Mamba Value

Hidden Size 1024
Intermediate Size 2048
Hidden Layers 48
State Size 8

HGRN2 - 360M Value

Hidden Size 1024
Layers 26
Hidden Ratio 4
Expand Ratio 128

HGRN2 - 1.2B Value

Hidden Size 2048
Layers 18
Hidden Ratio 4
Expand Ratio 128

Table 7: Complete list of model configurations.
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C Learning Rate Parameter Sweep

Figure 3: Evaluation results of learning rate sweep over
different architectures. Scores are reported as the macro
average over the three zero-shot benchmarks BLiMP,
BLiMP-Supplement and EWoK.

D Final BabyLM Evaluation Scores

We provide detailed scores of all SuperGLUE,
BLiMP-Supplement and EWoK tasks in Tables 8,
9 and 10. Due to the large number of subtasks
in BLiMP, we will make the scores accessible
though our Github repository: https://github.
com/HallerPatrick/BabyLM-2024.
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Model (variant)
SuperGLUE

BoolQ CoLA (MCC) MNLI MNLI-MM MRPC (F1) MulitRC QNLI QQP (F1) RTE SST-2 WSC Average

Strict-small Track (10M Words)

BabyLlamabaseline 65.0 2.2 72.4 74.2 82.0 60.1 82.8 83.6 49.6 86.2 38.5 63.3
LTG-BERTbaseline 68.8 0.0 68.9 68.9 82.2 58.5 76.5 34.2 58.3 85.1 61.5 60.3

HGRN2 63.8 19.1 68.7 68.7 82.5 63.4 64.7 79.9 58.9 85.5 38.5 63.0
HGRN2distilled 65.4 33.1 69.3 69.5 81.0 59.7 72.3 81.9 54.0 89.4 48.1 65.8

Strict-small Track (100M Words)

BabyLlamabaseline 66.1 37.3 75.6 76.2 86.8 62.1 83.1 84.5 60.4 88.3 38.5 69.0
LTG-BERTbaseline 61.7 34.6 77.7 78.1 83.1 52.6 78.2 86.7 46.8 91.5 61.5 68.4

HGRN2 64.4 39.9 74.3 74.3 82.8 61.4 79.9 83.1 58.9 89.6 51.6 69.1
HGRN2distilled 64.8 40.3 74.8 75.9 81.5 61.4 81.5 84.1 58.3 90.1 65.4 70.7

Majority Labelsval 64.0 69.9 35.7 - 68.1 57.7 50.9 62.7 53.9 51.8 61.5 57.6

Table 8: Detailed results for every task in die (Super)GLUE benchmark for the strict and strict-small track.

Model Hypernym QA congruence (easy) QA congruence (tricky) Subj.-Aux. Inversion Turn Taking Average

Strict-small Track (10M Words)

BabyLlama 49.6 54.7 41.2 86.0 66.1 59.5
LTG-BERT 54.2 62.5 49.1 79.9 58.2 60.8

HGRN2distill 49.8 56.2 37.6 89.6 59.6 58.6

Strict Track (100M Words)

BabyLlama 45.6 56.2 44.8 83.9 72.5 60.6
LTG-BERT 55.0 75.0 53.3 87.5 61.4 66.5

HRN2distill 48.6 64.1 35.8 84.9 59.3 58.5

Table 9: Detailed results for the BLiMP-Supplement benchmark for the strict and strict-small track.
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BabyLlama 50.5 51.7 49.4 54.2 50.4 50.6 53.5 50.7 50.3 49.8 46.7 50.7
LTG-BERT 50.2 51.0 45.3 42.5 49.1 51.0 48.1 51.7 53.4 50.6 45.3 48.9

HGRN2distll 50.1 50.9 50.6 55.0 50.7 50.4 51.3 54.1 51.2 50.3 49.8 51.3

Strict Track (100M Words)

BabyLlama 50.1 55.5 50.0 57.5 51.4 50.5 56.7 52.7 49.7 50.0 49.0 52.1
LTG-BERT 50.1 55.8 50.6 58.3 48.9 50.9 53.8 51.4 50.8 53.8 49.2 51.9

HGRN2distll 50.2 52.5 51.8 49.2 51.4 50.6 54.5 51.4 57.0 49.7 49.6 51.6

Table 10: Detailed results for the EWoK benchmark for the strict and strict-small track.
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Abstract

This study presents our submission to the Strict-
Small Track of the 2nd BabyLM Challenge.
We use a teacher–student distillation setup with
the Baby Llama model (Timiryasov and Tastet,
2023) as a backbone. To make the student’s
learning process more focused, we replace the
objective function with a reverse Kullback–
Leibler (KL) divergence, known to cause
mode-seeking (rather than mode-averaging) be-
haviour in computational learners. We further
experiment with having a single teacher (in-
stead of an ensemble of two teachers) and im-
plement additional optimization strategies to
improve the distillation process. Our experi-
ments show that under reverse KL divergence,
a single-teacher model often outperforms or
matches multiple-teacher models across most
tasks. Additionally, incorporating advanced
optimization techniques further enhances the
model’s performance. These findings support
our idea that “choosy babies need one coach”.

1 Introduction

One important feature of child language learning is
its incrementality, gradually moving from simple to
more complex language. When talking to a child,
adults often choose to use simple words and expres-
sions, effectively allowing the child to first focus on
what’s easy to learn (e.g., Cameron-Faulkner et al.,
2003). In machine learning, this ‘starting small’ ap-
proach (Elman, 1991) has informed the paradigm
of curriculum learning (Bengio et al., 2009), where
models are trained using examples of increasing
difficulty.

In the 1st BabyLM Challenge, organized in 2023
to stimulate training of language models on smaller-
sized and child-appropriate data sets (Warstadt
et al., 2023), curriculum learning was the most
commonly used method among all submissions
(e.g., Chobey et al., 2023; Martinez et al., 2023;
DeBenedetto, 2023). Interestingly, despite its pop-

ularity, curriculum learning did not yield consis-
tent improvements over baselines (Warstadt et al.,
2023). This suggests that while curriculum learning
remains a valuable approach, other methods such
as knowledge distillation and architectural modifi-
cations may offer additional advantages in certain
contexts (Samuel, 2023; Timiryasov and Tastet,
2023, etc.). In our submission to the 2nd BabyLM
Challenge, we leverage and combine some of the
last year’s successful approaches, while also en-
abling the learner to use a more selective learning
strategy.

More specifically, we take as starting point the
Baby Llama model and its teacher–student knowl-
edge distillation framework (Timiryasov and Tastet,
2023). We then experiment with changing its ob-
jective function from forward KL divergence to re-
verse KL divergence, inspired by Gu et al. (2024);
Agarwal et al. (2024), and implement several strate-
gies to optimize the distillation process. Unlike
forward KL, which encourages the student model
to approximate the full output distribution of the
teacher and often leads to ‘mass-covering’ behav-
ior, reverse KL focuses on high-probability outputs,
helping the student to capture the teacher’s main
modes. This effectively results in a more selective,
or ‘choosy’ learner. Furthermore, while the original
Baby Llama model was trained using an ensemble
of two different teacher models, we demonstrate
that having a single teacher is sufficient in our setup,
which further speeds up the training process and
leads us to observe that choosy babies only need
to be trained by one coach (ChooBaCa).

2 Methodology

The general approach that leads to the devel-
opment of ChooBaCa is knowledge distillation.
We start from Baby Llama as a backbone model
(Timiryasov and Tastet, 2023) and implement three
important modifications. First, we change the stu-
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dent’s objective function to reverse KL divergence,
following Gu et al. (2024); Agarwal et al. (2024).
Second, we replace Baby Llama’s ensemble of two
teachers with a single teacher, the original LLaMA
model (Touvron et al., 2023). Third, we imple-
ment several techniques to stabilize the distillation
process, inspired by the MiniLLM model of Gu
et al. (2024). In the remainder of this section, we
unpack the general framework and each of our im-
plemented modifications.

2.1 Distillation framework
We employ a student–teacher distillation setup
largely inspired by the Baby Llama model
(Timiryasov and Tastet, 2023). Our framework
consists of a larger teacher model and a smaller
student model, both based on the LLaMA archi-
tecture (Touvron et al., 2023). The student model
aims to learn the distribution of the teacher model
by minimizing the reverse KL divergence between
them.

In our setup, the distillation loss, Ldistillation, is
computed using the reverse KL divergence between
the student distribution qθ and the mixed distribu-
tion pmixed (see next section for more details):

Ldistillation = T 2
N∑

i=1

L∑

t=1

q
(i,t)
θ log

(
q
(i,t)
θ

p
(i,t)
mixed

)
(1)

where T is the temperature parameter, N repre-
sents the batch size, L is the sequence length,
i = 1, 2, . . . , N is the sample batch index, and
t = 1, 2, . . . , L is the time step index within each
sequence. The scaling by T 2 compensates for the
effect of temperature scaling on the gradients, al-
lowing for more stable optimization.

2.2 Reverse KL divergence
As an alternative to the forward KL divergence ob-
jective used for distilling the teachers’ knowledge
to the Baby Llama model, we use the reverse KL
divergence.

Forward KL divergence, KL[p ∥ q], encourages
the student model to fit the entire teacher distribu-
tion, including low-probability regions. This can
lead to mode-averaging (or mass-covering) behav-
ior, where the student assigns unnecessary probabil-
ity mass to less important areas of the distribution,
often resulting in poorer text generation quality.

The reverse divergence, KL[q ∥ p], is commonly
used in imitation learning (e.g., Uchibe and Doya,
2021; Ke et al., 2021) and Bayesian methods such

as variational inference (see, e.g., Barber, 2012).
In the context of knowledge distillation, this objec-
tive has been proposed as an alternative to the for-
ward KL divergence (Agarwal et al., 2024; Gu et al.,
2024) thanks to its ability to induce mode-seeking
behavior, where the student model focuses on the
high-probability modes of the teacher model’s dis-
tribution. This allows the student to capture the
key patterns offered by the teacher while ignor-
ing low-probability regions, often less critical for
task performance. While this strategy can nega-
tively impact the diversity of texts generated by the
learner, it is sometimes associated with higher text
quality (Wiher et al., 2022), which makes it particu-
larly useful for small models, such as Baby Llama,
where resource efficiency and accurate learning
from limited data are crucial.

Previously, Gu et al. (2024) demonstrated the
success of this strategy in instruction-following
and long-text generation tasks. Similarly, Agar-
wal et al. (2024) proposed an on-policy knowledge
distillation framework that treats distillation as an
imitation learning process, ensuring that the stu-
dent learns from sequences it is likely to produce
during inference. Building upon these insights,
we adopt reverse KL divergence in our distillation
framework.

2.3 Using a single teacher
While reverse KL divergence effectively concen-
trates on the teacher’s primary modes in single-
teacher distillation, challenges arise when this ap-
proach needs to be extended to multi-teacher sce-
narios. Specifically, in such scenarios, the outputs
from different teachers can superimpose in poten-
tially conflicting ways. When the student model
minimizes the reverse KL divergence across mul-
tiple teacher distributions, it may struggle to align
with the primary modes due such conflicting sig-
nals. As a result, the student model’s performance
may degrade because it cannot effectively capture
the essential modes of individual teachers. There-
fore, in our model distillation setup we use a single
teacher. Choosing between the two original Baby
Llama’s teachers, LLaMA and GPT-2, we decided
to use LLaMA, as it has the same architecture as
the student model.

2.4 Additional optimization techniques
As mentioned above, our use of KL divergence
is inspired by Gu et al. (2024), who additionally
present several strategies to improve the distillation
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process in their MiniLLM model. We build up on
these strategies and implement the following tech-
niques in our ChooBaCa model, see Appendix A
for more details.

Mixing teacher and student outputs. To stabilize
training and enhance performance, we mix the log-
its of the teacher and student models with a mixing
coefficient β:

zmixed = βzteacher + (1− β)zstudent (2)

Using this mixture allows the student to benefit
from the teacher’s knowledge while also incorporat-
ing its own learning. This results in a smoother op-
timization and prevents overfitting to the teacher’s
distribution.

Single-step decomposition. This is the strategy
proposed by Gu et al. (2024), and we adopt it in
some of our models. The technique rewrites the gra-
dient calculation to focus on the generation quality
of each individual token, rather than accumulating
error across the entire sequence. By directly com-
puting the gradient for each token step, it reduces
training variance and accelerates convergence, mak-
ing the optimization process more stable.

Step-wise loss computation. Inspired by the
single-step decomposition strategy, we implement
a step-wise loss computation technique. Instead
of computing the distillation loss over the entire
sequence at once, we partition the sequence into
smaller segments of length k and calculate the
loss for each segment independently. This reduces
memory consumption and accelerates training with-
out affecting model performance (Devlin et al.,
2019). While single-step decomposition focuses on
minimizing variance and improving gradient preci-
sion, our step-wise method is primarily designed to
prioritize computational efficiency. Additionally, it
may help balance gradient flow and adjust errors at
finer granularity, making it effective for handling
sequences under constrained resources.

Progressive training strategy. The mixing coeffi-
cient β descried above can be made dynamic – i.e.,
it progressively adjusts during training. Initially,
the student model heavily relies on the teacher’s
guidance, but as training progresses, β decreases,
allowing the student to become more independent.
Specifically, β is updated at each epoch e as fol-
lows:

βe = max

(
0.1, βstart ×

(
1− e

|E|

))
(3)

where βstart is the initial value of the mixing coef-
ficient, which is set to 0.7 in our experiments, e
is the current epoch number during training, and
|E| is the total number of training epochs. Addi-
tionally, β is bounded below by 0.1 to prevent it
from becoming too small. This progressive strategy
helps the student model transition from imitation
to autonomous learning, improving generalization
(Gou et al., 2021; Mobahi et al., 2020).

The four described strategies enhance the distil-
lation process by stabilizing training, improving
efficiency, and enabling the student to effectively
learn from the teacher model. By progressively
reducing reliance on the teacher, the student model
can better generalize from limited data, which is
crucial in settings like the BabyLM Challenge.

2.5 Simulation setup
As a backbone architecture, we adopt the 58M pa-
rameter version of Baby Llama, optimized for the
BabyLM Challenge tasks (Timiryasov and Tastet,
2023). Unless specified otherwise, all the experi-
mental settings, including hyperparameters, dataset
splits, and evaluation procedures, strictly follow
those outlined in the original study (Timiryasov
and Tastet, 2023).

We train and test 12 model variants, summarized
in Table 1. The models differ on several dimensions
as specified below.
Objective function: reverse KL divergence (as
proposed in our study) vs. forward KL divergence
(as in the original Baby Llama model).
Number of teachers: one (i.e., LLaMA model,
which we expect to be a better fit to our setup) vs.
two (i.e., LLaMA and GPT-2, as in the original
Baby Llama study).
Data set: the 2nd BabyLM Challenge data set
(2024, which is somewhat different from the last
year’s data set, see Choshen et al., 2024) vs. the
1st BabyLM Challenge data set (2023, as in the
original Baby Llama model).
Additional optimization techniques: these are
described in Section 2.4, and our model variants
differ in terms of the exact subset of techniques
they use. Table 1 provides the exact specification
for each model variant.

We use the following notation to specify each
model variant: [MODEL]-[OBJECTIVE]-[NUMBER

OF TEACHERS]-[DATA SET]. For example,
CHOOBACA-RV-1-24 is our proposed model with
reverse KL divergence and one teacher trained on
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Additional techniques

No. Model Obj. Tchrs Data
Mixing
outputs

Single
step

Stepwise
loss

Progr.
training

1 CHOOBACA-FW-2-23 forward 2 2023 – – – –
2 CHOOBACA-FW-1-23 forward 1 2023 – – – –
3 CHOOBACA-FW-2-24 forward 2 2024 – – – –
4 CHOOBACA-FW-1-24 forward 1 2024 – – – –
5 CHOOBACA-RV-2-23 reverse 2 2023 + + – –
6 CHOOBACA-RV-1-23 reverse 1 2023 + + – –
7 CHOOBACA-RV-2-24 reverse 2 2024 + + – –
8 CHOOBACA-RV-1-24 reverse 1 2024 + + – –
9 CHOOBACA-RV-2-23+ reverse 2 2023 + – + +
10 CHOOBACA-RV-1-23+ reverse 1 2023 + – + +
11 CHOOBACA-RV-2-24+ reverse 2 2024 + – + +
12 CHOOBACA-RV-1-24+ reverse 1 2024 + – + +

Table 1: Models used in the experiments. Row 1 corresponds to the original Baby Llama architecture, row 8 is our
submission for the 2nd BabyLM Challenge, and rows 9–12 introduce additional optimization techniques that further
improve our submission.

the 2024 data set, while CHOOBACA-FW-2-23 is
a replication of the original Baby Llama model
presented by Timiryasov and Tastet (2023). The
model variants whose names end with a ‘+’ suffix
(e.g., CHOOBACA-RV-1-24+) introduce additional
optimization techniques as specified in Table 1. De-
tailed experimental settings and configurations can
be found in Appendix A.

2.6 Evaluation benchmarks
The 2nd BabyLM Challenge adopts three bench-
marks commonly used for evaluating language
models.

BLiMP (Benchmark of Linguistic Minimal Pairs,
Warstadt et al., 2020) is designed to test models on
a variety of syntactic phenomena through pairs of
sentences that differ in their grammatical accept-
ability, providing insight into a model’s linguistic
capabilities.

GLUE (General Language Understanding Eval-
uation, Wang et al., 2018) is a suite of tasks for
evaluating language understanding, covering areas
like sentiment analysis, natural language inference,
and semantic similarity. SuperGLUE (Wang et al.,
2019) extends GLUE with a more challenging set
of tasks, such as causal reasoning, coreference res-
olution, and question answering, to better bench-
mark models’ advanced comprehension and robust-
ness across diverse linguistic skills.

EWoK (Elements of World Knowledge, Ivanova

et al., 2024) is a recently developed benchmark
that tests models’ factual world knowledge, assess-
ing how well models can apply general knowledge
beyond syntactic or linguistic patterns to answer
questions about real-world situations.

3 Results and Discussion

Tables 2 and 3 present the evaluation results for all
our model variants, as well as the two baselines
adopted in the 2nd BabyLM Challenge (the orig-
inal Baby Llama model and LTG-BERT), on the
three benchmarks used in BabyLM (see previous
section).

Whereas it is clear from the tables that there is no
single best model, we can still observe several im-
portant patterns. Our primary finding demonstrates
that under reverse KL divergence (see RV mod-
els), knowledge distillation with a single-teacher
model generally outperforms or matches the per-
formance of models with two teachers. Specif-
ically, within the (Super)GLUE benchmark (11
tasks), RV models with a single teacher outper-
form two-teacher RV models in 3 tasks (27%) and
match their performance in 8 tasks (73%). Within
the other two benchmarks – EWoK (11 tasks) and
BLiMP (17 tasks), single-teacher RV models match
the performance of two-teacher RV models across
all tasks. These results support our hypothesis that
a choosy, mode-seeking learning strategy enhances
the ChooBaCa model’s ability to generalize effec-
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(Super)GLUE
CoLA (MCC) 2.2 0.0 −0.3 4.1 6.3 −5.5 3.0 22.8 2.2 6.3 5.0 7.8 14.3 18.2
SST-2 86.2 85.1 86.3 86.9 75.5 73.7 84.6 86.0 75.4 75.7 86.3 84.5 77.2 77.8
MRPC (F1) 82.0 82.2 80.9 80.9 80.1 79.9 80.7 80.9 81.5 81.8 81.2 82.4 80.6 79.2
QQP (F1) 83.6 34.2 83.4 82.8 76.8 75.7 82.3 83.4 76.2 75.9 82.0 81.9 79.3 82.9
MNLI 72.4 68.9 72.7 71.2 67.3 66.9 71.8 71.4 66.6 67.4 70.6 70.1 68.9 71.0
MNLI-mm 74.2 68.9 72.3 72.5 69.0 72.0 72.3 72.4 66.3 67.3 71.7 71.5 71.3 70.9
QNLI 82.8 76.5 80.3 80.8 79.0 78.3 79.9 80.7 76.9 76.0 78.4 76.0 77.3 80.6
RTE 49.6 58.3 46.0 54.7 55.4 53.7 52.5 46.8 52.5 52.5 51.8 55.4 54.6 56.8
BoolQ 65.0 68.8 65.7 66.3 64.0 62.9 66.9 63.4 63.5 62.0 64.2 67.2 62.4 65.5
MultiRC 60.1 58.5 60.1 61.8 65.1 61.2 62.2 61.1 65.2 65.4 60.9 63.0 62.1 60.0
WSC 38.5 61.5 48.7 67.3 59.6 59.2 57.7 38.5 61.5 61.4 55.7 38.4 62.0 63.4

EWoK
Social interactions 50.7 51.7 50.3 50.3 51.7 50.0 51.7 51.7 52.4 50.0 51.3 52.7 51.0 51.0
Physical relations 50.6 51.0 50.4 50.4 48.9 49.8 51.1 50.4 50.9 50.0 51.0 51.4 47.6 51.1
Spatial relations 46.7 45.3 49.4 50.0 47.1 48.7 49.8 50.0 47.2 49.6 49.6 49.8 50.2 48.9
Material properties 49.4 45.3 47.7 49.4 49.4 49.4 48.2 47.7 47.1 49.4 48.8 50.6 48.8 47.6
Agent properties 50.5 50.2 50.4 50.2 50.0 49.9 50.4 50.6 50.7 49.8 49.6 50.3 50.0 51.2
Material dynamics 51.7 51.0 50.8 50.4 51.2 50.9 50.9 51.3 49.2 50.9 49.1 49.6 53.0 55.5
Physical dynamics 54.2 42.5 50.8 50.8 50.8 49.2 50.8 50.8 52.5 50.8 49.2 54.2 49.1 52.5
Physical interaction 50.4 49.1 51.4 50.7 50.5 50.5 51.4 50.9 49.6 50.5 48.9 51.4 49.4 51.0
Social properties 50.3 53.4 49.1 49.1 49.1 48.8 50.6 50.3 47.9 49.7 53.0 49.4 50.3 50.3
Quantitative properties 53.5 48.1 52.2 55.7 53.5 51.2 53.1 51.6 52.9 53.2 50.7 53.5 52.8 51.9
Social relations 49.8 50.6 50.1 50.9 50.5 50.1 50.5 50.1 49.7 50.1 50.2 50.4 49.5 49.8
BLiMP
Anaphor Agr. 92.1 81.3 84.4 86.0 87.5 80.7 88.9 82.8 89.8 91.2 84.7 86.4 89.4 91.9
Arg. Structure 73.7 56.8 68.4 71.1 68.6 65.6 69.7 71.2 75.1 75.2 69.6 68.9 73.9 72.5
Binding 71.1 68.2 71.7 75.1 71.4 69.3 70.5 68.9 69.1 60.4 71.8 72.4 69.7 71.5
Control/Raising 67.2 48.5 67.4 65.3 65.5 60.9 67.0 67.1 60.3 57.2 65.1 62.5 58.6 56.6
Det.-Noun Agr. 87.0 77.6 88.6 91.7 87.8 83.8 91.5 91.6 89.8 88.9 89.4 88.8 87.7 87.4
Ellipsis 69.7 43.8 67.8 67.9 70.8 58.4 69.1 68.3 68.1 72.4 65.4 64.2 66.9 69.9
Filler-Gap 70.1 66.8 59.4 58.8 70.9 54.9 56.6 65.9 70.1 65.3 60.2 61.3 52.3 62.2
Irregular Forms 85.3 59.8 92.3 83.4 74.1 84.3 90.1 82.5 86.0 81.5 85.7 83.3 82.9 84.4
Island Effects 50.5 45.8 48.2 50.5 54.1 48.8 46.7 49.4 54.0 59.2 47.1 44.6 44.9 50.4
NPI Licensing 50.8 68.2 48.5 52.2 52.6 42.5 51.1 51.3 37.5 43.2 45.2 53.2 61.9 37.3
Quantifiers 76.4 44.2 64.9 58.5 81.1 60.1 75.3 71.7 65.0 71.6 61.6 76.7 77.0 73.6
Subj.-Verb Agr. 82.3 75.6 82.2 80.4 67.5 62.3 83.7 80.7 80.5 78.3 79.8 82.1 79.6 80.5

BLiMP suppl.
Hypernym 49.6 54.2 46.8 48.9 48.7 51.1 48.9 46.8 50.1 48.1 48.4 48.0 48.4 48.9
QA Congruence (easy) 54.7 62.5 46.9 54.7 56.3 45.3 53.1 48.4 54.7 54.7 53.1 51.6 56.3 53.1
QA Congruence (tricky) 41.2 49.1 35.8 38.8 37.6 36.3 38.8 38.2 43.6 40.0 34.6 37.6 38.8 43.3
Subj.-Aux. Inversion 86.0 79.9 88.0 86.8 87.5 84.4 85.0 82.6 79.1 86.7 88.2 81.2 84.5 87.2
Turn Taking 66.1 58.2 59.6 64.6 66.4 54.3 60.0 65.4 66.1 66.7 63.2 63.6 65.0 67.1

Table 2: SuperGLUE, EWoK, and BLiMP evaluation results (zero-shot accuracy, unless specified otherwise) for
various variants of ChooBaCa and the baselines.
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Model BLiMP BLiMP-suppl. EWoK GLUE Macroaverage

CHOOBACA-FW-2-23 68.1 55.4 50.2 66.5 60.1
CHOOBACA-FW-1-23 68.7 58.7 50.7 70.2 62.8
CHOOBACA-FW-2-24 70.2 59.3 50.2 66.9 61.7
CHOOBACA-FW-1-24 63.6 53.2 49.9 66.0 58.2
CHOOBACA-RV-2-23 69.4 57.0 50.8 68.5 61.4
CHOOBACA-RV-1-23 68.3 56.3 50.5 65.0 60.0
CHOOBACA-RV-2-24 69.3 59.5 50.0 66.0 61.2
CHOOBACA-RV-1-24 69.0 58.7 50.4 66.0 61.0
CHOOBACA-RV-2-23+ 68.0 57.5 50.2 67.5 60.8
CHOOBACA-RV-1-23+ 68.4 56.4 51.2 65.8 60.5
CHOOBACA-RV-2-24+ 69.5 58.6 50.2 67.0 61.3
CHOOBACA-RV-1-24+ 68.0 59.9 51.0 68.3 61.8

BABY LLAMA 69.8 59.5 50.7 63.3 60.8
LTG-BERT 60.6 60.8 48.9 60.3 57.7

Table 3: Aggregated evaluation results of ChooBaCa model variants and baseline models across all benchmarks.

tively across diverse language understanding tasks
under the reverse KL divergence framework.

When comparing reverse KL divergence mod-
els (RV) to forward KL divergence models (FW),
our results indicate that RV models achieve bet-
ter or comparable performance in the majority of
tasks. Specifically, when trained on the 2024 data
set, across the SuperGLUE and EWoK benchmarks
(22 tasks), RV models with a single teacher out-
perform FW models with two teachers in 3 tasks
(14%) and match their performance in 18 tasks
(81%), with FW models slightly outperforming RV

models in 1 task (5%). This result highlights the
effectiveness of inducing mode-seeking behavior
through reverse KL divergence, as RV models focus
on high-probability linguistic patterns, leading to
improved generalization and performance across
various benchmarks compared to the traditional FW

approach with two teachers.

Models that incorporate additional optimization
techniques (marked with a ‘+’ character at the end)
show better performance under the reverse KL di-
vergence setting. These models outperform their
non-optimized counterparts in 8 out of 22 (Su-
per)GLUE and EWoK tasks (36%) and 7 out of
17 BLiMP tasks (41%). In the remaining tasks,
their performance is comparable. Similarly, when
trained on the 2023 dataset, optimized RV models
show improvements in 5 out of 22 (Super)GLUE
and EWoK tasks (23%) and 4 out of 17 BLiMP

tasks (24%), with performance remaining compa-
rable in most other tasks. These findings suggest
that the additional optimization techniques, namely
step-wise loss computation and progressive train-
ing strategy, contribute to a more stable and effi-
cient training processes, enabling the models to
better capture complex linguistic structures.

Comparing the results for models trained on the
2023 vs. the 2024 dataset, we observe consistent
patterns across the two. When trained on the 2023
dataset, RV models with a single teacher outper-
form two-teacher RV models in 12 out of 22 (Su-
per)GLUE and EWoK tasks (55%) and 8 out of
17 BLiMP tasks (47%), with performance being
comparable in 7 (Super)GLUE and EWoK tasks
(32%) and 2 BLiMP tasks (12%). These patterns
across both datasets once again support our main
argument: choosy babies need one coach.

Notably, the performance of all models on the
EWoK benchmark is close to chance level, 50%.
This suggests that our relatively small models
might lack the capacity to effectively handle the
complex EWoK tasks, which are likely more de-
manding compared to the other benchmarks in-
cluded in this study.

Overall, these results suggest that a selective,
mode-seeking learning strategy, based on the use of
reverse KL divergence with a single teacher model,
enhances the ChooBaCa model’s ability to general-
ize effectively across diverse language understand-
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ing tasks. At the same time, all ChooBaCa variants
struggle with more complex tasks grounded in real-
world knowledge.

4 Conclusion

Our findings support the use of reverse Kullback–
Leibler divergence in knowledge distillation, partic-
ularly in a single-teacher setup. While it has been
shown that multiple instructional sources can be
advantageous (Timiryasov and Tastet, 2023; Odu-
makinde et al., 2024), our results suggest that in a
constrained setup with one small model trained on
limited amounts of data, in combination with using
reverse KL divergence, an ensemble of teachers
may not be necessary. Our single-teacher setup
promotes mode-seeking behavior, resulting in a
more focused and efficient learning process. It also
simplifies the learning process and eliminates the
need to train more than one teacher model. Our
ChooBaCa model is able to efficiently generalize
across diverse language understanding tasks.

In future work, we plan to explore hybrid KL
divergence methods, such as alternating between
forward and reverse KL divergence or employing
a weighted combination during training, to bal-
ance the learner’s focus between dominant and mi-
nor modes. Additionally, investigating layer-wise
distillation – where different layers of the student
model learn from different teachers – could more
effectively accommodate varied distribution peaks.
Finally, we aim to examine dynamically averaging
the outputs of multiple teachers before applying
reverse KL divergence, which might smooth out
the distribution and help the student model identify
and prioritize significant modes without bias.
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A Appendix

A.1 Optimization methods

In this appendix, we provide detailed explanations
of the optimization methods and formulas used in
our approach, including definitions of all symbols.

A.1.1 Progressive distillation strategy
To enhance the distillation process and allow the
student model to gradually become more indepen-
dent from the teacher, we introduce a dynamic
mixing coefficient β that progressively reduces the
teacher’s influence during training. β starts with a
higher value and decreases as training progresses,
ensuring that the student model relies more on the
teacher’s guidance at the beginning of training and
gradually becomes more autonomous.

A.2 Reverse KL divergence

A.2.1 Loss function modification
In standard knowledge distillation, the student
model learns by minimizing the forward Kullback–
Leibler (KL) divergence between the teacher’s out-
put distribution and the student’s output distribu-
tion:

LF-KL = KL (Pteacher ∥ Pstudent) (4)

However, to induce mode-seeking behavior in
the student model, we instead minimize the reverse
KL divergence:

LR-KL = KL (Pstudent ∥ Pteacher) (5)

where Pteacher is the probability distribution over
the output tokens from the teacher model, Pstudent is
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the same distribution from the student model, and
KL(P ∥ Q) is the Kullback–Leibler divergence
from distribution P to distribution Q.

Minimizing the reverse KL divergence encour-
ages the student model to focus on the high-
probability regions (modes) of the teacher’s dis-
tribution.

A.3 Implementation details

Mixing teacher and student logits. To stabilize
training and facilitate the progressive distillation
strategy, we mix the logits (pre-softmax outputs)
from the teacher and student models. The mixed
logits zmixed are computed using the dynamic mix-
ing coefficient β. This approach ensures a smooth
transition for the student model from relying on the
teacher to developing its own understanding.

Temperature Scaling. We apply temperature
scaling to the logits to soften the probability distri-
butions and make them more suitable for distilla-
tion. The scaled logits are:

z̃student =
zstudent

T
(6)

z̃mixed =
zmixed

T
(7)

where T is the temperature parameter (we set
T = 2.0 in our experiments). Higher temperatures
produce softer probability distributions.

Computing probability distributions. We com-
pute the probability distributions using the softmax
function:

qθ = softmax (z̃student)

pmixed = softmax (z̃mixed)
(8)

where qθ and pmixed are, respectively, the student’s
and the mixed teacher–student probability distribu-
tions after temperature scaling.

Loss computation. The distillation loss
Ldistillation is computed using the reverse KL
divergence between the student distribution and
the mixed teacher-student distribution. The scaling
by T 2 compensates for the effect of temperature
scaling on the gradients, allowing for more stable
optimization.

Total loss. The total loss Ltotal combines the stan-
dard cross-entropy loss on the student model’s out-
puts and the distillation loss:

Ltotal = α · Lstudent + (1− α) · Ldistillation (9)

where Lstudent is the cross-entropy loss between the
student model’s predictions and the ground truth
tokens, and α is a weighting factor (we set α = 0.5
in our experiments).

Cross-entropy loss. The student loss Lstudent is
computed as:

Lstudent =
1

N

N∑

i=1

ℓCE(qθ(yi|xi), yi) (10)

where:

• ℓCE is the cross-entropy loss function.

• qθ(yi|xi) is the student model’s predicted
probability distribution for the target token
yi given input xi.

• yi is the ground truth token.

Step-wise loss computation. To improve compu-
tational efficiency and reduce memory usage, we
compute the distillation loss over smaller chunks of
the sequence. Specifically, we divide the sequence
into segments of length k (we use k = 5 in our ex-
periments) and compute the loss for each segment
separately. This step-wise computation allows us to
handle longer sequences without exceeding mem-
ory limitations.

A.4 Optimization and training setup

A.4.1 Optimizer and learning rate scheduler
We use the AdamW optimizer with the following
hyperparameters:

• Learning rate: η = 2.5× 10−4

• Betas: β1 = 0.9, β2 = 0.999

• Epsilon: ϵ = 1× 10−8

• Weight decay: λ = 0.01

We employ a cosine annealing learning rate
scheduler with a maximum number of iterations
Tmax = 500.
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A.4.2 Training hyperparameters
The training hyperparameters are set as follows:

• Batch size: N = 32

• Sequence length: L = 128

• Number of epochs: E = 6

• Gradient accumulation steps: G = 1

• Mixed-precision training: FP16

A.5 Summary of notations
For clarity, we summarize the notations used in our
formulas:

• zteacher: logits from the teacher model.

• zstudent: logits from the student model.

• zmixed: mixed logits from teacher and student.

• β: dynamic mixing coefficient.

• T : temperature parameter for scaling logits.

• z̃student: temperature-scaled student logits.

• z̃mixed: temperature-scaled mixed logits.

• qθ: student model’s probability distribution
after temperature scaling.

• pmixed: mixed probability distribution after
temperature scaling.

• Lstudent: cross-entropy loss between student
predictions and ground truth.

• Ldistillation: distillation loss computed using
reverse KL divergence.

• Ltotal: total loss combining student loss and
distillation loss.

• α: weighting factor between student loss and
distillation loss.

• N : batch size.

• L: sequence length.

• k: chunk size for step-wise loss computation.

• E: number of training epochs.

• e: current epoch number during training

• η: learning rate.

• β1, β2: beta parameters for AdamW opti-
mizer.

• ϵ: epsilon parameter for AdamW optimizer.

• λ: weight decay parameter.

• Tmax: maximum number of iterations for co-
sine annealing scheduler.

• G: gradient accumulation steps.

A.6 Code implementation
The methods described above are implemented in
our code, which we make publicly available1. The
code includes the implementation of the progres-
sive distillation strategy, reverse KL divergence
loss computation, mixing of teacher and student
logits, and the optimization setup with the AdamW
optimizer and cosine annealing scheduler.

A.7 Efficiency enhancements
To improve computational efficiency, we compute
the distillation loss over chunks of k = 5 tokens.
This step-wise loss computation reduces memory
consumption and accelerates training without com-
promising performance.

A.8 Algorithm summary
Combining all the components, the training algo-
rithm operates as follows:

1. Initialize the student model parameters θ,
mixing coefficient βstart, temperature T , and
weighting factor α.

2. For each epoch e = 1 to E:

(a) Update β.
(b) For each mini-batch:

i. Compute student logits zstudent.
ii. Compute teacher logits zteacher (with

no gradient computation).
iii. Compute mixed logits zmixed.
iv. Scale logits with temperature T .
v. Compute probability distributions qθ

and pmixed.
vi. Compute Lstudent using cross-entropy

loss.
vii. Compute Ldistillation using reverse KL

divergence.
viii. Compute total loss Ltotal.

1https://github.com/todamoonnback/ChooBaCa
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ix. Backpropagate gradients and update
model parameters using AdamW op-
timizer.

3. End For

This algorithm ensures that the student model
gradually shifts from relying on the teacher’s guid-
ance to developing its own representations, focus-
ing on the high-probability modes of the teacher’s
distribution.
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https://github.com/cristianochesi/babylm-2024 

2 This is a prudential threshold obtained from the average 

human performance reported on BLiMP (~88%, Warstadt et 

al., 2020) minus 1 or 2 standard deviations (~8%). 
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2 Training data, benchmarks, and RNN 
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2.2 The BLiMP dataset 

2.3 Models’ architecture: RNNs strike back 

108



4 

2.3.1 LSTM 

⁀

⊙

⊙

3 On our limited capacity to process tokens “in parallel” one 

might be interested in the rapid parallel visual presentation 

(RPVP) task (Snell and Grainger, 2017) and on the relevant 

o
⊙) by 

o

restrictions observed during this task (Fallon and 

Pylkkänen, 2024). 

⁀

⊙

⊙ ⊙
i
 
 f

 
 

o 

109



5 
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  eMG-RNN 

 LSTM 1 2 3  F-M F-N 

Ana. agr 0.67 0.82 0.76 0.77 0.88 0.81 

Arg. str 0.56 0.65 0.64 0.63 0.64 0.66 

Binding 0.54 0.69 0.66 0.63 0.57 0.65 

Ctrl. / 

Rais. 0.59 0.58 0.59 0.60 0.58 0.60 

D-N agr 0.57 0.67 0.63 0.67 0.68 0.68 

Ellipsis 0.41 0.24 0.30 0.21 0.42 0.39 

Filler. gap 0.55 0.64 0.60 0.47 0.48 0.65 

Irregular 0.54 0.58 0.69 0.60 0.60 0.58 

Island 0.54 0.58 0.54 0.53 0.50 0.62 

Npi 0.45 0.33 0.50 0.55 0.32 0.31 

Quantifiers 0.57 0.55 0.53 0.53 0.53 0.57 

S-V agr 0.50 0.52 0.52 0.52 0.55 0.53 

Overall 0.54 0.58 0.58 0.57 0.55 0.59 

6 Discussion 
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Abstract

Large language models demonstrate emer-
gent modularity, where functionally specialized
components and circuits arise to handle specific
tasks or task formats. If similar modules arise
in models trained on more cognitively plausi-
ble datasets, it could inform debates surround-
ing what kinds of mechanisms would be learn-
able given more human-like language learn-
ing signals. In this paper, we describe a mul-
timodal vision-language model submitted to
the BabyLM Challenge. Our model achieves
similar performance to the best-performing ar-
chitectures from last year, though visual infor-
mation does not improve performance on text-
only tasks over text-only models (in accordance
with prior findings). To better understand how
the model processes the evaluation tasks of the
BabyLM Challenge, we leverage causal inter-
pretability methods to locate the neurons that
contribute to the model’s final decisions. We
find that the models we train are highly mod-
ular: distinct components arise to process re-
lated tasks. Furthermore, on text-and-image
tasks, adding or removing visual inputs causes
the model to use distinct components to pro-
cess the same textual inputs. This suggests that
modal and task-specific specialization is effi-
ciently learned, and that a high degree of func-
tional specialization arises in even small-scale
language models.

1 Introduction

Despite impressive capabilities across a wide range
of tasks, language models (LMs) remain highly
data-inefficient: LMs typically require orders of
magnitude more data during pretraining than hu-
mans encounter over their entire lifetime (Gilker-
son et al., 2017). This inefficiency has driven inter-
est in alternative approaches to language learning
that leverage more human-like language learning
scenarios. One such effort is the BabyLM Chal-
lenge (Warstadt et al., 2023), which promotes the
development of language models trained on the

quantity of linguistic input that children receive
when learning language. To create a more develop-
mentally plausible training setup, the 2024 iteration
of the challenge (Choshen et al., 2024) provides
aligned image and text data.

Evaluating these more cognitively plausible
models requires a focused analysis not only of how
models behave, but also of the mechanisms1 under-
lying their behaviors. Conventional benchmarks
are finite and often deploy identically distributed
train/test splits, causing us to overlook key aspects
of how models generalize. To address this, mecha-
nistic interpretability has emerged as a framework
for obtaining a more algorithmic understanding of
how neural networks perform particular behaviors.
This typically entails causally attributing model
behavior to specific components, or causal graphs
composed thereof.

We conduct a study around one of the baseline
architectures from the BabyLM Challenge that in-
corporates both language and vision: the genera-
tive image transformer (GIT; Wang et al., 2022).
We train and evaluate a suite of language-only and
multimodal models with this architecture to inves-
tigate the role of visual inputs in language learning.
Specifically, we first examine how different weight-
ing schemes for text and image-text loss signals
affect model performance and assess whether vi-
sual input offers any benefit for language learning.
As expected, visual data leads to enhanced perfor-
mance on multimodal benchmarks compared to
text-only models. However, we find no significant
benefit of visual data for performance on text-only
benchmarks. This supports prior findings of a mul-
timodal submission from last year’s BabyLM Chal-
lenge (Amariucai and Warstadt, 2023), as well as
findings of Zhuang et al. (2024).

Then, using attribution patching (Syed et al.,
2023), we identify the most causally important neu-

1At a high level, a mechanism can be defined as a causal
graph describing how inputs are transformed into outputs.
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rons in GIT’s text decoder across tasks. This analy-
sis reveals a high level of modularity,2 with sepa-
rate internal mechanisms being deployed even for
slightly different subtasks of the same task. Most
surprisingly, the same textual input is processed dif-
ferently in the text decoder depending on whether
visual inputs are present. This suggests that visual
inputs do not merely add to textual information, but
rather activate distinct mechanisms in the model’s
language processing components. These findings
suggest that modal and task-specific specialization
is efficiently learnable in human-like learning sce-
narios, even in the absence of human-like learning
biases.3 These findings extend prior work on emer-
gent modularity in pre-trained language models
(e.g., Zhang et al., 2023; Csordás et al., 2021; Agar-
wala et al., 2021) to a more cognitively plausible
training scenario, thus allowing us to make more
convincing claims as to what kinds of linguistic
functional specializations can arise from human-
like language learning signals.

Our main contributions are as follows:

• An analysis of what small-scale language
models gain from visual inputs over pure text.

• A causal analysis of which text decoder neu-
rons perform each BabyLM evaluation task,
and how the addition of vision data changes
these component sets.

• A suite of minimally differing autoregressive
text-only and text-and-image models for fu-
ture analyses.4

2 Related Work

Small-scale multimodal language modeling
Many believe that grounding text data in some sym-
bolic representation or alternate modality is neces-
sary for robust language understanding (Bender and
Koller, 2020; Bisk et al., 2020, inter alia). Thus, as-
suming the training corpus is no more than what a
human could realistically be exposed to when learn-
ing language, the addition of aligned visual data
may provide an even better test ground for under-
standing what kinds of structures are learnable from
data alone (without a human-like inductive bias).

2In this context, “modularity” refers to function-based
neuron grouping (Zhang et al., 2023), where particular neuron
clusters have specific functions.

3This degree of modularity is not necessarily desirable nor
undesirable; see §5.

4Our code and models are publicly available:
https://github.com/klerings/babylm_analysis

Recent related work has investigated whether vi-
sual inputs can aid in word learning, finding largely
negative results—but crucially, visual inputs are
helpful in the kinds of low-resource scenarios we in-
vestigate (Zhuang et al., 2024). The 2023 BabyLM
Challenge received many multimodal submissions;
most relevant to ours is the text-and-vision submis-
sion of Amariucai and Warstadt (2023).

Mechanistic interpretability Mechanistic inter-
pretability methods allow us to more deeply under-
stand where and how particular tasks are accom-
plished in a neural network. This paper focuses
more on localizing than qualitatively explaining
model behavior—but localization can itself reveal
whether certain behaviors are performed using the
same underlying mechanisms. For example, one
line of work aims to causally quantify whether
the most important neurons for a particular task
overlap with those from highly related tasks in lan-
guage models (e.g., Finlayson et al., 2021; Sankara-
narayanan et al., 2024). There also exist investi-
gations of the mechanisms underlying how vision-
language models accomplish particular tasks (e.g.,
Palit et al., 2023; Salin et al., 2022). Past work
has used other (not always causal) methods to dis-
cover that language models are highly modular; this
includes work with small-scale CNN and LSTM-
based models (Csordás et al., 2021; Agarwala et al.,
2021), as well as large Transformer-based models
(Zhang et al., 2023).

Our work extends this literature through analyses
of developmentally plausible multimodal language
models. We investigate whether these models use
similar mechanisms to perform diverse natural lan-
guage processing (NLP) tasks, and whether they
use the same mechanisms to perform the same tasks
with and without image data. While our models
are not directly comparable to human learners due
to differing inductive biases and a relatively small
quantity of visual inputs, they nonetheless provide
evidence as to the kinds of mechanisms that are
learnable from a realistic language learning dataset.

3 Methods

3.1 Model Training

We closely replicate the challenge baseline setup
as a foundation for our causal analysis, with the
goal of mechanistic insights rather than model op-
timization. Specifically, we train a series of gener-
ative image transformer (GIT; Wang et al., 2022)
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models on the official training data for the multi-
modal track of the BabyLM Challenge (Choshen
et al., 2024). The corpus is composed of two parts:
one half consists of text-only data—primarily tran-
scribed speech and child-directed language—while
the other half is composed of paired image-caption
data from sources such as Localized Narratives
(Pont-Tuset et al., 2020) and Conceptual Captions
(Sharma et al., 2018).

GIT Architecture The GIT architecture consists
of two main components: an image encoder and
a text decoder. For the image encoder, we use
DINOv2 (Oquab et al., 2024), a Vision Transformer
(ViT; Dosovitskiy et al., 2021), which is pretrained
independently in a self-supervised manner using
only image data, thus not counting towards the
word budget imposed by the challenge. The text
decoder is then jointly pretrained with the image
encoder on image-text pairs, following a causal
language modeling objective.

GIT also offers the advantage that it can func-
tion as a decoder-only language model when im-
age input is absent, enabling additional training on
text-only data and facilitating evaluation on both
unimodal and multimodal tasks.

Multimodal Loss GIT uses a standard cross-
entropy loss for language modeling, which is com-
puted over two types of training data: (1) samples
containing both images and text (from Localized
Narratives and Conceptual Captions) and (2) text-
only samples (from the BabyLM corpus). These
two types of data are handled separately during
training, with distinct loss terms for each.

For samples that include both images and text,
the model computes a loss by predicting the caption
tokens, conditioned on the preceding text tokens
and the projected image encoding. This loss is
denoted as Lmulti. Notably, the image input from
this corpus can be disabled to simulate a language-
only model.

For text-only samples (from the BabyLM cor-
pus), the model computes a unimodal loss, Luni,
where each token is predicted based solely on the
preceding text tokens.

The total loss during training is a weighted sum
of these two components:

L = w1Lmulti + w2Luni (1)

We investigate the impact of varying weight con-

figurations5. A configuration denoted as 1/1 im-
plies equal weighting (w1 = w2), while 1/0.5 refers
to w1 = 1 and w2 = 0.5.

When we include images in the captions cor-
pus, the weights w1 and w2 not only determine
the degree of emphasis placed on child-directed
language in the BabyLM corpus, but also adjust
the contributions of multimodal and unimodal loss
signals during training. For more information on
implementation and hyperparameters, see App. A.

3.2 Benchmarks

We evaluate our models on the official benchmarks
of the BabyLM Challenge to verify their compet-
itiveness with the challenge baselines and ensure
relevance of any conclusions drawn from the subse-
quent analysis. For language understanding this in-
cludes BLiMP (Warstadt et al., 2020), BLiMP Sup-
plement (Warstadt et al., 2023), EWoK (Ivanova
et al., 2024) and GLUE (Wang et al., 2018, 2020),
see Table 7 in App. C.2 for examples. BLiMP
and its supplement consist of sentence pairs with
one grammatically correct and one incorrect sen-
tence. EWoK tests logical entailment requiring
world knowledge and reasoning, where the model
must choose the more semantically likely of two
continuations given prior context. Accuracy on
BLiMP and EWoK is measured by how often the
model assigns a higher probability to the correct
sentence. Meanwhile, GLUE tests natural language
understanding after task-specific finetuning.

To assess combined textual and visual under-
standing, the BabyLM Challenge evaluates on
the visual question answering benchmark VQAv2
(Goyal et al., 2019) using 7 distractor answers, as
well as on Winoground (Thrush et al., 2022) and
DevBench (Tan et al., 2024). Winoground includes
images paired with two sentences: one accurately
describing the image, and another minimally differ-
ing sentence that reflects a contrasting scenario. For
samples in DevBench, the model must instead se-
lect one of multiple images given a textual concept
or scenario. These are each evaluated in a zero-
shot manner. In addition to the BabyLM evaluation
tasks, we evaluate on the visual question answering
benchmark MMStar (Chen et al., 2024), which has
been manually curated to exclude questions that
could be answered via linguistic information alone.

5Since increasing the relative importance of one loss com-
ponent is equivalent to decreasing the importance of the other,
we only experiment with varying w1.
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3.3 Baselines

We compare our baseline replication against the
released baselines from the BabyLM competition.
For text-and-vision tasks, this includes Flamingo
(Alayrac et al., 2024) and GIT, which are trained on
the multimodal BabyLM training corpus. For text-
only tasks, this also includes last year’s winning
architectures, BabyLlama (Timiryasov and Tastet,
2023) and LTG-BERT (Georges Gabriel Charpen-
tier and Samuel, 2023), both trained on the official
training data from the Strict track, comprising the
same number of words as the multimodal corpus.6

3.4 Attribution Patching

We causally attribute model behaviors to specific
neurons to determine whether the most important
components are shared across task settings. A key
technique for this purpose is attribution patch-
ing (Syed et al., 2023) with integrated gradients
(AP-IG; (Hanna et al., 2024; Marks et al., 2024)), a
linear approximation of the computationally more
expensive activation patching (Vig et al., 2020; Fin-
layson et al., 2021; Geiger et al., 2021). Activation
patching entails intervening on the activation of a
model component during a forward pass; the ex-
tent to which this intervention changes the model
behavior is measured as the indirect effect (IE).
Activation patching is often used with contrastive
input pairs, where activations from one prompt are
transferred into a forward pass on a minimally dif-
ferent prompt. It also supports interventions like
setting the activation to zero7 or replacing the acti-
vation with its mean across some dataset.

In attribution patching, rather than directly patch-
ing neuron activations, the indirect effect is linearly
approximated by multiplying the gradient of the tar-
get metric m with respect to the neuron’s activation
x by the difference between the original activation
x and the counterfactual activation x′:

ÎE =
δm

δx
· (x′ − x) (2)

The gradient can be viewed as a local approxi-
mation of how much changing the neuron’s acti-
vation would affect m, so multiplying this by how
much x changes gives us an estimate of how much

6But from a different distribution. The 50M words of
image-caption data are replaced by data more closely resem-
bling the text-only corpus’s distribution.

7This is not entirely principled and may even be out-of-
distribution for the network, as a neuron’s baseline value will
not necessarily be 0.

m will change. Typically, m is the logit differ-
ence between a correct token completion and mini-
mally different incorrect token completion. High-
magnitude ÎE values indicate that a neuron signifi-
cantly influences a particular model behavior.8

Benchmark-specific prompts and metrics For
BLiMP, we select a subset of subtasks consistent
with the “one-prefix-method” (Linzen et al., 2016)
which ensures that both sentences of a pair share
an initial phrase but diverge at a critical word that
determines grammaticality. This format general-
izes well to VQA, where the logit difference is
computed between the target answer and the first
distractor that consists of a single token.

Attribution patching is primarily suited to cases
where the correct and counterfactual answers can
be distinguished by a single token. This is not the
case for the other tasks of the BabyLM challenge.
Therefore, we adapt the prompt structure and target
metric to suit the specific nature of each benchmark,
as illustrated in Table 7 in App. C.2.

While MMStar has a multiple-choice structure
similar to VQA, the answer choices often exceed a
single token in length, rendering the single-token
logit difference metric unsuitable. For EWoK
and Winoground, the tasks are not formulated
as question-answer pairs; instead, the objective
is to select the more plausible sentence given a
preceding sentence or image. Accordingly, we
employ an alternative metric that compares the
sum of logits for the entire correct sentence S1

against the sum for the entire incorrect sentence S2,
given a textual or visual context. In other words,
m =

∑
s1∈S1

p(s1) −
∑

s2∈S2
p(s2). For EWoK,

we repeat the context sentence following the first
context and continuation; these are separated by
a newline, allowing the model to process the full
text input for each comparison (and thus allow-
ing us to backpropagate after comparing p(s1) and
p(s2)). In Winoground, the context consists of the
image representation, and both possible descrip-
tion sentences separated by newlines. Similarly,
for MMStar, the prompt is made up of the image
and both question-answer pairs (where the question
is repeated), separated by newlines.

This design presents a challenge: prior work has
shown that language models can be semantically

8This includes positive as well as negative ÎE values. An
example of components that negatively and significantly im-
pact performance are Negative Name Mover Heads in the
Indirect Object Identification task (Wang et al., 2023).
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BLiMP BLiMP-Supp. EWoK GLUE Avg. Avg. w/o GLUE

Baseline Models

BabyLlama (100M) 73.1 60.6 52.1 69.0 63.7 61.9
LTG-BERT (100M) 69.2 66.5 51.9 68.4 64.0 62.5
Flamingo 70.9 65.0 52.7 69.5 64.5 62.9
GIT 65.2 62.7 52.4 68.3 62.2 65.1

Multimodal Models

GIT 1/1 70.0 (2.03) 65.8 (2.26) 51.9 (0.75) - - 62.6
GIT 1/0.5 68.9 (1.41) 64.1 (1.96) 52.7 (0.40) - - 61.9
GIT 1/0.25 71.2 (1.34) 64.6 (2.29) 52.5 (0.20) - - 62.8
GIT 1/0.125 66.3 (1.88) 61.7 (1.44) 52.3 (0.91) 65.6 61.5 60.1

Language-only Models

GIT 1/1 72.0 (1.54) 65.6 (1.89) 51.9 (0.39) 66.5 64.0 63.2
GIT 1/0.25 71.6 (1.22) 64.0 (2.32) 52.6 (0.38) - - 62.7

Table 1: Results for text-only benchmarks averaged across 3 random seeds. Avg. columns refer to macroaverage
over the respective tasks. For GIT, we show the corpus weightings as w1/w2.

and syntactically primed (Meyer and Schvaneveldt,
1971; Neely, 1977; Bock, 1986) to favor text more
similar to prior text that has already been seen in
the same context (van Schijndel and Linzen, 2018;
Prasad et al., 2019). Therefore, we randomly alter-
nate the order of correct and incorrect continuations
to account for priming effects on average across
examples. While this will not yield accurate be-
haviors per se, we care more about the relative
probability change between p(S1) and p(S2) when
a component is ablated, rather than their actual val-
ues; this design will still allow us to measure this
quantity when averaging across inputs.

For each benchmark, we retrieve the 100 most
important MLP neurons in the text decoder by ÎE
over all layers. We obtain the top neurons for each
subtask within a benchmark. For some tasks that do
not have subtasks such as VQA and Winoground,
we automatically generate subcategorizations of
examples. For more information on subtask defi-
nitions and the automatic subcategorization proce-
dure, see App. C.1. We exclude DevBench from
this analysis because its samples consist of multi-
ple images, each requiring a separate forward pass,
rendering attribution patching unfeasible.

4 Results

We train and evaluate four weighting configurations
for the multimodal model and two for the text-
only model; for each configuration, we average

across three random seeds. Detailed information
on the learning progress of each model is provided
in App. B.

4.1 Benchmarking Results

We use the challenge benchmarks to validate that
our models perform sufficiently well for mean-
ingful neuron analysis. To explore the impact of
visual information on language-only and multi-
modal learning, we evaluate all models on both
text-only9,10 and text-vision benchmarks.

Furthermore, we test the multimodal model’s
performance on vision tasks without image input,
simulating its behavior as a language-only model.
The average and standard deviation across all ran-
dom seeds are presented in Tables 1 and 2.

Text-only Results For the text-only benchmarks,
our models are on par with or slightly below the per-
formance of the baseline models, except for GLUE,
which we exclude from our causal attribution study.

There is no single weighting configuration that
consistently performs best across all datasets, but

9Due to computational constraints, only the best model
per modality and random seed is reported for GLUE. The
best unimodal model is selected from 1/1 to ensure a fair
comparison with other language-only models that similarly
balance loss signals across all samples.

10The GLUE metric is an unweighted mean of each subtask
accuracy, except QQP and MRPC (where we use F1 scores),
and CoLA (where we use the Matthews correlation coeffi-
cient).
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VQA Winoground DevBench MMStar Avg.
Input multimodal text-only multimodal text-only multimodal multimodal text-only multimodal

Baseline Models

Flamingo 52.3 45.0 51.6 50.0 60.1 24.1 22.6 47.0
GIT 54.1 48.4 55.5 50.0 50.5 25.9 22.4 46.5

Multimodal Models

GIT 1/1 51.5 (3.52) 49.2 (1.01) 55.4 (0.13) 50.0 (0.0) 48.7 (1.22) 25.1 (0.35) 23.0 (0.57) 45.1
GIT 1/0.5 53.1 (1.40) 47.5 (1.09) 55.9 (2.46) 50.0 (0.0) 50.2 (1.50) 24.3 (0.57) 21.8 (0.98) 45.7
GIT 1/0.25 52.2 (1.12) 47.4 (0.81) 56.2 (0.79) 50.0 (0.0) 47.6 (0.75) 25.8 (0.18) 22.5 (0.73) 45.3
GIT 1/0.125 52.6 (1.40) 48.6 (0.68) 57.0 (0.66) 50.0 (0.0) 47.8 (2.52) 26.7 (0.52) 22.6 (1.41) 45.9

Language-only Models

GIT 1/0.1 - 49.4 (0.72) - 50.0 (0.0) - - 22.9 (1.33) -
GIT 1/0.25 - 48.0 (0.60) - 50.0 (0.0) - - 24.0 (1.21) -

Table 2: Results for multimodal benchmarks with (multimodal) and without (text-only) visual input averaged across
3 random seeds. “Avg.” is a macroaverage over multimodal tasks. For GIT, we show loss weightings as w1/w2.

the models achieving the highest average perfor-
mance are 1/1 for the language-only setup and
1/0.25 in the multimodal case. This is contrary to
observations regarding the evaluation loss (App. B),
where lower weightings on BabyLM data samples
(w2) correlated with performance improvement.

No significant performance differences are ob-
served between models trained on textual data
alone and those incorporating both text and im-
age inputs, when comparing the same weightings.
This suggests that the addition of multimodal data
does not yield measurable improvements in this
specific context. This aligns with findings from
Zhuang et al. (2024).

Multimodal Results In multimodal tasks,
our models exceed baseline performance on
Winoground and MMStar but show a slight
underperformance on VQA and a more significant
drop on DevBench.

Results from both language-only and multi-
modal models without visual input provide vali-
dation and confirm that performance decreases sub-
stantially when image inputs are excluded. As on
the text-only tasks, there is no single multimodal
weighting configuration that consistently outper-
forms across all benchmarks. However, for tasks
such as Winoground and MMStar, which require
visual input for an above chance performance, the
1/0.125 weighting configuration proves most effec-
tive, as it places significantly more emphasis on the
visual loss signal during training.

We present learning curves for the best-

performing models in each modality across the
BabyLM evaluation tasks in Figure 5 in App. B.
For the multimodal model, we observe an order
in which phenomena are acquired: BLiMP perfor-
mance peaks early, whereas EWoK performance
gradually improves later in training. In App. B, we
discuss this order of acquisition further, and discuss
how learning curves differ between multimodal and
text-only models.

4.2 Causal Neuron Analysis

To explore whether neuron activation patterns are
shared across tasks or modalities, we compute the
average indirect effect for each MLP neuron in
the text decoder of the strongest multimodal GIT
model (1/0.125) per subtask. Then, we select the
top 100 neurons by indirect effect and analyze their
overlap across subtasks from all benchmarks.

Modularity within benchmarks For text-only
benchmarks, the results (Figure 1) indicate a sig-
nificant degree of neuron sharing in GIT among
subtasks within each benchmark. Specifically, for
EWoK, over 70% of the top neurons are pairwise
shared between subtasks. However, given the low
performance on the EWoK benchmark, it is possi-
ble that these neurons are not responsible for task
solving, but rather pick up on spurious heuristics;
we therefore focus on BLiMP and VQA11. Here,
we observe a similar though less pronounced trend
of intra-benchmark neuron sharing. For BLiMP,

11Note that VQA questions have seven distractor answers,
so random chance performance is 12.5%
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Figure 1: Overlap between top 100 neurons by ÎE per subtask for text-only (left) and multimodal benchmarks with
and without visual inputs (right). Subtask names are abbreviated; see App. C.1 for full names and example counts.

there is an overlap of about 20% between two sub-
task pairs. In VQA, many subtask pairs even share
over 70% of their task-relevant neurons.

Component sharing across benchmarks The
primary factor in determining neuron overlap ap-
pears to be task similarity: subtasks within the
same benchmark are more similar and display a
stronger overlap, whereas tasks across different
benchmarks are very distinct and share little neu-
rons. The 30% overlap between Irregular Forms
(IF) in BLiMP and all EWoK subtasks is an ex-
ception, but models did not score well on these
tasks; these could therefore be encoding spurious
heuristics or irrelevant information.

Distinct processing of multimodal input A shift
in neuron overlap is observed when comparing the
same subtasks with and without visual input (Fig-
ure 1; full results in Figure 6 in App. C.3). The
addition of vision leads to greater overlap of im-
portant neurons between all pairs of tasks: for ex-
ample, the overlap between subtasks in MMStar
and Winoground is 30% or less without images,
but rises to 40-60% for certain subtasks when vi-
sual input is introduced.12 This increase in shared
components is also observed between VQA and
Winoground, as well as between VQA and MM-

12Note that this is the overlap between MLP neurons in the
text decoder, not in the image encoder. It is not necessarily
intuitive that adding visual information should change the text
processing mechanisms to this degree.

Star. Interestingly, this increase in shared top com-
ponents does not extend to intra-benchmark sub-
tasks. Here, we find a mixture of subtask pairs that
increase their overlap, mostly in VQA, and subtask
pairs that decrease their overlap as in Winoground.

Furthermore, we find the overlap between the
same task with and without vision to be minimal for
both Winoground and MMStar. This suggests that
the presence of visual input significantly changes
the mechanisms employed by the language decoder
to solve these tasks.

Neuron Sharing in Flamingo To evaluate how
well our findings generalize to other multimodal
architectures, we conduct a causal neuron analysis
on the BabyLM Flamingo baseline model. Unlike
GIT, which relies on self-attention, Flamingo inte-
grates vision and text using cross-attention between
a frozen image encoder and text decoder.

Flamingo exhibits a similar degree of intra- and
inter-task neuron overlap as GIT, with overlap in-
creasing when visual input is added (Figure 7 in
App. C.3). However, in contrast to GIT, EWoK dis-
plays only selective subtask overlap, aligning more
closely with patterns observed in other datasets.

Notably, there is a significant amount of shared
neurons between text-only and image-text variants
of VQA. This was not observed with GIT (see
Figure 2). While adding image inputs in other mul-
timodal cases alters the salient features in the text,
Flamingo’s processing of VQA suggests the image
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Figure 2: Overlap between top 100 neurons of GIT (top)
and Flamingo (bottom) for subtasks of VQA with and
without visual inputs.

supports rather than redirects the text decoder.

4.3 Neuron Ablation

To verify the causal influence of the identified top
components, we perform a neuron ablation study
on VQA. We mean ablate the most influential neu-
rons for each subtask and measure the resulting
performance changes, quantifying the effect of the
removed information. We consider the top neurons
of two settings: (1) text-only, where the multimodal
GIT model processes just text, and (2) multimodal,
integrating both text and visual inputs. We then
mean ablate these distinct neuron sets in the mul-
timodal model. We measure accuracy by the sign
of the logit difference between correct answer and
first distractor of token length one.

We witness an expected drop in GIT’s perfor-
mance for eight of the ten VQA subtasks (Figure 3;
see Figure 8 in App. C.4 for all subtasks), confirm-
ing the task-relevance of the identified top neurons.

When measuring performance after ablations,

we note four patterns. (1) Performance sometimes
drops comparably when ablating only text-only
neurons, or only text-image neurons. This could in-
dicate that there are more task-relevant neurons
shared than the overlap matrix of top 100 neu-
rons implies, or simply that these two sets redun-
dantly encode similar mechanisms. (2) Ablating
text-image neurons sometimes results in a greater
drop in performance. This suggests that the most
important neurons are the ones processing the task
multimodally, which could be indicative of suc-
cessful fusion of vision and text data. (3) Some
tasks experience a larger performance drop when
ablating the text-only neurons, which means for
these tasks, much of the model’s performance can
be attributed to question-answer likelihoods rather
than visual reasoning. (4) There are two cases
where performance increases after ablations: Color
Identification and Quantity & Counting. Our mod-
els achieve comparatively low accuracies on these
tasks before ablations; it is thus unclear whether
these ablations improve scores because (i) the top
neurons encode actively unhelpful spurious infor-
mation, or (ii) ablating them causes the model to
rely on some other heuristic that happens to be
more successful (or both).

Similarly, in the pretrained Flamingo model,
seven out of ten VQA subtasks show a performance
decrease when either text-only or text-image neu-
rons are ablated (Figure 9 in App. C.4). However,
the drop is relatively small, indicating the model’s
robustness to MLP neuron ablations. This suggests
that either more than 100 neurons are involved in
task-relevant processes, or that critical processing
takes place in other components of the architecture,
such as the cross-attention mechanism.

5 Discussion

We find little neuron overlap between vision-and-
text and text-only variants of the same tasks. This
suggests a significant degree of modularity in small-
scale multimodal language models.13 This raises
important questions: is component sharing between
unimodal and multimodal processing mechanisms
of the same task desirable? Can it serve as a signal
of effective merging of information across modali-

13However, Flamingo’s processing of VQA is an exception.
This may be due to the training pipeline: text and image
encoders are first trained separately, and then cross-attention
between these frozen modules is learned using multimodal
data. This contrasts with GIT, where text decoder and text-
image associations are jointly learned.
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Figure 3: Multimodal accuracy for VQA subtasks when
mean ablating GIT’s top neurons. The dashed line indi-
cates accuracy before ablations. The left and right bars
show model performance given text and vision inputs
when ablating either the top neurons from the text-only
version of the task, or the top neurons from the text-and-
image version of the task.

ties? To investigate, future research could explore
the relationship between neuron overlap and task
performance, ideally across diverse architectures.

Many causes could explain the minimal over-
lap across similar benchmarks. First, the concep-
tual space in the model representations could be
such that there are few features or skills in com-
mon across tasks; thus, to the model, these tasks
have little in common. Investigating this possibility
would involve a more thorough qualitative analy-
sis of the features implicated in performing each
task. Second, different tasks may share features,
but the model might learn domain-specific versions
of qualitatively identical features. Follow-up re-
search could vary task formats—for example, by
paraphrasing all examples—and analyze whether
this changes the top neurons. That said, there is
some correlation between task similarity and com-
ponent overlap within a benchmark. This serves as
a sanity check, and also indicates that even small
models tend to share processing mechanisms across
closely related tasks with similar formats. This is a
more parameter-efficient strategy compared to rep-
resenting similar tasks in a fully modular fashion.

Is a high degree of task modularity desirable?
Some argue that emergent modularity can be har-
nessed for better generalization in language models
(e.g., Qiu et al., 2024); it could also enable more
fine-grained mechanistic understanding and con-

trol. However, modularity will generally result in
reduced parameter-efficiency. It could also be a
signal that a model is not efficiently compressing
information in a generalizable way, such that it
must relearn similar phenomena for distinct task
settings. We speculate that there exist more or less
desirable types and extents of modularity in neural
language models, and that classifying these types
of modularity could be especially helpful in assess-
ing parameter-(in)efficiency.

Relatedly, when speaking of modularity, it is es-
sential to distinguish between two types of neural
modules: (i) skill-related neural groups that share
general abilities independent of specific tasks, and
(ii) task-related neural groups that are specialized
for particular task formats. In our experiments,
we predominantly observe the latter. From an en-
gineering perspective, there is no clear indication
whether this would enhance performance or effi-
ciency. However, if one’s goal is to model human
language processing, perhaps modularity could be
a useful signal. Certain regions of the brain special-
ize toward particular tasks, even in the presence of
similar visual stimuli across tasks (Dupont et al.,
1993); different specialized regions for the same
task can also arise given sufficiently distinct stim-
uli (Müller et al., 2024). Our findings agree with
both. Whether emergent task modules in develop-
mentally plausible language models correspond to
comparable regions in the human brain remains an
interesting open question.

6 Conclusion

Developmentally plausible multimodal language
models exhibit a high degree of modularity. Fur-
thermore, adding visual inputs changes how the
text decoder processes a task, and increases the
amount of shared components between tasks. Our
findings highlight the types of functional special-
ization that can arise in language models trained
on developmentally plausible data, and raise ques-
tions about trade-offs between sample-efficiency,
parameter-efficiency, and cognitive plausibility.
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Limitations

Our study focuses on two multimodal architectures.
Other models such as CLIP combine visual and lan-
guage data differently, and therefore, the influence
of image data on the model’s behaviors and mecha-
nisms may be qualitatively different. Despite this,
our current findings suggest that visual informa-
tion does not significantly aid in language learning,
highlighting the need for novel fusion strategies
between the two modalities.

Additionally, there is room for improvement in
the scope of the analyzed components during at-
tribution patching. While we primarily examined
MLP neurons, which are crucial for language gener-
ation, the role of attention layers impacts a model’s
decoding ability equally. Future work could inves-
tigate the influence of visual data on the emergence
of task-specific attention heads, building on prior
studies in mechanistic interpretability.
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A Model Training

A.1 Hyperparameters
We train all models for a maximum of 30 epochs,
using a learning rate of 1e-4 with a weight decay
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Figure 4: Evaluation loss of GIT per epoch for each of the weighting configurations across three random seeds. Red
dot marks the best epoch.

of 0.1. The AdamW optimizer is employed with a
batch size of 128, and early stopping is applied to
prevent overfitting.

A.2 Tokenization

A single tokenizer is utilized across both unimodal
and multimodal models to enhance comparability
between the different settings. The tokenizer is
trained on the BabyLM corpus as well as the image
captions from the Localized Narratives and Con-
ceptual Captions datasets, with a vocabulary size
of 32,778 tokens.

B Learning Curves

After every epoch, we compute the validation loss
on the unimodal or multimodal development set
from the BabyLM Challenge, depending on the
model we are working with. We provide learning
curves for all weighting configuration in Figure 4.

In the 1/0.125 and 1/0.25 weighting configura-
tions, the loss consistently decreases across seeds
and modalities, indicating potential for further im-
provement with additional epochs. In contrast,
the 1/0.5 multimodal models show convergence
within the 30-epoch limit. For the 1/1 configura-

tion, where train losses are evenly weighted, over-
fitting occurs after six to ten epochs in both uni-
modal and multimodal setups. We conclude that
the fusion of language and vision is only learned
reliably with a strong multimodal loss signal. For
the language-only model, the setting with lower w2

value exhibits the better convergence, suggesting
that language skills and decoding abilities may be
more effectively learned from non-child-directed
language present in image captions.

We also present learning curves for each bench-
marking task. Learning curves for the best-
performing models in each modality across bench-
marks are visualized in Figure 5. For the multi-
modal model, there appears to be an order in which
phenomena are acquired: task performance on vi-
sion benchmarks and the EWoK dataset increases
steadily. In contrast, performance on the BLiMP
and BLiMP Supplement datasets peaks early in
training and subsequently fluctuates or declines.
We discuss this in more detail below. The language-
only model shows minimal performance change
over time on BLiMP, VQA, Winoground, and MM-
Star benchmarks, with performance remaining at
initial levels. For the EWoK dataset, performance

130



Figure 5: Learning progress of best GIT model per modality on each benchmark. Moving average smoothing is
applied with window size 3.

peaks around 15 epochs before declining, whereas
on the smaller BLiMP Supplement task, perfor-
mance fluctuation occurs almost immediately.

These findings align with observations from eval-
uation loss curves, where the 1/0.125 multimodal
model exhibits continued learning, while the 1/1
language-only model reaches an early local mini-
mum.

Acquiring linguistic abilities in order. We ob-
serve a distinct order of acquisition in language
models: learning curves across benchmarks in-
dicate an almost immediate proficiency in distin-
guishing between valid and invalid formal linguis-
tic structures, primarily with respect to morphosyn-
tactic rules. This is reflected in the high scores
achieved on both BLiMP and BLiMP Supplement
early in training. In contrast, performance on
EWoK, a benchmark that assesses more functional
(semantic and pragmatic) linguistic abilities in con-
text, improves gradually and slowly over time—
and peaks at significantly lower scores. This phased
“order of acquisition” deviates somewhat from hu-
man language development, where syntactic and
semantic signals can assist in learning the other
throughout language acquisition (Gleitman, 1990;
Grimshaw, 1979; Pinker, 1984). This finding could
support the existence of a clear distinction between
effective representations of the formal structure
of language, and representations of how language
should be interpreted and deployed in context (Ma-
howald et al., 2024); nonetheless, this finding is
preliminary and should be investigated in more
depth and in a greater variety of architectures and
learning scenarios.

C Causal Neuron Analysis

C.1 Subtask Categories

The subtask categories are either provided explic-
itly in the dataset (e.g. EWoK, BLiMP, MM-
Star) or automatically aggregated using a large lan-
guage model. Since the subtask labels in VQA
and Winoground are too fine-grained, we lever-
age ChatGPT-4o to automatically merge them to
broader categories. This is achieved in a two-stage
process, where we first ask for the generation of su-
perclass labels and then for the assignment of these
labels to the fine-grained categories. This process
is done in two steps to ensure that each fine-grained
label is assigned exactly one superclass, see Table 3

Label Creation
The following is a list of VQA/Winoground
question types. It is too fine-grained, merge
the categories to 10 combined categories that
are reasonable to group together, and give the
merged categories a new name...

Assignment
Classify each of these following question types
with exactly one of these super categories...

Table 3: ChatGPT-4o prompts used to generate new
subtask labels.

In Tables 4 and 5 we provide a mapping between
original and superclass label per benchmark and
in Table 6 we report the number of samples per
supercategory, alongside an abbreviation used in
heatmap plots.
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Person and Object Identification

are these are they is he is it
is the man is the person is the woman is this
is this person what is the man what is the person what is the woman
what is this who is

Other (General Queries and Miscellaneous)

are the what does the what is do you
what is the how none of the above what
what are what are the

Action and State

can you has could

Color Identification

what color what color is the what color are the what color is
what is the color of the

Verification and Existence

are does the is the are there
does this is there a are there any is
is there do is there

Identification and Classification

is that a what animal is what is the name is this a
what kind of what sport is is this an what type of
which what brand

Temporal Information

was what time

Spatial and Positional Information

how many people are in what room is where are the what is in the
where is the what is on the

Reason and Purpose

why why is the

Quantity and Counting

how many what number is how many people are

Table 4: VQA subtask categories with their original question types.

132



Adjectival Comparisons and Modifications

Adjective-Age Adjective-Size Adjective-Manner
Adjective-Color Adjective-Color (3-way swap) Adjective-Shape
Adjective-Texture Adjective-Animate Adjective-Weight
Adjective-Temperature Adjective-Speed Adjective-Height
Adjective-Manner Phrase Adjective-Speed Phrase, Verb-Intransitive Adverb-Animate

Verb Phrases (Intransitive and Transitive)

Verb-Intransitive Verb-Transitive Verb-Transitive Phrase, Verb-Intransitive, Preposition Phrase
Verb-Transitive Phrase Verb-Intransitive, Noun Verb-Intransitive Phrase
Verb-Intransitive, Determiner-Numeral Verb-Intransitive, Adjective-Manner Verb-Intransitive, Verb-Transitive Phrase
Verb-Intransitive Phrase, Adverb-Animate Verb-Intransitive Phrase, Preposition Verb-Transitive, Noun

Noun Phrases and Modifiers

Noun, Adjective-Color Noun Phrase, Adjective-Animate Noun
Noun Phrase Noun Phrase, Adjective-Color Noun Phrase, Determiner-Possessive
Noun Phrase, Determiner-Numeral Noun, Verb-Intransitive Noun, Preposition Phrase, Scope
Noun, Adjective-Size

Altered POS

Sentence Altered POS Altered POS, Determiner-Numeral

Preposition and Locations

Preposition Phrase, Scope Preposition Phrase Preposition

Determiner and Quantifier Relationships

Determiner-Numeral Determiner-Possessive Determiner-Numeral Phrase
Determiner-Numeral, Noun Phrase

Scope and Relations

Scope Scope, Preposition, Verb-Intransitive Scope, Preposition Phrase
Scope, Adjective-Manner Scope, Adjective-Texture Scope, Conjunction Phrase
Scope, Relative Clause Scope, Conjunction Scope, Verb-Transitive
Scope, Preposition Relative Clause, Scope Scope, Preposition Phrase, Adjective-Color
Scope, Altered POS, Verb-Intransitive, Verb-Transitive Scope, Noun, Preposition

Negation and Opposites

Negation, Scope Negation, Noun Phrase, Preposition Phrase

Temporal and Spatial Phrases

Adjective-Temporal Adjective-Spatial Adverb-Temporal
Adverb-Spatial Phrase Adverb-Spatial

Table 5: Winoground subtask categories with their original question types.
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BLIMP (linguistics_term) MMStar (category)

Subtask Name Abb. Num. Subtask Name Abb. Num.

Subject Verb Agreement SVA 34 Fine-grained Perception FP 247
S-Selection S-S 417 Instance Reasoning IR 243
Anaphor Agreement AA 688 Science and Technology ST 174
Binding B 1056 Coarse Perception CP 245
Determiner Noun Agreement DNA 1710 Math M 112
Irregular Forms IF 67 Logical Reasoning LR 204

VQA Winoground

Subtask Name Abb. Num. Subtask Name Abb. Num.

Person and Object Identification POI 3208 Adjectival Comparisons and Modifications ACM 184
General Queries and Miscellaneous (renamed: Other) O 4648 Verb Phrases (Intransitive and Transitive) VP 52
Action and State AS 286 Noun Phrases and Modifiers NPM 268
Color Identification CI 2343 Altered POS APO 46
Verification and Existence VE 4894 Preposition and Locations PL 68
Identification and Classification IC 2393 Determiner and Quantifier Relationships DQR 50
Temporal Information TI 176 Scope and Relations SR 42
Spatial and Positional Information SPI 708 Negation and Opposites NO 18
Reason and Purpose RP 100 Temporal and Spatial Phrases TSP 12
Quantity and Counting QC 27

EWoK (Domain)

Subtask Name Abb. Num.

Physical Relations PR 818
Spatial Relations SPR 476
Physical Interactions PI 556
Agent Properties AP 2056
Material Dynamics MD 770
Social Properties SP 325
Social Relations SOR 1548
Quantitative Properties QP 310
Social Interactions SI 294
Physical Dynamics PD 120
Material Properties MP 170

Table 6: (Aggregated) subtask categories per benchmark with their abbreviation and number of contained samples.
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C.2 Prompt Format and Metrics
An example for each prompting format used in
attribution patching is given in Table 7, alongside
the metric used to compute the patching effect.

C.3 Heatmap for all subtasks
We provide an extensive heatmap for the neuron
overlap between subtasks of all benchmarks in Fig-
ure 6 for GIT and in Figure 7 for Flamingo.

C.4 Neuron Ablation
We provide the ablation effect for all subtasks of
VQA (in their multimodal variant) when ablating
the top neurons with their mean activation in Fig-
ure 8 for GIT and in Figure 9 for Flamingo.

C.5 Library
To perform attribution patching and neuron ab-
lations, we use nnsight (Fiotto-Kaufman et al.,
2024).
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Figure 6: Overlap in GIT between the top 100 neurons by indirect effect per subtask for all benchmarks.
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Figure 7: Overlap in Flamingo between the top 100 neurons by indirect effect per subtask for all benchmarks.
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Benchmark Prompt Metric

BLiMP The books about Galileo logit diff = final logit[token="are"] -
final logit[token="is"]

VQA Is this photo in color? logit diff = final logit[token="no"] -
final logit[token="yes"]

EWoK Chao is making Yan’s job easier. Chao is
helping Yan. \n Chao is making Yan’s job
easier. Chao is hindering Yan.

logit diff = logit sum["Chao is helping
Yan"] - log sum["Chao is hindering Yan."]

Winoground some plants surrounding a

lightbulb \n a lightbulb surrounding some
plants

logit diff = logit sum[a lightbulb
surrounding some plants] - logit sum[some
plants surrounding a lightbulb]

MMStar What is the main theme of the

image? Transportation \n What is the
main theme of the image? Outdoor recre-
ation

logit diff = logit sum[What is the main
theme of the image? Transportation]
- logit sum[What is the main theme of the
image? Outdoor recreation]

Table 7: Example prompts and their respective performance metric per benchmark used for attribution patching.
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Figure 8: Clean and ablated GIT accuracy on VQA.
Dashed line marks clean accuracy. The left and right
bars show model performance without vision and with
vision respectively.

Figure 9: Clean and ablated Flamingo accuracy on VQA.
Dashed line marks clean accuracy. The left and right
bars show model performance without vision and with
vision respectively.
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Abstract
This paper investigates the effect of includ-
ing a parser network, which produces syntac-
tic heights and distances to perform unsuper-
vised parsing, in the Every Layer Counts BERT
(ELC-BERT) architecture trained on 10M to-
kens for the 2024 BabyLM challenge. The
parser network’s inclusion in this setup shows
little or no improvement over the ELC-BERT
baseline for the BLiMP and GLUE evaluation,
but, in particular domains of the EWoK evalua-
tion framework, its inclusion shows promise for
improvement and raises interesting questions
about its effect on learning different concepts.
1

1 Introduction

Recent advancements in Transformer-based lan-
guage models, in particular Large Language Mod-
els (LLMs), have largely been achieved by scal-
ing the parameter count as well as the size of the
dataset (Zhao et al., 2023). Whilst there is ongoing
research in identifying efficient training and sam-
pling methods for LLM pre-training, Villalobos
et al. project that between the year 2026 and 2032
the datasets for training LLMs will be equivalent
to all extant human text data.

In response to the staggering amount of data
upon which LLMs are trained, the BabyLM chal-
lenge aims to incentive research in the development
and pre-training of Language Models by setting
realistic human-developmental limitations on the
training data (Choshen et al., 2024). In particular,
the challenge has three data-limited tracks: two
texts only tracks that restrict the data corpora sizes
to 10M and 100M (strict-small and strict, respec-
tively), the latter of which is inspired by approxi-
mately the amount of data a 13 year old child will
have seen, and a vision-language track, combining
text and images.

1The code for the training and experimenting is available
here: https://github.com/SufurElite/ELC-ParserBERT

Figure 1: An example of an induced tree created from
the model’s unsupervised parser network

The 2024 BabyLM Challenge is the second it-
eration of this challenge. The overall best system
from the first challenge was the Every Layer Counts
BERT model (ELC-BERT) (Georges Gabriel Char-
pentier and Samuel, 2023), which showed effec-
tive results by changing the residual connection
between the transformer layers. Although, in the
first BabyLM challenge, systems with architectural
modifications produced the best results, a plurality
of submitted systems used curriculum learning, of
which only one found significant gain from this
approach (Warstadt et al., 2023).

This paper introduces ELC-ParserBERT, a
model submitted for the strict-small track, which
incorporates the parser network proposed in (Shen
et al., 2021) into ELC-BERT. The parser network
is able to induce both dependency and constituency
syntactic structures, an example of which can be
seen in Figure 1, and the aim of its inclusion is
to investigate whether this structural bias aids the
baseline ELC-BERT model. This paper also inves-
tigates whether using a curriculum learning based
approach with this model architecture yields any
improvement.

2 Background Literature

Hu et al. propose a Transformer-based Syntac-
tic Language Model (SLM), called Generative
Pretrained Structured Transformers (GPST), that
learns to induce syntactic parse trees in an unsu-
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pervised manner and is able to outperform GPT-2,
including in the GLUE (Wang et al., 2018) eval-
uation dataset. In addition to the standard SLM
with its Transformer backbone, the GPST has a
composition component, a pruned inside-out en-
coder, namely, ReCAT (Hu et al., 2024b), which
induces parse trees. The model is trained through
a process akin to hard expectation-maximization:
during the expectation stage, the model induces
a parse tree from a compositional model, whose
internal representation is used as input during the
maximization stage that consists of updating all the
GPST parameters.

The ReCAT component and its contextual inside-
out layers made improvements upon unsupervised
grammar induction when compared to the prior
baselines (Hu et al., 2024b). One of the baselines
it improved upon (both in terms of the F1 score
for the syntactic trees and the memory complexity)
was the StructFormer model (Shen et al., 2021).

The StructFormer also proposes an additional
component, the parser network, that induces parse
trees. Given its input of word sequences, the parser
network generates syntactic heights and distances,
which were proposed in (Luo et al., 2019) and
(Shen et al., 2018), respectively. Given the syn-
tactic heights and distances, the network then es-
timates the probability that a token is the head of
another token. A directed weighted adjacency ma-
trix is then created such that each weight is the
probability a token depends on another. After these
token-dependency relation probabilities are created
in the parser network, they are used to constrain the
self-attention (Shen et al., 2021). In addition to be-
ing evaluated on its unsupervised dependency and
constituency parsing, the StructFormer was trained
and evaluted as a masked language model.

As part of the first BabyLM Challenge, one sys-
tem consisted of pre-training the original Struct-
Former architecture as well as variants of it (Mo-
men et al., 2023). Their variants included using
RoBERTa encoder in place of the standard trans-
former and at which layers to integrate the parser
network – namely, placing the parser in the mid-
dle since there was supporting literature that shows
syntactic information is better represented in the
middle transformer layers. They concluded, how-
ever, that, although some of the evaluation tasks
were improved upon by having a model that in-
duces a syntactic bias into the architecture, there
was not sufficient evidence that this inclusion im-
proved the model architecture with respect to the

Figure 2: The model architecture

challenge set nor, within their experimentation, that
the placement of the parser network in the middle
of the transformer layers yielded improvement.

Another approach to inducing grammar induc-
tion is through compound probabilistic context-free
grammars (compound-PCFGs) (Kim et al., 2019),
wherein the model’s context-free rule probabili-
ties are alterable by a sentence-level latent variable.
There was a submission to the first BabyLM chal-
lenge that made use of the compound-PCFG. The
approach pre-trained a compound-PCFG on a sub-
set of the strict-small training data and used the
token embedding layer from the grammar as the in-
put embedding layer to a different language model,
which is subsequently trained on next work pre-
diction on the training data (Chen and Portelance,
2023). They concluded, however, that there was
no improvement over their baselines on account of
the grammar induction, but that their choice of tok-
enizer, which was the WordPiece algorithm used to
create both subword and whole word tokens, may
have resulted in increased performance.

As mentioned above, the best submission to the
first BabyLM challenge – and one of the baselines
for this iteration – was the ELC-BERT (Georges
Gabriel Charpentier and Samuel, 2023), which did
not try to leverage syntactic structures but rather
built upon the LTG-BERT model (Samuel et al.,
2023) by introducing layer weighting.

3 Experimental Design

3.1 Model Architecture
Like the compound-PCFG system last year and the
ELC-BERT model, a custom subword tokenizer
was selected for the ELC-ParserBERT model, and
it was trained on the provided strict-small data
(Georges Gabriel Charpentier and Samuel, 2023;
Chen and Portelance, 2023).

The model architecture in this paper uses the
ELC-BERT architecture as its backbone (Georges
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Gabriel Charpentier and Samuel, 2023) combined
with StructFormer’s parser network proposed (Shen
et al., 2021) with the goal of increased performance
from including both the layer weighting and the in-
ductive bias from each, respectively. The architec-
ture, therefore, follows that of the StructFormer but
with weighted attention layers from ELC-BERT,
as can be seen in Figure 2, where the Parser Net-
work uses a combination of Convolutional layers,
Linear layers, and the hyperbolic tangent function
to produce the syntactic distances and heights that
are used to compute the directed adjacency matrix
with probabilities of a token depending on another.

3.2 Data

3.2.1 Training Data

The model uses the provided data from the orga-
nizers2 for the strict-small track, which consists
of the following: 8% from the dialogue portion
of the British National Corpus (BNC) (Consor-
tium, 2007); 29% from The CHILDES Project’s
database, a corpora of dialogue concerning child
language (MacWhinney, 2000); 26% selected from
the standardized Project Gutenberg, a corpus com-
posed of over 50,000 books (Gerlach and Font-
Clos, 2018); 20% from Open Subtitles, a corpus of
subtitles extracted from movies and television (Li-
son and Tiedemann, 2016); 15% from nonfiction
sections of Simple English Wikipedia3, an encyclo-
pedia written in plain English to be approachable
for English language learners; and 1% from Switch-
board, a corpus of dialogues made for dialogue act
modeling(Stolcke et al., 2000).

The organizers ran initial preprocessing of the
data to ensure that all the data was in plain text,
but otherwise left preprocessing open to the con-
testants. The preprocessing of the training data
for this model was largely inherited from the ELC-
BERT (Georges Gabriel Charpentier and Samuel,
2023), where standardization is applied to the texts,
the texts are compiled, split by line, and segmented
into sentences using the Natural Language Toolkit’s
sentence tokenizer (Bird et al., 2009). After seg-
mentation, the sentences are broken into sequence
lengths, encoded by the model’s subword tokenizer,
and sorted according to their Flesch Reading Ease
score (Kincaid et al., 1975) (to allow curriculum
learning based upon this metric, if desired).

2The training data in its totality with references is available
through OSF here: https://osf.io/ad7qg/

3https://dumps.wikimedia.org/simplewiki/

3.2.2 Evaluation Data

The model is evaluated on three evaluation bench-
marks: BLiMP (as well as BLiMP supplemental)
to evaluate the model’s knowledge of grammatical
phenomena (Warstadt et al., 2020); a selection of
tasks that require finetuning from the General Lan-
guage Understanding Evaluation (GLUE) and its
more difficult successor SuperGLUE (Wang et al.,
2020, 2018); and the Elements of World Knowl-
edge (EWoK) framework, a benchmark that tests a
model’s world knowledge by examining the likeli-
hood of context and target pairs across particular
domains (Ivanova et al., 2024).

3.3 Experiments

There were two trained models with separate exper-
imental purposes. The first trained model was the
ELC-ParserBERT, trained on shuffled data that had
a 15% probability of being masked, to be evaluated
against the two provided baseline models for the
strict-small track. The second model was the cur-
riculum learning ELC-ParserBERT model (referred
to hereafter as CL-ELC-ParserBERT), which also
had a 15% probability of being masked and was
presented in increasing Flesch Reading Ease (Kin-
caid et al., 1975), but it was compared against the
submitted ELC-ParserBERT model in the EWoK
evaluation framework. The hyperparameters for
both models can be found in Appendix A. The
scores were evaluated using the evaluation pipeline
provided by the organizers4.

When evaluating the LTG-BERT baseline
model5 locally, the scores achieved on the EWoK
set were found to be different than the scores pre-
sented by the organizers. Henceforth, LTG-BERT-
A refers to the scores presented by the organizers,
and LTG-BERT-B refers to the scores evaluated
locally.

Model BLiMP Suppl. EWoK GLUE Macroaverage
BabyLlama 69.8 59.5 50.7 63.3 60.8
LTG-BERT-A 60.6 60.8 48.9 60.3 57.7
LTG-BERT-B 60.6 60.8 63.05 60.3 61.2
ELC-ParserBERT 59.6 57.7 63.1 44.5 56.2

Table 1: Model accuracies across different tasks

4The pipeline can be found here: https://github.com/
babylm/evaluation-pipeline-2024/

5The model can be found here https://huggingface.
co/babylm/ltgbert-10m-2024
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Domains ELC-ParserBERT CL-ELC-ParserBERT ELC-BERT-B
ewok_agent-properties_filtered 0.7376 ± 0.0094 0.7620 ± 0.0091 0.7552 ± 0.0091
ewok_material-dynamics_filtered 0.8104 ± 0.0141 0.8273 ± 0.0136 0.8740 ± 0.0120
ewok_material-properties_filtered 0.6000 ± 0.0377 0.4176 ± 0.0379 0.4647 ± 0.0384
ewok_physical-dynamics_filtered 0.3833 ± 0.0446 0.5083 ± 0.0458 0.3667 ± 0.0442
ewok_physical-interactions_filtered 0.5989 ± 0.0208 0.6025 ± 0.0208 0.6061 ± 0.0207
ewok_physical-relations_filtered 0.8166 ± 0.0135 0.8325 ± 0.0131 0.8166 ± 0.0135
ewok_quantitative-properties_filtered 0.4268 ± 0.0280 0.4013 ± 0.0277 0.5478 ± 0.0281
ewok_social-interactions_filtered 0.5646 ± 0.0290 0.5340 ± 0.0291 0.5374 ± 0.0291
ewok_social-properties_filtered 0.5610 ± 0.0274 0.4573 ± 0.0275 0.4451 ± 0.0275
ewok_social-relations_filtered 0.8068 ± 0.0100 0.7991 ± 0.0102 0.8036 ± 0.0101
ewok_spatial-relations_filtered 0.6347 ± 0.0218 0.6082 ± 0.0221 0.7184 ± 0.0203
ewok total score 0.6310 ± 0.0050 0.6136 ± 0.0050 0.6305 ± 0.0049

Table 2: A breakdown of the accuracies for ELC-ParserBERT, the Learning Curriculum ELC-ParserBERT, and the
baseline ELC-BERT performs by each domain in the EWoK evaluation set.

4 Results

The results of the first experiment can be seen in
Table 1. Although it performed poorly compared to
the baselines in the (Super)GLUE evaluation and
had slightly worse BLiMP supplemental scores,
ELC-ParserBERT achieved comparable BLiMP
scores to the LTG-BERT baselines and had sig-
nificantly better scores on the EWoK evaluation
framework than all other baselines, barring LTG-
BERT-B.

Domain Name p-val Accuracy
ewok_material-properties_filtered_results 0.0170219 0.14
ewok_quantitative-properties_filtered_results 0.0017656 -0.12
ewok_social-properties_filtered_results 0.0017656 0.12
ewok_material-dynamics_filtered_results 5.97e-05 -0.06
ewok_spatial-relations_filtered_results 3.9e-06 -0.08

Table 3: EWoK domains where ELC-ParserBERT had
significant difference in prediction from the LTG-BERT
baseline, with the p-value and the change in accuracy
relative to ELC-ParserBERT shown.

4.1 EWoK ELC-ParserBERT compared to
LTG-BERT-B

ELC-ParserBERT’s comparatively strong EWoK
predictions prompted further analysis, namely,
whether, although LTG-BERT-B and ELC-
ParserBert had similar EWoK scores, there was any
area where they had statistically significant differ-
ent predictions. Upon preliminary inspection of the
models’ EWoK evaluation accuracies broken down
by domain, as seen in Table 2, one can already see
domains with disparate accuracies despite the close
average score. To confirm that these are significant
accuracy differences, however, a McNemar test can

be constructed for each domain to determine the
p-value for the difference in the models’ classifica-
tions. In Table 3, the domains of the predictions
that resulted in a p-value < .05 are listed.

These domains, however, can then be further
broken down to see which categories within the do-
mains had significant differences by running McNe-
mar tests on the predictions for each group within a
domain. In the "material properties" domain, ECL-
ParserBERT predicted significantly better for the
context type "direct" rather than "indirect," but it
cannot be said that this is directly due to the in-
clusion of the structural bias in the model. It is
more likely, however, that there are particular con-
cepts that ELC-ParserBERT understands better or
worse than LTG-BERT, although it may be possible
that this is indirectly caused by the inclusion of the
parser network in the model during pre-training.
For instance, ELC-ParserBERT gets all 20 of the
instances correct where the context is "cold" or
"warm," whereas LTG-BERT only gets 4 of them
right. The fourteen more that ELC-ParserBERT
predicted correctly all had a "direct" context type,
and there is a similar case for the "fragile" and
"sturdy" contexts. Moreover, in the "quantitative
properties" domain, ELC-ParserBERT actually per-
forms worse in the "direct" context type questions,
but this similarly follows from poor performance
in particular concepts such as "a lot of" versus "a
little."

The categories (concepts, context types, etc.)
with significant differences in prediction between
ELC-ParserBERT and LTG-BERT within the do-
mains found to have significant differences, as seen
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Figure 3: Given one of the contexts for EWoK, this figure shows an attention head of LTG-BERT on the left, the
induced tree by ELC-ParserBERT in the middle, and an attention head of ELC-ParserBERT.

Domain Name p-val Accuracy
ewok_physical-dynamics_filtered_results 0.028784 -0.12
ewok_social-properties_filtered_results 0.0049673 0.10
ewok_agent-properties_filtered_results 0.0044958 -0.02
ewok_material-properties_filtered_results 0.0011381 0.18

Table 4: EWoK domains where ELC-ParserBERT
had significant difference in prediction from CL-ELC-
ParserBERT, with the p-value and the change in accu-
racy relative to ELC-ParserBERT shown.

in Table 3, are enumerated in full in Table 6, located
in Appendix B.

4.2 Effectiveness of CL-ELC-ParserBERT
Similarly to LTG-BERT-B, CL-ELC-ParserBERT
achieves comparable EWoK scores as seen in Ta-
ble 2, and, when investigated further, there were
four domains with significant difference in pre-
diction between ELC-ParserBERT and CL-ELC-
ParserBERT, as can be seen in Table 4. The most
notable being the difference in the "material prop-
erties" domain, where CL-ELC-ParserBERT has
an accuracy 18% smaller than ELC-ParserBERT.
Interestingly, again, the concepts of "cold" and
"warm" proved difficult for CL-ELC-ParserBERT
in the same manner as it did for LTG-BERT-B. CL-
ELC-ParserBERT also struggled with the concepts
of "heavy" and "light," but it significantly outper-
formed ELC-ParserBERT when it came to concepts
of "sink" and "float," as well as "fall" and "rise."

Although the final scores were close, when
breaking down the scores into domains, it’s inter-
esting to see how the effects of curriculum learning
rather than shuffling, in the context of this training
data, result in significantly different predictions for
certain domains.

4.3 Attention Comparison
To further examine how the inclusion of the parser
network alters the model directly, one can see how
the attention differs for a given input, as in Figure

3, by using BertViz (Vig, 2019). The weight of
the lines connecting the tokens is based upon the
attention between the words. Hence, the damp-
ened weighting of the lines for ELC-ParserBERT
shows how the attention is being constrained by
the dependency relations produced by the parser
network.

5 Conclusions and Future Work

In the context of the BabyLM Challenge 2024,
this paper experimented with the ELC-ParserBERT
architecture, which is formed by adding the
parser network from the StructFormer (Shen et al.,
2021) to the ELC-BERT architecture (Georges
Gabriel Charpentier and Samuel, 2023). There was
no significant improvement found in the BLiMP,
BLiMP supplemental, and (Super)GLUE evalu-
ation tasks through the inclusion of the parser
network with the training as described. In the
EWoK evaluation framework, however, the ELC-
ParserBERT architecture showed comparable re-
sults to the LTG-BERT-B model and improvement
over the other baselines.

This paper also examined the effectiveness of us-
ing the Flesch Reading Ease (Kincaid et al., 1975)
metric to determine an ordering of the training
data for curriculum learning for training the ELC-
ParserBERT architecture. The use of this particu-
lar learning curriculum on this training data with
this architecture did not show any significant im-
provement generally, but the inclusion or exclusion
of this learning curriculum did significantly alter
the quality of predictions for certain concepts. In-
vestigating the cause of these particular concept
affinities might be the focus for future work.

Future work may also seek to improve upon
the ELC-ParserBERT model by ensuring sentences
are producing parse trees separately for each sen-
tence in a context window, as is done in GPST (Hu
et al., 2024a). Additionally, the ELC-ParserBERT’s
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largest shortcoming was in the (Super)GLUE eval-
uation tasks, which employed the default hyperpa-
rameters for finetuning set by the organizers, so
searching for more optimal hyperparameters may
yield overall model improvement.
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A Hyper Parameters

Hyperparameter Value
Initial learning rate 5e-3
Batch size 256
Steps 13495
Attention probs dropout prob 0.1
Classifier dropout 0.2
Hidden dropout prob 0.1
Hidden size 384
Intermediate size 1024
Layer norm eps 1e-07
Max position embeddings 512
Num attention heads 6
Num hidden layers 12
Vocab size 16384
N parser layers 4
Parser conv size 9

Table 5: Hyperparameters used in the submitted model.

B EWoK Domain and Category Analysis

Domain Name Category p-val Accuracy
material-dynamics context type - direct 0.01174 -5.8%
material-dynamics concept - wrinkle 0.00557 -11.7%
material-dynamics context type - indirect 0.00253 - 6.8%
material-dynamics concept - stir 0.00074 -8.0%
material-dynamics target diff - concept swap 5.97e-05 - 6.4%
material-properties concept - heavy/light 0.04123 37.5%
material-properties target diff - concept swap 0.01702 13.5%
material-properties context diff - antonym 0.01219 20.0%
material-properties concept - cold/warm 0.00051 70.0%
material-properties context type - direct 1.11e-05 38.5%
quantitative-properties context type - direct 0.04228 -9.5%
quantitative-properties concept - a lot of 0.02092 -26.0%
quantitative-properties context type - indirect 0.01469 -18.5%
quantitative-properties concept enough/not enough 0.00766 -25.0%
quantitative-properties target diff - concept swap 0.00177 -12.1%
quantitative-properties context diff - antonym 0.00103 -15.9%
social-properties concept - friendly/hostile 0.03888 22.5%
social-properties context type - indirect 0.01217 14.6%
social-properties concept - tolerant/bigoted 0.00461 36.0%
social-properties context diff - antonym 0.00369 12.6%
social-properties target diff - concept swap 0.00177 11.6%
spatial-relations context diff - antonym 0.01219 -5.3%
spatial-relations target diff - concept swap 0.00842 -5.7%
spatial-relations context diff - variable swap 4.40e-05 -16.4%
spatial-relations context type - indirect 3.10e-05 -8.5%
spatial-relations target diff - variable swap 3.04e-05 -15.0%
spatial-relations concept - above/below 1.19e-07 -14.3%

Table 6: EWoK domains and categories of significant
difference between ELC-ParserBERT and LTG-BERT
with change in accuracy relative to ELC-ParserBERT.
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Abstract
BABYLM initiative paves the way for a range
of experiments aimed at better understanding
language models (LMs) and the differences and
similarities between human and artificial lan-
guage learning. However, the current frame-
work is limited to the English language and a
range of evaluation metrics, focused on syn-
tax, semantics, and pragmatics. In this pa-
per, we propose some steps towards extend-
ing the framework to other languages, like
French, leveraging existing linguistic resources
for these languages. Additionally, we advo-
cate for greater exploration of genre variations
within subcorpora for training LMs, as well as
for the adoption of additional evaluation met-
rics with different underlying principles. Our
proposal consists of using high-quality sponta-
neous speech corpora as a source for extracting
production-related variables, which the models
are then fine-tuned to predict. We hypothe-
size that these production-related features offer
insights into the language processing mecha-
nisms underlying the data and that cognitively
sensitive models should outperform others in
predicting these features. Specifically, we pro-
pose focusing on the prediction of phenom-
ena such as speech reductions, prosodic promi-
nences, sequences co-occurring with listeners’
backchannels, and disfluencies. To illustrate
our approach, we present an example involv-
ing the prediction of speech reductions and
prosodic prominences in spontaneous speech in
two different languages (French and English),
using models trained on 10 million tokens from
different data source mixtures.

1 Introduction

The BABYLM initiative is built on three interre-
lated aspects: (i) data sets for training language

models, (ii) evaluation metrics designed to cap-
ture cognitive and linguistic skills and their de-
velopment, and (iii) models that are either more
cognitively plausible and/or capable of learning
efficiently from "small" datasets. This initiative
represents a strategic and timely effort to better
understand the differences between artificial and
human language learners.

While the 2023 edition focus was primarily on
models, the 2024 call expands the scope to include
investigations into both datasets and evaluation
metrics—a crucial step, as we will argue in this
position paper. Specifically, we propose concrete
directions for expanding language model training
datasets and exploring new evaluation metrics to
deepen the linguistic and cognitive relevance of the
BABYLM evaluation framework. Regarding eval-
uation metrics, we advocate for a novel approach
that leverages existing high-quality spontaneous
speech corpora.

One observation about the BABYLM initiative to
date is that the datasets used are in English. While
this is a natural starting point, it represents a sig-
nificant limitation. Expanding the scope to include
more languages is not only about better represent-
ing linguistic communities or potential model users.
Achieving comparable, contrastive results across
different languages within the BABYLM frame-
work could offer valuable insights into both the
learning models and the underlying learning pro-
cesses.

While the original BABYLM initiative argues
convincingly for a mix of data sources includ-
ing transcripts of child-caregiver conversations, ev-
eryday conversations, subtitles, and simple texts,
different mixtures can be explored. Due to data
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scarcity, it is still impossible to gather a 100M data
set based on real spoken conversational data but the
10M is accessible for a few languages like English,
French and Mandarin and a few others. Conver-
sational speech is the genre within which humans
acquire their basic language skills. It is a genre
quite distant from the usual written or web content
on which LMs are trained, increasing the risk of
biases for LMs produced. Moreover, it has been
argued that it is a genre of high relevance to lan-
guage emergence (Levinson, 2020; Christiansen
and Chater, 2022). How could a purely interac-
tional dataset, including both child-directed and
general conversation transcripts, be compared to
more balanced mixtures? This opens the door for
testing various hypotheses. For instance, does in-
cluding more encyclopedic knowledge help with
higher-level commonsense tasks, while a purely
conversational training set provides a model with
better communicative and conversational abilities?

In this context, current evaluation metrics,
while a good starting point, appear biased in
two ways: they tend to favor canonical written
forms and prioritize syntactic, semantic, and
commonsense pragmatics. However, language
and communicative competence include many
other dimensions. Although the initiative clearly
emphasizes the importance of using speech
transcripts, both child-directed and everyday
conversations, as training data, to our knowledge,
none of the evaluation metrics employed address
explicitly the specificities of spontaneous speech.

To summarize, we argue that, in line with the
directions proposed in this year’s new call, train-
ing datasets, and evaluation metrics are just as
crucial as models for understanding the compu-
tational learning of language structure. We propose
evaluation metrics based on spontaneous speech
data and demonstrate how we can build such met-
rics from different aspects of the speech signal and
transcripts obtained from high-quality spontaneous
speech corpora.

2 Related Work

Since the emergence of large language models,
there has been strong interest from the compu-
tational linguistics community in understanding
why they are so successful. Warstadt et al. (2020b)
explore the conditions (e.g., the amount of train-
ing data) under which ROBERTA develops and

leverages linguistic features, such as part of speech
(POS) and morphology, as opposed to relying on
simpler surface-level features like simple position-
based or length-based features. More recently, sev-
eral studies have probed LLMs to better charac-
terize their performance across various domains,
particularly with regard to their linguistic compe-
tence versus commonsense reasoning. These stud-
ies have also examined the relationship between
model performance and the amount of training data
required for different tasks. In particular, Zhang
et al. (2021) used training sets of varying sizes, 1M,
10M, 100M, and 1B tokens, to show that syntac-
tic and semantic competence becomes robust in
the 10M-100M range, whereas larger datasets are
needed to achieve strong results in pragmatic and
commonsense reasoning tasks.

More broadly, there have been proposals for eval-
uating the performance of LLMs on diverse lin-
guistic tasks. Warstadt et al. (2019b) leveraged
a substantial body of generative syntax-semantics
literature to develop benchmarks based on accept-
ability judgments, coming either the linguistic liter-
ature like the COLA benchmark further extended
by exploiting more sources and data augmenta-
tion methods in BLIMP (Warstadt et al., 2020a).
In addition to these binary decision tasks, Zhang
et al. (2021) combined three other types of eval-
uation metrics: classifier probing (following (Et-
tinger et al., 2016; Adi et al., 2017)), which in-
cludes tasks from POS tagging to coreference reso-
lution; information-theoretic probing based on the
minimum description length (MDL) principle; and
fine-tuning on higher-level tasks such as those in
the SUPERGLUE benchmark.

Most of the benchmarks have been proposed for
English. However, BLIMP Warstadt et al. (2019a)
has inspired a series of language-specific bench-
marks, such as CLIMP for Mandarin Chinese (Xi-
ang et al., 2021), as well as benchmarks for other
languages like Japanese (Someya and Oseki, 2023),
Dutch (Suijkerbuijk et al.), and Russian (Takta-
sheva et al., 2024). These are important additions to
the evaluation landscape. While these benchmarks
represent important extensions to the general evalu-
ation framework, they all rely on syntax-semantics
structures derived from introspection and textbook
data, as will be discussed in the next section. In par-
allel to these efforts, monolingual language models
have been developed using large amounts of data
(Chang et al., 2024), as well as experiments involv-
ing varied data quantities (Micheli et al., 2020).
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In another line of research, several studies have
tested the ability of large language models (LLMs)
to perform tasks inspired by cognitive science, par-
ticularly in the domains of semantics and pragmat-
ics (Ettinger, 2020; Binz and Schulz, 2023).

Our approach of using actual speech data to ex-
tract production-based metrics can be related to
studies that use behavioral or neurophysiological
data linked with linguistic datasets. Specifically,
there has been significant work focusing on tex-
tual datasets combined with eye-tracking (Hollen-
stein et al., 2021) or neurophysiological (Bingel
et al., 2016; Hollenstein et al., 2018) measures.
Additionally, datasets from passive listening tasks,
linked to fMRI, have been released for various lan-
guages (e.g., French, Mandarin, and English) (Li
et al., 2022). These datasets have been used, for
instance, to study the impact of training parameters
on a language model’s ability to predict neurophys-
iological data (Pasquiou et al., 2022). Focusing
on spontaneous speech, (Rauchbauer et al., 2019;
Hmamouche et al., 2024) examined the predictabil-
ity of fMRI-derived signals from conversational
variables, including lexical information.

In terms of specialized language models,
(Cabiddu et al., 2025) developed LMs based on
child-directed speech transcripts and evaluated
them on word-sense disambiguation tasks. They
concluded that word acquisition trajectories could
be better captured by multimodal models that in-
corporate acoustic features, among other aspects.
Regarding more specifically tokenizers, Beinborn
and Pinter (2023) proposed an evaluation paradigm
focusing on the cognitive plausibility of subword
tokenization. They compared BPE, WordPiece, and
UnigramLM and revealed a lower "cognitive corre-
lation" for the latter. Lastly, in the most recent
BabyLM edition, (Martinez et al., 2023) introduced
an interesting learning curriculum that constrained
vocabulary in the early stages to simulate more cog-
nitively plausible learning curves. Although this
approach did not yield consistent overall results,
marginal gains were observed in selected tasks.

3 A proposal for a new source of metrics

All initiatives mentioned are grounded in text-based
and/or handcrafted paradigms, potentially coupled
with behavioral and /or physiological lab mea-
sures. In contrast, we propose using actual sponta-
neous conversational transcripts to build comple-
mentary benchmarks that test not only the syntax-

semantics dimensions but also real-world language
use. These metrics will remain fundamentally
linguistic in nature rather than focusing on task-
specific or end-to-end evaluation.

Language is acquired, especially in its early
stages, within spontaneous, conversational environ-
ments. While conversational language shares gram-
matical structures with other genres, its unique
characteristics suggest that simply listing syntactic
"errors" or semantic incongruities does not fully
capture linguistic competence. Furthermore, in a
conversational context, what may be considered a
production error from a formal grammatical per-
spective is often perfectly acceptable and success-
fully achieves its communicative purpose. There-
fore, we aim to develop a complementary approach
that provides a broader set of metrics for evaluating
language models from both cognitive and commu-
nicative perspectives when combined with existing
benchmarks.

Specifically, we propose using spontaneous
speech corpora, as they offer insights into human
language processing through various observable
production phenomena. Our approach is a kind
of classifier probing (Ettinger et al., 2016; Adi
et al., 2017; Warstadt et al., 2019b), but rather
than focusing on meta-linguistic tasks (e.g.,
predicting syntactic categories), we aim to predict
phenomena that serve as partial indicators of
language processing. We propose a preliminary
set of potential metrics, which remains open
for further development. These metrics include
speech reductions, listener’s backchannel signals,
prosodic prominences, and disfluencies. The
common point among these metrics is that they are
all grounded in spontaneous speech production,
and each has been the subject of extensive research.

3.1 Speech reductions
Speech reductions have been studied across a range
of linguistic levels, from phonetics to semantics,
especially when considering the issue of signal in-
formation density. In spontaneous speech, some
chunks of speech are produced in a reduced man-
ner, both in terms of duration and articulatory am-
plitude. The location of these reductions is not
random. For example, studies have suggested that
speakers tend to smooth the information density
of their speech signal over time, with reductions
serving as a mechanism to achieve this smoothing
effect (Aylett and Turk, 2004).
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The relationship between information density
and speech reduction has led to research develop-
ments on this topic with various approaches. These
approaches may differ in the probabilistic mea-
sures used to predict reductions, such as lexical
frequency, contextual probability, and informativity
(Aylett and Turk, 2004; Gahl, 2008; Cohen Priva,
2012; Seyfarth, 2014). They also differ in terms
of the linguistic level at which reductions occur,
whether at the phoneme-, syllable-, word-level, or
in terms of overall speech rate. Many of these stud-
ies include and compare different types of proba-
bilistic measurements (e.g., lexical frequency and
contextual probability) within a single study (e.g.,
(Seyfarth, 2014; Cohen Priva and Jaeger, 2018))
and some of them also compare probabilistic mea-
surements calculated at different linguistic levels
(e.g., segment- and syllable-levels in Van Son et al.
(1999), segment- and word/-level measurements
in Van Son and Pols (2003), syllable- and word-
level measurements in Wang (2022)). Inclusion
and comparison of reductions or phonetic variabil-
ity across various linguistic levels in the same study
have also been done (e.g., individual segments and
prefixes as a whole in Pluymaekers et al. (2005);
morphemes and words in Tang and Bennett (2018)),
albeit less frequently.

These studies show that phonetic reduction can
be predicted to varying degrees on the basis of the
statistical distribution of linguistic units, and the
prediction has been repeatedly found with vary-
ing types of measurements at various levels of lin-
guistic units. This motivates the development of
a reduction-labeling task for evaluating language
models.

3.2 Prosodic Prominences
Prosodic prominence refers to the emphasis placed
on certain units, often demarcated at the level of
words or syllables, within a spoken utterance. This
emphasis can be measured through (and perceived
based on) acoustic cues such as movements in fun-
damental frequencies, duration, intensity, and seg-
mental properties such as the formant structure of
vowels. Recent work by Wolf et al. (2023) has
shown a significant degree of redundancy between
the representations encoded from tokens alone and
those derived from acoustic-prosodic information.
Acoustic-prosodic features such as word-level en-
ergy, fundamental frequency, duration, pause, and
composite measurements derived using a wavelet-
based algorithm (Suni et al., 2017) were used to

quantify this redundancy. Their findings suggest
that prosodic information can be predicted, to some
extent, from the word itself and its surrounding con-
text.

Furthermore, Kakouros and O’Mahony (2023)
suggests that language models (in their study,
BERT) use syntax-semantics layers to predict
prosodic aspects. While we do not argue that text
alone can fully predict prosodic prominence (as
also noted by Wolf et al. (2023)), we remark that
part of prosodic prominence can indeed be pre-
dicted by a language model. In the case of spon-
taneous speech, this prosodic information reflects
an additional layer of language processing. There-
fore, language models that better capture human
language processing should have an advantage over
models trained exclusively on raw written text, par-
ticularly concerning prosodic prediction.

3.3 Listeners’ Signals
Although not directly linked to the speaker’s
production, backchanneling (Yngve, 1970) of-
fers another perspective on language processing.
Backchannels do not occur randomly; they are fre-
quent in casual conversations and closely related
to turn-ending prediction (Skantze, 2021). There
has been an ongoing debate about whether predict-
ing the exact location of a turn-ending is a mat-
ter of lexical and syntactic completion prediction
(De Ruiter et al., 2006) or based on prosodic cues
from the main speaker (Bögels and Torreira, 2015).
Finer-grained experiments by Riest et al. (2015)
identified semantic completion as a crucial source
of information for predicting turn-endings.

Our position is that if a listener can anticipate
when it is appropriate to produce a backchannel,
and even if part of this decision is based on
prosodic cues from the main speaker, language
models should be capable of predicting these
moments to some extent.

3.4 Disfluencies
Directly predicting disfluencies (Shriberg, 1994),
as discussed earlier, is challenging because dis-
fluencies are explicit in the token stream. Re-
moving them and labeling sequences where they
originally appeared is cumbersome and potentially
problematic. A more effective approach might
be to adopt a well-established evaluation method:
comparing "acceptable" versus "unacceptable" se-
quences. While disfluencies exhibit various sub-
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tleties, most follow a few simple patterns. We could
compare actual utterances from high-quality lin-
guistic corpora that do include detailed disfluency
transcription with artificially generated utterances
where disfluent patterns have been injected, simi-
lar to the syntactic acceptability approach used in
Wagner et al. (2009) and Warstadt et al. (2019b).

4 Data

4.1 Pre-training data for creating LLMs

We have trained several language models. For the
French experiment, we trained one model on 10M
tokens from conversational datasets inspired by the
original BABYLM data mix (ORFEO1 (Benzitoun
et al., 2016) and CHILDES-FR2 (MacWhinney,
2014; Rose and MacWhinney, 2014)) and another
on 10M tokens from Wikipedia. The training pro-
cess used standard parameters (a BPE tokenizer
with a 10K vocabulary size3, a minimum token
frequency of 2, and training for 3 epochs), with im-
plementations from the HUGGINGFACE packages.

Similarly, three English models were trained
on three size-matched datasets containing 9M to-
kens from the following sources: a subset of the
BABYLM 10M training data, "spoken" data that
included BNC and Switchboard subsets from the
BABYLM 100M training data, and a subset of
Simple Wikipedia data from the BABYLM 100M
training data. Subsets of the corresponding valida-
tion data from BABYLM were also used to create
0.9M-word validation sets for early stopping in LM
training (maximum epochs = 100, early stopping
patience = 3).

We included ROBERTA models in the fine-
tuning experiments to serve as a topline for this
task. The purpose of using ROBERTA models,
which do not fit any of the BABYLM tracks, was
to better contextualize our proposed metrics as a
form of sanity check. The underlying idea is that
if full-fledged LMs like ROBERTA fail to perform
the task, it is likely that the task cannot be achieved
given the provided data.

4.2 Benchmarks

For these experiments, we used two sources to
build benchmarks: the Corpus of Interactional Data

1https://hdl.handle.net/11403/cefc-orfeo
2https://phon.talkbank.org/access/French/
3We tested vocabulary sizes of various sizes. Although the

scores varied, they did not affect the performance hierarchy
between the models.

(CID) for French4 (Blache et al., 2017) and the
Buckeye Corpus for English5 (Pitt et al., 2005).
CID is an 8-hour corpus of 1-hour conversations
between friends (16 speakers). It features fiercely
spontaneous conversational speech. Buckeye is a
corpus with 38.1 hours of spontaneous speech (40
speakers) recorded in an interview format.

The main reason for the choice of these corpora
is the high quality of their speech transcript align-
ment, down to the syllable or even the segment
level. These spontaneous datasets have also been
used in various phonetic studies (Raymond et al.,
2006; Meunier and Espesser, 2011).

5 Experiments

The experiments evaluated different pre-trained
models for our set of tasks.6 More precisely, we
fine-tuned the pretrained models separately on a to-
ken classification task to predict which tokens were
labeled (reduced / prominent / backchannelled) and
which were not. A simple cross-validation was
conducted across groups of speakers to maximize
diversity across the folds.

5.1 Speech Reduction

There are several methods to determine whether a
portion of speech is reduced. Following approaches
in the literature, we first derived ratios of every
word token’s actual duration and its expected du-
ration. For the French benchmark, we leveraged
annotations of syllable boundaries in the corpus
and developed a model that predicts syllable dura-
tion based on the segment it contains, similar to
Wang (2022). A model is trained on one-half of the
corpus and then applied to estimate the expected
token duration in the remaining half of the corpus.
For the English benchmark, we calculate words’ ex-
pected duration from their component phonemes’
mean duration in the corpus (Bell et al., 2009; Gahl
et al., 2012; Seyfarth, 2014).

In both cases, we then converted the ratios into
binary labels by applying a threshold of 0.7 (i.e., a
reduction of at least 30%). This threshold resulted
in labelling 33% of the tokens as reduced in the
French benchmark and about 35% of the tokens
in the English benchmark. These labels were then
encoded in a BIO format.

4https://hdl.handle.net/11403/sldr000720
5https://buckeyecorpus.osu.edu/
6Notebooks for pretraining LMs and performing the

experiment can be accessed at https://github.com/
prevotlaurent/babyLM_TW_FR.
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The main results for French and English are pre-
sented in Figures 1 and 2 respectively (see more de-
tailed results in appendix). The results confirm that
these models can predict speech reductions to some
extent in a spontaneous speech corpus. Then, the
"conversational" and "spoken" data models appear
to have some advantages over the Wikipedia-based
ones, even though the differences were not statisti-
cally significant.7 Finally, the topline performance
of ROBERTA is clear for the French results.

Figure 1: F-score comparing training data for predicting
Speech reduction on CID corpus (ROBERTA as a top
line). The significance between wiki and conv is not
tested to be significant.

Figure 2: F-score comparing training data for predicting
Speech reduction on the Buckeye corpus (ROBERTA
models as top lines). The differences between models
trained on 9M words were not significant.

5.2 Prosodic Prominences
To detect prosodically prominent tokens we used
Suni et al.’s (2017) method based on wavelet that

7All statistical significances have been tested through a
Mann-Whitney-Wilcoxon two-sided test.

combines various acoustic features for determining
prominence at the token level. One of the reasons
for this tool choice is that it had been used already
in the LMs literature (Wolf et al., 2023) to quan-
tify the amount of redundancy between textual and
prosodic levels. We used the default configuration
of this tool and used a threshold score of 1.25 (See
figure 9 in the appendix for details on the score val-
ues distribution). In the French data, this threshold
amounted to 13.8% of the tokens labeled as prosod-
ically prominent. In the English data, this threshold
amounted to 14.7% of prosodically prominent to-
kens.

In both French and English experiments, the
conversational and spoken models are sig-
nificantly better than the wiki counterparts.
ROBERTA models’ topline performance is also
clearer for both languages in this task.

Figure 3: F-score comparing training data for pre-
dicting prosodically prominent tokens on CID corpus
(ROBERTA as a sanity top line). **: p <= 0.01

Figure 4: F-score comparing training data for predicting
prosodically prominent tokens on the Buckeye corpus
(ROBERTA models as top lines). *: p <= 0.05
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5.3 Backchannels
We also designed, for the French benchmark
only,8 a task for predicting tokens around which
a backchannel had been produced by the listener.
To detect those, we used a simple list of tokens, eg.
for French (’mh’, ’ouais’, ’@’, ’ah’, ’oui’, ’bon’,

’voilà’, ’putain’, ’accord’, ’ben’, ’oh’, ’hum’, ’eh’,
’uh’, ’OK’). For each token of the target participant,
we checked whether the other participant had pro-
duced one of these backchannel tokens in a time
frame of 250ms before the beginning of the tar-
get token and 250ms after the end of the target
token. This resulted in labeling 7.73% of tokens
as being in the temporal vicinity of the listener’s
backchannels.

Figure 5: F-score comparing training data for predicting
tokens overlapping a listener’s backchannel in the CID
corpus. *: p <= 0.05

As seen in figure 5, LLMs do not manage to
solve this task with the data we gave them. While
there is a statistically significant benefit for conver-
sational pre-training (and in this case even over the
bigger ROBERTA) the overall score does not go over
5% of f-score suggesting that none of these LLMs
are getting close to modeling this phenomena. This
is likely due to the nature of backchannelling: The
literature points toward the contribution of lexico-
syntactic cues to predict the end of turns, but the
dominant cues remain prosodic ones, which these
LLMs had no direct access to in their training data.

5.4 Testing models on BabyLM’s zero-shot
tasks

To examine whether models trained on spoken data
can also be competitive in tasks that are not ap-

8This metric requires a truly conversational corpus with
both parties accurately transcribed which is not the case of the
English corpus used here.

parently tied to spoken language, we ran the En-
glish LMs9 on the zero-shot classification tasks in
BABYLM, i.e., BLIMP (Warstadt et al., 2020a)
and EWoK (Ivanova et al., 2024), shown in Table
1. While the model trained on spoken data loses its
advantage from our proposed reduction and promi-
nence classification task and ranks the worst in the
BLIMP supplement task, it is still competitive with
other small models in filtered BLIMP and EWOK.
Furthermore, the model trained on the BABYLM
data, with a mixture of spoken and written ma-
terials, has the trend of outperforming the model
trained on Simple Wikipedia both in our proposed
tasks but also in BLIMP.

BLIMP EWoK
supp. filtered filtered

ROBERTA-Large 71.9 73.9 65.5
ROBERTA-Base 70.3 74.3 62.9
BABYLM-9M 59.1 59.9 68.0
Wiki-9M 57.3 58.9 67.8
Spoken-9M 55.9 59.2 68.7

Table 1: English Models’ performances in BLIMP &
EWok

6 Potential shortcomings and Limitations

Information-centric nature. Our metrics are
related to information-theoretic notions such as
information density, entropy, and predictability.
There is a substantial body of literature that
demonstrates that these concepts can at least
partially explain the phenomena discussed in
the previous sections. This reminds us that
information-theoretic measures, such as perplexity
(a common LLM evaluation metric), are inherently
connected to the variables we aim to predict. One
potential limitation is that the models may only
capture the information-theoretic contribution to
our tasks. However, the prediction of these phe-
nomena cannot be reduced to information-theoretic
explanations alone. Each metric introduces its own
set of subtleties related to language processing,
and our goal is to evaluate LLMs in terms of their
ability to grasp these subtleties.

Text-only. The phenomena we propose
for probing the models are inherently related
to speech processing, which goes beyond what

9At the moment, we still lack similar benchmarks for
French to do the same with our French LMs.
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can be achieved with a text-only approach.
Beyond the acoustic modality, the visual channel
also plays a role, especially in contributing to
backchannels. However, it is possible to limit
multimodality to just text and speech by excluding
face-to-face corpora from the benchmark. Our
goal in proposing these metrics is not to achieve
state-of-the-art performance in predicting these
phenomena. Rather, we aim to treat them as
"traces" of human language processing visible
at the surface level, and to test which models are
better at predicting these traces from text-only
input.

Surface level shortcuts. A concern related
to the previous point is the risk that models rely
on surface-level elements as shortcuts to predict
the variables we are targeting. While we do
not have a definitive solution to this issue, since
the nature of our metrics involves performance
details observable in surface forms, we believe it
is still worth pursuing this line of investigation.
If the approach behaves consistently across our
range of proposed metrics and languages, it may
provide valuable information for language model
evaluation. The next step will be to build con-
trolled evaluation sets, similar to those developed
in McCoy et al. (2019), that allow the exclu-
sion of surface-level confounds in a principled way.

Triviality of the main result. From a machine-
learning perspective, it might be seen as a trivial
result that models trained on data similar to test
sets perform better than models trained on other
types of data. First of all, it is worth emphasiz-
ing that pretraining datasets and benchmarks in our
experiments are completely independent as they
do not come from the same raw corpora. Also,
the pretraining datasets and corpora for building
benchmarks have been curated by different teams
and transcribed with different conventions. Nev-
ertheless, we cannot deny that the conversational
datasets are by all aspects (sentence length distri-
bution, lexical frequencies, etc) more similar to
benchmarks than Wikipedia datasets are.

As trivial as it seems, it may be one of our main
points: to produce models more closely related to
human cognition, one should use data sets made of
spontaneous speech (and not generic textual / web
content). The fact that ROBERTA outperforms all
models does not change this fact since ROBERTA

is trained on a dataset several orders of magnitude

bigger.

7 Conclusion and Roadmap

In this position paper, we advocate for advancing
the BABYLM initiative in several key areas. First,
expanding beyond English is both necessary and
feasible, given the initiative’s design centered on
"small-scale" data sets. Here we used French as
an example, but we have also built the Mandarin
equivalent datasets10, emphasizing the importance
of multilingual perspectives. Our proposal focuses
on using training data composed entirely of sponta-
neous speech transcripts, which offers insights into
language learning processes. It will be crucial to ex-
plore more nuanced variations in training data, such
as balancing conversational speech, child-directed
speech, and simple texts. Equally important is
the development of complementary evaluation met-
rics. We propose using spontaneous speech data to
benchmark models and assess linguistic phenom-
ena, such as speech reductions, prosodic promi-
nences, and backchannel responses, as key indica-
tors of human language processing.

For the time being, we have English, Mandarin,
and French training datasets with different data
mixtures. The next steps involve systematizing
the pilot experiments on speech reductions con-
ducted here for the Mandarin dataset. Then, we
will extract all the other proposed metrics for the
benchmark datasets. Through this expanded set of
experiments, we aim to demonstrate the value of
the proposed approach and generalize it to other
linguistic phenomena. In a broader perspective,
we hope to show that benchmarks like BLIMP that
require a significant amount of expert and naive
human input to build, can be complemented with
benchmarks derived from the numerous existing
high-quality linguistic corpora, without additional
human efforts.
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Figure 6: Distribution reduction ratios as calculated in
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Language Task Model F1 Precision Recall
French reduction wiki-10M .298 (.030) .299 (.035) .298 (.029)

conv-10M .310 (.029) .300 (.033) .321 (.030)
XLM-Roberta-Base .352 (.023) .342 (.027) .363 (.020)

prominence wiki-10M .246 (.026) .282 (.028) .219 (.027)
conv-10M .311 (.033) .356 (.039) .277 (.033)
XLM-Roberta-Base .446 (.029 .503 (.040) .403 (.033)

backchannel wiki-10M .007 (.006) .004 (.004) .040 (.023)
conv-10M .020 (.016) .014 (.014) .057 (.025)
XLM-Roberta-Base .009 (.005) .006 (.004) .024 (.017)

English reduction Wiki-9M .327 (.013) .322 (.014) .334 (.022)
Spoken-9M .336 (.012) .333 (.011) .340 (.019)
BabyLM-9M .335 (.012) .331 (.013) .340 (.020)
Roberta-Base .345 (.010) .345 (.014) .345 (.016)
Roberta-Large .349 (.009) .343 (.011) .355 (.015)

prominence Wiki-9M .349 (.019) .405 (.041) .311 (.035)
Spoken-9M .382 (.020) .453 (.046) .333 (.028)
BabyLM-9M .366 (.018) .437 (.045) .318 (.029)
Roberta-Base .398 (.049) .499 (.044) .336 (.060)
Roberta-Large .431 (.030) .488 (.057) .392 (.046)

Table 2: Full results on the proposed speech-based benchmarks

Figure 8: Distribution of prominence score as calculated
in the French Dataset and the threshold selected.

Figure 9: Distribution of prominence score as calculated
in the English Dataset and the threshold selected.
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Abstract

In this paper, we investigate the integration
of latent conceptual knowledge into the pre-
training of masked language models. Our solu-
tion is based on the use of an auxiliary model,
from which we extract training signals for train-
ing a student model. We determine the training
signals from the hidden representations of the
student model in an unsupervised way, using
sparse coding. Models trained on latent con-
cepts alone have an improved fine-tunability
on downstream tasks, however, they perform
worse on traditional language modeling, i.e.,
when the goal is to output missing tokens as
opposed to latent semantic classes of words.
In order to preserve the improved fine-tuning
capability of the models, while making them
better at the task of language modeling, we
propose a final stage of pre-training, during
which we perform traditional masked language
modeling. The final stage of pre-training is
based on a model that has already been pre-
trained on the task of modeling latent semantic
properties, with the weights of the backbone
model being frozen. During the final training
phase, we only train a lightweight linear clas-
sifier layer on top of the logits that the model
determines for the latent semantic properties.
With this modification, we can obtain the ben-
efits of both the traditional training paradigms
and the one which is based on the use of la-
tent semantic properties. We release our source
code at github.com/SzegedAI/MLSM.

1 Introduction

Language acquisition involves forming a rich bat-
tery of concepts and the ability to use and manipu-
late those concepts. Even though human cognition
is rooted in concepts, this is not reflected in the
typical pre-training of neural language models. In
contrast, standard pre-training techniques ignore
the concept-oriented nature of language when they
expect a single ground truth token to be predicted
during pre-training time.

Shani et al. (2023) argues for the need of integrat-
ing conceptual information into language models,
while (Berend, 2023) recommended a knowledge
distillation approach for doing so. The Masked
Latent Semantic Modeling (MLSM) approach
(Berend, 2023) relies on an auxiliary teacher model
that steers the pre-training of the student model by
performing sparse coding on its hidden represen-
tation and requiring the student model to recover
those instead of the actual tokens. As the location
of the non-zero coefficients in the sparse contex-
tualized word representations obtained that way
can be viewed as quasi-symbolic latent semantic
concepts (Berend, 2020), the pre-training becomes
driven by concepts as opposed to tokens.

While the favorable properties of MLSM pre-
trained models have been demonstrated in obtain-
ing models with improved fine-tuning capabilities,
models pre-trained with it struggle on tasks that
require language modeling ability, i.e., predicting
actual token substitutes for missing/masked token
positions from an input sequence. This is a con-
sequence of the modeling in MLSM being shifted
from the actual tokens to the latent concepts deter-
mined in an unsupervised way.

In this work, we extend such a modification
to MLSM modeling, which ensures that the final
model does not only have improved fine-tuning ca-
pability, but it is also capable of performing regular
language modeling on the token level. We achieve
this goal by integrating a lightweight post pre-
training phase, during which we keep the weights
of the model determined via MLSM fixed, and add
a small a final linear module to the network (while
freezing the rest of it), such that the token pre-
dictions are made on the logits that the originally
pre-trained model would return towards the latent
concepts. This modification ensures that the pos-
itive properties of MLSM and traditional masked
language modeling (MLM) pre-training can be in-
tegrated into a single final model.
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2 Masked Latent Semantic Modeling

We first overview the MLSM pre-training tech-
nique, as it plays a central role in our modified
model architecture. The way MLSM works is that
it changes the domain of the output distribution of
the model from its vocabulary of subword units
(as in MLM) to the inventory of quasi-symbolic
latent semantic properties that we determine in an
unsupervised manner. In Figure 1, we provide a
visual comparison between the MLM and MLSM
pre-training techniques.

The way MLSM determines the latent semantic
properties of some token is by relying on an already
pre-trained auxiliary model T . In a preparatory
phase, a representative sample of hidden represen-
tations produced by T is collected from its layer l
as {h(l)

1 , . . . ,h
(l)
N }. A dictionary learning problem

(Mairal et al., 2009) is then solved of the form

argmin
D(l),αj∈Rk

≥0

N∑

j=1

1

2
∥h(l)

j −D(l)αj∥22 + λ∥αj∥1,

(1)
where D(l) ∈ Rd×k is a dictionary matrix, with
column vector norms bounded by 1, αj ∈ Rk con-
tains the sparse linear coefficients that indicate the
extent to which the vectors from D(l) are used in
reconstructing the d-dimensional hidden represen-
tation from the l-th layer of T , h(l)

j ∈ Rd. λ serves
as a regularization coefficient, controlling for the
level of sparsity in αj .

Solving (1) is performed in advance to the ac-
tual pre-training, with a negligible (≪ 1%) com-
putational overhead compared to the costs of pre-
training. Once the dictionary matrix D(l) is deter-
mined, it is used for determining the sparse contex-
tualized representation for any h

(l)
i , i.e., a hidden

state from layer l of T as

argmin
αi∈Rk

≥0

1

2
∥h(l)

i −D(l)αi∥22 + λ∥αi∥1. (2)

Objective (2) is computationally convenient, as
it does not require optimizing towards D(l). With
D(l) being fixed from (1), obtaining the sparse
linear coefficients of αi constitutes an efficiently
solvable LASSO optimization problem.

Due to the non-negativity constraint imposed to-
wards αi in (2), the ℓ1-normalized sparse linear co-
efficients can be conveniently treated as probability
distributions over the k latent semantic concepts.

Transformer encoder

Sarah ate a delicious [MASK]

E(Sarah) E(ate) E(a) E(delicious) E([MASK])

Input

Embeddings

Sarah ate a delicious cake

Output Probability
a                       0.0
⋮ ⋮
cake                1.0
⋮ 0.0
⋮ ⋮

zyzzyva           0.0

(a) Masked Language Modeling (MLM)

0.00
⋮

0.61
0.00
⋮

0.39
0.00

-1.21
⋮

0.51
⋮

0.08

h=
Solve argmin ||h – Dα||2 + λ ||α||1αα =

Transformer encoder

E(Sarah) E(ate) E(a) E(delicious) E([MASK])

Sarah ate a delicious [MASK]

Sarah ate a delicious cake

Auxiliary transformer 
encoder (frozen)

E(Sarah) E(ate) E(a) E(delicious) E([MASK])

(b) Masked Latent Semantic Modeling (MLSM)

Figure 1: Comparison of the MLM and MLSM pre-
training paradigms. The distributions in the green boxes
represent the expected output for the masked token.

MLSM pre-training then considers these sparse
normalized distributions of latent semantic con-
cepts of the masked tokens as the desired target
outputs and computes the Kullback–Leibler diver-
gence as the loss function.

3 Pre-training

Our proposed pre-training consists of three sequen-
tial steps. In the first step, we used classical masked
language modeling for pre-training. The mod-
els pre-trained at this stage serve as the auxiliary
teacher model for the subsequently trained model
(see Figure 1b). As MLSM does not output subto-
kens, it is expected to have limited capabilities in
performing tasks that require outputting distribu-
tions over the vocabulary of the model.

We trained a separate Unigram tokenizer for the
two corpora, with a 25,000 vocabulary size. During
all three stages of pre-training, we used the AdamW
optimizer with a peak learning rate of 0.0001 and
an effective batch size of 1024 (that resulted from
using gradient accumulation over 8 batches). When
masking is involved, we employ the typically cho-
sen 15% random masking rate selected dynamically
from the batches.
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3.1 Preliminary pre-training

The preliminary phase of pre-training was con-
ducted using vanilla masked language modeling
objective. At this stage, we trained a classical De-
BERTa (He et al., 2021) model of the base size (i.e.,
12 layers, 12 attention heads, 768 hidden dimen-
sions). This model has roughly 100 million non-
embedding parameters and approximately 20 mil-
lion embedding parameters.

When pre-training the auxiliary models, we con-
ducted 100,000 update steps, which roughly cor-
responds to 200 epochs on the 10 million token
dataset, and 20 epochs on the 100 million train-
ing corpus. As it was the number of update steps
that we kept constant, pre-training took roughly the
same time on both corpora, i.e., approximately 2
days on a single NVIDIA A6000 GPU.

3.2 Pre-training involving latent concepts

Once the auxiliary model was created, we deter-
mined the dictionary matrix according to Eq. (1).
We chose to extract k = 1500 quasi-symbolic
latent properties based on the hidden represen-
tations originating from the last layer of the net-
work (l = 12), using the regularization coefficient
λ = 0.05. We selected the hidden representations
from the auxiliary model for 1 million tokens from
the respective corpora for determining the dictio-
nary matrices.

The student models that we trained based on the
dictionary matrices created in a preparatory phase
were also DeBERTa base models. As the archi-
tecture of the student models are identical to the
auxiliary model, it was possible to initialize the
weights of the student models with those of the re-
spective auxiliary model. Unless stated otherwise,
we applied that kind of weight initialization of the
student models.

For this phase, we went for an additional 20
epochs of pre-training. This corresponds to approx-
imately 10,000 and 100,000 update steps for the
10 million and the 100 million pre-training corpora.
This resulted in approximately 5 and 50 hours of
additional GPU compute for the 10 million and the
100 million token corpora, respectively.

We also implemented such variants of MLSM
that perform concept-driven pre-training without
the need to employ special mask tokens. These
variants are based on the observation that the range
of input symbols in MLSM differs from that of
the expected output symbols, i.e., the model re-

ceives subtoken units and outputs a distribution
over k latent quasi-symbolic concepts, which ren-
ders masking during pre-training unnecessary.

The omission of masking has the benefit that we
do not have to restrict ourselves to learning from
only 15% of the input tokens (i.e., the ones that
are masked otherwise), and it also makes the dis-
tribution of the sequences seen during pre-training
more similar to the ones seen in either fine-tuning
or inference time (due to the lack of a special mask
token). Apart from not replacing 15% of the in-
put symbols to a special mask token, this kind
of pre-training is performed in the same way as
MLSM, and we refer to this variant as Latent Se-
mantic Modeling (LSM), reflecting the fact that
no artificial masking token is involved during the
pre-training.

We created two versions of LSM. One was such
that it derived pre-training loss from all the input
tokens, while the other version (the LSM15) is such
that it omits the masking token during pre-training,
but resembles typical pre-training which involves
masking in that only a randomly selected 15% of
the tokens is used for updating the model.

3.3 Language Modeling head training
The goal of this phase is to secure classical lan-
guage modeling capabilities of the models that we
pre-trained in the previous step using latent con-
cepts. To achieve this goal, we take the resulting
model from the second phase and add an extra lin-
ear module on top of it, the goal of which was to
perform token predictions based on the logits that
the model from the previous stage determined for
the distinct latent semantic categories.

As we wanted to preserve the concept forming
capabilities of the model and not alter its fine-
tuning abilities, we froze all the weights of the back-
bone model, the only weights that were learned at
this stage were the ones in the final, newly added
linear layer, which transformed the k latent con-
cepts to the vocabulary of the model. That is, we
introduced an additional 1500× 25000 parameters
in order to improve the language modeling capa-
bility of our models, resulting in a final model of
158 million parameters (out of which 20 million
were embedding parameters). As this phase of
training only involved the calibration of a single
linear layer, we opted for only 10 thousand update
steps (corresponding to roughly 20 and 2 epochs
on the 10M and the 100M token corpora, respec-
tively).
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corpus Phase 1 Phase 2 Phase 3

strict-small ≈ 50 h ≈ 5 h ≈ 2 h
strict ≈ 50 h ≈ 50 ≈ 2 h

(a) GPU hours (on an NVIDIA A6000)

corpus Phase 1 Phase 2 Phase 3

stict-small ≈ 200 ≈ 20 ≈20
strict ≈20 ≈ 20 ≈2

(b) Epochs performed

Table 1: The amount of compute broken down at the
individual phases.

This final phase took less than two hours of GPU
calculation. In Table 1, we summarize the amount
computation performed for arriving to a final model
both in terms of GPU hours (Table 1a) and the
number of epochs (Table 1b).

4 Experimental results

We evaluate our models using the official evalua-
tion framework of the shared task that was provided
by the organizers (Warstadt et al., 2023). The evalu-
ation involved model fine-tuning on various GLUE
tasks (Wang et al., 2019) as well as zero-shot eval-
uations towards the BLiMP (Warstadt et al., 2020)
and EWoK (Ivanova et al., 2024) benchmarks.

4.1 Fine-tuning experiments
We did not investigated in hyperparameter opti-
mization, simply adopted the default fine-tuning
hyperparameters recommended by the organizers.
The only hyperparameter we modified was the ran-
dom seed of the fine-tuning, and we only modified
it, so that we can report performances that are sta-
tistically more robust by averaging the fine-tuning
performances obtained on the different tasks.

We repeated fine-tuning on all dataset 5 times
(with random seeds ranging from 12 to 16) and
report the mean performance on each task. The
performance metrics we include are accuracy, ex-
cept for the CoLA, MRPC and QQP tasks, where
it is the Matthew Correlation Coefficient for the
former, and the F1 score for the latter two. The
averaged performance metrics are presented in Ta-
ble 2. Those models that were additionally pre-
trained with the objective of being able to predict
the latent semantic properties of the tokens show
better fine-tunability when trained on any of the
pre-training corpora.

MLM MLSM LSM15 LSM

BoolQ 0.665 0.669 0.668 0.673
CoLA 0.398 0.417 0.384 0.400
MNLI 0.757 0.761 0.758 0.760
MNLI-mm 0.764 0.769 0.768 0.765
MRPC 0.822 0.819 0.820 0.823
MultiRC 0.646 0.636 0.629 0.633
QNLI 0.828 0.831 0.833 0.836
QQP 0.861 0.862 0.864 0.863
RTE 0.535 0.545 0.566 0.564
SST2 0.893 0.900 0.896 0.892
WSC 0.415 0.485 0.462 0.392

Avg. 0.689 0.699 0.695 0.691

(a) models pre-trained on the 10M corpus

MLM MLSM LSM15 LSM

BoolQ 0.686 0.697 0.689 0.693
CoLA 0.509 0.484 0.511 0.541
MNLI 0.779 0.789 0.782 0.783
MNLI-mm 0.783 0.791 0.788 0.790
MRPC 0.906 0.905 0.913 0.919
MultiRC 0.629 0.643 0.639 0.635
QNLI 0.846 0.853 0.849 0.852
QQP 0.868 0.868 0.869 0.869
RTE 0.616 0.607 0.645 0.632
SST2 0.903 0.905 0.899 0.898
WSC 0.400 0.419 0.412 0.396

Avg. 0.720 0.724 0.727 0.728

(b) models pre-trained on the 100M corpus

Table 2: Fine-tuning results of models pre-trained with
different strategies. Results are the average of 5 indepen-
dent experiments using random seeds ranging between
12 and 16.

Based on the results in Table 2, there seems to
be little difference in the fine-tuning ability of the
models that integrate latent semantic information
during their pre-training (*LSM*), however, our
next experiment reveals the true strength of the
masking-free variants of MLSM. For this experi-
ment, we started the latent semantics-driven pre-
training of DeBERTa models with randomly ini-
tialized weights. In our previous experiments, the
reason for being able to warm start our student
model for the second phase of pre-training, i.e., to
initialize it with the weights of the auxiliary model,
was that the student and teacher models matched
in both their architecture and size.
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MLM MLSM LSM15 LSM

BoolQ 0.665 0.640 0.677 0.674
CoLA 0.398 0.000 0.176 0.291
MNLI 0.757 0.347 0.750 0.755
MNLI-mm 0.764 0.342 0.756 0.762
MRPC 0.822 0.811 0.822 0.826
MultiRC 0.646 0.576 0.625 0.613
QNLI 0.828 0.509 0.818 0.815
QQP 0.861 0.000 0.854 0.855
RTE 0.535 0.460 0.594 0.573
SST2 0.893 0.518 0.882 0.894
WSC 0.415 0.523 0.392 0.439

Avg. 0.689 0.430 0.668 0.681

Table 3: Fine-tuning results of models pre-trained on
the 10 million token corpus. Results are the average of
5 independent experiments using random seeds ranging
between 12 and 16. This time the weights of the student
models were randomly initialized and the pre-training
of the student models involved only 10 million updates,
while the auxiliary model was created in 100 million
update steps.

It can, however, often be the case that the student
model we train differs from the auxiliary in either
of its size or architecture. In such cases, simply
continuing the pre-training of the teacher model is
not directly applicable. To this end, we conducted
such experiments, where the student model – al-
beit remaining of the same size and architecture as
the auxiliary model – was initialized with random
weights, so that we can simulate a more general sit-
uation when continued pre-training is not an option
to go for.

The results of this setting, when pre-training was
conducted on the 10 million tokens strict-small
dataset, is included in Table 3. We can see that the
performance of MLSM degrades severely, whereas
its masking-free counterparts do not degrade as
much. In fact, the LSM pre-trained model man-
ages to reach the performance of its teacher from
a randomly initialized state in one tenth of the pre-
training, as the second phase pre-training lasted
only for 10 thousand update steps for the small-
strict corpus, whereas we conducted 100 thousand
training steps for obtaining the auxiliary model. We
omit the results for the 100 million token corpus
for brevity, but the general trends are the same in
that case as well.

It is only the CoLA task, where the LSM model
(initialized from scratch) lags behind the MLM pre-
trained auxiliary model. This is not that surprising

as the CoLA tasks is related to linguistic accept-
ability, for which task a model that was pre-trained
to predict the correct word forms can offer better
transfer compared to a model that was purely con-
structed to model latent semantic categories that
arguably play a less important role when deciding
linguistic acceptability.

4.2 Zero-shot experiments

We report next the results when evaluation is per-
formed on the language modeling capabilities of
the differently pre-trained models, i.e., the evalua-
tion metrics on the BLiMP datasets (Warstadt et al.,
2020) and the EWoK (Ivanova et al., 2024) bench-
mark. Table 4 contains the results of our auxiliary
model, as well as our models prior going through
the third phase of pre-training and after the final
lightweight pre-training phase being completed.

It is not surprising that the models that were pre-
trained with a focus on latent semantic categories
are not performing well in language modeling prior
to the final phase of pre-training. Table 4 reveals
that once the final pre-training phase – which only
involves training a single linear classification layer
and is only conducted for 10K update steps – is fin-
ished, the models that were previously pre-trained
with an emphasis on modeling latent semantic cat-
egories of tokens can perform just as well as the
auxiliary model, which had a sole focus on being
able to accurately predict masked word forms. As
the weights of our backbone model were frozen
during the last phase of pre-training, our models
also preserved their ability to predict latent seman-
tic categories to input tokens and the final token-
level predictions are precisely made based on those
categories determined by the models.

It is worth mentioning, that an alternative way
to achieve that the trained models have a com-
bined command of modeling latent semantic prop-
erties and concrete word forms would be the use
of a multi-task objective, in which the MLM and
MLSM objectives are combined together. Our pre-
liminary experiments showed, however, that mod-
els pre-trained that way do not have better perfor-
mance during fine-tuning. Moreover, this kind of
multitask training objective would be incompatible
with the masking-free variant of latent semantics
based pre-training, as LSM does not replace any of
the input tokens with a special mask token, some-
thing that is required by MLM pre-training.
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W/o third phase pre-training With third phase pre-training
MLM MLSM LSM15 LSM MLSM LSM15 LSM

BLiMP 0.653 0.521 0.528 0.528 0.654 0.642 0.641
BLiMP supplement 0.603 0.511 0.484 0.494 0.590 0.580 0.591
EWoK 0.647 0.680 0.682 0.689 0.652 0.667 0.666

Average 0.634 0.571 0.565 0.570 0.632 0.630 0.633

(a) models pre-trained on the 10M corpus

W/o third phase pre-training With third phase pre-training
MLM MLSM LSM15 LSM MLSM LSM15 LSM

BLiMP 0.702 0.446 0.465 0.471 0.696 0.687 0.684
BLiMP supplement 0.623 0.495 0.529 0.533 0.654 0.613 0.608
EWoK 0.657 0.681 0.654 0.659 0.656 0.667 0.669

Average 0.661 0.541 0.549 0.554 0.669 0.656 0.654

(b) models pre-trained on the 100M corpus

Table 4: Zero-shot results of models pre-trained with different strategies.

4.3 Submitted results

In Table 5, we summarize the results that our sub-
mitted models achieved, along with the baseline
scores provided by the shared task organizers, the
BabyLlama (Timiryasov and Tastet, 2023) and the
LTG-BERT (Samuel et al., 2023) models being the
best performing decoder and encoder-based sub-
missions in last years evaluation campaign.

GLUE BLiMP BLiMP suppl. EWoK

BabyLlama 0.633 0.698 0.595 0.507
LTG-BERT 0.603 0.606 0.608 0.489

MLSM 0.733 0.654 0.590 0.508
LSM15 0.721 0.642 0.580 0.508
LSM 0.708 0.641 0.591 0.507

(a) Using the 10M token strict-small pre-training corpus

GLUE BLiMP BLiMP suppl. EWoK

BabyLlama 0.690 0.731 0.606 0.521
LTG-BERT 0.684 0.692 0.665 0.519

MLSM 0.748 0.696 0.654 0.523
LSM15 0.747 0.687 0.613 0.527
LSM 0.741 0.684 0.608 0.522

(b) Using the 100M token strict pre-training corpus

Table 5: The baseline performances provided by the
organizers and our final submitted scores, the results
above the horizontal bars are the baselines provided by
the organizers.

We can see a drop in the EWoK performances
between Table 4 and Table 5. The reason behind

this is that in Table 4, we reported evaluation met-
rics that we obtained using the official evaluation
scripts during the development phase. The orga-
nizers, however, discovered that those scripts pro-
duced inflated scores on EWoK (which were caused
by the way the evaluation framework handled ties
in the probabilities produced by a model). The re-
sults in Table 5 are the ones that contain the EWoK
scores after this issue has been fixed.

5 Conclusions

In this paper, we investigated the integration of la-
tent concepts extracted from an auxiliary model
into the sample efficient pre-training of neural lan-
guage models. We gave multiple modifications
to existing approaches, including a masking-free
variant of the originally proposed approach and
the inclusion of a final, lightweight pre-training
phase into the pre-training procedure, which en-
sures that the final model is not only capable of
modeling semantic properties of tokens, but it
can also accurately predict the identity of masked
word form based on the latent semantic properties
that the backbone model determines. Finally, we
make the models that we pre-trained openly acces-
sible from https://huggingface.co/SzegedAI
(the models named with prefix babylm24).
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Abstract

This paper describes a linguistically-motivated
approach to the 2024 edition of the BabyLM
Challenge (Warstadt et al., 2023). Rather
than pursuing a first language learning (L1)
paradigm, we approach the challenge from
a second language (L2) learning perspective.
In L2 learning, there is a stronger focus on
learning explicit linguistic information, such as
grammatical notions, definitions of words or
different ways of expressing a meaning. This
makes L2 learning potentially more efficient
and concise. We approximate this using data
from Wiktionary, grammar examples either
generated by an LLM or sourced from grammar
books, and paraphrase data. We find that ex-
plicit information about word meaning (in our
case, Wiktionary) does not boost model perfor-
mance, while grammatical information can give
a small improvement. The most impactful data
ingredient is sentence paraphrases, with our
two best models being trained on 1) a mix of
paraphrase data and data from the BabyLM pre-
training dataset, and 2) exclusively paraphrase
data.

1 Introduction

Language models (LMs) need a lot of data in order
to learn to approximate human linguistic behaviour
(Warstadt and Bowman, 2022). The amounts of
linguistic data typically used for training recent
LMs is is significantly larger than what is available
for most of languages of the world, and also much
more than what children are typically exposed to
during their first language acquisition. A 13 year
old is typically exposed to less than 100 million
words of linguistic input, which is orders of magni-
tude less than the amount used in LM pretraining.
And still, LMs fail to be quite as good in language
as human learners. Can we teach our models to be
more data-efficient? If yes, how?

There are two potential strategies. One is to
study how children acquire language in a natural

setting, and use their acquisitional trajectories and
patterns as inspiration for LM training. This in-
tuition is one of the motivations for the BabyLM
Challenge (hence the name; other low-resource pre-
training contexts are, of course, also relevant): the
challenge encourages LM pretraining optimization
advancements inspired by human linguistic devel-
opment (Warstadt et al., 2023).

Another direction is to embrace the obvious dif-
ferences between LM pretraining and the ways hu-
man learners acquire their native language. The
architectures of current LMs are dramatically dif-
ferent from human brain anatomy, and training ob-
jectives and strategies have only limited psycholin-
guistic developmental parallels. Finally – and most
importantly for our contribution – input for first lan-
guage acquisition by human learners and for LM
pretraining is hardly comparable not only when it
comes to dataset size. While the amount of strictly
linguistic input that children get is small compared
to typical LM training data, children get this input
in communicative context that LMs lack at the pre-
training stage, and it is typically paired with cross-
modal data, which is not part of the strict-small
track we choose for the BabyLM Challenge.

At a very high level, taking this second direction
means that we look beyond human linguistic and
cognitive development for optimization strategies –
or at least, we do not need to expect that those will
be the ones that necessarily work best.

We sharpen this point and contrast language
learning in an acquisitionally realistic setting (first-
language, or L1, acquisition) – and language learn-
ing in a more artificial setting – learning a sec-
ond language, L2; a human activity that also leads
to (different levels of) linguistic proficiency but
contrasts dramatically with L1 acquisition by chil-
dren. Almost everything is different: the set-up,
the data, typical tasks the learner faces, and very
often modality and their combinations.

We choose this particular direction mainly be-
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cause in the current, second, edition, of the
BabyLM Challenge participants are allowed to con-
struct their own datasets within the track word bud-
get. A lot of submissions last year, including ours,
experimented with curriculum learning – different
ways to order the same data (see our submission
Edman and Bylinina (2023) as well as the BabyLM
2023 findings (Warstadt et al., 2023)). These at-
tempts gave only limited results.

This year we instead focus on the effect of choos-
ing different data on LM pretraining. In partic-
ular, roughly in line with how people learn for-
eign languages through explicit linguistic instruc-
tion, we divide training data into blocks roughly
corresponding to types of linguistic information
commonly found in English-as-a-foreign-language
courses. We participate in the strict-small track
allowing for only 10M words and experiment with
four different types of linguistic information:

• Lexical information (information about word
meaning and use), parallel to word learning in
L2 acquisition. We use Wiktionary data as a
source of this knowledge.

• Grammatical information, parallel to gram-
mar learning for L2. We try two ways of con-
structing grammar data: a set of sentences
marked with grammar phenomena, and texts
of grammar books for L2 English learners.

• Paraphrasing has perhaps fewer obvious par-
allels in L2 learning practice, but is related
to the explicit focus on sentential semantics
(‘different ways to say the same thing’) and
how different modifications in syntax and vo-
cabulary can preserve and alter the meaning
of a sentence, which is a common focus in L2
class discussions and exercises. For this data,
we use one of the two SynSCE corpora from
Zhang et al. (2021).

• A mix of unconstrained textual data that
corresponds to various input during language
acquisition of any kind, be it L1 or L2 acquisi-
tion. For this, we use portions of the BabyLM
data provided by the challenge organizers.

We find that data on paraphrasing brings in the
most significant improvements. Grammatical in-
formation is only marginally useful, even though
it does come with some improvement, depending
on the training set-up. Finally, lexical informa-
tion does not seem useful for LM pretraining. One

cannot be sure what to attribute these results to:
the usefulness or lack thereof of particular types
of data; the quality of the actual various datasets
that we use; or the properties of evaluation used
to judge whether a particular type of data is useful.
One way or another, our answer to the question of
whether BabyLMs are L2 learners is ‘only when it
comes to certain types of data’.

2 Data

2.1 BabyLM data

We make use of data provided by BabyLM organiz-
ers for our experiments. One of our two submitted
models (Contr.) doesn’t use BabyLM data at all,
while the other one (Half/Half) uses a subset of
BabyLM data. In the Half/Half model, we use the
following parts of the BabyLM dataset:

Dataset Words

Simple Wikipedia 145K
Gutenberg 254K
Switchboard 147K

Table 1: BabyLM data used for the Half/Half model.

We think BabyLM data roughly corresponds
to unconstrained linguistic input in a language
learner’s experience (reading materials and practice
conversations with language teachers and peers).

The rest of the data in the Half/Half model comes
from the dataset we discuss next.

2.2 Contrastive dataset

An important part of the language acquisition expe-
rience is finding out how changes in phrasing and
syntactic structure can alter or preserve meaning.
This is seen in typical L2 learning tasks such as
paraphrasing, which highlight the semantics of the
sentence and the ways syntactic manipulation can
affect its meaning.

As data approximating this type of information,
we use a dataset by Zhang et al. (2021). They re-
lease two datasets as part of SynCSE, a contrastive
learning framework for training sentence embed-
dings. The data in both datasets (SynCSE-partial
and SynCSE-scratch) is synthetic: synthesized by
LLMs. The two different datasets are results of
different prompting set-ups (for the dataset con-
struction and prompting details, we refer the reader
to the original paper). We use one of these two
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datasets, SynSCE-partial1.
The dataset is structured as follows: each data-

point comes as a triple consisting of 1) a sentence;
2) its paraphrase, and 3) a hard negative (a sentence
that is similar to the original one lexically and/or
structurally but has a different meaning). Here is
an example of a triplet from the dataset:

sent0: One of our number will carry
out your instructions minutely.

sent1: One person from our group
will execute your instructions
with great attention to detail.

hard_neg: Each member of our group
will carry out your instructions
differently.

We use all three elements of the triplet in our
experiments.

2.3 Grammar data
To mimic explicit grammar instruction in the typi-
cal L2 learning setting, we look for ways to expose
the model to targeted grammatical information. We
explore two strategies and corresponding datasets,
which we call Gram Gen and Gram Books.

For Gram Gen2, we first compile a list of gram-
matical notions that a sentence can contain. This
list is inspired by the typical structure of reference
and learners’ grammars and the topics covered by
those. We then pass these notions to GPT 4o-mini3

to generate examples, using the prompt in Figure
1. To ensure that we generate a diverse set of sen-
tences, we prompted the model to generate sen-
tences about specific topics.4

After this, we additionally tag each sentence with
the grammatical notions as a sentence can contain
more than one. This again is done with GPT 4o-
mini, using the prompt in Figure 2. Due to pricing
restrictions, we generate 500 sentences per notion,
and tag 100 of these sentences for 50 different no-
tions. We include an example of a sentence tagged,

1https://huggingface.co/datasets/hkust-nlp/SynCSE-
partial-NLI

2We release this dataset on HF: link placeholder.
3We changed from GPT 3.5 to 4o-mini due to pricing

changes.
4The possible topics are: accounting, anthropology, archae-

ology, architecture, art, artificial intelligence, astronomy, biol-
ogy, botany, business, chemistry, computer science, cosmol-
ogy, criminology, design, economics, education, environmen-
tal science, engineering, geography, geology, government, his-
tory, humanities, international relations, journalism, law, liter-
ature, linguistics, math, medicine, music, philosophy, physics,
poetry, politics, psychology, religion, sports, and theater.

where we verify the correctness of the given tags
in Table 2.

In the table we can see that GPT 4o-mini appears
only partially capable of recognizing grammatical
notions. For the simpler, very well-known notions
such as common nouns, verb person, tense, and
number, GPT performs well. For less commonly-
known phenomena, such as ellipsis, it seems to
have no understanding. For ellipsis specifically,
GPT often has false positives with sentences of this
2-clause structure, likely because that is a neces-
sary component for an ellipsis to occur, but not
what defines an ellipsis. GPT also appears to oc-
casionally hallucinate, with “it” not appearing in
the sentence despite it being tagged as an object
pronoun. Overall, given the accuracy of GPT in
tagging, it is not surprising that our model would
struggle to grasp grammatical notions.

“The engineers proposed a new design for the bridge, while the architects
focused on the aesthetic elements, emphasizing sustainability instead.”

Notion Tag Correct?

common noun engineers, design, bridge, archi-
tects, elements, sustainability

✓

collective noun engineers, architects ✓
singular noun design ✓
plural noun engineers, architects, elements ✓
nominative case The engineers ✓
simple past tense proposed, focused, emphasized ✓
third person engineers, architects ✓
plural verb proposed, focused, emphasizing ✓
indicative mood proposed, focused, emphasizing ✓
non-gradable adjective sustainable ✓
positive adjective sustainable ✗
aspectual adverb emphasizing ✗
comparative adverb instead ✗
object pronoun it ✗
case preposition for, on, instead ✓
coordinating while ✓
indefinite determiner a new design ✓
noun phrase The engineers, a new design, the

bridge, the architects, the aes-
thetic elements, sustainability

✓

adjectival modification aesthetic, sustainability ✓
verb phrase proposed, focused, emphasizing ✗
transitive verb phrase proposed a new design, focused

on the aesthetic elements, em-
phasizing sustainability

✓

direct object design, elements ✓
adjunct clause Yes ✓
ellipsis gapping Yes ✗
ellipsis pseudo-gapping Yes ✗

Table 2: Tags produced for the sentence above. Only
positive tags are shown for brevity. ✓ indicates the tag
is completely correct, ✓ partially correct, ✗ incorrect.

We construct the second grammar dataset, Gram
Books, as an alternative to grammatical instruc-
tion via examples. This dataset contains gram-
mar books that overtly discuss the rules of English
grammar and are intended mainly for second lan-
guage learners of English. Here is the full list
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You are an expert in grammar. Write 500
detailed sentences containing <notion> (as
opposed to <alternate notion>). Make sure
to write 500 detailed sentences that are all
different from each other. Try to make the
sentences sufficiently different, for example,
don’t start every sentence with “the”, make
both short and long sentences, and write
about the topic of <topic>. Don’t write any-
thing else.

Figure 1: The prompt used to generate example sen-
tences of a grammatical notion. The <alternate notion>
is not always used, but corresponds to notions with clear
alternatives, such as telic vs. atelic verbs.

Consider the sentence: <sentence> Does the
sentence contain the notion of <notion>? If
so, write which word or words correspond
to the notion. If not, write “N/A”. Only
write the word or words that correspond, or
N/A otherwise.

Figure 2: The prompt used to tag sentences with their
grammatical notion. The prompt for sentential notions
only contained the initial question, along with: “Answer
with yes or no. Only write ‘yes’ or ‘no’, nothing else.”

of the grammar books we used: Newson (2006);
Greenbaum and Nelson (2009); Roth and Aberson
(2010); Thomson and Martinet (2015); Brutjan and
Brutjan (2022); Wright (2024). We do not release
this dataset due to copyright constraints.

We use both grammar datasets for two types of
experiments: 1) regular MLM training (described
in Section 3.2); 2) more elaborate training schemes
involving a combination of an encoder and a de-
coder (discussed in Section 3.3).

2.4 Wiktionary

For lexical instruction, we make use of a segment of
data from Wiktionary5, the largest available collab-
orative source of lexical knowledge. We constrain
ourselves to the English segment of Wiktionary,
and extract the lemma together with parts of speech
and the definitions of each of its senses and exam-
ples that illustrate the senses.

We parse the Wiktionary data into CSV, where

5http://www.wiktionary.org/

Give 3 examples of the word <word> as a(n)
<part of speech>, where it means <defini-
tion>. List the 3 examples in a numbered
list, they should be full sentences. Don’t say
anything else. The format should look like:
1. Example 1
2. Example 2
3. Example 3

Figure 3: The prompt used to generate example sen-
tences of a word sense.

each row contains a word, part of speech, a defi-
nition, and up to 13 examples, though many con-
tained no examples.

For words without an example, we attempted
two things: we generated examples with GPT 3.5,
and we fed the word in as is. The examples gener-
ated were of notably high quality, with GPT even
able to generate sentences for rare word senses.
The prompt we used is shown in 3.

As with other types of linguistic knowledge, with
this data we are looking for a way to mimic typi-
cal L2 learning. Wiktionary comes pretty close to
word learning in this setting, as it contains explicit
information about different senses of the word, its
morphological and syntactic profile, defines its lex-
ical semantics and illustrates all of this information
with sentences where the word is used in its differ-
ent senses.

Again, as with grammar data, we use the re-
sulting Wiktionary dataset6 both in experiments
with simple MLM pretraining and in experiments
with more complicated training set-ups, which are
described in more detail in Sections 3.2 and 3.3,
respectively.

3 Method

3.1 Model Choice

We opted to use encoder-only models for our final
submission. This is based on our observation from
last year’s competition, where encoder-only models
generally outperformed decoder-only or encoder-
decoder models. We chose the DeBERTa-base (He
et al., 2021) architecture as it is considered state-
of-the-art for encoder-only models. Unlike in last
year’s competition where we saw improvements

6The dataset we construct is available on HF: link
placeholder.
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from using DeBERTa-large, we saw no improve-
ment this year in initial testing and thus only used
the base model size.

3.2 Training and Evaluation

Our pretraining uses the standard MLM scheme
(Liu et al., 2019), which we used last year to great
effect. Table 3 shows the hyperparameters we used
for our pretraining experiments. For fine-tuning,
we use the default hyperparameters provided by the
organizers.

Hyperparameter Value

Vocabulary size 40000
Context size 64
Learning rate 2e-4
Decay 0.01
Warmup steps 4000
Optimizer AdamW
Batch size 64, 256
Epochs 50

Table 3: Hyperparameters used.

The hyperparameters chosen are largely the
same as what we used in last year’s competition
(Edman and Bylinina, 2023), with some minor
changes to the learning rate (2e-4 vs. 1e-4) and
warmup steps (4000 vs. 10000), as well as using
both a batch size of 64 and 256. We found that, in
some circumstances, a batch size of 64 would result
in a more performant model, but this phenomenon
was inconsistent. As such, we report the best per-
forming batch size for each model. We note that
“context size” refers to the number of tokens in a
given example. This is constant, so each example
may contain multiple sentences or fragments.

We evaluate our models with the tasks included
in this year’s shared task: BLiMP (Warstadt et al.,
2020), BLiMP supplement, (Super-)GLUE (Wang
et al., 2018, 2019), and EWoK (Ivanova et al.,
2024).

3.3 Additional Training Schemes

In addition to using encoder-only MLM training,
we experimented with other objectives to train us-
ing our Wiktionary and grammar data, but ulti-
mately found no discernible difference in perfor-
mance. For these experiments, we use an encoder-
decoder model, where the decoder is later removed
after training. The encoder part is simultaneously

DecoderEncoder

Music makes me feel happy .

Music makes me feel happy.

<s> Having a feeling arising ...

Having a feeling arising from ...

Having a feeling arising from a consciousness of
well-being or of enjoyment; enjoying good of any
kind, such as comfort, peace, or tranquillity;
blissful, contented, joyous.

Figure 4: The model layout for training wiktionary.

DecoderEncoder

She walks her dog at .

She walks her dog at the park

<s> Common noun ? dog park

Common noun ? dog park </s>

the local park

Figure 5: The model layout for training with grammar
examples.

trained on MLM as well as the additional objec-
tives, which we now describe.

Wiktionary Training For each Wiktionary entry,
we feed the example as input to the encoder and
mark the specific token that corresponded to the
target word. For the marked position, we pass
this to a separate decoder, which is tasked with
generating the definition. This process can be seen
in Figure 4.

Grammar Training For the Gram Gen data, we
feed in a sentence to the encoder, passing its hid-
den states to the decoder, and prompt the model to
answer whether it contains a particular notion, and
if that notion corresponds to a particular word or
words, which word(s) does it correspond to. The
scheme for training is shown in Figure 5.
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4 Results

We first discuss the results of our experiments with
MLM-only models trained on grammar and lexical
data, then we move on to discuss the results of the
models with additional training schemes. Finally,
we cover the results of our best-performing models
that we submitted to the challenge.

4.1 Grammar Results

The results for our best models using grammar data
are shown in Table 4. As we can see, adding gram-
mar data appears to help with BLiMP to a limited
extent, but hurts performance on all other metrics.
The increase in BLiMP is expected, as the BLiMP
evaluation necessitates that grammatical sentences
are given a lower perplexity than ungrammatical
sentences. A lot of the sentences in BLiMP are
grammatical, but are very unnatural for a native
speaker to read. As such, an excellent source for
unnatural sounding yet grammatically correct sen-
tences is a grammar book. This is likely why we
see the most improvement from training on those.

The generated data, seeing as it is generated by
GPT 3.5, is likely going to reflect the data that GPT
itself was trained on. Although we do not know
specifically the data that GPT is trained on, it is
likely much more representative of “natural” data,
rather than these unnaturally constructed sentences
that are ubiquitous in BLiMP.

Half / Half + Gram Gen + Gram Books

BLiMP 74.2 74.7 75.4
Supplement 63.7 63.3 61.1
GLUE 77.1 75.9 74.7
EWoK 54.3 53.0 50.3

Average 67.3 66.7 65.4

Table 4: Results of our grammar-informed models.

To further improve BLiMP scores, we expect
that including more grammar books or perhaps
explicitly prompting an LLM to produce unnatural
sounding sentences may be the key. However, we
also expect that such data would have a negative
impact on GLUE and EWoK. This may simply be
an immutable trade-off for low-resource pretrained
models.

4.2 Wiktionary Results

We show the results of adding Wiktionary data in
Table 5. Unfortunately, adding Wiktionary defi-
nitions and examples appears to only hurt perfor-
mance. We speculate that it might have to do with

the structure of Wiktionary entries and how the
structure of lexical information is drastically dif-
ferent from other types of training and evaluation
data.

Half / Half + Wikt

BLiMP 74.2 72.9
Supplement 63.7 62.8
GLUE 77.1 75.7
EWoK 54.3 50.1

Average 67.3 65.4

Table 5: Results of adding Wiktionary data.

4.3 Additional Training Schemes Results

MLM MLM + Gram MLM + Wikt

BLiMP 74.2 71.5 75.7
Supplement 63.7 61.0 59.3
GLUE 77.1 75.9 73.4
EWoK 54.3 51.1 50.8

Average 67.3 64.9 64.8

Table 6: Our models with additional objectives, com-
pared to the MLM-only baseline (i.e. our half/half
model).

We show the results of our models with added
objectives for Wiktionary definition learning and
grammatical notion identification in Table 6. Con-
cerning the grammar objective, we see slightly
worse performance overall. Notably, despite
BLiMP being an evaluation aimed at gauging un-
derstanding of grammaticality, we still see a de-
crease in the performance.

Ironically, our Wiktionary-based objective in-
creases BLiMP scores. It is unclear why our
method for improving semantic understanding in-
creased performance on the grammar benchmark,
but there is of course information that can be ex-
tracted from word definitions that is useful for pars-
ing grammaticality, such as part of speech informa-
tion, and even quite literal information about the
usage of words (e.g. the definition of “the” starts
with “used before a noun phrase...").

Though it does not explain the improvement on
BLiMP from our model trained with the Wiktionary
objective, we believe that adding an additional ob-
jective is the main source of the loss in perfor-
mance for our additional models. BLiMP (as well
as EWoK) is designed such that a model’s zero-
shot default behavior is to provide a perplexity for
a sentence. This is achieved trivially with a model
trained on MLM or CLM, but adding another ob-
jective means that the hidden states are forced to
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BabyLlama LTG-BERT BabyLM Half / Half Contr.

10M 100M 10M 100M 10M 10M 10M

BLiMP 69.8 73.1 60.6 69.2 74.2 74.2 65.5
Supplement 59.5 60.6 60.8 66.5 66.2 63.7 60.3
GLUE 50.7 52.1 48.9 51.9 69.0 77.1 76.6
EWoK 50.7 52.1 47.4 51.9 51.8 54.3 51.6

Average 57.7 59.5 54.4 59.9 65.3 67.3 63.5

Table 7: Final results compared to the baselines.

learn a representation that balances approximating
the perplexity with optimizing for whatever the ex-
ternal objective requires. Thus, it is no surprise that
the scores for BLiMP and EWoK are lower. This
does not necessarily mean that this model is less
capable of understanding grammaticality, but this
could not be captured by BLiMP. We are not aware
of another benchmark that would resolve this issue.

4.4 Submission

In Table 7, we show the overall results for our
best models, compared to the baselines. The re-
sults from BabyLlama and LTG-BERT are taken
from the reported scores from the organizers. The
“BabyLM” model is our internal baseline, using the
same parameters and training as our other models,
but trained on the data provided by the organizers.
“Half / Half ” is a model trained on a mixture of the
provided data and contrastive data, and “Contr.” is
trained on exclusively contrastive data.

As we can see, our models outperform even the
provided models trained on 100M overall. We sus-
pect this is for the same reason as we found last year
in Edman and Bylinina (2023), where the models
trained on too large of a context size have trouble
converging. In terms of the data used, we see that
using the contrastive dataset hurts BLiMP perfor-
mance, but raises GLUE performance. Using a
mix is able to capture a best of both worlds, retain-
ing performance on BLiMP while even improving
performance on GLUE and EWoK.

5 Conclusion

In this year’s BabyLM Challenge, we attempted to
buck the trend of administering strategies based on
L1 acquisition, having seen little success from such
strategies in last year’s Challenge. Instead, we hy-
pothesized that L2 acquisition, with more explicit
information regarding semantics and syntax, might
be what a language model needs. To that end, we
also saw limited success. Our strategy of using
Wiktionary data did not show any indication of im-

proved output quality. Using grammar information
did have a small positive effect on BLiMP scores,
though it is unclear whether the grammar itself
helped or simply the more diverse data domain.

Nevertheless, our strategy of reducing context
size from the previous year was yet again success-
ful at outperforming the baselines, even those with
10×more data used in training. Additionally, using
data that includes paraphrases and contrastive pairs
helped improve the GLUE scores by a remarkable
8 points. This goes to show that the data chosen
for low-resource pretraining can have a profound
impact. The study of the exact structure of data that
LMs efficiently learn from is a productive future
direction, as tentatively shown by our results.

Acknowledgements

We thank BabyLM anonymous reviewers for useful
comments. We also thank Oleg Serikov for help-
ful informal discussions. The work was supported
by the European Research Council (ERC) under
the European Union’s Horizon Europe research
and innovation programme (grant agreement No.
101113091) and by the German Research Founda-
tion (DFG; grant FR 2829/7-1).

References
Asmik Brutjan and Karine Brutjan. 2022. Learn En-

glish with short stories. A Textbook with Grammar
References for Pre-intermediate and Intermediate
Learners. A. Brutjan.

Lukas Edman and Lisa Bylinina. 2023. Too much infor-
mation: Keeping training simple for BabyLMs. In
Proceedings of the BabyLM Challenge at the 27th
Conference on Computational Natural Language
Learning, pages 89–97, Singapore. Association for
Computational Linguistics.

Sidney Greenbaum and Gerald Nelson. 2009. An Intro-
duction to English Grammar. Pearson Education.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

172

https://doi.org/10.18653/v1/2023.conll-babylm.8
https://doi.org/10.18653/v1/2023.conll-babylm.8


Anna Ivanova, Aalok Sathe, Benjamin Lipkin, Unnathi
Kumar, Setayesh Radkani, Thomas H Clark, Carina
Kauf, Jennifer Hu, Pramod RT, Gabriel Grand, Vi-
vian Paulun, Maria Ryskina, Ekin Akyurek, Ethan
Wilcox, Nafisa Rashid, Leshem Choshen, Roger
Levy, Evelina Fedorenko, Josh Tenenbaum, and Ja-
cob Andreas. 2024. Elements of world knowledge
(ewok): A cognition-inspired framework for eval-
uating basic world knowledge in language models.
arXiv.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Mark Newson. 2006. Basic English Syntax with Exer-
cises. Bölcsész Konzorcium.

Eric H Roth and Toni Aberson. 2010. Compelling Con-
versations: Questions and Quotations on Timeless
Topics: An Engaging ESL Textbook for Advanced
Students. Chimayo Press.

Audrey Jean Thomson and Agnes V Martinet. 2015.
A Practical English Grammar. New York: Oxford
University Press.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Alex Warstadt and Samuel R. Bowman. 2022. What
artificial neural networks can tell us about human lan-
guage acquisition. In Algebraic Structures in Natural
Language, pages 17–60. CRC Press.

Alex Warstadt, Aaron Mueller, Leshem Choshen,
Ethan Gotlieb Wilcox, Chengxu Zhuang, Juan Ciro,
Rafael Mosquera, Adina Williams, Bhargavi Paran-
jabe, Tal Linzen, and Ryan Cotterell. 2023. Findings
of the 2023 BabyLM Challenge: Sample-efficient
pretraining on developmentally plausible corpora. In
Proceedings of the 2023 BabyLM Challenge. Associ-
ation for Computational Linguistics (ACL).

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R
Bowman. 2020. Blimp: The benchmark of linguistic
minimal pairs for english. Transactions of the Asso-
ciation for Computational Linguistics, 8:377–392.

Laura Wright. 2024. English Grammar for Literature
Students: How to Analyse Literary Texts. De Gruyter
Mouton.

Junlei Zhang, Zhenzhong Lan, and Junxian He. 2021.
Contrastive learning of sentence embeddings from
scratch. In The 2023 Conference on Empirical Meth-
ods in Natural Language Processing.

173



The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning, pages 174–188
November 15-16, 2024 ©2024 Association for Computational Linguistics

Less is More: Pre-Training Cross-Lingual Small-Scale Language Models
with Cognitively-Plausible Curriculum Learning Strategies

Suchir Salhan Richard Diehl Martinez Zébulon Goriely Paula Buttery
Department of Computer Science & Technology, University of Cambridge, U.K.

ALTA Institute, University of Cambridge, U.K.
{sas245,rd654,zg258,pjb48}@cam.ac.uk

Abstract

Curriculum Learning has been a popular strat-
egy to improve the cognitive plausibility of
Small-Scale Language Models (SSLMs) in
the BabyLM Challenge. However, it has not
led to considerable improvements over non-
curriculum models. We assess whether the-
oretical linguistic acquisition theories can be
used to specify more fine-grained curriculum
learning strategies, creating age-ordered cor-
pora of Child-Directed Speech for four typo-
logically distant language families to imple-
ment SSLMs and acquisition-inspired curric-
ula cross-lingually. Comparing the success
of three objective curricula (GROWING, IN-
WARDS and MMM) that precisely replicate the
predictions of acquisition theories on a stan-
dard SSLM architecture, we find fine-grained
acquisition-inspired curricula can outperform
non-curriculum baselines and performance ben-
efits of curricula strategies in SSLMs can be
derived by specifying fine-grained language-
specific curricula that precisely replicate lan-
guage acquisition theories.

https://github.com/suchirsalhan/
MAO-CLIMB (CC BY 4.0)

https://huggingface.co/climb-mao
(CC BY 4.0)

1 Introduction

Curriculum Learning (CL) has emerged as a
promising method to improve the cognitive plausi-
bility of Small-Scale Language Models (SSLMs)
in the first BabyLM Challenge (Warstadt et al.,
2023), as a way to gradually introduce more com-
plex linguistic phenomena into the model later in
training in a manner that is similar to human lan-
guage acquisition. Cognitively-inspired SSLMs are
models trained on corpora that approximate the vol-
ume and nature of input that a first-language learner
can expect to receive during language acquisition.
These have been found to perform competitively
against LLMs in English (Huebner et al., 2021). CL
strategies implemented in the BabyLM Challenge

either specified a static measure of linguistic com-
plexity, such as lexical frequency (Borazjanizadeh,
2023), sorted datasets according to difficulty (Op-
per et al., 2023), or gradually increased vocabulary
sizes (Edman and Bylinina, 2023). While the ma-
jority of these strategies did not yield consistent
improvements over non-curriculum learning base-
lines (Warstadt et al., 2023), linguistic theory sug-
gests that children naturally focus on input that is
neither too simple nor too difficult but at the right
level of challenge for learning (Biberauer, 2019;
Bosch, 2023). This is known as the “Goldilocks
Effect”, which is a form of self-selecting curricu-
lum learning that appears to naturally occur in first
language (L1) acquisition. This raises the question
of whether acquisition theories can provide insights
into more effective curriculum learning strategies
for SSLMs, and lead to more consistent benefits of
CL strategies.

Our work assesses whether language acquisi-
tion theories can provide us with better heuristics
for good curriculum learning strategies to train
SSLMs. We compare contrastive acquisition the-
ories for their success when informing objective
curriculum learning strategies on a standard archi-
tecture (Diehl Martinez et al., 2023). We train
SSLMs with three new objective curricula called
GROWING, INWARDS and MMM, each replicat-
ing the developmental sequences of contemporary
acquisition theories that first-language monolin-
gual learners are theorised to follow in the earliest
stages of acquisition cross-linguistically. In prac-
tice, these curricula modify the standard masked
language modelling objective in BabyBERTa-style
models by varying the order and the sequence of
masking using different tagsets to simulate differ-
ent language acquisition theories.

The acquisition models specify different cross-
lingual and language-specific developmental se-
quences that learners appear to follow in first lan-
guage acquisition, which has not been implemented
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or evaluated in the context of Deep Learning. The
multilingual focus of the acquisition models is a
goal strongly aligned with the spirit of the BabyLM
Shared Task. We train SSLMs with these objec-
tive curricula for four typologically distant lan-
guage families: Romance (French), Germanic (Ger-
man), Japonic (Japanese) and Sino-Tibetan (Chi-
nese). We introduce new age-ordered corpora of
Child-Directed Speech (CDS) for these languages
and select languages for pre-training based on the
quantity of CDS that can be used to train SSLMs
using similar volumes of data that learners can
utilise in first language acquisition. We evaluate
these SSLMs on syntactic minimal pair datasets.
We find benefits of the cognitively-inspired objec-
tive curricula cross-linguistically, however different
strategies lead to better performance for certain lan-
guages, particularly finer-grained language-specific
versions of the MMM objective. Acquisition-
inspired objective curricula can obtain comparable
performance on minimal pair evaluation datasets to
LLMs, despite requiring approximately 25X fewer
parameters and 6,000X fewer words.

2 Background

We survey Curriculum Learning (CL) strategies
used in the 1st BabyLM Challenge Section 2.1 and
contrastive models of syntactic acquisition that are
utilised to replicate cross-lingual developmental
sequences for implementing more cognitively plau-
sible pre-training in SSLMs in Section 2.2.

2.1 Curriculum Learning Strategies for
Pre-training on Developmentally Plausible
Corpora

While some SSLMs that utilised CL strategies out-
performed the official BabyLM baselines, no CL
strategies led to consistent or uniform improve-
ments compared to stronger non-curriculum mod-
els. Many submissions for the inaugural BabyLM
Challenge utilised Curriculum Learning on a small-
scale masked language model architecture trained
on a 5 million (5M) word corpus called BABY-
BERTA (Huebner et al., 2021), based on a Trans-
former Language Model ROBERTA (Liu et al.,
2019) with 15× fewer parameters, which displayed
comparable grammatical capabilities to ROBERTA.
In general, CL strategies, like using a pre-defined
static difficulty assessment based on linguistic
criteria like syntax dependency tree depth (Oba
et al., 2023) or ranking sentences according to sur-

prisal (Chobey et al., 2023) or length (DeBenedetto,
2023) or other measures of difficulty (Opper et al.,
2023), showed little improvement over non-CL
baselines. Diehl Martinez et al. (2023) introduce
Curriculum Learning for Infant-Inspired Model
Building (CLIMB), which incorporates three CL
strategies into BabyBERTa pre-training that each
dynamically increase the difficulty of the language
modelling task throughout training. CLIMB’s vo-
cabulary curriculum constrains the Transformer
vocabulary in the initial stages of training by dy-
namically mask out vocabulary units over train-
ing. CLIMB’s data curriculum varies the order
of training instances based on infant-inspired ex-
pectations and the learning behaviour of the model,
enabling dynamic sampling of training data accord-
ing to a difficulty function. CLIMB’s objective
curriculum combines the masked language mod-
elling task, used in RoBERTa (Liu et al., 2019) and
the BabyBERTa model (Huebner et al., 2021), with
coarse-grained word class prediction to reinforce
linguistic generalisation capabilities. This provides
functionality to change the objective function at
specified discrete training steps. The objective cur-
ricula modifies the Masked Language Modelling
(MLM) objective, which is the standard “denois-
ing” objective for Pre-trained Language Models,
like ROBERTA and BABYBERTA. Both models
use a random token masking strategy, applying a
fixed masking ratio α to mask different contexts
selected randomly with a probability Pi. Diehl Mar-
tinez et al. (2023) introduce two objective curricula
defined using ‘curriculum units’ of Universal Part
of Speech (UPOS) tags. The first objective clas-
sifies [MASK] to one of [VERB, NOUN, OTHER],
while the second objective classifies [MASK] to
one of the 10 UPOS tags. CLIMB’s objective cur-
ricula, following the submission guidelines of the
1st BabyLM Challenge, are performed using an
unsupervised part-of-speech (POS) tagger. They
additionally tuned the vocabulary and model size
of BabyBERTa, resulting in a model that outper-
formed the official baselines for the first BabyLM
Challenge. CLIMB’s curriculum learning strate-
gies outperformed the official baseline but the ac-
curacy of CL-strategies was comparable to the
stronger BabyBERTa-style baseline introduced by
the authors. We add new cognitively-plausible
objective curricula, as an extension to the orig-
inal CLIMB submission and CLIMB’s improved
BABYBERTA-style as baselines.
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2.2 Acquisition Models in Deep Learning:
Three Models

To assess whether using acquisition theories can
be used to formulate better-performing CL strate-
gies, we consider three recent language acquisi-
tion models that are amenable to Deep Learning
implementation, as they specify developmental se-
quences that can be replicated as CL strategies in
SSLMs. Based on careful linguistic analysis of
universal and language-specific patterns in the ut-
terances produced by learners cross-linguistically
at different stages of acquisition, linguists have for-
malised strict (universal or non-language-specific)
or weak (language-specific) orders of syntactic cat-
egories that are sequentially acquired. Since these
acquisition models have been formulated based
on linguistic analysis of multilingual acquisition
data, we consider whether the CL strategies that
precisely replicate these models can inform better-
performing curriculum learning strategies cross-
lingually. This leads us to train SSLMs with these
objective curricula beyond English. As schema-
tised in Figure 1, we can precisely replicate these
developmental sequences as stages of SSLM pre-
training, defined as proportions of training steps.

We implement three contemporary cross-lingual
models of syntactic acquisition:

1. GROWING: Bottom-up maturational ap-
proaches to language acquisition (Rizzi, 1993;
Radford, 1990), including the “Growing Trees
Hypothesis”(Friedmann et al., 2021), predicts
that first language learners begin acquiring
verbs and nouns (unit NV in Table 1). Learn-
ers subsequently progress to acquiring pred-
icate information to form simple sentences;
and finally, acquire discourse and complemen-
tiser information, allowing them to formulate
complex sentences (e.g., with relative clauses).
We can assume a tripartite model of bottom-up
maturational development for implementation,
with units Growing 1 and Growing 2 in Table
1.1

2. INWARDS: Bosch (2023) introduces the pre-
dictions of a generalised inward-growing

1There are differences in the number of stages predicted in
bottom-up maturational approaches. Bottom-up approaches
(Rizzi, 1993; Radford, 1990) predict tripartite developmental
sequence (a Verb Phrase, Tense Phrase and Complementiser
Phrase), but Growing Trees involves bipartite stages (TP and
VP is Stage 1, and Stage 2 involves acquiring the CP until QP
to predict early acquisition of WH-questions).

Figure 1: Acquisition-inspired Objective Curricula:
We specify Objective Curricula GROWING, INWARDS,
MMM (UPOS), MMM (SEMANTIC) for three theo-
ries of acquisition (Section 2.2). The Progression of
Curriculum Units replicate the predicted developmental
sequences by specifying curriculum units (defined in
Table 1) defined over different pre-training stages, ex-
pressed as a percentage of training steps.

maturational proposal (INWARDS), build-
ing on evidence from Heim and Wiltschko
(2021) of early acquisition of “discourse”-
material and interactional language (e.g. tags-
questions). This predicts exactly the op-
posite order of acquisition of GROWING.
The stages of development begin with the
early acquisition of complementisers used
for illocutionary/discourse-related purposes
(INTJ and INWARDS- CP in Table 1); fol-
lowed by the acquisition of tense/event-related
information (INWARDS-TP); and finally, the-
matic information.

3. NEO-EMERGENT (MMM): Neo-
Emergentism predicts developmental
stages in language acquisition that show
increasing categorial granularity, taking
a language-specific, or non-maturational,
approach towards syntactic acquisition
(Biberauer and Roberts, 2015). The general
universal prediction of one neo-emergent
model called Maximise Minimal Means
(MMM) is that all learners, irrespective of
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the language being acquired, follow the
same “coarse” stages in the acquisition of
syntactic categories. They first learn to
distinguish nouns and verbs (Unit NV), and
then an “intermediate” set of categories
(complementisers and event-related words),2

before finally learning tense/aspectual
categories (units MMM 1 and MMM 2 in
Table 1). We implement this as a universal
“coarse” default curriculum strategy that
we implement as a default curriculum strategy
(MMM (UPOS) in Figure 1). However,
MMM also incorporates language-specific
differences in “finer-grained” curricula
where learners can acquire language-specific
categories, leading to typological variation
in the order of acquisition (Biberauer, 2019;
Bosch, 2023, 2024), which we try to model in
a CL strategy by specifying language-specific
tagsets in SEM 1, SEM 2 in Table 1.

Unit POS Tags
NV [NOUN, VERB]
Growing 1 NV+ [DET, ADJ, PRON,

PROPN, NUM, PRT]
Growing 2 growing1 + [AUX, PART,

ADP, ADV]
INTJ [X, INTJ, SYM]
INWARDS CP INTJ+ [PROPN,

CCONJ, SCONJ, SYM]
INWARDS TP CP+ [NUM, PRT, AUX

PART, ADP, ADV]
MMM 1 NV+ [DET, CONJ, INTJ]
MMM 2 MMM 1 + [ADJ, ADV, PRON,

PROPN, NUM, PRT]
SEM 1 UPOS +tsem ∈ [EVE,

TNS, ACT, ANA]
SEM 2 SEM1 + +tSEM ∈[ LOG,

COM, DEM, DIS, MOD,
ENT, NAM, TIM]

Table 1: Summary of Curriculum Units comprise Uni-
versal Part-of-Speech Tags and the Semantic Tags intro-
duced by Bjerva et al. (2016) used to define GROWING,
INWARDS & MMM objective curricula. The order-
ing of units for each acquisition-inspired curriculum is
shown in Figure 1.

Each stage of the GROWING, INWARDS and
MMM models can be defined as a ‘curriculum
unit’ composed of POS tag sequences listed in Ta-
ble 1.3 To precisely replicate the developmental

2In Chomskyan terminology, a vP-shell and a Complemen-
tiser Phrase (CP).

3The Chomskyan acquisition models used in this paper
technically refer to syntactic projections, rather than part-of-
speech tags.

sequences of each acquisition model computation-
ally, we will need to use a supervised tagger to
specify curricula using strictly ordered sequences
of POS tags. This is a cognitively motivated diver-
gence from Diehl Martinez et al. (2023), who use
an unsupervised tagger to define curricula. Using
a supervised tagger is argued by Buttery (2006)
to enable computational modelling of a more cog-
nitively plausible starting point for first language
(L1) learners – based on a view of acquisition that
is not fully emergent, nor completely nativist.4 For
our purposes, it allows us to precisely replicate de-
velopmental sequences in SSLMs using curriculum
learning.

3 Dataset

3.1 Training Corpora: MAO-CHILDES

We collect a training corpus of Age-ordered
Child-Directed Speech (CDS) for four languages
(French, German, Japanese and Chinese), in addi-
tion to the English Age-Ordered-CHILDES (AO-
CHILDES) corpus (Huebner and Willits, 2021)
used in the BabyLM Challenge, to assess the bene-
fits of the acquisition-inspired curricula beyond En-
glish compared to non-curriculum SSLMs. MAO-
CHILDES is developed from the Child Language
Data Exchange System (CHILDES) (MacWhin-
ney, 2000), which consists of in-home recordings
of casual speech from caregivers to children and in-
lab activities such as play, conversation and book
reading directed towards first language learners for
several languages.5 We make our training corpus
available on HuggingFace.6 The distribution of
CHILDES data beyond English is a practical chal-
lenge for extending the BabyLM Challenge beyond
English. Table 6 shows the imbalance in quantities
of CDS extracted from CHILDES, which is an arte-
fact of a Western, Educated, Industrialised, Rich,
and Democratic (WEIRD) bias in language acqui-
sition research (Henrich et al., 2010). A sample of
CDS in the age-ordered corpora is shown in Figure
2, from different stages of language acquisition.
Following Huebner and Willits (2021), utterances

4Note that Buttery (2006) uses a model within a Combi-
natorial Categorial Grammar (CCG)-based formalism, which
is also a “middle ground” between fully emergent acquisi-
tion models and a traditional biologically hardwired Universal
Grammar assumed in traditional Chomskyan models like Prin-
ciples and Parameters.

5Original data can be accessed here: https://childes.
talkbank.org/

6https://huggingface.co/climb-mao
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from children and child-directed speech (CDS) pro-
duced by caregivers, and other interlocuters, to
children over the age of 6;0 are disregarded, leav-
ing CDS produced by caregivers to children less
than 6;0 which is sorted using the meta-data of the
age of the learner in the CHILDES database.7

Figure 2: A sample of Child-Directed Speech (CDS)
from French MAO-CHILDES that learners receive
from caregivers at different stages of acquisition. Stages
of acquisition are standardly defined in terms of mean
lengths of utterances produced by learners.

3.2 Evaluation Datasets

To assess the success of three objective curricula
(GROWING, INWARDS and MMM) that precisely
replicate the predictions of the acquisition theories
in Section 2.2 on a standard SSLM architecture
in a multilingual setting, we extend the evalua-
tion pipeline of the BabyLM Challenge. This con-
sists of syntactic evaluation datasets like BLiMP
(Warstadt et al., 2020) composed of minimal pairs
of grammatical and ungrammatical sentences for
language-specific syntactic phenomena. We use
the following minimal pairs datasets to evaluate
the objective curricula for the four languages in
MAO-CHILDES:

1. CLAMS (French and German): The Cross-
Lingual Syntactic Evaluation of Word Predic-
tion Models (CLAMS) (Mueller et al., 2020)
generates minimal pair datasets which we
use for French and German using Attribute-
Varying Grammars. The dataset assesses
grammaticality in Simple Agreement, VP co-
ordination, and across “interveners” in S-V

7The Script for Generating AO-CHILDES can be found
here:https://github.com/UIUCLearningLanguageLab/
AOCHILDES

agreement (subject/object relative clause or
across a Prepositional Phrase).

2. JBLIMP (Japanese): JBLIMP (Someya and
Oseki, 2023) is a minimal pairs dataset for
targeted syntactic evaluation of Japanese. It
consists of 331 minimal pairs of syntactic ac-
ceptability judgements curated from Japanese
syntax articles in the Journal of East Asian
Linguistics.8

3. SLING (Chinese): SLING (Song et al.,
2022) is a 38K minimal sentence pair dataset
derived by applying syntactic and lexical
transformations to Chinese Treebank 9.0,9

aiming to improve on the limitations of an ear-
lier dataset called CLiMP (Xiang et al., 2021),
which had a lack of diversity in the vocabulary
to generate minimal pair templates.

Due to the small size of the JBLIMP mini-
mal pairs dataset, we follow Someya and Oseki
(2023)’s recommendation to compute accuracy us-
ing a SLOR score to mitigate the confounding ef-
fects of lexical frequencies and sentence lengths,
which is defined as follows:

SLOR(X) =
logpm(X)− logpu(X)

|X|

where pm(X) is the probability of a sentence
for a Language Model and is the unigram proba-
bility of the sentence, estimated for each subword
in the training corpus. Accuracy calculations for
other languages follows dataset guidance to use
unnormalised log-probabilities.

3.3 Universal POS Tagging
To define fine-grained objective curricula that per-
form masked language modelling with different
subsets of syntactic and semantic tags for a speci-
fied proportion of training steps, we have to anno-
tate child-directed speech corpora with Universal
POS tags using an off-the-shelf SpaCy multilin-
gual POS tagger. The distribution of POS tags in
MAO-CHILDES (Figure 4) contains a high pro-
portion of Nouns, whereas Verbs contribute a rela-
tively low count. There are orthographic issues in
the CHILDES dataset for East Asian Languages,

8The JBLiMP Minimal Pair dataset can be found here:
https://github.com/osekilab/JBLiMP/tree/main

9The SLING Dataset can be found here: https://
huggingface.co/datasets/suchirsalhan/SLING
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which are transcribed using Romanised characters
(romaji) and a large proportion of English loan
words in the Japanese portion of MAO-CHILDES,
used in certain lexical domains, are incorrectly
tagged automatically. These pre-processing incon-
sistencies were manually corrected. We also train
a semantic tagger to specify language-specific cur-
riculum strategies (see Appendix A for more detail).

4 Methodology

4.1 Model Architecture

Following Diehl Martinez et al. (2023), we develop
non-curriculum learning models. These models are
scaled-down language models based on RoBERTa
(Liu et al., 2019), with 8M parameters and trained
on no more than 30M words (Huebner et al., 2021).
We use 8192 vocabulary items, which Diehl Mar-
tinez et al. (2023) find yields better overall perfor-
mance compared to a larger vocabulary. Token un-
masking is also removed, like BabyBERTa. We use
a small model architecture composed of eight lay-
ers. This follows Diehl Martinez et al. (2023), who
compare the role of model size (8, 10, 12 Trans-
former layers) and vocabulary size (comparing
|V | ∈ {8192, 16384}). An AdamW optimiser with
linear scheduling is used (Loshchilov et al., 2017).
Each model is trained for 400,000 steps with 4
A100 GPUs. The hyperparameters used for the
“vanilla” SSLMs are shown in Table 4. The models
concatenate input sequences to capitalise on the
available input length.

4.2 Baselines: LLMs and SSLM (WIKI)

We use two families of models as baselines.
First, we compare the performance of monolingual
SSLMs to monolingual Large Language Models to
assess the benefits of the BabyLM paradigm. For
French, German and Chinese, we use RoBERTa-
style monolingual LLMs.10 The Chinese RoBERTa
model is trained on around 30B words (Cui et al.,
2020), which more than 104 times the training data
we use to train our SSLMs in the Chinese portion of
MAO-CHILDES.11 We include GPT-2 Baselines
for Japanese, which are reported by Someya and
Oseki (2023). This is because Japanese RoBERTa

10The French RoBERTa model is available here: https:
//huggingface.co/abhilash1910/french-roberta. The
German RoBERTa model is available here: https://
huggingface.co/uklfr/gottbert-base

11The Chinese RoBERTa model is avail-
able here: https://huggingface.co/hfl/
chinese-roberta-wwm-ext-large.

monolingual language models12 are not trained on
data using Romaji orthography, which is used in
the Japanese portion of MAO-CHILDES (Section
3). Secondly, to assess the benefits of pre-training
SSLMs on Child-Directed Speech, we train SSLMs
using Wikipedia text (SSLM WIKI), which is ex-
tracted to match the quantity of training data in
MAO-CHILDES for each language. We keep the
original hyperparameter settings used by Huebner
et al. (2021).

4.3 “Vanilla” SSLMs: MAO-BabyBERTa

We train a family of SSLMs, called Monolingual
Age-Ordered BabyBERTa (MAO-BABYBERTA),
on language-specific training data from MAO-
CHILDES using the model architecture described
in Section 4.1 without any curriculum learning
strategies. Hyperparameters are tuned for English,
and we use the same settings in MAO-BabyBERTa.

4.4 Implementing Acquisition-Inspired
Objective Curricula: GROWING,
INWARDS & MMM

To implement the acquisition-inspired strategies,
we filter our age-ordered MAO-CHILDES corpus
for each language for expected utility in the acqui-
sition process, according to the curriculum strate-
gies of GROWING, INWARDS and MMM schema-
tised in Figure 1. We then precisely implement
the GROWING, INWARDS, MMM theories intro-
duced in Section 2.2, using different curriculum
units composed of POS tagsets (Table 1) to de-
fine three objective curricula that replicate the de-
velopmental sequences of each acquisition model
through the progressive ordering of POS units. The
logic for performing masked language modelling
selectively for words annotated with a desired set
of specified part of speech tags is implemented in
Diehl Martinez et al. (2023), which we extend. The
objective curricula modify the masked language
modelling (MLM) objective in a multi-task learn-
ing setup, so the acquisition-inspired objective is
activated and optimised in parallel with MLM. We
fix the model architecture to be identical to the
“vanilla” SSLM architecture in Section 4.3 to eval-
uate the benefits of each curriculum strategy. We
modify CLIMB’s objective curricula to implement
the GROWING, INWARDS and MMM objective
curricula by splitting 400K training steps across

12Japanese RoBERTa models is available here: https://
huggingface.co/rinna/japanese-roberta-base
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Model English Japanese Chinese French German
Non-CL SSLM (WIKI) 64.60% 55.42% 48.01% 70.68% 59.63%

MAO-BABYBERTA 75.48% * 61.21% 51.32% 80.00% 68.78%
CL GROWING 71.13% 79.30% 56.22% 76.21% 71.13%

INWARDS 71.05% 81.32% 54.26% 79.01% 69.34%
MMM (UPOS) 74.22% 87.31% 58.79%, 75.93% 73.25%

(SEM) 77.35% 55.01%

Table 2: Evaluation of MAO-BABYBERTA (“vanilla” SSLM architecture without objective curricula) and the three
Objective Curricula (GROWING, INWARDS, and MMM) on the following syntactic minimal pairs datasets: BLIMP
(English), JBLIMP (Japanese), SLING (Chinese), CLAMS (French and German). Performance is compared to
SSLM (WIKI). This is the same architecture trained on non-CDS training data. *This reports the performance of the
best-performing “vanilla” model by Diehl Martinez et al. (2023) on the same architecture used to train our model.
Bolded results indicate the highest accuracy of all the models.

four non-uniform intervals that are defined as a
proportion of the SSLM’s training steps, defined
in Figure 1. This is meant to roughly simulate
four developmental stages of an idealised mono-
lingual learner until 6;0. We then specify tagsets
for each phase of the curricula that correspond to
the acquisition theory. To illustrate this, the IN-
WARDS curriculum begins with a unit INTJ, which
performs MLM for interjections and other inter-
actional language, which are annotated with tags
INTJ, X, SYM. Then, we specify two further cur-
riculum units INWARDS-CP which performs MLM
on complementiser-like words (e.g., SCONJ), and
INWARDS-TP which performs MLM on auxiliaries
AUX and other tense/event-related words. At each
stage of the curriculum, the objective curricula pro-
vide the vanilla SSLM model with a list of syn-
tactic tags to use during training, taken from a
pre-specified set of UPOS tags that lists all the
tags used in the UPOS tagged MAO-CHILDES
training set. If a tag is not used at the curriculum
stage, its “ID” is set to zero so it is not a target
for masked language modelling (MLM). During
training, the number of part-of-speech tags that
the model has to classify over are varied, accord-
ing to the predictions of each acquisition model.
The objective curricula end with a final curricu-
lum unit, Pos-ALL, containing the entire Universal
Part-of-Speech Tagset. The masking ratio is an im-
portant hyperparameter that impacts the pretraining
of a Masked Language Model. A masking ratio of
0.4 is used for the tags specified at the curriculum
stage. A 0.15 masking rate is used elsewhere if
the tag is not specified at the curriculum stage. For
RoBERTa-based Language Models, a masking ra-
tio of 0.4 performs better than 0.15 in downstream
tasks (Wettig et al., 2023).In addition to our “de-

fault” MMM strategy defined by Universal POS
tags, MMM (UPOS), we additionally introduce a
refined version of the MMM objective, MMM
(SEM) for English and Chinese. This adds two ad-
ditional stages to the non-language specific strategy
to define a language-specific curricula that utilises
semantic tags (Bjerva et al., 2016), or sem-tags,
to model language-specific acquisition strategies
(Section 2.2). Detailed methods and results are
discussed in Appendix A. Training times for each
objective are summarised in Table 5.

5 Results

The performance of objective curricula and cross-
lingual SSLMs on minimal pairs datasets is
summarised in Table 2. Fine-grained objec-
tive curricula demonstrate variable effective-
ness compared to non-curriculum baselines.
While MMM (UPOS) shows general promise,
average benefits of MMM (UPOS), GROWING,
and INWARDS, do not show statistically signifi-
cant improvements on MAO-BABYBERTA cross-
linguistically (p < 0.05). However, the MMM
(SEM) curriculum achieves a statistically signif-
icant performance improvement in both English
and Chinese (p < 0.05) when performing a paired
t-test. Instead, statistically significant improve-
ments are observed with acquisition-inspired
CL strategies in specific languages across mini-
mal pairs test sets. MMM (UPOS) only achieves
a statistically significant improvement in Japanese
and Chinese. GROWING leads to a statistically
significant improvement in Japanese and Chinese,
while INWARDS only has statistically significant
improvements in Japanese. No curriculum strat-
egy outperforms MAO-BABYBERTA in French,
although INWARDS almost reaches the same accu-
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racy. German CL strategies only marginally outper-
form the non-CL baseline. In Figure 3, we compare
these results with a broader range of models intro-
duced by Diehl Martinez et al. (2023), finding that
the English MMM (SEM) curriculum marginally
outperforms other curriculum learning strategies.
See Appendix C for details on how t-test statistics
are computed.

Language LLM SSLM (CL)
English 80.10 77.35(MMM SEM)
Japanese 77.95 87.31 (MMM)
Chinese 83.41 58.79 (MMM)
French 83.00 79.01(Inwards)
German 92.16 73.25(MMM)

Table 3: Comparison of Accuracy of LLMs and the
Best Performing CL Strategy on Minimal Pairs Datasets.
SEM represents Language-Specific strategies imple-
mented for English and Chinese pre-training compared
to the language-invariant MMM (UPOS) strategies.

6 Discussion

Acquisition-inspired CL strategies represent a
novel large-scale application of language acquisi-
tion theory in Deep Learning, aimed at improv-
ing the performance of SSLMs. Acquisition-
inspired curricula guide SSLMs, which function
as large statistical learners, to generalise over fre-
quent linguistic categories—such as nouns and
verbs—early in the training process and attend to
language-specific features, such as the Germanic
V2 word order. This suggests that more fine-
grained, language-specific curricula may have
performance benefits over non-CL strategies in
SSLMs, which is supported by results showing
the limited improvements of universal/maturational
theories of acquisition that inform the GROW-
ING and INWARDS strategies. Although both ac-
quisition models predict universal curricula that
should lead to consistent benefits cross-lingually,
GROWING/INWARDS only improve performance
in Chinese and Japanese, while performing com-
parably to non-curriculum (non-CL) baselines in
French/German and worse than non-CL baselines
in English. An additional benefit of using fine-
grained language-specific curricula is that it en-
ables SSLMs to learn more complex grammati-
cal phenomena that may rely on semantics like
anaphora. We notice notable improvements in el-
lipsis performance (Table 7) with the MMM (SEM)

curriculum. Interestingly, in Chinese, the MMM
(SEM) curriculum marginally underperforms com-
pared to MMM (UPOS) when handling anaphora
and aspectual phenomena (Table 8), highlighting
the need for further investigation into engineer-
ing optimal language-specific curriculum strategies
that outperform non-CL strategies. This raises im-
portant avenues for future research. Careful anal-
ysis of developmental sequences beyond English
to develop language-specific strategies similar to
MMM (UPOS/SEM) will be crucial. We encour-
age practitioners to curate larger corpora of child-
directed speech (CDS) for training SSLMs in lan-
guages beyond English and to develop more mini-
mal pair datasets that have coverage beyond gram-
matical agreement in CLAMs to develop better-
performing curriculum strategies for Romance
and Germanic. Additionally, an important find-
ing is that acquisition-inspired CL strategies in
Japanese significantly outperform GPT-2 (Table
3). The improvements observed in Japanese con-
trol/raising phenomena (Table 9) suggest that the
properties of CDS in Japanese may lead to more
robust generalisations than LLMs.

7 Conclusion

This paper assesses whether fine-grained curricu-
lum learning strategies based on acquisition the-
ories can provide better heuristics for CL strate-
gies for SSLM pre-training cross-lingually, intro-
ducing the MAO-CHILDES training corpus to
train SSLMs for four typologically distant lan-
guage families. Mixed results of the maturational
GROWING and INWARDS acquisition theories in
curriculum strategies and the implementation of the
coarse/universal prediction of MMM (UPOS) sug-
gest that there is no guaranteed performance benefit
just by devising universal CL strategies based on
acquisition theories for SSLMs in a multilingual
setting. Training SSLMs using more fine-grained
language-specific curricula that precisely replicate
cutting-edge linguistic theories is effective for the
MMM (SEM) objective in English and Chinese and
MMM (UPOS) in Japanese. Curriculum Learning
can outperform non-curriculum SSLMs by speci-
fying fine-grained language-specific curricula that
precisely replicate language acquisition theories,
highlighting how cognitively-inspired techniques
can lead to better-performing data-efficient archi-
tectures in the spirit of the BabyLM Challenge.
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A MMM (SEM): Specifying
Language-Specific Curricula using
Semantic Tags

As a first step towards modelling language-specific
curricula using curriculum learning, we use Univer-
sal Semantic Tagging (sem-tagging) (Bjerva et al.,
2016). The set of semantic tags can differ cross-
lingually. In Chinese, Li et al. (2021) specifies a
language-specific semantic tagset, adding and re-
moving tags based on Chinese’s semantic and syn-
tactic properties. The fine-grained curriculum in
an SSLM set-up aims to circumvent known prob-
lems of shortcut learning in LLMs that prevent
Transformer-based models from exhibiting robust
structural generalisation capabilities that humans
exhibit in acquisition (Salhan, 2023).

We perform sem-tagging to annotate the
BabyLM corpus for English and the Chinese corpus
in MAO-CHILDES with a set of language-neutral
tags (sem-tags). For English, we only perform sem-
tagging for the Adult Directed Speech datasets in
the BabyLM Challenge dataset: the BNC, Project
Gutenberg , OpenSubtitles, QCRI, Wikipedia and
Switchboard corpora. This allows us to modify our
UPOS curricula for English to specify a more com-
plex curricula to simulate later stages of language
acquisition. The first stage of the new MMM cur-
riculum using semantic tags includes tags related to
event, EVE, tense, TNS, and modality MOD. These are
typically learnt later during acquisition, as part of
complex tense sequences of auxiliaries and modal
verbs (Biberauer and Roberts, 2015), and allow
us to define a language-specific sem-tag objective.
For Chinese, we sem-tag a corpus of Wikipedia text
that contains the same amount of text as the age-
ordered CHILDES corpora introduced in Section
3.

A.1 Semantic Tagger Accuracy
A multi-objective POS and sem-tagger is trained,
using a Bidirectional LSTM (BiLSTM) with a Con-
ditional Random Field (CRF) inference layer to
train a multi-objective semantic and UPOS tagger
for English and Chinese. This is trained on 1100
sem-tagged sentences from the Wall Street Journal
(WSJ) section of the Penn Treebank (Marcus et al.,
1993) and a 1000 sem-tagged sentences from Chi-
nese TreeBank (Xue et al., 2005) annotated by Li
et al. (2021). The tagger has 91.4% accuracy for
Chinese and 94.6% accuracy for English.

B Training

Table 4: Hyperparameter Settings for CLIMB’s “vanilla”
and curriculum models and MAO-BabyBERTa (CDS)

Layers 8

Heads 8

Hidden 256

|V | 8, 192

Layer Norm EPS 1× 10−5

Learning Rate 0.001

Optimizer AdamW
Scheduler Type Linear

Max Steps 400, 000

Warm-up Steps 100, 000

Type Model Training Time
MAO-CLIMB GROWING 11h 51m

INWARDS 11h 51m
MMM (UPOS) 11h 46m
MMM (SEM) 25h 3m

Vanilla Models CLIMB-small-raw 12h

Table 5: Compute required to train our models. We
report the model with the shortest and longest runtime
for each experiment type. Each model is trained for
400,000 steps with 4 A100 GPUs.

C Statistical Significance & Detailed
Results

The statistical significance of the three curricu-
lum strategies, GROWING, INWARDS & MMM
is calculated by performing t-tests on the detailed
results in Tables 7, 8, 9, 10. For each cur-
riculum (GROWING, INWARDS, MMM (UPOS),
MMM (SEM)), we calculate the paired differ-
ences in accuracy with the Vanilla model for
all the test sets in the minimal pairs evaluation
dataset. We perform paired t-tests for the non-
CL baseline (MAO-BABYBERTA) and the accu-
racy of the respective curriculum for each curricu-
lum strategy for each language, concluding that
the curriculum-based model significantly outper-
forms the Vanilla/MaoBabyBERTa model if the
p-value is below our significance level α = 0.05.
The detailed results, below, support the findings
of Huebner et al. (2021) cross-linguistically of
the benefits of using less training data and pay-
ing careful attention to training artefacts and the
domain of training corpora, as using CDS to train
SSLMs (with/without objective curricula) outper-
forms SSLM (WIKI).
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Figure 3: Comparision of BLiMP Performance of English SSLMs with CLIMB curricula and GROWING,
INWARDS, MMM (UPOS), MMM (SEM) (Section 4.4) We report introduced by Warstadt et al. (2023) for
T5-base and OPT-125m models. We include the improved BabyBERTa baseline implemented in Diehl Martinez
et al. (2023), which beat the baseline used in the 1st BabyLM Shared Task. We report BLiMP performance of
different CLIMB small-raw models (also used in the standard architecture of MAO-BABYBERTA used with
the three objective curricula) for the best performing dynamic curriculum learning strategies implemented in
Diehl Martinez et al. (2023). This includes CLIMB’s Data Curriculum (Log Pacing with Source Difficulty),
Vocabulary Curriculum (Log Pacing with Token ID Difficulty), two Objective Curricula strategies (MLM +
ALL uses a multitask objective of masked language modelling and objective curricula specified by 10 tags throughout
all training steps, MLM + NV uses three tags throughout training), and the best performing Combination Model
(Token ID Vocabulary Curricula, Random + model ppx Data Curricula, Multitask Objective Curricula).
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Table 6: Corpus Statistics for the Child-Directed Speech (CDS) files extracted from CHILDES for 24 languages,
which are used to select four languages for training. The MAO-CHILDES corpus is selected based on the frequency
of CDS, along additional considerations of evaluation.

lang Samples |V | Tokens Sentence Length µ Children Utterances
Chinese 857,792 518,172 850,510 258.28 949 3,293
German 582192 516,147 867,704 107.05 65 8105
Japanese 537,164 280,807 528,930 38.67 122 13,678
Indonesian 537,235 286,448 521,759 202.31 9 2,579
French 488,094 284,381 469,258 175.69 204 2,671
Spanish 332,903 211,559 331,009 167.85 291 1,972
Dutch 261,786 160,520 259,263 97.50 96 2,659
Portuguese 100,512 59,205 98,620 39.72 195 2,483
Polish 82,977 71,072 82,940 43.04 14 1,927
Swedish 80,936 53,719 79,739 49.34 6 1,616
Norwegian 55,262 31,310 40,215 32.62 6 1,233
Catalan 54,518 37,250 53,157 29.73 7 1,788
Romanian 33,130 20,700 32,986 16.58 6 1,990
Croatian 51,948 36,922 51,809 27.33 3 1,896
Czech 45,122 33,185 44,117 27.15 6 1,625
Danish 44,909 25,039 44,909 24.94 2 1,801
Bulgarian 31,715 21,435 31,714 32.76 1 968
Afrikaans 22,021 18,475 21,984 18.68 52 1,177
Irish 18,973 13,598 18,869 9.82 5 1,921
Russian 7,008 5,963 7,007 4.42 2 1,585
Icelandic 47,945 27,775 46,516 11.36 1 4,094
Slovenian 1,384 1,243 1,382 10.39 1 133
Thai 38,550 27,084 38,329 100.34 18 382

Figure 4: Distribution of Silver Tags across all languages in the MAO-CHILDES corpus, annotated using a SpaCy
Multilingual UPOS Tagger
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Table 7: (English) Evaluation of BabyBERTa model with four Cognitively-Plausible Curriculum Learning Strategies
on BLIMP. English GROWING based on “Growing Trees” (Friedmann et al., 2021), INWARDS based on “Inward
Maturation” (Heim and Wiltschko, 2021) and MMM (UPOS) and the language-specific sem-tag MMM (SEM)
curricula based on Biberauer and Roberts (2015).

Grammatical Phenomenon Growing Inwards MMM (UPOS) MMM (SEM)
Anaphor 96.22% 84.67% 81.13% 90.89%
Arg Str 79.13% 79.86% 84.79% 85.99%
Binding 46.47% 71.75% 83.42% 77.76%
Control-Raising 77.03% 73.82% 88.02% 82.10%
Det-N Agreement 65.49% 65.19% 84.38% 79.31%
Ellipsis 58.24% 53.26% 42.77% 70.94%
Filler Gap 80.70% 88.47% 85.60% 73.11%
Irregular 76.34% 44.85% 54.42% 74.91%
Island 69.53% 62.87% 96.62% 68.64%
NPI 69.21% 76.02% 83.42% 74.13%
Quantifiers 44.54% 84.79% 58.43% 71.86%
Subject-Verb 65.98% 64.89% 68.37% 79.03%
Average Accuracy 71.13% 71.05% 74.22% 77.35%

Table 8: (Chinese) Comparison of accuracy of Chinese MAO-BABYBERTA (“vanilla”) and GROWING, INWARDS,
MMM (UPOS), MMM (SEM) objective curricula compared to a Chinese RoBERTa LLM baseline on the SLING
minimal pairs dataset (Song et al., 2022)

Category Subcategory Vanilla LLM Growing Inwards MMM MMM
(UPOS) (SEM)

RelativeClause rc_resumptive_pronoun 50.50 60.30 50.50 49.50 53.10 50.70
RelativeClause rc_resumptive_noun 48.00 27.60 48.90 47.80 58.00 48.50
Anaphor baseline_female 86.70 75.60 86.30 83.90 36.90 85.60
Anaphor pp_female 70.50 71.80 70.80 67.50 41.80 69.80
Anaphor baseline_male 12.50 38.50 45.20 45.30 81.90 45.20
Anaphor Plural 51.98 97.95 53.10 51.20 52.33 52.10
Anaphor self_male 14.30 92.60 47.80 46.10 81.40 46.90
Anaphor pp_male 28.00 77.60 49.50 48.70 76.90 49.30
Anaphor self_female 86.60 98.50 86.70 84.10 42.00 85.10
PolarityItem any 54.20 85.60 55.30 52.70 49.20 54.60
PolarityItem more_or_less 20.20 98.90 46.80 46.50 46.70 46.80
PolarityItem even_wh 56.90 92.40 57.90 53.60 57.30 55.90
DefinitenessEffect definiteness_every 85.70 94.60 85.40 83.30 88.50 84.20
DefinitenessEffect definiteness_demonstrative 78.80 96.20 78.60 75.20 55.00 77.30
Aspect zai_guo 49.30 97.30 49.70 47.90 43.10 49.20
Aspect temporal_le 40.70 63.40 50.40 49.10 63.70 50.30
Aspect zai_le 49.80 74.40 49.90 48.20 69.00 48.90
Aspect temporal_guo 40.30 88.10 50.30 47.60 60.20 50.10
Aspect zai_no_le 56.40 77.90 56.70 53.80 86.80 55.20
WhFronting mod_wh 54.70 99.70 54.40 51.90 36.10 53.10
WhFronting bare_wh 53.30 100.00 53.50 50.30 46.00 52.40
Classifier-Noun cl_simple_noun 51.30 98.00 51.80 49.70 57.40 50.70
Classifier-Noun cl_adj_simple_noun 52.60 96.30 52.10 50.10 61.80 51.30
Classifier-Noun dem_cl_swap 51.10 99.60 51.20 49.20 60.70 50.60
Classifier-Noun cl_adj_comp_noun 48.20 70.60 48.70 46.90 66.00 47.50
Classifier-Noun cl_comp_noun_v2 49.60 88.80 49.30 47.30 61.90 48.80
Classifier-Noun cl_comp_noun 51.00 72.00 51.60 49.80 61.30 50.90
Classifier-Noun cl_adj_comp_noun_v2 52.20 89.50 52.50 50.70 60.90 52.10
AlternativeQuestion haishi_ma 43.00 95.00 45.70 45.90 49.10 45.70
Average 51.32 83.41 56.23 54.27 58.79 55.48
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Table 9: (Japanese) Accuracy of the “vanilla” SSLM for Japanese (MAO-BabyBERTa) trained on CDS and the
best performing objective curricula +MMM on each phenomenon in the Japanese Benchmark of Linguistic Minimal
Pairs (Someya and Oseki, 2023) compared to a Japanese monolingual GPT-2 LLM baseline trained on ≈ 30B
words and a SSLM (WIKI) Baseline.

Phenomena GPT2 WIKI Vanilla MMM
Control/Raising 16.67 50.00 25.00 70.00
Island Effects 75.76 64.00 72.06 92.19
Binding 58.97 79.05 57.86 89.62
NPI Licensing 50.00 83.33 75.00 90.00
Argument Structure 89.05 41.6 54.82 94.86
Ellipsis 85.96 49.36 56.13 97.68
Verbal Agreement 53.55 57.82 69.22 87.37
Filler-Gap 55.56 44.29 76.19 85.71
Morphology 82.86 49.77 55.08 82.05
Nominal Structure 95.65 41.51 55.87 92.12
Quantifiers 73.81 48.96 60.56 78.52
Average 77.95 55.42 61.21 87.31

Table 10: (French and German CLAMS) Performance of GROWING, INWARDS, MMM (UPOS) in French and
MMM (UPOS) in German (the best performing objective curricula) on CLAMS (Mueller et al., 2020) compared to
MAO-BABYBERTA SSLM (“vanilla”) and the LLM and SSLM (WIKI) baselines. We report the LLM baselines
obtained by Mueller et al. (2020) for mBERT in French and German, which does not report results for “within
objective relative” (object rel within) as all focus verbs for that particular language and construction were out-of-
vocabulary. Chance CLAMS accuracy is 0.5.

Language Model Average S-V Obj Rel Obj Rel VP Prep Subject Long VP
(within) (across) Coord Animate Relative Coord

FRENCH LLM 83.00% 100.00 – 86.00 100.00 57.00 57.00 98.00
WIKI 70.68% 67.48 73.40 73.80 71.27 66.80 70.80 71.27
Vanilla 80.00% 82.0 64.90 84.8 78.6 84.8 83.1 82.1
Growing 76.21% 73.70 69.57 79.51 71.12 86.53 80.01 73.70
Inwards 79.01% 76.95 68.50 84.10 75.86 83.80 87.00 76.89
MMM 75.93% 82.33 72.60 74.40 81.79 65.80 70.90 83.71

GERMAN LLM 92.16% 95.00 – 93.00 97.00 95.00 73.00 100.00
WIKI 59.63% 56.55 47.90 60.60 55.32 57.20 60.60 79.28
MMM 73.25% 75.32 79.80 66.40 78.52 68.40 66.40 77.90
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Abstract

We present a model for the Strict-Small track
of the BabyLM Challenge 2024 (Choshen et al.,
2024). We introduce a Curriculum Learning
approach for training a specialized version of
GPT-2 (Radford et al., 2019), that we name
ConcreteGPT. We utilize the norms from Brys-
baert et al. (2014), which provide concreteness
ratings for 40,000 English lexical items based
on human subjects. Using these norms, we
assign a concreteness score to each sentence
in the training dataset and develop two cur-
riculum strategies that progressively introduce
more complex and abstract language patterns
in the training data. Compared to the baselines,
our best model shows lower performance on
zero-shot tasks but demonstrates superior per-
formance in fine-tuning tasks. Notably, our
curriculum-trained models exhibit significant
improvements over a non-curriculum based
training of the same model.

1 Introduction

Optimising language model training to enhance
efficiency without compromising performance
presents a significant challenge, especially in the
era of Large Language Models (LLMs) which
require trillions of input tokens and millions of
PetaFLOPs for training (Villalobos et al., 2024).
A promising approach lies in exploring training
strategies that streamline the learning process and
maximise resource utilisation. Initiatives like the
BabyLM Challenge (Warstadt et al., 2023) aim to
find strategies to train effective LLMs under spe-
cific data constraints, that naturally reflect also on
model sizes constraints following known scaling
laws.

*Corresponding author
†For the specific purposes of Italian Academy, Luca

Capone is responsible for Sections 2 and 5, Alessandro
Bondielli is responsible for sections 3 and 4, Alessandro Lenci
is responsible for sections 1 and 6

One possible area of interest in this context is
the use of training strategies related to Curricu-
lum Learning, which refers to the idea of training
machine learning models on meaningfully ordered
data, for instance from easier to harder samples
(Bengio et al., 2009). This approach has yielded
beneficial results on many tasks (Soviany et al.,
2022), but has not been widely adopted in the con-
text of language modelling. Typically, LLMs are
trained on data scraped from the Web, for which
it is difficult to obtain a meaningful ordering. In
the present work, we evaluate the hypothesis that
a curriculum learning strategy informed by evi-
dence from human language acquisition can en-
hance model performance in data- and/or compute-
constrained settings. Specifically, we attempt to
understand the impact of considering word con-
creteness for ordering training data. In this context,
concreteness refers to how tangible or percepti-
ble the referent of a word is, with more concrete
words being those that refer to physical objects
or sensory experiences, while abstract words re-
late to concepts and ideas (Brysbaert et al., 2014).
Word concreteness is often considered a proxy for
the natural order in which children acquire lan-
guage, beginning with words that represent famil-
iar objects and situations (Bergelson and Swingley,
2013; Schwanenflugel, 2013). As language devel-
opment progresses, children gradually learn terms
that describe more complex concepts or relation-
ships, which typically rely on the prior acquisition
of simpler linguistic elements. Understanding the
impact of word concreteness on language model
training could potentially lead to models that better
grasp and generate language in a more nuanced
manner, and more importantly, that learn faster and
more efficiently. While some studies have explored
different language complexity metrics for Curricu-
lum Learning (Opper et al., 2023; Mi, 2023; Mar-
tinez et al., 2023), none of the methods proposed in
the 2023 BabyLM Challange employed curriculum
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criteria related to lexical concreteness (Warstadt
et al., 2023).

In this work, we introduce a Curriculum Learn-
ing approach to train a specialised version of GPT2
(Radford et al., 2019), that we call ConcreteGPT,
which leverages word concreteness ratings. We
exploit the concreteness norms from Brysbaert
et al. (2014), which include concreteness ratings
obtained from human subjects for 40,000 lexical
items in English. Using the norms, we compute a
concreteness score for each sentence in the training
dataset and create a curriculum that progressively
emphasises more complex and abstract language
patterns. We evaluate our approach on the Strict-
Small track for the 2024 BabyLM Challenge. For
the track, participants are provided with a dataset
of 10M tokens for pre-training their model. Then,
the model is evaluated in two ways: first, on a
set of tasks in zero-shot settings, using Perplexity
(PPL) or Pseudo-Log-Likelihood (PLL) metrics as
a proxy of model understanding; second, the model
is fine-tuned using standard fine-tuning or LoRA
on the GLUE benchmark tasks. We evaluate two
different models that employ a slightly different ap-
proach to building the curricula for the training, and
compare them with a baseline model trained with
the same amount of FLOPs without curriculum
learning. We show that the curriculum-based mod-
els tend to outperform the non-curriculum model,
while generally matching or slightly underperform-
ing compared to the strong baselines provided by
the task organizers (i.e., the winning models from
the 2023 edition), despite a possibly lower compu-
tational cost.

The paper is organised as follows. First, we out-
line the motivations behind our curriculum learning
approach in Section 2. Section 3 details the method-
ology used to create the datasets and describe the
curriculum design. Sections 4 and 5 provide an
in-depth discussion of the model, covering train-
ing specifics and results, and discuss the impact
of two variations of the curriculum learning strat-
egy. Finally, Section 6 draws some conclusions and
highlights possible future directions.

2 Motivation Behind Curriculum Design

The motivation behind this approach stems from
the hypothesis that a curriculum guided by word
concreteness can enhance the model’s learning
trajectory by starting with more concrete, easily
grasped examples and gradually advancing to more

sophisticated verbal items. This method aims to
improve the model’s ability to handle a broader
range of linguistic phenomena, potentially leading
to more robust and contextually aware text genera-
tion. Given that the model is not multimodal, one
might initially question the value of using a Cur-
riculum Learning approach based on lexical con-
creteness, since the representations learned by the
model are not grounded in perceptual experiences.
It is useful to start from the assumption that, in prin-
ciple, all meanings can be considered as abstract,
referring to general classes capable of subsuming
heterogeneous and always particular phenomena
(Eco, 1979, §2.6). From this perspective, the value
of an approach based on lexical concreteness does
not lie in grounding meanings in perceptual experi-
ence (Søgaard, 2023). Despite the abstract charac-
ter of meaning, it is widely accepted that the first
words children learn tend to have a tight connection
to their experience with referents (Schwanenflugel,
2013; Bergelson and Swingley, 2013). Early lan-
guage acquisition typically involves words related
to the child’s surroundings, such as parents, pets,
and daily routines objects. From these familiar
meanings, children gradually expand their vocab-
ulary to include words with more complex mean-
ings that concern more abstract situations, require
greater linguistic competence and larger cultural
experience. Thus, concreteness rating can be un-
derstood as an index of the difficulty in acquiring a
word. For instance, learning a term like “dog” re-
quires less linguistic knowledge and semantic struc-
turing than understanding a more abstract concept
like “justice”. By initially exposing the model to
sentences containing words with an high concrete-
ness rating, we attempt to simulate this learning
trajectory, providing the model with simpler, more
fundamental contexts before progressing to the ac-
quisition of more complex meanings and linguistic
situations. The method proposed in this paper is
consistent with the findings of Abdou et al. (2021)
and Patel and Pavlick (2022) which suggest that
LM embeddings encode perceptual structures (e.g,
meaningful spatial relations and colors) without
requiring perceptual grounding. The hypothesis
is that a curriculum based on lexical concreteness
can facilitate the acquisition of these meaningful
structures.

A potential objection to our method is why age
of acquisition is not used directly as a feature for
sorting the curriculum. The core principle of the
Curriculum Learning approach is to establish a
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criterion that accurately assesses the difficulty of
language items, thereby grouping items of simi-
lar difficulty together. In this context, a criterion
such as age of acquisition alone does not serve this
purpose effectively. Linguistically similar items —
those that function similarly in speech and possess
comparable levels of difficulty — can exhibit dif-
ferent ages of acquisition. In fact, consulting data
from WordBank (Frank et al., 2017), specifically
the British Oxford Communicative Development
Inventory (CDI), we observe that linguistically sim-
ilar items are acquired at different ages by children.
For example, the proportion of children understand-
ing the word dog at 12 months is slightly over
0.6, whereas the corresponding value for the word
lamb is just under 0.1. This disparity remains rela-
tively constant until 25 months, even though lamb
does not appear to present any particular challenges
compared to dog. Consequently, two words of sim-
ilar difficulty may be sorted differently within the
curriculum based solely on age of acquisition. In
contrast, this issue is mitigated by the use of con-
creteness ratings, with lamb being rated at 4.97 and
dog at 4.85 in Brysbaert et al. (2014).

3 Curriculum Design

Brysbaert et al. (2014) collected ratings from 4,237
native speakers for 37,058 English words and 2,896
two-word expressions. The ratings ranged from a
minimum of 1, representing «something you can-
not experience directly through your senses or ac-
tions», to a maximum of 5, indicating «something
that exists in reality; you can have immediate expe-
rience of it through your senses (smelling, tasting,
touching, hearing, seeing) and the actions you do.
The easiest way to explain a word is by pointing to
it or by demonstrating it» (Brysbaert et al., 2014).
Based on these ratings, we assigned a concrete-
ness score to each sentence in the dataset (10M
Strict-Small dataset, Choshen et al. 2024). For
each sentence, only adjectives, nouns, and verbs
were considered in the score calculation. The con-
creteness ratings of the words in the sentence were
summed, and the total was divided by the num-
ber of selected words. This resulting value corre-
sponds to the sentence concreteness score. Once
the sentence scores were obtained, the dataset was
divided into four slices, each containing approx-
imately 300,000 items, based on increasing con-
creteness, as shown in Figure 1.

Based on the dataset slicing, we devise two dif-

ferent curriculum strategies:

SEQUENTIAL – This strategy considers the
slicing as-is, and the curriculum is based on
their sequential ordering, from the most con-
crete to the most abstract.

MIXED – This strategy is more nuanced, and
accounts for the fact that while sentence-level
concreteness can be used as proxy for the nat-
ural order in which children acquire language,
it is also likely that childrens will be exposed
to more complex words as well. Thus, starting
from the original slices, we redistribute part
of each slice into the other ones. Specifically,
each slice contains 50% of the data from the
original slice, and 50% from the other three
slices, in different proportions, to simulate an
increasing percentage of progressively more
abstract sentences in each slice. The exact pro-
portions of sentences from each mixed slice
are reported in Figure 2.

4 Model and Training

In our experiments, we use the GPT2 implementa-
tion from HuggingFace1 as our base architecture,
with its standard pretrained tokenizer. The model
has 124M trainable parameters. To further limit
the computational cost of training, we restrict the
context length of the model to 128 tokens. This
change is driven not only by concerns regarding
computational resources, but also by theoretical
considerations related to the development of work-
ing memory in humans, which appears to be lim-
ited during the early years of life (Swanson, 1996;
Cowan, 2016). A reduced context length (though
still larger than the number of tokens a child can
process) better aligns with the cognitive plausibility
criteria required by the challenge.

We experiment with a hybrid training proce-
dure where the model is sequentially trained on
each slice of the dataset for three epochs with the
same hyperparameters. Note that we restart the
training procedure each time, and that we random-
ized the batch sampling within the training slice.
This means that data from each batch is randomly
sampled (as customary for training LMs) from the
training slice. Then, the resulting model is further
trained on the entire dataset with a lower learning
rate for an additional two epochs, again with ran-
dom batch sampling. We follow this procedure for

1https://huggingface.co/openai-community/gpt2
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Figure 1: Distribution of sentences into slices. The dataset contains sentences with adjectives, verbs, and nouns that
are not among the rated words (assigned a score of zero), as well as sentences that contain none of these word types
(assigned a score of one). All such sentences are grouped into the final slice, representing the most abstract and
complex sentences.

Model Data Epochs Init. LR LR scheduler Batch size Grad. accum. Warmup

SEQUENTIAL

Slice 1 3 5e-4 Cosine 32 8 1000
Slice 2 3 5e-4 Cosine 32 8 1000
Slice 3 3 5e-4 Cosine 32 8 1000
Slice 4 3 5e-4 Cosine 32 8 1000

Full Dataset 2 2e-4 Cosine 32 8 1000

MIXED

Slice 1 - mix 3 5e-4 Cosine 32 8 1000
Slice 2 - mix 3 5e-4 Cosine 32 8 1000
Slice 3 - mix 3 5e-4 Cosine 32 8 1000
Slice 4 - mix 3 5e-4 Cosine 32 8 1000
Full Dataset 2 2e-4 Cosine 32 8 1000

SHUFFLE Full Dataset 5 5e-4 Cosine 32 8 1000

Table 1: Pre-training parameters for each of the models. In the case of curriculum-based models, parameters are
reported for each slice.

Hyperparameter Value

Initial learning rate 3e-4
Batch size 64
Maximum epochs 32
Evaluate every (epochs) 1
LoRA alpha 16
LoRA rank 8
LoRA dropout 0.1

Table 2: Parameters for fine-tuning with LoRA on the
GLUE tasks.

both the SEQUENTIAL and MIXED models, only
changing the composition of the slices as described
in Section 3. For training the comparison model

(i.e., the model without curriculum learning), that
we call SHUFFLE, we aimed to use the same amount
of computing, and thus to show the model each
data point the same number of times. Therefore,
we trained it for 5 epochs on the entire dataset with
random sampling.

Table 1 summarizes the training parameters. All
models were trained using half precision (fp16).
No direct hyperparameter optimization was per-
formed. However, we experimented with sev-
eral configurations, specifically varying the initial
Learning Rate and its scheduler, and found the cho-
sen configuration to work best. As for batch size
and gradient accumulation steps, the values were
chosen to best fit the available computational re-
sources. All models were trained using a Nvidia
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Figure 2: Percentage of sentences from each slice for
training the MIXED model.

A100 40GB GPU. Notably, we used the same ran-
dom seed for all training runs, to ensure that the
starting condition was the exact same for all of
the trained models. We are aware that averaging
the results of multiple training runs would have
yielded more reliable results. However, it would
have also drastically increased the computational
cost of our experiments. The pre-training proce-
dure was handled with the HuggingFace Trainer.2

For the fine-tuning, we train a LoRA for each of
the GLUE tasks using the script provided by the
challenge organisers. As for the hyperparameters,
we left the default ones provided by the challenge
organisers (Choshen et al., 2024). For the sake
of completeness, we report the LoRA fine-tuning
parameters in Table 2.

5 Results and Discussion

The models are evaluated on two distinct sets of
tasks: one requiring fine-tuning and the other per-
formed in a zero-shot setting. Fine-tuning was
conducted using the script provided by the organis-
ers (see Section 4). The baselines are two models
trained by the organizers, and inspired by the 2023
edition winning systems: LTG-BERT (Charpentier
and Samuel, 2023) and BabyLlama (Timiryasov
and Tastet, 2023).

For the fine-tuning task, models are fine-tuned
on the GLUE benchmark tasks (Wang et al.,
2018). Table 3 shows results on all the tasks for
each of our trained models, namely SEQUENTIAL,
MIXED, and SHUFFLE. While the differences in
performance across the models are not substan-

2https://huggingface.co/docs/transformers/v4.
44.2/en/main_classes/trainer.

tial, the curriculum-based models (SEQUENTIAL

and MIXED) consistently outperform the non-
curriculum one (SHUFFLE), with the exception
of the CoLA and RTE tasks. Among curriculum-
based models, the MIXED model outperform the
SEQUENTIAL model on 7 out of 10 tasks, and for
2 out of 10 taks they achieve the same level of
performances.

For the zero-shot tasks, results are reported in
Table 4, and are less clear-cut. For the Ewok task
(Ivanova et al., 2024), the MIXED model perform
slightly better than SHUFFLE and SEQUENTIAL

models, and achieve a score on par with the best
baseline. For the Blimp tasks (Warstadt et al., 2020)
the scenario is different: in Blimp Filtered, none
of our models manage to match the BabyLlama
baseline, although the two models trained with
curriculum learning come very close. Neverthe-
less, they significantly outperform LTG-BERT. For
Blimp Supplement, none of the models reach the
baseline, and the best-performing model is the non-
curriculum one (SHUFFLE). Nevertheless, in two
out of three zero-shot tasks curriculum-based mod-
els outperform, albeit slightly, the non-curriculum
based one. In Blimp Filtered, both models per-
form the same, while for Ewok the best performing
model is again the MIXED model. Table 4 also
report the average on the fine-tuning GLUE tasks.
The MIXED model significantly outperform both
the other proposed models as well as the baselines.

On average, across all tasks, the three models
consistently outperform the worse baseline (LTG-
BERT), but do not exceed the performance of the
best baseline (BabyLlama) except for GLUE. Of
the three, the MIXED model performs the closest to
BabyLlama overall. However, this result is largely
influenced by the poorer performance in Blimp,
especially in Blimp Supplement. In this case the
curriculum learning strategy appears to negatively
affect performance on acceptability tasks, as indi-
cated by the weaker results observed in CoLA and
Blimp. A potential explanation is that curriculum
learning based on lexical concreteness enhances
performance in tasks with a stronger semantic com-
ponent, such as MRPC, SST-2, and MNLI, where
the curriculum-trained models demonstrate supe-
rior performances.

However, these findings appear to corroborate
the idea that, given the same (and limited) amount
of data and training compute, employing a cog-
nitively plausible training strategy that leverages
lexical concreteness as a proxy for a plausible or-
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model mrpc boolq qqp sst2 qnli wsc cola[matt_corr] rte mnli multirc

SEQUENTIAL 0.80 0.64 0.77 0.80 0.74 0.58 0.59 [0.02] 0.57 0.67 0.65
MIXED 0.82 0.66 0.77 0.85 0.78 0.65 0.61 [0.04] 0.56 0.68 0.65
SHUFFLE 0.79 0.66 0.74 0.79 0.76 0.62 0.59 [0.08] 0.57 0.64 0.64

Table 3: Fine-tuning results. As specified in the evaluation pipeline documentation (github.com/babylm/evaluation-
pipeline-2024), we use accuracy as the evaluation metric for all tasks except QQP and MRPC, for which we report
F1 scores, and CoLA, for which we use the Matthews correlation coefficient (we also report the evaluation loss for
this task).

Model Zero Shot Fine tuning Macro Avg.
blimp_supp blimp_filt ewok Glue Avg.

SEQUENTIAL 55.9 68.6 50.2 62.4 59.3
MIXED 55.9 68.6 50.7 64.6 60.0
SHUFFLE 57.1 67.8 50.5 62.9 59.6

BabyLlama 59.5 69.8 50.7 63.3 60.8
LTG-BERT 60.8 60.6 48.9 60.3 57.7

Table 4: Overall results and comparison with baselines.

dering to acquire language is probably beneficial.
In addition to this, it is also relevant to point out that
our model, albeit larger in terms of number of pa-
rameters, was not trained until convergence and in
any case was trained with less computing than the
strongest baseline represented by the BabyLlaMA
model, but it still either reach its performances or
surpasses them in 2 out of the 4 evaluations.

6 Conclusion and Future Work

In this paper we propose two models for the
Strict-Small track of the BabyLM Challenge 2024
(Choshen et al., 2024). The models were trained
using a Curriculum Learning strategy designed to
optimise performance. The dataset provided by the
organisers was divided into four slices based on
increasing levels of lexical concreteness. From this
division, two models were trained: the SEQUEN-
TIAL was trained on the slices in order of decreas-
ing concreteness, while the MIXED incorporated
a progressively higher percentage of abstract and
complex sentences at each epoch. For comparison,
the same architecture was trained using a standard
training procedure on the entire dataset with the
same amount of compute (SHUFFLE model).

The SHUFFLE model outperforms the
curriculum-trained models only in the Blimp
Supplement (for zero-shot) and in CoLA (for
fine-tuned) tasks. In all other tasks however
curriculum learning based on lexical concreteness,

particularly the MIXED model, demonstrates
improved performance. Compared to the baselines
provided by the organisers, the MIXED model
exhibits comparable or lower performance on
zero-shot tasks but performs well in fine-tuning
tasks. These results are notable, especially given
the relatively small amount of training compute
provided to the model.

Our findings suggest that in low resources and/or
low compute scenarios, cognitively plausible train-
ing strategies, specifically using concreteness, may
help the model learn effective representation faster
than with traditional training methods. Neverthe-
less, we must point out that the proposed approach
does not systematically outperform the strong base-
lines provided by the challenge organisers, espe-
cially in zero-shot tasks. Possible explanations are
that i.) our concreteness-based approach still re-
quires some refinement, and that ii.) our models
may be undertrained with respect to the baselines.

Based on these findings, we propose several di-
rections for future work. First, training the model
on a larger dataset and for more epochs would al-
low us to test whether the performance gap scales
with additional data, potentially by further refining
the progression of the slices in the MIXED strat-
egy. Second, applying this curriculum learning
approach to a multimodal model would help assess
whether it also facilitates mapping between lan-
guage and images. Finally, it would be valuable to

194

https://github.com/babylm/evaluation-pipeline-2024
https://github.com/babylm/evaluation-pipeline-2024


further investigate the differences in performance
on acceptability tasks (which are more syntactic
in nature) versus tasks focused on semantics and
inference, to better understand the robustness of
this trend.
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Abstract

We present our submission12 to the BabyLM
challenge, aiming to push the boundaries of
data-efficient language model pretraining. Our
method builds upon deep mutual learning, in-
troducing a student model search for diverse ini-
tialization. We address the limitation of treating
students equally by formulating weighted mu-
tual learning as a bi-level optimization problem.
The inner loop learns compact students through
online distillation, while the outer loop opti-
mizes weights for better knowledge distillation
from diverse students. This dynamic weight-
ing strategy eliminates the need for a teacher
model, reducing computational requirements.
Our evaluations show that teacher-less meth-
ods can match or surpass teacher-supervised
approaches.

1 Introduction

The substantial computational and memory re-
quirements of large language models pose signifi-
cant challenges for deployment on intelligent edge
systems, where resources are often constrained.
As the demand for real-time processing and low-
latency responses increases in edge computing en-
vironments, the need for lightweight and memory-
efficient models becomes critical. Recent re-
search, notably the Chinchilla paper (Hoffmann
et al. (2024)), demonstrated that a 70B parameter
model trained on 1.4 trillion tokens outperformed
larger models with less data, highlighting the in-
tricate balance between model size and training
data. This massive data requirement—equivalent
to over 10,000 times the words a 13-year-old en-
counters—is becoming a significant bottleneck.
To address these challenges, several techniques
have emerged such as network pruning (Han et al.

1https://huggingface.co/AI-DA-STC/RoBERTa_
WML_distill-Babylm-10M-2024

2https://github.com/AI-DA-STC/
generative-ai-research-babylm

(2015)), quantization (Courbariaux et al. (2015)),
neural architecture search Ren et al. (2021) and
Knowledge distillation (Hinton et al. (2015),Li et al.
(2020),Wang et al. (2022))

In response to these challenges, the BabyLM
challenge invites researchers to explore the lim-
its of data-efficient language model pretraining
(Choshen et al.). Participants are constrained to
training their models on limited text corpora: 10M
and 100M word text-only tracks and a newly intro-
duced multimodal track containing 50M words of
paired text-image data, and 50M words text-only
data.

Our paper describes our submission to the 10M
and 100M text-only tracks. It builds upon the ap-
proach of weighted mutual learning Zhang et al.
while introducing key modifications to enhance
generalizability. Our methodology focuses on dis-
tilling a RoBERTa-base model (125M parameters)
to less than half its size while maintaining perfor-
mance. Our main contributions include :

• We use Bayesian optimization to select model
architectures of student models by varying hid-
den layers, attention heads, and hidden sizes.

• Instead of the traditional teacher-student dis-
tillation, we explore weighted mutual learning
through a bi-level optimization process : (a)
The inner loop minimizes a combined loss
to train individual student models, consisting
of a supervised learning loss and a KL diver-
gence loss that aligns each student’s class pos-
terior with others’. (b) Instead of treating each
student model equally, we introduce an outer
loop to optimize student importance weights
by minimizing the ensemble loss.

This approach generally performed better than
both conventional supervised learning and tradi-
tional distillation from a larger pretrained teacher.
Notably, our weighted mutual learning strategy can
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improve performance even among several large net-
works compared to independent learning, challeng-
ing the conventional understanding that distillation
requires a larger, more powerful teacher.

2 Related Work

The vanilla distillation Hinton et al. (2015) method
consists of two stages, firstly train a large teacher
model, followed by transfer of soft logits to a
smaller student model. Also known as Offline dis-
tillation, it keeps the teacher fixed, only allowing
a one-way knowledge transfer. To reduce mem-
ory consumption of training a large teacher model,
Zhang et al. (2018) proposed an online distillation
framework called mutual learning where a group
of student (or student) models were trained simul-
taneously. Although, online distillation eliminated
the teacher model, similar networks in online dis-
tillation may prevent the students from learning
knowledge from the students Zhang et al.. Re-
cent approaches have attempted to induce diver-
sity in online distillation to improve overall perfor-
mance. Chen et al. (2020) proposed inducing data
diversity by training student models with varying
image augmentations. However, this method re-
lies heavily on data augmentations, which can be
unpredictable in real-world deployment scenarios.
Du et al. (2020) introduced an adaptive ensem-
ble knowledge distillation method using multiple
diverse teacher models to train a student model.
While this approach shows promise, it requires
maintaining several teacher models, leading to in-
creased memory usage and computational over-
head. The reported accuracy improvements are
also relatively modest, typically ranging from 0.5%
to 1% across benchmarks. Our approach closely
resembles to that of Zhang et al.. They present a
diversity induced weight mutual learning approach
for distillation. They introduce diversity by assign-
ing varying pruning ratios to different student mod-
els. Although this method reduces memory con-
sumption, the manual assignment of pruning ratios
may not generalize well across different architec-
tures and tasks. The reported performance gains are
limited, with improvements of less than 0.5% on
most benchmarks. As shown by Liu et al. (2017),
while pruning induces sparsity within networks and
can reduce computational complexity (measured in
FLOPs), the relationship between pruning percent-
age and actual model size reduction is not always
linear. Moreover, in Zhang et al., we observe a

performance drop when pruning beyond 30%, indi-
cating a trade-off between model compression and
accuracy.

3 Diversity Induced Weighted Mutual
Learning

3.1 Diversifying student models

In our approach to create diverse student models
for the Diversity Induced Weight Mutual Learning
(DWML) framework, we employ Bayesian opti-
mization to efficiently search for optimal architec-
tural configurations. Given a teacher model with N
parameters, we aim to generate p student models,
where the i-th student model targets approximately
Ni parameters, defined as:

Ni =
N

i+ 1
, i ∈ 1, 2, ..., p (1)

This optimization problem can be formally defined
as finding, for each student i, an architecture ai
from the set of all possible RoBERTa architec-
tures A that minimizes ||params(ai)−Ni||, where
params(ai) represents the parameter count of ar-
chitecture ai. We chose Bayesian optimization for
this task due to its efficiency in exploring high-
dimensional spaces with relatively few function
evaluations, making it less computationally expen-
sive compared to alternative methods such as grid
search or random search (Kandasamy et al., 2018).
Our implementation utilizes the BayesianOptimiza-
tion library (Nogueira, 2014–), with a search space
encompassing the number of layers, number of at-
tention heads, and embedding dimension. The ob-
jective function calculates the difference between
the actual parameter count of a given architecture
and the target parameter count, with a constraint
ensuring the embedding dimension is divisible by
the number of attention heads.

3.2 Weighted Mutual Learning using Bi-level
optimisation

Building upon the work of (Zhang et al.), we
introduce a modified approach to Weighted Mu-
tual Learning using bi-level optimization. Our
method replaces the pruning-based initialization
with Bayesian optimization for student model se-
lection.

The overall loss function for training M peer
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Figure 1: Overview of the difference between Vanilla knowledge distillation and our approach, Diversity induced
weighted mutual learning (DWML). (a) Hinton et al. (2015) is the popular knowledge distillation method, where the
student network (RoBERTa-xM) can only learn from a trained teacher network (RoBERTa-base-125M). Here xM
refers to a student model of x million parameters. (b) is the Diversity Induced Weight Mutual Learning (DWML)
framework where each student model is initialised with parameter counts = N/2, N/3..N/(p+ 1) using Bayesian
optimisation search. Rather than averaging the knowledge from students, DWML leverages bi-level optimization to
estimate the relative importance of each student (e.g., weight ωi for student i).

models is defined as:

loss = (1− α)

M∑

i=1

ωiLCE(zi, Y )

+α
M∑

i=1

M∑

j=1

ωjKL(zi, zj)

(2)

where ωi indicates the importance of the i-th stu-
dent model, α balances the supervision from labels
and peers, LCE is the cross-entropy loss, and KL
is the Kullback-Leibler divergence. ωj is the im-
portance of every other student model except the
i-th one. Both zi and zj are model logits. We for-
mulate the weighted mutual learning as a bi-level
optimization problem. The inner loop optimizes
the network parameters θ using the loss in equation
2. As shown in the paper, the gradient for the outer
loop optimization, also known as the hypergradient,
is calculated as:

gωi = ∇ωiL2 =
∂L2

∂ωi
− γ

∂L2

∂θ

∂La

∂θ

T

(3)

where La = (1 − α)LCE(zi, Y ) +
α
∑M

j=1KL(zj , zi) is the ensemble loss. Since ω

is a probability simplex that
∑M

i=1 ωi = 1, we use
the mirror descent to update ω [3, 5]. Algorithm 1
outlines our weighted mutual learning for online
distillation. To be more specific, we first run
several steps of gradient descent based on the loss
function in 2 to update model parameters θ with

a fixed ω. Then we calculate the gradient of ωi

based on 3, and run one step of mirror descent to
update ωi:

ωk+1
i =

ωk
i exp{−η∇ωk+1

i
L2}

∑M
i=1 ω

k
i exp{−η∇ωk+1

i
L2}

(4)

where η is the step size with annealing, and ωk
i

is the importance of the i-th peer in the k-th step.

4 Training

4.1 RoBERTa-base

Our models are based on RoBERTa-base (Liu et al.,
2019). This model has shown reasonably good per-
formance on small text corpus. We use the raw
RoBERTa-base as a baseline in the evaluations. We
use it as our teacher model to distill student models
using knowledge distillation (KD) and the teacher
supervised version of weighted deep mutual learn-
ing (KD_DWML). Details about the hyperparam-
eters found from the search are shown in 3. The
models were pre-trained (and finetuned for GLUE,
SuperGLUE tasks) using 1 Nvidia H100 GPU with
80GB VRAM.

4.2 Dataset

We pretrain all our language models on the 10M
and 100M datasets of the BabyLM challenge from
2023 (Warstadt et al., 2023). We adopt the same
preprocessing pipeline from (Samuel et al., 2023)
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Algorithm 1: Diversity Induced
Weighted Mutual Learning (DWML)
Input: Dataset {(xn, yn)}Nn ; Number of peers

M; Teacher model size N
1: Define parameter space Θ for number of

layers,attention heads, and hidden size
2: Objective function f(θ) = |params(θ)−Ni|

where Ni = N/(i+ 1)
3: for i = 1 to M do
4: Use Bayesian optimization to find optimal θ∗i

from Θ
5: Initialize peer model i with parameters θ∗i
6: end for
7: Initialize peer weights ω0

8: for k = 1 to K do
9: With peer importance ωk, run T steps of

AdamW to update model parameters θ using
Eq. 2

10: Calculate gradient for ωk based on Eq. 3
11: Update ωk to ωk+1 using mirror descent

with Eq. 4
12: end for
Output: M models with outputs z1, ..., zM
and weights for peers ω

for standardizing the text corpus. The detailed
breakdown of the datasets are shown in 5. The
reason why we select the datasets from 2023 is that
it appears to be similar to the dataset released for
the 2024 challenge (Choshen et al.). The only dif-
ference is the exclusion of the QCRI Educational
Domain (QED) Corpus and higher proportion of
CHILDES from 4.21M to 29M. This was done be-
cause the QED was of poor quality. However, we
believe that the 2023 dataset gives us an opportu-
nity to explore how distilled models perform when
trained datasets that closely represent real world
textual data that is unavoidably noisy.

5 Results

This section provides the results of the empiri-
cal evaluation of DWML. First, we compare our
method to baselines, then we compare our method
with other distillation methods and then we perform
an ablation study of different DWML variations.

5.1 BabyLM Challenge evaluation

We use the BabyLM evaluation pipeline to as-
sess our models. This pipeline measures syn-
tactic understanding through the Benchmark of
Linguistic Minimal Pairs (BLiMP & BLiMP sup-

Text-only 10M Dataset
Model BLiMP Supp. EWoK GLUE
BabyLlama 69.8 59.5 50.7 63.3
LTG-BERT 60.6 60.8 48.9 60.3
RoBERTa-base 49.6 48.9 51.6 42.5
RoBERTa-
DWML

51.6 52.3 50.3 43.1

Text-only 100M Dataset
Model BLiMP Supp. EWoK GLUE
BabyLlama 73.1 60.6 52.1 69.0
LTG-BERT 69.2 66.5 51.9 68.4
RoBERTa-base 49.8 46.8 50.25 43.4
RoBERTa-
DWML

52.1 48.4 51.6 44.0

Table 1: Results for the BabyLM challenge evaluation
datasets. We compare our submitted model (RoBERTa-
DWML) to the base model (RoBERTa-base) and the
baselines given by the organizers of the challenge on
the 10M and 100M datasets.

plemental,Warstadt et al. (2020)). It evaluates
general knowledge using the Elements of World
Knowledge (EWoK, Ivanova et al. (2024)) bench-
mark. For overall natural language understand-
ing, it uses GLUE (Wang et al. (2018)) and Su-
perGLUE (Wang et al. (2019). If applicable, we
divide the training set into a train-development split
and report the mean statistics over multiple runs on
the hidden validation split.The detailed scores are
shown in section D

BLiMP Our RoBERTa-DWML demonstrates
consistent improvements over RoBERTa-base
across both dataset sizes. On the 10M dataset,
DWML achieves 51.6% compared to RoBERTa-
base’s 49.6%, showing a 2% improvement. This
gain is maintained in the 100M dataset, where
DWML scores 52.1% versus RoBERTa-base’s
49.8%. While these improvements are modest,
they demonstrate that our teacher-less approach
can enhance syntactic understanding with mini-
mal computational overhead. It’s worth noting that
BabyLlama’s multi-teacher distillation approach
(Timiryasov and Tastet, 2023) significantly outper-
forms all models (73.1% on 100M), though this
comes at the cost of substantial computational re-
quirements in maintaining and training with mul-
tiple teacher models (GPT-2 and LLaMA), which
may not be practical for resource-constrained ap-
plications.

BLiMP Supplemental The supplemental
BLiMP results further validate the effective-
ness of our DWML approach. For the 10M
dataset, RoBERTa-DWML (52.3%) outperforms
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RoBERTa-base (48.9%) by a margin of 3.4%.
In the 100M setting, we observe a similar trend
with DWML (48.4%) showing improvement over
the base model (46.8%). These consistent gains
come with minimal additional computational
cost over the base model. While BabyLlama
achieves substantially higher performance (60.6%
on 100M), this improvement requires significant
computational resources for managing multiple
teacher models during training and inference, a
trade-off not examined in their original work.

EWoK On the world knowledge tasks,
RoBERTa-DWML maintains competitive perfor-
mance relative to RoBERTa-base. In the 10M
dataset, DWML (50.3%) performs slightly below
the base model (51.6%), while in the 100M dataset,
DWML (51.6%) shows improvement over the
base model (50.25%). These results demonstrate
the capability of our lightweight approach in
preserving world knowledge. While BabyLlama
leads with 52.1% on the 100M dataset through
its multi-teacher architecture, the relatively small
performance gap (0.5%) raises questions about
whether the significant computational overhead of
maintaining multiple teacher models is justified
for world knowledge tasks in resource-constrained
environments.

GLUE All the models were fine-tuned on the
GLUE and SuperGLUE datasets and then evalu-
ated on their linguistic performance. On the GLUE
benchmark, RoBERTa-DWML shows marginal
improvements over RoBERTa-base across both
dataset sizes. For the 10M dataset, DWML
achieves 43.1% compared to RoBERTa-base’s
42.5%, representing a modest 0.6% gain. This
pattern continues in the 100M setting, where
DWML (44.0%) slightly outperforms the base
model (43.4%). These results suggest that our
teacher-less approach maintains general language
understanding capabilities

5.2 Comparison with Other Distillation
Methods

To evaluate the effectiveness of our proposed dis-
tillation method, in Table 2 we compare its per-
formance against other distillation techniques us-
ing accuracy scores. Our framework is compared
to Self-Distillation (SD, Zhang et al. (2019)), a
method that allows a small-sized student model
to distill knowledge within its network. Knowl-
edge distillation (KD,Hinton et al. (2015)) is the

vanilla distillation framework that uses a student
network to approximate the output logits of a pre-
trained teacher network. Deep mutual learning
(DML,Zhang et al. (2018)) an ensemble of students
learn collaboratively (without a teacher) and teach
each other. The main difference between DML
and our diversity induced weight mutual learning
(DWML) framework is the usage of dynamically
learned student weights using a bi-level optimiza-
tion objective.Knowledge distillation based diver-
sity induced weight mutual learning (KD_DWML)
is the teacher-supervised version of DWML. The
GPU utilization and training times are shown in
Table 9 and Figure 4. They clearly show a trade-
off between training times(mins) and GPU Utiliza-
tion(%). While our approach DWML had the low-
est GPU utilization among all, the training time
was reported the highest.

BLiMP Filtered On the BLiMP Filtered dataset,
teacher-less methods demonstrate superior perfor-
mance, with SD and DWML achieving 51.73% and
51.58% respectively, significantly outperforming
their teacher-supervised counterparts KD (47.65%)
and KD_DWML (47.47%). Among all approaches,
our DWML framework shows strong performance,
ranking second only to SD with a marginal dif-
ference of 0.15%. Notably, DWML substantially
outperforms traditional KD by 3.93% and DML by
4.14%, validating the effectiveness of our dynamic
weighting strategy in the absence of teacher super-
vision. Compared to the RoBERTa-base baseline
(49.62%), both teacher-less methods show clear im-
provements, with DWML achieving a 1.96% gain,
suggesting that peer learning alone can enhance
syntactic understanding.

BLiMP Supplement The BLiMP Supplement
results further reinforce the advantage of teacher-
less methods, with SD achieving the highest score
of 56.53%. Our DWML method (52.25%) out-
performs DML (45.19%) by a substantial margin
of 7.06%, though it falls behind SD. While KD
(55.82%) and KD_DWML (53.65%) show compet-
itive performance, the superior performance of SD
demonstrates that teacher supervision isn’t neces-
sary for strong syntactic understanding. All distil-
lation methods except DML surpass the RoBERTa-
base baseline (48.9%) by a significant margin, with
our DWML showing a 3.35% improvement, fur-
ther validating the effectiveness of peer learning
for syntactic tasks.
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BLiMP Filtered
Method Teacher Peer 1 (60M) Peer 2 (42M) Peer 3 (34M) Peer 4 (28M) Best↑
RoBERTa-base-125M - - - - - 49.62
SD No 51.73 50.04 50.31 51.18 51.73
KD Yes 46.47 47.25 47.09 47.65 47.65
DML No 47.01 47.77 47.21 47.16 47.44
KD_DWML (Ours) Yes 47.05 47.28 47.47 46.66 47.47
DWML (Ours) No 50.45 51.58 51.46 50.63 51.58

BLiMP Supplement
Method Teacher Peer 1 (60M) Peer 2 (42M) Peer 3 (34M) Peer 4 (28M) Best↑
RoBERTa-base-125M - - - - - 48.9
SD No 53.03 54.78 49.63 56.53 56.53
KD Yes 53.73 52.64 52.58 55.82 55.82
DML No 44.74 45.14 45.19 44.96 45.19
KD_DWML (Ours) Yes 52.21 53.09 53.34 53.65 53.65
DWML (Ours) No 52.25 48.99 48.43 47.99 52.25

EWoK Filtered
Method Teacher Peer 1 (60M) Peer 2 (42M) Peer 3 (34M) Peer 4 (28M) Best↑
RoBERTa-base-125M - - - - - 51.6
SD No 48.4 49.38 50.36 49.19 50.36
KD Yes 50.12 50.3 51.56 50.42 51.56
DML No 50.05 50.12 50.06 48.82 50.12
KD_DWML (Ours) Yes 55.44 40.36 50.75 49.83 55.44
DWML (Ours) No 49.98 49.84 49.08 50.29 50.29

Table 2: BLiMP Filtered, BLiMP Supplement, and EWoK scores for Text-only 10M dataset, comparing different
distillation methods. Best accuracy scores (higher is better) are shown.

EWoK Filtered On the EWoK Filtered dataset,
we observe a unique pattern where KD_DWML
achieves the highest performance (55.44%), though
teacher-less methods still show strong consistency,
with SD, DML, and DWML achieving 50.36%,
50.12%, and 50.29% respectively. Interestingly,
teacher-less methods perform slightly below the
baseline, with a performance gap of up to 1.24%.
This deviation from the pattern observed in BLiMP
datasets suggests that world knowledge tasks may
benefit more from teacher guidance, which could
explain why KD_DWML achieved the best per-
formance with a substantial 3.84% improvement
over the baseline. This finding indicates that while
peer learning is effective for syntactic tasks, world
knowledge acquisition might require the structured
guidance that teacher supervision provides.

5.3 Ablation studies

We compare the following modifications to the orig-
inal DWML architecture :

1. Varying number of students : The effect of
using different number of student networks
during training.

2. Varying α ratio between label and peer su-
pervision : The effect of using different α in

equation 2 that balances KL divergence and
cross-entropy loss.

3. Effect of dynamic student weights : Deter-
mining if learning peer weights during train-
ing affect model performance (average accu-
racy %)

4. Effect of model size : Determining if model
sizes affected model performance (average
accuracy %)

Effect of Varying number of student models
Figure 2(a) illustrates the impact of increasing the
number of peer networks in our DWML frame-
work. Performance on syntactic tasks, as measured
by BLiMP and BLiMP Supplemental, shows mod-
est variations across different peer counts. For
BLiMP, we observe a slight decrease from 1 to
2 peers (51.73% to 51.55%), followed by a slight
increase with 4 peers (51.58%). BLiMP Supple-
mental shows more variation, starting at 53.03%,
dropping to 50.91% with two peers, and then in-
creasing to 52.25% with four peers. The average
performance across these metrics shows a similar
pattern, starting at 51.58% with one peer, decreas-
ing to 50.62% with two peers, and slightly recover-
ing to 51.37% with four peers. These results indi-
cate that while increasing the number of peers does
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Figure 2: Performance comparison across different experimental settings for 10M dataset: (left) varying number of
peers, showing how model performance changes with different peer counts; (middle) impact of alpha parameter in
the loss function on model accuracy; (right) relationship between relative importance and accuracy for different
model sizes.

affect performance, the differences are relatively
small, with no clear advantage for any particular
peer configuration. This suggests that adding more
peers may not necessarily lead to substantial gains
in syntactic understanding tasks.

Effect of Varying Alpha Figure 2(b) demon-
strates the impact of varying the alpha parameter,
which balances the trade-off between cross-entropy
loss and peer knowledge distillation in our loss
function (Equation 2). With α = 0.3, indicating
stronger emphasis on label supervision, we observe
the lowest performance. At α = 0.5, representing
an equal balance between label supervision and
peer knowledge, performance improves across all
metrics. However, when α = 0.7, shifting focus
more towards peer knowledge, we see mixed re-
sults with a notable decline in BLiMP (48.65%)
while BLiMP Supplemental shows improvement
(52.87%). This pattern suggests that α = 0.5 pro-
vides an optimal balance: when α is too low (0.3),
the models don’t fully leverage peer knowledge,
and when too high (0.7), excessive reliance on peer
learning may compromise individual model perfor-
mance. The results empirically validate our choice
of α = 0.5 as a balanced configuration for our
DWML framework.

Effect of Dynamic Relative Student Importance
Figure 2(c) reveals a positive correlation between
dynamically learned importance weights and model
performance (R = 0.7). Models with higher im-
portance weights demonstrate better accuracy, as
shown by the 60M parameter model achieving
50.89% accuracy with a 0.2511 weight, compared
to the 28M model’s 49.63% accuracy with a 0.2484
weight. This near-perfect linear relationship be-
tween assigned weights and performance validates
our bi-level optimization approach, confirming that

the framework successfully identifies and assigns
higher weights to more capable models.

Effect of Model Size Figure 2(c) shows that
model performance generally increases with model
size, with the 60M parameter model achieving
50.89% accuracy, followed by 50.13% for 42M,
49.65% for 34M, and 49.63% for 28M parame-
ters. This positive correlation between model size
and performance aligns with previous findings, in-
cluding those from the Chinchilla study (Hoffmann
et al., 2024).

6 Conclusion

In this paper, we introduced Diversity Induced
Weighted Mutual Learning (DWML) as an alterna-
tive to teacher-supervised knowledge distillation.
While our approach showed modest improvements
over the RoBERTa-base baseline, it was the simpler
Self-Distillation method that achieved the strongest
performance. Our ablation studies on our approach
(DWML) revealed that two-peer configurations of-
fered optimal efficiency, a balanced loss function
(α = 0.5) was crucial, and model performance
correlated strongly with both dynamically learned
importance weights and model size. Regarding
computational efficiency, while DWML showed
the lowest average GPU utilization, it required
longer training times. Hence, in answering our re-
search question about whether student knowledge
sharing can match teacher-guided distillation on
small datasets, we found that teacher-less methods
can indeed match or exceed teacher-supervised ap-
proaches, but not necessarily through complex peer
learning mechanisms. The success of simpler meth-
ods like SD suggests that the field might benefit
from focusing on refined single-model approaches
rather than elaborate multi-model frameworks. Fu-

203



ture work should investigate why simpler teacher-
less methods outperform more complex peer learn-
ing approaches, explore better neural architecture
search techniques, and develop methods to reduce
training time while maintaining low resource uti-
lization.
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A Pretraining Hyperparameters

Hyperparameters Base
4 peer models 2 peer models

1 peer model
1* 2 3** 4 1 2

Number of parameters 125M 60M 42M 34M 28M 60M 42M 60M
Number of layers 12 8 16 32 8 8 16 8
Hidden size 768 512 256 128 256 512 256 512
FF intermediate size 3072 3072 3072 3072 3072 3072 3072 3072
Vocabulary size 50265 50265 50265 50265 50265 50265 50265 50265
Attention heads 12 32 8 4 8 32 8 32
Hidden dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Training steps 150 150 150 150 150 150 150 150
Mini batch size 3 3 3 3 3 3 3 3
Num. of mini batches 60 60 60 60 60 60 60 60
Sequence length 514 514 514 514 514 514 514 514
Warmup ratio 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03% 0.03%
Initial learning rate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Final learning rate 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Learning rate scheduler cosine cosine cosine cosine cosine cosine cosine cosine
Weight decay 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Layer norm ϵ 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12 1.00E-12
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW AdamW
β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
Gradient clipping 1 1 1 1 1 1 1 1
*Selected for 10M dataset. **Selected for 100M dataset.

Table 3: Pre-training hyperparameters for base and 4, 2 and 1 peer models for the DWML framework. The same set
of hyperparameters are used for other distillation methods for an apple-to-apple comparison.

B Finetuning Hyperparameters

Hyperparameters Full fine-tuning
Random seed 643
Batch size 32
Number of epochs 6
Dropout 0.1
Peak learning rate 2.50E-06
Learning rate decay cosine
Weight decay 0.1
Optimizer AdamW
Adam β1 0.9
Adam β2 0.999
Warmup steps 3

Table 4: Hyperparameters for full fine-tuning the GLUE, SuperGLUE task. We use the same fine-tuning script for
comparison of RoBERTa-base and our DWML models.
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C Dataset

# Words

Dataset Domain STRICT-SMALL STRICT Proportion

CHILDES MacWhinney (2000) Child-directed speech 0.44M 4.21M 5%
British National Corpus (BNC),1 dialogue portion Dialogue 0.86M 8.16M 8%
Children’s Book Test Hill et al. (2015) Children’s books 0.57M 5.55M 6%
Children’s Stories Text Corpus2 Children’s books 0.34M 3.22M 3%
Standardized Project Gutenberg Corpus Gerlach and Font-Clos (2020) Written English 0.99M 9.46M 10%
OpenSubtitles Creutz (2018) Movie subtitles 3.09M 31.28M 31%
QCRI Educational Domain Corpus (QED; Abdelali et al., 2014) Educational video subtitles 1.04M 10.24M 11%
Wikipedia3 Wikipedia (English) 0.99M 10.08M 10%
Simple Wikipedia4 Wikipedia (Simple English) 1.52M 14.66M 15%
Switchboard Dialog Act Corpus (Stolcke et al., 2000) Dialogue 0.12M 1.18M 1%

Total – 9.96M 98.04M 100%

Table 5: The contents of datasets for the the 10M and 100M tracks; the table is taken from . 1http://www.
natcorp.ox.ac.uk 2https://www.kaggle.com/datasets/edenbd/children-stories-text-corpus 3https://dumps.
wikimedia.org/enwiki/20221220/ 4https://dumps.wikimedia.org/simplewiki/20221201/

D Detailed results

D.1 BLiMP

Method AA AS B CR DNA E FG IF IFS NPI Q SVA AVG
RoBERTa_KD_DWML_peer1 39.60 50.40 48.70 53.70 48.50 45.10 39.10 38.10 46.90 44.40 46.80 51.10 46.00
RoBERTa_KD_DWML_peer2 39.50 50.30 52.60 53.70 48.40 49.40 36.70 33.20 47.10 45.50 46.30 51.20 46.20
RoBERTa_KD_DWML_peer3 39.40 50.30 53.60 53.70 48.30 51.40 36.70 33.30 47.80 45.10 46.30 51.30 46.40
RoBERTa_KD_DWML_peer4 39.80 50.60 50.10 53.10 48.70 43.60 37.30 27.50 48.20 44.30 46.10 49.90 44.90
RoBERTa_KD_peer1 39.60 49.50 50.30 51.90 49.40 46.80 37.10 40.10 46.00 40.30 48.00 50.80 45.80
RoBERTa_KD_peer2 39.60 50.30 53.30 53.90 48.50 48.60 36.50 32.70 47.20 44.70 45.90 51.20 46.10
RoBERTa_KD_peer3 39.70 50.30 51.80 53.30 48.40 49.10 36.60 33.20 47.60 44.20 46.70 51.10 46.00
RoBERTa_KD_peer4 54.30 49.90 52.30 56.70 45.80 48.70 37.70 32.20 48.90 44.10 49.50 48.40 47.40
RoBERTa_SD_peer1 59.10 51.90 48.60 47.40 54.10 56.90 36.50 53.00 48.00 66.20 60.70 51.20 52.80
RoBERTa_SD_peer2 45.70 53.60 58.10 53.00 51.00 52.20 37.00 52.30 47.60 53.00 38.20 50.40 50.20
RoBERTa_SD_peer3 53.50 50.10 50.50 52.30 50.50 51.70 61.80 33.70 57.10 42.10 36.70 49.70 49.10
RoBERTa_SD_peer4 59.10 51.40 47.70 44.90 48.30 53.10 51.30 55.70 58.30 49.40 54.80 48.80 51.90
RoBERTa_base 38.90 47.90 62.80 49.70 48.60 48.40 27.50 53.40 55.00 49.90 60.40 51.40 49.50
DWML_2model_peer1 45.30 51.70 57.90 48.90 47.50 50.00 46.70 45.70 58.80 43.90 55.10 50.70 50.20
DWML_2model_peer2 45.30 51.70 57.70 48.90 47.50 50.10 46.60 45.70 59.50 43.80 54.90 50.70 50.20
DWML_4model_peer1 53.70 51.80 42.50 50.40 50.00 49.30 45.30 53.70 50.40 45.70 56.90 50.50 50.00
DWML_4model_peer2 53.90 51.80 42.70 50.60 50.00 49.80 45.30 53.60 50.60 50.40 57.10 50.60 50.50
DWML_4model_peer3 53.60 51.70 42.00 50.60 50.00 49.70 45.20 53.50 50.60 45.40 57.10 50.60 50.00
DWML_4model_peer4 53.80 51.60 42.50 50.30 50.00 49.80 45.20 53.60 50.10 50.90 57.20 50.50 50.50
DWML_alpha_3peer1 49.20 50.40 48.50 49.80 50.60 50.00 53.20 51.60 50.00 64.20 44.70 51.80 51.20
DWML_alpha_3peer2 48.90 50.60 47.90 49.70 50.40 50.40 53.10 52.10 50.10 64.00 44.50 51.70 51.10
DWML_alpha_3peer3 49.30 50.50 49.60 50.00 50.60 49.90 53.00 52.10 49.50 58.30 44.50 51.60 50.70
DWML_alpha_3peer4 49.20 50.30 48.20 49.80 50.60 50.00 53.30 51.50 49.60 63.50 44.70 51.90 51.00
DWML_alpha_7peer1 58.30 49.00 40.50 49.30 52.70 54.60 50.40 56.80 43.20 41.30 54.50 49.60 50.00
DWML_alpha_7peer2 58.60 49.20 40.60 49.80 52.70 54.40 50.40 57.10 43.80 41.90 57.70 49.80 50.50
DWML_alpha_7peer3 58.40 49.00 39.80 49.10 52.80 54.50 50.20 56.80 44.00 41.90 54.30 49.70 50.00
DWML_alpha_7peer4 58.40 49.10 40.00 49.20 52.70 54.80 50.20 56.80 43.90 42.30 58.60 49.70 50.50
DML_peer1 54.10 49.20 52.00 50.30 48.30 47.00 42.40 47.10 54.00 27.20 48.10 49.40 47.40
DML_peer2 53.90 49.20 54.90 50.30 48.40 46.40 42.60 46.60 53.90 32.10 48.00 49.20 48.00
DML_peer3 54.00 49.10 54.70 50.60 48.40 46.90 42.50 46.70 53.80 26.90 48.00 49.00 47.60
DML_peer4 54.10 49.10 54.60 50.30 48.30 46.70 42.60 46.70 53.70 26.60 48.10 49.30 47.50

Table 6: BLiMP results for models trained using different methods. The bold results represent the best model for
each task. The metric used is accuracy (%). Acronyms: AA (Anaphor Agreement), AS (Argument Structure), B
(Binding), CR (Control/Raising), DNA (Determiner-Noun Agreement), E (Ellipsis), FG (Filler-Gap), IF (Irregular
Forms), IFS (Island Effects), NPI (NPI Licensing), Q (Quantifiers), SVA (Subject-verb agreement)
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D.2 BLiMP Supplement

Method subject_aux_ qa_congruence_ turn_ hypernym qa_congruence_ average
inversion tricky taking easy

KD_DWML_peer1 44.53 60.61 56.07 52.97 46.88 52.21
KD_DWML_peer2 50.61 58.79 56.07 53.09 46.88 53.09
KD_DWML_peer3 50.32 58.79 56.07 54.63 46.88 53.34
KD_DWML_peer4 49.96 58.18 55.71 52.85 51.56 53.65
KD_peer1 53.19 59.39 55.36 52.26 48.44 53.73
KD_peer2 48.00 58.18 55.71 52.85 48.44 52.64
KD_peer3 48.69 59.39 56.07 53.44 45.31 52.58
KD_peer4 55.50 62.42 55.36 54.28 51.56 55.82
SD_peer1 65.48 47.88 45.00 56.77 50.00 53.03
SD_peer2 54.20 47.88 51.79 52.85 67.19 54.78
SD_peer3 58.81 52.12 50.71 53.68 32.81 49.63
SD_peer4 66.12 59.39 52.86 54.28 50.00 56.53
DWML_2peer_1 42.40 65.50 45.40 49.90 54.70 51.50
DWML_2peer_2 42.00 65.50 46.40 50.40 51.60 51.20
DWML_alpha_3peer_1 63.00 50.30 44.30 49.40 45.30 50.50
DWML_alpha_3peer_2 63.10 50.90 46.10 48.80 43.80 50.50
DWML_alpha_3peer_3 60.00 50.30 44.60 50.10 42.20 49.40
DWML_alpha_3peer_4 62.90 50.30 45.00 50.70 43.80 50.50
DWML_alpha_7peer_1 69.70 50.90 57.50 49.60 31.30 51.80
DWML_alpha_7peer_2 70.30 52.70 57.50 51.10 32.80 52.90
DWML_alpha_7peer_3 70.90 50.30 57.90 51.00 31.30 52.20
DWML_alpha_7peer_4 70.50 52.10 59.30 51.20 32.80 53.20
RoBERTa_base 54.00 41.20 52.90 51.30 45.30 48.90
DML_peer_1 42.60 55.80 51.40 48.90 25.00 44.70
DML_peer_2 45.30 55.80 51.10 48.60 25.00 45.10
DML_peer_3 42.10 57.00 51.40 50.50 25.00 45.20
DML_peer_4 43.80 55.20 51.40 49.40 25.00 45.00
DWML_4peer_1 53.6 53.4 43.2 54.4 56.6 52.25
DWML_4peer_2 50.6 49.8 40.2 51.1 53.3 48.99
DWML_4peer_3 50.6 48.4 39.5 50.4 53.1 48.43
DWML_4peer_4 48.8 48.0 40.0 49.6 53.6 47.99

Table 7: Supplement BLiMP results for RoBERTa models trained using different distillation methods. All values
are presented as percentages.The bold results represent the best model for each task.
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D.3 EWoK

Method SP QP PR SI PI MP MD PD AP SR AVG
RoBERTa_base 53.5 54.5 51.0 48.0 51.8 53.5 50.1 54.2 49.5 50.4 51.6
KD_peer_1 60.2 58.0 51.8 45.6 45.5 48.2 52.7 32.5 45.9 50.2 50.1
KD_peer_2 50.4 51.9 48.9 50.7 50.2 55.3 49.7 47.5 52.6 49.2 50.3
KD_peer_3 50.4 48.4 51.3 52.0 50.9 55.9 50.4 55.8 51.0 48.8 51.6
KD_peer_4 38.8 43.9 50.0 60.5 43.7 51.2 50.8 50.0 52.6 49.4 50.4
KD_DWML_peer_1 63.3 62.4 53.8 48.3 52.5 68.2 47.1 61.7 53.8 51.0 55.4
KD_DWML_peer_2 50.0 45.5 42.3 40.1 41.2 24.7 47.9 28.3 44.4 46.9 40.4
KD_DWML_peer_3 49.8 53.2 50.4 53.7 50.4 55.9 48.8 50.8 48.2 49.0 50.8
KD_DWML_peer_4 40.4 49.4 44.5 45.2 54.1 57.6 49.0 40.8 52.0 52.0 49.8
SD_peer_1 52.4 46.2 50.2 48.3 48.2 44.1 49.7 50.0 49.4 50.5 48.4
SD_peer_2 52.4 47.5 49.3 47.3 51.6 45.9 50.1 54.2 49.6 50.2 49.4
SD_peer_3 52.0 49.4 51.2 48.3 51.1 52.4 49.0 43.3 50.4 50.9 50.4
SD_peer_4 53.7 50.3 49.6 47.3 49.1 51.2 48.8 42.5 50.6 49.5 49.2
DWML_2peer_1 49.8 47.5 51.6 47.6 49.6 45.9 50.3 48.3 51.0 51.0 49.4
DWML_2peer_2 50.2 50.6 49.1 46.9 53.1 50.6 51.3 45.0 51.0 49.9 49.9
DWML_alpha_3peer_1 53.5 47.8 49.0 49.0 50.4 48.8 49.6 50.0 49.4 50.3 49.5
DWML_alpha_3peer_2 51.8 49.0 49.8 46.9 50.4 50.6 49.2 49.2 50.0 50.1 49.7
DWML_alpha_3peer_3 50.6 48.4 50.2 47.3 48.7 51.8 50.5 44.2 49.2 50.2 49.2
DWML_alpha_3peer_4 51.4 47.5 49.9 46.6 50.4 51.2 50.8 48.3 49.9 49.8 49.4
DWML_alpha_7peer_1 50.4 54.1 50.1 50.7 49.1 55.9 50.6 49.2 50.9 51.0 51.4
DWML_alpha_7peer_2 51.0 49.4 49.3 51.4 50.7 51.2 50.3 48.3 50.3 49.2 50.3
DWML_alpha_7peer_3 50.0 48.4 49.3 49.0 51.6 45.3 48.4 50.0 50.1 49.9 49.6
DWML_alpha_7peer_4 50.6 49.0 49.9 49.3 50.2 51.2 48.8 49.2 49.0 49.9 49.6
DML_peer_1 51.4 47.1 50.0 50.0 50.5 55.9 49.1 53.3 49.2 51.0 50.1
DML_peer_2 51.0 49.0 49.1 49.0 50.7 54.7 49.2 52.5 49.3 50.6 50.1
DML_peer_3 49.8 51.0 49.1 52.7 46.9 52.9 51.6 44.2 49.5 50.8 50.1
DML_peer_4 52.7 52.5 48.4 50.3 46.8 42.4 50.6 44.2 50.0 49.7 48.8
DWML_4model_peer_1 52.0 49.7 50.0 47.6 50.9 48.8 49.5 50.0 50.1 50.3 50.0
DWML_4model_peer_2 51.2 48.7 49.0 51.4 48.9 50.0 50.6 48.3 49.0 49.9 49.8
DWML_4model_peer_3 49.4 51.3 50.4 49.7 49.5 50.6 50.1 39.2 50.0 49.6 49.1
DWML_4model_peer_4 53.9 48.7 46.8 45.2 46.8 50.6 51.4 56.7 49.7 49.2 50.3

Table 8: EWOK evaluation results for different distillation methods. The bold results represent the best performance
for each metric. Acronyms: SI (Social Interactions), SP (Social Properties), SR (Social Relations), PI (Physical
Interactions), PD (Physical Dynamics), PR (Physical Relations), MD (Material Dynamics), MP (Material Properties),
AP (Agent Properties), QP (Quantitative Properties). The metric used is accuracy, and results are presented as
percentage values.The bold results represent the best model for each task.
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E Peer importance training during distillation

Figure 3: Peer importance weights dynamically trained using mirror descent algorithm as described in Equation 4

F GPU Utilization

Method Max↓ Average↓ Training Time(mins)↓
RoBERTa_SD_10M_n_peer_4_4 56.07 52.92 2.91
RoBERTa_SD_10M_n_peer_4_3 50.67 48.47 8.51
RoBERTa_SD_10M_n_peer_4_2 55.60 51.10 4.98
RoBERTa_SD_10M_n_peer_4_1 73.07 68.47 3.02
RoBERTa_KD_DWML_10M_n_peer_4 69.80 62.71 25.51
RoBERTa_KD_10M_n_peer_4_4 63.40 58.68 3.53
RoBERTa_KD_10M_n_peer_4_3 53.93 51.48 9.03
RoBERTa_KD_10M_n_peer_4_2 60.93 56.09 5.52
RoBERTa_KD_10M_n_peer_4_1 78.00 63.89 4.01
RoBERTa_DWML_10M_n_peer_4 68.47 43.20 32.02
RoBERTa_DML_n_peer_4 86.8 43.66 8

Table 9: GPU utilization and training time for various RoBERTa distillation techniques (Lower is better). The
RoBERTa_DML_n_peer_4 model shows the highest max utilization. In contrast, RoBERTa_SD_n_peer_4_1
maintains the highest average utilization (68.47%), indicating that training the largest peer model (60M) consistently
increase GPU consumption. Our approach, DWML had the lowest average GPU utilisation over time, lower by 2̃0%
in comparison to its teacher-supervised counterpart (KD_DWML)
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Figure 4: GPU utilization for different distillation methods.
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Abstract

The size of neural models within natu-
ral language processing has increased at a
rapid pace in recent years. With this in-
crease in model size comes an increase in
the amount of training data required for
training. While these larger models have
shown strong performance, their use comes
with added training and data costs, can be
resource-prohibitive for many researchers,
and uses an amount of language data that
is not always available for all languages.
This work focuses on exploring quality esti-
mation as a method of data selection or fil-
tering. The aim is to provide models with
higher quality data as compared to larger
amounts of data. This approach was ap-
plied to machine translation models with
varying data sizes as well as to the BabyLM
Challenge. Given the 100M word dataset
provided in the BabyLM Challenge, we
test out various strategies for selecting 10M
words for pretraining and use a curriculum
learning approach based on the quality es-
timation scoring. We find small improve-
ments in certain data settings.

1 Introduction

In recent years, there has been a dramatic rise in
the size of neural network models used for natural
language processing tasks. To train these larger
models, there has been a similar rise in the size
of datasets used for training or pretraining. While
these models have been quite successful, this trend
comes with several downsides including the cost of
creating these larger systems which also inhibits
the ability of many researchers who lack access to
the large scale computing resources required. By
contrast, human language development occurs in
children with exposure to far fewer words of train-
ing data. Inspired by this, the BabyLM Chal-
lenge (Choshen et al., 2024) focuses on “sample-
efficient pretraining on a developmentally plausible
corpus.”

One approach to improve model performance in
data-limited settings is curriculum learning (El-
man, 1993). Just as human language learners are

typically exposed to simpler language before build-
ing up to more complex utterances, curriculum
learning involves increasing the difficulty of train-
ing examples over the course of model training.
In order to do this, there must be some measure
of “difficulty” in order to assign an ordering to
training examples. In this work, we apply qual-
ity estimation scoring as an estimation of diffi-
culty. These scores are used to train models for
the BabyLM Challenge, specifically restricted to
10 million words or less of training data.
Quality estimation (QE) in machine translation

scores the quality of translation output without
the need for a reference translation (Specia et al.,
2018). Through a series of experiments, we explore
the effects of using QE to filter data for machine
translation systems for both initial model training
and fine-tuning, as well as the result of training
on different quantities of data for each model (see
Section 3). Prior work has shown that data filter-
ing through QE can increase model performance
(Batheja and Bhattacharyya, 2023). We explore
that further in this work for both machine transla-
tion and language modeling in data restricted set-
tings.
Since quality estimation scores the quality of

the output of a machine translation system, it is
likely that higher QE scores correspond to sen-
tences which the system has an easier time trans-
lating. Motivated by this, we experiment with us-
ing QE scores as an estimation of the difficulty of
a given sentence for an NLP system. In partic-
ular, we use this for data selection as well as for
difficulty scoring for curriculum learning training
of a “baby” language models as part of the 2024
BabyLM Challenge (see Section 4).

2 Related work

2.1 BabyLM Challenge and Curriculum
Learning

As this is the second year of the BabyLM Chal-
lenge, there is a body of existing work which relates
directly to our BabyLM experiments (Warstadt
et al., 2023). There were many submissions (41.9%
of teams) in last year’s iteration which made use of
curriculum learning. Using a curriculum to make
training difficulty scale up during training is known

212



as curriculum learning (Bengio et al., 2009). It
has been shown that reordering input data during
training can have a large effect on model perfor-
mance across tasks such as natural language infer-
ence (NLI) (Schluter and Varab, 2018) and neural
machine translation (NMT) (Liu et al., 2020). The
most similar approaches from last year’s BabyLM
Challenge to this current work were by Chobey
et al. and by Hong et al.. In those works, a teacher
language model was trained first and used to de-
termine the curriculum for training a new model.
We similarly are using another model to inform
the curriculum, though the model and curriculum
forming is done differently.

2.2 Quality Estimation

QE has been used to assist with both automated
post-editing (APE) (Chatterjee et al., 2018) and
human post-editing tasks (Béchara et al., 2021).
QE can be used in tandem with APE to determine
which sentences from a machine translation system
need to be corrected (Chatterjee et al., 2018). In
contrast, we use QE in this work to filter out data
to be used for fine-tuning the machine translation
model.

QE has also been used to extract high-quality
data from both parallel and pseudo-parallel data
for training machine translation systems (Batheja
and Bhattacharyya, 2022, 2023). We take this
work one step further by fine-tuning machine
translation systems on the model’s own output
which was also filtered using QE. The results from
fine-tuning on both high and low-quality data were
evaluated.

3 Quality Estimation for Machine
Translation

3.1 Methodology

3.1.1 Dataset

We used the German-English IWSLT 2017 dataset
(Cettolo et al., 2017) for all machine translation
experiments described in this section. The orig-
inal dataset was initially divided into eight sets
of different sizes ranging from approximately 1500
sentences to the full-sized set of 198669 sentences
as shown in Table 1. The full dataset was first
halved to create the next smallest sized dataset.
This smaller dataset was then also halved to cre-
ate the next smallest size and so on for all eight.
Sentences that were removed during this process
did not reappear in smaller sets. This ensured that
each smaller set of sentences consisted solely of sen-
tences from the larger set.

The smallest dataset split of roughly 1500 sen-
tences was dropped due to the BLEU scores being
too low to be meaningful after initial model train-
ing. All experiments listed were completed with
the remaining seven splits of data.

3.1.2 Model Training

The fairseq (Ott et al., 2019) sequence modeling
toolkit was used to train machine translation mod-
els from German to English. A new model was
trained on each dataset split. The results from ini-
tial model training resulted in BLEU scores rang-
ing from 0.04 to 36.82, with the largest dataset
split corresponding to the highest BLEU score.

3.1.3 Quality Estimation Filtering

TransQuest is a framework for machine transla-
tion quality estimation that can be used to rate
translations at either the word or sentence level
(Ranasinghe et al., 2020). The SiameseTransQuest
sentence-level quality estimation model was used
throughout these experiments1.

The quality estimation threshold to separate
high-quality and low-quality sentences was deter-
mined by selecting the threshold that gave the
widest range of filtered sentence quantity across
all seven split datasets.

3.1.4 Model Fine-Tuning

Using the sentences that were filtered out using
TransQuest quality estimation, the original fairseq
translation models for the specified dataset split
were fine-tuned on the filtered sentences. The
BLEU scores were recorded after fine-tuning to see
if any improvements had been made as a result of
the fine-tuning. To replicate any of our results,
please see our GitHub repository2.

3.2 Experiments

Experiments 1 through 3 start with fairseq trans-
lation models trained on the original IWSLT 2017
German-English dataset splits. See Table 5 for the
full results. In experiments 4 through 6, the orig-
inal dataset is first filtered with QE and only the
high-quality data is used for initial model train-
ing. QE is then used to filter the model output for
fine-tuning (see Table 6).

3.2.1 Experiment 1

Seven fairseq models were trained on the original
IWSLT 2017 German-English dataset which had
been split into varying sizes. Each model was then
used to translate the test set, which introduced
new data to the model. The output translations
went through TransQuest quality estimation. The
low-quality sentences as rated by TransQuest were
used to fine-tune the models.

For the models initially trained on the smallest
splits, excluding the eighth split, fine-tuning re-
sulted in BLEU score improvements from 0.46 and
0.76. The most significant score improvement was

1https://huggingface.co/TransQuest/siamesetransquest-
da-en de-wiki

2https://github.com/lsyip/mt-qe-filtering
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Dataset Split Number of Sentences BLEU
1 (Full set) 198669 36.82
2 99335 33.15
3 49668 29.14
4 24834 23.00
5 12417 16.63
6 6209 11.75
7 3105 9.40
8 1553 0.04†

Table 1: Initial Model BLEU Scores for Experi-
ments 1-3. Model trained on unfiltered data, fine-
tuned on high or low quality data.
†Not used in experiments

seen in split 7, where the initial model had been
trained on the smallest amount of data.

3.2.2 Experiment 2

The seven base translation models trained on the
dataset splits remain the starting point for this
experiment. This time, the models were used to
translate the training sentences that they had been
trained on, thus re-introducing the same data the
model was trained on. The translation output
went through TransQuest quality estimation and
the low-quality sentences were used to fine-tune the
models.

For this experiment, splits 5 and 6 had BLEU
score improvements of over 0.6 points. The re-
maining splits did not show significant improve-
ment after fine-tuning.

3.2.3 Experiment 3

Starting again with the seven base translation
models, the models were again used to translate
the training set. This translation output then went
through TransQuest quality estimation and the
high quality sentences were used for fine-tuning.

The highest BLEU score improvement for this
pipeline was on split 5, which showed an increase
of 0.41 points after fine-tuning on the high-quality
sentences. The remaining splits did not show sig-
nificant improvement in BLEU scores after fine-
tuning.

3.2.4 Experiment 4

For this experiment, we first filtered each of the
IWSLT 2017 splits through TransQuest quality es-
timation. See Table 2 for details. Next, new fairseq
translation models were trained on the sentences
that were rated to be of high quality. These mod-
els serve as the starting point for the following two
pipelines. This setup mirrors the parallel corpus
filtering via quality estimation previously done by
Batheja and Bhattacharyya.

Dataset Split Number of Sentences BLEU
1 75898 30.56
2 36269 25.00
3 17776 19.13
4 8882 15.20
5 4286 6.90
6 2149 0.05
7 1082 0.07

Table 2: Initial Model BLEU Scores for Experi-
ments 4-6. Model trained on filtered data, fine-
tuned on high or low quality data.

3.2.5 Experiment 5

Using the new fairseq models that were trained in
experiment 4, the model was asked to translate all
sentences from their respective training set, which
did not introduce new data to the model. The new
translations were sent through TransQuest quality
estimation and the sentences that were rated high-
quality were used for fine-tuning.
After fine-tuning, the models trained on the

smallest three splits did not show significant im-
provement to their BLEU scores. However, some
improvement was made with the larger splits. The
models initially trained on splits 1, 2, 3 and 4
showed BLEU score improvements of 0.38, 0.6,
0.58, and 0.46, respectively. It is important to note
that with each larger split, the number of sentences
in the fine-tuning set also increases as more trans-
lations were sent through quality estimation.

3.2.6 Experiment 6

Starting again with the fairseq models that were
previously trained in experiment 4, these models
were again used to translate sentences from their
respective original training sets and the new trans-
lations were sent through TransQuest for quality
estimation. The sentences that were rated to be of
low-quality were then used to fine-tune the models.

After fine-tuning, smallest 3 splits did not show
any improvements in BLEU score. Splits 1, 2, and
4 showed an increase in BLEU score between 0.21
and 0.28. Split 3 had the highest BLEU score in-
crease of 0.51.

3.3 Machine Translation Results

In experiments 1-3, we observed that some models
trained on smaller datasets saw improvements in
BLEU score after fine-tuning on training data that
had been filtered through quality estimation. The
differences between using low-quality and high-
quality data to fine-tune, however, were marginal.
This suggests that the quality of the data may not
matter as much as the quantity that is available.
For the smaller datasets, improvements could be
seen after fine-tuning in both the low and high-
quality instances.
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For experiments 4-6, which used TransQuest
quality estimation to filter both the original
dataset and the data for fine-tuning, the initial
model BLEU scores were lower than the first three
experiments due to having fewer training sen-
tences. We observed that some improvements in
BLEU score can be made after fine-tuning on the
filtered high-quality on the larger dataset splits.
The most significant differences after fine-tuning
were seen in splits 2, 3, and 4.

4 BabyLM Challenge

4.1 Methodology

4.1.1 Dataset

The data for the BabyLM Challenge provided by
the challenge organizers consists of text from six
sources and was selected to represent language
data that a human child may be exposed to when
developing their language skills. The provided
dataset contains 100 million words of text data.
From this, we could form training datasets con-
taining up to 10 million words to train models for
the strict-small track.

4.1.2 Model and Training

The data preprocessing involved removing blank
lines and special characters, with a focus on
dialogue-related elements. The sentences within
each dataset were then rearranged based on length
to streamline the training process. After prepro-
cessing, the sentences were translated from English
to German using base translation models from
fairseq. See Table 3 for metadata of processed
datasets.

The quality of resulting pairs of German-English
sentences was assessed using TransQuest and
xCOMET frameworks. COMET, which stands
for Crosslingual Optimized Metric for Evaluation
of Translation, is a neural framework to predict
human judgments on machine translation qual-
ity from source and target language samples (Rei
et al., 2020). Specifically, the wmt23-cometkiwi-
da-xl3 model was chosen for xComet, and its re-
sults were compared to those from TransQuest.
However, we found the scores from both models
to be inconsistent with each other. In the end, the
xComet scores were selected to rank and filter the
data for training, since the TransQuest scores were
heavily influenced by sentence length.

Our model is a RoBERTa (Liu et al., 2019)
model. RoBERTa is a modification of the BERT
(Devlin et al., 2018) model, which showed im-
proved performance across several benchmarks.

We conducted several experiments to explore dif-
ferent strategies for selecting a training subset with
a budget of 10 million words from the original 100

3https://huggingface.co/Unbabel/wmt23-
cometkiwi-da-xl

million words. The experiments varied based pri-
marily on:

• The order of training: ascending or descending
(original curriculum learning) order of quality
estimation scores (equivalently, reversed ma-
chine comprehension level),

• The separation or combination of datasets
from various sources,

• The number of hidden layers and heads during
model training.

After filtering and training, models were evalu-
ated using a standardized evaluation pipeline pro-
vided by the organizers to compute their scores on
the BLiMP and EWoK benchmarks.
Code to train our models can be found on

GitHub4.

4.2 Experiments

4.2.1 Experiment 1

For this experiment, all sources were combined and
rearranged based on their xComet scores. The 10
million words in sentences with highest scores were
kept and divided into 3 files, namely easy (top 2
million), medium (next 4 million), and hard (next
4 million). Sentences with higher QE scores are
considered to be easier sentences. Those files are
trained in order from easy to hard, following the
curriculum learning approach.

4.2.2 Experiments 2 and 3

For Experiment 2, 1.8 million words from the high-
est scored sentences of each sources were selected,
except for Switchboard from which all 0.8 million
words were taken. For Experiment 3, we did the
opposite, by selecting the 1.8 million words from
the lowest scored sentences from each source. This
means we followed the typical order for curriculum
learning in Experiment 2 and the reversed order in
Experiment 3.

In both experiments, the following file order
was used for training: CHILDES, OpenSubti-
tles, Switchboard, BNC spoken, Simple wiki, and
Gutenberg.

4.2.3 Experiments 4-6

For Experiment 4, we tried to replicate Experi-
ment 1 in the way word data were selected, start-
ing by combining all sources into one stream for
score ranking. However, we divided the word bud-
get into 5 files grouped by QE score with each file
containing around 2 million words. The model is
trained on these files from easiest to hardest in Ex-
periment 4 and reversed order in Experiment 6.
For Experiment 5, instead of selecting 10 million

words from highest scored sentences, we filtered

4https://github.com/jdebened/BabyLM2024
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Dataset Description
# Words
(Original)

# Words
(Processed)

CHILDES Child-directed speech 28.9M 15.6M
British National Corpus (BNC) Dialogue 7.7M 5.3M
Standardized Project Gutenberg Corpus Written English 26.3M 21.7M
OpenSubtitles Movie subtitles 20.0M 13.5M
Simple Wikipedia Wikipedia (Simple English) 14.7M 11.5M
Switchboard Dialog Act Corpus Dialogue 1.3M 0.9M
Total 99M 68.5M

Table 3: Original and Processed Dataset provided for the strict track of the BabyLM Challenge. Dataset
names, domain descriptions, and word counts

those from lowest scored ones and trained resulting
files in the order of hardest to easiest files.

4.2.4 Experiments 7-10

For these experiments, only one source was used
in each experiment, namely either CHILDES or
Gutenberg. In Experiments 7 and 8, the 10 mil-
lion words were selected from lowest scores of
CHILDES and Gutenberg datasets respectively.
The order of training is from sentences with low-
est scores to those with higher scores, opposite of
expected curriculum learning order.

In Experiment 9, we filtered down to the 10
million words from highest scoring sentences of
CHILDES to compare with the result from Exper-
iment 7. It is noted that this comparison is based
on data selection of highest and lowest scored sen-
tences as well as training order of increasing and
decreasing complexity.

In Experiment 10, we used the same subset of 10
million words from Experiment 10. However, the
number of hidden layers and heads were doubled
for further comparison.

The motivation behind choosing these sources
rather than others is because we wanted to test
the opposition between child-directed speech and
written texts.

4.2.5 Experiments 11 and 12

For these experiments, we tried to replicate Exper-
iments 4 and 5 respectively. However, we decided
to split into smaller files, each with 1 million words.

4.2.6 Experiments 13 and 14

For these experiments, the mixture of 5 million
words from highest scored sentences and 5 million
words from lowest scored ones were used.

The primary difference between these experi-
ments are based on their order of training. While
Experiment 13’s order followed curriculum train-
ing, Experiment 14 did the opposite.

Full experiment descriptions, mainly in how data
was selected for model training, can be found at
Table 4.

4.3 Results

Full experiment results including BLiMP and
EWoK scores from the evaluation pipeline can be
found at Table 4.

Evaluation pipeline provided by BabyLM Chal-
lenge 2024 included zero shot evaluation on tasks
from the BLiMP benchmark and hidden evaluation
tasks from the Ewok benchmark (Warstadt et al.,
2020; Ivanova et al., 2024).

BLiMP is made up of tasks designed to test how
well language models adhere to the structure of
English. Each task presents a pair of sentences,
where one is grammatically correct, and the other
is incorrect, with the two sentences differing as lit-
tle as possible. A model is considered accurate for
a given example if it assigns a higher probability
to the correct sentence in the pair (Warstadt et al.,
2023).

Elements of World Knowledge (EWoK) frame-
work evaluates world modeling in language models
by testing their ability to use knowledge of con-
cepts across physical and social domains to deter-
mine plausible or implausible contexts. It flexi-
bly constructs multi-step scenarios, targets specific
cognitive concepts, and generates controlled evalu-
ation items using a template-based approach. This
framework focuses on how well language models
can productively apply concept knowledge, rather
than just matching individual sentences or facts
(Ivanova et al., 2024).

From the table of results, we found several pat-
terns in the varied BLiMP and EWoK scores:

• Models with order of training from harder
to easier, opposite to expected order from
curriculum learning (decreasing complex-
ity) had slightly higher BLiMP complement
scores compared to others with/without same
datasets such as models 3, 5, 10, 12, 14. The
exception in this case is Model 6, compared
to Model 4. However, the BLiMP filtered and
EWoK filtered scores did not experience the
similar pattern with no noticeable improve-
ment for any order. This inconsistency may
stem from our assumption of the relationship

216



# Data setup
BLiMP

complement
BLiMP
filtered

EWoK
filtered

Details

1
All data sources
Sources combined
CL training order

58.01 60.69 49.99
10M highest QE scores
separated into 2M highest,
next 4M, next 4M

2
All data sources
Sources kept separate
CL training order

54.98 60.87 49.15
1.8M words of each source
by highest QE score
(Switchboard max 0.8M)

3
All data sources
Sources kept separate
Reversed CL order

60.25 60.17 50.47
1.8M words of each source
by lowest QE score
(Switchboard max 0.8M)

4
All data sources
Sources combined
CL training order

58.92 61.01 50.00
10M highest QE scores
separated into 5 equal-sized files

5
All data sources
Sources combined
Reversed CL order

61.41 60.45 50.10
10M lowest QE scores
separated into 5 equal-sized files

6
All data sources
Sources combined
Reversed CL order

56.83 60.31 49.71

10M highest QE scores
separated into 5 equal-sized files,
train in the reverse order
(compared to experiment 4)

7
CHILDES data only
Reversed CL order

59.34 57.80 50.21
10M lowest QE scores
separated into 5 equal-sized files

8
Gutenberg data only
Reversed CL order

58.27 61.94 50.46
10M lowest QE scores
separated into 5 equal-sized files

9
CHILDES data only
CL training order

55.41 57.99 50.30
10M highest QE scores
separated into 5 equal-sized files

10
Gutenberg data only
Reversed CL order

59.73 62.39 49.66

10M lowest QE scores
separated into 5 equal-sized files,
double the number of hidden
layers and heads (compared
to experiment 8)

11
All data sources
Sources combined
CL training order

56.92 61.29 50.97
10M highest QE scores
separated into 10 equal-sized files

12
All data sources
Sources combined
Reversed CL order

59.80 60.11 50.55
10M lowest QE scores
separated into 10 equal-sized files

13
All data sources
Sources combined
CL training order

59.74 60.35 50.31

5M highest QE scores
separated into 5 equal-sized files,
then 5M lowest QE scores
separated into 5 equal-sized files

14
All data sources
Sources combined
Reversed CL order

63.02 60.66 50.18

5M highest QE scores
separated into 5 equal-sized files,
then 5M lowest QE scores
separated into 5 equal-sized files;
train in reverse order (compared
to experiment 13)

Table 4: Experiments setups and results (%). Comparison between models trained on 10 million word
budget filtered from original 100 million words provided in the 2024 BabyLM Challenge. Bolded values
show best in column. Strategies to filter the data to form training datasets containing up to 10 million
words to train models.
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between quality estimation and machine com-
prehension level.

• Models with combined sources did not show
superior results in BLiMP complement scores
compared to separated ones. Models with
multiple sources also did not outperform
single-source models. However, regarding the
BLiMP filtered scores, single-source model us-
ing Gutenberg showed better performance
compared to multiple-source models or other
single-source models, especially derived from
CHILDES data. Additionally, this may also
relate to the fact that Gutenberg’s written
style and higher quality can improve the per-
formance.

• Models’ performance and the number of files
to train were not proportional in terms of
BLiMP complement scores, but showed a
clear positive correlation in EWoK filtered.
Models using 5 training files get the highest
BLiMP complement in comparison to 3 or 10
files. Meanwhile, in the case of implement-
ing the curriculum learning order (models 1,
4, 11), the BLiMP filtered accuracy positively
correlated with the number of files.

• Models using doubled number of heads
and hidden layers took more time to train
and had better BLiMP complement and
BLiMP filtered scores (models 8 and 10), but
not EWoK filtered scores.

5 Conclusion

This work explored quality estimation for data fil-
tering and curriculum learning on both machine
translation systems and language models. As
shown in our machine translation experiments (see
Section 3.2), modest improvements can be ob-
tained through finetuning on filtered data. This
benefit largely went away as the data size scaled
up to the full IWSLT17 dataset, suggesting that
this method has more use for certain data limited
settings rather than for general model use. Fur-
thermore, base model performance went up more
noticeably when additional data was added, show-
ing that more data made a larger difference than
higher quality data in this setting.

For the BabyLM Challenge strict-small track,
teams could form datasets consisting of up to 10
million words to train their language models. We
explored several options for data selection from the
provided 100 million word dataset. Each model
was then trained using a curriculum learning ap-
proach based on quality estimation scoring. Over-
all, data source made a bigger difference to model
performance than curriculum choice. In particular,
models trained using the Project Gutenberg data

generally had higher scores on downstream tasks.
This suggests that while the other data sources
are useful for human children learning language,
the higher quality data available in the Gutenberg
dataset produced a better language model.
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Yoshua Bengio, Jérôme Louradour, Ronan Col-
lobert, and Jason Weston. 2009. Curriculum
learning. In Proceedings of the 26th annual
international conference on machine learning,
pages 41–48.
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tins. 2018. Findings of the WMT 2018 shared
task on quality estimation. In Proceedings of
the Third Conference on Machine Translation:
Shared Task Papers, pages 689–709, Belgium,
Brussels. Association for Computational Lin-
guistics.

Alex Warstadt, Aaron Mueller, Leshem Choshen,
Ethan Wilcox, Chengxu Zhuang, Juan Ciro,
Rafael Mosquera, Bhargavi Paranjabe, Adina
Williams, Tal Linzen, and Ryan Cotterell. 2023.
Findings of the BabyLM challenge: Sample-
efficient pretraining on developmentally plausi-
ble corpora. In Proceedings of the BabyLM Chal-
lenge at the 27th Conference on Computational
Natural Language Learning, pages 1–34, Singa-
pore. Association for Computational Linguistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, An-
had Mohananey, Wei Peng, Sheng-Fu Wang,
and Samuel R Bowman. 2020. Blimp: The
benchmark of linguistic minimal pairs for en-
glish. Transactions of the Association for Com-
putational Linguistics, 8:377–392.

219

https://doi.org/10.18653/v1/2020.acl-main.41
https://doi.org/10.18653/v1/2020.acl-main.41
https://doi.org/10.18653/v1/D18-1534
https://doi.org/10.18653/v1/D18-1534
https://doi.org/10.18653/v1/D18-1534
https://doi.org/10.18653/v1/W18-6451
https://doi.org/10.18653/v1/W18-6451
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1


A Appendix

Experiment 1 Experiment 2 Experiment 3
Split Train

Sents
Initial
BLEU

FT†

Sents
BLEU FT

Sents
BLEU FT

Sents
BLEU

1 198669 36.82 1884 36.81
(-0.01)

128246 36.94
(+0.12)

70423 36.84
(+0.02)

2 99335 33.15 1862 33.17
(+0.02)

66261 33.30
(+0.15)

33074 33.29
(+0.14)

3 49668 29.14 1962 29.43
(+0.29)

33540 29.45
(+0.31)

16128 29.49
(+0.35)

4 24834 23.00 2110 23.15
(+0.15)

16934 23.28
(+0.28)

7900 23.1
(+0.10)

5 12417 16.63 2232 17.09
(+0.46)

8670 17.24
(+0.61)

3747 17.04
(+0.41)

6 6209 11.75 2682 12.21
(+0.46)

4419 12.41
(+0.66)

1790 11.86
(+0.11)

7 3105 9.40 2928 10.14
(+0.74)

2185 9.42
(+0.02)

920 9.41
(+0.01)

Table 5: Experiment 1-3 Results. Model trained on unfiltered IWSLT17 dataset, fine-tuned on high or
low quality data.
†Fine-tune

Experiment 4 Experiment 5 Experiment 6
Split Train Sents Initial

BLEU
FT†

Sents
BLEU FT†

Sents
BLEU

1 75898 30.56 60187 30.94 (+0.38) 15711 30.77 (+0.21)
2 36269 25.00 29657 25.6 (+0.60) 6612 25.28 (+0.28)
3 17776 19.13 14433 19.71 (+0.58) 3343 19.64 (+0.51)
4 8882 15.20 7728 15.66 (+0.46) 1154 15.44 (+0.24)
5 4286 6.90 1402 6.87 (-0.03) 2884 6.72 (-0.18)
6 2149 0.05 178 0.06 (+0.01) 1971 0.05
7 1082 0.07 83 0.07 999 0.07

Table 6: Experiment 4-6 Results. Model trained on filtered IWSLT17 dataset, fine-tuned on high or low
quality data.
†Fine-tune
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Abstract

In this paper we detail our submissions to the
STRICT and STRICT-SMALL tracks of the 2024
BabyLM Challenge. We approach this chal-
lenge with two methodologies: i) use of a
novel dataset, and ii) development of a pre-
training technique based on the fusion of child
language acquisition with traditional masked
language modeling, which we call curricu-
lum masking. The novel dataset used for
this task is based on user submissions to the
Reddit forum (i.e., subreddit) “Explain Like
I’m Five”, which explains diverse concepts
using simple language. Curriculum masking
works by creating learning phases based on
a standard child language development time-
line, where the masked words learned by the
model start with simple nouns and gradually ex-
pand to include more complex parts of speech.
We show that using internet-based training
data shows a small improvement in evaluation
scores as compared to baseline training data.
Our proposed pre-training method of curricu-
lum masking is conceptually novel and also
shows improved rates of learning over typical
masked language modeling pre-training, po-
tentially allowing for good performance with
fewer total epochs on smaller training datasets.
Code for the curriculum masking implemen-
tation is shared at https://github.com/evan-
person/curriculumMaskingBabyLM2024.1

1 Introduction

Children acquire language skills through exposure
to an estimated two to seven million words per
year. However, contemporary large language mod-
els (LLMs) require training on massive datasets
comprising billions to trillions of words to achieve
similar linguistic capabilities. The vast disparity
between human language acquisition and current
machine learning practices can be shown from the

1https://github.com/evan-
person/curriculumMaskingBabyLM2024

Chinchilla model (Hoffmann et al., 2022), which
was trained on 1.4 trillion words.

To address these disparities, the BabyLM Chal-
lenge was established to explore the feasibility of
pre-training LLMs on datasets comparable in size
to those encountered during early childhood lan-
guage development. It continues on this mission,
imposing strict limits on the size and composition
of training datasets and aims to create models that
learn language in a child-like manner.

In this paper, we present our submissions to
both the STRICT and STRICT-SMALL of the 2024
BabyLM Challenge. We leverage a novel dataset,
sourced from the Reddit forum (i.e. subreddit) Ex-
plain Like I’m Five (ELI5). We introduce a curricu-
lum masking training strategy that we designed to
mimic how children learn language. Traditional
Masked Language Modeling (MLM) masks ran-
dom words during training, which does not accu-
rately reflect the structured manner in which chil-
dren acquire language. Our curriculum masking
approach organizes the process into a schedule of
stages, starting with simpler words such as nouns,
then gradually incorporating more complex words
like adjectives and verbs. We hypothesized this
scheduling method would help the model build a
stronger foundation in language before tackling
more advanced sentence structures. We do not
count the added information of POS tags as addi-
tional word count, as it is only an additional categor-
ical variable attached each token. In conversations
on the challenge Slack channel, this was agreed
to not count towards overall word count for this
reason, and so although it is additional informa-
tion, we make the claim that it does not count as
increased training words. The following sections
of this paper describe our dataset preparation, im-
plementation of curriculum masking, experimental
results, and discussion of the effectiveness of our
approach.
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2 Related Work

To understand the state of related work, we re-
viewed the most relevant papers from the BabyLM
2023 challenge (Warstadt et al., 2023) and per-
formed searches for similar concepts to what we
propose in this work. Several works in the prior
challenge utilized curriculum learning, though they
administered their curricula through an intentional
sequencing of the examples in their training set as
opposed to the curriculum-based masking approach
we use.

Martinez et al. (2023) investigated curriculum
learning strategies for language model pre-training
using limited data. Similar to our curriculum mask-
ing, their approach progressively increased task
complexity, structuring model training in stages.
Although their methods did not consistently out-
perform non-curriculum baselines, their focus on
vocabulary and data pacing offers valuable insights
for optimizing training with limited resources.

DeBenedetto (2023) applied a curriculum learn-
ing strategy for low-resource settings, where
datasets were ranked by difficulty using a bytes-
per-line metric. Simpler datasets, such as spoken
transcriptions, were introduced first, then more
complex datasets were gradually introduced dur-
ing training. Their approach outperformed base-
line models in most downstream tasks, includ-
ing BLiMP and SuperGLUE. Their curriculum
learning methods demonstrated consistent improve-
ments in performance, particularly when trained
with more epochs.

Bunzeck and Zarrieß (2023) designed a cur-
riculum learning approach based on child-directed
speech which showed an improvement for certain
tasks like anaphor agreement, irregular forms, and
quantifiers. Their work, similar to ours, involved
using curriculum learning focused on word fre-
quency and sentence structure. However, they used
a static data ordering approach where the training
data was organized in a fixed sequence.

Curriculum masking as a concept has been ap-
plied successfully in other domains, such as com-
puter vision. Jarca et al. (2024) developed a cur-
riculum based masking strategy for vision tasks.
They show that by using a curriculum-based mask-
ing approach for training vision models they are
able to outperform the same model architecture on
some common image classification tasks.

3 Method

For our submission, we make two primary contri-
butions: i) a new ELI5 dataset, and ii) a method
of curriculum learning that modifies the MLM pre-
training task to mimic child language development.
In this section we review these two contributions
as well as the other method choices made.

3.1 Dataset

The curated dataset provided by the challenge orga-
nizers contains various sources of child and child-
directed speech. In addition to this dataset, we
created a novel dataset using the subreddit Explain
Like I’m Five2. On this particular subreddit, users
can pose questions on almost any topic. Other
users’ responses to these questions are required to
be free of technical jargon and tend to use simpli-
fied concepts. While the responses are not targeted
at actual five-year-olds, we felt the nature of ELI5
could be a good fit for the BabyLM Challenge. We
chose not to use the existing ELI5 dataset (Fan
et al., 2019) as it is focused more on question an-
swering and we needed text for pretraining that met
our dataset objectives.

We obtained all of the posts to the ELI5 sub-
reddit from June 2005 to December 2022 from
The-Eye.eu Reddit archive3. We filtered this set of
posts to leave only top-level comments, which are
direct replies to questions, by searching for posts
where the link ID matched the parent ID in the
metadata. Only top-level comments are required
by the subreddit rules to be simplified explanations.
We then sorted the remaining posts in descending
order based on the score they obtained through the
built-in user voting system on the subreddit. In
the event two posts had the same score, the more
recent post came first in the sorted list. We applied
a basic filter that removed posts containing any
of the profane words in a 28-word list. We also
removed posts that included “https” to filter out
hyperlinks from our training data. This profanity
filter is fairly simple and it is not likely that it re-
moved all instances of profanity within the dataset
(e.g. alternatively spelled profanity). However, pro-
fanity is a part of language and even children are
exposed to a non-zero amount of profane language
during their developmental years. Thus, we did not
conduct further filtering beyond the simple list.

We created training sets of 10M and 100M

2www.reddit.com/r/explainlikeimfive
3https://the-eye.eu/redarcs/

222



words. We computed the number of words in each
post by splitting the text on any white space char-
acter and summing the number of text segments
that contained any alphanumeric character. We de-
veloped this method to count towards the limit any
word that contains meaning. It does not count punc-
tuation that stands alone, such as dashes. Working
down the sorted list of posts, we added posts to
each training set as long as it did not cause the
sum to exceed the total word capacity. Due to this,
our 10M word training set is a proper subset of the
100M word training set.

3.2 Curriculum Development
Classic masked language model training involves
randomly masking tokens from the training data
that is fed to the model. With a limited amount
of training data, we sought to develop a curricu-
lum that more closely mimicked how a child might
learn language. Using a timeline for normal child
language development (LaGreca, n.d.; Roseberry-
McKibbin and Hegde, 2006), we developed the
following steps:

1. Interjections, nouns, and personal pronouns

2. Conjunctions

3. Subject-verb-object structures, first person
singular pronouns, plurals, and simple verb
forms

4. Adjectives, plural proper nouns, possessives,
wh-determiners, and pronouns

5. Complex verbs and possessive endings

6. Adverbs, particles, and complex adjectives

7. All other parts of speech

The curriculum was cumulative, so each step in
the training contained the additional parts of speech
for that step and all previous steps.

We used the Natural Language Toolkit (NLTK)
library (Hardeniya et al., 2016) to implement part-
of-speech (POS) tagging on our datasets. We con-
verted each sentence in our training data into in-
dividual words and obtained the POS tag for each
word from the toolkit. We then created a custom
function that selectively masked words based on
their grammatical categories. For each training
example, we drew masked words from the pool
of tags for the current curriculum step until either
15% of the total words were masked or all candi-
date words were used.

Table 1: Hyperparameters used for training

100M 10M orig. 10M redo
Learn. rate 5e-5 5e-5 1e-4
Optimizer AdamW AdamW AdamW
LR Profile Linear Linear Cosine
Warmup n/a n/a 500

3.3 Base model selection and computing
parameters

We used a BERT (Devlin, 2018) model with 6
layers, a hidden dimension of 768, and 12 heads
to create a 51.2M parameter model. Following
RoBERTa (Liu, 2019) and GPT-2 (Radford et al.,
2019), we used a byte pair encoding (BPE) tok-
enizer to tokenize the inputs. We built tokenizers
with 10K and 50K vocabularies for each of the 10M
and 100M corpora, respectively. We used two sets
of hyperparameters: the original set used for ini-
tial model training and an updated set that we used
for a final training pass. These hyperparameters
are compiled in Table 1. These parameters were
largely arbitrarily chosen based on past experience
by the authors and we note that there are proba-
bly additional changes to these design choices that
could be made to improve performance.

We used a variety of GPUs and workstations
to train and evaluate our models, including six
40Gb A100s, an A6000, two RTX2080Tis, and
two RTX3090 GPUs. We estimate our combined
GPU-days at around 30 days. Due to the varying
VRAM available on each of these GPUs, batch
sizes were not consistent between the training of
different models and we note this as a weakness in
our study. Past experience from one of the authors
has shown that batch size is a particularly impor-
tant parameter for small datasets as a bigger batch
size smooths the loss landscape and reduces the
capacity of the model to learn from individual ex-
amples. Private conversations with some industry
members have suggested that in very small datasets,
it’s sometimes desirable to fine-tune with a batch
size of one in order to learn the distribution of the
data. However, due to the time constraints of this
challenge, we maximized batch size to make use
of the available GPUs and did not well-control or
study it.

4 Results

In this section, we share the results of our models
on the BabyLM shared task. We have attempted
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Table 2: Evaluation scores The overall evaluation metrics we computed for all trained models. We did not train or
evaluate models with a ’_provided’ suffix and the results presented come from the challenge organizers. The first
BERT_10M_eli5_curr run results files do not have available GLUE scores and therefore no macroaverage.

Model BLiMP BLiMP Sup-
plement

EWoK GLUE Macroaverage

BERT_10m_base 54.6 56.5 47.3 66.1 56.1
BERT_10m_eli5 54.7 56.5 49.9 66.8 57.0
BERT_10m_eli5_curr_mask_redo 55.6 56.1 50.8 67.3 57.5
BERT_10m_eli5_curr_mask_orig 51.25 52.23 48.0 xx.x xx.x
LTG-BERT_10M_provided 60.6 60.8 48.9 60.3 57.7
BERT_100m_eli5 55.4 54.0 51.5 66.7 56.9
BERT_100m_eli5_curr_mask 60.2 56.8 53.0 67.7 59.4
LTG-BERT_100M_provided 69.2 66.5 51.2 68.4 63.8

to disentangle the impacts of the two approaches
combined, although due to training time we were
not able to do a full ablation study. First, we discuss
the impact of the newly scraped dataset. Second,
we share the results of the curriculum masking
approach and discuss why it appears to outperform
the typical MLM pre-training approach.

4.1 ELI5 dataset

Findings by Meta (Xie et al., 2024) show that hav-
ing a high fraction of internet scraped data is gen-
erally the key to the highest performing language
models. We decided that we would try to go with
a solely internet-based training dataset in an at-
tempt to take advantage of this effect. Following
anecdotes from the training of the original Stable
LM (Bellagente et al., 2024), which used a high
fraction of Reddit-based training data and had poor
performance, our data cleaning removed usernames
(suspected to be responsible for strange tokenizer
performance in Stable LM and GPT-2). To be
able to identify the impact of our ELI5 dataset, we
trained an identical model on the baseline dataset
provided by the BabyLM organizers. In Table 2,
the BERT_10m_base and BERT_10m_eli5 entries
show the baseline and ELI5 data evaluation re-
sults, respectively. LTG-BERT scores provided
by the organizers were included as a fair compar-
ison for the encoder-only BERT model we used.
BLiMP scores show barely any difference, suggest-
ing that grammatical phenomena are represented
similarly in both datasets. EWoK, a benchmark
evaluating world knowledge, shows improved re-
sults with the ELI5 dataset, which the authors find
to be a reasonable outcome due to the simplistic
explanations that capture world knowledge found

in many ELI5 responses. SuperGLUE evaluations
also show modest improvements from use of the
ELI5 dataset, potentially indicating that the ELI5
data teachesa better language understanding than
the baseline training dataset. Comparing both to
the LTG-BERT results provided by the competi-
tion organizers (LTG-BERT_10M_provided), the
BLiMP results of both BERT models are lower, but
all other metrics are higher for our models.

When looking at the 100M models, they appear
to underperform the provided model’s results on
BLiMP, be somewhat comparable on GLUE, and
greatly outperform the provided model on EWoK.
We did not spend as much time adjusting hyper-
parameters for or rerunning the 100M data, so it
is likely there is a lot of room for improvement.
However, despite this, these results reinforce our
finding that ELI5 explanations help teach world
knowledge to a language model.

4.2 Curriculum Masking

As described in Section 3.2, the curriculum mask-
ing process gradually introduced the model to new
parts of speech, while continuing to train on the
previously introduced parts of speech. Training
results from the improved training hyperparame-
ters (BERT_10m_eli5_curr_mask_redo in Table 2)
(the hyperparameters listed in Table 1) are shown
in Figure 1. The learning rates follow a cosine de-
cay with a warmup period that resets every time
a new part of speech is introduced. Loss shows
small increases with the introduction of new parts
of speech and then gradually decays as is typi-
cally expected. The gradient norm increases as
the parts of speech become more complex, indi-
cating that the model is not learning as well with
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Figure 1: Curriculum masking training performance for
10M ELI5 training.

a very limited set of parts of speech but during
the intermediate and later stages of the curricu-
lum it learns quite effectively. By comparing with
two other loss curves in Figure 2, we demonstrate
that this loss curve outperforms either a linearly
decaying learning rate that resets with each new
POS or a typical masked language modeling ap-
proach with linearly decaying learning rate with
three restarts (BERT_10m_eli5_curr_mask_redo
and BERT_10m_base, respectively, in Table 2).
We note that this is not a strong comparison as
the logging rates do not match due to the batch size
mismatch, but the general trends may be helpful for
the reader. Importantly, we note that by focusing
the model on learning specific aspects of language
first, we are able to accelerate the learning of the
more complex language aspects introduced later.

When looking at evaluation scores in Table 2,
with the better hyperparameters, we demonstrate
that the combination of the ELI5 data with the cur-
riculum masking provides the best performance
overall of any 10M model we evaluated. We note
that BLiMP performance was comparatively poor
for all of the models we trained, relative to the pro-
vided scores of the baseline model. For the 100M
models, the curriculum masking improved results
beyond just using the ELI5 dataset, although with
poor BLiMP performance, the improvements to
EWoK weren’t able to increase the average score
above the baseline model results provided by orga-
nizers.

Figure 2: Loss curve comparison for curriculum-based
and traditional masked language modeling with 10M
model.

5 Conclusions

In our submission to the 2024 BabyLM challenge,
we focus on using an internet-based training dataset
that mimics language that would be directed at
youth as well as utilizing a developmentally plau-
sible pre-training approach that allows the model
to learn specific parts of speech on a schedule. We
show that by combining both of these approaches,
we can outperform the baseline provided by orga-
nizers on the STRICT-SMALL track (10M word
limit) of the challenge, although we did not suc-
ceed at outperforming the baseline for the SMALL

track (100M word limit). Due to a lack of hyper-
parameter optimization, there is probably a lot of
improvement that could be made using curriculum
masking, especially considering different masking
ratios or masking ratio schedules. One other pos-
sibility we are interested in is varying the POS
acquisition order and experimenting with the use
of training the model on a mix of the POS on the
schedule as well as some other words. Testing the
curriculum masking concept on an autoregressive
model would be an obvious thing to try as well.

Our findings help reinforce the idea that using
internet-scraped data provides highly useful data
for teaching a language model language under-
standing as well as world knowledge. Additionally,
our proposed method of curriculum masking intro-
duces a new method of curriculum learning that
shows accelerated learning in our tests on a small
dataset.
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Limitations

The biggest limitation of this work is that it largely
relies on two sets of hyperparameters and does not
thoroughly explore the hyperparameter space in
order to determine how stable and useful our pro-
posed training method is. Masking rates were not
explored at all and there are most likely masking
rates or schedules for them that would further im-
prove model training and performance. We have
tried to explore the impact of our data and train-
ing method separately by running a partial ablation
study, but we did not consider the impacts of data
on our hyperparameter selection. Batch size is
often noted as a powerful “knob” for tuning per-
formance and due to the mismatched GPUs used
for different training runs, we did not control this
well and therefore are not able to quantify its im-
pact on our model performance. There is also a
dependence on the performance of the POS tagger
and we don’t have a good assessment of the per-
formance of the POS tagger used without having
labeled data from our dataset.

Ethics Statement

The authors are not anticipating any major ethical
concerns with publishing this work. We propose a
slight modification to the widely-used MLM pre-
training task as well as a version of a publicly avail-
able dataset. We note that our use of the ELI5 Red-
dit data encourages the continued use of scraped
internet data to train language models, which has
been noted to potentially lead to self-training on
generated content as more internet content becomes
generated by language models. The long term im-
pacts of this are not fully understood yet, but it
is likely that it may be somewhat detrimental to
both future model performance and, thus, internet
content.
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A Dataset examples

A few semi-cherry picked examples are shown
for some of the ELI5 data and some of the pro-
vided baseline training data. It can be seen that
the internet-based text of ELI5 is more coherent
and provides a better textual training example (in
the subjective opinion of the authors) than the tran-
scribed text that is formatted in a variety of ways.
Whether or not an explanation given at a level ap-
propriate for a five year old is equivalent to what
a five year old actually experiences is debatable,
but from the language modeling perspective it is
likely that the transcribed text may cause the model
to learn strange behaviors that are not reflective of
actual language usage.

ELI5 Sample response 1

The joke answer is so that the water doesn’t
hit you square in the face.

The real answer is that shapes with sharp
corners are structurally weak. Arcs and cir-
cles are very strong shapes. If port holes
were squares, the openings would get dam-
aged and worn out sooner.

ELI5 Sample response 2

Caffeine works in two ways to make you
feel that way.

First it prevents the brain from telling you
that you are tired. You can think of your
brain as a bunch of locked boxes with
different things inside of them. Some of

these boxes have things that make you
happy, others make you sad. Some have
things that tell you it is time to go to sleep.
Caffeine jams itself into the lock on the
sleepy time box so that your brain can’t
open it. That keeps you from feeling tired.

Caffeine also can help open the box that
tells your body to go into extra energy mode.
Things like your heart can work faster or
slower depending on what you need. If you
are sitting on the couch watching TV it’s
going to go slower, if you are outside work-
ing it’s going to speed up. Caffeine tricks
the body into thinking it needs to go into
extra energy mode. Caffine doesn’t create
this energy, the body is just using what it
has stored more quickly. Not really any dif-
ferent from you step on the gas in a car. You
are telling it to burn more fuel and go faster.

ELI5 Sample response 3

You know when you’re going on vacation,
and you’re packing, but you still need to
use some of the stuff you need to pack, so
instead of putting it all into your suitcase,
you set some of it next to your suitcase, or
leave it out on the counter, so you don’t
forget it, but you can still use it without
having to completely unpack it from your
luggage?

That’s sort of how a USB drive works.
Sometimes you tell the computer to
"pack" data onto the drive, and rather than
put it all on there right away, it might
end up caching some of it to be written later.

When you just rip out the drive, you risk
pulling it before all of your data is "packed"
onto the drive.

When you click "safely remove" it runs
around the house and packs up all the stuff
it left out, and gets it all into the luggage for
you before you disconnect it.
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BabyLM Provided 10M_Train Sample 1

Have you ever seen anybody completely
obscured by her own smoke, it’s Sharon.
.
Chuck us the water would you?
She’s a bit of a goer as well int she?
Is she?
Isn’t she?
Yeah but
Didn’t she order a punch so she was drunk
?
No, that was Tracey.
I thought Tracey and Sharon used to get
drunk at lunchtime on a Friday and have a
punch up.
No.
Only Tracey would do that.
Our Trace.
Ah.
Oh dear.
Oh.

BabyLM Provided 10M_Train Sample 2

THIS IS EXACTLY WHAT I’M TALKING
ABOUT.
I’M NOTHING BUT A BIG MAC IN A
BATH TOWEL.
JOEY, I’M NOT A HAMBURGER.
I HAPPEN TO BE A HUMAN BEING.
JESS, BUDDY, AS LONG AS I’M THE
DIRECTOR,
YOU WILL BE TREATED WITH DIG-
NITY AND RESPECT.
THANK YOU.
OK, HOSE HIM DOWN.

BabyLM Provided 10M_Train Sample 3

*CHI: Eve tapioca hot.
MOT: uhhuh.
CHI: hot.
MOT: mhm.
CHI: and cool.
MOT: and cool yes.
MOT: by the time you have lunch it’ll be
cool.
CHI: that?
MOT: what is that?
MOT: vanilla.
CHI: vanilla.
MOT: vanilla.
CHI: vanilla.
MOT: vanilla.
CHI: Eve play bouillon cube.
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Abstract

We introduce WhatIf, a lightly supervised data
augmentation technique that leverages word
vectors to enhance training data for small-scale
language models. Inspired by reading predic-
tion strategies used in education, WhatIf cre-
ates new samples by substituting semantically
similar words in the training data. We evaluate
WhatIf on multiple datasets, demonstrating
small but consistent improvements in down-
stream evaluation compared to baseline models.
Finally, we compare WhatIf to other small-
scale data augmentation techniques and find
that it provides comparable quantitative results
at a potential tradeoff to qualitative evaluation.

1 Introduction

The use of Large Language Models (LLMs) has
exploded in the recent past, with LLMs becoming
the state of the art for most NLP tasks. While
statistical models of language have been around
for decades (Markov, 2006), the introduction of
the Transformer (Vaswani, 2017) set the stage for
a new era in language modeling.

Early Transformer-based language models such
as BERT (Devlin, 2018) and GPT (Radford, 2018)
are very small by today’s standards, with a few
hundred million parameters each. In the interven-
ing years, models have grown exponentially both
in number of parameters and number of training
tokens. These increases in size have been accom-
panied by increases in performance, with abilities
emerging as a consequence of model scale (Wei
et al., 2022). Current state of the art models tend
to have tens of billions to hundreds of billions of
parameters and are trained on trillions of training
tokens.

In this paradigm of increasing scale, there has
been relatively little focus on small-scale language
modeling, which tends to be restricted to domains
such as low-resource machine translation.

The BabyLM challenge (Choshen et al., 2024)
seeks to focus researchers on very small-scale lan-
guage modeling. The challenge involves using ei-
ther a 10 or 100 million word "developmentally
plausible" corpus (Warstadt et al., 2023), with 100
million words being roughly amount of words a
child hears before reaching adulthood. Working
at this small scale enables researchers to focus on
cognitively inspired methods of language modeling
as well as to iterate on language modeling experi-
ments, which is impractical at 100-billion parame-
ter scales.

While much recent focus on language model-
ing has involved scaling up parameter and training
token counts, these approaches have drawbacks, in-
cluding environmental concerns and inaccessibility
of hardware (Bender et al., 2021). As a conse-
quence, there has been a recent focus on mid-scale
language modeling, creating models that can be
run locally on devices such as consumer PCs or
smartphones. This research has been promising.
Microsoft’s Phi models (Li et al., 2023; Abdin et al.,
2024) boast impressive performance on many lan-
guage modeling benchmarks, in spite of having
only a few billion parameters. Phi’s major innova-
tion is using only "textbook quality data", curated
from only high-quality sources rather than semi-
filtered data of dubious quality scraped from the
internet.

At a much smaller parameter scale, Eldan and Li
(2023) trained very small transformers on TinyS-
tories, a synthetic dataset of children’s stories. In
spite of parameter counts below 10 million, these
tiny models were able to generate coherent text
with real world knowledge and logic.

The trend towards improving data quality and
quantity rather than solely scaling model param-
eters has also been applied successfully to larger-
scale language modeling. Llama 3 (Team, 2024)
attributes its significant improvements in perfor-
mance over Llama 2 (Touvron et al., 2023) not to
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Figure 1: Illustration of the data augmentation technique.

changes in architecture, but to "improvements in
data quality and diversity as well as by increased
training scale." Using higher quality input, Llama
3 was trained on roughly ten times as many tokens
as Llama 2.

Our research is motivated by both the language
modeling research on training data, as well as chil-
dren’s processes of language acquisition.

Training on more data has a human analog. One
of the strongest predictors of children’s linguistic
development is the amount and type of language
they hear (Weisleder and Fernald, 2013). Children
who hear more words tend to have larger vocabu-
laries, which correlates with better educational out-
comes later in life (Hart et al., 1997; Hoff, 2003).

We introduce WhatIf, a lightly supervised data
augmentation technique that uses word vectors to
augment training data. WhatIf substitutes words in
the training corpus for semantically similar words,
enabling our baby models to consider novel yet
similar text to the training data.

WhatIf is inspired by a method of improving
reading comprehension called predicting. With
this strategy, teachers instruct students to periodi-
cally ask questions about the text. These questions
can be predictions about what might occur later
in the text or counterfactuals, which usually take
the form of "What If?" questions. Teaching with
prediction strategies improves reading instruction
outcomes. Both children (Küçükoğlu, 2013) and
second language learners (Ali and Razali, 2019)
show improved reading comprehension when em-

ploying prediction strategies.
Our method is lightly supervised, and requires

a small part-of-speech dictionary, which we count
as part of our token budget. This too has an ana-
log in real-world language acquisition. Children
receive explicit grammatical knowledge. For exam-
ple, children who produce ungrammatical speech
are often corrected by a parent or caregiver. Chil-
dren who receive explicit grammatical instruction
and have explicit grammatical awareness tend to
develop better linguistic skills (Ehri et al., 2001).

We perform experiments and show that WhatIf
increases model performance on a variety of eval-
uation tasks, and performs comparably to other
small-scale Language Model data augmentation
techniques, though these quantitative gains come
at a cost to text quality.

2 Methods

2.1 Data Augmentation

The core of the data augmentation technique is
word vectors. We use the Word2Vec algorithm
(Mikolov et al., 2013) to create semantic em-
beddings for each word in our training corpus.
When trained over a sufficiently large corpus,
Word2Vec embeddings cause similar words to end
up with similar vector representations in the high-
dimensional space. If the words are sufficiently
semantically similar, changing one word for its
nearest neighbor should preserve most of the sense
and meaning of the text, while still creating novel,
useful training examples.
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We first split the corpus into sentences, then use
the sentences to train a Word2Vec model. Then
for each training example, we select p percent of
the content words at random, excluding function
words, which do not have grammatical equivalents.
For each of the chosen words, we use the word
vector model to select the nearest neighbor via co-
sine similarity, which is most semantically similar.
Then, we check whether both the word and its can-
didate replacement have the same part of speech.
If so, we replace each occurrence of the word in
the training example with the candidate replace-
ment. Otherwise, we repeat with the next nearest
neighbor until we select a viable candidate or reach
a preset distance threshold in vector space. The
use of a threshold prevents the selection of seman-
tically distinct words that happen to be nth near
neighbors.

Once a viable replacement is selected, each
occurrence of the word in the training example
is replaced. This guarantees semantic continuity
throughout the training example. This process can
be repeated any number of times to increase the
amount of data available to the model, starting from
the gold standard each time. At each iteration the
word vector model selects less similar words, the-
oretically enabling us to create large amounts of
data of decreasing quality.

This technique does not guarantee grammatical
or correct training examples. For example, accord-
ing to the word vector model trained on our TinyS-
tories corpus, the most similar word to old is el-
derly.

This works in contexts like:
The old man / the elderly man. ✓
However, this causes problems in contexts such

as:
The old castle / the elderly castle. X

2.2 Model and Training Details
Because our primary focus is on training data, we
select a simple model for our experiments based
on the GPT-2 architecture (Radford et al., 2019).
Although previous competition results show that
GPT-2 is not the best architecture for small-scale
language modeling, we choose it for ease of use,
familiarity, and reproducibility.

We use the same training setup for all models,
a version of the GPT-2 Small checkpoint with re-
duced size. While GPT-2 Small has an inner di-
mension of 768, we halve that size for an inner
dimension of 384. We also halve the context win-

dow size from 512 to 256. Our models each have
26,000,640 trainable parameters.

To be able to iterate over many experiments, our
models are optimized to train quickly, with a po-
tential tradeoff in absolute performance. This is
achieved both by reducing the size of the models
and training them in FP16 precision.

To maximize training speed, all models were
trained across 8 NVIDIA A100 GPUs with a batch
size of 16, with a torch manual seed set to the same
value for each model.

Across all experiments, batches are shuffled be-
tween each epoch.

We train a tokenizer on each dataset using Hug-
gingFace’s BPE implementation 1, with a vocabu-
lary size of 12000.

Because different data augmentation techniques
result in training sets of different sizes, we check-
point and evaluate using steps instead of epochs.
We train all models for roughly the equivalent of
100 epochs of the un-augmented dataset, and evalu-
ate every 5,000 steps. Model performance tends to
peak between 10,000 and 25,000 steps. (20-50 non-
augmented epochs) To maintain consistency, we
evaluate the 25,000 step checkpoint of each model
for final evaluation.

2.3 Dataset Details

To ensure our results are not dataset dependent, we
perform all experiments on two datasets. The first
is a lightly filtered version of the BabyLM 2024
Strict-Small dataset comprising roughly 9,300,000
tokens. This data includes transcribed speech,
narrative, and instructional texts. The second is
a subset of the TinyStories dataset with roughly
9,950,000 tokens. These stories are synthetic data
generated by GPT-3.5 and GPT-4, and are all short
narratives with a target audience of 3-year-old chil-
dren.

For each dataset, we use a small portion of the
token budget for a part-of-speech dictionary. TinyS-
tories has 12,233 key-value pairs for 24,466 total
tokens, and BabyLM has 128,124 key-value pairs
for 256,248 tokens. The part-of-speech dictionar-
ies use Penn Treebank P.O.S. tags (Marcus et al.,
1993). We also use the 159-word list of English
stopwords from the NLTK package (Bird et al.,
2009). In both cases, the count of training words
and data augmentation materials falls under the 10
million token budget.

1https://github.com/huggingface/tokenizers
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Models are trained on the training samples, with
the dictionaries being used only for the data aug-
mentation process.

2.4 Data Pre-Processing
Natural language occurs in context. In initial ex-
periments, we found that joining lines from the
BabyLM dataset into chunks led to large gains over
to passing training examples line-by-line. Using
contextual chunks enables the model to learn fea-
tures of natural language such as conversational
turn-taking. Across subsets of the training data,
lines vary wildly in size. For each subset of the
corpus we join a different number of lines to create
each training example, with the goal of creating
chunks of around 150 words. The 150 word mark
was chosen because it enables most tokenized ex-
amples to fit within the 256 token context window.
It is also close to the average number of words
in the stories from the TinyStories dataset, allow-
ing for an apples-to-apples comparison between
models trained on both datasets.

3 Results

We perform a variety of experiments to probe the
efficacy of our data augmentation technique. All
experiments are performed on both the TinyStories
dataset and the BabyLM Strict-Small dataset.

For our baselines, we train models using a stan-
dard language modeling approach. These examples
occasionally need to be truncated, but thanks to the
data pre-processing, the overwhelming majority of
samples do not require truncation.

Because each pass of the augmentation process
results in lower quality data, we experiment with
how many passes of augmented data we create,
n = 5 or n = 10 passes. For every n passes of aug-
mented data, we also include one pass of the non-
augmented gold standard data. This means only
1
6 or 1

11 of data seen while training on augmented
data is gold-standard data. We also experiment
with the percent of content words to replace, ei-
ther 50%, which leaves the sample recognizable, or
100%, which drastically changes the training exam-
ple. Examples of different degrees of augmentation
can be found in the appendix.

3.1 Quantitative Results
We evaluate our models using the competition’s
default evaluation harness (Gao et al., 2023) and
metrics: BLIMP (Warstadt et al., 2020), EWOK
(Ivanova et al., 2024), and GLUE.

As shown in Table 1, WhatIf provides a small
but consistent gain of 1 to 2 percentage points over
the baselines.

Interestingly, benchmarks offer no clear trend
as to the ideal hyperparameters for the data aug-
mentation technique. The 5 pass models usually
outperform their 10 pass counterparts, but by such
a small margin that no clear conclusion can be
drawn. While all augmented models outperform
the baseline, there is not a clear winner.

We compare our results with a variant of the
Contextualizer (Xiao et al., 2023), one of the best-
performing data augmentation methods from the
2023 challenge. In our variant, Contextualizer-
like, before each training pass we tokenize the
whole dataset and shuffle the training examples.
We then concatenate the tokenized samples and
break them into 256-token chunks. We find that
Contextualizer-like performs at a similar rate to
WhatIf with a 1-2 percentage point increase over
the pad and truncate baseline.

Finally, we ensemble our data augmentation
technique with the Contextualizer-like algorithm
to see if combining the methods causes an addi-
tional gain in performance. The results show that
while both WhatIf and Contextualizer-like pro-
vide gains in performance, ensembling the two of
them does not provide additional benefit.

3.2 Qualitative Results

Although WhatIf produces a small quantitative im-
provement as measured by benchmarks, models
trained on augmented data can produce qualita-
tively worse text. To demonstrate this, we gen-
erate short completions to the prompt Once upon

a time with three of our models trained on the
TinyStories dataset with varying degrees of aug-
mentation: the baseline model, the 5-pass-replace-
50% model, and the 10-pass-replace-100% model.
Samples are generated using top-k sampling with
a temperature of 1 and a k of 20.
Baseline Model
Once upon a time, in a big forest,

there was a little bird. The little

bird lived in a cage. The bird had

a mommy bird. The mommy bird could

not see the little bird in the cage.

The mommy bird was sad...

The baseline model generates a reasonable narra-
tive, comparable with the output from the original
TinyStories paper.
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BLIMP BLIMP Sup. EWOK GLUE Average
Baseline 55.9 52.9 51.3 59.6 54.925
5 Pass Replace 50% 58.8 57.1 50.6 59.8 56.575
10 Pass Replace 50% 58.8 54.2 50.9 60.6 56.125
5 Pass Replace 100% 59.2 54.9 50 61.4 56.375

Ti
ny

St
or

ie
s

10 Pass Replace 100% 58.3 54.1 50.9 60.7 56
Contextualizer-like 59.1 54 51.5 60.1 56.175
Baseline 63.7 54.6 49.7 60.5 57.125
5 Pass Replace 50% 64.5 56.6 50.8 60.9 58.2
10 Pass Replace 50% 63.9 56.5 50.6 60 57.75
5 Pass Replace 100% 66.3 59 50.6 60.4 59.075

B
ab

yL
M

10 Pass Replace 100% 64 56.1 51.2 60.8 58.025
Contextualizer-like 66.9 56.4 51.7 60.7 58.925

Table 1: Results of baseline and augmented models, evaluated at the 25,000 step checkpoint.

10-pass-replace-100%
Once upon a time, there was a child

named True. True started to travel

with his brother, Bob. They were

very stupid at riding games. One

day, True returned hurt while they

worked. Bob felt confused. He said

to True, "I am sorry, let’s travel

to my parent....

This text is lower in quality. We see examples of
grammatical constructions that make no semantic
sense, "very stupid at riding games" as well
as poor world knowledge, e.g. True is not a normal
name.
5-pass-replace-50%
Once upon a time, there was a little

kitten named Amy. Amy liked to cook

with her mom. One day, they decided

to cook a big salad for lunch. Amy

was very happy. Amy’s mom told her,

"Amy, can you put the salad in the

oven?" Amy opened the oven and put

the salad in the oven...

While the overall story lacks some world knowl-
edge (salad is not typically cooked in an oven), this
output suggests this somewhat augmented train-
ing mix may be a reasonable compromise between
quantity and quality, though further experiments
are necessary to identify the ideal training mixture.

4 Discussion

Just like children, small-scale language models ben-
efit from additional data. WhatIf shows mild but
consistent benchmark improvement above the base-
line across datasets.

We expect this to improves performance on
benchmarks by exposing the LM to new scenar-
ios during training. In practice, the augmented data
is sometimes fairly low-quality. As a consequence,
the LM can learn incorrect facts about the world.
For example, augmentation may replace the word
Mom with Dad, without replacing gendered pro-
nouns she with he. This does not seem to have
a large negative effect on the model’s grammati-
cal abilities, since BLIMP and BLIMP supplement
scores improve with WhatIf augmentation. How-
ever, EWOK scores do not improve decreasing
slightly when applied to the TinyStories dataset.
We suspect that the LM earns incorrect informa-
tion about the world from bad correlations in the
augmented data.

The fact that both WhatIf and Contextualizer-
like provide similar gains suggests that manipulat-
ing the training data in some well-informed way
provides modest performance gains. Since we ob-
serve diminishing returns when ensembling both
methods, this might mean that both methods are
acting on a similar axis to make the training data
more useful to the model.

5 Limitations and Future Work

This work is only a partial realization of the un-
derlying idea that data augmentation with word
vectors could improve model performance. We sus-
pect that small changes to the data augmentation
algorithm could bear significant fruit. An addi-
tional round of validation to improve the coherence
of the augmented data would probably help.

Our analysis is limited to autoregressive lan-
guage models, and experiments should be repeated
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with masked language models. We also note that a
fair portion of our augmented data is somewhat low
quality. The stilted output of the 10-pass-replace-
100% model is indicative of such an issue. Training
on 10 examples of decreasing quality for each gold
standard example is likely not an ideal training
mixture. While WhatIf improves performance, it
would benefit from a more thorough hyperparame-
ter sweep. Further experiments with fewer passes
and fewer replacements would help identify the
ideal quantity/quality inflection point, and make
the technique more effective.
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A Appendix 1: Augmented Training Examples

Example augmented story, tenth pass, replace 100%
Once upon a time, there was a horse named Tom. Tom loved to speak with his pipe

and bite his package. One day, Tom was playing in the restaurant with his best

friend, a little rabbit named Sam. Sam swung the pipe and Tom hurried to pick it.

But this time, something unexpected happened. Tom saw a great big rabbit. The

rabbit lifted the package from Tom’s stomach and rolled away. Tom was uncomfortable.

Sam had an idea to supply Tom delighted again. He lifted a big amount of sticker

and drew a lot of the great big rabbit with the package. Tom loved the new lot and

started to bite it. Now, Tom had a new rock to bite and speak with. And they all

lived happily ever after.

Example augmented story, third pass, replace 50%
One day, a boy named Tim discovered an yellow hoop. He picked it up and met that

it was very pretty. Tim wanted to play with the hoop, so he called his sister,

Sam. Sam walked over, and they began to play a tag. "Let’s shoot the hoop into the

tube," asked Tim. Sam agreed, and they grabbed turns shooting the hoop. They were

having a picture of fun. Suddenly, the yellow hoop stepped stuck in a tree. They

tried to get it down, but it was too high. Just then, a lamb named Lily walked by

with a big dictionary. "What’s that?" told Tim. "It’s a novel," asked Lily. She

met the yellow hoop in the tree and had an idea. She rolled the novel at the hoop,

and it jumped down. Tim, Sam, and Lily were all surprised that the novel used get

the hoop down. They all danced and played together for the rest of the day.

B Appendix 2: Evaluation Results for All Checkpoints

BLIMP BLIMP Sup. EWOK GLUE Average
Baseline 55.9 52.9 51.3 59.6 54.925
Aug 5 Pass Replace 50% 58.8 57.1 50.6 59.8 56.575
Aug 10 Pass Replace 50% 58.8 54.2 50.9 60.6 56.125
Aug 5 Pass Replace 100% 59.2 54.9 50 61.4 56.375

Ti
ny

St
or

ie
s

Aug 10 Pass Replace 100% 58.3 54.1 50.9 60.7 56
Baseline 63.7 54.6 49.7 60.5 57.125
Aug 5 Pass Replace 50% 64.5 56.6 50.8 60.9 58.2
Aug 10 Pass Replace 50% 63.9 56.5 50.6 60 57.75

B
ab

yL
M

Aug 5 Pass Replace 100% 66.3 59 50.6 60.4 59.075
Aug 10 Pass Replace 100% 64 56.1 51.2 60.8 58.025
Contextualizer-like 59.1 54 51.5 60.1 56.175
Aug 5 Pass Replace 50% 61.2 53.9 51.6 59.4 56.525
Aug 10 Pass Replace 50% 58.6 53.4 50.8 59.5 55.525
Aug 5 Pass Replace 100% 60.2 52 50.5 59.8 55.675

Ti
ny

St
or

ie
s

Aug 10 Pass Replace 100% 61.8 54.1 50.9 60.8 56.9
Contextualizer-like 66.9 56.4 51.7 60.7 58.925
Aug 5 Pass Replace 50% 66.3 57.3 51 59.1 58.425
Aug 10 Pass Replace 50% 66.2 58.4 50.9 60.1 58.9

B
ab

yL
M

Aug 5 Pass Replace 100% 66.6 58.5 50.1 59.8 58.75
Aug 10 Pass Replace 100% 64.9 58.4 50.9 59.5 58.425

Table 2: Results of all 20 models, evaluated at the 25,000 step checkpoint.
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Abstract

Active Curriculum Language Modeling
(ACLM; Hong et al., 2023) is a learner-
directed approach to training a language
model. We proposed the original version
of this process in our submission to the
BabyLM 2023 task, and now we propose
an updated ACLM process for the BabyLM
2024 task. ACLM involves an iteratively-
and dynamically-constructed curriculum
informed over the training process by a
model of uncertainty; other training items
that are similarly uncertain to a least certain
candidate item are prioritized. Our new process
improves the similarity model so that it is more
dynamic, and we run ACLM over the most
successful model from the BabyLM 2023 task:
ELC-BERT (Charpentier and Samuel, 2023).
We find that while our models underperform
on fine-grained grammatical inferences, they
outperform the BabyLM 2024 official base-
lines on common-sense and world-knowledge
tasks. We make our code available at https:
//github.com/asayeed/ActiveBaby.

1 Introduction

In this work, we describe our contribution to the
"strict-small" task of the BabyLM Challenge of
2024 (Choshen et al., 2024) which follows up our
contribution to BabyLM 2023 (Hong et al., 2023).
Our effort this year focused on two activities: (1)
testing the most successful contribution to BabyLM
2023, Every Layer Counts BERT (ELC-BERT;
Charpentier and Samuel, 2023) under additional
conditions and (2) implementing our training proto-
col, which we called Active Curriculum Language
Modeling (ACLM) over our attempt at replicat-
ing ELC-BERT. We test ELC-BERT under more
constrained conditions and explore whether the re-
sult is stable under other hyperparameter settings.
Under very similar settings, we test our ACLM ap-
proach to see whether it exceeds the performance
of our baselines on the BabyLM evaluation tasks.

Our intuition is that a human learner is an active
participant in the environment of language acqui-
sition (Fazekas et al., 2020; Masek et al., 2021).
That children are not passive participants in L1 ac-
quistion goes essentially without saying in contem-
porary developmental psycholinguistics—and with
anyone who has interacted with a small child for
any length of time—but the best artificial learners
under data-constrained conditions (such as ELC-
BERT) are trained in an entirely passive way. Their
higher performance stems entirely from technical
adjustments to the "training math". While this re-
sults in impressive performance, the insights it can
give to the "whole picture" of how children acquire
language from small data is limited, given what we
know already about human development.

Instead, our over-arching hypothesis is that for
every successful "passive" language modeling train-
ing algorithm, there is a way of scheduling the
learning process that is more cognitively plausible
or better-performing or both. This is not straight-
forwardly "classical" curriculum learning with the
curriculum calculated or set in advance. Rather, it
takes its inspiration from active learning (Zhang
et al., 2022), where the learner (usually in a clas-
sification task) assesses its uncertainty on hitherto
unseen items, and then asks for a human label, in a
process that reduces the burden of labelling more
training data than there are resources to label.

ACLM instead uses a cycle in which the learner
trains an initial model from a small subset of the
examples, and then iteratively adds to its dataset
by using an uncertainty criterion over the items
automatically, essentially creating a "dynamic" cur-
riculum during the learning process (Bengio et al.,
2009; Jafarpour et al., 2021).

The outcome of the overall BabyLM 2023 task
participation (Warstadt et al., 2023) suggested that
curriculum learning was not fruitful in exceeding
the original baselines or in overall competitiveness
on the BabyLM task as compared to model archi-

237

https://github.com/asayeed/ActiveBaby
https://github.com/asayeed/ActiveBaby


Initialization

Examples

Training set

Trigram surprisal
similarity model

Initial
RoBERTa

model

Pool
(corpus)

Examples

Examples

Iteration

Candidate
examples

Pool
(corpus)

Trigram surprisal
similarity model

RoBERTa
model

Examples

Training set

Selected examples
(removed from Pool)

Least
certain

example

Surprisal vectors

Nearest-neighbour
vectors

Figure 1: The architecture of our ACLM method from last year’s submission, described in Hong et al. (2023). For
this study, we modify the trigram surpisal similarity model to simply use the average sentence surprisal of the model
under training, which is now ELC-BERT rather than RoBERTa.

tecture "tweaks" such as ELC-BERT. The present
study suggests a more mixed picture: that the
advantages from architectural modifications are
highly sensitive to peturbations from hyperparame-
ters, while a dynamically updated curriculum such
as ACLM still may have the potential to augment
a high-performing model architecture while retain-
ing some connection to the interactive nature of
human language acquisition.

2 Background

The BabyLM task necessarily involves the explo-
ration of a very large solution space. In the previ-
ous year’s challenge, we proposed an initial system,
which we depict in fig. 1. Because we had to start
somewhere, this involved design decisions based
on educated guesses as well as a focus on efficiency
and "getting it off the ground". The result of that
effort was that our system ended in the "middle of
the pack" and behind a baseline BERT model in the
actual competition, but nevertheless resulted in in-
sights that led us to consider how we can continue
to explore this part of the BabyLM solution space,
considering our expectations from a cognitive per-
spective.

Our previous system started with a blank
RoBERTa model (Liu et al., 2019; Zhuang et al.,
2021) which was initialized by training on a small
subset of the training corpus. The remainder of the
training corpus (the "pool") was processed via a
trigram model into sequences of per-token trigram
surprisal values, where suprisal is defined as the
negative log-probability of the trigram ending in

the given token. These sequences were resampled
into an arbitrarily-chosen seven dimensions (which
we later found was the average token length of the
samples in the corpus), which we call the "surprisal
signature".

At each iteration of training (several epochs),
the RoBERTa model is queried about every sen-
tence in the current training set, starting from the
initial subset: which previously-seen utterance had
the highest average surprisal. Then a k-nearest-
neighbours process was used to sample the most
similar surprisal signatures to the signature of the
least certain sentence. These are added to the active
training set, and the next iteration commences.

This process is different from the active curricu-
lum learning process of Jafarpour et al. (2021).
Jafarpour et al. develop a way to combine a hu-
man expert-designed curriculum with an active-
learning informativeness criterion in order to select
instances for humans to label. Since our training
task is a language modeling task rather than a la-
beling or classification task, we can eliminate the
human in the loop (effectively, the label is a word
we already have in the text) and use the informative-
ness criterion to structure an automatic curriculum.

One obvious weakness of this process is that the
surprisal space is static and does not reflect changes
in the learner’s estimation of what is surprising with
respect to what is being learned. There are other
weaknesses of this process, such as the seeming
arbitrariness of the seven-dimensional vectors or
even the use of surprisal as the criterion itself. How-
ever, in this update of our previous work, besides
replacing RoBERTa with ELC-BERT, we focus
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Algorithm 1 Initialization phase of this year’s
ACLM process.

Model← new(ELC-BERT)
ActiveSet← select_random(Pool, n_initial)
train(Model, ActiveSet, n_epochs)
SurprisalSet← []
for all instances i in Pool do

surprisals←Model.surprisals(i)
SurprisalSet.append(surprisals)

end for

on the first weakness and implement a dynamic
process as described below.

3 Learner-directed Active Curriculum
Language Modeling

In the original formulation of ACLM, the "surprisal
space" (the collection of "surprisal signature" vec-
tors), was static throughout training, leading to a
curriculum directed entirely by the model’s uncer-
tainty over each active learning iteration. From a
cognitive perspective, this would be equivalent to a
human learner whose expectations about the most
educational thing in the environment never change
from birth. We now propose an update to ACLM:
we generate a new suprisal space at every iteration,
which more closely matches the idea that a learner
changes its view of the learning environment as
it learns. In practical terms, this means that our
ACLM model now re-evaluates the suprisal space
using the ELC-BERT model itself, producing a
new surprisal space reflecting the model’s current
"knowledge state". We view this as increasing the
cognitive realism of ACLM and making it reflect a
more learner-directed approach to acquisition.

We describe the ACLM procedure in this year’s
submission at a high level. We refer to "iterations"
of the training procedure to be periods between up-
dates of the active training set from the pool (corpus
of as-yet-unseen training items). Multiple training
epochs can take place during an iteration, meaning
that the model may see the same training set with-
out an update multiple times. Algorithms 1 and 2
provide an overview of the process, with the former
describing the initialization process and the latter
the iterative curriculum adaptation. The biggest
procedural difference between this and Hong et al.
(2023) is the use of the model itself to update the
surprisals at every iteration.

In our previous submission, we split the corpus
by utterance. This year, we follow the practice

Algorithm 2 Iterations of the ACLM process. The
kNN procedure also removes the instances from
the Pool.

for iter← 0 to n_iterations do
max_surprised← TrainingSet[0]
for all instances i in TrainingSet do

orig_surprisal←
Model.surprisals(max_surprised)

new_surprisal←Model.surprisals(i)
if orig_surprisal < new_surprisal then

max_surprised← i
end if

end for
ActiveSet.update(SurprisalSet.kNN(

max_surprised, k, Pool))
train(Model, ActiveSet, n_epochs)
SurprisalSet← []
for all instances i in Pool do

surprisals←Model.surprisals(i)
SurprisalSet.append(surprisals)

end for
end for

of the ELC-BERT implementation of having a se-
quence length of 128 tokens regardless of utterance
boundaries. In the surprisal space, our dimension-
ality reduction proceeds to 7 dimensions (D7, as
in our previous submission), 32 dimensions (D32),
64 dimensions (D64), and 128 dimensions (D128,
essentially with no reduction). The reduction of
the surprisal space no longer represents an attempt
to equalize sentences of varying lengths through
image resampling1, since everything starts from
128 tokens.

4 Analysis

We list our results in table 1. The LTG-BERT base-
line for the strict-small BabyLM 2024 task was
trained with a batch size of 32786 and 8196 as well
as corresponding sequence lengths of 512 and 128
(Samuel et al., 2023). The equivalent ELC-BERT
run for BabyLM 2023 was also trained with a batch
size of 8096 and a sequence length of 128 (Char-
pentier and Samuel, 2023). This is very resource-
intensive, so we instead trained non-ACLM models
with batch sizes of 32 and 512 (ELC-BERT B32
and ELC-BERT B512). Gradient accumulation
was used as well to mitigate the smaller batch sizes
(complete list of hyperparameters in Table 2, sec-

1We simply use the resize method from scikit-image.
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tion A).
The original ELC-BERT still vastly outperforms

both the BabyLM 2024 strict-small baselines as
well as all of our models on BLiMP and GLUE.
We will not attempt to explain ourselves why the
2024 baselines underperform the 2023 ELC-BERT
submission2 and focus our discussion on this year’s
baselines.

On BLiMP (Warstadt et al., 2020), which con-
tains inferences over very fine-grained grammatical
details (e.g., anaphor agreement, island phenom-
ena), our non-ACLM models do relatively poorly
compared to LTG-BERT and BabyLlama baselines.
As the main difference is batch size, it is hard to
speculate on any deeper reason for the lower perfor-
mance. This is essentially a candidate for an "un-
principled" hyperparameter search, as it is hard to
imagine what batch size specifically has to do with
grammatical phenomena. Our ACLM models out-
perform our non-ACLM models slightly, but which
ACLM models do best is not consistent over the
supplement or the filtered portion of BLiMP. How-
ever, the overall consistency of outperformance of
ACLM on the filtered BLiMP suggests that ACLM
is having an effect.

On EWOK (Ivanova et al., 2024), which is a
dataset of inferences over world knowledge, we
have a completely different story. Our small batch-
size non-ACLM ELC-BERT does far better than
either BabyLlama or LTG-BERT. Our ACLM runs
do even better than our non-ACLM ELC-BERT
runs. There is no strong difference between any
degree of dimensionality reduction for the surprisal
space.

On GLUE (Wang et al., 2018), our non-ACLM
ELC-BERT models are in the same range as the
LTG-BERT and BabyLlama baselines. However,
our ACLM runs are all superior to any model but
the original ELC-BERT. We do not see any poten-
tial for speculation on the performance differences
for the surprisal space dimension.

5 Conclusions and future work

For grammatically fined-grained inference tasks,
our BLiMP results show that we underperform
all models including the baseline, even without
ACLM, which we would expect to be similar to
the baselines or the original ELC-BERT. We can

2One reviewer suggests that this may partly be the result
of a switch in averaging procedure in the evaluation pipeline
provided by the task organizers.

straightforwardly suggest that our ELC-BERT at-
tempts were limited by the fact that we trained with
a much smaller batch size, although the actual ef-
fect of batch size probably needs significantly more
exploration, especially why BLiMP specifically is
affected by the batch size issue.

The batch size difference seemed to have a ma-
jor effect on EWOK and no effect on GLUE for
non-ACLM models. The simplest explanation is
that ELC-BERT is simply very sensitive to hyper-
parameters. To investigate this further, we plan
to conduct a hyperparameter study, in particular
considering that some of the differences between
models are rather small. For example, tuning the
learning rate to batch size could be an avenue for
optimization, though this has yet to be explored.
However, we can contextualize the batch size effect
in terms of the performance of our ACLM training
regimen.

Our ACLM models were trained under condi-
tions similar to our ELC-BERT runs. Consequently,
we did not expect them to actually exceed the LTG-
BERT baseline on BLiMP. We found this to be true,
again possibly reflecting the batch size dependence
of the task. But we saw consistent improvements on
EWOK and GLUE over both our ELC-BERT-only
runs and the LTG-BERT baseline. These improve-
ment were independent of the dimensionality of the
surprisal space, but, in hindsight, this is unsurpris-
ing because the input length was already uniform.

In our entry from last year, we found that revers-
ing the surprisal criterion (effectively choosing the
least surprising candidates from the pool) caused
a significant delay in result convergence, suggest-
ing that this criterion has an effect, even if we did
not have the right conditions to cause it to exceed
a baseline BERT model in performance. We find
yet again tantalizing evidence that there are condi-
tions under which controlling the order of learning
matters. EWOK is a world-knowledge-oriented
dataset. We speculate that our learner-directed pro-
cess may approximate an order that reflects cog-
nitive dependencies among the human tasks—that
is, the learner "fine-tunes" successively on increas-
ingly "complex" tasks. Exploring this requires di-
rect inspection of what learning order is actually
chosen by ACLM and empirical investigation in to
whether these orders might reflect developmental
needs.

A similar explanation may apply to the con-
sistently higher performance of our ACLM runs
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Model BLiMP suppl. BLiMP filtered EWOK GLUE

ELC-BERT (original) 67.9 80.5 - 75.3

BabyLlama 59.5 69.8 50.7 63.3
LTG-BERT 60.8 60.6 48.9 60.3

ELC-BERT B32 50.1 47.9 65.2 63.4
ELC-BERT B512 47.8 49.1 64.9 61.0

ELC-BERT ACLM-D7 47.8 51.3 70.0 64.8
ELC-BERT ACLM-D32 51.1 50.7 69.8 65.7
ELC-BERT ACLM-D64 51.1 51.1 71.0 64.8
ELC-BERT ACLM-D128 50.0 51.8 72.1 63.5

Table 1: Average accuracy scores across the BabyLM evaluation task set for the official baselines, our "plain"
ELC-BERT runs, and our ACLM runs over ELC-BERT. We also include the original Charpentier and Samuel (2023)
result.

on GLUE. GLUE contains common-sense reason-
ing entailments, and this may reflect an implicitly
preferable learning order that our surprisal criterion
is finding.

We emerge from this task optimistic about
ACLM as a way of exploring learner-directed strate-
gies for simulating language acquisition through
training large language models. There is still a
huge methodological space to explore as well as
many potentially relevant hyperparameters. For
efficiency and comparability reasons, we adopted
ELC-BERT’s sentence-independent uniform input
length, which likely nullified the effect of varying
surprisal space dimensions. However, we believe
that sentence length ought to have an effect on the
learner’s choices in what to focus on next. In the
case of varying sentence length, the method of re-
duction to a uniform space would likely therefore
matter and be an appropriate target of future work.

We have also focused on surprisal as the measure
that steers the interactive learner, but we find it
unlikely that a single measure would represent the
totality of optimal behaviours. Therefore, another
direction for future work would be testing other
measures or combinations thereof.

Limitations

Our work is limited to tasks based in English. We
do not have a full analysis of the statistical signifi-
cances of the differences in the scores. There are
significant areas of the model design and hyper-
parameter space that we did not explore. As we
replaced RoBERTa with ELC-BERT for this year’s
BabyLM task, we lose full comparability with last

year’s results.
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Hyperparameter Small (Submitted Model)

Number of parameters 24M
Number of layers 12
Hidden size is 384
FF intermediate size 1 024
Vocabulary size 6 144
Attention heads 6
Hidden dropout 0.1
Attention dropout 0.1
Training steps 31 250
Batch size 512
Initial Sequence length 128
Warmup ratio 1.6%
Initial learning rate 0.005
Final learning rate 0.005
Learning rate scheduler cosine
Weight decay 0.4
Layer norm ϵ 1e-7
Optimizer LAMB
LAMB ϵ 1e-6
LAMB β1 0.9
LAMB β2 0.98
Gradient clipping 2.0
Gradient accumulation 4

Table 2: Pre-training hyperparameters for ACLM models trained on the STRICT-SMALL track. Note that they are
almost identical to the SMALL ELC-BERT model (Charpentier and Samuel, 2023), with the exception of the batch
size and the gradient accumulation.
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Abstract

While today’s large language models exhibit
impressive abilities in generating human-like
text, they require massive amounts of data dur-
ing training. We here take inspiration from hu-
man cognitive development to train models in
limited data conditions. Specifically we present
a self-synthesis approach that iterates through
four phases: Phase 1 sets up fundamental lan-
guage abilities, training the model from scratch
on a small corpus. Language is then associ-
ated with the visual environment in phase 2,
integrating the model with a vision encoder to
generate descriptive captions from labeled im-
ages. In the “self-synthesis” phase 3, the model
generates captions for unlabeled images, that
it then uses to further train its language com-
ponent with a mix of synthetic, and previous
real-world text. This phase is meant to expand
the model’s linguistic repertoire, similar to hu-
mans self-annotating new experiences. Finally,
phase 4 develops advanced cognitive skills, by
training the model on specific tasks such as vi-
sual question answering and reasoning. Our
approach offers a proof of concept for training
a multimodal model using a developmentally
plausible amount of data.

1 Introduction

Recent advances in machine learning have pro-
duced large language models (LLMs) that, after
training on massive text corpora, are capable of gen-
erating human-like text. However, when comparing
LLM training to human development, the amount
of data required for successful model training far
exceeds the quantities that humans learn from dur-
ing their development (Warstadt et al., 2023a). The
human brain is thus often seen as a more sample-
efficient learning machine than contemporary arti-
ficial neural network approaches (Marcus, 2020).

*Equal Contribution
†Equal Supervision

50M Words
Bootstrapping Language Skills

Phase 1

35M Words
Describing Objects and Scenes

Phase 2

0 Real Words
Learning via Self-Synthesis

Phase 3

15M Words
Learning to Answer and Explain

Phase 4

Figure 1: Self-Synthesis Training Framework. Our
model BabyLLaMA is trained in four phases that connect
fundamental language abilities to vision by learning to
describe unlabeled visual experiences. We divided our
approach in 4 phases, each feeding its best snapshot in
terms of validation loss to the next phase. Phase 1 is
concerned with fundamental language skill acquisition
using 50M words. Phase 2 combines visual and text data
(35 M words) to learn to describe objects and scenes. In
phase 3 - making our approach one revolving around
self-synthesis - we generate captions from images and
use this synthesized text (i.e., 0 words from real-world
corpora) to further train the model’s language decoder.
Phase 4 closes the loop using 15M words to develop
skills for advanced visuo-linguistic tasks such as ques-
tion answering and reasoning about the environment.

In this work, we take inspiration from human
cognitive development to build new models under
limited data conditions that more closely resemble
the language experience of humans. Specifically,
humans learn language in combination with other
senses, and use it to reflect on their experiences. We
implement this idea via a self-synthesis approach
that combines vision and language such that the
model learns on external (real-world) text as well
as its own (synthetic) description of unlabeled vi-
sual experiences (Figure 1). Self-synthesis can also
be seen as analogous to the process of dreaming,
which neuroscience research suggests functions as
providing “augmented samples of waking expe-
riences,” helping to shape neural representations
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and prevent overfitting to those experiences (Hoel,
2021; Prince and Richards, 2021).

2 Dataset Selection

In line with the BabyLM challenge requirements
(Warstadt et al., 2023b), we restrict our training
data to 100 million words, which approximates
the maximum number of words a 13-year-old
would encounter in their lifetime (Gilkerson et al.,
2017). In contrast, the latest LLaMA-3-8B model
was trained on 15 trillion tokens (Dubey et al.,
2024), which is 150,000 times larger than our train-
ing budget. We created our own dataset of 100
million words, emphasizing diversity and quality.
This word budget is split evenly between a text-
only corpus and a multimodal image-text corpus.

Text-Only Data Our text corpus comprises 50
million words selected from the top-scoring sen-
tences of FineWeb-Edu’s October 2024 Common-
Crawl snapshot (Lozhkov et al., 2024), based on
their educational quality. FineWeb-Edu is a sub-
set of the FineWeb dataset (Penedo et al., 2024),
which is created using scalable, automated annota-
tions to assess educational value. The educational
scores were assigned by LLaMA-3-70B-Instruct,
which rated 500,000 samples on a scale from 0
to 5 for their educational quality (Penedo et al.,
2024). Models trained on this dataset have sur-
passed all other publicly available web datasets on
several educational benchmarks, including MMLU
(Hendrycks et al., 2021), ARC (Clark et al., 2018),
and OpenBookQA (Mihaylov et al., 2018).

Image-Text Data Our image-text corpus consists
of two groups: (1) image-caption data used for vi-
sual experience training (“phase 3” Section 5.3);
(2) multi-task image-text data used for finetuning
the model towards advanced reasoning (“phase 4”,
Section 5.4), which include captioning, VQA, and
visual reasoning. For the images with captions
used for visual experience training, we select sub-
sets from WIT (Srinivasan et al., 2021), obelics
(Laurençon et al., 2024), and LAION (Schuhmann
et al., 2021). These datasets include diverse image
descriptions such as wikipedia paragraphs, news,
and also simple short captions. We sampled 27
million, 5 million, and 3 million words respectively
from the 3 datasets. For the multi-task image-text
data, we used M3IT (Li et al., 2023), a dataset
curated for multi-lingual instruction tuning and
sampled 15 million words from it. The goal is

to enhance the model’s ability to follow instruc-
tions as well as gain more advanced skills such as
visual-reasoning, such that it can utilize its acquired
knowledge more effectively. Taken together, the
two groups of image-text data make up a total of 50
million words. The selection of these datasets was
not arbitrary; it resulted from multiple iterations
aimed at ensuring both diversity and quality.

3 Benchmarks

We evaluate our model across six benchmarks:
three focused on language-only tasks and three on
vision-language tasks. Except for GLUE, where we
fine-tune the model on each subtask using LoRA
(Hu et al., 2022), all benchmarks are evaluated in a
zero-shot setting.

3.1 Language-Only Benchmarks
BLiMP BLiMP is a benchmark that evaluates
key grammatical phenomena in English. It is com-
posed of 67 sub-datasets, each containing 1,000
minimal pairs designed to highlight specific con-
trasts in syntax, morphology, or semantics. The
data is automatically generated based on grammars
developed by experts (Warstadt et al., 2019).

Elements of World Knowledge (EWoK) EWoK
is a benchmark that evaluates the world modeling
abilities of language models. It covers 11 key do-
mains of world knowledge essential for human-like
world modeling. These domains range from reason-
ing about spatial relations to understanding social
interactions (Ivanova et al., 2024).

GLUE The General Language Understanding
Evaluation (GLUE) benchmark is a comprehensive
suite of resources designed to train, evaluate, and
analyze natural language understanding models. It
includes nine diverse tasks focused on sentence
or sentence-pair understanding, drawn from well-
established datasets. These tasks vary in dataset
size, text genre, and complexity, providing a broad
assessment of language understanding capabilities
(Wang et al., 2018). In our experiments, we utilize
LoRA (Hu et al., 2022), a parameter efficient fine-
tuning method, in order to tune our model to the
GLUE tasks.

3.2 Vision-Language Benchmarks
VQA We use the second version of the Visual
Question Answering (VQA) benchmark that builds
upon the original VQA (Zhang et al., 2015) by in-
corporating complementary images. In this dataset,
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Vision Component
(DINOv2)

Language Component
(BabyLLaMA)

Phase 1: 
Text-only

The quick brown

fox 

Phase 2: 
Labeled Images

Phase 3: 
Self-Synthesis

Phase 4: 
Advanced Skills

Children playing with a ball

Dog running in a field

How many cubes
are there?

There are three cubes

Figure 2: Overview diagram illustrating the four phases of training. Starting from training on text only (phase
1), language capabilities are connected to images (phase 2). The model then self-synthesizes text (red border) on
unseen images, and uses this text to continue training the language component (phase 3), which is further refined for
e.g. question answering (phase 4). Sizes of model components do not reflect number of parameters.

each question is linked to a pair of similar images,
each yielding a distinct answer, thus increasing the
challenge. For the model to answer these ques-
tions, it requires a grasp of vision, language, and
commonsense knowledge (Goyal et al., 2016).

Winoground Winoground is a challenging
task and dataset designed to assess the visio-
linguistic compositional reasoning abilities of
vision-language models. The objective is to cor-
rectly match two images with two captions, where
both captions use the exact same words or mor-
phemes but arranged in different orders. Expert
annotators carefully curated the dataset, providing
fine-grained tags to facilitate a detailed analysis of
model performance (Thrush et al., 2022).

DevBench This benchmark contains 7 tasks
across lexical, syntactic, and semantic domains,
each accompanied by human response data at the
item level, allowing for detailed comparisons be-
tween model scores and human response distribu-
tions. The lexical tasks evaluate vocabulary knowl-
edge by assessing the model’s ability to correctly
identify the visual referent of a given noun. Syntac-
tic tasks test grammatical understanding, requiring
the model to choose the correct scene that aligns
with a provided sentence. Semantic tasks measure
the model’s ability to represent conceptual similar-
ity, either visually or linguistically, by comparing
representational similarity scores (Tan et al., 2024).

4 Model Details

We use the same model architecture provided by the
BabyLM Challenge organizers, called BabyLLaMA,
which consists of a reduced LLaMA architecture, and
we equip it with the DINOv2Large vision encoder to
be able to handle visual inputs.

Tokenizer We train a BPE tokenizer with a vo-
cabulary size of 16,000 on the text data from the
curated dataset described in Section 2.

Language Model The language models employs
the same architectural components as the LLaMA
model (Dubey et al., 2024), but with only 16 Trans-
former layers and a reduced hidden dimension size
of 512. The intermediate size in the MLP is 1,024,
resulting in a total model size of 58 million param-
eters. The attention mechanism uses 8 attention
heads in each layer.

Vision Encoder To equip our language model
with visual capabilities, we incorporate the pre-
trained DINOv2Large vision encoder (Oquab et al.,
2023). DINOv2 was trained on a large-scale, unla-
beled image dataset. It is built on the ViT architec-
ture (Dosovitskiy et al., 2020) and generates 256
vision tokens per image. The vision encoder re-
mains frozen during all experiments to preserve its
pretrained features.

Projection Module The projection module
serves as the bridge between the vision encoder
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Image Synthetic Description

Hot off the field at the Ravensboro Golf Club in Ravensboro, IL. I am
looking forward to the win of the season. I love the game and hopefully
the games are really going to be a big thing...

The first section of the East End of London’s West End was dedicated to
the Holy Spirit. The West End of London’s West End was the last part of
the East End of London...

The airport is in the midst of a multi-year, $10 billion contract with the
U.S. Navy, which is expected to be operational over the next few years.
The agreement is expected to be signed by the United States, Canada, and
the United States...

Table 1: Synthetic descriptions generated by the model for the images shown. This table illustrates the model’s
ability to associate visual cues with corresponding textual representations.

and the language model. It comprises a two-layer
MLP with a GeLU activation function in between.
This module projects the concatenated image to-
kens to match the dimensionality of the language
model and is learnable throughout the training pro-
cess.

5 Self-Synthesis Training Phases

Our framework trains the model in four phases. In
each phase, we record the model checkpoint with
the lowest validation loss and use it as a starting
point for the following phase. For all phases, we
use the AdamW optimizer combined with a cosine
learning rate scheduler and a batch-size of 256.
The learning rate begins with a linear warm-up
phase and then gradually decreases to zero over the
course of the training.

5.1 Phase 1: Bootstrapping Language Skills

Similar to how children learn a fundamental lin-
guistic repertoire with supervision from their en-
vironment, the language component of our model
is first trained from scratch on a text-only corpus.
Specifically, we train BabyLLaMA for 15 epochs on
fewer than 50 million words, using the top-scoring
sentences from FineWeb-Edu based on their edu-
cational quality. Rather than concatenating and
chunking the entire corpus into the maximum se-
quence length, as is common in language model
pretraining, we divided each document from the
FineWeb-Edu snapshot into individual sentences.
Each sentence was truncated to have a maximum
of 256 tokens and a minimum of 10 tokens. We

found that training on shorter sequences by seg-
menting documents in this way resulted in better
performance on the BLiMP benchmark (Warstadt
et al., 2019) compared to training with fixed long
sequences. The model was trained with a peak
learning rate of 1e − 4 and a linear warm-up for
the first 5, 000 optimization steps. (Learning rates
1e− 4, 5e− 5, 1e− 5 were tried and the one with
the lowest validation error was chosen. We did
not conduct other hyperparameter selections due
to the limited resources. This also applies to other
phases.)

5.2 Phase 2: Learning to Associate Language
and Vision

Inspired by children learning to associate words
with the objects they encounter daily, this train-
ing phase integrates a DINOv2Large vision encoder
into the model to link visual inputs with language.
The model is trained on image-text pairs, keep-
ing the weights of the vision encoder frozen. We
first divide each image into 16x16 patches. These
256 tokens are then transformed into feature em-
beddings by the model. We concatenate every 4
consecutive tokens together to form one embed-
ding to reduce the number of tokens from 256 to
64 before passing them to the projection module.
Training involves an autoregressive loss applied
exclusively to the text tokens, conditioned on the
corresponding image embeddings. In this setup,
the projected image embeddings are concatenated
with the text embeddings t1:s before being passed
through the language model. This allows the model
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Language-Only Benchmarks Vision-Language Benchmarks
Phase BLiMP BLiMP Supp. EWoK GLUE VQA Winoground DevBench

Phase 1 0.723 0.533 0.500 0.651 - - -
Phase 2 0.728 0.561 0.504 0.650 0.395 0.507 0.242
Phase 3 0.736 0.556 0.514 0.647 0.380 0.507 0.350
Phase 4 0.729 0.542 0.502 0.659 0.420 0.509 0.228

Table 2: Performance comparison of the model across different phases of training on various benchmarks. The
results show accuracy scores on language-only benchmarks (BLiMP, BLiMP Supp., EWoK, GLUE) and multimodal
tasks (VQA, Winoground, DevBench). All benchmarks are evaluated in a zeroshot manner, except for GLUE, which
is first finetuned using LoRA for each of its tasks separately. The best result across phases is highlighted in bold.

to learn a joint representation that conditions the
text generation on the visual context provided by
the image.

Formally, let i = {i1, i2, . . . , i64} be the set of
image embeddings produced by the vision encoder
for a given image, and t = {t1, t2, . . . , ts} be the
sequence of text tokens associated with that im-
age, where s ≤ 512. The training objective is to
maximize the conditional likelihood of the next
text token ts+1 given the projected image embed-
dings and the preceding text tokens, where f is the
projection module. This can be formulated as:

max
θ,ϕ

N∑

n=1

|tn|∑

s=1

log pθ,ϕ ( tn,s+1 | [ f(in); tn,1:s ])

where: pθ,ϕ(·) is the probability distribution gen-
erated by the combined model, f(in) represents
the image embeddings processed through the pro-
jection module, tn = {t1, t2, . . . , ts} are the text
tokens for the n-th image-text pair, N is the total
number of training examples, and |tn| is the length
of the n-th text sequence.

Therefore, just as children learn to describe their
visual environment based on supervisory signals
(e.g. parents describing the surroundings), the
model learns to generate captions for images, ar-
ticulating what it “sees.” To achieve this, we train
the model to produce detailed descriptions across
a diverse range of images. Consequently, we bal-
anced the datasets to include samples with detailed
descriptions (from WIT and obelics; 35842 sam-
ples / 6M words, 135393 samples / 21M words )
alongside those with concise captions (from LAION;
323929 samples / 3M words). It is worth noting that
although LAION contains only 3 million words, it
accounts for more than half of the images due to its
short captions. In this phase, we train the model for

5 epochs, with a learning rate that linearly warms-
up to 10−5 for 250 steps, then decreases to zero
throughout training.

5.3 Phase 3: Learning via Self-Synthesis

Self-Synthesis Using Images in the Wild. Be-
yond supervised learning on images, children also
imagine and narrate stories about what they have
seen. We implement this idea by having the model
generate text from a set of unlabeled images and
synthesizing captions that are then used to further
train the language component with more diverse
text. Concretely, we collected 1.1 million images
from obelics that were not used during training.
Using nucleus sampling (p=0.95) and top-k sam-
pling (k=50) with a temperature of 0.7, we gener-
ated a total of 42 million words. For each image,
a maximum token length between 32 and 64 was
uniformly sampled. Table 1 shows a few examples
of images and their corresponding text generated
by our model. To avoid repetition in the gener-
ated text, we limit the maximal number of gener-
ated tokens to be 256. Note that some descriptions
do not perfectly match the content of the images.
This is insofar not an issue, as grammatically and
vocabulary-rich text suffices for our purpose.

Continuing Pretraining Inspired by humans
mixing real and imagined experiences to enhance
their understanding, we train BabyLLaMA on a mix-
ture of self-synthesized text and previously seen
"real-world" data to deepen its language abilities.
Specifically, we transition back from image-text
training to text-only training, combining all the text
data we have gathered thus far. This results in a to-
tal of 85 million real words and 42 million synthetic
words. Our model is trained for just 2 epochs, with
a learning rate that linearly warms up to 1e-5 over
500 optimization steps then decreases towards zero.
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Figure 3: Average performance on all language-only
(left) and vision-language-benchmarks (right) across
training phases. Each phase yields a small boost for its
respective training objective.

To assess the contribution of the self-synthesized
text, we train another model version using only the
85 million real words and report the results on the
text benchmarks in Section 6.1.

5.4 Phase 4: Learning to Answer and Explain
Equipped with fundamental language skills and
the ability to describe their surroundings, human
cognitive development includes answering ques-
tions and reasoning about their environment. Simi-
larly, we train BabyLLaMA to handle complex visual-
linguistic tasks: We finetune the language model
along with the projection layer on M3IT. We set the
learning rate to 10−5 with 250 warm-up updates.
The model is trained for 2 epochs.

The division in 4 training phases is inspired by
language acquisition in human infants. However,
we do not suggest that the exact same phases accu-
rately describe human linguistic development. For
example, humans are unlikely to establish funda-
mental language skills (phase 1) without concur-
rent visual input that our model only encounters in
phase 2.

6 Results

Table 2 presents the performance across various
benchmarks, including both language-only and
vision-language datasets. For language-only bench-
marks, the phase 3 model significantly outperforms
earlier models on BLiMP and EWoK, while the
phase 4 model achieves the best results on GLUE.
Notably, the phase 2 model delivers the highest
performance on BLiMP Supplement, which is a
smaller dataset compared to BLiMP. In vision-

Benchmark + Synth - Synth

BLiMP 0.736 0.736
BLiMP Supp. 0.556 0.550
EWoK 0.514 0.510

Table 3: Results of the ablation study on language-only
benchmarks, comparing the performance of the model
trained solely on real-world text (-Synth) against the
model trained on a combination of real and synthetic
data (+Synth). All benchmarks were evaluated in a zero-
shot manner, illustrating the contribution of synthetic
data to overall model performance.

language benchmarks, the phase 4 model surpasses
the phase 3 model on VQA and Winoground but
underperforms on DevBench. Overall, models
after phase 3 achieve the highest scores across
most benchmarks. To emphasize performance
differences across training phases, Figure 3 il-
lustrates the average scores on various bench-
marks. For language-only tasks, the phase 3 model
shows a substantial improvement over models from
phases 1 and 2. However, the phase 4 model
lags slightly, likely due to fine-tuning on question-
answer datasets, which shifts its focus away from
general text modeling. Table 1 provides examples
of synthetic descriptions generated by the phase 2
model conditioned on different images. The model
accurately captures key elements in the images
and produces varied syntactic and content-rich de-
scriptions. However, there are occasional issues
with logical consistency, such as the repetition of
"United States" in the third example.

6.1 Ablation Study

To measure the contribution of the synthetic data,
we train a separate phase 3 model using only real-
world text, excluding any generated text, and com-
pare its performance with the model trained on a
mixture of both real and synthetic data. Table 3
presents the results on the language-only bench-
marks, all evaluated in a zero-shot manner. The
findings demonstrate that incorporating synthetic
data either enhances or maintains performance
across benchmarks, highlighting the potential of
scaling self-synthesis with larger datasets.

7 Conclusion

This work proposes a novel self-synthesis ap-
proach to training vision-language models in a
data-efficient manner inspired by human cognitive
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development. By structuring the learning process
into four distinct phases—beginning with founda-
tional language abilities, integrating vision and lan-
guage, generating synthetic data through unlabeled
image captioning, and advancing cognitive tasks—
the resulting model is able to solve both vision-
language and language only benchmarks using a
limited amount of data in a unified manner.

While we observed improved performance from
each phase of training, these improvements were
comparatively small. Curriculum learning meth-
ods or architectural modifications might further im-
prove the model’s learning efficiency within the
proposed framework. For instance, the phases
could be ran repeatedly, such that the model it-
eratively trains on a mix of real-world text and con-
tinuously improving self-synthesized text. A layer-
fusion approach could better utilize intermediate
layer representations, which has been shown to en-
hance training in data-limited settings (ElNokrashy
et al., 2024). These efforts could close the perfor-
mance gap while maintaining the developmental
plausibility of the training setup. In summary, re-
sults presented here suggest that self-synthesis can
make effective use of information across modal-
ities, and might help to train performant models
with developmentally plausible data regimes.
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lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel,
Leandro Von Werra, and Thomas Wolf. 2024. The
fineweb datasets: Decanting the web for the finest
text data at scale. Preprint, arXiv:2406.17557.

Luke Y. Prince and Blake A. Richards. 2021. The over-
fitted brain hypothesis. Patterns, 2(5):100268.

Christoph Schuhmann, Richard Vencu, Romain Beau-
mont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia Jitsev, and Aran Komat-
suzaki. 2021. Laion-400m: Open dataset of clip-
filtered 400 million image-text pairs. arXiv preprint
arXiv:2111.02114.

Krishna Srinivasan, Karthik Raman, Jiecao Chen,
Michael Bendersky, and Marc Najork. 2021. Wit:
Wikipedia-based image text dataset for multimodal
multilingual machine learning. In Proceedings of
the 44th international ACM SIGIR conference on
research and development in information retrieval,
pages 2443–2449.

Alvin Wei Ming Tan, Sunny Yu, Bria Long, Wan-
jing Anya Ma, Tonya Murray, Rebecca D. Silverman,
Jason D. Yeatman, and Michael C. Frank. 2024. De-
vbench: A multimodal developmental benchmark for
language learning. ArXiv, abs/2406.10215.

Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet
Singh, Adina Williams, Douwe Kiela, and Candace
Ross. 2022. Winoground: Probing vision and lan-
guage models for visio-linguistic compositionality.
In CVPR.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell. 2023a. Findings of the
BabyLM challenge: Sample-efficient pretraining on
developmentally plausible corpora. In Proceedings

of the BabyLM Challenge at the 27th Conference on
Computational Natural Language Learning, pages
1–34, Singapore. Association for Computational Lin-
guistics.

Alex Warstadt, Aaron Mueller, Leshem Choshen, Ethan
Wilcox, Chengxu Zhuang, Juan Ciro, Rafael Mos-
quera, Bhargavi Paranjabe, Adina Williams, Tal
Linzen, and Ryan Cotterell, editors. 2023b. Proceed-
ings of the BabyLM Challenge at the 27th Conference
on Computational Natural Language Learning. As-
sociation for Computational Linguistics, Singapore.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2019. Blimp: The benchmark of linguistic
minimal pairs for english. Transactions of the Asso-
ciation for Computational Linguistics, 8:377–392.

Peng Zhang, Yash Goyal, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2015. Yin and yang:
Balancing and answering binary visual questions.
2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 5014–5022.

251

https://api.semanticscholar.org/CorpusID:258170077
https://api.semanticscholar.org/CorpusID:258170077
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://doi.org/10.1016/j.patter.2021.100268
https://doi.org/10.1016/j.patter.2021.100268
https://api.semanticscholar.org/CorpusID:270521851
https://api.semanticscholar.org/CorpusID:270521851
https://api.semanticscholar.org/CorpusID:270521851
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://aclanthology.org/2023.conll-babylm.0
https://aclanthology.org/2023.conll-babylm.0
https://aclanthology.org/2023.conll-babylm.0
https://api.semanticscholar.org/CorpusID:208527435
https://api.semanticscholar.org/CorpusID:208527435
https://api.semanticscholar.org/CorpusID:6733279
https://api.semanticscholar.org/CorpusID:6733279


The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning, pages 252–261
November 15-16, 2024 ©2024 Association for Computational Linguistics

BabyLM Challenge: Exploring the Effect of Variation Sets
on Language Model Training Efficiency

Akari Haga1 Akiyo Fukatsu2 Miyu Oba1 Arianna Bisazza3 Yohei Oseki2
1Nara Institute of Science and Technology

2The University of Tokyo
3University of Groningen

{haga.akari.ha0, oba.miyu.ol2}@is.naist.jp
{akiyofukatsu, oseki}@g.ecc.u-tokyo.ac.jp

a.bisazza@rug.nl

Abstract

While current large language models have
achieved a remarkable success, their data ef-
ficiency remains a challenge to overcome. Re-
cently it has been suggested that child-directed
speech (CDS) can improve training data effi-
ciency of modern language models based on
Transformer neural networks. However, it is
not yet understood which specific properties
of CDS are effective for training these models.
In the context of the BabyLM Challenge, we
focus on Variation Sets (VSs), sets of consecu-
tive utterances expressing a similar intent with
slightly different words and structures, which
are ubiquitous in CDS. To assess the impact
of VSs on training data efficiency, we augment
CDS data with different proportions of artifi-
cial VSs and use these datasets to train an auto-
regressive model, GPT-2. We find that the best
proportion of VSs depends on the evaluation
benchmark: BLiMP and GLUE scores benefit
from the presence of VSs, but EWOK scores do
not. Additionally, the results vary depending on
multiple factors such as the number of epochs
and the order of utterance presentation. Taken
together, these findings suggest that VSs can
have a beneficial influence on language models,
while leaving room for further investigation.

1 Introduction

While current language models (LMs) demonstrate
outstanding performance in a range of linguistic
and reasoning tasks, there is ample scope to en-
hance their data efficiency. A state-of-the-art LM
like Chinchilla uses as much as 1.4 trillion words
for pretraining, whereas humans master their native
language by hearing less than 100M words by the
age of 13 (Warstadt and Bowman, 2022).

Child language acquisition could provide in-
sights into it, given that children acquire basic
grammar by the age of six (Paul, 1981; Kemp et al.,
2005), without as varied and abundant linguistic
inputs as those given to modern LMs. Various

studies argue that this highly efficient learning is
aided by children’s limited cognitive abilities and
specific types of inputs towards children (Newport,
1990; Fernald, 1985; Jusczyk, 1997; Rowe, 2012;
Kempe et al., 2024). Inspired by this, the BabyLM
Challenge aims at improving data efficiency in lan-
guage models as well as providing insights into
child language acquisition.

It is also suggested that CDS is a preferable do-
main for facilitating the acquisition of linguistic
knowledge compared to other domains of data. The
findings of these studies include efficient pretrain-
ing without sacrificing the performance (Huebner
et al., 2021), enhanced semantic extraction (You
et al., 2021), and superior induction of hierarchical
structure (Mueller and Linzen, 2023). While these
studies suggest that CDS helps LMs learn from
limited datasets, further research is needed to deter-
mine which specific properties of CDS provide an
advantage to LMs.

As one of such properties, some studies highlight
Variation Sets (VSs), which are sets of (mostly
consecutive) utterances expressing a similar in-
tent with slight variations in the use of words and
structures (Küntay and Slobin, 1996). This spe-
cific pattern is ubiquitous in CDS, but not in other
speech genres. In first and second language acqui-
sition, several studies indicate that VSs in CDS sup-
port learning of syntactic structure (Hoff-Ginsberg,
1986; Brodsky and Waterfall, 2007; Onnis et al.,
2008) by maintaining children’s attention on the cir-
cumscribed topic and promoting comprehension by
introducing new information (Lester et al., 2022).
These findings suggest that VSs are beneficial for
language learning in general and thus could en-
hance the learning process in LMs.

In this work, we explore this hypothesis by ex-
amining the effect of VSs on language models’ data
efficiency. To fully control the impact of VSs, we
construct artificial VSs based on the description
by Küntay and Slobin (1996), mixing it with actual
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CDS at various rates (0%, 20%, 40%, 60%, 80%,
100%). Then we compare the models’ accuracy on
these constructed datasets and shuffled datasets on
BLiMP (Warstadt et al., 2020), EWOK (Ivanova
et al., 2024), and GLUE (Wang et al., 2018).

2 Related Work

2.1 Child-directed Speech

CDS is a specific speech genre that parents and
other caregivers use to address children, and that
differs from adult-directed speech (ADS). CDS usu-
ally has simpler sentence structures, more repetitive
speech, and more limited vocabulary (Snow, 1972;
Farwell, 1975; Fernald et al., 1989; Kirchhoff and
Schimmel, 2005).

Studies in child language development suggest
that this specific speech genre is necessary for suc-
cessful language acquisition among children. For
example, Fernald (1985) tests 48 four-month-old
infants on operant auditory preference procedure
and finds that they preferred CDS to ADS. Jusczyk
(1997) reports that infants can segment speech bet-
ter when they hear CDS than ADS. Rowe (2012)
conducts a longitudinal study on 50 parent–child
dyads, demonstrating that parents’ sophisticated
vocabulary and decontextualized (narrative) con-
versation accelerate later vocabulary development
in children.1

Following the BabyLM setup, we do not work
with speech but with textual transcriptions of CDS.
While sacrificing the richness of the speech signal,
this choice makes the task accessible to a wider au-
dience of computational linguistics researchers, by
reducing the data complexity of the input. Hence-
forth, we will use CDS to denote textual transcrip-
tions of child-directed speech.

3 Computational Studies on CDS

Computational studies further investigate whether
CDS is beneficial for acquiring grammatical knowl-
edge in models as well as for human language ac-
quisition. Huebner et al. (2021) demonstrate that
the use of child-directed speech (CDS) enables
a small-sized RoBERTa (Liu et al., 2019) model
trained on 5M words to attain similar linguistic
competence as a RoBERTa trained on 30B words.
You et al. (2021) examine that CDS has rich se-
mantic information for grasping causal semantics

1Note that in several cultures, CDS is infrequent. (Cristia
et al., 2019; Weber et al., 2017).

without syntactic structures, finding that CDS is ef-
fective in learning to extract semantic information.
Furthermore, Mueller and Linzen (2023) argue that
LMs can induce hierarchical structures better when
trained on CDS than on other typical datasets like
Wikipedia.

While these findings demonstrate the positive
effect of CDS on language learning, we are in-
terested in which specific properties of CDS con-
tribute to this effect. One of the reasons why CDS
can enhance LMs’ acquisition of syntactic struc-
tures could be its lower lexical complexity, i.e.,
fewer word types (Mueller and Linzen, 2023),
which stems from the high repetitiveness of items
in CDS. However, this repetition occurs across mul-
tiple utterances, a characteristic unique to CDS. We
hypothesize that this could be a key factor in the
success of LMs’ language learning.

3.1 Variation Sets
In studies of first and second language acquisition,
VSs (Küntay and Slobin, 1996) have gained at-
tention as a key factor in successful language de-
velopment. Küntay and Slobin (1996) describe
the characteristics of VSs as follows: in succes-
sive utterances, 1) the same content is repeated or
rephrased, 2) the semantic intent remains consis-
tent, and 3) operations such as word substitution,
phrase addition or deletion, and phrase reordering
occur. An example of a typical VS in English is
provided by Wirén et al. (2016, p.44):

(1) You can put the animals there.
You can take the pig and the cat and put them
there.
Can you put them there?
Good.
Can you put the pig there too?

Several studies suggest that VSs indeed enhance
language learning. For example, Hoff-Ginsberg
(1986) argue that repeating identical utterances
boosts children’s syntactic development, while con-
secutive utterances with slight variations provide
clues about sentence structure, aiding syntactic de-
velopment. Brodsky and Waterfall (2007) con-
duct a corpus-based study and demonstrate that
utterances with partial repetitions, such as VSs,
can be overly information-dense for learners. On-
nis et al. (2008) investigate the effect of VSs in
language learning by teaching adults an artificial
language. Their results show that VSs help adult
learners parse sentences, suggesting that comparing
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consecutive sentences provides clues for learning
syntactic structures. Taken together, these find-
ings suggest that seeing contextually consistent ut-
terances with slight differences in wording could
make structural differences more salient, leading
to better prediction for syntactic structure in LMs.

4 Method

Inspired by human studies of language acquisition,
we want to examine whether VSs can also help
a language model recognize sentence structures
in the language. To our knowledge, this effect
has only been explored in the pilot experiment of
Katano (2024). The experiment consisted of ex-
tracting naturally occurring VSs from CDS data
using multiple automatic VS detection methods.
The results showed no significant effect of VSs on
syntactic performance measured on BLiMP, but
this could be due to the difficulty in fully control-
ling the number of actual VSs detected automati-
cally (Lester et al., 2022).

To address this difficulty, we opt for the use of
synthetic VSs, which allows us to fully control the
proportion of VSs in our training dataset. For this
purpose, we use gpt4o-mini2 to generate artificial
VSs and augment the training data in different pro-
portions.3 While the use of a large LM seems to
contradict the goal of improving data efficiency, we
see this as a first step to measuring the importance
of VSs. In case of successful results, future work
could explore less costly methods to generate VSs,
such as template- or syntactic rule-based.

Humans hear sentences in a VS sequentially.
However, it is not clear how to present VSs to a
model in a way that is equivalent to human input,
nor how to maximize the effect of VSs. There-
fore, we conduct experiments using two methods.
The first method, as shown in the example on the
left side of Figure 1, involves concatenating the
VS into a single instance and providing it to the
model. In this configuration, the model is forced to
sequentially process the sentences within the VSs.
We named this method the “Sequential Concate-
nation Method”. The second method, as shown in
the example on the right side of Figure 1, involves
placing each sentence in the VS in adjacent batches.
In this configuration, the model updates its parame-

2https://openai.com/index/gpt-4o-mini-advancing-cost-
efficient-intelligence/

3To fully control the proportion of VSs within the dataset,
we shuffled all sentences except for the artificial VSs to ensure
that no natural VSs are included.

Original CDS Generated VS

What do you want?

What do you need?
What do you want to have?
Can you tell me what you want?
What is it that you want?
What do you feel like getting?

What did Laura do
last night?

What did Laura do yesterday evening?
What was Laura doing last night?
Can you tell me what Laura did last night?
What activity did Laura have last night?
What was Laura up to last night?

Table 1: Examples of VS generated by gpt4o-mini.
The left column presents the original sentence in CDS,
and the right column presents artificial VSs generated
by the model.

ters after processing one sentence in the VS before
moving on to the next sentence within the same
set. We named this method the “Adjacent Batch
Method”.

4.1 Model Architecture
It has been suggested that children use predictive
sentence processing, actively integrating syntactic
and semantic information to foresee the upcom-
ing categories of words (Borovsky et al., 2012).
Recent studies suggest that children’s predictive
behavior aids their language acquisition (Reuter
et al., 2019). These findings suggest that predic-
tive processing is a powerful tool for learning sen-
tence structure. Thus, we use GPT-2 (Radford
et al., 2018), an auto-regressive (left-to-right) lan-
guage model rather than a bidirectional one like
BERT (Devlin et al., 2019). Hyperparameters are
shown in Appendix B.

4.2 Synthesizing Variation Sets
To construct training data, we extract 10 mil-
lion words of CDS from English corpora in
CHILDES (MacWhinney, 2000). We eliminate
utterances consisting of less than three words. In
the previous literature, VSs were extracted from
CDS, although these VSs contain some intervening
utterances within a set of VSs:

(2) You wanna straw?
Here’s your straw.
Uh oh.
Where’s the straw?

Children can efficiently ignore these interven-
ing utterances, whereas these utterances can be
noisy for language models. Given that we intend
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Figure 1: Two methods for inputting VSs to the model during training. Each figure illustrates an example with a
batch size of 3. The figure on the left shows the method of concatenating VSs into a single sequence. In this setting,
the model always processes the sentences within a VS sequentially. The figure on the right shows the method of
distributing each sentence of a VS into adjacent batches. In this setting, the model updates its parameters after
observing each sentence in the VS before proceeding to the next sentence in the same set. In the figures, sentence
i-j indicates the j-th sentence in the i-th VS.

to explore the impact of speech patterns described
by Küntay and Slobin (1996) on language models,
we develop artificial data to eliminate the poten-
tial noise. For developing artificial VSs, we use
gpt4o-mini and ask the model to generate a set
of utterances that correspond to the descriptions
by Küntay and Slobin (1996) and a prototypical
example (see full prompt in Appendix A). Table 1
shows examples of original utterances in CDS and
generated VSs based on them. Approximately 48%
of the generated VSs are questions.

By using the artificial data, we can examine the
upper bound of the influence of VSs on learning by
language models.

4.3 Composing the Datasets

We mix artificial VSs with shuffled CDS since
CDS includes a certain percentage of VS (Waterfall,
2006; Brodsky and Waterfall, 2007; Onnis et al.,
2008). The percentage depends on corpora. To ex-
plore at which ratio VSs should be mixed with CDS
to enhance the model’s learning, we mix VSs with
CDS at various ratios (0, 20, 40, 60, 80, 100). We
shuffled all CDS except for the artificial VSs to en-
sure that no natural VSs are included. We then feed
the model with these datasets using two different

methods: concatenating each VS into a single se-
quence (“Sequential Concatenation Method”) and
placing each sentence in VS in adjacent batches
(“Adjacent Batch Method”).

4.4 Evaluation

To disentangle the effect of the presence of rephras-
ings (or variations) of the same sentence in the data
from their consecutive order of presentation, we
compare the results of each VS dataset with the
shuffled version of the same dataset.

We evaluate models on BLiMP (Warstadt et al.,
2020) and its supplemental tasks, EWOK (Ivanova
et al., 2024), and GLUE (Wang et al., 2018) using
the evaluation pipeline provided by the BabyLM
organizers (Choshen et al., 2024; Gao et al., 2023).
BLiMP and EWOK are used for zero-shot evalu-
ation, whereas GLUE is used for fine-tuning eval-
uation. BLiMP is a binary classification task for
evaluating grammatical knowledge in models and
covers twelve linguistic phenomena such as agree-
ment, binding, and island effects. EWOK aims to
evaluate models’ world knowledge and provides
a task to match a target text with plausible or im-
plausible contexts. GLUE provides nine different
tasks, which highlight common phenomena such
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as the use of world knowledge, logical operation,
and lexical entailment.

5 Results and Discussion

In our experiment, we train GPT-2 from scratch
using training data that includes artificial VSs. We
report the results after the model training has con-
verged, specifically the results after 3 epochs.

5.1 Results Using the Sequential
Concatenation Method

Table 2 shows the results for 3 epochs using the
dataset containing VSs concatenated into a single
line.

First, we focus on the impact of the VS ratio.
In the consecutive condition, the highest macro-
average score was achieved when the ratio of VSs
was 0%. Although this contradicts our expecta-
tions, it may be due to reduced lexical variation
in the training data caused by increased artificial
VSs. Specifically, GLUE scores showed a ten-
dency to improve as the ratio of VSs increased,
whereas BLiMP scores declined with the increas-
ing ratio of VSs. The highest BLiMP Supplement
score was achieved with a 40% ratio of VSs, which
aligns closely with the proportion found in real
CDS, reflecting a more naturalistic distribution of
CDS. The BLiMP Supplement, like BLiMP, is a
binary classification task but focuses on semantic
knowledge, including a question-and-answer for-
mat. Given the characteristics of this task, VSs are
thought to help the model comprehend the mean-
ings of words. VSs consist of a series of sentences
with the same meaning but slightly differing in
form and structure. Through these patterns, the
model can recognize the meaning of each word. In
contrast, the EWOK score was higher at VS ratios
of 0% and 100%, which differ from the ratio found
in actual CDS.

Even under the shuffled condition, scores var-
ied with the VSs proportion. Specifically, the
BLiMP score was highest at 100% VSs, while the
BLiMP Supplement score peaked at 60%. The
EWOK score was highest at 0%, but the difference
compared to other proportions was minimal. The
GLUE score peaked at 20% VSs but was nearly
the same as at 0% and 100%. Overall, no consis-
tent trend was observed in the impact of changing
the VSs proportion. Next, we compare the results
between the consecutive condition and the shuffle
condition. In all VSs ratio settings, most scores

for tasks other than GLUE were higher under the
shuffled condition compared to the consecutive con-
dition. The macro average improved by 0.89% in
the shuffled condition compared to the consecutive
condition. In contrast, for the GLUE scores, the
consecutive condition outperformed the shuffled
condition when the ratio of VSs was 60% or higher.
However, a VSs proportion above 50% diverges
from the actual inputs of children, as the highest
proportion of VSs in CDS is approximately 50%.
This discrepancy is because artificial VSs contain
less noisy data compared to actual CDS. CDS con-
tains many fragmentary utterances, as follows:

(3) To who?
You don’t.
To you or to Laura?
To me.
Oh how come?

According to Cameron-Faulkner et al. (2003),
fragments comprise approximately 30% of CDS.
In contrast, artificial CDS contains more full sen-
tences, as follows:

(4) It’s a blanket that we all share.
We all have a blanket together.
This blanket belongs to everyone.
It’s a blanket for all of us to use.
Everyone can use this blanket.

In the BLiMP Supplement, the consecutive con-
dition outperformed the shuffled condition at a 40%
ratio of VSs.

Overall, these results suggest that using train-
ing data where VSs are concatenated into a single
line, VSs were effective for GLUE. While BLiMP,
BLiMP Supplement, and EWOK are evaluated in a
zero-shot setting, GLUE requires fine-tuning. This
difference in tasks indicates that the model has
not fully acquired grammatical knowledge from
VSs alone. However, pre-training using VSs may
enhance the efficiency of training for other tasks.
However, contrary to our expectations, it is surpris-
ing that the shuffled condition, which disrupts VSs,
achieved better scores.

5.2 Results Using the Adjacent Batch Method
Table 3 shows the results of 3 epochs of training
using the dataset in which each sentence in the VS
is placed in adjacent batches.

First, we focus on the impact of the VS ratio. Un-
der the consecutive condition, all metrics except for
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BLiMP BLiMP Suppl. EWOK GLUE Macro Avr.

VS in Dataset Consec. Shuf. Consec. Shuf. Consec. Shuf. Consec. Shuf. Consec. Shuf.

0% 60.8 61.0 56.7 57.3 49.9 50.2 68.1 68.8 58.9 59.3
20% 59.0 60.6 55.8 57.5 49.1 49.5 68.7 69.0 58.2 59.1
40% 58.4 60.3 58.3 57.6 48.4 49.7 68.8 68.2 58.5 58.9
60% 57.9 60.9 55.6 58.7 48.7 49.6 69.8 68.4 58.0 59.4
80% 57.7 60.5 56.1 57.6 48.4 49.9 69.3 67.6 57.9 58.9
100% 57.8 61.7 54.8 55.4 49.3 49.6 69.6 68.8 57.9 58.9

Table 2: Averaged Scores (%) of BLiMP, EWOK, and GLUE trained on 3 epochs, where each VS is concatenated
into a single sequence. Boldface denotes the highest score per benchmark in each setting. The columns Consec. and
Shuf. indicate Consecutive and Shuffle, respectively.

BLiMP BLiMP Suppl. EWOK GLUE Macro Avr.

VS in Dataset Consec. Shuf. Consec. Shuf. Consec. Shuf. Consec. Shuf. Consec. Shuf.

0% 60.8 61.0 56.7 57.3 49.9 50.2 68.1 68.8 58.9 59.3
20% 60.4 61.1 59.7 58.9 49.9 50.1 68.4 68.1 59.6 59.5
40% 60.6 60.0 58.3 60.2 49.3 49.5 68.9 67.9 59.3 59.4
60% 61.1 61.2 58.4 58.2 49.6 49.5 68.9 67.6 59.5 59.1
80% 61.5 60.8 58.8 57.8 49.6 49.5 68.6 68.0 59.6 59.0
100% 61.6 61.1 57.2 57.3 49.8 49.6 68.2 67.5 59.2 58.9

Table 3: Averaged Scores of BLiMP, EWOK, and GLUE trained on 3 epochs, where each sentence within the VS is
placed in adjacent batches. Boldface denotes the highest score per benchmark in each setting. The columns Consec.
and Shuf. indicate Consecutive and Shuffle, respectively.

EWOK showed better scores when the VSs were in-
cluded in the training data. Specifically, the BLiMP
score increased as the proportion of VSs increased.
The BLiMP Supplement achieved the highest score
when the proportion of VSs was 20%, which is
close to the actual proportion of VSs in CDS. The
GLUE score peaked when the proportion of VSs
was 40% and 60%, which is slightly higher than
the actual proportion in CDS. Similar to the Se-
quential Concatenation Method, it is likely that the
increase in artificial VSs contributed to reducing
noise in the training data. These results suggest that
the optimal proportion of VSs varies depending on
the evaluation metric. While both the BLiMP and
GLUE scores benefited from the presence of VSs,
the EWOK score was not affected. Under the shuf-
fled condition, the BLiMP and BLiMP Supplement
scores benefited from the presence of VSs in the
training data. The highest scores for each metric
were achieved when the VSs proportion was 60%
or lower. The BLiMP Supplement score increased
as the VSs proportion approached the human-like
range of 20%–40% under the shuffle condition.

Next, we compare the results between the con-

secutive condition and the shuffle condition. For
the scores that benefited from the presence of
VSs (BLiMP, BLiMP Supplement, GLUE), the
scores under the consecutive condition outper-
formed those under the shuffle condition when the
proportion of VSs was optimal for each score.

In summary, with the Adjacent Batch Method,
the consecutive condition showed higher scores for
metrics other than EWOK when VSs were included
in the dataset, indicating the benefit of VSs. How-
ever, the shuffled condition still outperformed the
consecutive condition in some cases.

5.3 One-epoch Results
While models observe the same instances multi-
ple times by training on multiple epochs, children
only see a single instance only one time in natu-
ral speech interaction. VS has a role in increasing
the salience of structural properties that are hard
to recognize from a single instance, thereby ex-
posing children to instances that have the same
semantic intentions with slightly different words
and structures. Therefore, there is a possibility that
the effect of VSs diminishes when training over
multiple epochs. We report results after training
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BLiMP BLiMP Suppl. EWOK GLUE Macro Avr.

VS in Dataset Consec. Shuf. Consec. Shuf. Consec. Shuf. Consec. Shuf. Consec. Shuf.

0% 58.3 58.5 54.7 54.9 49.4 49.6 67.0 66.7 57.3 57.4
20% 57.5 58.8 54.6 53.8 49.4 49.5 68.7 68.3 57.5 57.6
40% 57.4 59.0 54.7 55.2 48.8 49.2 69.7 68.8 57.7 58.1
60% 57.6 59.4 54.1 54.9 49.4 49.4 69.2 70.0 57.6 58.4
80% 57.0 58.8 54.6 54.6 49.0 49.4 69.7 69.1 57.6 58.0
100% 56.6 58.7 53.3 54.9 49.0 49.8 70.2 69.2 57.3 58.1

Table 4: Averaged Scores (%) of BLiMP, EWOK, and GLUE trained on 1 epoch, where each VS is concatenated
into a single sequence. Boldface denotes the highest score per benchmark in each setting. The columns Consec. and
Shuf. indicate Consecutive and Shuffle, respectively.

BLiMP BLiMP Suppl. EWOK GLUE Macro Avr.

VS in Dataset Consec. Shuf. Consec. Shuf. Consec. Shuf. Consec. Shuf. Consec. Shuf.

0% 58.3 58.5 54.7 54.9 49.4 49.6 67.0 66.7 57.3 57.4
20% 58.8 59.0 55.6 55.3 49.5 49.6 68.3 68.7 58.1 58.1
40% 59.1 59.1 53.8 54.8 49.5 49.3 68.4 67.5 57.7 57.7
60% 59.5 59.2 54.1 55.9 49.1 49.2 68.6 70.6 57.8 58.7
80% 59.3 59.1 55.5 55.5 49.5 49.4 69.2 69.2 58.4 58.3
100% 58.6 58.5 55.9 55.4 49.2 49.8 68.1 68.3 57.9 58.0

Table 5: Averaged Scores of BLiMP, EWOK, and GLUE trained on 1 epoch, where each sentence within the VS is
placed in adjacent batches. Boldface denotes the highest score per benchmark in each setting. The columns Consec.
and Shuf. indicate Consecutive and Shuffle, respectively.

for only 1 epoch to examine this possibility.

The results for one epoch training using the
Sequential Concatenation and Adjacent Batch
Method are shown in Tables 4 and 5. Regarding
the impact of the VSs proportion in the training
data, with the Sequential Concatenation Method,
the impact of VSs proportion was similar to that in
the 3-epoch training: BLiMP scores decreased as
the VSs proportion increased, while GLUE scores
improved. The highest scores for BLiMP, BLiMP
Supplement, and GLUE were observed within the
40%–60% range. With the Adjacent Batch Method,
the highest scores for each metric were achieved
when the VSs proportion was 60% or higher.

Regarding the differences in results between the
shuffled and consecutive conditions, in the Sequen-
tial Concatenation Method results, the GLUE score
was higher in the consecutive condition than the
shuffled condition, except at 60% VSs. However,
for most other metrics, the shuffled condition out-
performed the consecutive condition. Similarly, in
the Adjacent Batch Method results, none of the
metrics showed a significant advantage for the con-
secutive condition over the shuffled condition.

Contrary to our expectations, the effects of VSs
were not more pronounced in the 1-epoch training
compared to the 3-epoch training.

5.4 Discussion

Taken together, our results show that the pres-
ence of CDS-inspired variations is often benefi-
cial. However, —somewhat counterintuitively—
presenting this variation in a shuffled order is of-
ten better than presenting them consecutively as
in CDS. An additional finding is that the optimal
amount of VSs varies among settings and evalua-
tion benchmarks, and we could not find an overall
winner. This might be due to the fact that, in our
current experimental design, the amount of VSs
is in direct competition with the diversity of utter-
ances present in the dataset (i.e. potentially larger
coverage of vocabulary and constructions in the
datasets with less VSs). To better disentangle the
effect of variations from that of corpus diversity,
we are currently planning an experiment where a
given amount of variations will be compared to a
similar amount of identical repetitions.
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6 Conclusion

We presented an initial exploration of the effect
of CDS-inspired variation sets on language model
training efficiency. Our results suggest that VSs
can have a beneficial impact on various linguistic
competences. They also reveal that this effect is
entrenched with several factors like the order of ut-
terance exposure and the number of training epochs,
leaving space for more detailed investigations in
the future.

7 Limitations

There are several limitations in this research.
gpt4o-mini does not necessarily generate VSs that
closely resemble natural VSs. Consequently, there
is a possibility that our training data may contain
unintended noise. Furthermore, we shuffled CDS
to fully control the number of VSs in the train-
ing dataset. This procedure disrupted the natural
VSs in CDS, possibly affecting the scores neg-
atively. Additionally, the vocabulary size could
not be strictly aligned between the “Sequential
Concatenation Method” and the “Adjacent Batch
Method.” While the difference in vocabulary size
is marginal, it may influence the scores.

8 Ethics Statement

This study was conducted in accordance with ethi-
cal guidelines and regulations. We utilized natural
speech data extracted from CHILDES (MacWhin-
ney, 2000). This is an open source corpus that
archives natural speech between caregivers and
their children. The data are archived without confi-
dential information about the participants as chil-
dren are usually given pseudonyms. Following the
ACL Policy on Publication Ethics, we used Chat-
GPT to assist in refining the wording. We also
partially relied on ChatGPT to generate code for
prepossessing and evaluation.
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A Prompt for Generating Artificial VSs

To generate synthesis VSs, we used the following
prompt:

Rephrase a given sentence based on the
characteristics of variation sets. A vari-
ation set is a set of utterances that have
characteristics as follows:
In successive utterances,
- the same content is repeated or
rephrased.
- there is a consistent intent.
- there are operations such as word substi-
tution, addition/deletion of phrases, and
reordering of phrases.
Here is an example:
You can put the animals there.
You can take the pig and the cat and put
them there.
Can you put them there?
Good.
Can you put the pig there too?
Please use only the vocabulary that 10
year-old children understand.

B Hyperparameters

Model

architecture GPT-2
parameters 124M
vocab size 50,257
hidden size 768
heads 12
layers 12
dropout 0.1
layer norm eps 1e-05
initializer range 0.02

Optimizer

algorithm AdamW
learning rates 5e-05
betas (0.9, 0.999)
weight decay 0.0

Scheduler type linear

Training

gradient accumulation 1
epoch 3
batch size 64
line by line true
NGPU 1

Table 6: Hyperparameters of the language models.
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Abstract

We present a simple way to merge masked lan-
guage modeling with causal language modeling.
This hybrid training objective results in a model
that combines the strengths of both modeling
paradigms within a single transformer stack –
GPT-BERT can be transparently used like any
standard causal or masked language model. We
test the pretraining process that enables this
flexible behavior on the BabyLM Challenge
2024. The results show that the hybrid pretrain-
ing outperforms masked-only or causal-only
models. We openly release the models, training
corpora and code.1

1 Introduction

Language models have become fundamental tools
in natural language processing, with two dominant
paradigms: causal language models (CLM) and
masked language models (MLM). Six years ago,
GPT by Radford et al. (2018) demonstrated the
generative abilities of transformer-based causal lan-
guage models. Just a few months after this publi-
cation, BERT by Devlin et al. (2019) heavily out-
performed the causal GPT models when finetuned
on downstream NLP tasks, showcasing the major
advantage of masked language modeling. These
two ‘historical’ models define the main use-cases
of the two paradigms up to this date.

The difference between these paradigms lies in
how they process text. CLMs can only look at pre-
vious tokens when making predictions, mimicking
the left-to-right reading process. This makes them
particularly well-suited for efficient text genera-
tion. MLMs, on the other hand, can access both
previous and following tokens, allowing them to

*Both authors contributed equally to this work.
1The models are available on HuggingFace at ltg/gpt-

-bert-babylm-base and ltg/gpt-bert-babylm-small; the
corpora at ltg/babylm-2024-baby-cosmo-fine-100m and
ltg/babylm-2024-baby-cosmo-fine-10m. The training
scripts are available on GitHub at ltgoslo/gpt-bert

Baby language models rule<s>

(transformer with a causal attention mask)

Baby language models rule

Baby <mask> <mask> rule<s>

modelslanguage

(transformer without an attention mask)

GPT

BERT

BERT

GPT

Figure 1: Two modes of a single model Causal and
masked language modeling can be easily unified by
shifting both outputs by one token to the right. Then we
can train one language model on both paradigms at the
same time just by modifying the input tokens, output
tokens and attention masks.

build richer contextual representations. This bidi-
rectional context has proven especially valuable for
tasks requiring deep language understanding.

BERTs should not be forgotten A recent paper
by Samuel (2024) revealed that BERT-like model
are just as capable text generators as GPT-like mod-
els. Yet, when these two types of models are eval-
uated on a shared ground – generative in-context
learning (Brown et al., 2020) – they still show rad-
ical differences, clearly outperforming each other
in different areas. Each paradigm has its own
strengths and combining them into a single hybrid
might lead to a model with a more general language
understanding.

GPT-BERT This motivated us to introduce GPT-
BERT, a hybrid language model that combines the
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strengths of both CLM and MLM approaches. Our
key insight is that the two objectives can be uni-
fied by reformulating how output tokens are han-
dled in the MLM framework. Instead of predicting
masked tokens at their original positions, we shift
the predictions one position to the right, aligning
them with the CLM’s next-token prediction pat-
tern. This simple modification allows us to train a
single model that can seamlessly switch between
masked and causal modes without any architectural
changes or additional parameters.

This paper demonstrates the benefits of the hy-
brid approach across multiple benchmarks. We
evaluate GPT-BERT on the BabyLM Challenge
2024 (Choshen et al., 2024), which provides a
controlled environment for comparing language
models trained on limited data. Additionally, we
explore the impact of varying the ratio between
MLM and CLM, and we test the model’s ability to
perform in-context learning and text generation.

The results suggest that integrating MLM and
CLM objectives during pretraining leads to more
robust and capable language models, even in low-
resource scenarios, without any extra training cost.
Our approach opens up new possibilities for de-
veloping more efficient and versatile models for a
wide range of natural language processing tasks.

2 Method

2.1 Hybrid masked-causal language modeling

In order to align both objectives we use a slightly
modified version of masked language modeling
called masked next-token prediction (MNTP;
BehnamGhader et al., 2024). The only difference
from traditional MLM is that when the token at
position k + 1 is masked, its prediction should be
outputed at position k. In this way both MLM and
CLM are unified as the output at position k always
represents the token at position k + 1. These two
modes are illustrated in Figure 1.

Dataset handling To ensure that our model sees
all the data for both objectives, we duplicate our
dataset. One is used for the causal objective, and
the other for the masked objective. We can then de-
cide a ratio of causal-to-masked in which to divide
the data seen by the model at each batch.

Loss and transformer architecture No addi-
tional changes are needed. Both training objec-
tives minimize the cross-entropy loss, they share

all learnable parameters, and use the same trans-
former encoder/decoder module.

2.2 Other modifications
We base the transformer architecture of our mod-
els on LTG-BERT (Samuel et al., 2023), but make
some additional modifications to improve its per-
formance. These changes are ablated in Section 4.

Attention gate Following Jumper et al. (2021),
we gate the outputs of the attention operation. This
is akin to the gated linear units (GLU) that have
been proposed to improve the expressivity of feed-
forward modules (Shazeer, 2020). This modifica-
tion also simplifies the definition of the transformer
architectures, now both the attention modules and
the feed-forward modules can be expressed as:

def layer(x: tensor, layer_id: int):

residual = x # skip-connection

x = layer_norm(x) # without parameters

g = gate(x) # linear projection

if layer_id % 2 == 0: # if attention layer

x = attention(x) # do attention

else: # else feed-forward

x = linear(x) # linear projection

x = glu(x, g) # activation (GEGLU)

x = layer_norm(x) # without parameters

x = output(x) # linear projection

return residual + x

Layer weighting We further increase the expres-
sivity of the transformer backbone by allowing each
layer to select its desired combination of outputs
from previous layers. This directly follows the
ELC-BERT models (Georges Gabriel Charpentier
and Samuel, 2023) and the later modification by
Pagliardini et al. (2024) who allow any linear com-
bination of layers instead of restricting the combi-
nation to be convex. We also make the weighting
more granular by treating the attention and feed-
forward modules as separate layers. With each
αij ∈ R being a learnable scalar, the forward pass
of the resulting transformer works as follows:

def transformer(subword_indices: tensor):

output0 = embedding(subword_indices)

for i in range(1, n_layers + 1):

outputi =
∑i

j=1 αij · layer(outputj-1, j)
return outputn_layers

Batch-size scheduling We improve the sample-
efficiency (and speed) of pretraining by linearly
increasing the batch size during training (Rae
et al., 2022; DeepSeek-AI, 2024). The intuition
behind this method is that high-quality gradients
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are mainly needed at the late stages of pretrain-
ing, the initial steps can be guided by good-enough
gradients from smaller batches. The maximum
batch size is taken from LTG-BERT (4M tokens),
but we start the training with just 1/4 of this value,
thus dividing the total number of tokens needed for
training by 2.

Mask scheduling Another way to increase the
sample-efficiency is to recover more unmasked to-
kens during training. However, Ankner et al. (2024)
showed that this might be in conflict with the down-
stream usage of MLMs. Thus they propose to lin-
early decrease the masking probability throughout
the training, starting with 30% and finishing with
the standard 15% masking. We adopt this scheme,
believing that it also reduces the impact of smaller
batches at the beginning of training.

3 Pretraining and evaluation

The main purpose of this section is to evaluate if the
MLM and CLM training objectives can be merged,
and to evaluate the effect of this. We base the
experiments on the BabyLM challenge (Choshen
et al., 2024).

BabyLM challenge This shared task provides
a shared ground for experiments on small-scale
language modeling. Its second iteration consists
of four tracks: STRICT, STRICT-SMALL, VISION

and PAPER. We participate in the first two text-
based tracks. There, the submissions have to be
pretrained solely on a fixed number of words, 100M
in the STRICT track and about 10M words in the
STRICT-SMALL track. The organizers do provide a
default dataset for each track, but unlike the previ-
ous edition, the participants are not limited to using
it, as long as they stay under the word count limit.
For the VISION track, the participants are limited
to 50M words and as many images as they want.
Here the goal is to create a multi-modal model. Fi-
nally, the PAPER does not require the submission
of a model to the task. This track encourages con-
tributions related to the goal of the challenge such
as new cognitively-inspired metrics. As detailed
in Section 3, the submissions are compared on a
shared evaluation set consisting of syntactic and
natural language understanding tasks.

Training corpus We pretrain both submissions
on a 1 : 1 : 1 mix of the provided BabyLM corpus,
on a subset of the FineWeb-Edu corpus (Lozhkov

STRICT-SMALL track (10M words)

Model BLiMP ↑ BLiMP-S ↑ GLUE ↑ EWOK ↑

Encoder-only (BabyLM baseline) 60.6 60.8 60.3 48.9

Decoder-only (BabyLM baseline) 69.8 59.5 63.3 50.7

ELC-BERT (2023) 80.5 67.9 75.3 51.0

LTG-BERT (2023) 80.6 69.8 74.5 —

GPT-BERT (ours) 81.2 69.4 76.5 54.6

STRICT track (100M words)

Model BLiMP ↑ BLiMP-S ↑ GLUE ↑ EWOK ↑

Encoder-only (BabyLM baseline) 69.2 66.5 68.4 51.9

Decoder-only (BabyLM baseline) 73.1 60.6 69.0 52.1

ELC-BERT (2023) 85.8 76.8 78.3 56.3

LTG-BERT (2023) 85.3 76.6 77.9 56.0

GPT-BERT (ours) 86.1 76.8 81.5 58.4

Table 1: BabyLM submission scores The final
scores of our STRICT-SMALL and STRICT models sub-
mitted to the BabyLM challenge (Choshen et al., 2024).
The table also includes the winner of the last year’s iter-
ation of this shared task (ELC-BERT), the baseline for
our current model (LTG-BERT), as well as the baselines
provided by the organizers. Results of other submis-
sion were not available as of writing this paper. Higher
scores are better, the best results in each evaluation suite
are boldfaced.

et al., 2024), and on a small subset of the Cosmo-
pedia corpus (Ben Allal et al., 2024). The main
purpose of training on this mixture is to provide
the model with more factual knowledge and more
diverse language.

Pretraining process Generally speaking, we
adopt the training recipe of LTG-BERT (Samuel
et al., 2023), which was optimized for pretraining
on another low-resource 100 million English cor-
pus.2 The pretraining process is the same for both
tracks, except for using a smaller vocabulary and a
smaller model for the STRICT-SMALL track.

As for the STRICT track, we use a BASE-sized
language model with 119 million parameters. We
train a case-sensitive BPE tokenizer (Gage, 1994)
with a vocabulary size of 214 = 16 384, using
solely texts from the training corpus. The BASE is
trained for 15 625 steps with an average batch size
of 2 million tokens. The STRICT-SMALL track is
tackled by a SMALL-sized language model with 30
million learnable parameters. The subword vocab-
ulary is reduced to 212 = 8192 items. The training
steps of the SMALL model are reduced to 7 812.

2https://github.com/ltgoslo/ltg-bert
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The full list of hyperparameters and implementa-
tion details are provided in Appendix A.

Evaluation We utilize the language modeling
benchmark suite from the BabyLM challenge (Gao
et al., 2023; Choshen et al., 2024),3 which relies on
three conceptually different evaluation tasks:

1. The GLUE and SuperGLUE datasets test the
ability of a pretrained model to adapt to vari-
ous language understanding tasks.

2. BLiMP and BLiMP-supplement tasks test the
affinity of a model towards grammatical sen-
tences in a completely zero-shot manner.

3. EWOK is another zero-shot task. It tests the
ability of a model to understand concepts such
as spatial relations or physical dynamics.

We further elaborate on each of these evaluation
suites in Appendix B.

4 Experiments

4.1 BabyLM submission

Table 1 shows the performance of our models
against the backbone architecture of the model
(LTG-BERT), as well as last year’s winner on
both tracks (ELC-BERT). We can see that for
the STRICT-SMALL track our model outperforms
last year’s winner in every benchmark and is only
beaten by LTG-BERT on BLiMP-Supplement by
0.4. For our submission to the STRICT track our
model outperforms or matches both models (only
ELC-BERT on BLiMP-Supplement matches our
model). One thing to note, is that the filtration of
the evaluation datasets are slightly different leading
to comparisons between not exact.

For completeness, in Table 1, we also include
the performance of the models provided by the
BabyLM organizers (Choshen et al., 2024). The
provided encoder-only models are based on LTG-
BERT (Samuel et al., 2023), and the decoder-only
models are based on Baby Llama (Timiryasov and
Tastet, 2023). Our models clearly outperforms
these baselines on all metrics, but that might be
mostly attributed to their smaller pretraining bud-
get.

3https://github.com/babylm/
evaluation-pipeline-2024

4.2 Masked or causal?

Since our model can learn both from masked and
causal examples, the question becomes, whether
using a combination of both is better than using
only one of the two methods during pretraining. To
evaluate this, we look at the performance of models
pretrained with different causal-to-masked ratios.

The main results are presented in Figure 2. We
evaluate the models on four tasks that cover dis-
tinct uses: 1 BLiMP is a zero-shot linguistic-
preference task that is typically better suited for
masked language models (Salazar et al., 2020);
2 MNLI is a popular dataset for evaluating the

finetunability of a language model, which also ben-
efits masked language models; 3 LAMBADA,
on the other hand, is a language modeling dataset
mostly used to evaluate causal language models;
and 4 we also directly compute the validation loss
of each model. Furthermore, when applicable, each
task is tested with three settings: fully-bidirectional
processing (without any attention mask), unidi-
rectional processing (with a causal mask), and
partially-bidirectional processing (with a prefix
mask).

The validation loss of the causal and prefix mask-
ing is calculated on the second half of the tokens
of a given input sequence, where the first half of
the tokens are either seen in a bidirectional fashion
(prefix) or in a causal fashion (causal). For LAMD-
ABA the entire context is seen bidirectionally for
the prefix evaluation. Finally, when fine-tuning
MNLI with the causal mask, we use the same to-
kenization as Radford et al. (2018) where a both
a delimiter token is added in-between the two sen-
tences as well as a extract token at the end of the
input (two different tokens are used).

For the MNLI hyperparameters, we did a sweep
on the SST-2 dataset for each model and took the
best performing hyperparameters for each model
and each masking (i.e. each model and mask-
ing scheme had their own hyperparameters). We
sweeped over {1, 3, 5} for number of epochs,
{3 · 10−5, 5 · 10−5, 1 · 10−4} for learning rates,
and {16, 32} for batch sizes.

Bidirectional results If we start by focusing on
the bidirectional results, we see that the best re-
sults for all the tasks can be found for the models
with a lower causal-to-masked ratio (from 1:7 to
masked-only). More specifically, the 1:7 model
is the best on BLiMP and LAMBADA, the best
model for MNLI is 15:16, and both those mod-
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els and the masked-only model achieve the best
results on the validation loss. We also see that
adding as few as 6.25% MNTP training can lead to
significant increases in bidirectional performances
(+4.2% on BLiMP, +0.9% on MNLI, +33.3% on
LAMBADA and −4.53 on validation loss). In ad-
dition, using a bidirectional mask for evaluation
performs the best for all models except the causal-
only, however, this is unsurprising given this model
is never trained to attend to every token.

Causal LM results Looking at the results when
using causal masking, we see that the best mod-
els shift towards a more balanced ratio between
the causal and masked training objectives. The 1:1
model and 1:3 model perform roughly the same
on all tasks. As mentioned before, the results are
worse than for the bidirectional evaluation; most
likely because of the lower expressivity of causally-
masked models (Ewer et al., 2024). Further focus-
ing on MNLI, we see that the purely causal model
does not truly benefit from being finetuned with
a bidirectional mask (only +0.7% improvement,
with the results being within two standard devi-
ations of each other). Once we add some MNTP
training we see a significant difference in the results
between both masking strategies. With only 6.25%
MNTP added, we have a 1.2% improvement when
using the bidirectional mask. This trend grows to
being an over 3% improvement in performance.

Prefix LM results Finally, we look at the per-
formance for the prefix masking (partially bidi-
rectional). We only evaluate prefix masking on
LAMBADA and validation loss since it would be
difficult to do this for both BLiMP and MNLI. We
see that on validation loss we get similar (if not
slightly worst) results as for the causal masking
while the results on LAMBADA are slightly im-
proved. In addition, the LAMBADA results do not
have a clear trend outside of the hybridized models
performing better than the single-objective models.
This leads us to believe that our models can per-
form limited prefix language modeling even though
they were not explicitly trained to do so.

Other benchmarks Similar trends can be seen
on the other datasets in Appendix D. Based on the
results on all tasks, we decided to use a 1:15 causal-
to-masked ratio for our final model (to which every
model is compared in subsequent sections) as well
as the bidirectional evaluation scheme. In Sec-
tions 4.4 and 4.5, a model trained on this ratio is

STRICT-SMALL track (10M words)

Model configuration PPL ↓ BLiMP ↑ MNLI ↑ EWOK ↑

GPT-BERT 10.8 81.2 80.1 54.6

without layer weights +0.4 −1.3 +0.2 +0.6

without attention gate +0.3 −0.3 +0.3 −0.9

without mask scheduling +0.1 −0.1 −0.7 −0.6

without batch scheduling +0.7 −1.1 0.0 +0.8

with only BabyLM corpus — −0.2 −1.6 −2.0

with only FineWeb-edu — −0.4 +1.1 −0.8

with only Cosmopedia — −7.1 0.0 −0.6

Table 2: Ablation study Comparison of different
model configurations proposed in Section 2.2, and cor-
pus mixtures. The top row shows the performance of the
final model (with all modifications), the middle rows
show the absolute performance difference of models
with one modification less, and the last group of rows
shows the performance difference of GPT-BERT models
trained on corpora from single sources.

used for the in-context learning and text generation.

4.3 Ablation study

We ablate the modeling choices from Section 2.2
as well as different choices of training data. We
train the ablated models with the STRICT-SMALL

setup and evaluate them on BLiMP, EWOK and
MNLI (the largest GLUE dataset). The ablation
results are in Table 2.

Results of the transformer ablation All our
modeling decisions during development were
based on the training and validation perplexities
– this ablation study therefore provides an informa-
tive comparison based on a ‘held-out’ downstream
performance. 1 In particular, the value of learn-
able layer weights is not clear for GPT-BERT, espe-
cially considering that they substantially slowdown
the training (almost 1.5×). 2 Attention gating,
on the other hand, seems to be a better substanti-
ated improvement, which also does not add any
major computational cost. 3 Mask scheduling
is definitely a recommended improvement for any
BERT-like models, based on all scores in this study.
4 Batch scheduling does not show on overall neg-

ative impact, which means that GPT-BERT can be
trained 2.0× more efficiently using this method
without a noticable degradation.

Results of the corpus ablation The ablation of
the three text corpora used for training our sub-
mission shows how each of them excels in a dif-
ferent area – the BabyLM collection outperforms

267



Causal-only 15:1 7:1 3:1 1:1 1:3 1:7 1:15 Masked-only

44

46

48

50

52

54

56

58

60

Ac
cu

ra
cy

 (%
)

48.2

48.2

52.8

51.9

54.3

55.5

54.2

57.5

52.7

52.3

51.4

56.1

49.1

54.4

49.5

53.2
52.1

48.2

Majority baseline
51.8 %

20-shot in-context learning on SST-2

Attention mask: none (masked LM) causal

Figure 3: SST-2 in-context learning 20-shots ICL results on the SST-2 validation set for models trained on the
100M BabyLM datasets with varying degrees of each objective. The demonstrations (shots) were chosen at random
from the training dataset. We do 20-runs and report mean as well as standard deviation. Note that the accuracy of
the majority baseline on this dataset is 51.8%.

the others on BLiMP, FineWeb-Edu significantly
improves the MNLI performance, and Cosmope-
dia is the best corpus for learning EWOK-style
factual knowledge. The performance of the final
GPT-BERT models shows that taking a random 1/3
of each corpus and combining them into a single
collection works surprisingly well; combining the
strengths of each corpus.

4.4 Text generation
None of the BabyLM benchmarks is particularly
well-suited for assessing CLM performance. Thus,
apart from LAMBADA, we also look at the gener-
ation capabilities of GPT-BERT. First we try stan-
dard greedy decoding with no repetition penalty
(omitting new lines for readability):

It was a calm night in the small town of
Harmonyville, and the residents were eager to
spend the day exploring the beautiful park.
Among them were two best friends, Sam and
Alex, who loved to learn about nature and its
wonders.

Brazil is known for its rich history and culture.
It has been home to many indigenous peoples,
including the indigenous people of the Amazon
rainforest. One of the most famous indigenous
groups in Brazil is the Brazilian people.
They are known for their strong culture,
traditional beliefs, and unique traditions.

As we can see that model is relatively repetitive,
especially in the second generation, where some
words are repeated in almost every sentence. If
we now give the second prompt with a repetition
penalty of 1.5, we get:

Brazil is known for its rich history and culture.
It has been home to many indigenous
peoples, including the Mayan civilization,
who have built impressive cities like Tiapaca
(present-day Uruguay), Cusco (now Guatemala),
Chihuahua (also called Yucatán), Puebla
(which was once part of Mexico), Huachimaso
(then modern-day Colombia), and more. One of
the most famous places in Brazil is the city
of Rio de Janeiro, located on the southern
tip of the Amazon basin.

Although the model is not factually correct, it stays
on topic while generating meaningful and well-
formed text.

Overall, our model seems to be able to generate
text, even though it has a hard time remembering
exact facts and stay on topic. However, without ap-
plying repetition penalty the model struggles with
repeating itself. More generations using prompts
from Radford et al. (2019) can be found in Ap-
pendix C.

4.5 In-context learning

A well-known ability of larger language models is
to use in-context information given in prompts to
solve tasks without any finetuning – causal ones
(Brown et al., 2020), as well as masked models
(Samuel, 2024). However, these capabilities are
often thought to appear only once a model is large
enough or trained on a vast amount of data (Wei
et al., 2022).

Despite the number of parameters and the size
of the training corpus, our models show some signs
of in-context learning, as can be seen in Figure 3.
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When using the causal attention mask, we see that
while the models trained with a single objective
underperform the baseline, the hybrid models all
perform above the majority baseline (from +0.5%
to +5.7%); with the best results being achieved
by the 3:1 model (with the 1:3 and 7:1 close sec-
ond and third respectively). This indicates that our
models are capable of doing in-context learning
when trained with both objectives. When run fully
bidirectionally, the trend is similar but with lower
absolute performance.

5 Related work

Baby language models This paper describes a
submission to the second iteration of the BabyLM
challenge (Warstadt et al., 2023). Our submission
is heavily inspired by the last-year’s winner, ELC-
BERT (Georges Gabriel Charpentier and Samuel,
2023), and by its inspiration, LTG-BERT (Samuel
et al., 2023). Our modifications to these approaches
are described in Section 2.1 and Section 2.2.

Hybrid masked-causal models Our work is not
the first to attempt to merge bidirectional masked
language modeling with generative causal model-
ing: T5 (Raffel et al., 2020), BART (Lewis et al.,
2020) and GLM (Du et al., 2022) proposed autore-
gressive fill-in-the-blank training objectives, CM3
is based on a causal-mask objective (Aghajanyan
et al., 2022), prefix language models use a partially-
bidirectional causal modeling (Dong et al., 2019;
Raffel et al., 2020), and UL2 further improves the
T5 encoder-decoder with more training objectives
(Tay et al., 2023). Our approach differs by its sim-
plicity – not requiring any architectural changes
nor novel training objectives – it just combines a
standard causal language model with a (shifted)
masked language model; the resulting hybrid can
then be used as any GPT-like or BERT-like model
out-of-the-box.

Masked next-token prediction To our best
knowledge, this training objective was first pro-
posed by in LLM2Vec by BehnamGhader et al.
(2024), where it was used to finetune purely causal
language models so that they can function as bidi-
rectional text embedders.

6 Conclusion

We introduced GPT-BERT, a novel approach that
unifies masked and causal language modeling ob-
jectives within a single transformer architecture.

Through extensive experiments on the BabyLM
Challenge 2024, we demonstrated that this hybrid
approach offers several key advantages over single-
objective models:

1. Improved performance: The hybrid pretrain-
ing leads to better results across multiple
benchmarks, outperforming both pure MLM
and pure CLM approaches.

2. Architectural flexibility: Without any struc-
tural modifications, our model can operate in
masked, causal, or prefix modes. This flexi-
bility enables GPT-BERT to handle a diverse
range of tasks using the most appropriate in-
ference strategy for each situation.

3. Unexpected capabilities: Despite being
trained on limited data and having a relatively
small parameter count, our models exhibit
signs of in-context learning – a capability typ-
ically associated with much larger models.

4. Training efficiency: The hybrid approach
achieves these improvements without requir-
ing additional parameters or increased training
time compared to single-objective models.

Our results suggest that the traditional dichotomy
between MLM and CLM architectures may be un-
necessary, and that future work might benefit from
exploring more unified approaches to language
model pretraining.

Limitations

While the results presented in this paper are promis-
ing and suggest improvements across many tasks
when using GPT-BERT, all tested models are rel-
atively small and trained on very small datasets.
There is a possibility that these results do not scale
and do not work outside of the strong BabyLM
constraints.
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A Pre-training details

Hyperparameter STRICT (100M) STRICT-SMALL (10M)

Number of parameters 119M 30M
Number of layers† 12 12
Hidden size 768 384
FF intermediate size 2 560 1 280
Vocabulary size 16 384 8 192
Attention heads 12 6
Hidden dropout 0.1 0.1
Attention dropout 0.1 0.1
Training steps 15 625 7 812
Batch size 1M → 4M (tokens) 1M → 4M (tokens)
Initial Sequence length 128 128
Final Sequence length 512 512
Warmup ratio 1.6% 1.6%
Initial learning rate 0.01 0.0141
Final learning rate 0.001 0.00141
Learning rate scheduler cosine cosine
Weight decay 0.1 0.1
Optimizer LAMB LAMB
LAMB ϵ 1e-8 1e-8
LAMB β1 0.9 0.9
LAMB β2 0.98 0.98
Gradient clipping 2.0 2.0

Table 3: Pre-training hyperparameters We train base-sized models on the STRICT corpus and small-sized
models on the STRICT-SMALL corpus. † Here one ‘layer’ refers to one module composed of both the attention and
feed-forward submodules; a more standard definition than the one used in Section 2.2.

B Evaluation details

Hyperparameters TO find the hyperparameters we do a hyperparameters search on CoLA for the task
with small amounts of training data (CoLA, RTE, MRPC, MultiRC) and on SST-2 for tasks with large
amounts of training data (QQP, MNLI, QNLI, BoolQ, and SST-2). We do a grid search with values:

• Number of epochs: {3, 5, 10}

• Learning rate: {3× 10−5, 5× 10−5, 1× 10−4, 2× 10−4}

• Batch size: {16, 32, 64}

In addition for WSC given the very low amount of both train and validation data, we expand the search
to:

• Number of epochs: {3, 5, 10, 15, 20, 25, 30, 100}

• Learning rate: {3× 10−5, 5× 10−5, 7× 10−5, 1× 10−4, 2× 10−4, 3× 10−4, 5× 10−4}

• Batch size: {16, 32, 64}

• Warmup ratio: {0.00, 0.06, 0.15}

The final hyperparameters can be found in Table 4. For MultiRC, we reduce the number of epochs due
to the training time.
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Hyperparameter
QQP, MNLI, SST-2,

CoLA, RTE, MRPC MultiRC WSC
BoolQ, QNLI

STRICT-SMALL

Number of epochs 3 10 3 20
Learning rate 1× 10−4 1× 10−4 1× 10−4 3× 10−4

Batch size 16 16 16 32
Warmup ratio 0.06 0.06 0.06 0.00
Weight decay 0.01 0.01 0.01 0.01

STRICT

Number of epochs 3 10 3 20
Learning rate 1× 10−4 1× 10−4 1× 10−4 3× 10−4

Batch size 32 32 32 16
Warmup ratio 0.06 0.06 0.06 0.06
Weight decay 0.01 0.01 0.01 0.01

Table 4: Fine-tuning hyperparameters We use the hyperparameters above to fine-tune our models. We did a
hyperparamter search on CoLA and SST-2 to obtain the hyperparameters. For MultiRC, we used less epochs due to
the time required to fine-tuned.

(Super)GLUE benchmark. General Language Understanding Evaluation benchmarks (GLUE and
SuperGLUE; Wang et al., 2018, 2019) are arguably the most common ways of evaluating the language-
understanding and transfer-learning capabilities of language models. The BabyLM challenge uses a subset
of 10 (Super)GLUE tasks, detailed in Appendix G. We employ the standard way of finetuning masked
language models on these datasets, as introduced in BERT (Devlin et al., 2019).

As we use the BabyLM version of GLUE, our results cannot be directly compared with previous
literature – the dataset samples are filtered to not contain out-of-vocabulary words and some of the
employed metrics differ from the original recommendations (Wang et al., 2018, 2019). We opted to adhere
to the BabyLM version to be compatible with other works in this challenge.4

BLiMP. When using any finetuning approach, it becomes unclear how to disentangle innate language
understanding from knowledge learned during second-stage supervised finetuning (Belinkov, 2022). In
contrast, the Benchmark of Linguistic Minimal Pairs (BLiMP; Warstadt et al., 2020) attempts to measure
the linguistic knowledge of a language model in a zero-shot manner – without any additional training.
Each pair of sentences in BLiMP differs minimally on the surface level, but only one of the sentences is
grammatically valid. We can use the intrinsic ability of language models to assign a probability to every
sentence and test how often a language model assigns a higher probability to the correct sentence (Wang
and Cho, 2019; Salazar et al., 2020).

As detailed in Appendix E, the results on BLiMP greatly depend on temperature scaling (Guo et al.,
2017). Thus, to fairly compare different types of language models, we employ an alternative approach
to evaluating BLiMP: we report the accuracies that are achieved with the optimal temperature for every
language model; the reasoning is explained in Appendix E.

The BabyLM challenge also comes with an additional ‘BLiMP supplement’ held-out set with five
additional diagnostic tasks. To comply with the held-out spirit of these tasks, we keep the temperature
values calibrated for BLiMP, even though this results in suboptimal performance (Appendix E).

EWoK. Elements of World Knowledge (EWoK; Ivanova et al., 2024) is another benchmark evaluated in
a zero-shot manner. The goal of this benchmark is to evaluate how well a model understand concepts that
help model the world. To do this, each example consists of two contexts, and two targets. The first context
implicates the first target, and the second context implicates the second target. Both implications are
based on world knowledge, such as an object both accelerating and slowing down (context) is oscillating

4The BabyLM pipeline unfortunately uses identical validation and test sets, which might yield overly optimistic results due to
overfitting during hyperparameter optimization.
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(target).

LAMBADA. LAnguage Modeling Broadened to Account for Discourse Aspect (LAMBADA; Paperno
et al., 2016) is a dataset that verifies how well a language model understand context and whether it is able
to recall far-away context. To do this the model must predict an answer token(s) which usually consists of
a person, action, fact, or event mentioned earlier in the context.
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C Text Generation with prompts from Radford et al. (2019)

Context

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored
valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns
spoke perfect English.

Completion (no repetition penalty)

The unicorns were known for their ability to communicate with each other, and they were known to have
a unique way of communicating.
The unicorns were known to have a unique way of communicating with each other, and they were known
to have a unique way of communicating with each other.
The unicorns were known to have a unique way of communicating with each other, and they were known
to have a unique way of communicating with each other.
The unicorns were known to have a unique way of communicating with each other, and they were known
to have a unique way of communicating with each other.
The unicorns were known to have a unique way of communicating with each other, and they were known
to have a unique way of communicating with each other.
The unicorns were known to have a unique way of communicating with each other, and they were known
to have a unique way of communicating with each other.
The unicorns were known to have a unique way of communicating with each other, and they were known
to have a unique way of communicating with each other.

Completion (1.5 repetition penalty)

The study is published in Nature Communications.
"The unicorn language has been known for centuries as an ancient communication system," said Dr. Mark
Rosenberg, lead author of the paper and co-author of the new research. "It’s not just a myth; it’s also a
real one."
A group of scientists from the University of California at Berkeley (UCB) and the University of Colorado
at Boulder (UCSD) have found evidence of this phenomenon in some animals. They say they’ve identified
two species of unicorns with similar sounds, but they’re different in their own way.
"We are looking at how these unicorns communicate," says Dr. Rosenberg. "They use sound waves to
send messages through the air, which then travel down the animal’s throat, where it gets picked up by
other animals, and back to the brain."
Researchers believe the unicorns’ ability to hear can be explained by the presence of certain chemicals
called acetylcholinesterase. Acetylcholinesterase helps them detect danger, such as wind or water. It also
makes them feel safe when there’s a threat.
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Context

Aaron loves mint chocolate cake, but he requires that it be paired with mini chocolate chips, so I threw
some of those in between the layers. I also had a few Peppermint Jo Jos on hand so I crushed them up
and threw some of those in along with some crushed meringue cookies because, why not? It’s a total
smorgasbord of minty chocolate chippy cookie crunchy goodness. I didn’t measure how much of each
topping I used, but after I tasted the finished product, I wish I had added more. You can add anything you
want- crushed candy canes, peppermint bark, etc. And don’t be afraid to use a heavy hand. Texture =
good.
If you don’t have 7-inch cake pans, you can get 3 shorter 8-inch layers out of this

Completion (no repetition penalty)

recipe. You can also use a 1-inch layer of chocolate chips, and you can also use a 1-inch layer of chocolate
chips.
Now, let’s talk about the texture. The texture of the cake is the amount of chocolate chips that you’re
using. You can use a 1-inch layer of chocolate chips, 1-inch layer of chocolate chips, and 1-inch layer of
chocolate chips. You can also use a 1-inch layer of chocolate chips, 1-inch layer of chocolate chips, and
1-inch layer of chocolate chips.
To make the cake, you’ll need to mix 1-inch chocolate chips, 1-inch chocolate chips, 1-inch chocolate
chips, and 1-inch chocolate chips. You’ll also need to mix 1-inch chocolate chips, 1-inch chocolate chips,
and 1-inch chocolate chips.
To make the cake, you’ll need to mix 1-inch chocolate chips, 1-inch chocolate chips, and 1-inch chocolate
chips. You’ll also need to mix 1-inch chocolate chips, 1-inch chocolate chips, and 1-inch chocolate chips.

Completion (1.5 repetition penalty)

recipe. The best part is that they are made from 120% natural ingredients. So if you need to make your
own, just go ahead and buy one!
Now let’s talk about what makes these cakes so special. First, there are two main components: the base
layer (the top) and the outer layer (the bottom). This layer consists of three layers: the base layer (which
contains all the other layers), the inner layer (which includes the outer layer), and the middle layer (which
has everything else). Each layer provides its unique texture and flavor profile. For example, when making
a macaroon cake, we would use a thinner layer called the “middle layer” which helps hold the shape
together. But if we wanted to create a thicker version, we could choose a lighter layer like a “cream
cheese” or even a “dry cream cheese”.
Next, let’s discuss the “inferior layer”. This is where our final dessert comes in handy.
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Figure 4: BLiMP-Supplement Accuracy Comparison of BLiMP-Supplement accuracy when varying the ratio
of MNTP used during pre-training. We set the temperature to apply on the logits to 1 for fair comparison between
the evaluation strategies. Fused is the sum of the logits from the causal and masked evaluation.

D Varying MNTP ratio results on other datasets

Figures 4 and 5 show the result of varying the MNTP ratio on the BLiMP-Supplement and EWoK
benchmarks. We evaluate the benchmarks with the masked, causal, fused (the sum of the logits of the
masked and causal scheme), and prefix (for EWoK) schemes.
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Figure 5: EWoK Accuracy Comparison of EWoK accuracy when varying the ratio of MNTP used during
pre-training. We set the temperature to apply on the logits to 1 for fair comparison between the evaluation strategies.
Fused is the sum of the logits from the causal and masked evaluation. We also look at the performance of the model
using a prefix masking strategy where the whole context is visible to the model.

E BLiMP

The BabyLM challenge uses the BLiMP benchmark (Warstadt et al., 2020) to evaluate the syntactic
understanding of the models. Our detailed results can be found in Table 5. The component tasks are as
follows (with descriptions from Warstadt et al. (2020)):

Anaphor Agreement (AA): the requirement that reflexive pronouns like herself (also known as anaphora)
agree with their antecedents in person, number, gender, and animacy.

Argument structure (AS): the ability of different verbs to appear with different types of arguments. For
instance, different verbs can appear with a direct object, participate in the causative alternation, or
take an inanimate argument.

Binding (B): the structural relationship between a pronoun and its antecedent.

Control/raising (CR): syntactic and semantic differences between various types of predicates that embed
an infinitival VP. This includes control, raising, and tough-movement predicates.

Determiner-noun agreement (DNA): number agreement between demonstrative determiners (e.g.,
this/these) and the associated noun.

Ellipsis (E): the possibility of omitting expressions from a sentence. Because this is difficult to illustrate
with sentences of equal length, our paradigms cover only special cases of noun phrase ellipsis that
meet this constraint.

Filler-gap (FG): dependencies arising from phrasal movement in, for example, wh-questions.

Irregular forms (IF): irregular morphology on English past participles (e.g., awoken).

Island effects (IE): restrictions on syntactic environments where the gap in a filler-gap dependency may
occur.
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NPI licensing (NL): restrictions on the distribution of negative polarity items like any and ever limited
to, for example, the scope of negation and only.

Quantifiers (Q): restrictions on the distribution of quantifiers. Two such restrictions are covered: su-
perlative quantifiers (e.g., at least) cannot be embedded under negation, and definite quantifiers and
determiners cannot be subjects in existential-there constructions.

Subject-verb agreement (SVA): subjects and present tense verbs must agree in number.

On temperature scaling, we observe that for the masked scheme, the increase in performance when using
temperature scaling is on average of 2%. This is not the case for the causal scheme, where temperature
seems to have very little effect on the performance of the model.

Model AA AS B CR DNA E FG IF IE NL Q SVA

STRICT-SMALL

ELC-BERT*(2023) 89.5 72.5 68.1 72.6 93.4 87.4 80.6 91.0 67.9 79.4 75.2 88.7

GPT-BERT 93.6 78.2 68.8 77.4 97.3 86.1 80.5 91.5 69.8 84.1 68.4 92.2

STRICT

ELC-BERT*(2023) 92.8 81.2 74.0 79.2 96.0 91.7 87.1 93.6 83.9 83.5 70.2 90.8
LTG-BERT*(2023) 96.1 79.5 77.1 80.3 95.4 91.7 87.8 94.5 79.8 84.4 72.2 91.2

GPT-BERT 97.7 84.3 74.61 83.7 98.2 86.9 89.3 96.6 77.3 85.2 76.4 95.1

Table 5: Detailed BLiMP results for models trained on both tracks. The bold results represent the best model
for the task. The metric used to measure is accuracy. The results are in percentage. *Results from (Georges
Gabriel Charpentier and Samuel, 2023); they are not directly comparable due to the differences in data filtration
between the models as well as the optimized BLiMP temperature being used instead of a general one.

F BLiMP Supplemental

The BLiMP Supplemental was introduced in the last version of the BabyLM Challenge (Warstadt et al.,
2023). As for BLiMP it tests the syntactic understanding of models. It consists of the following 5
sub-tasks:

Hypernym Checks whether a word is a superset/subset of another word (for example a dog is a mammal
so having a dog means having a mammal).

QA Congruence Easy Checks where the question type is congruent with the answer (i.e. a who question
answers about a person and not a thing).

QA Congruence Tricky Same as before but with more ambiguous cases.

Subject Aux Inversion Checking whether the verb relates to the correct subject.

Turn Talking Checks whether the right personal pronoun is used in the answer to a question in a
conversation.

The results can be found in Table 6.

G GLUE

The BabyLM challenge involves slightly modified GLUE and SuperGLUE benchmarks. It uses only a
subset of the subtasks, the datasets are filtered so that they do not contain out-of-vocabulary words, and it
sometimes uses non-standard metrics. Our detailed results can be found in Table 7. We list all subtasks
and their metrics below:

280



Model Hypernym QA Cong. Easy QA Cong. Tricky Subject Aux Inversion Turn Talking

STRICT-SMALL

Encoder(baseline) 54.2 62.5 49.1 79.9 58.2
Decoder(baseline) 49.6 54.7 41.2 86.0 66.1

ELC-BERT*(2023) 48.0 73.4 43.6 90.0 84.3

GPT-BERT 47.1 73.4 54.5 86.3 85.7

STRICT

Encoder(baseline) 55.0 75.0 53.3 87.5 61.4
Decoder(baseline) 45.6 56.2 44.8 83.9 72.5

ELC-BERT*(2023) 47.3 85.9 63.0 94.5 92.1
LTG-BERT*(2023) 47.0 90.6 60.6 90.7 92.1

GPT-BERT 48.8 90.6 59.4 96.3 88.9

Table 6: Detailed BLiMP supplemental results for models trained on both tracks. The bold results represent the best
model for the task. The metric used to measure performance is accuracy. The results are in percentage. *Results
from (Georges Gabriel Charpentier and Samuel, 2023); they are not directly comparable due to the differences in
data filtration between the models as well as the optimized BLiMP Supplemental temperature being used instead of
a general one.

Boolean Questions (BoolQ; Clark et al., 2019), a yes/no Q/A dataset evaluated with accuracy.

Corpus of Linguistic Acceptability (CoLA; Warstadt et al., 2019) evaluated with the Matthews correla-
tion coefficient (MCC; Matthews, 1975).

The Multi-Genre Natural Language Inference Corpus (MNLI; Williams et al., 2018). Its develop-
ment set consists of two parts: matched, sampled from the same data source as the training set, and
mismatched, which is sampled from a different domain. Both parts are evaluated with accuracy.

The Microsoft Research Paraphrase Corpus (MRPC; Dolan and Brockett, 2005), evaluated with both
F1-score (originally also evaluated with accuracy).

Multi-Sentence Reading Comprehension (MultiRC; Khashabi et al., 2018), a multiple choice question
answering dataset, evaluated with accuracy (originally evaluated with the exact match accuracy (EM)
and F1-score (over all answer options)).

Question-answering Natural Language Inference (QNLI) constructed from the Stanford Question An-
swering Dataset (SQuAD; Rajpurkar et al., 2016), evaluated with accuracy.

The Quora Question Pairs (QQP),5 evaluated with F1-score (originally evaluated with accuracy).

The Stanford Sentiment Treebank (SST-2; Socher et al., 2013), evaluated with accuracy.

The Recognizing Textual Entailment datasets (RTE; Dagan et al., 2006; Bar-Haim et al., 2006; Gi-
ampiccolo et al., 2007; Bentivogli et al., 2009), evaluated with accuracy.

Winograd Schema Challenge (WSC; Levesque et al., 2012) evaluated with accuracy.

H EWoK

The BabyLM challenge uses a slightly modified EWoK benchmark (Ivanova et al., 2024). It tests all
concepts but filters the dataset to include only examples where the words appear in the BabyLM dataset.
Our detailed results can be found in Table 8. We list all concepts below:

Agent Properties Checks whether the model can recognize agent (conscious beings) properties (such as
believe, choice, feeling, etc.)

5https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
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Model CoLA SST-2 MRPC QQP MNLIm MNLImm QNLI RTE BoolQ MultiRC WSC

STRICT-SMALL

Encoder(baseline) 0.0 85.1 82.2 34.2 68.9 68.9 76.5 58.3 68.8 58.5 61.5

Decoder(baseline) 2.2 86.2 82.0 83.6 72.4 74.2 82.8 49.6 65.0 60.1 38.5

ELC-BERT*(2023) – 89.3±0.5 85.0±1.8 86.7±0.3 79.2±0.3 79.9±0.2 85.8±0.4 55.4±2.6 69.3±2.0 62.2±1.0 59.0±5.4

LTG-BERT*(2023) – 88.8±0.8 82.3±0.4 85.8±0.2 78.0±0.2 78.8±0.4 85.0±0.2 53.7±4.1 64.8±2.1 64.1±0.3 60.5±1.0

GPT-BERT 48.9 92.2 91.5 87.1 80.2 80.5 86.4 64.0 72.5 69.3 69.2

STRICT

Encoder(baseline) 34.6 91.5 83.1 86.7 77.7 78.1 78.2 46.8 61.7 52.6 61.5

Decoder(baseline) 37.3 88.3 86.8 84.5 75.6 76.2 83.1 60.4 66.1 62.1 38.5

ELC-BERT*(2023) – 91.9±1.1 89.3±0.6 88.0±0.1 83.6±0.1 83.3±0.2 89.4±0.4 60.0±2.8 70.5±1.5 66.2±2.2 56.4±9.4

LTG-BERT*(2023) – 92.0±0.4 87.4±0.7 87.9±0.1 83.0±0.4 83.4±0.5 89.1±0.5 54.7±2.4 68.4±0.5 66.0±1.4 61.4±0.0

GPT-BERT 62.4 94.0 94.4 89.1 85.2 85.3 90.8 69.1 78.4 73.3 75.0

Table 7: A subset of GLUE results (defined by the Baby LM challenge) for models trained on both tracks. All
the results indicate the model accuracy for the task except for MRPC and QQP where the results are based on the
F1-score of the positive class and CoLA which reports the MCC. The results are reported in percentage. The bold
result indicates the best model for each dataset. *Results from (Georges Gabriel Charpentier and Samuel, 2023);
they are not directly comparable due to the differences in data filtration between the models.

Material Dynamics Checks whether the model can recognize the dynamics (movement, fluidity, etc.) of
a given material.

Material Properties Checks whether the model can recognize the properties (bounciness, hardness, etc.)
of a given material.

Physical Dynamics Checks whether the model can recognize the physical dynamic (speed, buoyancy,
etc.) of an object.

Physical Interactions Checks whether the model can recognize the physical interactions (attraction,
collision, etc.) between objects.

Physical Relations Checks whether the model can recognize the physical relations (attached vs. con-
nected, bigger vs. smaller, etc.) between objects.

Quantative Properties Checks whether the model can recognize amount (a lot vs. little of, enough vs.
not enough, etc.) of an object.

Social Interactions Checks whether the model can recognize the social interactions (cooperate vs.
compete, help vs. deceive, etc.) between agents.

Social Properties Checks whether the model can recognize the social property (boastful vs. humble,
dominant vs. submissive, etc.) of an agent.

Social Relations Checks whether the model can recognize the social relations (boss vs. subordinate,
colleague vs. boss, etc.) between agents.

Spatial Relations Checks whether the model can recognize the spatial relations (location, height, etc.)
between agents, objects or a combination of them.

I LAMBADA

LAMBADA is a zero-shot language modeling task that focuses on resolving long-range dependencies in
text (Paperno et al., 2016); we used its detokenized version from Radford et al. (2019). While it has been
traditionally used for evaluating autoregressive language models, we adapt the task for masked language
models. Note that this adaptation does not allow for a direct comparison with the autoregressive models.
An illustrative sample from this dataset looks as follows:
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Model
Agent Material Physical Quantative Social Spatial

Prop. Dyn. Prop. Dyn. Inter. Rel. Prop. Inter. Prop. Rel. Rel.

STRICT-SMALL

Encoder(baseline) 50.2 51.0 45.3 42.5 49.1 51.0 48.1 51.7 53.4 50.6 45.3
Decoder(baseline) 50.5 51.7 49.4 54.2 50.4 50.6 53.5 50.7 50.3 49.8 46.7

GPT-BERT 50.7 58.1 48.8 57.5 51.1 49.9 55.7 65.6 58.2 51.6 53.9

STRICT

Encoder(baseline) 50.1 55.8 50.6 58.3 48.9 50.9 53.8 51.4 50.8 53.8 51.4
Decoder(baseline) 50.1 55.5 50.0 57.5 51.4 50.5 56.7 52.7 49.7 50.0 49.0

GPT-BERT 52.7 72.3 51.8 50.8 52.7 48.3 52.5 77.2 64.3 58.9 60.8

Table 8: Detailed EWoK results for models trained on both tracks. The bold results represent the best model for the
task. The metric used to measure performance is accuracy.

Prompt: "Give me a minute to change and I’ll meet you at the docks." She’d forced those words through
her teeth. "No need to change. We won’t be that long." Shane gripped her arm and started leading her to
the dock. "I can make it there on my own, {answer}."

Gold answer: Shane
We insert the whole tokenized prompt to the evaluated language model and replace the missing answer

by k mask tokens, where k is the length of the tokenized gold answer. Then we evaluate the exact-match
accuracy of predicting filling in the correct continuation and also the mean perplexity.

We also evaluate using the normal causal method implemented by Radford et al. (2019), as well as
doing it with a prefix, where all the context tokens attend to each other.
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Abstract

We explore the impact of pre-training data com-
position on the performance of small language
models in a sample-efficient setting. Using
datasets limited to 10 million words, we evalu-
ate several dataset sources—including child-
directed speech (CHILDES), classic books
(Gutenberg), synthetic data (TinyStories), and
a mix of these (Mix)—across different model
sizes ranging from 18 million to 705 mil-
lion parameters. Our experiments show that
smaller models (e.g., GPT2-18M and GPT2-
44M) benefit from training on diverse datasets
like Mix, achieving better performance on lin-
guistic benchmarks. In contrast, larger models
(e.g., GPT2-97M, GPT2-705M, and LLaMA-
360M) perform better when trained on more
complex and rich datasets like Gutenberg. Mod-
els trained on the CHILDES and TinyStories
datasets underperformed across all model sizes.
These findings suggest that the optimal dataset
for sample efficient training depends on the
model size, and that neither child-directed
speech nor simplified stories are optimal for
language models of all sizes. We highlight the
importance of considering both dataset compo-
sition and model capacity for effective sample
efficient language model training.

1 Introduction

In recent years, advancements in natural language
processing have been largely driven by scaling lan-
guage models to unprecedented sizes. Various
large-language model (LLM) scaling laws have
been formulated (Sardana et al., 2024), with per-
haps the most influential being the Chinchilla law,
which demonstrates that parameters and tokens
scale approximately linearly as the model scales
(Hoffmann et al., 2024). Many subsequent LLMs
have been trained following this model (Rae et al.,
2021), with some models including the Llama 2
and Llama 3 family of models being trained on 2
and 15 trillion tokens respectively, far more than

the ’optimal’ amount according to the Chinchilla
scaling law (Dubey et al., 2024). However, it is
often prohibitive to train such large models, and
impractical to continue scaling with the amounts
of data required to train such models.

This has sparked interest in small language mod-
els (Schick and Schütze, 2021; Magister et al.,
2023) with much fewer parameters, requiring much
less data for training. While much research has
been conducted on knowledge distillation and im-
proving the model architecture for small language
models, comparably less research has investigated
the contributions of different types of data used
for model training, which is arguably just as im-
portant. Indeed, because LLM pretraining data
typically comprises a mix of sources (Chowdhery
et al., 2023), researchers have found that the com-
position of pretrained data greatly affects model
performance (Du et al., 2022; Wei et al., 2015),
though determining the optimal recipe for pretrain-
ing data is challenging. Recent research explor-
ing optimization of pretraining data for LLMs at
scale includes DoReMi, which trains a small proxy
model to produce domain weights for downstream
tasks, and then uses the model to resample the
dataset for training huge LLMs (Xie et al., 2024).
However, the question of how to choose data for
sample-efficient training of small language models,
such as in cases where computational resources are
limited, has received little attention.

Psycholinguistic precedent exists for sample-
efficient pretraining; children see much less words
than a modern LLM yet perform exceptionally well
on reasoning tasks. For example, Chinchilla sees
over 10000 times the number of words a 13 year old
child has ever encountered (Choshen et al., 2024).
By the time typical English-speaking children at
around 6 years old have obtained adult-level gram-
matical knowledge (Kemp et al., 2005), they have
seen only around 10-50M words (Hart et al., 1997;
Huebner et al., 2021). In comparison, Llama-3 is
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trained on 15T tokens (Dubey et al., 2024). Given
the great disparity between the amount of training
data an LLM requires and what children require, it
seems worthwhile to investigate whether training
LLMs can be as sample efficient.

BabyBERTa (Huebner et al., 2021) attempts to
address this, showing that when training a model
on data similar to what is seen by children between
the ages 1 and 6, it is able to acquire grammat-
ical knowledge similar to pretrained RoBERTa-
base, but with around 15X fewer parameters and
6,000X fewer words; this indicates that utilizing
child-directed input may be advantageous for more
sample efficient pretraining (Huebner et al., 2021).
Similarly, Eldan and Li (2023) follow suit, releas-
ing TinyStories, a synthetic dataset of short stories
that only contain words that typical 3- to 4-year-
old children understand. They demonstrate that
TinyStories can be leveraged to train language mod-
els with much less parameters than SOTA models,
yet still produce coherent output with almost per-
fect grammar as well as emergent reasoning abili-
ties. Along the same vein, GPT-wee (Bunzeck and
Zarrieß, 2023) shows that child-directed speech
can be used with curriculum learning for simulat-
ing children’s learning as a potential solution to
sample-constrained training.

In this paper, we evaluate the effect of differ-
ent datasets on model performance for sample
efficient model training. In our case, we limit
our training dataset to 10M words, in accordance
with the BabyLM Challenge’s super-strict track
(Choshen et al., 2024). We consider several differ-
ent types of datasets, namely child-directed speech
(CHILDES), classic books (Gutenberg), a mixed
dataset (Mix) and the TinyStories dataset. Exper-
imental results show that smaller models benefit
from training on diverse datasets like Mix on the
BabyLM evaluation suite (Choshen et al., 2024),
but larger models perform better when trained on
more complex and rich datasets like Gutenberg.
Our findings suggest that the optimal dataset de-
pends on the model size and that neither child-
directed speech nor child-directed stories are opti-
mal for language models of any sizes.

2 Dataset

For our experiments, we obtained datasets from the
BabyLM Challenge (Choshen et al., 2024). Individ-
ual categories of 10M-word datasets were procured
by extracting the first 10M words from that cate-

gory in the 100M-word dataset of the BabyLM
challenge. We also used Mix, the 10M-word
developmentally-plausible corpus of BabyLM, and
TinyStories. To measure for complexity in the lan-
guage of these datasets, we use several readability
metrics, including the Flesch reading ease (FRE)
score (Flesch, 1948), ARI (Automated Readability
Index) (Smith and Senter, 1967), and the Gunning
fog index (Gunning, 1969).

For a document di ∈ C, its FRE score is com-
puted as:

FRE(di) = 206.835−(1.015·ASL)−(84.6·ASW)

where ASL is the average sentence length (the
number of words divided by the number of sen-
tences) and ASW is the average number of sylla-
bles per word (the number of syllables divided by
the number of words). Higher FRE scores corre-
spond to simpler texts (e.g., children’s literature),
while lower scores indicate more complex writing
(e.g., machine learning papers). The ARI score is
calculated as:

ARI(di) = 4.71·
(
characters

words

)
+0.5·

(
words

sentences

)
−21.43

Higher ARI scores indicate more complex text
requiring higher grade levels to comprehend. The
Gunning fog index score is calculated as:

Fog(di) = 0.4·
[(

words
sentences

)
+ 100 ·

(
complex words

words

)]

Like ARI, higher Gunning fog scores indicate
more complex text.

Our individual datasets comprise:

• CHILDES: The CHILDES dataset is com-
posed of examples of the human language ac-
quisition process starting from a very young
age (MacWhinney, 2000). We constructed
a 10 million word training corpus from
the CHILDES portion of the small track
(100M). We took the first 10M words from
the CHILDES portion.

• Gutenberg: The Gutenberg dataset is a large
dataset composed of English language books
(Gerlach and Font-Clos, 2020). We took the
first 10M words from the Gutenberg portion
of the small track dataset.

• Mix (Default): This was the default 10M
dataset for the strict-small track. The split
of is displayed below:
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Figure 1: Default dataset composition

• TinyStories: We took the first 10M words
from the TinyStories dataset on Hugging
Face1 (Eldan and Li, 2023). (FRE = 105.19)

Dataset FRE Gunning Fog ARI

Mix 105.89 5.62 1.59
CHILDES 115.70 2.84 0.20
Gutenberg 87.49 9.89 7.12
TinyStories 105.19 4.83 0.85

Table 1: Readability metrics across different datasets.
Lower FRE and higher Gunning Fog and ARI scores
indicate a more complex dataset.

3 Methodology

3.1 Preprocessing

For both pre-processing and model training, we
built off the BabyLlama repository2 (Timiryasov
and Tastet, 2023). Following their pre-processing
steps, we applied regex-based cleaning and trained
a Byte-Pair Encoding tokenizer on the training sets
of whatever dataset we were working with. The
train and dev sets were split into 128-token chunks,
with the model being presented a new random per-
mutation of these chunks in each epoch. Validation
loss is computed at the end of each epoch using a
fixed, randomly sampled subset of the dev set.

3.2 Training

Given that this builds upon the TinyStories paper,
focused on dataset optimization for very small lan-
guage models, we focused mainly on GPT models
of sizes 18M, 44M and 97M, which we trained on
various datasets. We used this to explore whether
different model sizes would affect which dataset

1https://huggingface.co/datasets/roneneldan/
TinyStories

2https://github.com/timinar/BabyLlama

performed the best. We trained for 4 epochs, us-
ing consistent hyper-parameters. Subsequently,
we trained a Llama-20M model to confirm that
the same pattern regarding dataset complexity is
observed in Llama models as well. Lastly, large
model baselines of GPT2-705M and Llama-360M
are used, as these were the original parent model
sizes originally used by last year’s BabyLM win-
ning model (Timiryasov and Tastet, 2023).

3.3 Evaluation
Evaluation of model performance was done using
the BabyLM evaluation suite (Choshen et al., 2024).
This consists of the following benchmarks:

• BLiMP: BLiMP (Benchmark of Linguistic
Minimal Pairs for English) evaluates language
models on their ability to identify grammati-
cal acceptability. It presents pairs of sentences
that differ by one linguistic element, testing
the model’s understanding of 12 areas of En-
glish morphology, syntax, and semantics, such
as anaphor agreement and filler-gap construc-
tions. It measures how well models assign
higher probability to the grammatically cor-
rect sentence in each pair. (Warstadt et al.,
2020)

• EWoK: EWoK (Elements of World Knowl-
edge) evaluates language models on their abil-
ity to build and apply internal world models.
It tests models’ understanding of concepts
and contexts by presenting them with mini-
mal pairs of scenarios where the models de-
termine the plausibility of context and target
combinations. (Ivanova et al., 2024)

• GLUE: GLUE (General Language Under-
standing Evaluation) evaluates language mod-
els on a variety of natural language under-
standing tasks. It covers tasks such as sen-
timent analysis, text similarity, question an-
swering, and textual entailment. (Wang et al.,
2018) Unlike in the BabyLM evaluation suite,
however, we do not do finetuning in this case
and run it as a zero-shot evaluation due to
computational constraints.

4 Results and Discussion

Overall, our results demonstrate that the effective-
ness of a training dataset is dependent on the model
size. Specifically, smaller models (with fewer pa-
rameters) benefit more from training on a diverse
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Model Dataset BLiMP Supplement BLiMP Filtered EWoK Macroaverage

GPT2-18M CHILDES 52.8 58.2 50.5 53.83
Gutenberg 55.7 62.4 50.3 56.13

Mix 55.9 63.7 49.7 56.43
TinyStories 55.2 57.5 50.7 54.47

GPT2-44M CHILDES 55.3 57.8 51.2 54.77
Gutenberg 57.6 63.0 50.0 56.87

Mix 58.2 65.6 50.4 58.07
TinyStories 52.8 57.1 50.4 53.43

GPT2-97M CHILDES 49.7 60.5 49.6 53.27
Gutenberg 59.0 65.3 51.1 58.47

Mix 58.0 66.0 50.6 58.20
TinyStories 54.6 59.1 50.3 54.67

Llama-20M CHILDES 53.4 57.9 50.2 53.83
Gutenberg 57.4 60.0 50.6 56.00

Mix 56.6 62.8 50.2 56.53
TinyStories 46.7 51.1 49.8 49.20

GPT2-705M Gutenberg 59.9 66.8 50.6 59.10
Mix 56.7 66.1 50.6 57.80

Llama-360M Gutenberg 56.7 66.5 50.2 57.80
Mix 56.6 62.8 50.5 56.63

Table 2: Summary of BLiMP filtered, BLiMP supplement, EWoK results, and Macroaverage for various models
and datasets

dataset like Mix, while larger models show im-
proved performance when trained on the Gutenberg
dataset. As shown in Table 2, for smaller models
like GPT2-18M and GPT2-44M, Mix consistently
achieves the best performance on BLiMP, scoring
63.7 and 65.6 respectively on BLiMP Filtered, and
55.9 and 58.2 on BLiMP Supplement. However,
as we move to larger models like GPT2-97M and
GPT2-705M, the Gutenberg dataset takes the lead,
achieving the highest scores across most metrics
(59.0 and 59.9 on BLiMP Supplement, 65.3 and
66.8 on BLiMP Filtered). We see this also extend to
the Llama models as well, where the larger Llama-
360M performs best with Gutenberg data (56.7
on BLiMP Supplement and 66.5 on BLiMP Fil-
tered), while the smaller Llama-20M shows mixed
results between Gutenberg and Mix. Interesting,
both CHILDES and TinyStories consistently under-
perform across all model sizes, with scores typi-
cally lower than both Mix and Gutenberg datasets.
On the other hand, we see a very different story
when looking at macro average GLUE scores for
the models (Table 3), with TinyStories performing
well for small models and CHILDES performing
well for the big model. However, when examin-

ing the GLUE subtasks further, we do not see a
clear trend on which dataset type results a stronger
performance, and cannot conclude a clear trend
here.

4.1 Dataset and model performance

Model performance results on various datasets was
observed in table 2. Small models, such as GPT2-
18M and GPT2-44M, have limited capacity due
to fewer parameters. This constraint affects their
ability to capture complex linguistic patterns and
nuanced language structures. Datasets like Guten-
berg with a relatively lower FRE score (87.49) con-
tain wider vocabulary, more intricate syntax, and
nuanced semantic meaning. Due to their limited
capacity, small models cannot fully learn from the
complexity of the dataset. They oversimplify the
language patterns, leading to high bias and poor
generalization. This underfitting results in lower
performance on evaluation benchmarks.

In contrast, larger models, such as GPT2-97M,
GPT2-705M, and LLaMA-360M, possess greater
capacity to learn and represent complex patterns
due to their increased number of parameters. Be-
cause the Gutenberg dataset, consisting of a diver-
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Model Dataset MRPC MultiRC QNLI SST-2 BoolQ MNLI QQP WSC RTE Cola (MCC) Macro Average

GPT2-18M CHILDES 34.31 45.50 50.92 53.67 58.59 32.42 42.47 38.46 48.20 -0.07 40.45
Gutenberg 35.78 52.56 49.52 47.94 46.73 32.74 60.68 61.54 53.24 0.05 44.08
Mix 58.33 44.35 47.14 47.71 57.00 32.42 46.77 46.15 44.60 0.03 42.45
TinyStories 60.78 42.86 51.72 51.83 62.63 32.56 50.54 42.31 48.20 0.06 44.35

GPT2-44M CHILDES 46.57 42.41 51.13 47.71 55.96 32.84 41.52 53.85 46.76 0.07 41.88
Gutenberg 64.71 45.54 50.88 50.92 60.98 31.85 37.32 38.46 43.88 -0.02 42.45
Mix 52.94 47.07 50.62 48.17 55.23 32.42 54.06 38.46 42.45 0.03 42.14
TinyStories 45.59 53.09 47.04 48.39 42.26 33.19 62.01 59.62 54.68 -0.06 44.58

GPT2-97M CHILDES 57.35 53.42 49.27 50.23 44.59 35.76 62.47 61.54 53.96 0.06 46.86
Gutenberg 54.90 47.69 50.62 53.21 54.98 31.46 38.67 38.46 43.17 0.03 41.32
Mix 47.05 49.88 48.57 50.00 44.10 33.48 61.82 61.54 56.12 -0.05 45.25
TinyStories 65.20 43.61 50.40 51.83 62.08 32.03 38.05 44.23 50.36 0.07 43.79

Table 3: Detailed GLUE scores for various GPT models and datasets

sity of subject materials (Gerlach and Font-Clos,
2020), offers the most nuanced sentence structures
and vocabulary out of all the datasets, it could be ar-
gued that diversity within the dataset may be more
important than having a diverse basket of datasets
for models with a higher number of parameters.

4.2 Dataset Convergence

In our experiments, CHILDES converged faster
than either then Gutenberg or the Mix datasets for
both GPT2-44M and GPT2-18M models. This can
be observed in figure 2 and 3 below, and can be
explained by the nature of CHILDES dataset. The
higher FRE score (115.70) of this child-directed
speech dataset indicates simpler grammatical struc-
tures, shorter sentences, and straightforward syn-
tax compared to the adult-oriented language found
in datasets like Gutenberg or Mix. In addition,
because caregivers frequently repeat words and
phrases when interacting with children, the dataset
is characterized by high repetition, making the
learning task of capturing the underlying structures
and relationships in the data easier and faster to
converge quickly during training. In short, due to
the low perplexity of the CHILDES dataset, the
model has less uncertainty in predicting the next
word in a sequence, resulting in a smoother loss
landscape and simplifying the learning task.

4.3 Underperformance of Child-directed and
Synthetic Datasets

Neither the CHILDES nor TinyStories datasets per-
formed very well on the BLiMP or EWoK evalua-
tion suite (Choshen et al., 2024). The CHILDES
dataset consistently underperformed no matter the
model size, suggesting that child-directed speech
may not be not advantageous for training a robust
model. This is consistent with the lack of success

Figure 2: Train loss when training GPT2-18M on vari-
ous datasets

in implementing curriculum learning for child data
in the previous BabyLM challenge (Bunzeck and
Zarrieß, 2023). In their paper, Bunzeck and Zarrieß
noted that the integration of more sophisticated lin-
guistic factors into the training process might be
needed, as their curriculum approach based on pro-
totypicality measures didn’t effectively capture the
language acquisition process they were looking for.

Considering the strong performance of TinySto-
ries in (Eldan and Li, 2023), and the fact that we
adopted the same GPT-44M architecture as in pa-
per, with a hidden size of 768, 2 layers and 8 heads,
we were surprised by the poor performance of the
TinyStories dataset. That said, we only used a 10M
subset of TinyStories, and given its limited vocabu-
lary and grammatical range (and higher FRE score
of 105.19), perhaps there was insufficient diversity
and exposure to new formats as previously dis-
cussed. Additionally, we utilized different bench-
marks. The BLiMP and EWoK benchmarks assess
a model’s understanding of complex grammatical
rules and world knowledge; this is not likely to be
adequately covered by the TinyStories dataset. In
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Figure 3: Train loss when training GPT2-44M on vari-
ous datasets

short, models trained on TinyStories may lack ex-
posure to the types of linguistic phenomena these
benchmarks evaluate.

The disparity in TinyStories’ performance across
benchmarks likely stems from the divergent linguis-
tic and cognitive demands of each dataset. GLUE
evaluates general-purpose natural language under-
standing (NLU) tasks, such as sentiment analy-
sis and paraphrase identification, which align well
with the broad, semantic patterns learned from nar-
rative content in TinyStories. In contrast, BLiMP
emphasizes fine-grained syntactic and grammati-
cal competence, while EWoK assesses factual rea-
soning and contextual world knowledge—skills
that TinyStories’ simplified narrative structure and
limited syntactic diversity do not comprehensively
support. Consequently, while TinyStories provides
effective training for NLU, it lacks the complexity
required for the precise linguistic and knowledge-
based reasoning assessed by BLiMP and EWoK.

On the whole, however, we do not see the huge
performance gains that were reported in the origi-
nal TinyStories paper. The success of TinyStories
in the original paper may perhaps be partially at-
tributed to the narrative structure of the data, which
provides contextual coherence and sequential de-
pendencies that models can leverage. However,
given that the Gutenberg dataset also contains nar-
rative texts but with more complicated language
and storylines, it offers better training data for mod-
els to learn general language patterns.

5 Limitations

Our study has several limitations. First, we used
consistent hyper-parameters across all experiments

for comparability, but this may not have been op-
timal for each model-dataset pair. Tuning hyper-
parameters individually could have yielded better
performance.

Second, the BLiMP and EWoK benchmark as-
sess linguistic competence on tasks on represented
in datasets such as TinyStories or CHILDES, po-
tentially biasing the evaluation. In short, there is
a mismatch between the training data afforded by
child datasets and the test set.

Lastly, due to computational limitations, models
were trained for only four epochs. Longer training
might have allowed models to better capture the
nuances of the datasets.

6 Conclusion and Future Work

In this paper, we investigated the impact of dataset
composition on the performance of small lan-
guage models in a sample-efficient training regime.
By training models of varying sizes on different
datasets limited to 10 million words, we sought to
identify which types of data are most beneficial
for language acquisition in resource-constrained
settings.

We found that tiny models (e.g., GPT2-18M and
GPT2-44M) performed best when trained on the
Mix dataset, which offers a diverse combination
of language inputs, while slightly larger small lan-
guage models achieved superior performance when
trained on the Gutenberg dataset, leveraging its
linguistic richness. In contrast, models trained on
CHILDES or TinyStories underperformed regard-
less of size.

For future work, a more thorough investigation
of other types of data sources such as news arti-
cles, scientific texts, and conversational data might
better tease out the optimal dataset for model per-
formance. Additionally, it might be useful to ex-
plore curriculum learning, which presumable mod-
els the developmental process of a language learn-
ing child.

Widening the benchmarks beyond GLUE and
BLiMP tasks to coherent text generation, as well
as scaling dataset sizes and tasks would allow for a
more comprehensive and robust study as well.
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Abstract

We present BabyLlama-2, a 345 million pa-
rameter model distillation-pretrained from two
teachers on a 10 million word corpus for the
BabyLM competition. On the BLiMP and Su-
perGLUE benchmarks, BabyLlama-2 outper-
forms baselines trained on both 10 and 100
million word datasets with the same data mix,
as well as its teacher models. Through an ex-
tensive hyperparameter sweep, we demonstrate
that the advantages of distillation cannot be
attributed to suboptimal hyperparameter selec-
tion of the teachers. Our findings underscore
the need for further investigation into distil-
lation techniques, particularly in data-limited
settings.

1 Introduction

With frontier model training runs using beyond
1025 FLOPs (Dubey et al., 2024), training effi-
ciency has become a billion-dollar question. Hu-
mans are vastly more sample efficient than current
Large Language Models (LLMs). For example, a
typical 13-year-old child has been exposed to less
than 100 million words (extrapolating from Gilk-
erson et al. (2017)), whereas Llama-3.1 has been
trained on 15.6 trillion text tokens. The goal of
the BabyLM Challenge (Choshen et al., 2024) is
to optimize pretraining given dataset limitations
inspired by human development.

In this work, we present our contribution to the
BabyLM challenge (Strict-Small Track), with the
following main results:

• BabyLlama-2 model: This 345M parameter
decoder-only model1, distillation-pretrained

1It is worth noting that encoder models are better suited for
the evaluation tasks of the challenge than decoder ones. In last
year’s evaluation (Warstadt et al., 2023), the 125M parameter
RoBERTa-base (Liu et al., 2019) performed on par with the
70B parameter Llama-2 (Touvron et al., 2023b). However, our
focus throughout this paper shall be on generative, decoder
models.

on 9.5M words, outperforms baseline models
trained on both 10M and 100M words (using
the same data mix). It also surpasses similar
models pretrained using conventional meth-
ods.

• Extensive hyperparameter sweep: We have
conducted a comprehensive hyperparameter
optimization and demonstrated that distilla-
tion pretraining consistently outperforms the
best models from the sweep.

• Correlation between test loss and perfor-
mance: As a byproduct of our sweep, we have
identified a correlation between zero-shot per-
formance on the BLiMP task and the model’s
test loss.

The success of distillation pretraining, i.e. pretrain-
ing from scratch with distillation loss, in our ex-
periments highlights its potential as a powerful
technique for improving model performance, espe-
cially in data-limited settings. While our findings
are promising, they also raise intriguing questions
about the nature of knowledge distillation and its
interaction with pretraining objectives. Further in-
vestigation into these areas could yield valuable in-
sights for the development of more sample-efficient
language models.

2 Related Work

The first edition of the BabyLM challenge, which
aims to optimize language model pretraining un-
der data constraints inspired by human language
acquisition, prompted numerous works on sample-
efficient pretraining. For a detailed summary of
all contributions, see the review by Warstadt et al.
(2023).

Outside the BabyLM context, relatively few
works address training on limited language datasets.
Notable exceptions include Muennighoff et al.
(2023), who studied the scaling of data-constrained
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LLMs. Their main finding is that training for more
than 4 epochs leads to diminishing returns. Luukko-
nen et al. (2023) trained FinGPT on more than 30B
tokens in Finnish language. Although resource-
constrained, this dataset is significantly larger than
that of the BabyLM Challenge. A sample-efficient
modification of BERT architecture was proposed
by Samuel et al. (2023), with a model trained on
a 100M word dataset from the British National
Corpus outperforming the original BERT model.

The existing literature on training small mod-
els often focuses on models deployable on edge
devices, such as MobileLLM (Liu et al., 2024).
However, these works typically concentrate on de-
ployment efficiency rather than sample efficiency.

Knowledge distillation has recently attracted sig-
nificant attention, primarily for deployment effi-
ciency reasons (see Xu et al. (2024) for a systematic
review). Typically, this involves using large frontier
models as teachers to train smaller student mod-
els. In contrast, BabyLlama-2 utilizes distillation
for sample-efficient pretraining, using similar-sized
teacher models trained on the same limited dataset.

A similar phenomenon, where a student model
outperforms its teachers when distilled from mod-
els with identical architecture and trained on the
same dataset, was observed in “Born-Again Neural
Networks” (Furlanello et al., 2018). However, this
work did not focus on the data-limited regime and
it used LSTM variants (instead of transformers) for
language modeling.

3 Background

Knowledge distillation, introduced by Hinton et al.
(2015), is a technique for transferring knowledge
from a “teacher” model to a “student” model. The
core idea is to train the student to mimic the logit
distribution (soft targets) produced by the teacher,
rather than just the hard labels of the training data.
The distillation loss combines the standard cross-
entropy loss with the soft target loss:

Ldistill(y, zs, zt) = αLCE(y, σ(zs))+

(1− α)T 2DKL (σ(zt/T ) ||σ(zs/T )) (1)

where α balances the usual cross-entropy loss LCE
and the soft targets loss, T is the temperature pa-
rameter that softens the probability distributions,
zs and zt are respectively the logits of the student
and teacher models, σ is the softmax function, and
DKL denotes the Kullback-Leibler divergence. In
our implementation, we use the averaged logits of

an ensemble of teacher models as zt. Moreover,
unlike typical applications, our student and teacher
models are of the same size.

4 Model

Architecture. Previous experiments have shown
that the Llama architecture (Touvron et al., 2023a),
featuring RoPE and a SwiGLU non-linearity, re-
quires fewer epochs to reach minimal loss com-
pared to GPT-2 or GPT-J architectures (Timiryasov,
2023). After training a family of Llama models
ranging from 16M to 728M parameters, we con-
verged on a specific 345M model architecture sug-
gested in MobileLLM (Liu et al., 2024) and also
used in SmolLM (Allal et al., 2023), whose hy-
perparameters are listed in table 1. This design
incorporates Grouped-Query Attention (GQA) and
prioritizes depth over width. Some details of our
model selection are listed in appendix B.

Hyperparameter Value

Vocabulary size 16,000
Number of layers 32
Number of heads 15
Number of KV heads 5
Embedding dimension 960
Hidden dimension 2560
Total parameters 345M

Table 1: BabyLlama-2 Model Architecture.

Pretraining Approach. The particularity of the
BabyLlama-2 model is to be distilled from an en-
semble of teacher models, using the distillation
loss (1). The teacher models share the same archi-
tecture and are pretrained on the same dataset using
the standard cross-entropy loss. The student model
is then pretrained with the same hyperparameters,
using the mean teacher logits z̄t in the distillation
loss Ldistill(y, zs, z̄t).

5 Experimental Setup

Dataset. We use the 10 million word BabyLM-
2 dataset (Zhuang et al., 2024), that we split into
9.5M train and 0.5M validation splits, as well as
the accompanying 10M word “dev” dataset, that
we use as a test split. While the validation split is
used to perform the hyperparameter optimization,2

2This choice is dictated by the following logic. A hyperpa-
rameter sweep can be viewed as a form of optimization. There-
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the test split is used solely for the purpose of re-
porting the final cross-entropy loss. Each dataset
is composed of six files, corresponding each to a
different type of (English) language that a child is
likely to be exposed to, such as transcribed child-
directed speech, children’s books, subtitles, or sim-
ple Wikipedia. The relative fractions of these files
differ slightly between, on the one hand, the train
and validation splits and, on the other, the test split,
which is therefore slightly out of distribution.

We have experimented with the FineWeb-Edu
dataset (Lozhkov et al., 2024) but have observed
that models trained on the BabyLM-2 dataset reach
better BLiMP scores (see appendix C for more
details).

Training. The teacher models are pretrained us-
ing the Trainer class from the HuggingFace Trans-
formers library, using the hyperparameters listed
in table 2. For the distillation, we use the modified
trainer from the original BabyLlama (Timiryasov
and Tastet, 2023b), with one, two or three teachers.
We use the AdamW optimizer (Loshchilov and Hut-
ter, 2019), with a cosine schedule for the learning
rate and 600 warm-up steps. The pretraining hy-
perparameters have been optimized using a coarse-
grained scan, with each parameter being varied
independently. The distillation hyperparameters α
and T were optimized similarly, while holding the
pretraining parameters fixed.

All models share the same Byte-Pair Encoding
(BPE) tokenizer with a vocabulary size of 16000
trained on the training split of BabyLM-2 dataset.

Hyperparameter Value

Learning rate 7 · 10−4

Number of epochs 8
Batch size 128
Weight decay 5

Distillation T 1
Distillation α 0.5

Table 2: Training and distillation hyperparameters of
BabyLlama-2.

Hyperparameter Sweep. To exclude the pos-
sibility that the student model BabyLlama-2 out-
performs its teachers due to a suboptimal choice

fore we would consider using the dev split from BabyLM-2
as a violation of the rules of the challenge. Of course, it
means that we trained only on 95% of the tokens, and could
potentially improve our results further.

of hyperparameters for the teachers, we have per-
formed a comprehensive sweep for the teachers’
hyperparameters using the W&B API (Biewald,
2020). We vary the following hyperparameters:
the learning rate and its schedule, the Adam pa-
rameters (β1, β2, ϵ), the batch size, the number of
epochs and warm-up steps, the weight decay, the
maximum gradient norm, and the attention drop-
out. We use the Bayesian Optimization and Hy-
perband (BOHB) (Falkner et al., 2018) parallel
sweep algorithm, which stops badly-performing
runs early, and we minimize the validation loss at
the last epoch. Suitable priors are used for each
parameters, usually log-normal or log-uniformly
distributed around the values obtained from the
coarse-grained scan, with the exception of the at-
tention dropout (uniform) and schedule (discrete).
In total, we trained 265 models as part of the sweep,
amounting to 26 GPU-days. While the sweep pro-
duced some runs that perform noticeable better
than the teachers trained with the parameters in ta-
ble 2, re-training them from a different initial state,
but otherwise with the exact same parameters, lead
to models that significantly under-performed com-
pared to the initial teachers. Due to this lack of
stability with respect to the initialization, we de-
cided to use the original teachers for the distillation
procedure.

Benchmarks. We evaluate the performance of
the teacher and student models on the benchmarks
suggested by the organizers of the BabyLM chal-
lenge. Those include zero-shot benchmarks —
such as BLiMP (Warstadt et al., 2020), which
focuses on linguistic knowledge in English, and
EWoK (Ivanova et al., 2024), focusing on world
knowledge — as well as the suite of fine-tuning
benchmarks SuperGLUE (Wang et al., 2020) about
language understanding. For the latter, the fine-
tuning hyperparameters are optimized using a sep-
arate sweep for each task (totalling 1293 runs and
37 GPU-days). The optimal parameters, listed in
table 4, differ significantly from the suggested de-
faults. See appendix A for further discussion.

Baseline models. The organizers of BabyLM-
2 have provided two baseline models: LTG-
BERT (Samuel et al., 2023), (encoder-only) and
BabyLlama (Timiryasov and Tastet, 2023a) (de-
coder). Both models were re-trained by the chal-
lenge organizers on both the 10M and 100M word
datasets. LTG-BERT modifies the original BERT
architecture by utilizing the pre-norm variant of the
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transformer with GEGLU feed-forward layers and
by disentangling positional information from token
embeddings. The highest performing solution of
the 2023 edition of the BabyLM challenge, ELC-
BERT (Charpentier and Samuel, 2023), is based
on this architecture. On the other hand, BabyL-
lama (the highest-performing decoder model) uses
the standard LLaMA architecture (Touvron et al.,
2023a), but a modified training procedure, follow-
ing a similar approach to the one presented here.
However, in contrast to BabyLlama-2, it was dis-
tilled from two larger teachers with two differ-
ent architectures (GPT and Llama), and had six
times less parameters. Since BabyLlama-2 aims to
demonstrate the validity of the ensemble distilla-
tion method itself, it uses same-size, homogeneous
models in order to remove potential confounding
factors. In addition to the baseline models, we
vary the number of teachers between 1 and 3, and
compare BabyLlama-2 to the ensemble formed
by the two teacher models (applying softmax to
the averaged logits z̄t and letting the gradient flow
back into both teachers during fine-tuning, with the
same training hyperparameters as for BabyLlama-
2). When evaluating the original BabyLlama on
the SuperGLUE benchmarks, we fine-tune it again
using the hyperparameters reported in (Timiryasov
and Tastet, 2023a), and successfully reproduce all
of its scores.

6 Results

Figure 1 summarizes the performance of the mod-
els considered in section 5 with respect to the vari-
ous evaluation metrics: the cross-entropy loss eval-
uated on the held-out test set, the BLiMP scores
for the “filtered” and “supplement” subsets of eval-
uation tasks, and the mean SuperGLUE score. The
EWoK benchmark is not shown, since the perfor-
mance of our models and of the baselines trained
on 10M words is consistent with random chance,
hinting that all these models have extremely limited
world knowledge, if any.

Distributions. Violin plots are used in order to
quantify the variability across model initializations,
with a minimum of 5 runs per model. Each subplot
shows a different metric, with the y-axis listing
the various models considered: the teacher models,
pretrained without distillation; the student mod-
els pretrained with one, two or three teachers; the
direct ensembles formed by averaging the logits
of two teachers; the baseline models for the 2024

BabyLM challenge; and the 265 models from the
hyperparameter sweep. No violin is shown for base-
line models, since they do not have an associated
distribution. Similarly, running fine-tuning bench-
marks for all the models from the sweep would
have been computationally prohibitive, therefore
the SuperGLUE distribution associated with the
sweep is not present, with only the best checkpoint
being shown.

Models of interest. Instead of, or in addition to
the distributions, the performance of various mod-
els of interest is plotted using markers. This in-
cludes the baseline models, denoted by triangles
for BabyLlama and squares for LTG-BERT, with
filled markers for baselines pretrained on the 10M
word dataset and empty markers for the 100M one.
We also indicate with stars the two BabyLlama-2
models that have been submitted to the 2024 edi-
tion of the BabyLM challenge. Finally, the cross
denotes the best model from the entire sweep, as
quantified by its validation loss. The detailed nu-
merical results for the models of interest are listed
in table 3, and table 5 further details the Super-
GLUE scores of the two submitted BabyLlama-2
checkpoints.

Cross-entropy. The cross-entropy loss is by far
the cleanest metric, with a standard deviation
across initializations much smaller than the dif-
ference between models.3 It shows a clear and
gradual improvement between the teacher models,
the student models trained from a single teacher,
those trained from two teachers, and those trained
from three teachers, although we note that there are
diminishing returns as we add more teachers. Even
with a single teacher, the improvement is larger that
what can be achieved through the hyperparameter
sweep. However, looking at the BabyLlama base-
line4, it is clear that this improvement is nowhere
near the one resulting from using a ten-fold larger
dataset. The cross-entropy loss of the direct en-
semble of two teachers is almost as low as for the
corresponding model obtained through distillation.

3The much larger standard deviation for the sweep comes
from including all runs (including early and badly performing
runs) instead of just the best runs. The relevant quantity for
the sweep is therefore the edge of the distribution. The “best”
model is not always located on this edge, since the valida-
tion loss does not correlate perfectly with the test loss or the
benchmark scores.

4The cross-entropy loss is not shown for the LTG-BERT
baseline, since it is an encoder-only model trained using
masked language modeling, and as such its loss is not compa-
rable to the one discussed here.
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Figure 1: Comparison of the models for each evaluation metric, in the form of violin plots, with ticks denoting the
mean and ±1 standard deviation. The baselines are denoted by square and triangle markers, the submitted model
(BabyLlama-2) by stars, and the best checkpoint from the entire hyperparameter sweep by a cross. BabyLlama
(100M) and LTG-BERT (100M) were trained on the 100M dataset.
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Model BLiMP (filtered) BLiMP (supplement) EWoK SuperGLUE Macro-average

BabyLlama-2 (run 1) 73.2 63.1 50.6 69.3 64.0
Teacher 1 71.9 61.8 50.6 61.2 61.3
Teacher 2 72.1 62.9 50.1 69.5 63.6

BabyLlama-2 (run 2) 71.8 63.4 51.5 70.2 64.2
Teacher 1 70.9 62.9 50.4 67.6 62.9
Teacher 2 70.5 62.4 51.1 68.4 63.1

Sweep’s best ckpt. 72.2 60.7 50.1 68.4 62.9

BabyLlama (10M) 69.8 59.5 50.7 63.3 60.8
LTG-BERT (10M) 60.6 60.8 48.9 60.3 57.7

BabyLlama (100M) 73.1 60.6 52.1 69.0 63.7
LTG-BERT (100M) 69.2 66.5 51.9 68.4 64.0

Table 3: Summary of the model scores (in %) across the considered benchmarks. The best scores overall and within
the strict-small track (10M words maximum) are highlighted.

Benchmarks. The scores on the two BLiMP task
sets show a similar trend, but with a significantly
higher variability across runs. Because of this, no
significant difference is observed between the var-
ious distilled or ensemble models. Nonetheless,
we can see that the distilled models not only do
better than the non-distilled ones, but they tend to
achieve this performance more reliably. This is to
be contrasted with the performance regression (not
shown) that we observed after re-training the best
model from the sweep. Direct ensembling leads
to similar performance to distillation. Another in-
teresting observation is that despite its much lower
cross-entropy loss, the BabyLlama baseline pre-
trained on 100M words only performs on par with
the best BabyLlama-2 model trained on 10M words
on the “filtered” subset of tasks, and significantly
underperforms on the “supplement” subset. The
results are sensibly similar for the SuperGLUE
fine-tuning benchmarks, although with much larger
variance among the teacher models. Here, again,
the distilled models perform more consistently, and
they even beat the two baseline models pretrained
on the 100M word dataset. Direct ensembling
slightly underperforms compared to distillation, but
this could be because fine-tuning introduces a de-
pendence on additional hyperparameters, that have
not been precisely re-tuned for direct ensembling.5

Relation between loss and benchmark perfor-
mance. The models trained during the hyperpa-
rameter sweep allow us to access the relation be-
tween the validation loss and BLiMP scores. First,
we observe that the loss on our 0.5M word vali-

5Naively doubling the fine-tuning learning rate to compen-
sate for the 1/2 factor resulting from averaging the logits leads
to significantly worse performance on SuperGLUE, below that
of the teacher models.

dation set correlates with the loss on the held-out
test set with R2 = 0.999. Second, as can be seen
from fig. 2, the validation loss explains a significant
portion of the variance of the scores: R2 = 0.86
for for BLiMP Filtered and R2 = 0.6 for BLiMP
Supplement.
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Figure 2: BLiMP scores (averaged over all sub-tasks) as
a function of the validation loss. Every circle represents
a model from the hyperparameter sweep.

Discussion. The results presented in fig. 1 demon-
strate that ensemble distillation from homogeneous
teacher models leads to enhanced and more consis-
tent performance across various benchmarks. No-
tably, BabyLlama-2 often matches or surpasses
models pretrained on datasets that are ten times
larger. This indicates that the distillation process
effectively leverages the knowledge from multi-
ple teachers to compensate for limited data. In
addition, the performance of distilled models is
consistently as good as, or better than the one of
non-distilled models, even when optimizing the hy-
perparameters of the latter. Therefore, the effect
observed in Timiryasov and Tastet (2023a) can-
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not be solely attributed to badly-tuned teacher hy-
perparameters, and persists even when the student
and teachers share the same size and architecture.
However, this effect can be difficult to see on the
benchmark scores, which are much noisier than the
cross-entropy loss. This variability is made particu-
larly evident when looking at the different ordering
of the two submitted BabyLlama-2 models across
different benchmarks.

Limitations The scalability of the ensemble dis-
tillation approach to larger datasets and more sub-
stantial model sizes remains unexplored. It is un-
clear whether the observed benefits will persist or
diminish as the scale of data and model parameters
increases. Additionally, the exact origin of the im-
provements from distillation-pretraining remains
unclear. Finally, it is not clear whether distillation-
pretraining performs significantly better than direct
ensembling. Further research, and more sensitive
metrics, may be needed to give definitive answers
to these question.

7 Conclusions

In this study, we prioritized investigating the ro-
bustness of the distillation approach over architec-
tural modifications or dataset curation. Our find-
ings demonstrate that a 345M parameter model,
distillation-pretrained on 9.5M words, outperforms
models of the same size and architecture pretrained
in the usual way. We carried out a systematic
analysis to exclude the possibility that the perfor-
mance gains were due to a single fortunate initial-
ization or suboptimal teacher model hyperparame-
ters. Through an extensive hyperparameter sweep
and the training of multiple teacher and student
models, we established that distillation-pretraining
consistently yields superior performance.

Our results indicate that distillation-pretraining
is an effective method for achieving high perfor-
mance without the need for meticulous hyperpa-
rameter tuning, at least within the data-limited
regime. The scalability of this approach to larger
datasets and model sizes, as well as its applicabil-
ity to other modalities, remains an open research
question.
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A SuperGLUE Fine-tuning

The SuperGLUE suite of benchmarks consists of
a number of fine-tuning tasks related to language
understanding. Since they involve further model
training, the scores crucially depend on the chosen
fine-tuning hyperparameters. In table 4, we list
the hyperparameters used to fine-tune all our mod-
els on the SuperGLUE tasks. These parameters
were identified using the BabyLlama-2 checkpoint
by performing a separate sweep for each task, and
then re-starting the fine-tuning with rounded param-
eters, in order to check the stability of the found
parameters. We have observed that they work well
with other model checkpoints, including different
versions of BabyLlama-2 and teacher models, sug-
gesting that our hyperparameter selection is robust
across different model initializations and pretrain-
ing objectives (but not model sizes, since the origi-
nal BabyLlama had different optimal hyperparam-
eters) and is not overfitted to a specific model or
task. The detailed SuperGLUE scores of the two
BabyLlama-2 checkpoints submitted to the 2024
BabyLM challenge are reported in table 5.

B Scaling Model Size

We performed initial experiments using a small,
16M version of the model, with the same vocabu-
lary size of 16,000; hidden size 256; intermediate
size 1024; 8 layers and 8 attention heads. This
model can be fully trained in a few minutes but
already achieves decent benchmark scores (without
distillation, BLiMP Filtered: 0.68, BLiMP Supple-
ment: 0.58).

To understand the relationship between model
size and data requirements, we conducted addi-
tional experiments with our 16M and 345M mod-
els. We trained these models on random (nested)
subsets of the 100M word dataset, ranging from
1M to 100M words each (without re-tuning the hy-
perparameters). Figure 3 illustrates how the loss
decreases as the dataset size increases for both the

298



Task Max. learning rate Batch size Num. epochs Weight decay Schedule Warm-up steps

CoLA 1 · 10−5 32 10 0.15 linear 600
SST-2 2 · 10−6 24 2 5 constant 200
MRPC 1 · 10−5 1 2 2 cosine 500
QQP 4.5 · 10−6 32 6 2 linear 500
MNLI(-mm) 1 · 10−5 32 2 1 linear 500
QNLI 5 · 10−6 32 2 0.3 cosine 200
RTE 1 · 10−5 2 2 10 cosine 200
BoolQ 2 · 10−5 8 1 0.1 cosine 200
MultiRC 1 · 10−5 8 2 2 cosine 500
WSC 2 · 10−6 1 24 0.4 cosine 500

Table 4: List of the hyperparameters selected when fine-tuning BabyLlama-2 on the various SuperGLUE tasks. We
do not use early-stopping, since it interfered with BOHB’s own early-stopping mechanism. The random seed is 12
for all runs.

Task Run 1 Run 2

CoLA (MCC) 34.9 31.4
SST-2 85.8 83.5
MRPC (F1) 82.2 83.8
QQP (F1) 84.1 84.3
MNLI 74.4 74.3
MNLI-mm 75.3 76.4
QNLI 83.3 83.2
RTE 54.7 61.2
BoolQ 65.9 63.4
MultiRC 64.4 64.9
WSC 57.7 65.4

Table 5: Detailed scores (in %) of the two BabyLlama-
2 models on the SuperGLUE tasks. Unless specified
otherwise, the listed score is the accuracy. Hyperparam-
eters were optimized for run 1, and then transferred to
run 2.
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Figure 3: Cross-entropy loss (on the validation split) as
a function of dataset size for 16M and 345M models.

16M and 345M models. The 345M model consis-
tently outperforms the 16M model across all dataset
sizes, demonstrating that larger models can more
efficiently utilize data, hence justifying our choice
of the 345M architecture for the final BabyLlama-2
model.

C FineWeb-Edu dataset

Throughout this work, we primarily used the
BabyLM-2 dataset. In the early stages, we
also experimented with the FineWeb-Edu dataset
(Lozhkov et al., 2024), which consists of educa-
tional web pages filtered from the FineWeb dataset.
We randomly sampled documents containing 20M
words (evenly split between the training and valida-
tion sets), trained a new tokenizer on this data, and
evaluated several variants of the 16M BabyLlama
model. The BLiMP scores were consistently lower
for models trained on FineWeb-Edu compared to
those trained on the BabyLM-2 dataset.6 We spec-
ulate that this lower performance may be due to
the limited diversity of examples in FineWeb-Edu,
which lacks, for instance, dialogues and non-fiction
prose, that are present in BabyLM-2.
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Abstract

In this paper, we build off of the success of the
previous BabyLM challenge winner’s model,
BabyLlama, to explore various methods of en-
hancing knowledge distillation for small lan-
guage models. Our main focus is on investigat-
ing how small a language model can be while
still maintaining competitive performance. We
experiment with three main approaches: (1)
DistilledGPT-44M, which uses smaller teacher
models and a more compact student model com-
pared to BabyLlama; (2) ContrastiveLlama-
58M, which incorporates contrastive loss into
the knowledge distillation process; and (3)
MaskedAdversarialLlama-58M, incorporates
adversarial loss into the knowledge distillation
process. Using the 10M-word dataset from
the BabyLM challenge’s strict-small track, we
evaluate our models on the BLiMP, EWoK,
and GLUE benchmarks. Our results show
that effective knowledge distillation can still
be achieved with significantly smaller teacher
and student models. In particular, our model
DistilledGPT-44M is able to achieve better per-
formance than one of last year’s winning en-
tries, LTG-BERT, while achieving similar per-
formance but cutting training time by around
70% and parameters by around 25% compared
to the other winning entry, BabyLlama.

1 Introduction

Since 2017, transformers have been everywhere in
NLP (Vaswani, 2017). Their non-autoregressive
nature allows for high parallelization, leading to
unprecedented scalability. In recent years, a num-
ber of models with trillions of parameters have
emerged, such as Google’s Switch Transformer
(1.6 trillion) and Huawei’s PanGu-Σ (1.1 trillion).
Models like these or models in the billions de-
mand enormous computational resources and vast
swathes of training data. They consume substantial
energy, raising concerns about their environmental
impact (Bender et al., 2021). The costs of contin-

ued scaling are also increasingly prohibitive, high-
lighting the need for more sample-efficient model
architectures.

The 2024 BabyLM challenge (Choshen et al.,
2024), by limiting the amount of training data avail-
able, in some ways aims to address the computa-
tional concerns around large models. However, the
scope of the contest focuses more on limiting the
amount of training data rather than limiting param-
eter size or compute; participants have the freedom
to use models as large as they want. But last year,
the winners of BabyLM (Timiryasov and Tastet,
2023) demonstrated with their model BabyLlama
that a small model can outperform models close to
an order of magnitude larger on NLP tasks. Model
parameter efficiency does not necessarily mean
worse results; in fact, in some cases it means better
results.

BabyLlama used knowledge distillation and en-
semble learning to distill knowledge from two
teacher models - GPT2-705M and Llama-360M
- to a smaller Llama-58M student model (Hinton
et al., 2015). As a model compression technique,
knowledge distillation (KD) has several advantages:
it only requires access to the teacher model’s out-
put logits (not its weights), and it is also model
agnostic.

Building on BabyLlama’s success, we aim to
demonstrate that even smaller teachers and students
can achieve competitive performance, further push-
ing the boundaries of parameter efficiency. We
explore the impact of using teachers with fewer pa-
rameters and distilling knowledge into even smaller
student models. We also explore incorporating dif-
ferent losses into the distillation training, such as
contrastive loss and adversarial loss.

Our results suggest that effective knowledge dis-
tillation can be achieved with significantly smaller
teacher and student models, demonstrating compet-
itive performance even with reduced parameters.
We find that our DistilledGPT-44M model, despite
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having much fewer parameters, achieves results
comparable to the original BabyLlama-58M on key
benchmarks. Our experiments with contrastive and
adversarial learning techniques in the distillation
process, which albeit less promising, reveal inter-
esting trade-offs between different aspects of model
performance.

2 Dataset

We use the provided 10M dataset from the strict-
small track and build on the BabyLlama repository
https://github.com/timinar/BabyLlama. Fol-
lowing their preprocessing steps, we apply regex-
based cleaning and train a Byte-Pair Encoding to-
kenizer on the training set. The train and dev sets
are split into 128-token chunks, with the model be-
ing presented a new random permutation of these
chunks in each epoch. Validation loss is computed
at the end of each epoch using a fixed, randomly
sampled subset of the dev set.

3 Evaluation

Evaluation of model performance was done using
the BabyLM evaluation suite (Choshen et al., 2024).
This consists of the following benchmarks:

• BLiMP: BLiMP (Benchmark of Linguistic
Minimal Pairs for English) evaluates language
models on their ability to identify grammati-
cal acceptability. It presents pairs of sentences
that differ by one linguistic element, testing
the model’s understanding of 12 areas of En-
glish morphology, syntax, and semantics, such
as anaphor agreement and filler-gap construc-
tions. It measures how well models assign
higher probability to the grammatically cor-
rect sentence in each pair.

• EWoK: EWoK (Elements of World Knowl-
edge) evaluates language models on their abil-
ity to build and apply internal world models.
It tests models’ understanding of concepts
and contexts by presenting them with minimal
pairs of scenarios where models must deter-
mine the plausibility of context-target combi-
nations. The framework spans 11 knowledge
domains.

• GLUE: GLUE (General Language Under-
standing Evaluation) evaluates language mod-
els on a variety of natural language under-
standing tasks. It covers tasks such as senti-

ment analysis, text similarity, question answer-
ing, and textual entailment. LORA finetuning
is used for GLUE in this case, though due
to computational constraints, this was only
evaluated for DistilledGPT-44M, as it was the
only one that showed substantial improvement
for BLiMP and EWoK. We get the macroav-
erage by averaging scores across 9 subtasks
- all the subtasks in the BabyLM evaluation
suite except for CoLA as CoLA only reports
matthews correlation scores.

4 Experiments

4.1 Baselines
We first trained GPT2 models in various sizes (18M,
44M, 97M, 705M) and Llama models in various
sizes (20M, 60M, 360M) as a baseline and as future
teacher models, using same hyperparameters used
in the code of BabyLlama (Timiryasov and Tastet,
2023). Model parameters can be found in Table 1.

4.2 DistilledGPT-44M
For our first experiment, we explore the effect of
using smaller teacher models and a more compact
student model compared to the original BabyLlama
configuration.

We use GPT2-44M and Llama-60M as teacher
models, both of which are substantially smaller
than the GPT2-705M and Llama-360M teachers
used in the original BabyLlama. For the student
model, we opt for GPT2-44M instead of the Llama-
58M used in BabyLlama. This configuration is a
significant reduction in the total number of param-
eters across both teachers and student.

The knowledge distillation process follows the
same general approach as BabyLlama. We first
train both teacher models (GPT2-44M and Llama-
60M) on our dataset. We then train the GPT2-44M
student model using a combination of cross-entropy
student loss with true labels, and distillation loss
between the student’s output and each teacher’s
output. Model architecture for GPT2-44M follows
the baseline 44M model.

4.3 ContrastiveLlama-58M
For our second experiment, we bring contrastive
loss into the knowledge distillation process. Con-
trastive learning tries to bring the representations
of similar samples closer together while pushing
dissimilar samples apart in the embedding space
(Chen et al., 2020). For our task, we use contrastive
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Hyperparameter GPT2-18M-all GPT2-44M-all GPT2-97M-all GPT2-705M-all Llama-20M-all llama-60M-all Llama-360M-G10

Hidden dimension size 320 768 768 1536 384 768 1024
Number of layers 2 2 12 24 2 2 24
Number of attention heads 4 8 12 16 4 8 8
Residual dropout 0.0 0.0 0.0 0.1 N/A N/A N/A
Attention dropout 0.0 0.0 0.0 0.1 N/A N/A N/A
Embedding dropout 0.0 0.0 0.0 0.1 N/A N/A N/A
Learning rate 7e-4 7e-4 7e-4 2.5e-4 3e-4 3e-4 3e-4
Batch size 128 128 128 128 128 128 128
Number of epochs 6 6 6 4 4 4 4
Gradient accumulation steps 2 2 2 16 1 1 8
Warmup steps 300 300 300 300 300 300 300
Mixed precision training (fp16) True True True True True True True

Table 1: Model hyperparameters for baseline models

loss to encourage the student to produce similar
hidden representations to the teacher for the same
input while distinguishing between representations
of different inputs.

We use GPT2-705M and Llama-360M as teacher
models and Llama-58M as the student model. The
contrastive loss is computed using the N-pair loss
formulation, which considers one positive pair and
multiple negative pairs in each training iteration.
We set N to 32. For each training sample, we gen-
erate 31 negative samples by randomly selecting
other samples from the same batch. The positive
pair consists of the hidden representations of the
teacher and student for the same input, while nega-
tive pairs are formed by pairing the teacher’s rep-
resentation with the student’s representations for
different inputs.

We subdivide the overall loss into 39% cross-
entropy student loss with true labels, 39% distil-
lation loss, and 22% N-pair contrastive loss com-
puted on the hidden representations of the teacher
and student models. This relative weights of loss
were chosen through a preliminary linear search
for optimal weights by training on a very small sub-
set of data. Model architecture for student model
follows that of BabyLlama-58M model.

4.4 MaskedAdversarialLlama-58M

Our next experiment incorporates adversarial learn-
ing into the distillation process by implement-
ing the MATE-KD (Masked Adversarial TExt, a
Companion to Knowledge Distillation) algorithm
(Rashid et al., 2021). MATE-KD enhances tra-
ditional knowledge distillation by introducing an
adversarial text generator.

The MATE-KD process consists of two main
steps:

• Maximization step: A pre-trained masked lan-
guage model (MLM) generator is trained to

perturb the input text by maximizing the di-
vergence between teacher and student logits.
This generator learns to create challenging ex-
amples that highlight the differences between
the teacher and student models.

• Minimization step: The student model is then
trained using knowledge distillation on both
the original and perturbed training samples,
encouraging it to match the teacher’s perfor-
mance on both standard and adversarial in-
puts.

For our implementation, we use ELECTRA-
56M as the generator, pretraining it on our dataset.
Our teacher models are GPT2-44M and Llama-
60M, both pretrained on our dataset. The stu-
dent model remains Llama-58M, consistent with
our previous experiments. We equally weight
cross-entropy student loss with true labels, knowl-
edge distillation loss, and adversarial distillation
loss on perturbed samples in our loss function.
Model architecture for student model follows that
of BabyLlama-58M model.

5 Results

Our results for these 3 experiments can be found in
Table 2.

5.1 DistilledGPT-44M

Our DistilledGPT-44M results are encouraging,
as they demonstrate that our significantly smaller
model configuration can still achieve competitive
performance.

From table 2, we can see that DistillGPT-44M
manages to outperform both its parent models,
GPT2-44M (which scored 58.2 on BLiMP Sup-
plement and 65.6 on BLiMP Filtered) and Llama-
60M (which scored 56.7 on BLiMP Supplement
and 63.5 on BLiMP Filtered). This shows that
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Child Model Parent Model 1 Parent Model 2 BLiMP Supplement BLiMP Filtered EWoK

BabyLlama-58M GPT2-705M Llama-360M 59.5 69.8 50.7

ContrastiveLlama-58M GPT2-705M Llama-360M 59.3 68.5 50.0
MaskedAdverserialLlama-58M GPT2-44M Llama-60M 56.8 65.9 49.6

DistilledGPT-44M GPT2-44M Llama-60M 58.8 66.8 50.0

Table 2: Summary of BLiMP filtered, BLiMP supplement and EWOK results for various methods tried for improving
knowledge distillation

BLiMP Supplement BLiMP Filtered EWoK

GPT2-18M 55.9 63.7 49.7
GPT2-44M* 58.2 65.6 50.4
GPT2-97M 58.0 66.0 50.6
GPT2-705M 56.7 66.1 50.6

Llama-20M 56.6 62.8 50.2
Llama-60M* 56.7 63.5 49.6
Llama-360M 55.1 68.2 50.5

LTG-BERT 60.8 60.6 48.9
BabyLlama-58M 59.5 69.8 50.7
DistilledGPT-44M 58.8 66.8 50.0

Table 3: Summary of BLiMP Filtered, BLiMP Supplement, and EWoK performance compared to various bench-
marks. Our model is in italics, and * represents its teacher models

DistillGPT-44M is able to draw insights from both
parents.

This shows that beyond the normal paradigm of a
much larger parent model training a student model,
we can use collaborative multi-teacher knowledge
distillation to create a model that outperforms both
parent models.

We also ran finetuned DistilledGPT-44M on
GLUE and compared it against BabyLlama-58M
baseline results released by BabyLM organiz-
ers, and showed that it comparably (Table 3).
DistilledGPT-44M excels in tasks requiring nu-
anced contextual understanding, such as RTE (nat-
ural language inference) and WSC (Winograd
Schema Challenge), suggesting strong capability
in reasoning tasks. While BabyLlama-58M out-
performs DistilledGPT-44M on similarity-focused
tasks like QQP and sentiment analysis in SST-
2, DistilledGPT-44M’s competitive scores high-
light its efficient handling of complex, context-
dependent tasks, even with a smaller parameter
set.

BabyLlama-58M demonstrates stronger general-
ization across a variety of sentence-pair classifica-

tion tasks, excelling in QNLI, MNLI, and BoolQ.
It also outperforms DistilledGPT-44M on CoLA,
indicating better linguistic acceptability. However,
DistilledGPT-44M’s competitive performance in
reasoning tasks suggests an efficient and resource-
effective model, making it a viable alternative in
scenarios where model size is a constraint. These
results underscore DistilledGPT-44M’s balance of
size and performance, standing strong against the
larger BabyLlama model in both accuracy and task
diversity.

Additionally, the total training time was greatly
reduced from the time it took to train BabyLlama-
58M. When training on an A5000 GPU, we re-
duced the total training time from around 10 hours
to around 3 hours, which is a more than 3x reduc-
tion in training time.

When running a Wilcoxon Ranked-Sum Test
on DistilledGPT-44M and BabyLlama-58M for
BLiMP, EWoK and GLUE tests seperately, we see
that they are statistically similar for both BLiMP,
EWoK and GLUE, showing that we are able to
achieve comparable performance with greatly re-
duced training times.
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Model MRPC (F1) RTE MultiRC QQP (F1) QNLI WSC MNLI SST-2 BoolQ CoLA (MCC) Macro Avg
DistilledGPT-48M 80.9 55.4 64.9 75.1 77.4 57.7 66.9 75.9 65.3 -0.01 68.8
BabyLlama-58M 82.0 49.6 60.1 83.6 82.8 38.5 72.4 86.2 65.0 2.2 68.9

Table 4: Results of DistilledGPT compared to BabyLlama-58M in GLUE Benchmark

5.2 ContrastiveLlama-58M

Our ContrastiveLlama-58M model show a slight
improvement over the baseline GPT2 and Llama
models of similar size, and it performs similarly to
BabyLlama-58M, with no substantial difference
when we perform a Wilcoxon signed rank test.
Nonetheless, we currently do not see a benefit to in-
troducing this contrastive loss giving performance
remained around the same. We see a trade-off
between contrastive learning and traditional knowl-
edge distillation; in future experiments, different
weighting schemes for the losses would be interest-
ing to try.

5.3 MaskedAdversarialLlama-58M

Our MaskedAdversarialLlama-58M model shows
a decrease in performance compared to both the
BabyLlama-58M baseline and our other experi-
ments. The drop is noticeable in the BLiMP Sup-
plement task, where the score is lower than even the
baseline GPT2 and the similarly-sized Llama mod-
els. This might suggest that the adversarial training
might be conflicting with the student model’s abil-
ity to capture certain linguistic nuances. It could
be possible that the generated adversarial examples
are too challenging or not representative enough of
the task-specific knowledge required for these eval-
uations. Similarly with our contrastive experiment,
trying different weighting schemes for the loss com-
ponents might help in balancing the trade-off be-
tween robustness and task-specific performance in
the future.

6 Limitations and Future Work

Although we showed the effectiveness of knowl-
edge distillation with smaller models, we did not
thoroughly explore the lower bounds of model size.
In future experiments we could investigate even
smaller student models or experiment with a wider
range of teacher-student size combinations to find
the optimal balance between model size and perfor-
mance.

Additionally, our experiments with
contrastive and adversarial learning
techniques (ContrastiveLlama-58M and
MaskedAdversarialLlama-58M) did not show

improvements over the simpler DistilledGPT-44M
model. These advanced techniques probably
require further refinement or different implemen-
tation strategies to be effective: we could try
different weighting schemes for loss components
in contrastive and adversarial training. Addi-
tionally, for the masked adversarial model, the
performance of the generator plays a critical role
in generating effective perturbed inputs. Using a
more powerful MLM generator, rather than the
smaller ELECTRA-56M model we used, could
improve the adversarial training process and create
better perturbations.

7 Conclusion

Herein, we showed that knowledge distillation can
be used even with two very simple parents with
around the same number of parameters as the child
model, to produce a child model which outperforms
both parents. We present DistillGPT-44M, which
outperforms both the baseline (GPT2) and one of
last year’s winning entry for the BabyLM challenge
LTG-BERT, while maintaining comparable perfor-
mance to the other winning entry BabyLlama-58M
despite reducing number of parameters by around
25% and cutting training time by around 70%.

References
Emily M. Bender, Timnit Gebru, Angelina McMillan-

Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? . In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-
parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages
1597–1607. PMLR.

Leshem Choshen, Ryan Cotterell, Michael Y. Hu,
Tal Linzen, Aaron Mueller, Candace Ross, Alex
Warstadt, Ethan Wilcox, Adina Williams, and
Chengxu Zhuang. 2024. [call for papers] the
2nd babylm challenge: Sample-efficient pretraining
on a developmentally plausible corpus. Preprint,
arXiv:2404.06214.

306

https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2404.06214
https://arxiv.org/abs/2404.06214
https://arxiv.org/abs/2404.06214


Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network.
Preprint, arXiv:1503.02531.

Ahmad Rashid, Vasileios Lioutas, and Mehdi Reza-
gholizadeh. 2021. MATE-KD: Masked adversarial
TExt, a companion to knowledge distillation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1062–
1071, Online. Association for Computational Linguis-
tics.

Inar Timiryasov and Jean-Loup Tastet. 2023. Baby
llama: knowledge distillation from an ensemble of
teachers trained on a small dataset with no perfor-
mance penalty. Preprint, arXiv:2308.02019.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

307

https://arxiv.org/abs/1503.02531
https://doi.org/10.18653/v1/2021.acl-long.86
https://doi.org/10.18653/v1/2021.acl-long.86
https://arxiv.org/abs/2308.02019
https://arxiv.org/abs/2308.02019
https://arxiv.org/abs/2308.02019
https://arxiv.org/abs/2308.02019


The 2nd BabyLM Challenge at the 28th Conference on Computational Natural Language Learning, pages 308–323
November 15-16, 2024 ©2024 Association for Computational Linguistics

BERTtime Stories: Investigating the Role of Synthetic Story Data in
Language Pre-training

Nikitas Theodoropoulos, Giorgos Filandrianos, Vassilis Lyberatos,
Maria Lymperaiou and Giorgos Stamou

Artificial Intelligence and Learning Systems Laboratory
School of Electrical and Computer Engineering

National Technical University of Athens

nikitastheodorop@gmail.com,
{geofila, vaslyb, marialymp}@ails.ece.ntua.gr,

gstam@cs.ntua.gr

Abstract
We describe our contribution to the Strict and
Strict-Small tracks of the 2nd iteration of
the BabyLM Challenge. The shared task is cen-
tered around efficient pre-training given data
constraints motivated by human development.
In response, we study the effect of synthetic
story data in language pre-training using TinyS-
tories: a recently introduced dataset of short
stories. Initially, we train GPT-Neo models
on subsets of TinyStories, while varying the
amount of available data. We find that, even
with access to less than 100M words, the mod-
els are able to generate high-quality, original
completions to a given story, and acquire sub-
stantial linguistic knowledge. To measure the
effect of synthetic story data, we train LTG-
BERT encoder models on a combined dataset
of: a subset of TinyStories, story completions
generated by GPT-Neo, and a subset of the
BabyLM dataset. Our experimentation reveals
that synthetic data can occasionally offer mod-
est gains, but overall have a negative influence
on linguistic understanding. Our work offers an
initial study on synthesizing story data in low
resource settings and underscores their poten-
tial for augmentation in data-constrained lan-
guage modeling. We publicly release our mod-
els and implementation on our GitHub 1.

1 Introduction

As the performance of modern Language Models
(LMs) increases, enabling remarkable feats of lan-
guage understanding and reasoning, so do their
demands in computational resources and training
data (Hoffmann et al., 2022). For example, the
recently released Llama 3 (Dubey et al., 2024) has
405B parameters and was pre-trained on 15.6T to-
kens, on 6K H100 GPUs. In contrast, children are

1https://github.com/nikitas-theo/BERTtimeStories

only exposed to no more than 100 million words
by age 13 (Gilkerson et al., 2017), demonstrating
exceptional learning efficiency compared to state-
of-the-art LMs. This need for ever-increasing data
and compute casts doubts on the cognitive plausi-
bility of the current LM training regimes, and raises
ecological and ethical concerns, such as democratic
access to research for industry and research groups
with modest resources.

To address these issues, the BabyLM challenge
(Warstadt et al., 2023a; Choshen et al., 2024) in-
vites participants to work on cognitive modeling
and efficient LM pre-training, given data limita-
tions inspired by human development. This year’s
iteration of the challenge features three experimen-
tal tracks: a Strict track with a budget of 100M
words, a Strict-Small track with a budget of
10M words, and a Multimodal track with a word
budget of 100M words and unlimited visual input.
A major change compared to last year’s challenge is
allowing participants to construct their own training
data. In the following sections, we present our con-
tributions to the Strict and Strict-Small tracks.

Our research draws inspiration from recent ad-
vancements in Small Language Models (SLMs) for
text generation, as explored in TinyStories (Eldan
and Li, 2023). In this influential work, the authors
demonstrate that training on a synthetic dataset of
simple stories can enable SLMs to produce cre-
ative, high-quality generations, which are novel
with respect to the original training dataset. We
hypothesize that for the small data regimes of the
BabyLM challenge, augmenting the initial training
corpus with synthetic data of high quality can pro-
vide models with unseen linguistic contexts, and as
a result improve language understanding. To test
our hypothesis, we first extend previous work by
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Decoder

Encoder

One day, a little boy named Tim went to 
the park. He saw a big tiger. The tiger
was not mean, but very easy to play 
with. Tim and the tiger played all day. 
They had lots of fun. Then, something 
unexpected happened. The tiger 
started to shake. Tim was scared. He 
did not know what was going on. But 
then, the tiger turned into a nice ... 

*CHI:    Eve hand pocket.
*MOT:  oh your hand's in your pocket.
*CHI:    Eve puzzle.
*MOT:  that's your puzzle.
*CHI:    Mommy find Eve puzzle.
*MOT:  want me to find the rest of it.
*CHI:    yeah.
*MOT:  alright.
*MOT:  is it in the toy box?

was very nice. Tim wanted to play with 
the tiger. He said, "Hi, tiger! Let's play!" 
The tiger did not say anything. Tim was 
sad. He wanted to find a way to make 
the tiger happy. Tim had an idea. He 
found a ball and threw it. The tiger saw
the ball and started to play ...

 

One day, a little boy named Tim went to 
the park. He saw a big tiger. The tiger

+

...

Figure 1: Illustration of our proposed methodology for BERTtime Stories. We use a subset of the TinyStories
dataset (Dtiny) (Eldan and Li, 2023), to train a decoder transformer for data augmentation. We prompt the decoder
with the short stories from Dtiny and create a dataset of model generations (Dgen): each story (green) is truncated
and used as a prompt (yellow), with the model generating an alternate completion (blue). We supplement the two
datasets with a subset of the BabyLM dataset (Dbaby), released by Choshen et al. (2024), and train an encoder model
on the combined data. Finally, we evaluate the linguistic proficiency of the encoder using the challenge benchmarks.

Eldan and Li (2023), investigating generative per-
formance with limited training data. We then train
encoder transformer models on a diverse dataset,
and measure the effect of synthetic data on linguis-
tic proficiency.

In technical terms, following Eldan and Li
(2023), we propose to train a GPT-Neo decoder
(Black et al., 2021) on TinyStories, and then use it
to generate data for the training of a final encoder
model. This poses some initial challenges, as the
size of the original TinyStories dataset exceeds the
challenge limits, with around 373M words. As a
result, we experiment with training GPT-Neo mod-
els while varying the amount of available data and
evaluating their generative performance, keeping
the model architecture fixed in the process. Our
investigation of generative performance is comple-
mentary to the original work, which measures the
effects of varying the depth and size of the model
architectures. Our findings demonstrate that even
in low data regimes of ≤ 100M words, GPT-Neo
models can acquire impressive grammatical under-

standing, and generate stories of high quality and
diversity, comparable to models trained on the full
dataset. For our evaluation see Section 4.1.

Next, we investigate the effect of the synthetic
story data on language pre-training. Figure 1 illus-
trates our methodology. We select a small subset
of TinyStories, train a GPT-Neo model, and use it
to generate alternate completions to the stories in
the training set. We then create a combined dataset
consisting of: 1 the subset of TinyStories used
for GPT-Neo training, 2 the generated data, 3
a sample of the BabyLM dataset (Choshen et al.,
2024). With the combined dataset, we train an
LTG-BERT (Samuel et al., 2023) model, choosing
this architecture as it demonstrated superior per-
formance in the text-only tracks of last year. We
compare the performance of our models against a
variety of baselines, trained with and without the
use of synthetic data. Our results show that a sim-
ple application of synthetic story data for language
pre-training results in marginal or even negative
gains. Nevertheless, given the high generative per-
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formance of the GPT-Neo models, we believe that
more research is needed to fully explore and exploit
their potential.

Contribution We list our contributions below:

• We investigate the generative and linguistic
abilities of GPT-Neo models trained on TinyS-
tories while varying the amount of available
data. We show that even with limited data,
these models can produce generations of high
quality, offering new insights into the capabil-
ities of SLMs in low data regimes.

• We investigate the effect of generated data
on the pre-training of encoder LMs in a con-
strained data setting. We conduct an extensive
evaluation with different training schemes and
baselines. Our experiments demonstrate the
potential of data augmentation to enhance the
linguistic capabilities of low resource LMs.

2 Related work

Previous BabyLM Iteration Data Augmenta-
tion techniques were shown to be beneficial in the
previous year’s challenge (Warstadt et al., 2023b).
Specifically, ChapGPT (Jumelet et al., 2023) uses
regex patterns to extract common phrases from
GLUE tasks, and then harnesses these patterns to
generate follow-up questions that serve as addi-
tional training data. In the Contextualizer paper
(Xiao et al., 2023), extra training samples are cre-
ated by dynamically combining chunks of texts
from different contexts during training. Another
approach named Baby’s CoThought (Zhang et al.,
2023) utilizes a Large Language Model (LLM)
to reformat unrelated sentences from the corpus
into coherent paragraphs, thereby improving per-
formance, albeit in defiance of data constraints.

Language Models for Data Augmentation In
recent years, LLMs have been increasingly lever-
aged for data augmentation in various domains
(Ding et al., 2024). Notably, Dai et al. (2023)
introduced ChatGPT as a tool for generating re-
alistic text samples from a combination of real and
artificial data, enhancing training datasets. Simi-
larly, transformer architectures, including decoder
(GPT-2, Radford et al., 2019), encoder (BERT,
Devlin et al., 2019), and seq2seq (BART, Lewis
et al., 2020) models have been explored for aug-
mentation (Kumar et al., 2020). In the work of
Yoo et al. (2021), GPT-3 (Brown et al., 2020) was

used to mix real and synthetic text samples for ro-
bust data augmentation. Moreover, decoder models
have been successfully employed to generate train-
ing data for encoders, yielding significant improve-
ments in zero-shot learning (Meng et al., 2022).

Small Language Models The recent study by
Eldan and Li (2023) highlighted that Small Lan-
guage Models (SLMs), can outperform larger ones
by leveraging high-quality synthetic training data,
demonstrating fluency, coherence, and creativity
despite having fewer parameters. This trend is fur-
ther supported by work in sequential recommenda-
tion, where small models are effectively employed
for task-specific purposes (Xu et al., 2024). Addi-
tionally, Bergner et al. (2024) utilize a pre-trained
LLM to encode prompt tokens, using these repre-
sentations to guide a smaller LM for more efficient
response generation.

3 Methods

We describe our data augmentation method using
synthetic story data, as illustrated in Figure 1.

3.1 Datasets
Our work is built on two datasets: 1 TinyStories –
denoted as Dtiny, a collection of synthetic short sto-
ries with simple language, 2 the BabyLM dataset
– denoted as Dbaby, created to be a developmentally
plausible pre-training corpus. For any datasetDdata,
we also denote a version of the data with m million
words as Ddata-m. We describe the datasets below:

BabyLM dataset The BabyLM dataset (Dbaby),
released by Warstadt et al. (2023a); Choshen et al.
(2024), consists of a diverse set of texts and is con-
structed with the goal of simulating the linguistic in-
put that a child receives throughout its development.
It contains a high proportion of spoken language
and includes, among others, excerpts from chil-
dren’s books, dialogue, child-directed speech, and
Wikipedia articles. Both 100M and 10M versions
of the dataset were released, for the Strict and
Strict-Small tracks respectively. Details about
the dataset structure are provided in Appendix A.

TinyStories dataset Introduced by Eldan and Li
(2023), TinyStories (Dtiny) is a synthetic dataset,
featuring a collection of short stories constructed
by prompting GPT-3.5 and GPT-4 (OpenAI et al.,
2024). The dataset was created to preserve all the
core elements of natural language, such as grammar
and reasoning, while exhibiting limited diversity
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and size. More specifically, the stories are 2-3 para-
graphs long and follow simple plots and themes. In
addition, the dataset contains a restricted vocabu-
lary and in general is intended to be on the level
of understanding of 3-4 year old children. The
initial version of the dataset (V1), generated by
both GPT-3.5 and GPT-4, contains approximately
373M words. A second version (V2) was later re-
leased, with stories generated only by GPT-4 and
around 440M words. We use this version in all our
experiments.

3.2 Data Generation
We describe the creation of the synthetic story
dataset Dgen. To generate the data, we first train a
decoder model (GPT-Neo) on a subset of TinySto-
ries denoted as Dtiny-m. We truncate the stories in
Dtiny-m to construct prompts and generate alternate
completions using our model.

We start by restricting the size m of the subset,
taking into account two factors: the need for ade-
quate diversity in the final corpus, and the need to
ensure high-quality generations. Given the assump-
tion that generation quality scales with dataset size,
we want to select a big enough size m for Dtiny-m
to enable high-quality generations from our trained
models. At the same time, we want to leave the
necessary room in our word budget for including a
sufficiently large portion of the BabyLM dataset in
the final training. This will ensure that our models
are exposed to both a large vocabulary and a variety
of word contexts. Intuitively, we aim to ensure that
our pre-training data is diverse, as children learn
from multiple sources of input.

To address this trade-off, we sample from TinyS-
tories, creating a collection of subsets of vary-
ing sizes, Dtiny-m : m ∈ {5, 10, 25, 50, 75, 100}M
(millions of words). For each subset, we train a
GPT-Neo model and evaluate its generative and
linguistic abilities. In our evaluation, we lever-
age metrics for grammatical understanding, diver-
sity, and generation quality; our metrics are intro-
duced in Section 3.4. For each of the Strict and
Strict-Small tracks, we select a subset Dtiny-m
and a corresponding GPT-Neo model trained on it,
based on our evaluation metrics and the above crite-
ria. To construct Dgen, for each story in Dtiny-m, we
truncate the story to 15%-30% of its size and use
it to prompt the model for generation. We opt for
using a smaller proportion of the original story to
avoid duplication, given that stories in Dtiny-m will
already be in the combined corpus for the training

of the encoder transformer.
Regarding the generation process, we experi-

ment with two methods: greedy decoding and
nucleus sampling (Holtzman et al., 2020). Dur-
ing sampling, we generate k completions from
our models for each prompt. To limit repetition
between the k generations (and avoid wasting
FLOPs), we calculate Self-BLEU (Section 3.4) for
a set of values of k, and select the ones that best
balance diversity and the total amount of additional
training data.

3.3 Final Corpus Creation

For each of the Strict and Strict-Small tracks,
we have created Dtiny-m, and Dgen as previously
described. We now create the combined dataset
Dcomb, used to train the encoder transformer. We
allocate our remaining word budget to a subset
of the BabyLM dataset (Dbaby-b), created by sam-
pling randomly from BabyLM on the document
level. We leave sampling methods that account
for the content of the documents for future work.
For the Strict / Strict-Small tracks, the size b
of Dbaby-b is chosen such that: b + m ≤ 100M /
10M. We now construct Dcomb by combining all
the datasets Dcomb = (Dtiny-m,Dbaby-b,Dgen). We
employ a masked language modeling objective to
train an encoder transformer on Dcomb, with the
LTG-BERT architecture (Samuel et al., 2023).

3.4 Evaluation

For evaluating the encoder transformers we use the
evaluation suite of the challenge, consisting of three
evaluation benchmarks: BLiMP, (Super)GLUE,
and EWoK, each broadly evaluating language profi-
ciency, general language understanding, and world
knowledge. We note that the challenge benchmarks
constitute filtered versions (Warstadt et al., 2023b),
rendering our results incomparable with full data
evaluations. For the decoder models, we use EWoK
and BLiMP, and also introduce some additional
evaluation procedures: specifically, Self-BLEU
evaluates diversity, and an LLM-assisted evalua-
tion measures generation quality. We explain each
of the evaluation benchmarks below.

BLiMP The Benchmark of Linguistic Minimal
Pairs (BLiMP), introduced by Warstadt et al.
(2019), is a set of tasks designed to evaluate the
linguistic knowledge of LMs. It consists of pairs
of minimally different sentences covering various
grammatical phenomena in syntax, morphology,
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and semantics. The model under evaluation has to
assign a higher probability to the correct sentence
in each pair. We also evaluate on BLiMP Supple-
ment (Supp.), released by Warstadt et al. (2023a),
which includes additional grammatical phenom-
ena. For both BLiMP and BLiMP Supplement, we
measure performance by calculating the average
accuracy across all of their evaluation tasks.

(Super)GLUE The General Language Under-
standing Evaluation (GLUE) benchmark (Wang,
2018), assesses model performance across a wide
range of natural language understanding (NLU)
tasks. SuperGLUE (Wang et al., 2019), was later
introduced to offer a more challenging set of tasks.
We employ a total of 10 text classification tasks
from both benchmarks, which include: question
answering (BoolQ, MultiRC), sentiment classi-
fication (SST-2), paraphrase detection (MRPC,
QQP), linguistic acceptability (CoLA), common-
sense reasoning (WSC), and natural language in-
ference (MNLI, QNLI, RTE). Performance on (Su-
per)GLUE is calculated by averaging accuracies
across all tasks except for QQP and MRPC, where
we use the F1-score, and CoLA, where we use the
Matthews Correlation Coefficient – MCC.

EWoK Elements of World Knowledge (EWoK)
(Ivanova et al., 2024) assesses an LM’s ability to
understand and model world knowledge. It evalu-
ates how well a model can connect a target text to
either an appropriate or mismatched context, em-
phasizing key concepts such as social dynamics
and spatial relationships. Both the contexts and
targets are framed as minimally contrasting pairs,
with customizable elements like objects, agents,
and locations. During evaluation, the model needs
to assign a higher probability to the correct context
and target text pair. We report average accuracy
across all the benchmark’s tasks.

Self-BLEU To measure the diversity of gener-
ated stories, we utilize the Self-BLEU score (Zhu
et al., 2018). Given a generated collection, we cal-
culate the BLEU score with one generation as the
hypothesis and the others as reference, evaluating
how similar it is to the rest. We define Self-BLEU
as the average of all the BLEU scores in the corpus.
The metric is defined on a continuous scale within
[0, 1], where higher scores indicate less diversity.

LLM Evaluation To provide a comprehensive
evaluation of our decoder models’ generative abili-
ties, we follow the approach of Eldan and Li (2023)

and employ a LLM, prompting it with the story
completions, and asking it to assess them in terms
of Grammar, Creativity, and Consistency with the
story’s beginning, on a scale from 1 to 10. The orig-
inal evaluation by Eldan and Li (2023) used GPT-4,
we instead leverage Claude-3.5 Sonnet (Anthropic,
2024)2, which better aligned with our available re-
sources. Evaluation details are presented in Section
4.1, while the prompt is included in Appendix E.

4 Experiments

Experimental Setup We conduct our experi-
ments on a shared GPU cluster of 8 Nvidia V100
16 GB GPUs, and additionally evaluate our models
on an Nvidia RTX-3090 24 GB GPU. All our mod-
els are trained using the PyTorch (Paszke et al.,
2019) and HuggingFace (Wolf et al., 2019) li-
braries. For our evaluations of BLiMP, EWoK, and
(Super)GLUE we build upon the official evaluation
pipeline released by the challenge organizers (Gao
et al., 2023; Choshen et al., 2024).

4.1 TinyStories & GPT-Neo Evaluation

Regarding the decoder used for the generation, we
select one of the best-performing GPT-Neo archi-
tectures from Eldan and Li (2023) 3. All our trained
GPT-Neo models share the same hyperparameters,
except for weight decay, dropout, and vocabulary
size, which are tuned to the specific data size. We
built upon a similar training scheme as the authors,
with added regularization for our low data regime.
Hyperparameters and details about the architecture
are included in Appendix C. We opt to train on the
latest version of the TinyStories data (V2), gen-
erated by prompting GPT-4; the full unsampled
dataset contains ∼ 440M words. Throughout our
evaluation, we also report results for the original
model released by the authors, trained on the first
version of the dataset (V1) with ∼ 373M words.

In the following paragraphs, we conduct a thor-
ough analysis of the relationship between the lin-
guistic competency of GPT-Neo models trained
on subsets of TinyStories, and the size of their
training dataset |Dtiny-m|. We experiment with var-
ious sizes for the TinyStories subsets Dtiny-m :
m ∈ {5, 10, 25, 50, 75, 100}M (millions of words).
From our experiments we draw insights about the
abilities of generative LMs on low data regimes.
This evaluation will also motivate our selection of

2Model version: claude-3-5-sonnet-20240620.
3https://huggingface.co/roneneldan/TinyStories-33M
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the TinyStories subsetDtiny used for generating the
dataset Dgen and for training the final encoder.

As an initial proxy of the language competency
of the GPT-Neo decoders, we measure perfor-
mance on BLiMP, its supplement (Supp.), and
EWoK. Results are presented in Table 1. We
notice that 50M words appear to be a cutoff
point, with notable drops in performance for data
sizes less than that. Based on this, we select
Dtiny-50M for the Strict track, and Dtiny-5M for the
Strict-Small track. Importantly, we do not in-
clude the LLM evaluation (presented below) in
this decision process, as it would invalidate our
imposed data constraints. We leave further ex-
perimentation on the subset data sizes for the
Strict-Small track for future work. A second ob-
servation concerns the 100M words model, which
achieves the top score on BLiMP, shared by the
373M model by Eldan and Li (2023). This result
agrees with the findings of Zhang et al. (2021),
demonstrating that 100M words are enough to at-
tain substantial grammatical knowledge.

Train Data BLiMP ↑ Supp. ↑ EWoK ↑
5M 55.5 53.8 51.1
10M 58.4 51.6 51.9
25M 59.9 55.1 52.4
50M 62.8 52.8 53.0
75M 64.0 54.8 53.4
100M 64.8 50.8 53.1
440M (V2) 64.6 55.0 53.9
373M (V1) 4 64.8 60.9 54.0

Table 1: Evaluation results for GPT-Neo models trained
on TinyStories with various amounts of data. We re-
port accuracy for all benchmarks. As the amount of
data decreases, the BLiMP and EWoK scores generally
decrease as well. In contrast, the BLiMP supplement
score demonstrates more variance.

The aforementioned scores give us evidence
about the grammatical understanding (BLiMP) and
world knowledge (EWoK) of our models, but leave
out two important areas of generative performance,
mainly: 1 the diversity and 2 the quality of gen-
erations. We focus on these two metrics in the
following paragraphs. Apart from the quantitative
scores, in Appendix B we also include the genera-
tions of all the GPT-Neo models for the TinyStories
example illustrated in Figure 1.

Evaluating Generation Quality Evaluating the
quality of generations for open-ended generation

4Model released by Eldan and Li (2023).

tasks is challenging, as most common evaluation
paradigms expect structured output, and measure
fidelity towards a set of reference texts. To address
this, we adopt the evaluation method proposed by
Eldan and Li (2023), and prompt an LLM to eval-
uate the stories generated by our models. In our
experiments, we use Claude-3.5 Sonnet.

We harness a set of 44 manually constructed
prompts 5 containing the beginning of a story, and
generate 10 completions for each of our models,
sampling with a temperature of 1. We then provide
the LLM with the beginning of the story and the
model’s completion, and ask it in turn to evaluate
the model’s response along three axes: (a) Gram-
mar, (b) Creativity, and (c) Consistency with the
beginning of the story. Additionally, we ask it to
classify the story in different age groups, ranging
from 3 (or under) to 16 years old. Scores are given
on a scale of 1 to 10, and are averaged across stories
and completions. The final results are presented in
Table 2: we notice that limiting the training data,
up to even 25M words, results in a minor decrease
of performance across all three metrics. This indi-
cates that the quality of the model generations is
retained in the small data regime. Additionally, the
100M words decoder achieves impressive scores in
all categories, and outperforms all other models in
the Consistency metric – demonstrating that 100M
words is enough for robust generative performance.

Evaluating Generation Diversity To measure
diversity, we utilize Self-BLEU (Zhu et al., 2018),
which has been used before as a measure of the
diversity of generated data (Holtzman et al., 2020).
For each model, we sample 100 stories from the
training set and truncate them to 15%-30%, prompt-
ing the model to generate an alternate completion
to the story’s beginning. When sampling from the
model, a greedy decoding strategy is employed.
We report Self-BLEU scores, scaled to [0, 100], for
the set of 100 completions in Table 2 (higher scores
correspond to less diverse generations). Our results
indicate that models with limited training data can
achieve high diversity, while at the same time main-
taining generation quality, as demonstrated by the
scores of models trained on 25M and 50M words.

4.2 Data Generation
We now describe the creation of the com-
bined dataset Dcomb = (Dtiny-m,Dbaby-b,Dgen),
leveraged for training an encoder LM. For

5https://huggingface.co/datasets/roneneldan/TinyStories
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Train Data Gr. ↑ Cr. ↑ Cons. ↑ SB ↓
5M 4.56 4.99 3.37 38.6
10M 5.31 5.34 3.98 38.3
25M 6.00 5.65 4.55 34.6
50M 6.01 5.53 4.54 33.0
75M 6.08 5.50 4.49 37.1
100M 6.17 5.57 4.78 39.8
440M (V2) 5.88 5.53 4.49 37.3
373M (V1) 6.24 5.73 4.70 29.6

Table 2: Results on the evaluation of our models by
Claude-3.5 Sonnet. We instruct the LLM to access gen-
erative performance along three categories: Grammar
(Gr.), Creativity (Cr.), Consistency (Cons.). We also in-
clude Self-BLEU (SB), measuring generation diversity.

brevity, details are given below only for the
Strict-Small track; the same process is followed
for the Strict track. As discussed in Section 4.1,
we choose a subset of 5M words from Tinys-
tories (Dtiny-5M), and use it to train a GPT-Neo
model. This model is then employed to generate
the dataset Dgen. We adapt the beginning of each
story (15%-30%) in the training set Dtiny-5M as a
prompt, and task the decoder to generate alterna-
tive completions. We experiment with different
generation techniques, including greedy generation
– Dgen-greedy, and nucleus sampling – Dgen-nucleus-k,
where k is the number of generations per prompt.
Finally, the two datasets are combined with a sub-
set of the BabyLM dataset (Dbaby-5M), ensuring
a total size within the 10M word limit, to form
D10M

comb = (Dtiny-5M,Dbaby-5M,Dgen).

In order to select k for nucleus sampling, we
leverage the Self-BLEU score. We sample 100 sto-
ries from Dtiny-5M and use their beginning (15%-
30%) to generate 50 completions for each prompt
with p = 0.95. For each value of k ∈ {2, 3, ..., 50}
we calculate Self-BLEU among the group of gener-
ations Sk. Our goal is to examine how diverse the
different generations are for the same prompt, as
the number of generations (k) increases. Figure 2
depicts the average Self-BLEU across all prompts.
Based on the presented results, we choose to ex-
periment with k = 5 and k = 10, as a satisfactory
balance between diversity and added dataset size.

4.3 Training LTG-BERT

Following the creation of the combined corpus
Dcomb, we employ it to train an LTG-BERT
(Samuel et al., 2023) encoder module. Our training
procedure is based on the source code released by
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Figure 2: We generate 50 completions for 100 prompts
with the GPT-Neo models trained on Dtiny-5M, Dtiny-50M.
We plot the average self-BLEU score across prompts,
as the number of generations per prompt (k) increases.

the authors6, prompting our selection of similar hy-
perparameters (Appendix C), adapted for our spe-
cific infrastructure and available compute. More-
over, our experiments are conducted with minimal
hyperparameter optimization. In order to assess the
effect of data augmentation on final performance,
we train a variety of baselines, ablating over the
pre-training dataset of our models and keeping all
other training conditions constant. Specifically, for
a given track, all the models share the same hyper-
parameters and amount of FLOPs, ensuring a fair
comparison. Our baselines are described below.

Baselines For the Strict-Small track, we es-
tablish baselines by training LTG-BERT models
using 10M words from the BabyLM – Dbaby-10M
and Tinystories – Dtiny-10M datasets respectively.
Additionally, we train an encoder using a combina-
tion of 5M words from each one of the two datasets
–Dbaby-5M+Dtiny-5M. These models serve as bench-
marks against which we assess the performance of
models trained with various configurations of gen-
erated data, aiming to evaluate the effectiveness
of data augmentation. The same methodology is
applied consistently to the Strict track as well.
Here, we train encoders with 100M words from
each dataset separately, as well as in a combined
setting, utilizing 50M words from each dataset. We
also include results for the challenge baselines –
LTG-BERT (Samuel et al., 2023) and BabyLlama
(Timiryasov and Tastet, 2023). We emphasize that
these models are trained with different hyperparam-
eters than those in our controlled setting. Notably,
the LTG-BERT model released by the organizers
was trained for ∼ 20 epochs on the Strict track,

6https://github.com/ltgoslo/ltg-bert
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Model Training Data Total BLiMP Supp. EWoK GLUE Avg.

LTG-BERT Dbaby-10M 10M 60.6 60.8 47.6 60.3 57.3

BabyLlama Dbaby-10M 10M 69.8 59.5 50.7 63.3 60.8

LTG-BERT
(ours)

Dbaby-10M 10M 62.8 63.7 51.2 71.0 62.2
Dtiny-10M 10M 59.8 54.2 52.2 67.0 58.3
Dtiny-10M +Dgen-greedy 20M 58.7 57.8 48.9 67.1 58.1
Dbaby-5M +Dtiny-5M 10M 62.6 60.7 51.5 71.2 61.5
Dbaby-5M +Dtiny-5M +Dgen-greedy 15M 62.1 60.2 50.4 70.6 60.8
Dbaby-5M +Dtiny-5M +Dgen-nucleus-1 15M 62.5 62.3 48.8 69.5 60.8
Dbaby-5M +Dtiny-5M +Dgen-nucleus-1 † ⋆ 15M 63.2 59.3 50.4 71.1 61.0
Dbaby-5M +Dtiny-5M +Dgen-nucleus-5 33M 62.4 60.1 50.7 69.4 60.6
Dbaby-5M +Dtiny-5M +Dgen-nucleus-10 56M 61.0 58.4 50.1 69.5 59.8

Table 3: Model performance for the 10M word Strict-Small track.

compared to our setting of ∼ 27 epochs (20K steps
for both tracks).

Balanced Training While increasing the num-
ber of generated texts in the LTG-BERT train-
ing set (Dcomb), we also modify the distribution of
TinyStories and BabyLM samples that the model
encounters during training. This could affect the
model’s performance, as it becomes more finely
tuned to TinyStories. To counter this effect, we
experiment with a training variation where we bal-
ance the number of samples from both datasets.
Specifically, samples in each batch are drawn with
equal probability from both TinyStories – which
includes both original and generated texts – and
BabyLM. This method ensures that the model is
exposed to an equal number of samples from each
dataset throughout training. The dagger symbol †
in the results denotes use of this strategy.

5 Results

We present the final evaluation results for the
Strict-Small and Strict tracks at Table 3 and
Table 4, respectively. The ⋆ symbol denotes the
submitted model for this track.

Strict-Small Track In the Strict-Small track,
comparing the results of Dbaby-10M with Dtiny-10M
reveals, as expected, that the BabyLM dataset is
more beneficial for language pre-training compared
to TinyStories. The performance metrics for TinyS-
tories are consistently lower, except in the case of
EWoK. Interestingly, replacing half of the BabyLM
dataset with data from TinyStories only slightly af-
fects the model’s performance. However, as we add
more instances of the synthetic story data, the posi-
tive impact of the BabyLM dataset begins to wane,
leading performance to approach that of Dtiny-10M
where BabyLM was not used at all. This suggests

that training is over-influenced by the increased
amount of TinyStories data. To mitigate this ef-
fect, we experimented with equally distributing the
samples from the two datasets in a batch. This ap-
proach positively impacts the model’s performance.
Notably for BLiMP, this setup slightly surpasses
the performance of the model trained solely on
Dbaby-10M, resulting in the best score overall. Fur-
ther, when compared to other data augmentation
scenarios, the performance on GLUE is increased.

Moreover, an interesting observation concerns
the sampling technique used for augmenting the
data. Changing the sampling strategy from greedy
decoding to nucleus sampling positively affects the
model’s performance on the BLiMP and BLiMP
Supp. benchmarks, while negatively impacting per-
formance on EWoK and GLUE. This discrepancy
is likely due to the nature of the datasets them-
selves. BLiMP focuses on evaluating grammatical
understanding, while the increased diversity from
nucleus sampling exposes the model to a wider
range of linguistic structures and syntactic varia-
tions, thereby improving performance. Conversely,
EWoK and GLUE require semantic coherence and
factual consistency, where the increased diversity
from nucleus sampling may introduce noise and
less coherent narratives, potentially confusing the
model, and degrading performance. Therefore,
while more diverse stories benefit syntactic evalu-
ation tasks such as those in BLiMP, they may not
be as useful for semantic or knowledge-based tasks
such as those included in EWoK and GLUE.

Strict Track Interestingly, for the Strict track
we notice that data augmentation has a positive
effect on the BLiMP and EWoK benchmarks.
Specifically, adding the Dgen-greedy dataset, results
in increased performance compared to the base-
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Model Training Data Total BLiMP Supp. Ewok GLUE Avg

LTG-BERT Dbaby-100M 100M 69.2 66.5 50.2 68.4 63.6

BabyLlama Dbaby-100M 100M 73.1 60.6 52.1 69.0 63.7

LTG-BERT
(ours)

Dbaby-100M 100M 64.0 67.6 47.3 74.0 63.2
Dtiny-100M 100M 61.2 63.2 48.0 70.6 60.8
Dtiny-100M +Dgen-greedy 200M 61.1 59.6 48.7 69.1 59.6
Dtiny-50M +Dbaby-50M 100M 65.5 65.6 47.2 71.0 62.3
Dtiny-50M +Dbaby-50M +Dgen-greedy 150M 66.6 63.3 49.7 71.8 62.8
Dtiny-50M +Dbaby-50M +Dgen-nucleus-1⋆ 150M 65.6 65.0 49.3 72.7 63.1
Dtiny-50M +Dbaby-50M +Dgen-nucleus-1† 150M 65.2 63.5 49.0 72.6 62.6
Dtiny-50M +Dbaby-50M +Dgen-nucleus-5 350M 65.4 64.4 45.9 69.8 61.4
Dtiny-50M +Dbaby-50M +Dgen-nucleus-10 600M 63.7 63.3 49.2 69.5 61.4

Table 4: Model performance for the 100M word Strict track.

lines trained on Dtiny-100M and Dbaby-100M, as well
as a mixture of the two (Dtiny-50M + Dbaby-50M).
Additionally, the Dtiny-50M + Dbaby-50M combina-
tion is outperformed by both the Dgen-greedy and
Dgen-nucleus-1 models, suggesting that synthetic data
can offer modest gains in the Strict scenario.

As with the Strict-Small track, increasing the
size of the TinyStories dataset negatively affects
the performance of the models, approaching that of
the model trained solely onDtiny-100M. However, in
this case, balancing the datasets does not improve
the model’s performance. In the larger 100M word
dataset, even with balancing, the sheer volume of
TinyStories data may overwhelm the influence of
the BabyLM data. The model is exposed to a much
larger quantity of TinyStories content, which could
dominate learning and reduce the effectiveness of
balancing. Additionally, while the nucleus sam-
pling strategy once again improves performance on
the BLiMP Supp. dataset, it does not assist with
BLiMP as it did in the Strict-Small track.

6 Conclusion

In this work, we explore data augmentation for lan-
guage pre-training in a limited data setting. Using
the TinyStories dataset we train GPT-Neo mod-
els and probe the relationship between generative
ability and dataset size. To measure the effect of
augmentation with synthetic data, we train LTG-
BERT models on a diverse set of data configura-
tions. Our experiments indicate that while synthe-
sizing high quality data is possible in small data
regimes, effectively utilizing it for pre-training can
be challenging. Some modest gains are observed
in the Strict track, while careful balancing shows
promise for the Strict-Small track. Overall, our
evaluation highlights the intricate balance required
between data quantity, quality, and integration for

effective training. Future work suggests investi-
gation of different data domains, mixtures, and
proportions, while precise calibration of hyperpa-
rameters may prove critical in exploiting the full
benefit of synthetic data in low data pre-training.

7 Limitations

A limitation of our study is the exclusive use of a
single LM architecture for both the encoder and
decoder components. Our experiments are also
limited to specific datasets, employing only TinyS-
tories for synthetic data generation and a combi-
nation of TinyStories and BabyLM for encoder
training. While these choices are made to ensure
experimental control and draw solid conclusions,
they limit the generalizability of our results.

Another limitation concerns the creation of the
combined dataset. We investigated only a single
configuration of the two datasets – including them
in equal proportion – and the documents within a
dataset were sampled randomly. We posit that more
fine control over the mixture of datasets could fur-
ther enhance the benefits of our data augmentation
technique. Additionally, with regard to generation,
the prompting strategy and truncation ratio could
be more finely calibrated, in order to improve the
balance between data quality and redundancy.

By acknowledging these limitations, we aim to
encourage further research in this area, focusing on
the impact of data augmentation in size constrained
and cognitively plausible language pre-training.
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A BabyLM dataset

Table 5 contains a detailed overview of the BabyLM dataset. For our experiments, we preprocess the data
using the methodology from Samuel (2023). The text is normalized and cleaned up in order to ensure
a unified format. We cast direct speech in double quotes, remove arbitrary and semantically irrelevant
tokens and conserve formatting, where necessary, with a special [PAR] symbol.

Dataset Domain # Words
Strict-Small Strict

CHILDES (MacWhinney, 2014) Child-directed speech 2.84M 28.90M
British National Corpus (BNC), dialogue portion 1 Dialogue 0.93M 7.76M
Project Gutenberg (children’s stories) (Gerlach and Font-Clos, 2018) Written English 2.54M 26.37M
OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 2.04M 19.96M
Simple Wikipedia 2 Written Simple English 1.45M 14.67M
Switchboard Dialog Act Corpus (Stolcke et al., 2000) Dialogue 0.15M 1.34M

Total 9.95M 99.01M

Table 5: Contents of the BabyLM datasets for the Strict and Strict-Small tracks, including the domain and
word counts. 1http://www.natcorp.ox.ac.uk/, 2https://dumps.wikimedia.org/simplewiki/20241001/.

B TinyStories - Detailed Evaluation

In order to demonstrate a tangible example of the augmentation process, and provide the opportunity to
directly judge the quality of the generations, we include sample generations for all our GPT-Neo models:
{5M, 10M, 25M, 50M, 75M, 100M, 440M (V2)}, as well as the model released by Eldan and Li (2023) –
373M (V1). We sample a story from the training set, truncate it to around 15% to 30% of its length, and
ask the models to generate a completion with greedy decoding. The results are shown in Table 6. The
50M words model generation is also illustrated in Figure 1. We notice that even for the smaller models,
the quality of the generation remains good in terms of grammar, coherence to the story’s beginning, and
creativity. Additionally, there is little similarity to the original completion, even though the prompt is
taken from the training set of the models.

C Training Hyperparameters

We list all the hyperparameters used to train the GPT-Neo models on subsets of TinyStories in Table
7. Where appropriate, parameters that vary per group of models are listed separately. We also list the
hyperparameters used to train the LTG-BERT transformer encoder models in Table 8. We follow the
hyperparameter and training regime of Samuel et al. (2023), with some modifications, partly to adjust to
the scale of our computational resources and infrastructure.

D GLUE Evaluation Hyperparameters

We list the hyperparameters utilized for fine-tuning the LTG-BERT models on GLUE in Table 9, largely
also based on Samuel et al. (2023). We find that it’s critical for the stability of training to initialize the
added classification head according to the original implementation released by the authors. Specifically,
we use a truncated normal distribution N (µ, σ2) in the range [a, b] where µ = 0, σ =

√
2.0

5.0·dmodel
,

a = −2σ, b = 2σ and dmodel is the hidden size. The bias of the layer is also initialized to zero. Lastly,
one notable difference affecting the downstream performance of our models is that we train with mixed
precision. We use the fp16 implementation provided by the HuggingFace Trainer module, which reduces
the numerical precision of certain variables from fp32 to fp16, increasing computational efficiency.

E LLM Evaluation

For the LLM evaluation, we employ Claude-3.5 Sonnet. Our prompt is a modified version of the one
introduced in Eldan and Li (2023). We present our prompt in Table 10.
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Model Generated Text

Prompt One day, a little boy named Tim went to the park. He saw a big tiger. The tiger

Original was not mean, but very easy to play with. Tim and the tiger played all day. They had lots of fun. Then, something
unexpected happened. The tiger started to shake. Tim was scared. He did not know what was going on. But then,
the tiger turned into a nice dog. Tim was very surprised. Tim and the dog played together now. They were very
happy. The dog was easy to play with too. At the end of the day, Tim went home with his new friend.

5M was very big and had a long tail. Tim wanted to be friends with the tiger. Tim said, "Hi tiger, I am Tim. Do you
want to play with me?" The tiger looked at Tim and said, "Yes, I want to play with you." Tim and the tiger played
all day. They ran, jumped, and laughed. The tiger was very happy. But then, the tiger got tired. It wanted to rest.
Tim said, "I am tired. Let’s rest." The tiger yawned and said, "Okay, Tim. Let’s rest." Tim and the tiger sat under
a tree. They talked and laughed. The tiger was happy to have a new friend. They both had a fun day at the park.

10M was very big and had a long tail. Tim was scared, but he wanted to be brave. He walked up to the tiger and said,
"Hi, tiger! I am Tim. Do you want to play with me?" The tiger looked at Tim and said, "Yes, I want to play. But I
am scared of the big tiger." Tim was not scared. He thought the tiger was nice. Tim and the tiger played together.
They ran and jumped. They had a lot of fun. Then, something unexpected happened. The tiger started to change.
It became a tiger! The tiger was not a tiger anymore. It was a tiger! Tim was very surprised. The tiger was not a
tiger anymore. It was a big tiger! Tim and the tiger became best friends. They played together every day.

25M was very big and had a long tail. Tim was scared, but he wanted to be brave. Tim said, "Hi, tiger! I am Tim. Do
you want to play with me?" The tiger looked at Tim and said, "Yes, I want to play. But I am very hungry. Can
you help me find some food?" Tim thought for a moment and said, "Yes, I can help you. Let’s look for food
together." They looked and looked, but they could not find any food. Then, something unexpected happened.
The tiger started to talk! "I am not a tiger, I am a magic tiger. I can make your wishes come true," said the tiger.
Tim was very surprised. He wished for a big ice cream cone. The magic tiger made his wish come true. Tim and
the magic tiger became good friends and played in the park every day.

50M was very nice. Tim wanted to play with the tiger. He said, "Hi, tiger! Let’s play!" The tiger did not say anything.
Tim was sad. He wanted to find a way to make the tiger happy. Tim had an idea. He found a ball and threw it.
The tiger saw the ball and started to play with it. Tim was happy. He said, "Now, the tiger is happy too!" They
played together all day. The tiger was not sad anymore. Tim and the tiger became best friends.

75M was very big and had a long tail. Tim was not scared. He wanted to be friends with the tiger. Tim said, "Hi, tiger!
My name is Tim. Do you want to play with me?" The tiger looked at Tim and said, "Yes, I want to play. My
name is Sam." Tim and Sam played all day. They ran, jumped, and laughed. They had so much fun. Tim was
happy to have a new friend. At the end of the day, Tim said, "Bye, Sam! I will come back to play with you
again." Sam said, "Bye, Tim! I will wait for you here." Tim went home and told his mom about his new friend.

100M was sad. Tim asked, "Why are you sad, Mr. Tiger?" The tiger said, "I lost my toy. Can you help me find it?" Tim
wanted to help the tiger. They looked for the toy together. They looked under the trees and behind the bushes.
Then, they saw a big box. The tiger said, "I think my toy is in the box." Tim opened the box. Inside, there was a
big cake! The tiger was happy. But, the cake was not a real tiger. It was a toy tiger! Tim laughed and said, "Silly
tiger, you are not a real tiger!" They played with the toy tiger and had a fun day at the park.

440M (V2) was very hungry. Tim wanted to help the tiger. He thought, "I will feed the tiger some food." Tim went home
and got some food. He came back to the park and gave the food to the tiger. The tiger ate the food and was very
happy. Tim felt good because he helped the tiger. The tiger said, "Thank you, Tim. You are a good friend." Tim
and the tiger played in the park all day. They had lots of fun. Tim learned that it is good to help others. The tiger
learned that it is good to be kind and help others. And they both lived happily ever after.

373M (V1) was sad. Tim wanted to help the tiger. He thought the tiger needed a friend. Tim went to the tiger and said, "Hi, I
am Tim. I want to help you." The tiger looked at Tim and said, "Thank you, Tim. I am sad because I am alone. I
need a friend." Tim thought for a moment and said, "I will be your friend, tiger. We can play together." The tiger
was happy. Tim and the tiger played all day. They had lots of fun. The moral of the story is: Helping others can
make you happy too.

Table 6: Story completions for models trained on different amounts of TinyStories data. The original prompt and
the training set completion are also included.
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Hyperparameter GPT-Neo – 5 / 10 / 25 / 50, 75, 100, 440 (M)

Number of Parameters 41M
Number of Layers 4
Attention Heads 16
Hidden size 768
Layer norm ϵ 1.0e-5
Sequence Length 512
Max position embeddings 512
Attention Dropout 0.50 / 0.40 / 0.25 / 0.20
Classifier Dropout 0.50 / 0.40 / 0.25 / 0.20
Embed. Dropout 0.50 / 0.40 / 0.25 / 0.20
Resid. Dropout 0.50 / 0.40 / 0.25 / 0.20
Summary first Dropout 0.40 / 0.30 / 0.15 / 0.10
Weight decay 0.20 / 0.20 / 0.20 / 0.10
Vocab Size 6411 / 6411 / 16384 / 16384
Context length 512
batch size 24
gradient accumulation steps 32
gradient clipping 2.0
Training steps 15 000
optimizer AdamW
Adam β1 0.9
Adam β2 0.95
Adam ϵ 1.0e-8
Initial learning rate 5.0e-4
Final learning rate 5.0e-5
Learning rate scheduler schedule cosine
Warmup ratio 1.6%

Table 7: Hyperparameters used for training GPT-Neo models on TinyStories.

Hyperparameter Strict Strict-Small

Number of parameters 98M 24M
Number of layers 12 12
Attention heads 12 6
Hidden size 768 384
FF intermediate size 2048 1024
Position Bucket size 32 32
Layer norm ϵ 1e-7 1e-7
Vocabulary size 16 384 6 144
Sequence length 128 128
Max position embeddings 512 512
Hidden dropout 0.1 0.1
Attention dropout 0.1 0.1
Training steps 20 000 20 000
Batch size 80 80
Gradient Accumulation Steps 32 32
Warmup ratio 1.6% 1.6%
Initial learning rate 6e-4 6e-4
Final learning rate 6e-5 6e-5
Learning rate scheduler cosine cosine
Weight decay 0.1 0.1
Optimizer AdamW AdamW
Adam ϵ 1e-6 1e-6
Adam β1 0.9 0.9
Adam β2 0.98 0.98
Gradient clipping 2.0 2.0

Table 8: Hyperparameters used to train all LTG-BERT models for the different tracks. With max position embedding
we refer to the architectural capacity of the model – the model was trained with sequence length = 128.
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Hyperparameter BoolQ, MNLI, MNLI-mm, MRPC CoLA, RTE, WSC
MultiRC, QNLI, QQP, SST-2

Batch size 32 16
Number of epochs 10 10
Dropot 0.1 0.1
Warmup proportion 0.1 0.1
Learning Rate 3.0e-5 3.0e-5
Decay type linear linear
Weight decay 0.01 0.01
Optimizer AdamW AdamW
Adam ϵ 1.0e-6 1.0e-6
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Max length 128 128
Gradient clip 2.0 2.0
Mixed precision True True

Table 9: Hyperparameters used for finetuning the LTG-BERT models on GLUE.

In the following exercise, the student is given a beginning of a story. The student needs to complete it into a full story. The
exercise tests the student’s language abilities and creativity. The symbol *** marks the separator between the prescribed
beginning and the student’s completion:

Once upon a time, there was tiger who liked to play the guitar. One day, a bunny heard the guitar from a distance and *** asked,
"Hello tiger, can you play the guitar for me?" The tiger said, "Yes! I can!" So the bunny plucked up the guitar and started to play.
But then, the tiger roared and kicked the guitar too hard. The guitar made a big mess. The panda was so sad that he hopped away
and never came back. The end.

Please provide your general assessment about the part written by the student (the one after the *** symbol). Is it gramatically
correct? Is it consistent with the beginning of the story? Pay special attention to whether the student manages to complete the
sentence which is split in the middle by the separator ***.

I’ll provide an assessment of the student’s completion of the story:
Grammar: The student’s portion is generally grammatically correct, with a few minor issues:
...
...
In summary, while the student completes the split sentence correctly, the overall story lacks coherence and consistency with the
given beginning.

Now, grade the student’s completion in terms of 1. Grammar, 2. Creativity, 3. Consistency with the story’s beginning and
whether the plot makes sense. Please provide grades from a scale of 1-10 for each of the requested categories, namely: 1.
Grammar, 2. Creativity, 3. Consistency. Moreover, please provide your best guess of what the age of the student might be, as
reflected from the completion. Choose from possible age groups: A: 3 or under. B: 4-5. C: 6-7. D: 8-9. E: 10-12. F: 13-16.

Here are the grades for the student’s completion on a scale of 1-10:

1. Grammar: 7/10 ... 2. Creativity: 5/10 ... Consistency: 3/10 ...

Age group estimate: B: 4-5 years old ...

Table 10: A sample interaction with Claude-3.5 Sonnet. The story is generated by the GPT-Neo model trained
on 50M words of TinyStories. We include the prompt which also contains the model’s generation. The LLM’s
responses is stylized in italic. For brevity, part of the LLM response was omitted and replaced with ‘...’.
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Abstract

Causal Language Modeling (CLM) and
Masked Language Modeling (MLM) are two
mainstream learning paradigms based on Trans-
former networks, specifically the Decoder-only
and Encoder-only architectures. The strengths
of each paradigm in downstream tasks have
shown a mix of advantages and disadvantages.
In the past BabyLM Challenge 2023, although
the MLM paradigm achieved the best aver-
age performance, the CLM paradigm demon-
strated significantly faster convergence rates.
For the BabyLM Challenge 2024, we propose
a novel language modeling paradigm named
AntLM, which integrates both CLM and MLM
to leverage the advantages of these two clas-
sic paradigms. We chose the strict-small track
and conducted experiments on two foundation
models: BabyLlama, representing CLM, and
LTG-BERT, representing MLM. During the
training process for specific foundation mod-
els, we alternate between applying CLM or
MLM training objectives and causal or bidi-
rectional attention masks. Experimental re-
sults show that combining the two pretraining
objectives leverages their strengths, enhanc-
ing overall training performance. Under the
same epochs, AntLMBabyLlama improves Macro-
average by 1%, and AntLMLTG-BERT achieves a
2.2% increase over the baselines.

1 Introduction

Language Modeling (LM) is a core task in NLP
and a key technology for natural language un-
derstanding and generation, supporting a wide
range of applications including machine transla-
tion (Hendy et al., 2023), speech recognition (Prab-
havalkar et al., 2023), sentiment analysis (Tan
et al., 2023), and information extraction (Wei et al.,
2023). Over the past decades, LM has seen signif-
icant development, evolving from simple models

* Equal contribution.
† Corresponding authors.

like n-grams (Suen, 1979) to more sophisticated
models, such as recurrent neural networks (Elman,
1990), long short-term memory networks (Hochre-
iter, 1997), and more recently, Transformer-based
large language models (LLMs) like GPT (Radford
et al., 2019) and BERT (Devlin, 2018). LLMs have
demonstrated human-like or even superhuman per-
formance in language modeling.

However, the tremendous success of LLMs relies
on learning from massive corpora, which is not as
data-efficient and low-energy as human language
learning. The BabyLM Challenge 2023 (Warstadt
et al., 2023a) and 2024 (Choshen et al., 2024) is
a shared task over two consecutive years. It aims
to encourage the discovery of more effective meth-
ods for training models using limited data. Con-
sidering that a 13-year-old child has encountered
fewer than 100 million words in their lifetime, the
shared task has introduced the strict-small track1.
These tracks confine pre-training data to 10 mil-
lion and 100 million words. These datasets con-
sist of child-accessible materials, such as books,
conversations, and Wikipedia entries, to enhance
the relevance of language model pre-training to
human language learning processes. Compared
to 2023, the 2024 competition removed the Chil-
dren’s Book Test (Hill et al., 2016) and QCRI Edu-
cational Domain Corpus datasets (Abdelali et al.,
2014). The 2024 competition also reduced the pro-
portion of OpenSubtitles (Lison and Tiedemann,
2016) dataset while increasing the proportions
of CHILDES (MacWhinney, 2000) and Project
Gutenberg (Gerlach and Font-Clos, 2020) datasets.

The current investigation of LMs primarily
adopts two predominant modeling paradigms:
Causal Language Models (CLMs), represented by
GPT (Radford et al., 2019), and Masked Language
Models (MLMs), represented by BERT (Devlin,

1Due to limitations in computational resources, we have
not yet explored the strict track and the multimodal track.
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2018). CLMs employ next-token prediction as their
training objective, which is predicting the next to-
ken given the preceding context, and they perform
exceptionally well on generative tasks. On the other
hand, the training objective of MLM is the random
selection and masking of some tokens in the input
text, following which the model is trained to pre-
dict the original unmasked tokens. Due to its global
information modeling capabilities, this approach
excels in tasks necessitating the capture of bidirec-
tional contextual information, such as text classi-
fication. Considering these modeling paradigms’
strengths, this paper raises an important question:
Could the two modeling methodologies be seam-
lessly integrated?

Intuitively, performing the MLM task allows the
model to learn bidirectional contextual encoding
of text, while the CLM task enables the model to
predict and generate text based on prior content.
These two learning objectives are not in conflict
and could potentially be integrated. Analogous to
a child learning a new language via practicing both
cloze exercises and writing assignments, the train-
ing mechanism for a model can similarly employ
a multi-task strategy. Therefore, we consider en-
abling our model to learn both tasks concurrently.
To achieve this, we adopt a unified model architec-
ture and alternate the training objective between
MLM and CLM tasks. This approach attempts to
mimic the human learning process, hence helping
the model acquire deeper knowledge from a limited
amount of text data.

To examine the effect of integrating MLM
and CLM pretraining tasks on model perfor-
mance, we conducted experiments using LTG-
BERT and BabyLlama2 as base models, testing
on the BabyLM2024 10M datasets. LTG-BERT, an
Encoder-only model, and BabyLlama, a Decoder-
only model, are notable architectures from the 2023
BabyLM Challenge .The results indicate that both
LTG-BERT and BabyLlama showed improvements
in macroaverage scores. These experiments con-
firm that the integration of these two pretraining
objectives can positively impact model training.

2 Related Work

Causal Language Models have played a piv-
otal role in the development of NLP, particu-
larly in tasks involving sequence generation. The

2We only utilized the BabyLlama architecture and did not
apply the knowledge distillation method here.

foundational work by OpenAI on the Generative
Pre-trained Transformer (GPT) (Radford, 2018)
marked a significant breakthrough in the use of
CLMs for a variety of NLP applications. GPT (Rad-
ford, 2018) models the probability of each token in
a sequence based on all preceding tokens, enabling
it to perform well on tasks like text completion,
machine translation, and summarization. The sub-
sequent release of GPT-2 (Radford et al., 2019)
and GPT-3 (Brown et al., 2020) further illustrated
the power of scaling CLMs. These models, with
their increased parameter sizes and training data,
have set new performance benchmarks in tasks like
zero-shot and few-shot learning. The GPT family
firmly established the dominance of autoregressive
models in generative tasks. More recently, Meta
introduced the LLaMA (Touvron et al., 2023) se-
ries, which demonstrated that highly capable CLMs
could be trained efficiently on fewer parameters
and less compute than earlier models like GPT-3.
LLaMA, designed to be accessible for academic re-
search, retains the autoregressive framework while
achieving competitive performance across a range
of NLP tasks.

Masked Language Model is a training approach
used to develop deep bidirectional representations
of context, often referred to as a cloze task (Tay-
lor, 1953). Specifically, a special token [MASK]
is employed to randomly mask a proportion of
input tokens, and the model is trained to predict
these masked tokens. This training task was first
innovatively introduced in BERT (Devlin, 2018)
and has been adopted in subsequent models like
RoBERTa (Liu, 2019) and ALBERT (Lan, 2019).
Research has also led to improvements in MLM
tasks, such as in SpanBERT (Joshi et al., 2020),
where the model is trained to predict spans of words
instead of individual tokens, enhancing its ability
to capture long-range dependencies.

Unified modeling refers to using a single model
architecture to handle multiple training and evalua-
tion tasks. In the T5 (Raffel et al., 2020) model, var-
ious downstream tasks were reformulated as text-
to-text tasks, significantly enhancing the model’s
ability for multitask learning. Moreover, many re-
lated works (Sanh et al., 2019; Liu et al., 2020) have
also applied unified modeling for multitask train-
ing and evaluation, making it a common approach
to improve the generalization ability of models.
UniLM (Dong et al., 2019), based on the BERT ar-
chitecture, is one of the significant endeavors in uni-
fied modeling. By employing specific self-attention
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masks, UniLM controls the contextual information
used during prediction. When predicting tokens,
it not only trains like an autoencoding language
model by leveraging the context of masked tokens
but also performs left-to-right training like an au-
toregressive language model. Additionally, UniLM
can function similarly to encoder-decoder archi-
tectures by encoding the first input text and then
generating sequences from left to right. By switch-
ing the attention matrix, it seamlessly transitions
between different training tasks and downstream
application scenarios.

Existing methods have unified CLM and MLM
networks regarding model architecture and param-
eter sharing. However, research on unifying their
training objectives remains unexplored. This pa-
per is the first to bridge the two classic training
objectives.

3 Methods

3.1 Preliminaries

BabyLlama (Timiryasov and Tastet, 2023) was
proved to be effective in BabyLM2023 and is in-
cluded as one of the baselines officially provided by
BabyLM2024. BabyLlama (Timiryasov and Tastet,
2023) employed knowledge distillation, transfer-
ring the knowledge from two teacher models — a
GPT-2 model with 705 million parameters and a
LLaMA model with 360 million parameters — into
a compact BabyLlama “student” model with just 58
million parameters. Given that our own replication
of the BabyLlama model through distillation did
not achieve ideal results, we opted to use only the
BabyLlama architecture with a parameter size of 97
million. The BabyLlama model employs the classic
CLM paradigm (Radford, 2018), where given the
first n tokens in a sequence, the model predicts the
token at position n+ 1. The next-token prediction
(NTP) training objective is to minimize the nega-
tive log-likelihood loss of predicting the next token
at each timestep. To achieve this, a causal mask
is applied in the self-attention mechanism. This
mask is represented as a lower triangular matrix,
ensuring each token can only attend to its preceding
tokens. Formally, for an input sequence of length T ,
x1, x2, . . . , xT , the corresponding attention mask
M is a T × T lower triangular matrix, where Mij

indicates whether the token at position i should
attend to the token at position j This masking strat-
egy effectively prevents the model from accessing
future information during training, thereby captur-
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Figure 1: A diagram of AntLMLTG-BERT. Based on
the LTG-BERT architecture, we propose a joint MLM
and CLM training objective. It is worth noting that
the two objectives fully share parameters, but differ
in their attention masks. The diagram also applies to
AntLMBabyLlama, with the difference in the architecture
(e.g., positional encoding and the activation function of
GLU).

ing the sequential order and dependencies within
the data.

In BabyLM2023 (Warstadt et al., 2023b), exper-
iments with Boot-BERT (Samuel, 2023) and ELC-
BERT (Charpentier and Samuel, 2023) demon-
strated the effectiveness of the LTG-BERT (Samuel
et al., 2023) architecture. LTG-BERT is also one
of the official baselines in BabyLM2024. The
LTG-BERT model incorporates several key ar-
chitectural improvements, including NormFormer
layer normalization (Shleifer et al., 2021), dis-
entangled attention with relative position embed-
dings (He et al., 2020), and gated-linear activation
function (Shazeer, 2020). The training objective of
LTG-BERT is self-supervised Masked Language
Modeling (MLM). During training, 15% of the to-
kens in the input sequence are randomly selected
for replacement. Of these, 80% are masked, 10%
are substituted with random tokens, and the remain-
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ing 10% are unchanged. The model is then trained
to predict the original masked tokens based on the
context. LTG-BERT explores three common mask-
ing strategies: subwords, whole words, and spans.
Experimental results indicate that span-based mask-
ing yields slightly better performance compared to
the other methods.

3.2 Our Approach

Inspired by the way children learn languages
through both cloze exercises and writing assign-
ments, our work constructs a unified training frame-
work that integrates CLM and MLM. In this unified
framework, we switch between the two training
paradigms alternately. CLM uses a causal mask
to enforce sequential dependencies and MLM em-
ploys bidirectional attention, enabling the model to
predict masked tokens by leveraging both preced-
ing and succeeding context. By combining these
two training objectives, the model not only excels
at autoregressive tasks like text generation but also
achieves a deeper semantic understanding of lan-
guage by capturing broader contextual information
through bidirectional attention.

In our approach, we integrate CLM and MLM by
alternating between these training objectives during
the pre-training phase. After training the model on
one objective for a specified number of epochs, we
switch to the other objective. The switch between
training objectives is implemented by modifying
the model’s input and attention matrix. For the
MLM task, 15% of the tokens in the input are ran-
domly selected and replaced. The model utilizes
bidirectional attention to predict the original tokens
based on the surrounding context. In contrast, for
the CLM task, no token replacement is required
in the input. The model employs causal attention
to predict the next token based on the preceding
tokens.

4 Experiment

Data Preprocessing For the data preprocessing
part, we adopt the data handling procedures from
the BootBERT (Samuel, 2023) method, which per-
formed well in the previous round of BabyLM Chal-
lenge. Preprocessing includes steps like normaliz-
ing punctuation, reconstructing sentence structures,
and removing duplicate text. These preprocessing
steps help ensure cleaner and more structured input
data, contributing to better model performance.

Name BabyLlama LTG-BERT

layers 12 12
attention heads 12 12

hidden size 768 768
intermediate size 2048 2048
vocabulary size 16k 16k
position bucket – 32

Table 1: Model Hyper-parameters.

Baselines We adopt the official baseline provided
by the BabyLM Challenge as our benchmark, using
the results achieved by the best-performing models
from the previous round, namely LTG-BERT and
BabyLlama, see Table 2.

Experiment Settings In our experiments, we
used both the BabyLlama and LGT-BERT mod-
els to evaluate the performance of a hybrid train-
ing strategy combining Causal Language Modeling
(CLM) and Masked Language Modeling (MLM).
For both model architectures, we used the same
set of parameters, as shown in the table 1 and op-
timized the training process using the AdamW op-
timizer. Additionally, we employed the bfloat16
data type to enhance computational efficiency. For
the BabyLlama model, we used a batch size of 512
with an initial learning rate set to 7 × 10−4. The
learning rate scheduler followed a cosine decay
during the CLM training phase and a cosine with
restarts scheduler during the MLM phase, with the
number of cycles set to every four epochs . For the
LGT-BERT model, we employed a batch size of
1024, with an initial learning rate of 5× 10−4. In
all training phases, we used a cosine with restarts
scheduler, with the num cycles set to 4. Our
hyperparameters were determined through multi-
ple experiments, building upon the hyperparame-
ter settings from the previous works (Timiryasov
and Tastet, 2023; Samuel et al., 2023) to find the
optimal values. The training process alternated
between CLM and MLM objectives over multi-
ple epochs. We used the notation “x_CLM +
y_MLM..." to indicate that, in sequential order,
x epochs are trained in the CLM training mode,
followed by y epochs in the MLM training mode,
and so on.

4.1 Main Results

In this section, we evaluate the performance of
BabyLlama and LTG-BERT across multiple bench-
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Model Data BLiMP BLiMP Supplement EWoK GLUE Macro average

BabyLlama† 10M 69.8 59.5 50.7 63.3 60.8
BabyLlama 10M 68.1 60.4 50.4 65.5 61.1

AntLMBabyLlama 10M 69.4 60.7 51.1 67.4 62.1

BabyLlama† 100M 73.1 60.6 52.1 69.0 63.7
LTG-BERT† 100M 69.2 66.5 51.9 68.4 64.0
BabyLlama 100M 74.9 66.0 52.0 66.3 64.8

LTG-BERT† 10M 60.6 60.8 48.9 60.3 57.5
LTG-BERT 10M 62.6 65.4 62.3 64.9 63.8

AntLMLTG-BERT 10M 72.3 62.6 63.0 66.0 66.0

Table 2: Main experimental results. The † indicates results from the official report. The official BabyLlama
leverages knowledge distillation, while our AntLMBabyLlama is based solely on the architecture of BabyLlama
without knowledge distillation methods. Due to limitations in time and resources, we have not attempted AntLM on
the 100M track, this will be part of our future work.

Training Stage BLiMP BLiMP Supplement EWoK Avg.

AntLMBabyLlama

8 68.2 56.7 50.5 58.5

16 56.8 58.4 57.2 57.5

24 68.1 60.4 50.4 59.6

24 56.9 57.8 58.3 57.7

4 16 4 69.4 60.7 51.1 60.4

AntLMLTG-BERT

12 69.9 56.4 50.8 59.0

60 62.8 63.5 64.2 63.5

72 70.0 57.2 51.9 57.9

72 69.4 61.1 64.5 65.0

6 60 6 72.3 62.5 63.0 66.0

Table 3: The effect of integrating CLM and MLM training objectives on BabyLlama and LTG-BERT.

marks, including BLiMP, BLiMP Supplement,
EWoK, and GLUE. Our experiments primarily fo-
cus on assessing the impact of integrating CLM
and MLM training objectives on the overall re-
sults, comparing the baseline performance of both
BabyLlama and LTG-BERT with the configura-
tions we propose.

As shown in Table 2, our models with integrated
training objectives consistently outperform the of-
ficial baseline scores on both the LTG-BERT and
BabyLlama models. Notably, the improvements
on LTG-BERT are particularly significant, demon-
strating the effectiveness of our approach. To fur-
ther validate the effectiveness of alternating train-
ing objectives CLM and MLM, we conducted an

in-depth experiment with the BabyLlama model.
Given the lengthy training times associated with
the GLUE dataset, we opted to evaluate our results
on the BLiMP, BLiMP Supplement, and EWoK
datasets. As shown in Table 3, the model trained
with the 4_CLM+16_MLM+4_CLM strategy sig-
nificantly outperformed those trained solely with
8_CLM or 16_MLM. This finding indicates that
combining these two training objectives enables
the model to simultaneously acquire bidirectional
context understanding and sequence generation ca-
pabilities. Under the same training epochs, the
4_CLM+16_CLM+4_CLM combination demon-
strated clear advantages over the pure 24_CLM and
24_MLM models, further confirming that the inte-
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Figure 2: The phased experimental results on three datasets. The evaluation line chart for each stage of “3_ CLM
+ 8_ MLM + 2_ CLM + 8_ MLM + 3_ CLM ” on the BabyLlama model. The reason for the discontinuity in
evaluation results between training phases is that we applied the evaluation method corresponding to the specific
task categories at each stage of the training process.

gration of these two training objectives is crucial
for achieving optimal performance, highlighting
the complementary relationship between CLM and
MLM. We also conducted similar experiments on
the LTG-BERT, the results are shown on same Ta-
ble.

Additionally, we explored the performance of
these training modes across different datasets. As
shown in Figure 2, MLM performs significantly
better on the EWoK dataset, while CLM exhibits
more pronounced and sensitive results on the
BLiMP dataset. This indicates that different train-
ing approaches have varying impacts on distinct
datasets. Thus, the integrated experiments that com-
bine both training methods can better leverage their
strengths and enhance overall performance.

4.2 Ablation Study

To investigate the effects of various factors on the
evaluation task results within the integrated experi-
ments, we conducted ablation studies focusing on
two variables: alternating frequency and alternat-
ing order. In the BabyLlama model, we maintained
a constant total number of training epochs at 24 (8
epochs for the CLM phase and 16 epochs for the
MLM phase). Specifically, for the alternating order,
we adjusted the alternating sequence of training be-
tween the CLM and MLM phases while keeping
the overall epoch count unchanged. For alternat-
ing frequency, we divided the training process into
more frequent alternating stages. The experimental
results, as shown in Table 4, indicate that varia-

tions in these two factors do not lead to significant
declines in evaluation outcomes, suggesting that
our approach is stable. We hypothesize that the de-
crease in performance with an increased frequency
of alternations may be attributed to smaller epoch
sizes in each training phase, which could hinder
convergence on the respective tasks.

Furthermore, we found that the best performance
was achieved when the CLM training phase was
placed at both the beginning and the end of the
training sequence, which could be due to the greater
impact of CLM compared to MLM. Although CLM
does not inherently have a higher performance
ceiling (as last year’s winner was an MLM-based
model), but it converges more rapidly. CLM per-
forms sequential prediction training on every token,
while MLM focuses only on masked tokens. Thus,
we suggest that CLM captures more learning within
a single epoch than MLM.

5 Conclusion

In this study, we propose AntLM, a model that
applies to multiple natural language-related tasks
in the BabyLM Challenge by alternating be-
tween Causal Language Modeling (CLM) and
Masked Language Modeling (MLM) during train-
ing. Experimental results demonstrate that AntLM
achieves either superior or comparable perfor-
mance to the baseline across all evaluation tasks.

Additionally, we found that CLM and MLM
have different impacts on various evaluation tasks,
suggesting that these training tasks guide the model
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Training Stage BLiMP BLiMP Supplement EWoK Avg.

AntLMBabyLlama

8 16 68.2 56.7 50.5 58.5

16 8 68.4 61.1 50.1 59.9

4 16 4 69.4 60.7 51.1 60.4

8 8 8 67.2 59.2 50.2 58.9

4 8 4 8 68.8 60.6 50.7 60.0

8 4 8 4 68.6 59.1 51.0 59.6

3 8 2 8 3 69.3 60.1 50.8 60.1

1 3 1 3 1 2 1 2 1 2 1 2 1 2 1 67.3 55.2 50.4 57.6

Table 4: The effect of alternating frequency (low or high) and alternating order of CLM and MLM training
objectives on BabyLlama. All were trained for a total of 24 epochs.

to learn distinct aspects of human language. We
believe this difference is the key reason why inte-
grated training yields effective results, as the model
benefits from the knowledge learned from both
training approaches. This finding also raises an
intriguing question: do different training tasks al-
low models to capture only specific portions of
natural language knowledge? Due to resource limi-
tations, we were unable to explore additional ideas
and approaches in this study. In future work, we
plan to address these limitations by expanding our
resources and support, allowing us to further inves-
tigate these potential directions.

Moreover, we conducted experiments with vary-
ing numbers and sequences of alternating training,
and the results suggest that specific integrated train-
ing methods are more effective in achieving opti-
mal evaluation outcomes.
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