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Abstract
We introduce and demonstrate how to effec-
tively train multilingual machine translation
models with pixel representations. We exper-
iment with two different data settings with a
variety of language and script coverage, demon-
strating improved performance compared to
subword embeddings. We explore various prop-
erties of pixel representations such as parameter
sharing within and across scripts to better un-
derstand where they lead to positive transfer.
We observe that these properties not only en-
able seamless cross-lingual transfer to unseen
scripts, but make pixel representations more
data-efficient than alternatives such as vocabu-
lary expansion. We hope this work contributes
to more extensible multilingual models for all
languages and scripts.

1 Introduction

Multilingual model vocabularies are finite and typ-
ically smaller than the possible set of Unicode
characters, inherently leaving some languages and
scripts under-represented. As coverage increases,
parameter allocation to each language decreases,
resulting in a trade-off between capability, capacity,
and coverage. Recent work on pixel representations
(Salesky et al., 2021; Rust et al., 2023) provides an
appealing alternative to past approaches, because
they do not have a discrete model vocabulary or fi-
nite embedding matrix, and can represent all scripts
with complete parameter sharing.

Recent work (Rust et al., 2023) has also shown
that pixel-based models can be directly fine-
tuned across scripts without vocabulary extensions,
adapters, or transliteration. However, pixel rep-
resentations have previously only been trained or
finetuned on individual languages at a time, rather
than multilingually. This leaves unanswered ques-
tions about the effects of multilingual co-training,
such as whether similar scripts will interfere with
or boost performance, or if architectural changes
will be needed given the larger input space.
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Figure 1: Embedding matrices are disjoint parameter
allocations by script, leading to a vocabulary bottleneck.
Pixel representations however share parameters across
scripts and are not limited to a discrete vocabulary.

In this work we demonstrate how to effectively
parameterize and train multilingual translation
models with pixel representations, leading to im-
provements of up to 9 BLEU on two multilingual
datasets with diverse language and script coverage.
We explore various properties of pixel representa-
tions in order to understand their potential bene-
fits and limitations, including positive transfer and
representational similarity between languages, pa-
rameter sharing, and frequency-based relationships.
Finally, we show that not only can pixel represen-
tations be finetuned cross-lingually or to unseen
scripts, but can do so more data-efficiently than
alternatives such as vocabulary expansion, with
significant improvements for unseen scripts.

2 Our approach

Covering the larger character sets1 in multilingual
models commonly results in significant parameter
increases in the embedding matrix and softmax, cre-
ating a vocabulary bottleneck. While sampling data
by language to balance vocabularies is common for
large-scale multilingual systems (Fan et al., 2021),
sampling may cause common vocabulary to be out-
of-vocabulary (OOV) for languages with longer-tail
character distributions like Chinese (NLLB Team
1There are 143,698 Unicode character codepoints as of v13.0.
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et al., 2022).2 One alternative is to move to byte-
based representations, which combats exploding
model parameters by reducing the set of embed-
dings to 256. However, this approach increases
sequence lengths up to 12× compared to charac-
ters, determined by the script’s Unicode encoding,
making optimal batch sizes prohibitively large and
slow for our computational resources.

Rendering text to images bypasses many of the
vocabulary challenges posed by multilingual mod-
eling. Pixel-based representations have the advan-
tage of no predetermined static vocabularies, no ex-
ploding embedding matrix parameters or sequence
lengths, and complete parameter sharing across
similar word forms at a sub-character level regard-
less of the underlying Unicode or byte structure.

Below we present the technical details of our
approach and comparisons before proceeding to
experimental settings and results.

2.1 Encoding text with pixels

Figure 2 demonstrates the rendering process and
resulting Transformer inputs. We render text using
the PangoCairo library3,4 following Rust et al.
(2023) with a font size of 10pt at 120 DPI. We
tokenize sentence-level images into fixed-size
image tokens with h=24, w=24, and stride s=12,
which results in ∼3 Latin characters per token.
The height was chosen to fit the wide variety of
scripts and diacritics in our experimental data
with a fixed font size. We use the Google Noto
Sans fonts collection which covers the majority
of Unicode codepoints.5 Further discussion on
rendering parameter choices is found in App. C.
No preprocessing is applied before rendering. We
train many-to-one multilingual models with pixel
representations on the source side, and generate
discrete subword tokens as the target as below.

2.2 Traditional subword tokenization

We generated all subword vocabularies using Sen-
tencePiece unigramLM (Kudo, 2018; Kudo and
Richardson, 2018). In exploratory experiments, we

2For example, the NLLB model vocabulary does not include
the common characters in ‘mother’ in Chinese, 妈妈.

3https://docs.gtk.org/PangoCairo
4PangoCairo provides greater flexibility than alternatives such
as PyGame, used in previous work, by supporting fallback
fonts at the character level. This is necessary not only for
code-mixing but to support common occurrences such as
non-transliterated entities within non-Latin scripts.

5See https://notofonts.github.io/overview for the
Noto fonts and their Unicode coverage.
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Figure 2: Encoding text with pixels: text is rendered to
images by sentence. Image tokens are created by over-
lapping sliding windows of fixed height (h), width (w),
and stride (s). Convolutional layer output is projected
to flat vectors for subsequent Transformer layers.

compared the union of subword vocabularies con-
structed per-language to a jointly-trained subword
vocabulary of the same total size. Individual vocab-
ularies were of size 5k,6 and scaled equivalently for
joint vocabularies, e.g. 35k for 7 source languages.
The two constructions did not result in significant
differences in downstream performances in our bal-
anced or imbalanced data settings so we present
only joint vocabulary results in the main text, as
this approach scales more easily to 59 languages.
Results for both constructions are shown in App. G.
We use separate source and target vocabularies
and share target vocabularies between subword and
pixel models in order to isolate the source represen-
tation change. Vocabulary sizes for all models and
datasets are shown in Table 4 in App. B.

2.3 Model architecture

Our core architecture follows Salesky et al. (2021)
and combines a convolutional block7 which pro-
cesses image tokens and produces flattened vec-
tors (Figure 2) with a Transformer encoder-decoder
model. Convolutional layers use one color channel
and a 3× 3 kernel with a stride of 1. Our conven-
tional text models share the same Transformer ar-
chitecture and replace the convolutional block with
a traditional embedding matrix of size V × 512.

Our base models are Transformers with 6 en-
coder and 6 decoder layers each, with hidden units
of dim 512, feed-forward layers of dim 1024, and

6Based on tuning for the same dataset in Salesky et al. (2021).
7A 2D convolutional layer followed by 2D batch normaliza-
tion, a ReLU layer, and a linear projection to 1× 512.
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Figure 3: Performance across different model capacities, varying encoder depth and/or width (TED-7).

4 heads. We train our models with the Adam op-
timizer (Kingma and Ba, 2015) with linear warm-
up, learning rate 5e-4, dropout of 0.1, and label
smoothing 0.2. We train with temperature sam-
pling T = 1.5 in language-imbalanced settings
(Arivazhagan et al., 2019; Shaham et al., 2023). We
use batches of 160k tokens, and train until perfor-
mance on a held-out validation set fails to improve
for ten validations. Trained models and scripts to
replicate them will be released upon publication.8

Reparameterizing model capacity with deeper
encoders and shallower decoders has been shown to
be beneficial particularly for large multilingual vo-
cabularies and/or smaller granularity inputs such as
characters (Cherry et al., 2018; Kasai et al., 2021;
Kong et al., 2021; Xu et al., 2021; Berard et al.,
2021). Replacing the source embedding matrix
with visual representations frees parameters which
may be re-allocated elsewhere within the model.
As we expand language coverage with pixel-based
representations, it is not clear a priori whether and
where additional capacity may be needed to scale
performance compared to models for individual
languages or traditional text models. We experi-
ment with different ways to add and allocate model
capacity with both pixel and text inputs, with re-
sults presented in § 3.1.

3 Multilingual translation with pixels

We experiment with two datasets to investigate
the performance and properties of multilingual
pixel representations for machine translation. We
perform initial experiments with the balanced 7 lan-
guage pair multi-target TED data (Duh, 2018) used
by Salesky et al. (2021), which we will refer to as
TED-7, to compare performance to prior work with

8https://github.com/esalesky/visrep/tree/multi

pixel representations and explore any necessary
architectural changes in the multilingual setting.
We then scale up using the larger 59 language
pair TED talk corpus from Qi et al. (2018), or
TED-59. In all cases, our models are many-to-one
multilingual translation models with English as
the target. We list the languages in each corpus
with the number of training examples in App. A.
Results for all datasets are shown in Table 1.

3.1 Model capacity: wider or deeper?
Increasing language coverage often requires in-
creased model capacity. We find that the small
base architecture from Salesky et al. (2021) is un-
stable and may not converge when trained multi-
lingually without additional capacity or batch size.
For TED-7, multilingual source embeddings ac-
count for 33% of the total parameters of the best
subword model.9 Without a source embedding ma-
trix, despite the additional convolutional block, a
pixel model with the same Transformer architecture
as a subword model would be ∼17M parameters
(or 38%) smaller, as seen in Figure 3, and may
thus require different parameterization and result
in different scaling behavior.

We investigate both the impact of reparameteriz-
ing the baseline model, as well as increasing capac-
ity through greater encoder depth and/or width. We
first find that shifting from an equal depth encoder-
decoder model to a deep encoder and shallow de-
coder with the same number of parameters pro-
vides consistent improvements; for example, mov-
ing from 6−6 to 9−3 improves performance on the
TED-7 dataset from 18.5 to 21.3 BLEU (+2.8). We
maintain a shallow 3 layer decoder while varying
the encoder through the remainder of this section.
9TED-7 uses a source subword vocabulary of 35k; this dispar-
ity would continue to increase with larger vocabulary sizes.
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TED-7 TED-59

Source reps. BLEU chrF COMET BLEU chrF COMET

BPE 25.7 48.8 77.3 23.8 45.5 73.3
PIXEL 26.2 49.5 77.9 28.4 50.1 77.2

Table 1: Model performance across two datasets on test. Models chosen by perplexity on held-out validation sets.
Metric scores are averaged across all languages in the dataset; App. E shows results for individual language pairs.
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Figure 4: Improvement with multilingual
models over models for each lang. pair.
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Figure 5: Improvement per language with pixel representations
compared to subwords on multilingual TED-7 and TED-59 datasets.

With an equal number of model parameters, in-
creasing depth is more impactful than width, as
seen in Figure 3a. Increasing width provides con-
sistent improvements at all model sizes, while more
significantly increasing overall parameters. With
12−3 layers and 2048 FF width, a pixel-based
model has an equivalent number of parameters to
the best subword model (∼55M) while able to con-
tinue improving with scale. The best pixel models
for this dataset use 12−3 layers and FF width 4096.
Continuing to increase depth and overall size has
diminishing returns. Pixel models also appear more
robust to overparameterization where text models
degrade more quickly, as seen in Figure 3b.

Is the optimal parameterization determined by
the granularity of pixel inputs, the amount of train-
ing data, or the multilinguality of the task? To
see, we reparameterize the models for individual
language pairs from Salesky et al. (2021) at both
the small and large data sizes (shown in App. F).
We find that performance would have decreased in
both cases, suggesting this is more likely due to the
multilingual task, not the amount of data or pixel
representations inherently.

For the larger TED-59 dataset (1.2M→5.1M),
we use the same architecture as for TED-7. Exact
model configurations for each dataset and represen-
tation scheme are listed together in App. B.

3.2 Language coverage and imbalanced data

Including additional languages can sometimes in-
terfere with rather than improve performance (‘the

curse of multilinguality’ (Conneau et al., 2020)).
When we compare our multilingual models to
individual models for the same language pairs with
TED-7, we see that all languages improve through
multilingual training with pixel representations,
while this is not the case for subword-based mod-
els, where two language pairs degrade (Figure 4).
Improvements are greatest for those language pairs
(ja, ko, zh) where individual models performed
worse than BPE in Salesky et al. (2021). Improve-
ments could be due to boosts from languages with
similar scripts (zh and ja, or fr and de) or simply an
increase in total training data: we investigate this in
§ 4.1 for TED-59 where we have more languages
to study. Notably, improvements come without
interference for pixel models here. Comparing
multilingual pixel and BPE models, we see small
but consistent improvements on TED-7 (Figure 5).

The TED-7 setting has relatively balanced data
across all languages and scripts and at least 150k
examples per pair, which is a reasonable baseline
but unrealistic in the context of typical multilingual
translation settings. We turn to the TED-59 dataset
for increased language coverage with imbalanced
training data and script representation for a more
realistic setting to see if our improvements hold
or interference emerges. Here we see larger im-
provements of up to 9 BLEU compared to BPE for
most language pairs, and some degradation for 2
pairs whose scripts have only ∼5k training exam-
ples across all languages, highlighted in Figure 5.

Given the large and imbalanced nature of this
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Figure 6: Performance improvements with pixel representations are most strongly correlated with the total amount
of data for a language’s script compared to language or language family. Data size per language is listed in App. A.

Src Script # Sents PIXEL BPE Aharoni. ∆

az Latin 5946 16.6 12.5 11.2 +5.4
be Cyrillic 4509 28.5 19.2 18.3 +10.2
gl Latin 10017 36.5 29.7 28.6 +7.9
sk Latin 61470 33.7 27.4 26.8 +6.9

[ LR ] avg: 28.8 22.2 21.2 +7.6

ar Arabic 214111 29.8 26.1 25.9 +3.9
de Latin 167888 36.1 30.0 28.9 +7.2
he Hebrew 211819 35.3 30.7 30.2 +5.1
it Latin 204503 38.5 32.3 32.4 +6.1

[ HR ] avg: 34.9 29.8 29.4 +5.6

Table 2: Results for 4 high-resource (HR) and low-
resource (LR) language pairs used in previous work.

dataset, previous work has commonly reported non-
aggregated performance for a subset of language
pairs only (4 low-resource and 4 high-resource)
with varied scripts and degrees of relatedness.
Compared to the best previous results on those
pairs (Aharoni et al., 2019), our subword baselines
improve slightly: +1 BLEU on the LR pairs and
+0.4 on the HR. With pixel representations, our
models improve significantly, +7.6 on the LR pairs
and +5.6 on the HR pairs, as shown in Table 2.
Low-resource languages with well-represented
scripts shared with other languages show larger
improvement than the overall mean of +4.6; most
dramatically, Belarusian (be) improves by >50%
or 10.2 BLEU despite having only 4509 training
instances through positive transfer from the >600k
sentence pairs in Cyrillic in TED-59 (discussed fur-
ther in § 4.1). Jin and Xiong (2022) presented the
strongest previous performance on the full TED-59
dataset with a many-to-many multilingual model10

with language-aware multi-head attention, with

10Their many-to-many model is trained on 2× as many sen-
tences as the models presented here by reversing the dataset.

25.3 average BLEU: our many-to-one pixel model
improves on this by +3.1 BLEU. They do not
report results per language for further comparison.

4 Properties of multilingual pixel models

4.1 Positive transfer across languages
We look at the relationship between data represen-
tation for each source language, family, script and
performance to find the greatest contributors to im-
provements with pixel representations on TED-59.
The amount of data for a given pair is only weakly
related to performance for both pixel and subword
representations (ρ≤0.3, p < 0.05), while language
family and script representation is moderately cor-
related (ρ=0.5− 0.6, p≪ 0.001) suggesting some
positive transfer across languages and scripts for
both approaches. However, looking at each factor’s
relationship to performance improvement rather
than raw scores better reflects those responsible for
the difference. As shown in Figure 6, the amount
of data for a given script is strongly correlated
with ∆BLEU, (ρ=0.70, p≪ 0.001), while family
is moderately correlated (0.35) and data for indi-
vidual language pairs has no clear relationship. We
conclude that pixels enable more effective cross-
lingual transfer between languages with the same
script, and to a lesser degree family, than joint sub-
word vocabularies. We hypothesize that we would
see similar improvements for Bengali and Tamil
with at least 10k examples for their scripts.

4.1.1 Clustering by language and script
To better understand how pixel representations
pattern by language and script we compare our
model subword embeddings and our pixel repre-
sentations. Using the validation set as input, we
compute sentence-level vectors by mean-pooling
over token embeddings for each sentence for the
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(a) PIXEL, by script (b) SUBWORD, by script (c) PIXEL, by lang/family (d) SUBWORD, by lang/family

Figure 7: Clustering shows more representational similarity within scripts and across languages with pixel represen-
tations than with disjoint subword embeddings in the TED-59 dataset. Individual languages from the same family
are shown with different shades of the same color in items (c) and (d).

subword model, or over the linearly projected vec-
tors of the same dimension from the convolutional
block in the pixel model. We visualize these repre-
sentations using t-SNE clustering (van der Maaten
and Hinton, 2008), in Figure 7 for TED-59 and in
App. H for the smaller TED-7.

Pixel representations cluster neatly by script (7a),
reflecting the strong ability to share information
between languages of the same script discussed
in § 4.1. Subword embeddings do not cluster as
strongly by script despite shared subwords, with
many separate clusters for e.g. Latin script lan-
guages (7b). We observe that subword embed-
dings cluster more tightly by language and family
(7d), with less representational overlap between lan-
guages than we see with pixels (7c). However, the
visual model still reflects some similarities within
families both within and across scripts. For ex-
ample, in the large Latin-script cluster in 7c, all
Uralic languages appear within close proximity of
each other, as do Austronesian, and some overlap
exists between Cyrillic and Latin representations
in 7a, which likely reflects Slavic family similar-
ities rather than visually similar characters given
sentence-level vectors.

4.2 Complete parameter sharing

With traditional model vocabularies, parameters
are not shared between embeddings; only 3% of
embeddings are updated per batch on average11 for
TED-59 without redistribution techniques such as
label smoothing. On the other hand, 100% of the
pixel model representation block parameters are
updated every batch due to parameter sharing at
the pixel level. Pixel representations have direct ac-
cess to token sub-components, whereas subwords
do not, leading to more similar representations for

11Heavily dependent on language coverage, sampling, vocab-
ulary, and batch size. This number reflects a 64k source
vocabulary and large batch size of 160k tokens.

Figure 8: Pixel representations result in similar rep-
resentations for partial lexical matches due to visual
similarity and parameter sharing at the pixel level.

words e.g. with and without diacritics—with the
TED-59 subword vocabulary, the Arabic forms
and for "book" have disjoint subword decom-
positions and so do not share embeddings, whereas
the pixel representations are highly similar; as visu-
alized in Figure 8, the convolutional layer feature
activations remain highly similar despite the in-
serted diacritics. If a pixel-based model observes
partial lexical matches such as “ktb” and “kitab”
in training, parameters for both will be updated
by backpropagation to the shared pixel values; we
hypothesize that this contributes to the increased
transfer across languages with the same script and
performance improvements. Future work may in-
vestigate whether this property leads to more com-
positional representations.

4.3 Reduced frequency-based representation
degeneration

Previous work has shown that embeddings can suf-
fer from a frequency-based representation degener-
ation problem, where infrequent and unseen words
cluster together in embedding space due to lim-
ited parameter updates during training (Gao et al.,
2019). However, as pixel models share parameters
at the pixel level, all representations are updated
to some degree each batch regardless of subword-
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(a) TED-7, pixel (b) TED-7, subword

Figure 9: SVD plots of source representations show
traditional embeddings cluster infrequent subwords to-
gether more tightly than pixels.

level text frequency. Therefore, the low-frequency
degradation effect should reduce in pixel models
and rare words may not cluster as strongly.

We examine this phenomenon by comparing
the source embeddings from the subword model
against representations from the pixel model on
TED-7. We obtain a comparable set of represen-
tations from the pixel model by rendering each
subword in the TED-7 source vocabulary and mean-
pooling the output of the convolutional block for
all resulting resulting visual token(s).

We plot these embeddings using 2-D singular
value decomposition, and color each point accord-
ing to the log-frequency of its corresponding sub-
word in Figure 9. We plot visual embeddings, ex-
cluding 1% of outliers for improved readability
(and include the full plot in App. I). We see that
in the text model, there is both a clear frequency
bias and and a cluster of low-frequency embed-
dings. In the pixel model, though we see some
frequency bias among embeddings, the distribution
of low-frequency embeddings is improved.

5 Data-efficient cross-lingual transfer

It has been shown that using pretrained multilin-
gual models for cross-lingual transfer can provide
significant performance improvements, particularly
when the target language is under-resourced. How-
ever, adapting models to unseen scripts with no
lexical coverage in the original model typically
requires techniques such as expanding the embed-
ding matrix to include new vocabulary (Wang et al.,
2019b) or language-specific adapters (Houlsby
et al., 2019; Pfeiffer et al., 2020). In contrast, mod-
els with pixel representations can be finetuned di-
rectly on new languages and scripts without requir-
ing any architectural changes (Rust et al., 2023).
We hypothesize that the model properties discussed
in § 4 will not only allow transfer without model ex-
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Figure 10: Data-efficiency in cross-lingual transfer.
Models with pixel-based representations adapt more
efficiently and effectively to new scripts than with tradi-
tional text representations (shown here: Hebrew).

Script Unigram Bigram Trigram Gain Gain
seen? Coverage Coverage Coverage BPE ext BPE

ro ✓ 96% 91% 84% +11% +11%
pl ✓ 95% 88% 73% +13% +14%
fa ✓ 99% 79% 66% +18% +20%
vi ✓ 86% 66% 41% +22% +21%
he ✗ 23% 5% 1% +30% +4700%

Table 3: Script coverage in pretraining measured at the
level of character n-grams. Improvements with pixel
representations are averaged across all resource settings.

tensions, but enable transfer more data-efficiently,
requiring fewer examples to achieve good perfor-
mance.

To evaluate the data-efficiency of cross-lingual
transfer, we adapt our multilingual models to lan-
guage pairs with five new source languages, each
with different degrees of script coverage to those
observed in pretraining as quantified in Table 3:
Romanian, Polish, Farsi, Vietnamese, and Hebrew.
We randomly sample 10k, 50k, and 150k (∼all)
sentences from the multi-target TED dataset used
for TED-7 for each new language pair and fine-
tune our TED-7 models on the training data for
each pair individually for up to 30 epochs, with
early stopping if there are no improvements on the
held-out validation sets for 5 epochs. We use the
TED-7 models because they do not cover these
languages in pretraining; we note that the overall
performance on the original task is similar for pixel
and subword models. In addition to the pixel and
subword models, we also compare subword mod-
els with vocabulary expansion, where the source
embedding matrix is extended to include BPE in-
ventories of size 5k trained for each new language,
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for which embeddings are randomly initialized.
Whether model vocabularies cover a particular

script is typically described as binary, but even
with observed scripts new languages introduce un-
seen character sequences and diacritics which will
not be appropriately represented. We observe that
for Unicode-based models, transfer capability is
strongly reflected in lexical coverage; vocabulary
expansion improves performance slightly for lan-
guages with higher n-gram coverage, and signifi-
cantly for Hebrew with minimal coverage, particu-
larly with more data to train new language-specific
embeddings, as seen in Figure 10. However, pixel
representations enable models to perform better
still than vocabulary expansion, particularly with
less data. We believe this is because with complete
parameter sharing across all scripts, all parameters
for new languages are more strongly initialized.
This direction may lead to more data-efficient cross-
lingual transfer, particularly for under-resourced
languages and tasks.

6 Related Work

Previous work has shown allocating additional en-
coder capacity to be beneficial for smaller granu-
larity inputs, both for characters and bytes (Cherry
et al., 2018; Xue et al., 2022b) and other modalities
(He et al., 2021; Zhang et al., 2017). Deep encoders
and shallow decoders have been used to improve
model efficiency and latency with subword inputs
(Kim et al., 2019; Kasai et al., 2021; Kong et al.,
2021), and deeper and narrower encoders have been
shown to scale more effectively (Tay et al., 2022;
Xue et al., 2022a).

Significant prior work has been devoted to
broader and more effective language coverage,
through full Unicode character coverage and down-
sampling (Clark et al., 2022), clustered vocabu-
laries for efficient modeling of large vocabular-
ies (Chung et al., 2020; Liang et al., 2023), byte-
level modeling (Gillick et al., 2016; Xue et al.,
2022b), bytes in conjunction with BPE to com-
bat data sparsity and memory issues (BBPE: Rad-
ford et al., 2019; Wang et al., 2019a) or byte-
fallback (Xue et al., 2022b). Mapping characters
to a smaller set of common representations across
scripts through transliteration (Amrhein and Sen-
nrich, 2020; Purkayastha et al., 2023) or grapheme-
to-phoneme systems (Sun et al., 2022; Gheini
and May, 2019) have also been shown beneficial
for multilingual and cross-lingual transfer for re-

lated languages across scripts, though they may
also introduce collisions which can negatively af-
fect performance. Post-hoc vocabulary expansion
(Wang et al., 2019b; Moon and Okazaki, 2020)
or language adapters (Houlsby et al., 2019; Pfeif-
fer et al., 2020) to increase vocabulary coverage
have also been shown to be very effective. Re-
cently, pixel representations have been proposed as
a vocabulary-free alternative (Salesky et al., 2021;
Rust et al., 2023), though not trained yet multilin-
gually. We refer readers to the BigScience survey
for greater discussion (Mielke et al., 2021).

7 Conclusions

We introduce and demonstrate how to effectively
train multilingual pixel representations for machine
translation. We experiment with two different data
scales with a variety of language and script cov-
erage, demonstrating improved performance com-
pared to the traditional subword approach. We
analyze various properties of pixel representations
to better understand where they may provide po-
tential benefits and the impact of different scripts
and data representation. We observe that these
properties not only enable cross-lingual transfer to
unseen scripts, but make pixel representations more
data-efficient than alternatives such as vocabulary
expansion. We hope this work contributes to more
extensible multilingual models for all languages
and scripts.

8 Limitations

Our multilingual experiments are only many-to-
one thus far, and apply visual representations to
the source languages only. Whether the dynam-
ics would change with multiple target languages
is not yet known. Though we do experiment with
multiple resource scales up to ∼5M sentences our
settings remain limited in scale and domain com-
pared to large-scale industry models and it remains
to be seen how this approach would fare in other
settings. At very low-resource settings with fewer
than 10k examples for a given script, our approach
may perform worse than traditional subword em-
beddings. We observe that pixel models are in some
settings slower to converge than subword equiva-
lents, which we cautiously attribute to sub-optimal
hyperparameters. Though the compute resources
required for training models are similar to tradi-
tional text representations, significantly more disk
space is required to save rendered text compared to
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raw text, which may be necessary if pre-computing
batches without rendering on-the-fly and may limit
efficiency in larger-scale settings. Scalability to
longer text has not yet been investigated.

9 Ethics Statement

The aim of this work is to reduce the vocabulary
bottleneck which disproportionately affects low-
resource languages as they are less likely to be ap-
propriately represented in traditional discrete mul-
tilingual model vocabularies. Alternatives such as
byte-level tokenization potentially increase rather
than decrease the disparity between scripts, as a sin-
gle character may be represented as up to 12 bytes
in e.g. Telugu, whereas Latin scripts are typically
1:1 characters:bytes (Ahia et al., 2023). We show
the sequence lengths resulting from byte, charac-
ter, BPE, and pixel ‘tokenization’ on TED-59 in
Figure 11, App. D; of the alternatives to BPE tok-
enization, pixel representations result in the most
similar sequence lengths and lowest variance across
languages and scripts.

In application settings, substituting visually sim-
ilar characters such as ‘0’ for ‘O’ can be used to
circumvent lexical filtering as used for e.g. spam fil-
tering, hate speech detection, or censorship. Pixel
representations may make these substitutions less
effective which may be beneficial or harmful de-
pending on the setting.
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A List of Languages by Dataset

We list the source languages in each dataset with the number of training examples and language code.
All datasets are many-to-one parallel with English as the target language.

For TED-7 and TED-59, we use the provided train/dev/test splits, and report results on test using model
checkpoints chosen based on dev perplexities.

TED-7

ar Arabic 175k ja Japanese 155k zh Chinese 170k
de German 153k ko Korean 166k Total: 1.2M
fr French 158k ru Russian 181k

TED-59

ar Arabic 214k he Hebrew 212k pl Polish 176k
az Azerbaijani 6k hi Hindi 19k pt Portuguese 52k
be Belarusian 5k hr Croatian 122k pt-br Br. Portuguese 185k
bg Bulgarian 174k hu Hungarian 147k ro Romanian 180k
bn Bengali 5k hy Armenian 21k ru Russian 208k
bs Bosnian 6k id Indonesian 87k sk Slovak 61k
calv — 0k it Italian 205k sl Slovenian 20k
cs Czech 103k ja Japanese 204k sq Albanian 45k
da Danish 45k ka Georgian 13k sr Serbian 137k
de German 168k kk Kazakh 3k sv Swedish 57k
el Greek 134k ko Korean 206k ta Tamil 6k
eo Esperanto 7k ku Kurdish 10k th Thai 98k
es Spanish 196k lt Lithuanian 42k tr Turkish 182k
et Estonian 11k mk Macedonian 25k uk Ukrainian 108k
eu Basque 5k mn Mongolian 8k ur Urdu 6k
fa Farsi 151k mr Marathi 10k vi Vietnamese 172k
fi Finnish 24k ms Malay 5k zh Chinese 6k
fr French 192k my Burmese 21k zh-cn Chinese, Simplified 200k
fr-ca Ca. French 20k nb Norwegian Bokmål 16k zh-tw Chinese, Traditional 203k
gl Galician 10k nl Dutch 184k Total: 5.1M

B Model details by dataset

Below we report the details of the best performing model for each dataset and source representation.

Dataset #Sents Model Vsrc Vtgt Emb. dim. Enc. layers Dec. layers FF width Attn. heads #Params

TED-7 1.2M PIXEL ∅ 10k 512 12 3 4096 4 87M
TED-7 1.2M BPE 35k 10k 512 6 6 1024 4 55M
TED-59 5.1M PIXEL ∅ 10k 512 12 3 4096 4 87M
TED-59 5.1M BPE 64k 10k 512 6 6 2048 8 82M

Table 4: Details of pixel and subword model scale variants.
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C Detailed discussion of rendering parameter choices

Below we discuss our rendering choices in further detail and provide pointers to the experimentation in
past work we build from.

Font: Following past work (Salesky et al., 2021; Rust et al., 2023) we use the Noto font family, as it has
the widest Unicode coverage within a single font or font family known to us. Previous work has used
the non-serif font variant: we find a slight performance decrease of 5% with NotoSerif on TED-59, and
accordingly stick to NotoSans.

Patch size and stride: Salesky et al. (2021) extensively tune font size, window size, and stride for
single language pair translation experiments, and find that performance may degrade for some language
pairs with font size <10pt. For this reason, we use font size 10pt. While that work found slight differences
in optimal window size (15-30) and stride (5-20), we found no degradation in multilingual performance
with uniform window widths and so use uniform values for simplicity. Rust et al. (2023) used smaller
square windows of 16× 16, without any patch overlap (continuous), for English pretraining and cross-
lingual finetuning for classification tasks. In our multilingual translation experiments TED-59, we find an
average 10% performance decrease without any overlap (stride s = width w). The maximum height of the
characters in TED-59 with font size 10pt is 22px, requiring reduced size or truncation to use window size
16pt. A larger window size of 32 fits all characters but increases the proportion of whitespace pixels, and
decreases performance by 7%. With window size 24px we were able to fit all characters and diacritics in
this dataset, with best overall performance.

Convolutional block: We find an average reduction in performance of 2.8% (28.4 to 27.6 BLEU,
stdev = 0.6) without a convolutional block, translating directly from pixel values linearly projected to
512-dim vectors, and so use 1 convolutional block in all experiments reported here.

Additional rendering strategies: Lotz et al. (2023) compare additional rendering strategies to decrease
the pixel input space through structured spacing (bigrams, words) or monospace fonts where available,
and show improvements on both pretraining and cross-lingual transfer to downstream classification tasks,
and multilingual QA. It remains to be seen how these strategies would affect translation.

Rendering backend: In addition to the character-level fallback capabilities mentioned in the main text
(§ 2.1), the PangoCairo renderer is also more efficient than PyGame, with throughput approaching the
Rust-based BERT tokenizer without batch processing, as measured in Rust et al. (2023, App. D).
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D Variance in sequence lengths across tokenizations

Below we show the sequence lengths resulting from byte, character, and BPE tokenization and pixel
representations on TED-59. Of the alternatives to BPE, pixel representations result in the most similar
sequence lengths and lowest variance across languages and scripts.

Figure 11: Average sequence length with various tokenization schemes compared on TED-59.

E Full results reported by individual language pair

In addition to the aggregated metric scores reported in the main text, below we report results for each
individual language pair with three metrics: BLEU, chrF, and COMET.

Results are organized by dataset. TED-7 results are reported in Table 5, and TED-59 in Table 6.

E.1 Individual language pair results: TED-7

BLEU
Mean ar de fr ja ko ru zh

PIXEL 26.2 32.1 35.4 37.1 16.0 18.1 26.1 18.9
BPE 25.7 31.4 34.3 36.3 15.7 17.7 25.7 18.8
CHAR 24.5 30.4 32.7 34.3 15.0 16.8 24.3 17.8

chrF
Mean ar de fr ja ko ru zh

PIXEL 49.5 54.5 57.6 58.4 40.4 42.7 49.6 43.4
BPE 48.8 53.2 56.5 57.6 40.5 42.5 48.8 42.7
CHAR 47.5 52.4 55.0 56.0 39.2 41.1 47.6 41.4

COMET
Mean ar de fr ja ko ru zh

PIXEL 77.9 79.6 79.1 81.6 75.2 76.6 76.5 76.6
BPE 77.3 78.8 77.9 80.9 75.3 76.4 75.7 75.8
CHAR 76.7 78.8 78.1 80.2 74.3 75.6 75.3 74.5

Table 5: Results on TED-7 evaluation set reported by individual language pair.
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E.2 Individual language pair results: TED-59

BLEU
Mean ar az be bg bn bs cs da de el eo

PIXEL 28.4 29.8 16.6 28.5 39.6 12.7 38.3 30.7 44.8 36.1 38.0 32.9
BPE 23.8 26.1 12.5 19.2 33.9 13.9 31.4 25.0 38.3 30.0 33.0 24.8

es et eu fa fi fr fr-ca gl he hi hr hu

PIXEL 41.8 23.6 21.6 26.9 22.9 40.0 35.0 36.5 35.3 21.9 37.9 26.8
BPE 36.2 19.0 16.1 23.2 17.4 34.6 29.6 29.7 30.7 20.8 31.7 21.6

hy id it ja ka kk ko ku lt mk mn mr

PIXEL 23.7 32.1 38.5 13.2 21.7 11.8 18.1 18.4 27.2 35.3 11.0 11.8
BPE 20.1 26.7 32.3 11.8 18.1 7.9 16.2 15.4 21.5 30.2 9.1 10.8

ms my nb nl pl pt pt-br ro ru sk sl sq

PIXEL 26.1 16.2 46.8 36.0 25.7 43.8 45.0 36.3 25.7 33.7 28.7 40.0
BPE 21.7 14.1 39.7 30.4 20.8 37.3 38.8 30.0 21.7 27.4 23.0 31.9

sr sv ta th tr uk ur vi zh zh-cn zh-tw

PIXEL 37.3 40.4 7.6 22.5 26.3 30.2 19.1 26.8 17.1 18.5 17.4
BPE 30.4 33.2 7.7 19.8 21.1 24.9 16.8 23.2 14.7 17.3 16.5

chrF
Mean ar az be bg bn bs cs da de el eo

PIXEL 50.1 51.2 38.9 50.8 60.5 32.2 59.9 53.7 64.2 57.7 57.9 53.3
BPE 45.5 47.3 33.0 40.8 55.4 34.1 53.6 48.0 58.6 51.6 53.0 45.7

es et eu fa fi fr fr-ca gl he hi hr hu

PIXEL 62.7 46.6 44.7 49.6 44.5 60.9 56.9 58.3 55.5 41.9 59.4 49.8
BPE 57.7 41.1 38.4 45.2 38.3 55.8 51.8 52.3 51.1 41.6 53.6 44.1

hy id it ja ka kk ko ku lt mk mn mr

PIXEL 44.8 54.2 59.6 36.9 43.1 33.6 41.4 39.7 50.2 57.8 33.3 32.0
BPE 41.1 48.4 54.1 34.9 39.5 28.4 39.3 36.2 44.1 52.1 29.4 31.5

ms my nb nl pl pt pt-br ro ru sk sl sq

PIXEL 51.8 38.9 64.9 57.4 48.8 64.3 64.9 57.9 49.2 55.8 51.7 60.0
BPE 45.3 36.9 58.8 52.0 43.4 59.0 59.6 52.2 44.6 49.8 46.1 52.5

sr sv ta th tr uk ur vi zh zh-cn zh-tw

PIXEL 58.9 60.6 25.8 44.8 49.7 52.6 40.2 49.1 37.9 41.2 40.2
BPE 52.3 54.1 28.1 42.7 43.8 47.2 37.4 45.1 36.9 40.3 39.6

COMET
Mean ar az be bg bn bs cs da de el eo

PIXEL 77.2 77.4 74.2 76.2 82.5 62.9 84.3 80.0 83.7 81.3 81.8 78.5
BPE 73.3 73.9 66.8 67.3 78.4 67.4 78.9 74.3 79.7 76.0 78.2 72.0

es et eu fa fi fr fr-ca gl he hi hr hu

PIXEL 83.4 74.6 74.3 77.1 76.2 82.5 82.8 81.9 79.4 70.3 82.8 77.9
BPE 79.2 69.8 69.2 73.7 70.2 78.4 77.8 76.9 75.8 71.8 77.7 72.4

hy id it ja ka kk ko ku lt mk mn mr

PIXEL 75.5 81.0 82.3 71.9 71.1 65.1 75.4 63.7 78.4 81.4 68.3 65.3
BPE 73.7 76.0 77.4 69.7 69.7 60.5 73.5 61.5 72.3 77.0 66.1 66.2

ms my nb nl pl pt pt-br ro ru sk sl sq

PIXEL 78.6 73.2 84.0 81.4 76.8 84.5 85.2 82.2 77.0 81.2 78.5 81.9
BPE 74.1 71.6 79.1 76.5 71.4 81.1 80.4 76.8 72.6 75.6 73.5 76.2

sr sv ta th tr uk ur vi zh zh-cn zh-tw

PIXEL 82.0 82.5 59.8 75.9 79.8 78.8 71.3 77.8 74.5 73.8 71.5
BPE 76.3 77.3 61.7 74.8 74.6 73.8 69.1 74.4 68.7 72.9 72.1

Table 6: Results on TED-59 evaluation set reported by individual language pair.
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F Control experiment: Reparameterized models for individual language pairs

Here we reparameterize the TED models for individual language pairs from Salesky et al. (2021) according
to our findings in § 3.1, shifting encoder–decoder layer depth from 6−6 to 12−3 and feed-forward width
from 1024 to 2048, while maintaining approximately the same number of parameters (55.3M vs. 56.9M).
We see that this reparameterization is not optimal for individual language pairs with less data, or the
individual de-en language pair with a similar amounts of data to TED-7.

TED WMT

Model ar de fr ja ko ru zh Mean de

Salesky et al. (2021) 32.1 33.6 36.7 14.4 17.0 25.4 18.3 25.4 32.9
Reparameterized 31.0 33.5 35.6 12.6 15.4 24.1 17.0 24.2 29.4

Table 7: Performance differences by reparameterizing models for individual language pairs according to § 3.1.

G Subword vocabulary constructions

Here we compare different multilingual subword vocabulary constructions for baseline text models on
TED-7, with results for bilingual models from Salesky et al. (2021) for comparison.

Model ar de fr ja ko ru zh Mean

Bilingual 32.1 33.6 36.7 14.4 17.0 25.4 18.3 25.4

Characters 30.4 32.7 34.3 15.0 16.8 24.3 17.8 24.5
Joint vocab 30.6 33.8 36.3 15.6 17.4 25.1 18.6 25.3
Separate vocab 31.4 34.3 36.3 15.7 17.7 25.7 18.8 25.7

Table 8: Results of different vocabulary constructions for baseline text models on TED-7.

H Clustering by language and script: TED-7

Below we show the same t-SNE clustering from § 4.1.1 for the smaller multi-way parallel TED-7 validation
set. Sentence-level vectors for clustering are creating by mean-pooling token embeddings for both the
PIXEL and BPE models. We observe clear clustering by source language in the text model, despite parallel
sentences and shared subwords. In the pixel model, we observe multiple clusters per language and script,
with greater overlap between languages with shared scripts (French and German).

(a) TED-7, PIXEL (b) TED-7, SUBWORD

Figure 12: Clustering shows more representational similarity across languages and scripts with pixel representations
than with disjoint subword embeddings.
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I Full SVD plot of TED-7 pixel model embeddings

Figure 13: Full SVD visualization of source-side embeddings from the TED-7 pixel model. Only 1% of all
embeddings lie above y = 0.03, which was excluded from the main text to assist readability.
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