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Abstract

Pre-trained language models (PLMs) have
achieved remarkable success in natural lan-
guage generation (NLG) tasks. Up to now,
most NLG-oriented PLMs are pre-trained in an
unsupervised manner using the large-scale gen-
eral corpus. In the meanwhile, an increasing
number of models pre-trained with labeled data
(i.e., “supervised pre-training”) showcase su-
perior performance compared to unsupervised
pre-trained models. Motivated by the success
of supervised pre-training, we propose Multi-
task superVised Pre-training (MVP) for natural
language generation. We collect a large-scale
natural language generation corpus, MVPCor-
pus, from 77 datasets over 11 diverse NLG
tasks. Then we unify these examples into a
general text-to-text format to pre-train the text
generation model MVP in a supervised manner.
For each task, we further pre-train specific soft
prompts to stimulate the model’s capacity to
perform a specific task. Our MVP model can be
seen as a practice that utilizes recent instruction
tuning on relatively small PLMs. Extensive ex-
periments have demonstrated the effectiveness
and generality of our MVP model in a number
of NLG tasks, which achieves state-of-the-art
performance on 13 out of 17 datasets, outper-
forming BART by 9.3% and Flan-T5 by 5.8%.

1 Introduction

Natural language generation (NLG, also known as
text generation) is a crucial capacity for language
intelligence, which aims to generate human-like
texts on demand (Garbacea and Mei, 2020). Since
the emergence of the pre-training and fine-tuning
paradigm, pre-trained language models (PLMs)
have dominated mainstream approaches for NLG
tasks (Lewis et al., 2020; Brown et al., 2020). With
a large-scale general corpus, the majority of PLMs
are pre-trained in an unsupervised (self-supervised)
manner by leveraging intrinsic data correlations as
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supervision signals. However, unsupervised pre-
training is likely to incorporate noise that affects
the performance of downstream tasks (Feng et al.,
2022), also leading to a slower rate of acquiring
knowledge (Zhang et al., 2021).

In the meanwhile, more and more large-scale la-
beled datasets have become easily accessible (Deng
et al., 2009; Liu et al., 2020). There is grow-
ing evidence that pre-training with labeled data
can further improve the performance of PLMs,
both in the fields of computer vision (He et al.,
2016; Dosovitskiy et al., 2021) and natural lan-
guage processing (Lin et al., 2020b; Su et al.,
2022). These promising developments motivate
us to consider pre-training text generation models
with labeled data, which is called “supervised pre-
training” (Feng et al., 2022). Existing work has
shown that supervised pre-training can explicitly
learn task-specific characteristics and alleviate the
discrepancy between unsupervised pre-training and
supervised fine-tuning (Lin et al., 2020b).

Furthermore, most NLG systems are often
trained in a supervised way, requiring supervision
signals to learn the input-to-output transformation.
For example, dialogue systems learn to generate ap-
propriate responses based on historical utterances,
and text summarization systems learn to extract es-
sential information from long documents according
to human-written summaries. Therefore, we sus-
pect that supervised pre-training is more suited for
NLG-oriented PLMs in essence since it can provide
task-related instructions early in the pre-training
stage instead of a later fine-tuning stage.

Inspired by the recent success of supervised
pre-training, we propose Multi-task superVised
Pre-training (MVP) for natural language genera-
tion by leveraging a variety of labeled text gen-
eration datasets. Specially, we collect a large-
scale labeled corpus, MVPCorpus, consisting of
77 datasets over 11 text generation tasks. Since
recent research shows that an extensive scale of
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Settings Supervised Pre-training Unsupervised Pre-training

NLG MVP (ours) GPT-2, MASS, BART, T5

NLU FLAN, T0, Muppet, ExT5 BERT, XLNet, RoBERTa, T5

Table 1: Representative PLMs for NLG and NLU tasks
using (un)supervised pre-training. We present a more
detailed comparison and discussion about supervised
pre-training in Section 5.

multi-task pre-training (Aribandi et al., 2022) is the
key to generalizing to new tasks for large PLMs,
we combine these labeled datasets for multi-task
pre-training. Existing popular works, as shown in
Table 1, mainly focus on NLU tasks (Sanh et al.,
2022; Aribandi et al., 2022) or use unsupervised
pre-training (Lewis et al., 2020; Raffel et al., 2020),
with no consideration of supervised pre-training on
NLG tasks. To fill this gap, we explore supervised
pre-training and multi-task learning for deriving
both effective and general NLG models.

To develop our approach, we adopt a
Transformer-based (Vaswani et al., 2017) sequence-
to-sequence model as the backbone. In multi-task
training, different tasks may “neutralize” the ability
learned through other tasks (He and Choi, 2021).
To mitigate this potential issue, we propose to learn
task-specific prompts based on the MVP model, fol-
lowing the structure of prefix-tuning (Li and Liang,
2021). Task-specific pre-training enables prompts
to “store” specialized knowledge for each corre-
sponding task. Integrating MVP with task-specific
prompts can further stimulate the model’s capacity
to perform some specific tasks.

To summarize, our main contributions center
around the following research questions:

• How to train an NLG-oriented PLM in a super-
vised pre-training way? In order to prepare the
supervised corpus, we collect a massive labeled
MVPCorpus, consisting of 77 datasets over 11
NLG tasks across various domains and specific
objectives. To the best of our knowledge, MVP-
Corpus is the largest collection of NLG datasets.
Firstly, we formulate different NLG tasks as a
general text-to-text form using task instructions
so that the supervised corpus can be used in a
unified way for pre-training an NLG model. Our
work presents a simple yet general approach for
pre-training a more capable NLG model by lever-
aging various labeled NLG datasets.

• Can supervised pre-trained NLG models be both
effective and general? Extensive experiments

show that the supervised pre-trained MVP out-
performs its unsupervised pre-trained counterpart
BART in both full tuning (+9.3% in ratio) and
parameter-efficient tuning (+4.3% in ratio) set-
tings. Our MVP model achieves state-of-the-art
performance on 13 out of 17 datasets and out-
performs Flan-T5 (Chung et al., 2022) by 5.8%.
Our zero-shot performance also surpasses T0-
11B (Sanh et al., 2022) by a large margin. Fur-
thermore, the experiments on unseen NLG and
NLU tasks demonstrate that our supervised MVP
model has a strong generality for unseen tasks.

For reproducing and reusing our work, we re-
lease the MVPCorpus collection, all the MVP
model variants, and accordingly codes at the
link: https://github.com/RUCAIBox/MVP.

2 Related Work

Pre-trained Language Models. Pre-trained lan-
guage models have achieved exceptional success
in a wide range of tasks, and the majority of them
are pre-trained in an unsupervised manner (De-
vlin et al., 2019; Brown et al., 2020). For exam-
ple, with large-scale plain texts as the unsuper-
vised pre-training corpus (570GB), GPT-3 (Brown
et al., 2020) employs language modeling as the pre-
training task, i.e., predicting the next token condi-
tioned on previous tokens. In the meanwhile, the
computer vision community benefits a lot from the
labeled dataset ImageNet (Deng et al., 2009). Influ-
ential models, such as ResNet (He et al., 2016) and
ViT (Dosovitskiy et al., 2021), leverage ImageNet
for pre-training. Inspired by the success of pre-
training with labeled data, machine translation re-
searchers explore supervised pre-training (McCann
et al., 2017; Lin et al., 2020b). Lin et al. (2020b)
attempt to pre-train a translation model with paral-
lel data in multiple languages. Despite using much
less pre-trained data, mRASP still achieves better
performance than translation models pre-trained
in an unsupervised manner (Liu et al., 2020). In
this paper, we propose to pre-train a universal NLG
model in a supervised manner with collections of
labeled datasets (23GB).

Multi-task Learning. Our pre-training process
is also related to multi-task learning (MTL), a
method of mixing multiple tasks into a single train-
ing process (Collobert and Weston, 2008). A model
trained with MTL can benefit from helpful knowl-
edge of relevant tasks, resulting in improved perfor-
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Figure 1: The overview of the pre-training process of our MVP model and task-specific prompts.

mance (Subramanian et al., 2018). Recently, MT-
DNN (Liu et al., 2019a) and Muppet (Aghajanyan
et al., 2021) collect tens of datasets in the multi-task
procedure and achieve better performance in down-
stream tasks. The pre-finetuning schema proposed
in Muppet shares a similar idea with our study.
Aribandi et al. (2022) further combine the denois-
ing pre-training task of T5 (Raffel et al., 2020)
and multi-task learning to pre-train a new model,
ExT5. MTL has also contributed to sub-fields of
text generation, such as open-ended dialogue sys-
tem (Zhang et al., 2020), task-oriented dialogue sys-
tem (Su et al., 2022), text style transfer (Bujnowski
et al., 2020), and question answering (Khashabi
et al., 2020). At the same time, researchers explore
the transferability of models trained on multi-task
datasets (Mishra et al., 2022). FLAN (Wei et al.,
2022), T0 (Sanh et al., 2022), ZeroPrompt (Xu
et al., 2022), and FLAN-T5 (Chung et al., 2022)
investigate the zero-shot or few-shot generalization
abilities of large language models (LLMs) (Zhao
et al., 2023) trained on numerous task datasets
with well-designed prompts. Compared with these
works, we aim to explore multi-task learning to
derive both effective and general NLG models in a
supervised pre-training manner.

Prompt Learning. Prompt learning is a thriv-
ing method in the field of NLP. Prompt learning
converts fine-tuning text into a format similar to
pre-training to leverage implicit pre-training knowl-
edge and alleviate the discrepancy between pre-
training and fine-tuning (Liu et al., 2021b). GPT-
2 (Radford et al., 2019) and T5 (Raffel et al., 2020)
add human-written task prompts to the input text.
For instance, T5 prepends “Summarize:” to the
input document for summarization tasks. Some
researchers also design elaborate prompts for each
task and dataset and investigate their effective-
ness and robustness (Wei et al., 2022; Sanh et al.,
2022). To overcome the constraints of manually

constructed prompts, researchers develop contin-
uous (soft) prompts that can be optimized in con-
tinuous space (Lester et al., 2021; Qin and Eisner,
2021; Tang et al., 2022b). Considering the random
initialization of soft prompts, Gu et al. (2022) pro-
pose PPT to pre-train continuous prompts using
unlabeled data. SPoT (Vu et al., 2022), Unified-
SKG (Xie et al., 2022), and PTG (Li et al., 2022a)
further learn the prompts on related tasks and trans-
fer the prompts to new tasks.

3 The MVP Model

This section introduces our MVP model: a Multi-
task superVised Pre-trained model for natural lan-
guage generation. The overview of our model is
illustrated in Figure 1.

3.1 Data Collection

Formally, the natural language generation (NLG)
task aims to generate a sequence of tokens Y =
(y1, y2, . . . , yn) conditioned on input data X (e.g.,
a piece of text or structured data) (Li et al., 2022b).

In this paper, we collect a large-scale labeled
MVPCorpus consisting of 77 labeled datasets from
11 representative NLG tasks1, including common-
sense generation, data-to-text generation, open-
ended dialogue system, paraphrase generation,
question answering, question generation, story gen-
eration, task-oriented dialogue system, text simpli-
fication, text style transfer, and text summarization.
These datasets come from various domains and
are of different sizes. Some datasets are elabo-
rately hand-crafted and thus relatively small in size,
while others are created for large-scale weak super-
vision. The detailed descriptions of these tasks can
be found in Appendix A.1.

Next, we convert the different input data X of
each task into a unified text-to-text format. For

1We do not consider machine translation tasks but only
focusing on English tasks in this work.
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instance, we linearize structured data (e.g., knowl-
edge graph or table) by concatenating triples or
key-value pairs using the special token “[SEP]” for
data-to-text generation, and we utilize the special
token “[X_SEP]” to separate answer and paragraph
for question generation. The transformed input
format for each task can be found in Appendix E.

We divide MVPCorpus into two parts, which are
used for pre-training and fine-tuning (evaluation),
respectively. For supervised pre-training, we uti-
lize 50 datasets from 7 tasks, including data-to-text
generation, open-ended dialogue system, question
answering, question generation, story generation,
task-oriented dialogue system, and text summariza-
tion. We also eliminate pre-training examples over-
lapping with evaluation data to avoid data leakage
(more details in Appendix A.2). Finally, we have
a 25GB supervised pre-training corpus containing
32M examples. The statistics of the datasets for
pre-training are listed in Table 9.

For evaluation, we utilize the rest of the 27
datasets, which are more commonly used in the
literature. Among these datasets, 23 datasets are
from the 7 tasks used in pre-training. We refer to
them as seen tasks and use them to test the effec-
tiveness of our model. The remaining 4 datasets are
from the tasks of commonsense generation, para-
phrase generation, simplification, and style transfer,
respectively. We call them unseen tasks and use
them to examine the generality of our model.

3.2 Model Architecture

Our MVP model is built on the standard Trans-
former encoder-decoder architecture (Vaswani
et al., 2017). Compared to decoder-only PLMs
such as GPT-3 (Brown et al., 2020) and prefix LMs
such as UniLM (Dong et al., 2019), the encoder-
decoder architecture is more effective for text gen-
eration tasks (Raffel et al., 2020). In the first stage,
we pre-train the MVP backbone using a mixture of
labeled datasets from seven tasks. To indicate each
task, we apply human-written instructions to each
task instance. For example, we write “Summarize:”
as the prompt for summarization tasks. The manual
instructions for each task are shown in Appendix E.

In the second stage, we freeze the MVP back-
bone and pre-train a set of task-specific prompts
(i.e., continuous vectors) to stimulate the model’s
capacity to perform some specific task. Specially,
we follow prefix-tuning (Li and Liang, 2021) to
insert continuous vectors at each Transformer layer

and learn them using a mixture of corresponding
intra-task datasets (i.e., datasets under the same
task2). Compared to prompt tuning (Lester et al.,
2021), which only adds prompts to the input layer,
layer-wise prompts are more effective and sta-
ble (Liu et al., 2022), especially for NLG tasks.
These soft prompts, which are not shared between
tasks, encode task-specific semantic knowledge to
alleviate the blurring-out problem induced by multi-
task learning (He and Choi, 2021).

3.3 Training Details

Our MVP model adopts a Transformer with 12
layers in both the encoder and decoder (406M
parameters), the same as the model size of
BARTLARGE (Lewis et al., 2020). We initialize
the backbone with the BART parameters to pro-
vide a good starting point for NLG tasks following
previous work (Dong et al., 2019; Zhang et al.,
2020). We pre-train the model with a batch size
of 8,192 and adopt a temperature-scaled mixing
strategy (Raffel et al., 2020) with a rate of T = 2
to mitigate the disparity in tasks and datasets.

We follow prefix-tuning (Li and Liang, 2021)
to pre-train task-specific prompts by prepending
trainable vectors to multi-head attention modules at
each layer. The prompt length is set to 100, and we
utilize the MLP reparameterization function with a
hidden size of 800 to improve the training robust-
ness and performance (Li and Liang, 2021). Hence,
every task prompts have approximately 62M pa-
rameters. Then, we freeze the MVP model and
train seven groups of task-specific prompts, each
of which corresponds to a different task.

In the two stages, the maximum length of both
input and output sequences is set to 1,024 for sup-
porting examples to contain more tokens. We
optimize the model with a constant learning rate
of 3× 10−5 using standard sequence-to-sequence
cross-entropy loss. We apply the AdamW opti-
mizer with β1 = 0.9, β2 = 0.98, ϵ = 1× 10−6 to
improve training stability (Liu et al., 2019b). The
weight decay coefficient is 0.1. For testing, we
select the checkpoint with the highest validation
performance. All the experiments are conducted
on 32 NVIDIA Tesla V100 32GB GPUs. We im-
plement our model using the text generation library
TextBox (Tang et al., 2022a).

2For instance, we train summarization-specific prompts
using summarization datasets, e.g., Newsroom (Grusky
et al., 2018), WikiHow (Koupaee and Wang, 2018), and
MSNews (Liu et al., 2021a).
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Methods
CNN/DailyMail WebNLG SQuAD (QG) CoQA

R-1 R-2 R-L B-4 ME R-L B-4 ME R-L F1 EM

MVP 44.52 21.62 41.10 67.82 47.47 76.88 26.26 27.35 53.49 86.43 77.78
BART 44.16e 21.28 40.90 64.55b 46.51 75.13 22.00f 26.40 52.55 68.60f –
Flan-T5 43.45 21.01 40.03 66.60 46.93 75.76 25.55 26.90 53.51 84.18 75.44
Single 44.36 21.54 40.88 67.74 46.89 76.94 26.09 27.15 53.29 86.20 77.26

MVP+S 44.63 21.72 41.21 68.19 47.75 76.81 25.69 27.04 53.20 86.65 77.93
MVP+R 44.14 21.45 40.72 67.61 47.65 76.70 25.71 27.03 53.09 85.95 77.22
MVP+M 43.97 21.16 40.46 67.45 47.57 76.81 25.46 26.79 52.95 86.28 77.26

SOTA 47.16a 22.55 43.87 66.14b 47.25 76.10 25.97c 27.33 53.43 84.50d –

Methods
ROCStories PersonaChat MultiWOZ

B-1 B-2 D-1 D-4 B-1 B-2 D-1 D-2 B-4 Success Inform

MVP 33.79 15.76 3.02 75.65 50.73 40.69 1.65 11.23 20.26 76.40 85.00
BART 30.70g 13.30 – 69.90 49.90f 40.00 1.30 8.00 17.89j 74.91 84.88
Flan-T5 32.72 15.23 2.97 68.97 48.55 40.22 1.40 7.85 19.73 70.20 78.70
Single 32.67 15.29 2.72 72.97 49.96 40.53 1.27 7.63 19.73 75.60 83.70

MVP+S 33.92 15.60 3.44 80.58 47.91 39.97 1.52 9.54 20.32 79.90 86.80
MVP+R 32.93 15.32 2.88 73.83 48.45 40.09 1.30 7.95 19.02 73.30 81.80
MVP+M 33.30 15.51 2.71 74.24 46.26 39.30 1.36 8.07 19.93 72.70 79.70

SOTA 33.40g 15.40 – 69.30 49.90f 40.00 1.50h 9.40 20.50i 85.30 94.40

Table 2: The main results on seven seen tasks under full tuning settings. The best and second-best results among
all the methods are marked in bold and underlined, respectively. The SQuAD dataset here is used for the question
generation task. The letters B, R, D, and ME denote BLEU, ROUGE, Distinct, and METEOR, respectively. “–”
means the work does not compute the corresponding result. a (Ravaut et al., 2022) b (Ke et al., 2021) c (Bao
et al., 2021) d (Xiao et al., 2020) e (Lewis et al., 2020) f (Liu et al., 2021a) g (Guan et al., 2021) h (Chen
et al., 2022) i (He et al., 2022) j (Lin et al., 2020c)

In summary, we pre-train a 406M generation
model MVP and seven groups of 62M task-specific
prompts. For each downstream task, users can ei-
ther utilize the backbone (406M) directly or further
combine MVP with task-specific prompts (468M).

4 Experiment Results

In this section, we mainly investigate the effective-
ness and generality of our MVP model. We conduct
extensive experiments in different settings:

• Under full tuning scenarios, we employ the
27 generation datasets and the GLUE bench-
mark (Wang et al., 2019) for evaluation. Sec-
tion 4.1 and Appendix C analyze the results on 23
datasets from 7 seen tasks. Section 4.3 includes
the results of 4 unseen generation tasks and 8 un-
derstanding tasks. To better compare with ExT5,
we conduct experiments on the GEM bench-
mark (Gehrmann et al., 2021) in Appendix C.2.

• In zero-shot learning, we compare our models
with T0 in Section 4.2.

• In parameter-efficient tuning settings, we uti-
lize the same datasets as in Section 4.1, and the

results can be found in Section 4.4.

• We conduct a human evaluation in Section 4.5.

For the full tuning setting (Tables 2 and 11),
we fine-tune the entire model (including the back-
bone MVP and prompts), while for the parameter-
efficient tuning (Table 6), we only fine-tune
prompts but freeze the parameter weights of MVP.
We optimize the model via the seq2seq loss with
label smoothing (Szegedy et al., 2016) factor
of 0.1 and the AdamW optimizer with default
hyper-parameters. We sweep over the batch size
in {16, 64, 256} and the learning rate in {5 ×
10−6, 1×10−5, 3×10−5} to find the optimal hyper-
parameters for each evaluation task. We utilize the
checkpoint with the best validation performance
for test set inference. During inference, we set the
beam size to 5 and the no-repetitive ngram size to
3. Details regarding fine-tuning and evaluation can
be found in Appendix B.

4.1 Full Tuning Performance

We conduct experiments on seven new datasets of
seven seen tasks to verify the effectiveness of our
two-stage pre-training method. We design several
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Methods
CNN/DailyMail WebNLG SQuAD (QG) CoQA

R-1 R-2 R-L B-4 ME R-L B-4 ME R-L F1 EM

FT BART 44.16 21.28 40.90 64.55 46.51 75.13 22.00 26.40 52.55 68.60 –
FT MVP 44.52 21.62 41.10 67.82 47.47 76.88 26.26 27.35 53.49 86.43 77.78

T0-3B – – – 01.40 10.20 18.43 3.06 12.43 14.91 13.30 06.60
T0-11B – – – 00.26 06.13 14.12 2.63 07.00 15.25 09.18 04.36
MVP 29.50 11.29 25.92 34.42 31.33 52.33 2.90 13.94 15.48 29.40 18.20
MVP+S 25.60 09.51 22.67 39.43 34.32 55.34 2.96 15.23 18.23 52.40 37.30

Methods
ROCStories PersonaChat MultiWOZ

B-1 B-2 D-1 D-4 B-1 B-2 D-1 D-2 B-4 Success Inform

FT BART 30.70 13.30 – 69.90 49.90 40.00 1.30 8.00 17.89 74.91 84.88
FT MVP 33.79 15.76 3.02 75.65 50.73 40.69 1.65 11.23 20.26 76.40 85.00

T0-3B 08.69 3.02 04.37 35.49 23.20 23.57 2.56 12.06 0.02 2.50 22.10
T0-11B 00.63 0.16 12.41 92.86 32.17 28.35 1.56 07.19 0.00 3.90 22.10
MVP 01.01 0.31 07.18 86.26 35.54 32.71 2.87 16.38 3.08 2.50 22.20
MVP+S 10.52 3.54 02.13 69.55 37.04 33.38 2.66 14.84 0.38 2.50 22.10

Table 3: The results on seven unseen datasets in zero-shot learning. Given that T0 has been pre-trained on the
CNN/DailyMail dataset, we exclude their results to provide a fair comparison (denoted as “–”).

model variants. In the first stage, MVP uses multi-
task supervised pre-training, and we compare it
with two others using different training strategies:

• BARTLARGE (Lewis et al., 2020): BART is a
widely used PLM for natural language genera-
tion using denoising auto encoding as the unsu-
pervised pre-training objective.

• Flan-T5LARGE (Chung et al., 2022): Flan-T5 is
a recent language model trained in a supervised
manner on various NLP tasks, which can be a
strong competitor to our model.

• Single-task pre-training (Single): We individ-
ually train a single model for each task using
intra-task datasets under the same pre-training
settings in multi-task training. For instance, we
pre-train a summarization model using summa-
rization datasets (e.g., Newsroom, WikiHow, and
MSNews). Therefore, we have seven single-task
pre-trained models in total.

For the second stage that integrates single-task
pre-trained prompts (denoted as MVP+S), we com-
pare it with two variants using different prompts:

• Randomly initialized prompts (MVP+R): The
layer-wise prompts for the MVP model are ran-
domly initialized without pre-training.

• Multi-Task pre-trained prompts (MVP+M):
We only pre-train one group of prompts for all
tasks, using the same mixed datasets as in the
backbone pre-training.

Besides these variants, we further include the
best-reported results from original papers in the
literature for comparison (denoted as SOTA). From
the results in Table 2, we can see that:

First, supervised pre-training models (i.e., MVP,
Flan-T5, and Single) achieve better performance
than the unsupervised pre-trained model BART,
yielding an average improvement of 9.3%, 3.13%,
and 4.4% (in ratio), respectively. This finding veri-
fies the effectiveness of our supervised pre-training
method, which enables the model to acquire more
task-specific information. Regarding multi-task
pre-training (MVP) and single-task (Single), our
MVP model outperforms its single-task counter-
parts by 5.0%. This result indicates that the multi-
task learning approach can enhance single-task per-
formance by learning transferable semantic infor-
mation across tasks. Notably, our MVP model
outperforms Flan-T5 by 5.8%, which shows the
significance of training on our NLG dataset collec-
tion, MVPCorpus.

Second, task-specific prompt learning is effec-
tive to alleviate the “blurring-out” issue of multi-
task learning. For tasks such as data-to-text genera-
tion and question answering, MVP with the single-
task prompt (MVP+S) consistently surpasses the
other two variants (MVP+R and MVP+M). This
verifies that task-specific prompts can acquire task-
specialized knowledge and stimulate the capacity
of the MVP model to perform certain tasks.

Finally, our supervised pre-training approach
achieves five new SOTA results on data-to-text gen-
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AESOP
Quora

B-4 R-1 R-2 R-L ME

+BART 47.30a 73.30 54.10 75.10 49.70
+MVP 49.81 74.78 56.84 76.34 53.40

SC & BLEU
GYAFC E&M GYAFC F&R

B-4 Accuracy HM B-4 Accuracy HM

+BART 76.50b 93.70 83.90 79.30 92.00 85.20
+MVP 77.18 94.49 84.96 79.43 92.12 85.31

Table 4: The results of unseen NLG tasks. We use AESOP and SC & BLEU to denote the methods proposed by Sun
et al. (2021) and Lai et al. (2021), respectively. a (Sun et al., 2021) b (Lai et al., 2021)

Methods
CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Average
Matt. Acc. F1/Acc. P/S Corr. F1/Acc. m./mm. Acc. Acc.

BART 60.30 96.30 90.47 / 86.70 90.97 / 90.30 73.03 / 89.87 90.03 / 89.27 94.60 79.83 85.17
MVP 59.87 96.43 92.07 / 89.43 91.37 / 90.90 73.20 / 90.13 89.70 / 88.73 95.10 82.87 85.88

Table 5: The results of NLU tasks on the GLUE benchmark.

eration, question generation, question answering,
story generation, and open-ended dialogue tasks.
We also achieve SOTA performance in six out of
eight datasets in Table 11, which shows the strong
text generation capability of our MVP model. As
for the remaining tasks, the SOTA models incorpo-
rate tailored techniques, e.g., the re-ranking frame-
work (Ravaut et al., 2022) and various task-specific
objectives (He et al., 2022), which yield better per-
formance. In contrast, our MVP model can produce
competitive results just with a general architecture
and a unified learning objective.

4.2 Zero-shot Performance
Since we do not pre-train MVP on the seven com-
monly used datasets, we further conduct zero-shot
experiments to see the domain transfer abilities of
our models. We include T0-3B and T0-11B (Sanh
et al., 2022) as our baselines, which are large mod-
els trained on various downstream tasks. The re-
sults are listed in Table 3. We can observe that
our small MVP model (406M) outperforms T0-
3B and T0-11B in all metrics with a large margin,
except for few metrics on ROCStories and Multi-
WOZ. This demonstrates the effectiveness of using
supervised pre-training on our MVPCorpus.

However, all tasks demonstrate that models in
the zero-shot setting perform significantly worse
than those with full tuning settings. This suggests
that training strategies that are effective for NLU
tasks may not produce satisfactory results for NLG
tasks. Even though our model has acquired task
knowledge, it struggles to perform well in a new
domain without being fine-tuned. Hence, it is still
necessary to develop specific NLG models for cer-
tain tasks and domains. Our MVP models can be
effective models for further investigation.

4.3 Generality to Unseen Tasks

In this subsection, we test our MVP model on un-
seen NLG and NLU tasks to verify its generality.

Unseen NLG Tasks. According to Deng et al.
(2021), an NLG task can be assigned to one of
the following three categories: compression (e.g.,
summarization), transduction (e.g., translation), or
creation (e.g., story generation). Since we do not
include any transduction tasks during pre-training,
we evaluate our MVP model using two unseen
transduction NLG tasks: paraphrase generation and
text style transfer. We select the SOTA methods for
these two tasks, i.e., AESOP (Sun et al., 2021) for
paraphrase generation and SC & BLEU (Lai et al.,
2021) for text style transfer, and replace their back-
bone BART with our MVP model for comparison.
From the results in Table 4, we can see that our
model outperforms BART by a ratio of 2.3% and
achieves two new SOTA results, which verifies the
strong generality of our model. This finding shows
that our MVP model is more capable than BART
and can serve as a general yet effective backbone.

Unseen NLU Tasks. Although MVP is designed
especially for NLG tasks, we also evaluate its per-
formance on unseen NLU tasks using the widely
used GLUE benchmark (Wang et al., 2019). We
compare our model to BARTLARGE using its se-
quence classification method (Lewis et al., 2020).
According to the results presented in Table 5, our
MVP model outperforms BART on 9 of 12 metrics
and has a superior overall performance of 0.71%.
This result indicates the generality ability of our
MVP model and further demonstrates that super-
vised pre-training not only learns generation ability
but also improves overall semantic representations.
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Methods
CNN/DailyMail WebNLG SQuAD (QG) CoQA

R-1 R-2 R-L B-4 ME R-L B-4 ME R-L F1 EM

MVP+S 43.03 20.27 39.72 66.73 47.42 76.36 25.28 26.66 52.69 86.44 76.84
BART+R 42.47 19.82 39.15 65.54 46.86 75.24 24.27 26.07 52.03 82.22 71.92
MVP+R 42.84 20.21 39.61 66.12 47.12 75.83 25.05 26.34 52.57 85.51 75.56
MVP+M 42.99 20.36 39.70 66.40 47.16 75.89 25.24 26.49 52.88 85.90 76.34

FT BART 44.16 21.28 40.90 64.55 46.51 75.13 22.00 26.40 52.55 68.60 –
FT MVP 44.52 21.62 41.10 67.82 47.47 76.88 26.26 27.35 53.49 86.43 77.78

Methods
ROCStories PersonaChat MultiWOZ

B-1 B-2 D-1 D-4 B-1 B-2 D-1 D-2 B-4 Success Inform

MVP+S 32.94 15.12 2.98 71.09 47.11 39.51 1.39 7.28 19.24 71.40 77.80
BART+R 32.14 14.71 2.85 68.94 46.23 38.98 1.30 6.82 17.94 62.20 69.20
MVP+R 32.28 14.85 2.97 70.29 46.70 39.23 1.31 6.98 18.86 64.40 71.40
MVP+M 32.62 15.28 2.95 69.58 46.78 39.40 1.33 7.13 19.13 67.20 72.90

FT BART 30.70 13.30 – 69.90 49.90 40.00 1.30 8.00 17.89 74.91 84.88
FT MVP 33.79 15.76 3.02 75.65 50.73 40.69 1.65 11.23 20.26 76.40 85.00

Table 6: The results on seven seen tasks under parameter-efficient settings. We also include the results of BART and
MVP under the full tuning setting (denoted as FT) for comparison.

4.4 Parameter-Efficient Tuning Performance

In the lightweight fine-tuning setting, we only
tune the prompts while freezing the backbone
MVP model to verify its effectiveness in resource-
constrained situations. Besides our MVP+S model,
we consider comparing the following methods:

• Prefix-tuning (Li and Liang, 2021): Prefix-
tuning is a popular prompt-based lightweight
tuning method for text generation. We employ
BART as its backbone, denoted as BART+R.

• Only tuning randomly initialized prompts
(MVP+R): This variant only tunes the randomly
initialized prompts of MVP+R, and it shares a
similar idea with prefix-tuning.

• Only tuning multi-task pre-trained prompts
(MVP+M): This variant only tunes the multi-task
pre-trained prompts of MVP+M. Such an idea
has been used in SPoT (Vu et al., 2022).

From the experimental results in Table 6, we
can see that: the good performance of the MVP
model in lightweight settings further demonstrates
the effectiveness of supervised pre-training. By
comparing two randomly initialized prompting
methods (BART+R and MVP+R), we can see
that MVP+R achieves superior performance to
BART+R (+2.0%) due to its multi-task supervised
backbone. Furthermore, when initialized with pre-
trained prompts, MVP+S and MVP+M achieve
improved results over MVP+R, which is consis-
tent with the findings of SPoT (Vu et al., 2022).

Datasets MVP wins (%) Ties (%) BART wins (%)

CNN/DM 46.50 10.67 42.83
WebNLG 32.17 45.67 22.17

ROCStories 46.50 11.33 42.17
PersonaChat 35.33 34.00 30.67

Table 7: Human evaluation on four tasks with Krippen-
dorff’s α = 0.418, which measures the inter-annotator
correlation of human judges.

When compared with MVP+M, MVP+S performs
marginally better by 1.2%, indicating that task-
specific prompts are useful to improve the model
in generation tasks. Surprisingly, our lightweight
MVP+S can even outperform fully tuned BART
on tasks such as question generation and question
answering, showcasing the effectiveness of the pro-
posed supervised pre-training approach.

4.5 Human Evaluation

Considering that there exists a certain gap between
automatic metrics and human judgments (Sai et al.,
2022), we further conduct a human evaluation to
better demonstrate the generation capabilities of
our MVP model. We compare MVP with BART
on four tasks, including text summarization, data-
to-text generation, open-ended dialog system, and
story generation. Following the practices of van
der Lee et al. (2021), we utilize a stratified sample
of 100 inputs of low, medium, and high word fre-
quency for each task. We invite six human judges
to evaluate the generated texts of MVP and BART.
Then they need to choose which one is better or
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Methods #NLG (PT) #NLU (PT) #NLG (FT) #NLU (FT) SP model SP prompts Open source

FLAN 3 9 2 9 ✓ ✗ ✗
T0 2 6 0 4 ✓ ✗ ✓
Muppet 1 3 1 3 ✓ ✗ ✓
ExT5 3 8 6 8 ✓ ✗ ✗
SPoT 1 4 0 6 ✗ ✓ ✗
MVP (ours) 7 0 11 3 ✓ ✓ ✓

Table 8: Comparison of MVP with existing supervised pre-training works. #NLG/#NLU are the number of NLG and
NLU tasks, respectively. PT, FT, and SP denote pre-training, fine-tuning, and supervised pre-training, respectively.

choose a tie according to fluency, informativeness,
consistency, task features, etc. More human eval-
uation details are listed in Appendix D. Table 7
showcases the proportions of “MVP wins”, “Ties”,
and “BART wins” for each dataset. From the re-
sults, we can see that MVP can generate overall
better texts than BART from a human perspective.

5 Discussion

Differences with Existing Methods. To the best
of our knowledge, existing supervised pre-training
works mainly focus on NLU tasks (Aghajanyan
et al., 2021; Aribandi et al., 2022) or a small num-
ber of NLG tasks (Lin et al., 2020b; Su et al., 2022).
Given the superior performance achieved by su-
pervised pre-training approaches, it is important to
explore supervised pre-training for deriving both ef-
fective and general NLG models. Our work makes
a significant contribution in this direction, achiev-
ing SOTA performance with a single model on 13
of 17 datasets. Compared with its strong counter-
part, ExT5 (Aribandi et al., 2022), our MVP model
outperforms it in 26 out of 27 metrics (detailed in
Appendix C.2). In order to better understand the
difference between our work and previous super-
vised (multi-task) pre-training studies, we present
a detailed comparison in Table 8. As we can see,
our work conducts the study with the largest num-
ber of NLG tasks for both supervised pre-training
and fine-tuning, incorporates task-specific prompts,
and also releases all the important resources for
reproducing or reusing our work.

Applicability. To facilitate the application of our
work, we have released the collection corpus, pre-
trained models, task-specific prompts, and gener-
ated texts. Our collected MVPCorpus is the largest
NLG task collection, which can be a high-quality
resource for recent LLMs (Zhao et al., 2023). We
can use all the data to pre-train a general model or
select a subset to continue pre-training a domain- or
task-specific model (Gururangan et al., 2020) Our

MVPCorpus can also be considered as the evalua-
tion benchmark for different NLG tasks. Further-
more, our MVP model can be employed to achieve
competitive results in various NLG tasks. Users
can fine-tune the MVP model or integrate it with
task-specific prompts based on sufficient labeled
data. Notably, our MVP model can be directly em-
ployed to obtain good performance in zero-shot
learning. In addition, our MVP model can provide
effective parameter initialization for improving ex-
isting methods, as described in Section 4.3. Finally,
the task-specific prompts and the generated texts
can be further used to study the task similarity and
their effect on the multi-task pre-training.

6 Conclusion

In this paper, we present Multi-task superVised
Pre-training (MVP) for natural language genera-
tion. Firstly, we collect a large-scale NLG cor-
pus, MVPCorpus, from 77 datasets over 11 di-
verse NLG tasks. After converting various NLG
tasks into a unified text-to-text format, we propose
multi-task supervised pre-training to learn an ef-
fective and general model MVP with task-specific
prompts for NLG tasks. Extensive experiments
have demonstrated that: (1) supervised pre-training
is beneficial for NLG tasks as an effective solution.
Our MVP model outperforms its strong counter-
parts BART and Flan-T5 and even achieves SOTA
performance on 13 out of 17 datasets; (2) super-
vised pre-trained models have strong generality on
unseen generation or even understanding tasks.

In future work, we will explore the multilin-
gual version of our MVP model by covering more
datasets in other languages. Such a model is ex-
pected to capture language-independent task char-
acteristics and improve generation tasks in the mi-
nority language. Besides, it is interesting to study
how different tasks relate to each other in the uni-
fied semantic space, which can inspire methods
that incorporate task relations as prior.
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Limitations

Despite our efforts to collect as many generation
tasks and datasets as possible, we only evaluate the
generation quality and generality of our models on
a small number of tasks and datasets. The inter-
pretability and robustness of our models require
further analysis. Besides, there exists subjectiv-
ity when collecting downstream tasks and intra-
task datasets, albeit our attempts to employ widely-
recognized categorizations from the literature. Due
to the limitation of computing power, we do not
study the performance of our method at different
model scales. The effectiveness of multi-task pre-
training from scratch, similar to ExT5 (Aribandi
et al., 2022), also merits an in-depth study.

Broader Impacts

In this paper, we pre-trained a language model
MVP using labeled NLG datasets. According to
the research (Bender et al., 2021; Bommasani et al.,
2021), PLMs tend to “remember” what they have
“seen” in the pre-training corpus. This could result
in the reproduction of undesirable biases from pre-
training data on downstream tasks. Training data
intervention could be a solution to alleviate this
issue (Lu et al., 2020). It is also interesting to in-
vestigate whether supervised pre-training produces
fewer biases than unsupervised pre-training.

Environmental impact is another factor we
should consider. We attempt a more efficient pre-
training strategy and released our PLM for future
work. In contrast to large PLMs with tens of bil-
lions of parameters, such as T5 (Raffel et al., 2020)
and GPT-3 (Brown et al., 2020), we pre-train only
a small model with hundreds of millions of pa-
rameters. In addition, we utilize supervised pre-
training data and initialize our model with pre-
trained BART, both of which improve the conver-
gence of our model. Ultimately, our model is pre-
trained for about 20, 000 steps, whereas the BART
of the same size is pre-trained for 500, 000 steps.

Reproducibility

For reproducing and reusing our work, we have
released the collection MVPCorpus, the mod-
els (e.g., MVP, task-specific prompts, and multi-
task variants), intermediate results (e.g., the gen-
erated texts), and source codes for pre-training
and fine-tuning at the link: https://github.com/
RUCAIBox/MVP. The detailed settings of the experi-
ments are listed in Appendix B. We hope that these
open-source resources will facilitate future work
on supervised pre-training and contribute to the
advancement of NLG research.
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A Tasks and Datasets

A.1 Description of Tasks and Datasets
We provide the details of the tasks and datasets
used in our paper for pre-training and fine-tuning
in Tables 9 and 10. If the dataset for pre-training
does not have a valid set, we divide 10% of the
training set for validation.

We list the licenses for all datasets if they
have them. All datasets are publicly available.
The majority of them can be directly down-
loaded from GitHub or Google Drive. ROCSto-
ries (Mostafazadeh et al., 2016) and Common-
Gen (Lin et al., 2020a) can be obtained after filling
out a form. GYAFC (Rao and Tetreault, 2018) is
accessible after requesting Yahoo and the authors
of the dataset.

The tasks and datasets we use in this paper are
as follows:

• Data-to-text generation aims to generate de-
scriptive text about structured data, such as the
knowledge graph and the table. We use the fol-
lowing datasets for pre-training:

1. AGENDA (Koncel-Kedziorski et al., 2019);
2. ENT-DESC (Cheng et al., 2020);
3. GenWiki (Jin et al., 2020);
4. LogicNLG (Chen et al., 2020a);
5. TEKGEN (Agarwal et al., 2021);
6. WEATHERGOV (Liang et al., 2009);
7. WikiTableT (Chen et al., 2021).

We utilize the following datasets for fine-tuning
evaluation:

1. WebNLG (Gardent et al., 2017), we utilize
version 2.1;

2. WikiBio (Lebret et al., 2016).

• Open-ended dialogue system, also known as
chatbots, is focused on daily communication. We
use the following datasets for pre-training:

1. Cleaned OpenSubtitles Dialogs (Cleaned
OS Dialogs) (Welivita et al., 2021), which
is a cleaned variant of OpenSubtitles Di-
alogs (Lison et al., 2018);

2. CMU Document Grounded Conversations
(CMUDog) (Zhou et al., 2018);

3. Curiosity (Rodriguez et al., 2020);
4. DREAM (Sun et al., 2019);
5. Empathetic Dialogues (Rashkin et al.,

2019);

6. Movie Dialog (Dodge et al., 2016);
7. MuTual (Stratos, 2019);
8. OpenDialKG (Moon et al., 2019);
9. Topical-Chat (Gopalakrishnan et al., 2019);

10. Wizard of Wikipedia (Dinan et al., 2019).

We utilize the following datasets for fine-tuning
evaluation:

1. DailyDialog (Li et al., 2017);
2. DSTC7-AVSD (Alamri et al., 2018);
3. PersonaChat (Zhang et al., 2018).

• Paraphrase generation involves rewriting a sen-
tence with the same semantic meaning but a dif-
ferent syntactic or lexical form. We utilize the
following datasets for fine-tuning evaluation:

1. Quora (also known as QQP-Pos) (Kumar
et al., 2020), which is a subset of Quora
Question Pairs3.

• Question answering requires the model to an-
swer a question based on optional background
information. Note that we conduct this task in a
generative way in our paper. We use the follow-
ing datasets for pre-training:

1. HotpotQA (Yang et al., 2018);
2. MS MARCO (Nguyen et al., 2016);
3. MSQG (Liu et al., 2021a), since it is de-

signed for QG, we reverse the question and
answer to enrich QA examples;

4. NarrativeQA (Kočiský et al., 2018);
5. Natural Questions (Kwiatkowski et al.,

2019);
6. NewsQA (Trischler et al., 2017);
7. QuAC (Choi et al., 2018);
8. TriviaQA (Joshi et al., 2017);
9. WebQuestions (Berant et al., 2013).

We utilize the following datasets for fine-tuning
evaluation:

1. CoQA (Reddy et al., 2019);
2. SQuAD (Rajpurkar et al., 2016), we utilize

version 1.1.

• Question generation generates a coherent ques-
tion given a passage and its corresponding an-
swer. We use the following datasets for pre-
training:

3https://www.kaggle.com/c/
quora-question-pairs
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1. HotpotQA (Yang et al., 2018);
2. MS MARCO (Nguyen et al., 2016);
3. MSQG (Liu et al., 2021a);
4. NarrativeQA (Kočiský et al., 2018);
5. NewsQA (Trischler et al., 2017);
6. QuAC (Choi et al., 2018).

Most of them are QA tasks, and we invert the
question and answer to enrich QG examples.

We utilize the following datasets for fine-tuning
evaluation:

1. CoQA (Reddy et al., 2019);
2. SQuAD (Rajpurkar et al., 2016), we utilize

version 1.1.

• Story generation creates a long and informa-
tive text with a short title. We use the following
datasets for pre-training:

1. ChangeMyView (Hua and Wang, 2020);
2. English Gigaword (Rush et al., 2015);
3. Hippocorpus (Sap et al., 2020);
4. WikiPlots (Markriedl);
5. WritingPrompts (Fan et al., 2018), we split

the original training set for pre-training and
corresponding validation.

Considering English Gigaword is a large sum-
marization dataset, we use the summary as the
title to generate the passage in turn to enrich the
examples of story generation.

We utilize the following datasets for fine-tuning
evaluation:

1. ROCStories (Mostafazadeh et al., 2016);
2. WritingPrompts (Fan et al., 2018), we use

the sets created by Guan et al. (2021) (who
split the original valid and test sets for train-
ing, validation, and testing) to fine-tune our
model for a fair comparison.

• Task-oriented dialogue system meets the real-
life needs of users, such as restaurant reservations
and airplane bookings. We use the datasets for
pre-training, following Su et al. (2022):

1. CamRest676 (Wen et al., 2017);
2. Frames (El Asri et al., 2017);
3. KVRET (Eric et al., 2017);
4. MetaLWOZ (Lee et al., 2019);
5. MSR-E2E (Li et al., 2018);
6. MultiWOZ (Budzianowski et al., 2018);

7. Schema-Guided (Rastogi et al., 2020a);
8. TaskMaster (Byrne et al., 2019);
9. WOZ (Mrkšić et al., 2017).

We utilize the following datasets for fine-tuning
evaluation:

1. MultiWOZ (Budzianowski et al., 2018), we
utilize version 2.0.

• Text style transfer modifies the style (e.g., senti-
ment and formality) of given texts while retaining
their style-independent content. We utilize the
following datasets for fine-tuning evaluation:

1. GYAFC (Rao and Tetreault, 2018), which
has two sub-domains: “Entertainment and
Music” (E&M) and “Family and Relation-
ships” (F&R).

• Text summarization condenses a long docu-
ment into a brief text while retaining the essen-
tial details. We use the following datasets for
pre-training:

1. English Gigaword (Graff et al., 2003), we
use the variant provided by Rush et al.
(2015);

2. MediaSum (Zhu et al., 2021);
3. MSNews (Liu et al., 2021a);
4. Newsroom (Grusky et al., 2018);
5. WikiHow (Koupaee and Wang, 2018).

We utilize the following datasets for fine-tuning
evaluation:

1. CNN/DailyMail (Hermann et al., 2015), we
use the variant provided by See et al. (2017);

2. SAMSum (Gliwa et al., 2019);
3. XSum (Narayan et al., 2018).

To better compare with ExT5 (Aribandi et al.,
2022), we utilize the language generation bench-
mark GEM (Gehrmann et al., 2021) for fine-tuning
evaluation. GEM includes five tasks:

• Commonsense generation:

1. CommonGen (CG) (Lin et al., 2020a).

• Data-to-text generation:

1. DART (Nan et al., 2021);
2. E2E NLG cleaned (Novikova et al., 2017);
3. ToTTo (Su et al., 2021);
4. WebNLG (Gardent et al., 2017).
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• Dialogue system:

1. Schema-Guided Dialog (SGD) (Rastogi
et al., 2020b).

• Text simplification:

1. WikiAuto + Turk/ASSET (WiA-T/A) (Jiang
et al., 2020; Xu et al., 2016; Alva-Manchego
et al., 2020).

• Text summarization:

1. Wiki-Lingua (WLE) (Ladhak et al., 2020).

To test the generalization ability of our model,
we also utilize the natural language standing bench-
mark GLUE (Wang et al., 2019), which is com-
posed of three tasks:

• Natural language inference:

1. MNLI (Williams et al., 2018);
2. QNLI (Rajpurkar et al., 2016; Wang et al.,

2019);
3. RTE (Dagan et al., 2006; Haim et al., 2006;

Giampiccolo et al., 2007; Bentivogli et al.,
2009).

• Paraphrase detection:

1. MRPC (Dolan and Brockett, 2005);
2. QQP 3;
3. STS-B (Cer et al., 2017).

• Text classification:

1. CoLA (Warstadt et al., 2019);
2. SST-2 (Socher et al., 2013).

A.2 Data Leakage
Since our model is pre-trained on a large num-
ber of labeled datasets, it may have “seen” exam-
ples from fine-tuning test sets during pre-training,
which leads to an unfair comparison with other
methods. Hence, we eliminate the pre-training ex-
amples that share n-gram overlap with either of the
test datasets. Following Brown et al. (2020), n is
the 5th percentile example length in words, and the
maximum value of n is set to 13. Finally, we have
removed 17, 848 examples from the pre-training
datasets. The number of “cleaned” examples for
each dataset can be found in Table 9.
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Dataset #Train Cleaned #Train #Valid #Test Input Output License

AGENDA 38,720 38,720 1,000 1,000 52.1 141.2 N/A
ENT-DESC 88,652 88,652 11,081 11,081 279.9 31.0 N/A
GenWiki 681,436 681,436 75,716 1,000 21.4 29.5 MIT
LogicNLG 28,450 28,450 4,260 4,305 178.4 14.2 MIT
TEKGEN 6,310,061 6,307,995 788,746 796,982 17.0 21.2 CC BY-SA 2.0
WEATHERGOV 25,000 25,000 1,000 3,528 148.7 30.6 N/A
WikiTableT 1,453,794 1,452,778 4,533 4,351 81.0 99.7 MIT

Cleaned OS Dialogs 13,355,487 13,355,368 1,483,944 - 75.5 16.7 N/A
CMUDoG 82,818 82,818 5,555 14,510 433.0 12.2 N/A
Curiosity 64,930 64,551 8,539 8,495 144.4 20.2 CC BY-NC 4.0
DREAM 14,264 14,242 4,709 4,766 75.6 13.6 N/A
Empathetic Dialogues 64,636 64,636 9,308 8,426 52.7 12.9 CC BY-NC 4.0
Movie Dialog 762,751 762,711 8,216 8,066 126.9 44.0 N/A
MuTual 33,691 33,691 4,090 3,248 53.6 14.5 N/A
OpenDialKG 69,680 69,680 7,743 - 54.2 12.4 CC BY-NC 4.0
Topical-Chat 179,750 179,750 22,295 22,452 223.3 20.0 CDLA-Sharing-1.0
Wizard of Wikipedia 148,357 147,702 15,767 15,564 297.0 16.7 MIT

HotpotQA 90,447 87,815 7,405 - 187.9 2.2 CC BY-SA 4.0
MS MARCO 681,445 681,226 77,580 - 68.7 13.3 N/A
MSQG 198,058 198,029 11,008 - 48.1 3.7 CC BY-SA 4.0
NarrativeQA 65,494 65,494 6,922 21,114 584.1 4.2 Apache 2.0
Natural Questions 96,676 96,676 10,693 6,490 9.0 2.1 CC BY-SA 3.0
NewsQA 97,850 97,700 5,486 5,396 726.8 5.0 MIT
QuAC 83,568 83,485 31,906 - 487.9 12.5 CC BY-SA 4.0
TriviaQA 78,785 78,785 8,837 11,313 14.0 2.0 Apache 2.0
WebQuestions 8,933 8,933 4,863 4,863 6.7 2.4 CC BY 4.0

HotpotQA 90,440 87,808 6,972 - 79.6 19.8 CC BY-SA 4.0
MS MARCO 681,445 681,226 77,580 - 75.9 6.0 N/A
MSQG 198,058 198,029 11,008 11,022 45.9 6.0 CC BY-SA 4.0
NarrativeQA 65,494 65,494 6,922 21,114 579.7 8.6 Apache 2.0
NewsQA 97,850 97,700 5,486 5,396 724.2 7.6 MIT
QuAC 69,109 69,026 26,301 - 496.7 6.5 CC BY-SA 4.0

ChangeMyView 42,462 42,459 6,480 7,562 17.9 104.1 MIT
English Gigaword 3,803,957 3,802,620 189,651 1,951 8.8 33.3 MIT
Hippocorpus 6,168 6,168 686 - 34.1 262.6 CDLA-Permissive 2.0
WikiPlots 101,642 101,641 11,294 - 3.4 338.5 N/A
WritingPrompts 272,600 272,518 15,620 15,138 28.4 630.8 MIT

CamRest676 4,872 4,872 616 - 55.3 9.4 N/A
Frames 26,631 26,631 2,106 - 116.1 13.0 MIT
KVRET 14,136 14,136 1,616 - 30.5 9.3 N/A
MetaLWOZ 176,073 176,073 17,912 - 45.6 8.0 N/A
MSR-E2E 103,362 103,362 5,235 - 51.3 12.8 Microsoft
Schema-Guided 494,946 494,933 73,089 - 120.8 12.5 CC BY-SA 4.0
TaskMaster 249,664 249,662 20,680 - 95.6 12.0 CC BY 4.0
WOZ 6,364 6,359 1,260 - 47.0 10.6 N/A

English Gigaword 3,803,957 3,802,620 189,651 1,951 33.3 8.8 MIT
MediaSum 443,596 442,021 10,000 10,000 1641.0 14.4 N/A
MSNews 136,082 135,937 7,496 7,562 309.9 9.8 CC BY-SA 4.0
Newsroom 995,041 989,351 108,837 108,862 642.4 26.7 N/A
WikiHow 157,252 157,247 5,599 5,577 502.6 45.6 CC BY-NC-SA

Table 9: The statistics and licenses of datasets for pre-training our MVP model. The #Train, #Valid, and #Test
denote the number of examples in the train, valid, and test sets, respectively. Cleaned #Train represents the number
of training examples after filtering. Input and Output are the average number of words (split by space) in the input
and output sequences, respectively.
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Task Dataset #Train #Valid #Test Input Output License

Commonsen generation CommonGen 67,389 993 – 5.5 11.6 MIT

Data-to-text generation

DART 62,659 2,768 – 27.5 21.5 MIT
E2E 33,525 4,299 – 9.5 20.6 CC BY-SA 4.0
ToTTo 120,761 7,700 – 37.8 18.0 CC BY-SA 3.0
WebNLG 34,338 4,313 4,222 18.0 19.9 CC BY-NA-SA 4.0
WebNLG (GEM) 35,426 1,667 – 17.7 22.7 CC BY-NA-SA 4.0
WikiBio 582,659 72,831 72,831 81.6 26.1 CC BY-SA 3.0

Open-ended dialogue

DailyDialog 76,052 7,069 6,740 72.5 13.9 CC BY-NC-SA 4.0
DSTC7-AVSD 76,590 17,870 1,710 148.2 11.5 MIT
PersonaChat 122,499 14,602 14,056 132.1 11.9 MIT
SGD 164,982 10,000 – 134.7 11.3 CC BY-SA 4.0

Natural language inference

MNLI-m
392,702

9,815 9,796
29.8 – Mixed

MNLI-mm 9,832 9,847
QNLI 104,743 5,463 5,463 36.6 – CC BY-SA 4.0
RTE 2,490 277 3,000 51.0 – N/A

Paraphrase generation Quora 137,185 3,000 3,000 10.9 10.8 N/A

Paraphrase detection
MRPC 3,668 408 1,725 43.8 – N/A
QQP 363,846 40,430 390,965 22.3 – N/A
STS-B 5,749 1,500 1,379 20.3 – N/A

Question answering CoQA 107,286 31,621 – 349.4 2.6 Mixed
SQuAD 75,722 10,570 11,877 156.2 3.6 CC BY-SA 4.0

Question generation CoQA 107,286 31,621 – 346.6 5.5 Mixed
SQuAD 75,722 10,570 11,877 148.3 11.6 CC BY-SA 4.0

Story generation ROCStories 176,688 9,816 4,909 9.0 40.7 N/A
WritingPrompts 53,516 4,000 2,000 25.5 150.4 MIT

Task-oriented dialogue MultiWOZ 170,220 22,074 22,116 128.3 11.3 MIT

Text classification CoLA 8,551 1,043 1,063 7.7 – N/A
SST-2 67,349 872 1,821 9.8 – N/A

Text simplification WiA-A
483,801 20,000

359
26.2 21.5 Mixed

WiA-T 359

Text style transfer GYAFC-E&M 52,595 11,508 1,416 9.9 10.6
N/A

GYAFC-F&R 51,967 11,152 1,332 10.7 11.3

Text summarization

CNN/DailyMail 287,227 13,368 11,490 679.8 48.3 MIT
SAMSum 14,732 818 819 103.4 20.3 CC BY-NC-ND 4.0
WLE 99,020 28,614 – 367.6 33.4 CC0 1.0
XSum 204,045 11,332 11,334 373.7 21.1 MIT

Table 10: The statistics and licenses of datasets for evaluating our MVP model. The license of the MNLI dataset is
composed of OANC, CC BY-SA 3.0, and CC BY 3.0. The license of the CoQA dataset is composed of CC BY-SA
4.0, MSR-LA, and Apache 2.0. The license of the WiA-A/T datasets is composed of CC BY-NC 3.0, CC BY-NC
4.0, and GNU General Public License v3.0.

8781



Methods
XSum SAMSum CoQA QG

R-1 R-2 R-L R-1 R-2 R-L B-4 ME R-L

BART 45.14d 22.27 37.25 51.74b 26.46 48.72 12.34c 35.78 46.88
MVP 45.60 22.47 37.42 53.78 29.12 49.37 23.48 47.79 55.09
MVP+S 45.67 22.63 37.50 53.81 29.75 49.43 23.43 47.49 55.25

SOTA 49.57a 25.08 41.81 53.89b 28.85 49.29 15.78c 40.15 50.98

Methods
WritingPrompts DailyDialog WikiBio

B-1 B-2 D-1 D-4 B-1 B-2 D-1 D-2 B-4

BART 22.40e 8.40 – 31.30 44.30f 39.20 3.90 21.10 –
MVP 32.34 13.11 2.12 64.58 46.19 41.81 4.61 25.06 48.42
MVP+S 30.12 11.46 3.97 83.70 45.71 42.92 5.10 27.14 48.19

SOTA 22.40e 8.40 – 31.30 46.10f 40.70 4.10 22.20 45.10g

Methods
DSTC7-AVSD SQuAD

B-1 B-2 B-3 B-4 ME R-L CIDEr F1 EM

BART 82.40f 69.10 58.20 48.70 31.30 63.50 1.38 91.56i 84.23
MVP 83.75 70.89 60.19 50.94 32.12 65.04 1.45 93.45 87.20
MVP+S 83.81 71.07 60.45 51.20 31.77 64.76 1.44 93.45 87.17

SOTA 83.20f 70.50 59.80 50.60 31.40 63.80 1.39 96.22h 91.26

Table 11: The results on six seen tasks under full tuning settings. a (Nguyen et al., 2021) b (Tang et al., 2022c)
c (Gu et al., 2021) d (Lewis et al., 2020) e (Guan et al., 2021) f (Chen et al., 2022) g (Chen et al., 2020b)
h (Raffel et al., 2020) i (Xu et al., 2021)

B Fine-tuning and Evaluation Details

In this section, we introduce the details for fine-
tuning and evaluating each downstream task.

For the experiments in Section 4 (Tables 2 and 6),
and Appendix C (Table 11), the fine-tuning details
are introduced in Section 4, and the evaluation de-
tails are presented as follows:

• For data-to-text generation tasks, we use BLEU(-
4), ROUGE-L, and METEOR for evaluation. We
use the script provided by Chen et al. (2020b)4;

• For open-ended dialogue system tasks, we use
BLEU-1, BLEU-2, Distinct-1, and Distinct-2
for evaluation. For DSTC7-AVSD, we also uti-
lize CIDEr (Vedantam et al., 2015). We employ
NLTK 3.5 with smoothing function 7 to compute
BLEU for PersonaChat and DailyDialog and uti-
lize the script5 to evaluate DSTC7-AVSD;

• For question answering tasks, we use Exact
Match (EM) and Macro-averaged F1 score (F1)
for evaluation. We use the provided script for
CoQA6 and SQuAD7.

4https://github.com/wenhuchen/
Data-to-text-Evaluation-Metric

5https://github.com/lemuria-wchen/DialogVED/
blob/main/src/utils/evaluate.py

6https://github.com/PaddlePaddle/ERNIE/blob/
repro/ernie-gen/eval/tasks/coqa/eval.py

7https://github.com/allenai/bi-att-flow/blob/

• For question generation tasks, we use BLEU-4,
ROUGE-L, and METEOR for evaluation. We
use the script provided by Dong et al. (2019)8;

• For story generation, we employ nucleus sam-
pling with p = 0.9 and temperature of 0.7 follow-
ing Guan et al. (2021). We use corpus BLEU-1,
BLEU-2, Distinct-1, and Distinct-4 for evalua-
tion. We use NLTK 3.5 to calculate corpus BLEU
following Guan et al. (2021);

• For task-oriented dialogue system tasks, we use
BLEU(-4), inform (rate), success (rate), and com-
bined score for evaluation. Inform and success
are two specially designed accuracy metrics for
task-oriented dialogue system, and the combined
score is defined as (Inform + Success) × 0.5 +
BLEU (Budzianowski et al., 2018). We use the
script provided by Su et al. (2022)9;

• For text summarization tasks, we use ROUGE-1,
ROUGE-2, and ROUGE-L for evaluation. We
use the toolkit files2rouge10.

For the experiments of the GEM benchmark in
Appendix C.2 (Table 12), the fine-tuning settings

master/squad/evaluate-v1.1.py
8https://github.com/microsoft/unilm/blob/

master/unilm-v1/src/qg/eval.py
9https://github.com/awslabs/pptod/blob/main/

E2E_TOD/eval.py
10https://github.com/pltrdy/files2rouge
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Methods
DART E2E ToTTo

B-4 R-2 ME B-4 R-2 ME B-4 R-2 ME

T5.1.1 34.31 45.22 36.30 42.57 46.60 38.20 39.79 49.90 36.80
ExT5 36.62 48.14 37.60 42.25 46.70 38.10 40.14 50.33 36.90

MVP 39.13 48.92 38.53 37.38 47.96 39.39 50.58 55.24 41.27
MVP+S 38.83 48.49 38.41 37.32 47.40 38.90 50.69 55.52 41.29

Methods
WebNLG CommonGen SGD

B-4 R-2 ME B-4 R-2 ME B-4 R-2 ME

T5.1.1 31.67 43.31 34.40 8.38 17.01 20.20 33.15 36.17 32.40
ExT5 35.03 48.17 36.50 9.68 19.04 21.40 34.74 37.77 33.00

MVP 47.03 59.00 42.34 32.59 37.71 33.00 45.63 48.29 38.48
MVP+S 47.03 59.03 42.28 34.10 37.87 33.11 45.24 48.25 38.47

Methods
WiA-A WiA-T WLE

B-4 R-2 ME B-4 R-2 ME B-4 R-2 ME

T5.1.1 29.30 38.37 30.10 42.12 50.52 36.2 15.55 20.47 19.60
ExT5 29.23 37.98 30.00 41.39 50.38 35.8 16.64 21.16 20.40

MVP 71.55 70.88 48.19 91.73 83.46 57.34 18.80 22.84 21.95
MVP+S 70.37 70.65 47.70 91.12 83.59 56.95 18.52 22.57 22.02

Table 12: The results on the GEM benchmark under full tuning settings. We utilize the large versions of T5.1.1 and
ExT5, and all the results of them are from Aribandi et al. (2022).

are the same as above. We use BLEU-4, ROUGE-
2, and METEOR for evaluation. We use the GEM
evaluation scripts11.

For the experiments in Section 4.3 (Tables 4
and 5), the fine-tuning and evaluation details are as
follows:

• For paraphrase generation tasks, we employ
the fine-tuning and evaluation scripts provided
by AESOP (Sun et al., 2021)12. The evalua-
tion metrics are BLEU-4, ROUGE-1, ROUGE-2,
ROUGE-L, and METEOR.

• For text style transfer tasks, we employ the fine-
tuning and evaluation scripts provided by SC
& BLEU (Lai et al., 2021)13. We conduct the
informal-to-formal transfer and train the model
on the data from both the E&M and F&R do-
mains following Lai et al. (2021). The evalu-
ation metrics are BLEU-4, accuracy, and HM.
Accuracy is calculated by a pre-trained TextCNN
to evaluate the style strength, and HM denotes
the harmonic mean of BLEU-4 and style accu-
racy (Lai et al., 2021).

• For GLUE tasks, we utilize the fine-tuning
code provided by Hugging Face14. The hyper-

11https://github.com/GEM-benchmark/GEM-metrics
12https://github.com/PlusLabNLP/AESOP
13https://github.com/laihuiyuan/

pre-trained-formality-transfer
14https://github.com/huggingface/transformers/

parameters are consistent with the original
BART (Lewis et al., 2020)15. The evaluation
is computed by the official website16.

C Additional Results

In this section, we provide additional results of our
MVP model and other baselines.

C.1 Results of Common Datasets

We also conduct experiments on eight common
datasets under full tuning settings. Due to space
limitations in Section 4, these results are shown
in Table 11. We can see that these results share a
similar trend to those in Section 4, and we achieve
SOTA performances in 6 of 8 datasets.

C.2 Results on the GEM Benchmark

To better compare with ExT5 (Aribandi et al.,
2022), we conduct experiments on the GEM bench-
mark (Gehrmann et al., 2021). For “unseen” com-
monsense generation and text simplification tasks,
we utilize prompts of data-to-text generation and
summarization, respectively. The results are pre-
sented in Table 12, and our MVP models outper-
form ExT5 in 26 out of 27 metrics.

tree/main/examples/pytorch/text-classification
15https://github.com/facebookresearch/fairseq/

blob/main/examples/bart/README.glue.md
16https://gluebenchmark.com/
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Thank you for taking the time to help us evaluate our scientific research! Our task is to present you with two pieces of
machine-generated text and ask you to decide which one is superior. Your opinion will only be used to compare our two
models; it will not be used for any other purpose.

We have four tasks to evaluate:

1. Text summarization: the input is a lengthy piece of news, and the output is a brief description of the content. Examine
whether the abstract covers the majority of the news and whether there are any factual errors.

2. Knowledge-graph-to-text generation: the input is a knowledge graph (multiple triples), and the output is a text
description of the graph. Note whether the description encompasses all of the input triples.

3. Open-ended dialogue: the input is two users’ background information and chat history, and the output is the next
response. Examine whether the response is consistent with the contexts and background of the user at the time.

4. Story generation: the input is the beginning of the story, and the output is the following story. Keep in mind that the
story needs to be coherent and consistent.

For each instance, you will see an input and two outputs (you will not know which model it comes from) in the table below,
and you need to choose which one you believe is better (or a tie). You can base your decision on the output’s fluency,
grammar, logic, whether it conforms to the input, and the features of each task.

Input
she was on a flight .
Output
she was trying to take a nap . suddenly , her ears
started ringing . the flight attendant tried to fix
it but she could n’t . she had to call for help .
luckily , they were able to fix the problem .

she was bored and her ears hurt . she decided to
take a nap . luckily , she was able to get a good
night ’s sleep . but the next morning , she woke
up and felt sick .

Left Wins Ties Right Wins

Figure 2: Human evaluation guidelines.

D Human Evaluation

We hired six English-proficient college students
with TOEFL or IELTS scores greater than 110 or
7.0. We paid 0.2$ per judge for each instance, for
a total budget of 320$ for 400 instances. The text
instructions we provided for each judge are shown
in Figure 2.

E Qualitative Examples

In this section, we showcase the linearized inputs,
human-written task instructions, and correspond-
ing outputs of a single dataset for tasks in Section 4.
We provide the results of BART, MVP, and MVP+S
under full tuning settings. To minimize human in-
tervention, we select the first and second instances
of the test set.
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Input
Summarize: Marseille, France (CNN)The French prosecutor leading an investigation into the crash of Germanwings Flight 9525 insisted Wednesday that he was not aware of any video

footage from on board the plane. Marseille prosecutor Brice Robin told CNN that "so far no videos were used in the crash investigation." He added, "A person who has such a video needs to

immediately give it to the investigators." Robin’s comments follow claims by two magazines, German daily Bild and French Paris Match, of a cell phone video showing the harrowing final

seconds from on board Germanwings Flight 9525 as it crashed into the French Alps. All 150 on board were killed. Paris Match and Bild reported that the video was recovered from a phone at

the wreckage site. The two publications described the supposed video, but did not post it on their websites. The publications said that they watched the video, which was found by a source close

to the investigation. "One can hear cries of ’My God’ in several languages," Paris Match reported. "Metallic banging can also be heard more than three times, perhaps of the pilot trying to

open the cockpit door with a heavy object. Towards the end, after a heavy shake, stronger than the others, the screaming intensifies. Then nothing." "It is a very disturbing scene," said Julian

Reichelt, editor-in-chief of Bild online. An official with France’s accident investigation agency, the BEA, said the agency is not aware of any such video. Lt. Col. Jean-Marc Menichini, a French

Gendarmerie spokesman in charge of communications on rescue efforts around the Germanwings crash site, told CNN that the reports were "completely wrong" and "unwarranted." Cell phones

have been collected at the site, he said, but that they "hadn’t been exploited yet." Menichini said he believed the cell phones would need to be sent to the Criminal Research Institute in Rosny

sous-Bois, near Paris, in order to be analyzed by specialized technicians working hand-in-hand with investigators. But none of the cell phones found so far have been sent to the institute,

Menichini said. Asked whether staff involved in the search could have leaked a memory card to the media, Menichini answered with a categorical "no." Reichelt told "Erin Burnett: Outfront"

that he had watched the video and stood by the report, saying Bild and Paris Match are "very confident" that the clip is real. He noted that investigators only revealed they’d recovered cell

phones from the crash site after Bild and Paris Match published their reports. "That is something we did not know before. ... Overall we can say many things of the investigation weren’t

revealed by the investigation at the beginning," he said. What was mental state of Germanwings co-pilot? German airline Lufthansa confirmed Tuesday that co-pilot Andreas Lubitz had battled

depression years before he took the controls of Germanwings Flight 9525, which he’s accused of deliberately crashing last week in the French Alps. Lubitz told his Lufthansa flight training

school in 2009 that he had a "previous episode of severe depression," the airline said Tuesday. Email correspondence between Lubitz and the school discovered in an internal investigation,

Lufthansa said, included medical documents he submitted in connection with resuming his flight training. The announcement indicates that Lufthansa, the parent company of Germanwings,

knew of Lubitz’s battle with depression, allowed him to continue training and ultimately put him in the cockpit. Lufthansa, whose CEO Carsten Spohr previously said Lubitz was 100% fit to fly,

described its statement Tuesday as a "swift and seamless clarification" and said it was sharing the information and documents – including training and medical records – with public prosecutors.

Spohr traveled to the crash site Wednesday, where recovery teams have been working for the past week to recover human remains and plane debris scattered across a steep mountainside. He saw

the crisis center set up in Seyne-les-Alpes, laid a wreath in the village of Le Vernet, closer to the crash site, where grieving families have left flowers at a simple stone memorial. Menichini told

CNN late Tuesday that no visible human remains were left at the site but recovery teams would keep searching. French President Francois Hollande, speaking Tuesday, said that it should

be possible to identify all the victims using DNA analysis by the end of the week, sooner than authorities had previously suggested. In the meantime, the recovery of the victims’ personal

belongings will start Wednesday, Menichini said. Among those personal belongings could be more cell phones belonging to the 144 passengers and six crew on board. Check out the latest from

our correspondents. The details about Lubitz’s correspondence with the flight school during his training were among several developments as investigators continued to delve into what caused

the crash and Lubitz’s possible motive for downing the jet. A Lufthansa spokesperson told CNN on Tuesday that Lubitz had a valid medical certificate, had passed all his examinations and "held

all the licenses required." Earlier, a spokesman for the prosecutor’s office in Dusseldorf, Christoph Kumpa, said medical records reveal Lubitz suffered from suicidal tendencies at some point

before his aviation career and underwent psychotherapy before he got his pilot’s license. Kumpa emphasized there’s no evidence suggesting Lubitz was suicidal or acting aggressively before the

crash. Investigators are looking into whether Lubitz feared his medical condition would cause him to lose his pilot’s license, a European government official briefed on the investigation told

CNN on Tuesday. While flying was "a big part of his life," the source said, it’s only one theory being considered. Another source, a law enforcement official briefed on the investigation, also

told CNN that authorities believe the primary motive for Lubitz to bring down the plane was that he feared he would not be allowed to fly because of his medical problems. Lubitz’s girlfriend

told investigators he had seen an eye doctor and a neuropsychologist, both of whom deemed him unfit to work recently and concluded he had psychological issues, the European government

official said. But no matter what details emerge about his previous mental health struggles, there’s more to the story, said Brian Russell, a forensic psychologist. "Psychology can explain why

somebody would turn rage inward on themselves about the fact that maybe they weren’t going to keep doing their job and they’re upset about that and so they’re suicidal," he said. "But there is

no mental illness that explains why somebody then feels entitled to also take that rage and turn it outward on 149 other people who had nothing to do with the person’s problems." Germanwings

crash compensation: What we know. Who was the captain of Germanwings Flight 9525? CNN’s Margot Haddad reported from Marseille and Pamela Brown from Dusseldorf, while Laura

Smith-Spark wrote from London. CNN’s Frederik Pleitgen, Pamela Boykoff, Antonia Mortensen, Sandrine Amiel and Anna-Maja Rappard contributed to this report.

Gold
Match are "very confident" the video clip is real, an editor says. Andreas Lubitz had informed his Lufthansa training school of an
episode of severe depression, airline says.

BART
Prosecutor: "A person who has such a video needs to immediately give it to the investigators" French Gendarmerie spokesman:
Cell phones have been collected at the site, but haven’t been exploited.

MVP
Prosecutor: "So far no videos were used in the crash investigation" An official with France’s accident investigation agency says
the agency is not aware of any video.

MVP+S
Prosecutor: "So far no videos were used in the crash investigation" Two publications claim to have found a cell phone video of
the crash. "It is a very disturbing scene," says editor-in-chief of Bild online.

Table 13: The first instance from the CNN/Daily Mail dataset. Human-written task instructions are labeled in italics.
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Input
Summarize: The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday,
a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a
ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC’s founding Rome Statute
in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including
East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian
territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be
subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians’
efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday’s ceremony, said it was a move
toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to
ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our
shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the
first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the
rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which
cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to
penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of
the court’s treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group.
"What’s objectionable is the attempts to undermine international justice, not Palestine’s decision to join a treaty to which over
100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime
Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States
also said it "strongly" disagreed with the court’s decision. "As we have said repeatedly, we do not believe that Palestine is a state
and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring
sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as
counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and
refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review
evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct
its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more
than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court
was set up in 2002 to prosecute genocide, crimes against humanity and war crimes. CNN’s Vasco Cotovio, Kareem Khadder and
Faith Karimi contributed to this report.

Gold
Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June. Israel and the
United States opposed the move, which could open the door to war crimes investigations against Israelis.

BART
Palestinian Authority becomes 123rd member of the International Criminal Court. The move gives the court jurisdiction over
alleged crimes in Palestinian territories. Israel and the United States opposed the Palestinians’ efforts to join the body.

MVP
"Today brings us closer to our shared goals of justice and peace," foreign minister says. The Palestinians signed the ICC’s
founding Rome Statute in January. The move gives the court jurisdiction over alleged crimes in Palestinian territories.

MVP+S
"Today brings us closer to our shared goals of justice and peace," foreign minister says. The United States says it "strongly"
disagrees with the decision. The Palestinian Authority is the 123rd member of the International Criminal Court.

Table 14: The second instance from the CNN/Daily Mail dataset.
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Input
Describe the following data: Abilene,_Texas | cityServed | Abilene_Regional_Airport

Gold
Abilene, Texas is served by the Abilene regional airport.
Abilene Regional Airport serves the city of Abilene in Texas.

BART
Abilene Regional Airport serves the city of Abilene in Texas.

MVP
Abilene Regional Airport serves the city of Abilene, Texas.

MVP+S
Abilene Regional Airport serves the city of Abilene, Texas.

Table 15: The first instance from the WebNLG dataset, which has two golden target sentences.

Input
Describe the following data: "Madrid, Paracuellos de Jarama, San Sebastián de los Reyes and Alcobendas"
| location | Adolfo_Suárez_Madrid–Barajas_Airport

Gold
Adolfo Suárez Madrid–Barajas Airport can be found in Madrid, Paracuellos de Jarama, San Sebastián de
los Reyes and Alcobendas.
Adolfo Suarez Madrid-Barajas airport is located at Madrid, Paracuellos de Jarama, San Sebastián de los
Reyes and Alcobendas.
Adolfo Suarez Madrid-Barajas Airport is located in Madrid, Paracuellos de Jarama, San Sebastian de los
Reyes and Alcobendas.

BART
Adolfo Suárez Madrid–Barajas Airport can be found in Madrid, Paracuellos de Jarama, San Sebastián de
los Reyes and Alcobendas.

MVP
Adolfo Suárez Madrid–Barajas Airport can be found in Madrid, Paracuellos de Jarama, San Sebastián de
los Reyes and Alcobendas.

MVP+S
Adolfo Suárez Madrid–Barajas Airport is located in Madrid, Paracuellos de Jarama, San Sebastián de los
Reyes and Alcobendas.

Table 16: The second instance from the WebNLG dataset, which has three golden target sentences.
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Input
Generate the question based on the answer: Saint Bernadette Soubirous [SEP] Architecturally , the school
has a Catholic character . Atop the Main Building ’ s gold dome is a golden statue of the Virgin Mary .
Immediately in front of the Main Building and facing it , is a copper statue of Christ with arms upraised
with the legend " Venite Ad Me Omnes " . Next to the Main Building is the Basilica of the Sacred Heart .
Immediately behind the basilica is the Grotto , a Marian place of prayer and reflection . It is a replica of
the grotto at Lourdes , France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous
in 1858 . At the end of the main drive ( and in a direct line that connects through 3 statues and the Gold
Dome ) , is a simple , modern stone statue of Mary .

Gold
To whom did the Virgin Mary allegedly appear in 1858 in Lourdes France ?

BART
Who is believed to have appeared to the Virgin Mary at Lourdes ?

MVP
Who did the Virgin Mary appear to in Lourdes ?

MVP+S
The Grotto is a replica of the grotto at Lourdes , France where the Virgin Mary appeared to whom ?

Table 17: The first instance from the SQuAD dataset.

Input
Generate the question based on the answer: a copper statue of Christ [SEP] Architecturally , the school
has a Catholic character . Atop the Main Building ’ s gold dome is a golden statue of the Virgin Mary .
Immediately in front of the Main Building and facing it , is a copper statue of Christ with arms upraised
with the legend " Venite Ad Me Omnes " . Next to the Main Building is the Basilica of the Sacred Heart .
Immediately behind the basilica is the Grotto , a Marian place of prayer and reflection . It is a replica of
the grotto at Lourdes , France where the Virgin Mary reputedly appeared to Saint Bernadette Soubirous
in 1858 . At the end of the main drive ( and in a direct line that connects through 3 statues and the Gold
Dome ) , is a simple , modern stone statue of Mary .

Gold
What is in front of the Notre Dame Main Building ?

BART
What is in front of the Main Building and facing it ?

MVP
What is immediately in front of the Main Building ?

MVP+S
What is immediately in front of the Main Building ?

Table 18: The second instance from the SQuAD dataset.
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Input
Answer the following question: what color was cotton ? [X_SEP] once upon a time , in a barn near a farm house , there lived a
little white kitten named cotton . cotton lived high up in a nice warm place above the barn where all of the farmer ’ s horses slept
. but cotton wasn ’ t alone in her little home above the barn , oh no . she shared her hay bed with her mommy and 5 other sisters .
all of her sisters were cute and fluffy , like cotton . but she was the only white one in the bunch . the rest of her sisters were all
orange with beautiful white tiger stripes like cotton ’ s mommy . being different made cotton quite sad . she often wished she
looked like the rest of her family . so one day , when cotton found a can of the old farmer ’ s orange paint , she used it to paint
herself like them . when her mommy and sisters found her they started laughing . " what are you doing , cotton ? ! " " i only
wanted to be more like you " . cotton ’ s mommy rubbed her face on cotton ’ s and said " oh cotton , but your fur is so pretty and
special , like you . we would never want you to be any other way " . and with that , cotton ’ s mommy picked her up and dropped
her into a big bucket of water . when cotton came out she was herself again . her sisters licked her face until cotton ’ s fur was all
all dry . " don ’ t ever do that again , cotton ! " they all cried . " next time you might mess up that pretty white fur of yours and
we wouldn ’ t want that ! " then cotton thought , " i change my mind . i like being special " .

Gold
white

BART
white

MVP
white

MVP+S
white

Table 19: The first instance from the CoQA dataset.

Input
Answer the following question: what color was cotton ? [SEP] white [X_SEP] where did she live ? [X_SEP] once upon a time ,
in a barn near a farm house , there lived a little white kitten named cotton . cotton lived high up in a nice warm place above the
barn where all of the farmer ’ s horses slept . but cotton wasn ’ t alone in her little home above the barn , oh no . she shared her
hay bed with her mommy and 5 other sisters . all of her sisters were cute and fluffy , like cotton . but she was the only white one
in the bunch . the rest of her sisters were all orange with beautiful white tiger stripes like cotton ’ s mommy . being different
made cotton quite sad . she often wished she looked like the rest of her family . so one day , when cotton found a can of the old
farmer ’ s orange paint , she used it to paint herself like them . when her mommy and sisters found her they started laughing . "
what are you doing , cotton ? ! " " i only wanted to be more like you " . cotton ’ s mommy rubbed her face on cotton ’ s and said
" oh cotton , but your fur is so pretty and special , like you . we would never want you to be any other way " . and with that ,
cotton ’ s mommy picked her up and dropped her into a big bucket of water . when cotton came out she was herself again . her
sisters licked her face until cotton ’ s fur was all all dry . " don ’ t ever do that again , cotton ! " they all cried . " next time you
might mess up that pretty white fur of yours and we wouldn ’ t want that ! " then cotton thought , " i change my mind . i like
being special " .

Gold
in a barn

BART
in a barn

MVP
in a barn

MVP+S
in a barn

Table 20: The second instance from the CoQA dataset.
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Input
Given the story title: male was out jogging one morning .

Gold
the weather was crisp and cool . male felt good and energetic . he decided to keep jogging longer than
normal . male went several more miles out of his way .

BART
he saw a man struggling to walk across a field . male stopped to help him . he saw a guy struggling to
walking across a fields . the man thanked male profusely !

MVP
he ran into a man who was holding a knife . male was scared , so he ran away . the man threatened male .
male ran back into his house .

MVP+S
he noticed a sound coming from a tree . male went to investigate . he found a small baby bird stuck in the
trunk . male took the bird to the vet and they released it .

Table 21: The first instance from the ROCStories dataset.

Input
Given the story title: ken was driving around in the snow .

Gold
he needed to get home from work . he was driving slowly to avoid accidents . unfortunately the roads
were too slick and ken lost control . his tires lost traction and he hit a tree .

BART
he hit a patch of black ice . ken slid and hurt his knee . he went to the doctor for it . krampus was sent
home with a concussion .

MVP
he was in his car and it was very cold . ken started to back up . the car started to make a loud noise . kena
had to back out and call for help .

MVP+S
he was having trouble starting his car . he had to push it a couple of blocks . his car would n’t start . ken
had to call a tow truck for help .

Table 22: The second instance from the ROCStories dataset.
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Input
Given the dialog: i love to meet new people . [SEP] i have a turtle named timothy . [SEP] my favorite
sport is ultimate frisbee . [SEP] my parents are living in bora bora . [SEP] autumn is my favorite season .
[X_SEP] hello , how are you doing tonight ?

Gold
i am well an loving this interaction how are you ?

BART
i am doing well , how are you ?

MVP
i am doing well . how are you ?

MVP+S
i am doing well . how are you ?

Table 23: The first instance from the PersonaChat dataset.

Input
Given the dialog: i just bought a brand new house . [SEP] i like to dance at the club . [SEP] i run a dog
obedience school . [SEP] i have a big sweet tooth . [SEP] i like taking and posting selkies . [X_SEP]
hello , how are you doing tonight ? [SEP] i am well an loving this interaction how are you ?

Gold
i am great . i just got back from the club .

BART
i am doing well , thanks for asking . what do you do for fun ?

MVP
i am doing well . i just got home from dancing at the club .

MVP+S
i am doing well . i just bought a new house .

Table 24: The second instance from the PersonaChat dataset.
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Input
Given the task dialog: Belief state [X_SEP] i would like a taxi from saint john ’s college to pizza hut fen ditton .
Given the task dialog: Dialogue action [X_SEP] [db_nores] [X_SEP] i would like a taxi from saint john ’s college to pizza hut
fen ditton .
Given the task dialog: System response [X_SEP] [db_nores] [X_SEP] i would like a taxi from saint john ’s college to pizza hut
fen ditton .

Gold
[taxi] destination pizza hut fen ditton departure saint john ’s college
[taxi] [request] leave arrive
what time do you want to leave and what time do you want to arrive by ?

BART
[taxi] destination pizza express fen ditton departure saint johns college
[taxi] [request] leave
what time would you like to leave or arrive ?

MVP
[taxi] destination pizza hut fen ditton departure saint john ’s college
[taxi] [request] leave
sure ! when would you like to arrive ?

MVP+S
[taxi] destination pizza hut fen ditton departure saint john ’s college
[taxi] [request] leave arrive
what time would you like to leave ?

Table 25: The first instance from the MultiWOZ dataset. The task-oriented dialogue is composed of dialogue state
tracking, dialogue action learning, and system response generation.

Input
Given the task dialog: Belief state [X_SEP] i would like a taxi from saint john ’s college to pizza hut fen ditton . [SEP] what
time do you want to leave and what time do you want to arrive by ? [SEP] i want to leave after 17:15 .
Given the task dialog: Dialogue action [X_SEP] [db_nores] [X_SEP] i would like a taxi from saint john ’s college to pizza hut
fen ditton . [SEP] what time do you want to leave and what time do you want to arrive by ? [SEP] i want to leave after 17:15 .
Given the task dialog: System response [X_SEP] [db_nores] [X_SEP] i would like a taxi from saint john ’s college to pizza hut
fen ditton . [SEP] what time do you want to leave and what time do you want to arrive by ? [SEP] i want to leave after 17:15 .

Gold
[taxi] destination pizza hut fen ditton departure saint john ’s college leave 17:15
[taxi] [inform] car phone
booking completed ! your taxi will be [value_car] contact number is [value_phone]

BART
[taxi] destination pizza hut fen ditton departure saint john ’s college leave 17:15
[taxi] [inform] car phone
booking completed ! booked car type : [value_car] contact number : [value_phone]

MVP
[taxi] destination pizza hut fen ditton departure saint john ’s college leave 17:15
[taxi] [inform] car phone
booking completed ! booked car type : [value_car] contact number : [value_phone]

MVP+S
[taxi] destination pizza hut fen ditton departure saint john ’s college leave 17:15
[taxi] [inform] car phone
booking completed ! booked car type : [value_car] contact number : [value_phone]

Table 26: The second instance from the MultiWOZ dataset.
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