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Abstract

Language models (LMs) exhibit significant
data inefficiency compared to human learners.
A child is able to master language while con-
suming less than 100 million words of input,
while language models require orders of mag-
nitude more tokens during training.

Our submission to the BabyLM Challenge
utilizes a combination of self-distillation and
reverse-distillation to train a sequence of en-
semble models with improved training char-
acteristics on a fixed-size 10 million-word
dataset.

Self-distillation is used to generate an ensemble
of models of a certain fixed size, while reverse
distillation is used to train a more expressive
larger model from a previously trained genera-
tion of relatively smaller models, while largely
preserving learned accuracy.

We find that ensembles consisting of two
smaller models and one identical born-again
model serves as an ideal ensemble for each
trained generation of model size. We demon-
strate that, although our method is not novel,
it provides consistent and modest performance
improvements on the BLiMP and GLUE bench-
marks.

1 Introduction

Brown et al. (2020) have demonstrated that large
language models (LLMs) have impressive capabili-
ties in various natural language processing tasks.

Moreover, the availability of open-source mod-
els such as Llama-2 (Touvron et al., 2023) has en-
abled researchers to fine-tune pre-trained models
for application-specific tasks.

Pre-training language models, however, remain
out of reach for most researchers due to prohibitive
computing and data requirements. For example,
state-of-the-art models like Chinchilla (Hoffmann
et al., 2022) and GPT-2 (Radford et al., 2019) are

Figure 1: We train an expanding series of models using
a moving window ensemble containing the previously
trained models (left to right) as teachers. The model
with sequence number 1 is trained on two predecessor
models of smaller size and one of the same size. While
models with sequence numbers 0 and 2 are trained in
a uniform ensemble of smaller-sized and equal-sized
models respectively

trained on approximately 1.4 trillion words and
200 billion words, respectively. This is in sharp
contrast with the 100 million words which a human
teenager might see during their lifetime (Warstadt
and Bowman, 2022).

The BabyLM Challenge is a shared task for
CoNLL 2024 (Choshen et al., 2024), meant to in-
centivize research into optimization of training on
constrained datasets. In the strict-small track of
this challenge, researchers are limited to using a
10 million word text-only dataset to be used for
pre-training.

In this paper, we explore the performance of
decoder-only architectures using self-distillation
and reverse-distillation starting from a base model
trained on the same dataset. Following the training
protocol described in Figure 1.

For our base model, we chose to start with the
preceding year’s decoder-only model BabyLlama
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(Timiryasov and Tastet, 2023) and retrained on it
on this year’s challenge dataset.

We subsequently trained an ensemble of teach-
ers of increasing sizes using self-distillation (SD)
and reverse-distillation (RD), attempting to charac-
terize the effect of model size and ensemble struc-
ture on the model’s performance while keeping the
dataset constant.

During Knowledge Distillation, a teacher net-
work, usually a higher capacity network is used to
train a student network, which may be of lower
capacity (Hinton et al., 2015). The emphasis
of Knowledge Distillation has typically been on
model compression, where a student network is
expected to be a more compact representation of
its teachers.

In self-distillation, as described by Furlanello
et al. (2018) in their work on Born-Again Neural
Networks, one observes that a neural network of
a given size can be re-initialized and trained with
guidance from previously trained instances of itself.
This process results in a student network that can
maintain or even improve upon the performance of
its teacher networks. Reverse distillation expands
on this idea by training a student network that is
larger than its teacher network, potentially enabling
better generalization and the capacity for further
training.

2 Related Work

Knowledge distillation (Hinton et al., 2015), a
technique central to our work, has emerged as
a popular approach for transferring knowledge
from large models to smaller, more efficient ones.
Furlanello et al. (2018) introduced the concept
of "Born Again Neural Networks," where neural
networks are trained using the predictions of an
already-trained model, illustrating the potential of
self-distillation. Gou et al. (2021) provided a com-
prehensive survey of various knowledge distilla-
tion techniques, categorizing them based on model
types and applications and demonstrating their use
in optimizing neural networks for various tasks,
including language modeling.

We build on work by Timiryasov and Tastet
(2023), which contributed to the area by explor-
ing knowledge distillation from an ensemble of
teacher models trained on small datasets, achieving
competitive results without performance degrada-
tion. Whereas BabyLlama compressed large mod-
els into a smaller model, we attempt to use born-

again ensembles of these smaller models to learn
successively larger models. We find our techniques
largely preserve and improve the base model’s accu-
racy. While BabyLlama compressed model outper-
forms its teachers, our model expansion preserves
these gains and allows us to continue learning with
larger models. The larger expanded models have
also been found to be more amenable to fine-tuning
downstream tasks.

3 Methodology

3.1 Models

Feature 58M 95M 360M
Hidden Layers 16 10 24
Attention Heads 8 12 8
Hidden Size 512 768 1024
Intermediate Size 1024 2048 3072
Teacher Quantization - - int8

Table 1: Model Variants and Architecture Details

We trained a series of decoder models with in-
creasing sizes—58M, 95M, and 360M—following
the training protocol outlined in Figure 1. Each
model size includes a sequence of three models,
all based on the decoder-only Llama architecture
(Vaswani, 2017). The architectural details for each
model variant are summarized in Table 1.

Sequence zero for a given model size is trained
using a teacher ensemble, which consists of three
models strictly smaller than the current model. Se-
quence one is trained with two smaller models
and one model of the same size. Sequence two
is trained with two models of the same size and one
smaller model. For each model size from 95M on-
ward, three teacher models are used. However, the
initial 58M model is trained in a strictly born-again
sequence.

Our base model is 58 M Sequence 0 is the base
model (Timiryasov and Tastet, 2023), which we
trained using this year’s dataset from scratch. (Note
that this starting model performs below the later
released contest baseline BabyLlama model). We
apply identical prepossessing and tokenization as
BabyLlama Model on the 10 million word dataset,
provided by BabyLM challenge organizers.

3.2 Hardware
The models 58M and and 95M were trained on
Nvidia T4 GPU, while the 360 M models were
trained on Nvidia A100 where the 360 M teach-
ers were quantized down to int8 when used for
inference during their teaching phase.
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Figure 2: Evaluation and training loss along with gradient norms for models in the sequence. We note that models
later in the teaching sequence and larger models have steeper decline losses than models earlier in the sequence.

3.3 Loss Function
We use the distillation trainer to construct teacher
ensembles, with a weighted sum of original cross-
entropy loss for training labels and a distillation
loss for matching the teacher ensemble’s targets
from Timiryasov and Tastet (2023).

L = αLcross-entropy + (1− α)LKullback Leibler (1)

We vary the composition of an ensemble of
teachers as described previously. Distillation
trainer parameters were chosen as in BabyLLama,
with a sequence length of 128, a temperature of 2.0,
and α = 0.5. Trainer hyper-parameters are listed
in Table 7.

4 Results

We evaluated the models on three benchmarks:
GLUE (Wang, 2018), BLiMP (Warstadt et al.,
2020), and EWoK (Ivanova et al., 2024). For the
GLUE benchmark, an additional fine-tuning phase
was included to enhance the model’s task-specific
performance. Detailed results are provided in Ap-
pendix A.

4.1 Training
Figure 2 illustrates the training dynamics observed
for each model in the sequence. Successive mod-
els and those of larger sizes consistently displayed
lower validation losses compared to their prede-
cessors. Training losses and gradient norms also
decreased more sharply in later sequence models.
While validation loss did not always correlate with
improved performance across all benchmarks, mod-
els later in the sequence generally performed better
on several tested benchmarks.

4.2 BliMP
The results of the BliMP benchmark for our stu-
dent/teacher models can be seen in Table 2. We
note that sequences of larger models tend to per-
form better on average on BLiMP tasks than the
smaller models. We note that Sequence 1 tends
to perform better than Sequence 0 for model sizes
95 and 360. We hypothesize that this effect might
be due to smaller models, as teachers might have
regularizing effects on teaching labels, while the
Sequence-0 model of the same size might help in
training the Sequence-1 model during training. Fur-
ther ablation studies would required to confirm the
optimal ensemble combination of teachers for a
model.

We note that the lower validation loss in suc-
cessive generations does not capture the drop in
BLiMP accuracy which we note between Sequence
1 and Sequence 2 of model size. Thus cross-entropy
and divergence loss are failing to capture nuances
being tested in the benchmarks.

Table 5 shows the results on the 14 BLiMP sub-
tasks. In Figure 5) We plotted the accuracy of the
BLiMP sub-tasks, which had the highest variance
in model accuracy. We note that larger models are
improving in accuracy; however, for anyone sub-
task, the improvements are not strictly monotonic.
For example, the wh_island subtask performance
has two peaks in accuracy: one for model 95 M
model of Sequence 1 and another for 360 M of
Sequence 2.

4.3 GLUE
Table 3 provides a detailed breakdown of the model
performance on each of the various GLUE sub-
tasks. GLUE benchmarks involve an initial task
fine-tuning phase before the benchmark metrics are
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Model Size Sequence # BLiMP Sup.
58 M 0 0.68709 0.5637
58 M 1 0.69058 0.56742
58 M 2 0.69051 0.58007
95 M 0 0.68926 0.57322
95 M 1 0.69395 0.57396
95 M 2 0.69147 0.56693
360 M 0 0.69605 0.58694
360 M 1 0.69815 0.58042
360 M 2 0.70102 0.58267

Table 2: Model accuracy by size and iteration number on
the blimp evaluation. We note that accuracy improves
with model size and that iterations that have two smaller
prior models in the teacher ensemble have higher accu-
racy for a given model size. Supplementary runs are
also provided for reference; however, we only observe a
trend of larger models being better in these results.

computed. The details of the list of fine-tuning
parameters for GLUE that are used are provided in
Table 6. Notably, due to computational constraints,
the models were fine-tuned for three epochs prior
to evaluation.

Figure 3 shows the qualitative performance of
all nine of our trained models. We observe that 6 of
the 11 tasks in GLUE models performed at approx-
imately the same level. However, models 360-1
and 360-2 show significant improvement in fine-
tuned accuracy on tasks in wsc, improving from
37% baseline performance to 48% and 50% respec-
tively. While models 95-1 and 95-2 roughly double
the baseline accuracy to approximately 60%. As
in BLiMP, we observe that task performance is not
monotonically increasing.

Other modest improvements are seen for models
95-1 and 95-2 task rte: from 50% in baseline accu-
racy to 53% for both of them. The best-performing
model on rte 360-0 has both these models in its
parent model and can preserve and improve upon
their accuracy.

Model 360-0 is the best performing model on
tasks cola, multirc, rte. While models 95 − 1,
95 − 2, 360 − 1, 360 − 2 have higher average
performance. Notably, the majority of the models
outperform the chosen baseline model in average
performance.

In both model classes 95 and 360, the sequence
1 models have the highest average performance.
Thus, we hypothesize, as in the case of BliMP, that
having two smaller models along with the same
sized model in the ensemble allows sequence 1

models with more excellent stability, with smaller
models having a regularizing effect on learned la-
bels, thus allowing sequence 1 models to preserve
knowledge of previous sequences. Thus, further
investigation into a measurement of catastrophic
forgetting between model sequences is required
(Kemker et al., 2018).

4.4 EWoK

Finetuning on the EWoK benchmark doesn’t show
any significant progress among models. The aver-
age accuracies for models have differences only at
hundredths of a percent (See Table 4 and Figure 4).
Further analysis of this benchmark is not included
in our results.

5 Conclusion

In this study, we have shown that we can train
an ensemble of born-again teacher networks and
use the ensemble of teachers to train larger student
models. We find that having a model of the same
size while having two models of smaller sizes in
the ensemble leads to consistent improvements in
the BLiMP benchmark. Similar improvements are
also noted on GLUE benchmarks, which included
an intermediate finetuning step.

We note that the accuracy of a smaller model is
not lost in the reverse distillation process, thus al-
lowing us to continue training with a larger models.

For several of the benchmark tasks, however,
we observe that improvements are non-monotonic
but trend upward. Thus, knowledge-distillation for
student models is not consistently noise-free.

This self-distillation and reverse-distillation pro-
cess can be repeated to grow the size of our en-
sembles. With larger models more amenable to
finetuning.

Further work is needed to quantify the limits of
this method of improvement compared to directly
training a large network and distilling it down to a
smaller model. Moreover, further work is required
to quantify measures of catastrophic forgetting, as
validation loss is often not predictive of benchmark
performance and particular sub-task/skill.

6 Limitations

This study used the BablyLM dataset out of the
box, but it could have benefited from more straight-
forward datasets available in a more consistent for-
mat. Further pre-processing and curriculum design
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would possibly provide improvements over cur-
rently applied methods.

Although the inspiration for this paper was based
on a hypothesis about a sequence of teaching selves
from (Minsky, 1988). The methods employed in
this paper are not guided by strong priors of biolog-
ical plausibility.

In contrast to human learning which often in-
volves multiple modalities including real-world in-
teractions, visual and audio perception in the for-
mation of the language faculty such grounding was
not utilized by our current method. Thus, no under-
standing of phonetics, visual concepts, or intuitive
physics was needed to bootstrap our model.

The sequence of teachers employed in this paper
trades off lack of data availability with the com-
puting required to train each subsequent round of
teachers from the ground up; further study is re-
quired to investigate if prior knowledge of teachers
can be incorporated in a less compute-intensive
manner, such that skills learned by teachers are not
lost in subsequent rounds of self-distillation and
reverse distillations.

While most metrics were preserved in such sub-
sequent rounds, some metrics did suffer from dis-
tillation and only recovered further down in the
sequence.

Moreover, the further down the sequence one
proceeds with increasing the model size, one runs
into computational challenges. Thus, we were re-
quired to use quantization to accommodate larger
models on our compute node. We also limited the
number of training and fine-tuning epochs to stay
within resource constraints.

Further study is also required to understand the
effects of chosen hyper-parameters as we increase
the size of the teachers in later stages of inference.

Finally, this approach depends on the availability
of a distilled smaller model as a starting point for
training. Further investigation is required on how
distillation back down to smaller models from our
larger models will preserve the newly learned skills
and if auto-regressive training of our sequences is
thus possible.

A Appendix

Figure 3 shows qualitative results on GLUE bench-
marks. See Table 3 for quantitative results on
GLUE. The finetuning parameters used for GLUE
are listed in Table 6.

Similar qualitative and quantitative results on

EWoK can be seen in Figure 4 and Table 4.
For BLiMP, we visualize subtasks with the high-

est variance across models in Figure 5 while Table
5 provides a full quantitive breakdown by subtasks.

Lastly Table 7 lists the trainer hyper-parameters
used to construct the ensembles.
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Figure 3: GLUE results for 9 models. All models were fine-tuned with standard params given by BabyLLM
organizers except the number of epochs parameter, which was set to 3

model qqp sst2 qnli mnli-mm mnli mrpc cola boolq multirc rte wsc avg
58-0* 0.8773 0.8830 0.8082 0.7390 0.7343 0.7108 0.7107 0.6416 0.6192 0.5036 0.3654 0.6903
58-1 0.8788 0.8693 0.8001 0.7421 0.7378 0.7059 0.6839 0.6483 0.6254 0.5036 0.4038 0.6908
58-2 0.8789 0.8693 0.8034 0.7459 0.7400 0.7353 0.6877 0.6489 0.6299 0.4748 0.3846 0.6908
95-0 0.8791 0.8739 0.8075 0.7445 0.7398 0.7108 0.7011 0.6520 0.6308 0.4676 0.3654 0.6884
95-1 0.8764 0.8601 0.8042 0.7447 0.7370 0.7010 0.6858 0.6391 0.6064 0.5324 0.5962 0.7076
95-2 0.8795 0.8532 0.8320 0.7486 0.7410 0.7108 0.6839 0.6489 0.5602 0.5252 0.5962 0.7072

360-0 0.8792 0.8624 0.8313 0.7467 0.7414 0.7010 0.7184 0.6330 0.6361 0.5540 0.3846 0.6989
360-1 0.8827 0.8739 0.8291 0.7478 0.7490 0.7059 0.7069 0.6428 0.6291 0.4892 0.4808 0.7034
360-2 0.8801 0.8624 0.8195 0.7496 0.7457 0.7059 0.6916 0.6379 0.6200 0.4820 0.5000 0.6995

Table 3: Performance of models on GLUE tasks, sorted by mean accuracy. The models were finetuned for 3 epochs
for each of the Glue Benchmarks. 58-0 is considered the baseline model with which we compare.
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Model Ewok Average Accuracy
58-0 0.5041
58-1 0.5018
58-2 0.5002
95-0 0.4959
95-1 0.5001
95-2 0.5021

360-0 0.5008
360-1 0.5017
360-2 0.5013

Table 4: No significant improvement was found on EWOK tasks. Overall accuracy stayed the same, with minor
variations downwards.

Figure 4: Ewok results for 9 models. Standard parameters were used to run Ewok evaluations.
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Subtask 58-0 58-1 58-2 95-0 95-1 95-2 360-0 360-1 360-2
coordinate_structure_constraint_complex_left_branch 0.292 0.266 0.234 0.245 0.228 0.235 0.233 0.233 0.245
existential_there_quantifiers_2 0.427 0.403 0.337 0.367 0.361 0.341 0.387 0.457 0.437
irregular_past_participle_adjectives 0.976 0.917 0.896 0.965 0.953 0.947 0.968 0.974 0.979
left_branch_island_echo_question 0.559 0.614 0.546 0.581 0.420 0.427 0.528 0.445 0.553
left_branch_island_simple_question 0.479 0.456 0.427 0.417 0.420 0.423 0.467 0.438 0.447
matrix_question_npi_licensor_present 0.099 0.131 0.115 0.105 0.239 0.230 0.104 0.144 0.141
npi_present_1 0.230 0.268 0.274 0.275 0.265 0.276 0.312 0.283 0.315
npi_present_2 0.235 0.310 0.344 0.362 0.317 0.328 0.362 0.365 0.376
only_npi_licensor_present 0.821 0.997 0.997 1.000 0.994 0.986 0.985 0.965 0.992
only_npi_scope 0.508 0.547 0.503 0.485 0.591 0.601 0.544 0.517 0.519
principle_A_c_command 0.505 0.558 0.532 0.529 0.558 0.523 0.554 0.556 0.570
principle_A_domain_2 0.742 0.678 0.714 0.730 0.675 0.711 0.702 0.692 0.705
superlative_quantifiers_1 0.851 0.764 0.838 0.831 0.888 0.839 0.857 0.815 0.849
superlative_quantifiers_2 0.610 0.644 0.680 0.612 0.773 0.795 0.688 0.831 0.768
wh_island 0.526 0.506 0.523 0.546 0.601 0.533 0.600 0.598 0.601

Table 5: Break down of BliMP accuracy by subtasks. Results on BLiMP filtered subtasks for different models. We
note that later models tend to perform better. With a handful of metrics losing performance.

Figure 5: Blimp results for 9 models, grouped by sequence. All models were fine-tuned with standard parameters
given by BabyLLM organizers except the number of epochs parameter, which was set to 3. We show the sub-tasks
which have the highest variance across the models.
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Fine Tuning Hyper-parameters Value
Learning Rate 5e-5
Patience 3
Batch Size 64
Max Epochs 3
Seed 12

Table 6: GLUE fine-tuning hyper-parameters, due to
computational cost limitations, fine-tuning was only
performed for 3 epochs.
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