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Abstract

Despite outstanding performance in many tasks,
language models are notoriously inclined to
make factual errors in tasks requiring arith-
metic computation. We address this deficiency
by creating Calc-X, a collection of datasets
that demonstrates the appropriate use of a cal-
culator in reasoning chains. Calc-X is suit-
able for teaching language models to offload
computations to a symbolic system. We sur-
vey and unify several existing chain-of-thought
datasets into a proposed format, resulting in
a standard collection of over 300,000 samples
requiring arithmetic reasoning. Finally, we use
the new Calc-X collection to train open-source
calculator-using models we call Calcformers
and show that these models approximately dou-
ble the accuracy of generating correct results
compared to vanilla language model baselines.
We make all Calc-X datasets, source code and
Calcformers models publicly available.1

1 Introduction

While the language models (LMs) demonstrate out-
standing efficiency in working with unstructured
language data, they struggle with problems that
require exact computations (Patel et al., 2021b).
On the other hand, symbolic systems, such as a
calculator, can perform arithmetics without errors.
Thus, combining the strengths of both neural and
symbolic systems can yield significant benefits in
tackling tasks that require arithmetics (Schick et al.,
2023; Gao et al., 2023).

Given a sufficient amount of supervised data, the
interaction with symbolic systems can be learned.
However, obtaining texts demonstrating the interac-
tion in relevant situations and in a consistent struc-
ture is non-trivial. Consequently, a substantial ef-
fort of most related work addresses the data scarcity
problem through semi-supervised learning, heuris-
tics, prompting or few-shot, and reinforcement-

*Equal contribution
1https://github.com/prompteus/calc-x

Figure 1: Generation process of Calcformer models:
By generating the closing </gadget> tag, model calls
an external tool. The following tokens are inserted into
the model’s context by the tool. Finally, the model
continues generation using all of the previous tokens.

based approaches (Section 2) with compromises in
the quality and reproducibility.

To support future research in developing open-
source tool-assisted language models, we curate
a Calc-X collection of over 300,000 samples for
mathematical reasoning. Calc-X transforms sev-
eral existing datasets into a unified format that can
be used to train and evaluate LMs for the correct
use of a calculator. We survey existing chain-of-
thought (CoT) datasets for arithmetical reasoning
(Section 2) and pick a subset suitable for integration
into a consistent collection. To enable efficient inte-
gration of LMs with independent tools, we propose
a unified format of a fully parseable HTML-like
markup language (Section 3). For each dataset,
we describe the curation process of its calculator-
augmented (Calc-X) version (Section 4). Finally,
we show that training on a full mixture of Calc-
X datasets enables LMs to use a symbolic system
during inference and largely improves the accuracy
on held-out math problems (Section 5). We make
all our building tools, datasets and models publicly
available (Appendix A.4).

2 Related Work

Math Datasets GSM8K (Cobbe et al., 2021) con-
tains grade-school math problems with human-
written CoT explanations and explicit annotation of
formulas. ASDiv (Miao et al., 2020), SVAMP (Pa-
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tel et al., 2021a), MAWPS (Koncel-Kedziorski
et al., 2016) and larger Chinese Ape210k (Zhao
et al., 2020) contain problems of similar complex-
ity, but the solutions are written as nested expres-
sions. AQuA-RAT (Ling et al., 2017) contains
multiple-choice problems with selected answers
and free-text rationales. MathQA (Amini et al.,
2019) is a subset of AQuA-RAT with additional an-
notation: nested expressions that lead to an answer,
similar to those in Ape210k or ASDiv. MATH and
AMPS (Hendrycks et al., 2021) consist of more
challenging problems and contain CoT solutions
formatted in LATEX. Specifically, MATH is a set
of high-school math competition problems, and
AMPS is a large-scale pre-training dataset, partly
scraped and partly synthetically generated. Math-
ematics Dataset (Saxton et al., 2019) is another
generated dataset but containing only final answers.

Tool-using LMs A main contribution of much
of the previous work in building tool-using models
addresses the problem of data scarcity. Komeili
et al. (2022), WebGPT (Nakano et al., 2021), and
LaMDA (Thoppilan et al., 2022) let crowd workers
annotate tool calls to train models to use a web
search, a calculator, and a machine translation sys-
tem. PAL (Gao et al., 2023) applies prompt engi-
neering to make an LM use a Python interpreter
without training. Toolformer’s approach (Schick
et al., 2023) is to prompt an LM to insert gadget
tags (“API calls”) into CoT datasets and filter out
irrelevant ones using the trained model’s perplexity.
In evaluation, Toolformer simplifies the problem to
only one tool call per example and supports gener-
ation with several heuristic rules.

TaLM (Parisi et al., 2022) extends a training
dataset by self-training: They start with a small set
of fully annotated data, including the annotations
of tool calls, and then iteratively generate CoTs
with tool calls for a larger dataset with incomplete
annotation. The examples added to the training set
are chosen heuristically without guarantee that the
entire reasoning chain is correct.

We note that none of the referenced work pub-
licly releases the resulting models. In combination
with the many training and inference heuristics,
it is largely difficult to reproduce and build upon
the proposed methods. However, the availability
of an extensive, standardized collection of tool-
assisted datasets like the one presented by Calc-X
will allow future work to substantially simplify the
methods needed for creating tool-assisted models.

3 Calc-X Interaction Format

We propose a semi-structured format for CoT
data to provide both the flexibility of unstruc-
tured text and the precision of structured formats.
The HTML-based structure of interactions is com-
patible with existing parsers, such as Beautiful-
Soup (Richardson, 2007). This allows fast execu-
tion of parsing in the interaction with tools within
the generation but also allows future work to eas-
ily transfer Calc-X collection into other desired
interaction formats.

Our format, displayed in Figure 2, uses three
tags: gadget, output, and result. Tag gadget is in-
tended for inputs or “queries” to an external system.
Tag output wraps the response of the external sys-
tem to the query. The tag result wraps the final
result of the thought chain.

After buying the bread and candy bar,
you have 32-3-2=
<gadget id="calculator">32-3-2</gadget>
<output>27</output>
$27. You spend 27/3=
<gadget id="calculator">27/3</gadget>
<output>9</output>
9 dollars on the turkey. You have 27-9=
<gadget id="calculator">27-9</gadget>
<output>18</output>
$18 left. The final result is 18.
<result>18</result>

Figure 2: An example of target text from a chain-of-
thought dataset encoded in our proposed format. Our
format is designed to allow the interaction of LMs with
multiple external systems, such as a calculator.

4 Creation of Calc-X Collection

Out of the datasets reviewed in Section 2, we cre-
ate the first version of Calc-X collection from
these datasets: GSM8K, AQuA-RAT, MathQA,
Ape210k, MAWPS, SVAMP and ASDiv. Our se-
lection considers the datasets’ size, primary focus
on arithmetics, and parseability of the tool calls.

The resulting Calc-X collection is designed to
simplify the correct usability of the whole collec-
tion in both training and evaluation while persist-
ing the maximum of datasets’ original information.
Most importantly, the process includes (1) the uni-
fication of key attributes (i.e. inputs, labels and
correct results) over all datasets, and (2) the elim-
ination of data leakages between different (train/-
val/test) data splits throughout the whole collection.

We perform the second step based on a lexical
overlap between pairs of samples’ input texts from
different splits across all datasets. We consider a
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pair of train and test examples a leak if the Jaccard
similarity of their 1-gram and 2-gram representa-
tions is over 0.5. This results in data splits com-
posed of subsets of the original datasets, but thanks
to this step, the whole Calc-X collection can be
used to perform both validation and tests over all
datasets when all datasets are also used in training.

The remainder of this section describes the con-
version process of each dataset currently included
in the Calc-X collection.

4.1 GSM8K
GSM8K (Cobbe et al., 2021) is a CoT dataset with
over 8,000 examples containing arithmetical ex-
pressions that can be evaluated using a calculator.
The syntax is not standard but can be easily parsed.

"Natalia sold 48/2 = ⟨⟨48/2 = 24⟩⟩ 24 clips in
May. Natalia sold 48+24 = ⟨⟨48 + 24 = 72⟩⟩ 72
clips altogether in April and May. #### 72"

Figure 3: The syntax used in the GSM8K dataset.

In GSM8K, the calculations are explicitly anno-
tated, and removing the tags from chain-of-thought
results in natural language sentences. The final
result is a single number that is also explicitly an-
notated at the end of the solution.

We parse the formulas using regular expressions,
evaluate them using the sympy library (Meurer et al.,
2017), and verify that all outputs are numerically
close to the values in the data. The conversion into
our unified format is a direct one-to-one mapping.

Our analysis shows that the original validation
and test splits of GSM8K do not contain duplicates
and are not contained in a training split of other
datasets.

4.2 Ape210K
Ape210K (Zhao et al., 2020) is a dataset of over
200K math problems involving simple arithmetics.
The questions are written in Chinese, and the solu-
tions are represented as nested arithmetical expres-
sions and a single numerical result to which they
evaluate. We automatically translate the questions
to English using Google Translate and linearize
the nested expressions into a sequence of simple
expressions using depth-first traversal of the ex-
pression tree. Figure 4 illustrates the process of
linearization.

Furthermore, we discard all examples that can-
not be parsed. Then, we evaluate the linear se-

Nested expression:
(2 - 8) + (2 - 8) * (50% + 3)

Linear chain:
2 - 8 = -6
50 / 100 = 1/2
(1/2) + 3 = 7/2
(-6) * (7/2) = -21
(-6) * (-21) = -27

Figure 4: Linearization of nested expression

quence of steps and remove examples whose end
result does not numerically match the original re-
sult saved in the data. We also discard all exam-
ples with the original result written in the form of
“⟨number⟩(⟨fraction⟩)”, such as 1(1/2) because of
the ambiguity between implicit multiplication and
mixed fractions, which are both present in the data
in the same form. In total, more than 97% of the
examples in each split passed all checks and were
kept in the dataset.

Finally, the linearized examples can be di-
rectly transformed into our unified format. While
Ape210K is much larger than GSM8K, the ex-
ported chains do not contain any comments in natu-
ral language, and the English prompts are machine-
translated.

Analysis of overlaps shows that around 60% of
both validation and test examples present dupli-
cates or near-duplicates to the Ape210K’s training
split. In Calc-X, we remove these examples from
validation and test splits with around 1700 remain-
ing in each.

4.3 AQuA-RAT

AQuA-RAT (Ling et al., 2017) is a dataset of 100K
math problems. The annotations consist of 1) mul-
tiple choices, 2) the correct choice, and 3) an infor-
mal, free-text rationale that explains the selected
choice. The answer is usually a single number but
can also be a pair of numbers (coordinates), include
a unit, a ratio, "None of the options," and others.

The rationale is in free-text format and gener-
ally not parseable with formal grammar. In some
cases, calculations are written in words, such as
“ten pages per day means seventy pages per week.”
We approach this in a best-effort manner and use
regular expressions to find equations in the form
of expression = number. We remove all the non-
symbolic characters (mainly all textual characters)
from both sides of such-identified equations and
evaluate the left-hand side using sympy calculator.
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Finally, we compare the calculator output with the
right-hand equation side, and if the result of the
calculator matches, we insert a tagged calculator
call into the rationale. This results in 1.6 calculator
calls on average per single reasoning chain.

Our error analysis shows that the annotators are
usually consistent in their rationale structure. The
described parsing heuristic works well for the anno-
tations that consistently use "=" (equals symbol) in
their chain. However, we usually do not inject any
calculator calls for many others that do not follow
the equation-following structure. Thus, for appli-
cations with high priority of recall in the injected
gadget calls, we propose to further filter our dataset
to the samples with at least three calculator calls.

Analysis of data leaks shows around 2% of the
training split are near-duplicates of around 30%
and 25% of test and validation AQuA-RAT sam-
ples, respectively. In Calc-X collection, we remove
these samples from the train split.

4.4 MathQA

MathQA (Amini et al., 2019) is a subset (37K)
of AQuA-RAT with further annotations. Human
annotators have corrected errors inside the AQuA-
RAT rationales and annotated the solution with a
nested expression that leads to the correct answer.

We parse the nested expressions and linearize
them using a similar procedure as for Ape210K.
Less than 0.3% of examples were removed due to
parsing or evaluation problems. We also replace
all function calls (such as circle_area) with corre-
sponding elementary operations that can be exe-
cuted with a sympy calculator.

Next, we keep the examples only if their ex-
pression evaluation result is in ±5% range of the
selected correct choice in the data, which results in
a loss of around 30% of the data. We note that the
mismatch of the computed results with annotated
options is not consistent with the authors’ claim2

that the expressions in the dataset are guaranteed
to evaluate to the selected option, but is consistent
with observations by Parisi et al. (2022). After in-
spection, we attribute most of these errors to the
inconsistency in the original MathQA dataset. In
our published variant of the dataset, we remove all
examples in which the expression does not evaluate
to a value numerically close to the selected option.

Evaluation of data leakages shows that all sam-
ples of MathQA originate from the training split

2math-qa.github.io/math-QA, accessed 20/10/2023

of AQuA-RAT. Hence, we completely remove the
validation and test splits of MathQA in Calc-X and
omit evaluations on MathQA in our results.

4.5 MAWPS

MAWPS (Koncel-Kedziorski et al., 2016) is a col-
lection of around 5000 elementary school-level
problems from online websites. The solution to
each problem is annotated as an equation with a
single variable x. Solving the equation for x gives
the answer to the problem. We isolate x from the
equations by manual annotation and then linearize
the corresponding expression into a sequence of cal-
culations to convert the data into our unified format.
We do not train our models on any MAWPS data
to ensure a fair comparison with previous work.

Around 70% of MAWPS’s train samples are
near-duplicates of its train split, test split, or ASDiv-
A test split. We remove these samples from Calc-
X’s train collection.

4.6 ASDiv-A and SVAMP

ASDiv (Miao et al., 2020) is an arithmetics
benchmark with problems of similar difficulty as
MAWPS. ASDiv-A picks around 1,200 samples
with a number as a solution and a nested expres-
sion evaluating to the correct result. SVAMP (Pa-
tel et al., 2021a) comprises 1,000 math problems
derived from ASDiv, overcoming some of its defi-
ciencies.

Whole ASDiv-A and SVAMP datasets were di-
rectly convertible to our common format. With no
official train-test split, we use both for evaluation
only.

5 Experiments

To explore the potential of our newly curated data
collection, we train models of identical architecture
and parametrization in two configurations:

1. Train on the original datasets: use all of
the selected datasets (see Section 4) to train a
baseline: a generative model that produces an
associated output reasoning chain on a given
input sequence. All training samples removed
from Calc-X are also removed from baseline
data for fair comparison.

2. Train Calcformers on the Calc-X datasets:
train the model for an identical objective,
but on the corresponding Calc-X datasets, to
demonstrate the interaction with a symbolic
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GSM8K AQuA-RAT Ape210K MAWPS SVAMP ASDiv-A

GPT-3 175B 19.9∗ 10.0∗ 14.0∗

Toolformer 6.7B 44.0∗ 29.4∗ 40.4∗

T5-L 700M 17.0±3.4 26.6±6.6 19.0±1.8 11.2±2.8 18.2±2.3 29.7±2.5

Calcformer-T5-L 700M 34.2±4.4 27.2±6.6 53.1±2.3 39.4±4.1 34.4±3.0 55.6±2.8

T5-XL 3B 19.2±3.6 33.5±7.2 20.8±1.9 16.0±3.1 24.7±2.6 37.0±2.7

Calcformer-T5-XL 3B 39.6±4.4 33.5±6.9 53.8±2.3 49.0±4.3 44.7±3.1 66.8±2.6

Flan-XL 3B 24.2±3.8 20.8±6.1 22.9±2.0 15.8±3.1 24.0±2.6 38.7±2.7

Calcformer-Flan-XL 3B 39.4±4.4 31.2±6.6 53.4±2.3 47.1±4.3 46.7±3.1 72.5±2.5

Table 1: Percentage of correct results on test sets of listed datasets, for (i) models of previous work, (ii) Calcformer
models trained on our Calc-X collection and evaluated with access to sympy calculator, and (iii) language models
trained on the original datasets, evaluated in standard sequence-to-sequence generation. Confidence intervals
computed in a bootstrapped evaluation (sample size n=500, repeats r=1,000); bold denotes significantly best results
for a combination of base model + dataset. Values marked with ∗ are self-reported results from Schick et al. (2023).

system. In inference, whenever the model gen-
erates the enclosing gadget tags, the model’s
generated text is extended with the output of
the sympy calculator (see Figure 1).

In both settings, we fine-tune T5 foundation mod-
els of Raffel et al. (2020), and Chung et al. (2022)
in 700-million and 3-billion parameters’ versions,
using teacher forcing and cross-entropy loss, com-
monly applied on sequence-to-sequence Transform-
ers (Bahdanau et al., 2016; Vaswani et al., 2017).
We use greedy decoding in inference.

We evaluate both systems by numerically com-
paring the value of the final result extracted from
the generated answer with the ground truth result.
In the case of AQuA-RAT, where the answer is one
of the options, we compare the predictions against
all options and pick the one with the lowest Leven-
shtein distance as chosen by the model.

In the case of the Calcformer models, the an-
swer is enclosed in the <result> tags that we use
to extract the answer. For the baseline models, we
extract the answer as the sequence following the
key phrase “The final result is”; this format is pre-
sented in all the baselines’ training samples. Our
training setup is further detailed in Appendix A.

Results Table 1 compares the performance of
the conventional generative models and calculator-
supported models trained on Calc-X datasets. Cal-
cformers surpass the accuracy of the baseline mod-
els 2-3 times, with the exception of the AQuA-RAT
dataset. Nevertheless, the overall improvement of
the calculator-using models in reaching the correct
answer is 99.6% on average across all datasets.

We can see that on the AQuA-RAT dataset, Cal-
cformers perform comparably with baselines in the
case of two out of three base models. We find that
this is due to the low average number of tool calls
inside the AQuA-RAT training split, leading to in-
consistent usage of the calculator on AQuA-RAT
test questions.

6 Conclusion

This paper introduces a Calc-X dataset collection,
transforming over 300,000 samples of arithmetic
reasoning datasets into a unified chain-of-thought
format with explicit annotation of interaction with a
calculator. Calc-X enables integration of a simple
symbolic system in the reasoning chains of lan-
guage models via traditional supervised learning,
easily allowing the models to offload mathematical
computation to an external tool.

We support the correct use of the Calc-X collec-
tion for both training and evaluation by unifying the
format of all included datasets and eliminating the
datasets’ mutual data leakages, making Calc-X a
convenient default for any future research address-
ing models’ arithmetic reasoning.

Finally, we demonstrate the potential of Calc-X
by utilizing the whole unified collection in training
and adjusting the models’ inference process for the
use of the calculator. As a result, our calculator-
assisted models reach an accuracy that approxi-
mately doubles the accuracy of the traditional gen-
eration and outperforms existing previous work.
We make the Calc-X collection and newly-created
calculator-supported Calcformer models publicly
available to facilitate further research in the fast-
paced area of tool-using language models.
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Limitations

We acknowledge the limitations of our heuristic for
injecting annotations into AQuA-RAT rationales.
We suggest future authors experiment with utilizing
a sequence-to-sequence language model similarly
to the method by Schick et al. (2023), which might
yield a higher recall.

Further, we note that in some Calc-X datasets,
the format of reasoning chains differs from others
in that it does not contain verbal explanations sur-
rounding the computational parts. We believe that
using a language model here to write explanatory
comments in natural language between the com-
putation steps is a promising path if a consistent
format of CoT, including both arithmetics and free-
text reasoning, is desired.

We also note the limitations of a simple calcula-
tor in advanced mathematical reasoning. While the
models’ extension with a calculator circumvents an
important bottleneck, difficult mathematical tasks
might require more general symbolic systems to
obtain satisfactory results.
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A Training details

A.1 Model Settings

We trained the models using the HuggingFace
Transformers library. We applied standard
sequence-to-sequence training with cross-entropy
loss on all tokens. We optimized the model with
AdamW optimizer and effective batch size of 32.
We used learning rate of 5e-5 with 1000 warmup
steps, and a linear lr decay to 0 in 400000 steps.
The models were trained in bf16 precision. All
models were trained on a mixture of all datasets,
either in Calc-X or in original format, with data
upsampling to balance different dataset sizes.

A.2 Training progress

During training, we monitored the percentage of
validation predictions that have a correct final result.
We compute the performance on each dataset sepa-
rately and average them together, which we use for
early stopping and selecting the best checkpoint
after training.

A comparison of the models on the aggregate
metric during training is illustrated in Figure 5. The
detailed (per-dataset) metrics of the best model can
be seen in Figure 6.

A.3 Hardware

To train each of our models, we used a single
NVIDIA A100 80GB GPU, 40GB of RAM, and
4 CPU cores. We have trained two models with
700M parameters and four models with 3B param-
eters, with a total training wall time of around 21
days.

A.4 Datasets, Models, and Code

We make our code, Calc-X datasets, and models
publicly available.

Code: https://github.com/prompteus/calc-x
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Figure 5: Percentage of validation predictions with cor-
rect result during training. Baseline T5-XL run is miss-
ing from because of technical difficulties requiring re-
runs from intermediate checkpoints.

Figure 6: Percentage of validation predictions with a
correct result of a single run Calcformer-Flan-XL on
each dataset during training.

Datasets

• huggingface.co/datasets/MU-NLPC/Calc-math_qa

• huggingface.co/datasets/MU-NLPC/Calc-gsm8k

• huggingface.co/datasets/MU-NLPC/Calc-aqua_rat

• huggingface.co/datasets/MU-NLPC/Calc-ape210k

• huggingface.co/datasets/MU-NLPC/Calc-svamp

• huggingface.co/datasets/MU-NLPC/Calc-mawps

• huggingface.co/datasets/MU-NLPC/Calc-asdiv_a

Please note that more datasets might be added to
the Calc-X in the future; see the project repository
for an up-to-date list and ready-to-use examples of
the full Calc-X collection.

Calculator-supported Models

• huggingface.co/MU-NLPC/calcformer-flan-xl

• huggingface.co/MU-NLPC/calcformer-t5-xl

• huggingface.co/MU-NLPC/calcformer-t5-large

See the corresponding model cards for usage.
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