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Abstract

Techniques in causal analysis of language mod-
els illuminate how linguistic information is or-
ganized in LLMs. We use one such technique,
AlterRep, a method of counterfactual probing,
to explore the internal structure of multilingual
models (mBERT and XLM-R). We train a lin-
ear classifier on a binary language identity task,
to classify tokens between Language X and
Language Y. Applying a counterfactual prob-
ing procedure, we use the classifier weights
to project the embeddings into the null space
and push the resulting embeddings either in
the direction of Language X or Language Y.
Then we evaluate on a masked language mod-
eling task. We find that, given a template in
Language X, pushing towards Language Y sys-
tematically increases the probability of Lan-
guage Y words, above and beyond a third-party
control language. But it does not specifically
push the model towards translation-equivalent
words in Language Y. Pushing towards Lan-
guage X (the same direction as the template)
has a minimal effect, but somewhat degrades
these models. Overall, we take these results as
further evidence of the rich structure of massive
multilingual language models, which include
both a language-specific and language-general
component. And we show that counterfactual
probing can be fruitfully applied to multilingual
models.

1 Introduction

Large pretrained multilingual transformer models
succeed at a variety of multilingual and monolin-
gual tasks and can be used in transfer learning
paradigms, where a model is trained to do a task
in one language and then transferred to another
language (Lauscher et al., 2020; Conneau et al.,
2020b; Wu and Dredze, 2019, 2020; Pires et al.,
2019; Vuli¢ et al., 2020; Rust et al., 2021). These
abilities have spurred a spate of papers probing
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Figure 1: We train a classifier on the language ID task,
and then apply AlterRep to the embeddings and examine
the change in probabilities. Above, an English template
sentence is pushed towards Spanish. We compare the
probabilities of the target English answer to its Spanish
translation-equivalent, random English and Spanish an-
swers, and a random third-language control.

the internal workings and capabilities of multilin-
gual models, suggesting that such models may con-
tain language-independent, along with langauge-
specific knowledge of interesting linguistic struc-
ture (e.g., Chi et al., 2020; Papadimitriou et al.,
2021; Ravishankar et al., 2021; Blevins et al., 2022;
Gonen et al., 2020).

While the results of this literature are suggestive,
probing methods are susceptible to memorizing the
original input and may not reflect what information
models actually use downstream (Hewitt and Liang,
2019; Elazar et al., 2021; Pimentel et al., 2020;
Voita et al., 2021). It is thus desirable to test not
only what information can be extracted but what
information is actually used (Geiger et al., 2021;
Finlayson et al., 2021; Lasri et al., 2022).

To do that we apply AlterRep (Ravfogel et al.,
2021), an offshoot of Iterative Nullspace Projection
(INLP; Ravfogel et al., 2020; Elazar et al., 2021),
in a multilingual setting.! The AlterRep method
is to train a classifier on the model representations

'Since running these experiments, there is now work show-
ing that linearly removing information as in INLP is sub-
optimal (Ravfogel et al., 2022). A natural extension would be
to explore our paradigm using these newer techniques.
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to pick out a particular feature and then use the
parameters learned by the classifier to intervene on
the embeddings, pushing them in a particular direc-
tion. Ravfogel et al. (2021) use it to intervene on
whether a noun phrase is in a relative clause (e.g.,
training a classifier on whether the noun phrase is
in a relative clause and then using projections from
the classifier to push the embeddings towards or
away from the relative clause direction). Crucially,
they then measure how this manipulation affects
downstream subject-verb number agreement.

Whereas Ravfogel et al. (2021) use AlterRep to
explore syntactic representations in models, our
hypothesis is that the same kind of causal manipu-
lation could be informative as to how multilingual
models process multilingual text. Doing so neces-
sarily involves separating multilingual embedding
space into language-neutral and language-specific
components. Libovicky et al. (2020) explore the
idea of obtaining a language-neutral representa-
tion from a multilingual model by computing an
“average” representation for each language and sub-
tracting it from the token embedding.

There is some precedent for using INLP to gener-
ate language-specific and language-neutral compo-
nents. Gonen et al. (2020) showed that multilingual
models like mBERT have both a language-specific
and language-general component and that, by sepa-
rating them using INLP on a language identification
task, one can obtain language-agnostic represen-
tations (and, inversely, highly language-specific
representations). They show that, by training on an
English vs. non-English task and then projecting
onto the nullspace using INLP, the generated text
on a masked language modeling task (in English)
is less likely to be English after INLP. Gonen et al.
(2020) also show that, by subtracting an “average”
representation of language X from a particular to-
ken embedding and then adding the average lan-
guage Y embedding, one can obtain a translation
of the token in language Y by analogy. But they do
not specifically use INLP to do these translations
in a language-to-language way, as we do here.

Using a similar logic but the AlterRep technique
instead of the analogical method, we test whether
we can do a kind of “translation via AlterRep”,
effectively “pushing” the embeddings towards a
particular language. First, we use the original mul-
tilingual model embeddings for a particular token
h: to train a language identity classifier C' to clas-
sify the language of tokens from Languages X and
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Y. We then use INLP to null out language ID infor-
mation, creating null embeddings h}¥. We can then
generate altered embeddings h;* and b} , which go
beyond merely nulling out language ID and instead
represent embeddings that have been pushed into
the direction of Language X or Y, respectively. We
use these counterfactual embeddings to generate
predictions for masked text and compare the result
to the original embeddings.

To make this concrete, imagine training a lan-
guage identification classifier on English vs. Span-
ish, as shown in Figure 1. Whereas a multilingual
model would typically fill in the [MASK] position
in the English sentence “I ate a [MASK]” with an
English token, if we use the classifier to push the
embeddings in the direction of Spanish, then we
might expect a completion like “I ate a cereza” to
become more likely where cereza is the English
word for cherry. We would expect the probability
of the English word “cherry” to decrease.

Through this work, our hope is not only to illu-
minate the innerworkings of multilingual models,
but also to validate and explore the use of counter-
factual probing in a novel domain.

To spoil the result: we show that language iden-
tity is encoded in contextual token embeddings
and, crucially, that this information is used by mul-
tilingual models in masked language modeling. In
effect, pushing embeddings in the direction of a
particular language (and away from another) sys-
tematically increases probabilities of words in the
PUSHEDTO language and decreases the probabil-
ities in the PUSHEDAWAY language, while leav-
ing words from other languages unchanged. By
comparing the changes in probabilities of target
words in the PUSHEDTO language (i.e., translation
equivalents of the original correct word) to random
words in that language, we see that our alterations
seem to push the model towards the prior of the
intended language, without specifically boosting
the semantic equivalent.?

2 Methods

We run two experiments, with slightly different pro-
cedures. In Experiment 1, we train a token-level
language ID classifier on a corpus of monolingual
sentences from 2 languages, without mixing the
languages within-sentence. In Experiment 2, we
create artificial code-mixed text (mixing within sen-
tences) and use this for training the classifier. In

2We make our code available online here.
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both experiments, we evaluate two representative
massive multilingual transformer models, Multi-
lingual BERT (mBERT; Devlin et al., 2019) and
XLM-RoBERTa Base (XLM-R; Conneau et al.,
2020a), and we focus on the last layer for interven-
tion. We describe each step in more detail below.

Models Multilingual BERT (Devlin et al., 2019)
and XLM-Roberta Base (Conneau et al., 2020a)
span 104 and 100 languages respectively. Both are
transformer encoders that have a hidden dimension
size of 768.

Classifier For each iteration of INLP, a linear
classifier is learned on the representations produced
by the encoder to predict language ID (L vs Lo)
for each token in the input. We use SVMs as our lin-
ear classifiers (as in Ravfogel et al., 2021). While
training the classifier, 15% of the tokens are ran-
domly masked. This is done to be more represen-
tative of the final evaluation setting where masked
inputs are used. The classifier is trained on bal-
anced samples.

INLP and AlterRep INLP is a technique for
removing information from embeddings. Specifi-
cally, INLP uses the weights learned by each clas-
sifier to project the embedding h; onto the inter-
section of nullspaces of the classifiers hJ" (this
contains no information for doing the classifica-
tion). The component orthogonal to this A, con-
tains all of the information for doing classifica-
tion. In practice, not all information is removed
by the first projection onto the nullspace, so the
process is repeated iteratively. The second clas-
sifier is learned on top of the embeddings whose
information has been nulled out based on the first
classifier’s weights, and so on. This is repeated m
times, yielding m classifiers.

AlterRep (Ravfogel et al., 2021) considers both
the nullspace component and the orthogonal com-
ponent to generate a new embedding h; that has
been modified to lie on a particular side of the
classifier. Suppose that for weight w; learned by
classifier i, hy"" is the orthogonal component. The
counterfactual vector hj is created as follows:

hy=h +ad Sxh" (1)

S is 1 when the given classifier’s prediction
wiT hy > 0 (predicts L) and -1 when wiT h; <0
(predicts Lo).
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The parameter « controls the direction and mag-
nitude of the alteration. When @ = 0, it’s equiva-
lent to amnesic probing. While training classifiers
for INLP, « is always set to 0. « is non zero when
we’re evaluating on MLM in the subsequent sec-
tions. When o > 0, the representations will be
pushed to the L; side of the classifier, irrespec-
tive of where they were originally. When a < 0,
the representations will be pushed to the Lo side
of the classifier, irrespective of where they were
originally.

Choosing the number of INLP iterations De-
termining the number of iterations to run INLP
for is tricky as there is tension between removing
information and destroying the language model
(Elazar et al., 2021). We sought to find a number of
iterations that would (a) significantly degrade per-
formance on the language identification task (thus
proving removal of language ID information) but
(b) not torpedo the performance of the model on
the MLM task.

One option for choosing the number of itera-
tions to run INLP is to run it until the classifier
performance is at chance on the target task. We
found that, if we do this for XLM-R (and to a lesser
extent for mBERT), a large number of iterations
is required (around 32). This large number of it-
erations effectively destroys the language model,
causing the most likely completions to be jibberish
(with a MLM-100 accuracy close to zero).

So, instead, we choose to optimize for remov-
ing as much information as possible while still
maintaining acceptable (>90%) MLM-100 accu-
racy. Figure 2 shows the number of iterations plot-
ted against both the MLM-100 measure and against
the language ID accuracy. For Experiment 1, we
chose 4 iterations for XLM-R and mBERT. For
Experiment 2, we run for more iterations (16 for
both models) since the code-mixed data is less sus-
ceptible to model degradation.

Note that this means that, for our post-INLP
models, there is still some language identity infor-
mation remaining and so these embeddings should
not be treated as entirely free of language identity
information. But the number of iterations was still
sufficiently high to allow us to meaningfully push
towards or away from the original language.

Running the INLP classifier for the same num-
ber of iterations more catastrophically affects the
overall MLM performance for XLM-R than it does
mBERT. We leave it to future work to ascertain
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Figure 2: MLM-100 accuracies after intervention, and language ID classifier accuracy plotted over number of INLP
iterations for m-BERT and XLM-R. Results are shown with INLP trained on non-code mixed data on the left, and
code-mixed data on the right. All MLM results are accuracies averaged over all languages and language pairs

why XLM-R might have its MLM performance
more closely tied to language identity information
than mBERT.

2.1 Experiment 1: Non-Code-Mixed
Sentences

Languages We pair English with each of Korean,
Hindi, Spanish, and Finnish, giving us 4 pairwise
comparisons. These languages were chosen to form
pairs with the same script/family (English-Spanish),
same script but different family (English-Finnish)
and different script/family (English with Hindi and
Korean). We always use English as one of the
pairs, which ensures adequate translations using
the MUSE dictionaries. But see Experiment 2 for
results between non-English pairs.

Table 1 shows the sources and statistics for the
data used to train these classifiers. The monolin-
gual sentences for English and Hindi are taken from
their corresponding parts of an English-Hindi par-
allel corpus (Kunchukuttan et al., 2018). The data
for Korean is taken from ParaCrawl (Espla et al.,
2019), Spanish and Finnish from EuroParl (Koehn,
2005).

Training/Testing methodology The Language
ID classifiers are trained using 1500 sentences from
each language. We alternately embed sentences
from English and sentences from the other lan-
guage and then extract the token embeddings. The
classifier learns to predict whether a given token
is extracted from the English or non-English lan-

guage.
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Lang Source Train Val Test

g, En UTBEn-Hi 1500 250 250
MBS B EuroParl 1500 250 250
g En UTBEn-Hi 1500 250 250
B EBuroParl 1500 250 250

g En ITBEnHi 1500 250 250
" Hi 0 OTBEn-Hi 1500 250 250
Enke En UTBEnHi 1500 250 250
RO Ko ParaCrawl 1500 250 250

Table 1: Monolingual Data Sources/Sizes

Evaluation of AlterRep is done on a target of 250
sentences from each language, from the test sets
of the same corpora used for training the language
ID classifiers. But, because we cannot always find
a dictionary match for each target word, the num-
ber of test sentences ranges in practice from 205
to 243. We take sentences from the language ID
classifier test sets and randomly pick a word to
mask in each sentence. We treat that word as the
target word in the original language, and we use
MUSE dictionaries (Lample et al., 2018) to find the
equivalent of that word in the alternate language.
Then, we compare the probability of (a) the target
word in the original language, (b) the target word
in the other language, (c) a random word in the
original language, (d) a random word in the other
language, and (e) a random word form a third lan-
guage (which serves as a control). For instance,
Figure 1 shows an English sentence “I ate a cherry.”



Original sentence I ate a cherry

Masked input to model I ate a [MASK]

Mask replaced with target 1 ate a cereza

language (es) word

Mask replaced with random
target language (es) word

I ate a lapiz

Maks replaced with third lan- I ate a kirsikka

guage (fi) word

Table 2: Example of how we replace a masked word
with different words from the target language/third lan-
guage dictionary

where we mask the token “cherry.”. Table 2 shows
an example of how we modify the masked word in
the sentence in different manners.

When we push that masked token in the direction
of Spanish using AlterRep, we then compare the
log probability (before and after the intervention)
of: the target English word (“cherry’), the Span-
ish translation-equivalent (“‘cereza”), a randomly
chosen English word, a randomly chosen Spanish
word, and a randomly chosen control word from a
third language. The random words are all chosen to
have the same number of tokens as the target word
in that language. As is standard, we obtain log
probabilities for multi-token words by averaging
(Kassner et al., 2021; Dou and Neubig, 2021).

If the AlterRep procedure works, then if we start
with an English template and push the masked to-
ken towards Spanish, the probability of Spanish
words will rise and the probability of English words
will decrease, while the probability of Hindi words
will be unaffected. When we start with English
and push towards English, we expect little change.
If there are shared semantic representations across
languages, then we might expect to see the tar-
get words in the pushed-towards language (e.g.,
“cereza”, Spanish “cherry”) increase more than ran-
dom ones (e.g., “lapiz”, Spanish for “pencil”).

2.2 Experiment 2: Mixed-Language Sentences

Languages To assess the robustness of our re-
sults, we focus on a scenario where the model is ex-
posed to mixed-language text, as opposed to mono-
lingual text. Existing work (Santy et al., 2021) has
probed the abilities of multilingual transformer en-
coders on code-mixed text and has shown that these
models are able to learn language ID in code-mixed
scenarios and this experiment serves as a further
probe into the cross-lingual abilities of these mod-
els. We consider 3 languages: English, Hindi and

Lang Source Train Val Test

Engi 00 HTEn-HL o000 500 500
Hi Word Subn
w/ MUSE

EnKo [0 HTEn-HL 000 500 500
Ko Word Subn
w/ MUSE

Hiko T HTEn-HL o000 500 500
Ko Word Subn
w/ MUSE

Table 3: Code Mixed Data Sources/Sizes. To generate
code-mixed data, text from the first language is taken
and words from the second language using the MUSE
dictionary

Korean and consider all 3 pairs using these lan-
guages (En-Hi, En-Ko and Hi-Ko).

Training/Testing methodology The language ID
classifiers are trained using synthetic code-mixed
text generated for these 3 language pairs. Generat-
ing training data this way gives us the flexibility in
evaluating on any language pair that we want (un-
like using real code-mixed which would limit the
language pairs we could choose). We created the
synthetic code-mixed data by lexical substitution
of words in a monolingual sentence using MUSE
dictionaries (Lample et al., 2018), substituting so
that 30% of the words are in the second language.
Table 3 shows the sources and the statistics for the
data used to train this.

Evaluation is done using the multilingual
mLAMA dataset (Kassner et al., 2021). Based
on Wikipedia entity relations, it consists of tem-
plates, translated across languages, with slots in
which masked language modeling has to be used to
fill in the correct mLAMA answer. Thus, in this ex-
periment, the masked token is always the mLAMA
answer in a particular language instead of a ran-
dom word. We thus have the same template in
both languages, along with correct answers in both
languages that we can use to evaluate AlterRep
on. The number of templates used for evaluation
are n=7,256 for English-Hindi, 14,204 for English-
Korean, 6,496 for Hindi-Korean. Because we are
not limited to pairs involving English in this ex-
periment, we focus on all pairwise comparisons
between Hindi, English, and Korean for this study



3 Results

Pushin Answer Third Target Random
dir. of pushed Lang Word Word
temp. to-
wards

mBERT
Opposite Opposite 0.66 0.98 0.93
Opposite Same - 0.98 0.98
Same Opposite  0.10 1.00 0.99
Same Same - 0.54 0.77

XLMR

Opposite  Opposite  0.37 0.99 0.96
Opposite Same - 0.92 0.92
Same Opposite  0.25 1.00 0.98
Same Same - 0.36 0.62

Table 4: Exp 1. Proportion of data points that move in
the expected direction, as a function of template match-
ing push direction and answer matching push direction.
When “push in dir. of temp” says “opposite”, that means
we are pushing away from the direction of the template
(e.g., pushing an English sentence to Hindi). When
“push in dir. of temp says “same”, that means we are
pushing in the same direction of the template (e.g., push-
ing an English sentence even further toward English).
We break down how often an answer word moves in
the expected direction when that answer word is being
pushed towards (e.g., an English word in a template that
is being pushed towards English) or when that answer
word is being pushed away from (e.g., an English word
in a template that is being pushed toward Hindi). The
Target word is the actual template word or its translation-
equivalent. The random word is a random word in the
same language. The third-party word is a random word
in a third-party language.

Overall, across both Experiments, we find that
the AlterRep operation works as expected in the
majority of cases. Figure 3 shows data for our
Experiment 1, on mBERT and XLLM- R. In each
subfigure, the top row indicates the language of
the template, the 2nd row indicates the direction in
which the token embedding is pushed. The plot has
dark arrows indicating the change in probability
distributions of tokens from the 2 languages (as
indicated), with shaded arrows indicating changes
for random tokens in those languages. Blue ar-
rows indicate change in probability distributions
for random tokens.

We consider separately the case where we push
in the opposite direction as the template (e.g., push-
ing a Korean template in the English direction) (the
left 2 subfigures indicate this) vs. the case where
we push in the same direction (the right 2 subfig-
ures indicate this). In the analysis below, we focus
on the proportion of time that the probabilities shift
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friend, house, dream, novel,
room, bed, book

Most likely tokens pre-
intervention

Most likely tokens after
pushing to Spanish

coma, car, man, la, son, del,
mas

Most likely tokens after
pushing to English

house, dream, room, friend,
book, tree, memory

Table 5: Example of the most likely tokens predicted
for the masked token pre and post-intervention for the
English language text “One day while Cat was wander-
ing about, he came to a [MASK].”

in the expected direction after the intervention. The
mean change in log probability, before and after
intervention, tells a similar story and is shown in
Figure 3.

From hereon, we focus on o« = 3, but see Ap-
pendix B for results on sensitivity to this parameter.

3.1 Experiment 1

When we push in the opposite direction of the
template (e.g., push an English template towards
Spanish), the template language probabilities
plummet, both for the target (99% of the time,
across pairs) and random words (93% of the time,
across pairs). The fact that the target word de-
creases more than the random one may not be
very meaningful: the target word starts out with
very high probability and so it has farther to drop.
Crucially, the PUSHEDTO language probabili-
ties all increase significantly (98% of the time
for target answers, 98% of the time for random
answers). The THIRDLANG control words show
little change, as predicted (decreasing 66% of the
time). Thus, this manipulation works as expected:
taking a mask from an English language template
and pushing it towards Spanish causes the prob-
ability of all Spanish words to increase while de-
creasing the probability of English-language words
and leaving other language words (e.g., Korean or
Hindi) largely untouched.

When we push in the same direction as the
template (e.g., we push an English template even
further in the English direction), we find that the
ORIGINALLANGUAGE is largely unchanged (in-
creasing in 54% of pairs for target words and 77%
of the time for random words). Here the difference
between random and target is likely because the
target word is already at ceiling. The PUSHED-
AWAY language drops significantly for both tar-
get and random words (decreases for 100% and
99% of pairs, for both random and target words).
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Figure 3: Change in language-specific probability distributions for Exp. 1. When we push the token in the opposite
language of the template (left two figures), we can see significant changes in the probability distributions for the
target (dark arrows) and random words (shaded arrows) from that language, with some cases showing such a large
change that tokens from the new language have more probability and will be sampled. Third language controls
(blue arrows) and pushing tokens in the same language as the template (right 2 figures) don’t show much change.

The THIRDLANG control decreases 90% of the
time, suggesting that the probability of a third party
language becomes even less likely when we push
in the same direction as the template. Taken to-
gether, these results suggest that pushing in the
same direction as the template does not make the
language model better (the target word does not
increase substantially), but it does make it more
likely to generate words from that language. That
is, if we push towards English and the target an-
swer is “dog”, pushing towards English will not
make “dog” more likely but it will increase the
overall Englishness in the model, essentially push-
ing it towards the English prior while decreasing
the probability of generations in other languages.

Table 4 summarizes these results, showing the
fraction of templates for which the probabilities
move in the expected direction. We see movement
in the expected direction in all cases except on
words in the pushed-towards language, when we
push in the direction of the template. That is, En-
glish words don’t become even more likely when
we push towards English in an English template.
These results are consistent, regardless of whether
we have a language pair with the same script (e.g.,
English and Finnish) or pairs with different scripts
(e.g., English and Hindi). Given the large over-
lap in shared tokens between any two Latin script
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languages (and low overlap across scripts), this
consistency is notable.

3.2 Experiment 2

Experiment 2 is notable for the fact that we’re eval-
uating the model in a code-mixed setting and test-
ing the model on queries that involve real world
factual knowledge (the relations in mLAMA). Re-
sults are similar for Experiment 2 (see Figure 4),
suggesting robustness to training on code-mixed
data and on using non-English pairs. These results
are broadly similar to Experiment 1, except that, as
we see in Figure 2, the performance of the code-
mixed data decays at a very different rate for the
code-mixed data. Therefore, we used 16 iterations
for both models. Why the code-mixed data is more
robust to intervention is potentially interesting, but
exploring it is beyond the scope of this work.

Table 6 depicts the proportions of cases in which
the probabilities move in the expected direction,
and the results are similar. We see that there is not
much change when pushing in the same direction
as the template and larger changes when pushing
in the opposite direction. As with Experiment 1,
this likely represents a ceiling effect.
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(c) XLMR, pushing tokens in opp direction to template

(d) XLMR, pushing tokens in same direction as template

Figure 4: Change in language-specific probability distributions for Exp. 2. As with Exp. 1, when we push the tokens
in the opposite direction to the template (left two plots), there are bigger changes in the probability distribution,
with the new language sometimes having higher probabilities than the original one. Pushing in the same direction as
the template (right two plots) doesn’t show any change in the ordering of the two languages.

4 Conclusions

Overall, our results show that, if we take a sentence
in Language A, embed it in a multilingual model,
and use AlterRep to systematically push a particu-
lar word in that sentence towards Language B, the
probability of words in Language B will go up. If
we push a word in Language A towards Language
A, there is little change except that, as shown in
Table 5, highly probable words increase in proba-
bility overall. Importantly, the probability of words
in random control languages do not increase under
either intervention.

What can we conclude from this? First, since
learning a language ID classifier can be used to
causally affect the language of probable masked to-
kens, we take it as additional evidence (Libovicky
et al., 2020; Gonen et al., 2020) that mBERT and
XLM-R (and likely other models of similar struc-
ture) have both a language-specific and language-
general component. Second, this language-specific
component is linearly extractable and can be used
causally to affect the language generated. That said,
we did not find evidence that it can be used for
translation specifically since translation-equivalent
words do not show a boost relative to controls.

In addition to shedding light on multilingual
models, we think the method here shows that the
AlterRep method (Ravfogel et al., 2021) can be
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fruitfully applied in settings beyond the syntactic
application for which it was originally used. In
future work, we could use this method to explore
linguistic typology in multilingual model space.

Limitations

Techniques like INLP extract information that is
linearly extractable. While we’ve shown that it is
possible to extract and manipulate language infor-
mation using such simple linear techniques, more
complex methods like those proposed by Ravfo-
gel et al. (2022) might be able to manipulate more
non-linearly encoded properties.

We have shown that language ID information is
extractable and can be used to manipulate embed-
dings, but we urge caution in concluding that this
means it could be used to practical effect (e.g., in
machine translation). We leave the translation of
these results into practical applications for future
work.

The AlterRep procedure, as can be seen in our
results and in Ravfogel et al. (2021), is sensitive
to parameters like a and the number of INLP iter-
ations. Picking these parameters is tricky and we
have done it in a manner that preserves information
in the language model. It is possible that a differ-
ent set of settings not explored here could lead to
different results.

The risks associated with this work are the risks



Push in dir. Answer Target  Random
of temp. pushed Word Word
towards
mBERT
Opposite Opposite .90 .87
Opposite Same 0.98 0.98
Same Opposite 1.00 1.00
Same Same 0.46 0.64
XLMR
Opposite Opposite .99 .96
Opposite Same 0.95 0.86
Same Opposite 1.00 1.00
Same Same 0.41 0.37

Table 6: Proportion of data points that move in the
expected direction, as a function of the template match-
ing push direction and answer matching push direc-
tion. When “push in dir. of temp” says “opposite”, that
means we are pushing away from the direction of the
template (e.g., pushing an English sentence to Hindi).
When “push in dir. of temp says “same”, that means
we are pushing in the same direction of the template
(e.g., pushing an English sentence towards English). We
break down how often an answer word moves in the ex-
pected direction when that answer word is being pushed
towards (e.g., an English word in a template pushed
towards English) or when that answer word is being
pushed away from (e.g., an English word in a template
that is being pushed toward Hindi). The Target word
is the actual template word or its translation-equivalent.
The random word is a random word in the same lan-
guage.

associated with any work dealing with large lan-
guage models, including potential environmental
impacts.
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A Implementation

We use bert-base-multilingual-cased and
x1m-roberta-base models from the Huggingface
models repository, and the transformers pack-
age for all of our probing experiments. Language
ID classifiers were trained using LinearSVC clas-
sifier from sklearn. For training these classifiers,
equal number of tokens from both labels were sam-
pled. We used a batch size of 32, and a maximum
sequence length of 256 when performing the inter-
vention experiments.

B Effect of o

For our Experiment 1 results, we plot key measures
in Figure 5 as a function of «. Specifically, we
plot the proportion of the time we see movement
in the expected direction and the mean change in
log probability.

When « gets large, the words that we are pushing
away from continue to move in the expected direc-
tion. This is likely because the increased shift can
decrease the probability of those words arbitrarily,
even while affecting the language model.

For words from the language that we are pushing
towards, there are diminishing returns to increas-
ing o and in some cases we see decreases (as with
the XLM-R purple line, which shows the proba-
bility of the target answer when we push towards
its language). This is likely because the target an-
swer starts off with high probability, and larger o
increasingly degrades the language model, causing
the true answer to decrease in probability.
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Figure 5: Left: Mean difference in log probability, across languages, in the expected direction (positive if pushed
to, negative if pushed away from) between before-intervention and after-intervention probabilities of either the
pushed-to language or the pushed-away-from language, as a function of a.. Right: Proportion of the time, across
languages, the intervention causes the probabilities to move in the expected direction (positive if pushed fo, negative
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