
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 737–749
May 2-6, 2023 ©2023 Association for Computational Linguistics

On the Intersection of Context-Free and Regular Languages

Clemente PastiN,Q Andreas OpedalQ Tiago PimentelD

Tim Vieira6 Jason Eisner6 Ryan CotterellQ

NUniversità della Svizzera Italiana QETH Zürich
DUniversity of Cambridge 6Johns Hopkins University

clemente.pasti@usi.ch andreas.opedal@inf.ethz.ch tp472@cam.ac.uk
tim.f.vieira@gmail.com jason@cs.jhu.edu ryan.cotterell@inf.ethz.ch

Abstract
The Bar-Hillel construction is a classic result
in formal language theory. It shows, by a
simple construction, that the intersection of a
context-free language and a regular language
is itself context-free. In the construction, the
regular language is specified by a finite-state
automaton. However, neither the original
construction (Bar-Hillel et al., 1961) nor
its weighted extension (Nederhof and Satta,
2003) can handle finite-state automata with
ε-arcs. While it is possible to remove ε-arcs
from a finite-state automaton efficiently with-
out modifying the language, such an operation
modifies the automaton’s set of paths. We give
a construction that generalizes the Bar-Hillel
in the case where the desired automaton has
ε-arcs, and further prove that our generalized
construction leads to a grammar that encodes
the structure of both the input automaton and
grammar while retaining the asymptotic size
of the original construction.

https://github.com/rycolab/
bar-hillel

1 Introduction

Bar-Hillel et al.’s (1961) construction—together
with its weighted generalization (Nederhof and
Satta, 2003)—is a fundamental result in formal
language theory. Given a weighted context-free
grammar (WCFG) G and a weighted finite-state
automaton (WSFA) A, the Bar-Hillel construction
yields another WCFG G∩ whose languageL(G∩) is
equal to the intersection ofL(G) withL(A). Impor-
tantly, the Bar-Hillel construction directly proves
that weighted context-free languages are closed un-
der intersection with weighted regular languages.
The construction was later extended to other for-
malisms, e.g., tree automata (Maletti and Satta,
2009), synchronous tree substitution grammars
(Maletti, 2010) and linear context-free re-writing
systems (Seki et al., 1991; Nederhof and Satta,
2011b). Furthermore, the Bar-Hillel construction
has seen applications in the computation of infix

probabilities (Nederhof and Satta, 2011a) and hu-
man sentence comprehension (Levy, 2008, 2011).

Unfortunately, Bar-Hillel et al.’s construction,
as well as its weighted generalization by Nederhof
and Satta, requires the input automaton to be
ε-free.1 Although any WFSA can be converted
to a weakly equivalent2 ε-free WFSA using well-
known techniques (Mohri, 2001, 2002; Hanneforth
and de la Higuera, 2010), such an approach adds an
additional step of computation, typically increases
the size of the output grammar G∩, and does not, in
general, maintain a bijection between derivations
in G∩ and the Cartesian product of the derivations
in G and paths in A. In other words, G∩ is not
strongly equivalent to the product of G and A.3

In this note, we generalize the classical Bar-
Hillel construction to the case where the automaton
we seek to intersect with the grammar has ε-arcs.
Our new construction produces a WCFG G∩ that
is strongly equivalent to the product of G and A.
We further generalize the Bar-Hillel construction
to work with arbitrary commutative semirings.
Finally, we give an asymptotic bound on the size
of the resulting grammar and a detailed proof of
correctness in the appendix.

2 Languages, Automata, and Grammars

As background, we now give formal definitions of
semirings, weighted formal languages, finite-state
automata, and context-free grammars.

2.1 Semirings

Semirings are useful algebraic structures for de-
scribing weighted languages (Droste et al., 2009,
Chapter 1). In order to define semirings we must
first give the definition of a monoid. A monoid
is a 3-tuple M = (A, •, 1), where A is a set,

1But they do not require the input grammar to be ε-free.
2Two WFSAs are said to be weakly equivalent if they

represent the same weighted formal language.
3Strong equivalence is formally defined in Definition 6 and

Theorem 1.

737

mailto:clemente.pasti@usi.ch
mailto:andreas.opedal@inf.ethz.ch
mailto:tp472@cam.ac.uk
mailto:tim.f.vieira@gmail.com
mailto:jason@cs.jhu.edu
mailto:ryan.cotterell@inf.ethz.ch
https://github.com/rycolab/bar-hillel
https://github.com/rycolab/bar-hillel

q0 q1 q2 q3
The/2 ε/0.3

many/0.75

cyclists/1

ε/0.6

(a) Weighted finite-state automaton

S → Det NP 1

NP → Adj N 1

NP → Adj NP 0.5

N → cyclists 2

Adj → many 2

Adj → ε 1

Det → The 2

(b) Weighted context-free grammar
S

Det

The

NP

Adj

many

NP

Adj

ε

N

cyclists

(c) Original derivation

S

(q0, S̃, q3)

(q0, S̃, q3)

(q0, S̃, q3)

(q0,S, q3)

(q0,Det, q1)

(q0,The, q1)

The

(q1,NP, q3)

(q1,Adj, q2)

(q1,many, q2)

(q1, ε, q2)

ε

(q2,many, q2)

many

(q2,NP, q3)

(q2,Adj, q2)

ε

(q2,N, q3)

(q2, cyclists, q3)

cyclists

(q3, ε, q3)

ε

(q3, ε, q3)

ε

(d) Derivation in the intersection grammar

Figure 1: Example of a derivation in the grammar obtained as the intersection of the finite-state automaton (a) and
the context-free grammar (b). The derivation tree (d) encodes the derivation tree (c) in the original grammar, and

path q0
The/2−−−→ q1

ε/0.3−−−→ q2
many/0.75−−−−−−→ q2

cyclists/1−−−−−→ q3
ε/0.6−−−→ q3

ε/0.6−−−→ q3. We use rules from Eq. (5g) for ε-arcs
appearing before an input symbol, and rules from Eq. (5b) for ε-arcs appearing at the end of the input.

• : A × A → A is an associative operator, and
1 ∈ A is a distinguished identity element such
that 1 • w = w • 1 = w for any w ∈ A. We say
that a monoid is commutative if • commutes, i.e.,
w1 • w2 = w2 • w1 for any w1, w2 ∈ A. We can
now give the definition of a semiring.

Definition 1. A semiringW = (A,⊕,⊗, 0, 1) is
a 5-tuple where (A,⊕, 0) is a commutative monoid,
(A,⊗, 1) is a monoid, ⊗ distributes over ⊕, and
0 is an annihilator for ⊗, meaning that 0 ⊗ w =
w ⊗ 0 = 0 for any w ∈ A.

We say thatW is commutative if ⊗ commutes.
In this work, we assume commutative semirings.

2.2 Weighted Formal Languages

This paper concerns itself with transforms between
devices that generate weighted formal languages.

Definition 2. Let Σ be an alphabet and
W = (A,⊕,⊗, 0, 1) be a semiring. Then a
weighted formal language L : Σ∗ → A is a
mapping from the Kleene closure of Σ to the set of
weights A. Furthermore, the set supp(L) =

{
s ∈

Σ∗ | L(s) 6= 0
}

is called the language’s support.

Unweighted formal languages (e.g., Sipser,
2006; Hopcroft et al., 2006) are simply the special
case of Definition 2 where W is the boolean
semiring. In this note, we discuss algorithms for
computing the intersection of two weighted formal
languages.4

Definition 3. Let L1 and L2 be two weighted for-
mal languages over the same alphabet Σ and the
same semiringW . The intersection of L1 with L2

is defined as the weighted language

(L1 ∩ L2) (s)
def
= L1(s)⊗ L2(s), ∀s ∈ Σ∗ (1)

Specifically, this paper concerns itself with the
special case of Definition 3 when L1 is a weighted
context-free language (represented by a WCFG),
and L2 is a weighted regular language (represented
by a WFSA); we define these two formalisms in
the subsequent sections.

In the following, the symbol ε always represents
the empty string.

4The intersection of two weighted languages is also called
their Hadamard product (Droste et al., 2009, Chapter 1).

738

2.3 Weighted Finite-State Automata
We now review the basics of weighted finite-state
automata (WFSA), which provide a formalism to
represent weighted regular languages.
Definition 4. A weighted finite-state automaton
A over a semiring W = (A,⊕,⊗, 0, 1) is a 6-
tuple (Σ, Q, δ, λ, ρ,W). In this tuple, Σ is an al-
phabet, Q is a finite set of states, and δ ⊆ Q×Q×
(Σ∪ {ε})×A is a finite multi-set of weighted arcs.
Further, λ : Q→ A and ρ : Q→ A are the initial
and final weight functions, respectively. We also
define the sets QI = {q | q ∈ Q, λ(q) 6= 0} and
QF = {q | q ∈ Q, ρ(q) 6= 0} for convenience.

We will represent an arc in δ with the notation

q0
a/w−−→ q1 where a ∈ Σ∪{ε} and w ∈ A. A path

π (of length N > 0) is a sequence of arcs in δ∗

where the states of adjacent arcs are matched, i.e.,

q0
a1/w1−−−−→ ··· qn−1

an/wn−−−−→ qn ···
aN/wN−−−−−→ qN (2)

and where q0 ∈ QI and qN ∈ QF , i.e., the path
starts at an initial state and ends at a final state.
The path’s yield, denoted yield (π), is the con-
catenation a1a2 ··· aN of all its arc labels (strings
of length ≤ 1). The path’s weight, denoted w (π),
is the product

w (π) = λ(q0)⊗
(

N⊗

n=1

wn

)
⊗ ρ(qN) (3)

We denote the set of all paths in A as DA, and
the set of all paths with yield s as DA(s). Finally,
we define the language of an automaton as
the mapping LA : Σ∗ → A where we have5

LA(s) =
⊕
π∈DA(s)w (π). The set of languages

that can be encoded by a WFSA forms the class
of weighted regular languages.

2.4 Weighted Context-Free Grammars
We now go over the necessary background on
weighted context-free grammars (WCFGs).
Definition 5. A weighted context-free grammar
is a tuple G = (N ,Σ,W, S,P), where N is a
non-empty set of nonterminal symbols, Σ is an al-
phabet of terminal symbols,W = (A,⊕,⊗, 0, 1)
is a semiring, S ∈ N is a distinguished start
symbol, and P is a set of production rules. Each
rule p ∈ P is of the form X

w−→ α, with X ∈ N ,
w ∈ A, and α ∈ (Σ ∪N)∗.

5In the main paper we gloss over the question of how⊕
-summations over infinite sets are to be defined (or left

undefined), but we treat this issue in App. B.2.

Given two strings α,β ∈ (Σ ∪ N)∗, we write
α

p⇒L β if and only if we can express α = zX δ
and β = z γ δ where z ∈ Σ∗ and p ∈ P is the
rule X

w−→ γ. A derivation d (more precisely, a
leftmost derivation) is a sequence α0, . . . ,αN
with N > 0, α0 = S, and αN ∈ Σ∗, such that for
all 0 < n ≤ N , we have αn−1

pn⇒L αn for some
(necessarily unique) pn ∈ P . The derivation’s
yield, yield (d), is αN , and its weight, w(d),
is w (p1) ⊗ · · · ⊗ w (pN). We denote the set of
derivations under a grammar G as DG and the set
of all derivations with yield s as DG(s). Finally,
we define the language of a grammar as LG
where5 LG(s)

def
=
⊕
d∈DG(s)w (d),∀s ∈ Σ∗. The

languages that can be encoded by a WCFG are
known as weighted context-free languages.

3 Generalizing Bar-Hillel

Given any context-free grammar (CFG) G and
finite-state automaton (FSA) A, Bar-Hillel et al.
(1961) showed how to construct a CFG G∩ such
that LG∩=LG ∩ LA. Later, Nederhof and Satta
(2003) generalized Bar-Hillel’s construction to
work on a weighted context-free grammar and
a weighted finite-state automaton. While they
focused on the real semiring, their construction
actually works for any commutative semiring.
However, neither of these versions correctly com-
putes the intersection when the WFSA (or FSA)
contains ε-arcs. Yet, in several applications—such
as modeling noisy inputs for human sentence
comprehension (Levy, 2008, 2011)—we may be
interested in using a WFSA A that contains ε-arcs.
A naïve application of the construction would
ignore paths in A that contain ε-arcs. The problem
may be sidestepped by transforming A into a
weakly equivalent ε-free WFSA6 before applying
the construction;7 this, however, might increase the
size of the WFSA and of the intersection grammar,
and it would not allow us to identify the paths in
the input WFSA that yield a target string in the

6See footnote 2 for the definition of weak equivalence.
7Levy (2008, 2011) uses WFSAs to model the degree of

uncertainty under which a human comprehends a particular
sentence, in which ε-arcs are used to represent word dele-
tion. He applies the Bar-Hillel construction to compute the
intersection of the language represented by the WFSA and
the language encoded by a WCFG that represents the compre-
hender’s grammatical knowledge, in order to obtain a joint
posterior distribution over parses and words. While he trans-
forms A to eliminate ε-arcs prior to applying the Bar-Hillel
construction (Levy, p.c.), the solution we propose here is an
alternative.

739

intersection grammar.8

3.1 The problem with ε-arcs

Before proposing our solution, we explain how
the original construction works, and how it
fails in the case of ε-arcs. Given a WFSA
A = (Σ, Q, δ, λ, ρ,W) and a WCFG G =
(N ,Σ,W,S,P) over the same alphabet Σ and
commutative semiring W , their intersection G∩
is defined by the tuple (N∩,Σ,W, S,P∩), where:

• The set of nonterminal symbols N∩ = {S} ∪
Q × (N ∪ Σ) × Q contains the triplets
(qi,X, qj) plus the start symbol S.9

• The set of production rules P∩ is given by the
equations in Construction 1 of Fig. 2.10

• Σ,W , S are the same as in the input grammar.
The intuition behind this construction is that a
derivation in the intersection grammar encodes
both a path in the input WFSA and a derivation
in the input WCFG with matching yield. Specifi-
cally, rules (4f) encode arcs in the WFSA and rules
(4d) encode production rules in the WCFG. Rules
(4e) handle the special case of ε-productions in the
input WCFG and rules (4a) are designed to take
into account the initial and final weight of a path.
These rules may combine through matching non-
terminals to permit derivations in the intersection
grammar G∩.

Unfortunately, this mechanism breaks in the
presence of ε-arcs. Although the rules (4f) do
construct nonterminals for ε-arcs (when a = ε),
the rules (4d) never generate those nonterminals
(since the Xm on the right-hand side of a rule are
never ε). We show this with an example. Consider
the automaton and the grammar in Fig. 1, both of
which assign non-zero weight to the string The
many cyclists. However, their intersection com-
puted with the Bar-Hillel construction is empty. To
see this, note that all the paths from q0 to q3 contain

the arc q1
ε/0.3−−−→ q2. Eq. (4f) will create a rule

8In contrast, this is easy under our construction. Each
derivation of the target string under G∩ uses a particular path
in A. To reconstruct that path, ε-arcs and all, simply traverse
from left to right the leaves of the derivation tree (e.g., Fig. 1d)
and list the states on the triplets where rule (5f) is applied.

9Many of the nonterminals will turn out to be useless in
that they do not participate in any derivation in DG∩ . These
can be pruned from the grammar along with all rules that
mention them (Hopcroft et al., 2006).

10Note that this construction can handle multiple initial and
final states, whereas Nederhof and Satta’s (2003) construction
assumes a WFSA with a single initial and a single final state.
A path’s initial and final weights are taken into account by
the weight of rules (4a) of Construction 1 in Fig. 2.

(q1, ε, q2)
0.3−−→ ε, but none of the rules produced

by Eqs. (4d) and (4e) has the triplet (q1, ε, q2) on
the right hand side. This misalignment results in
an empty set of derivations in G∩. In App. A we
describe more failure cases in a detailed manner.

3.2 Our generalized construction
We now describe an improved version of the Bar-
Hillel construction that handles ε-arcs in the WFSA.
In comparison to the original construction, our ver-
sion of G∩ = (N∩,Σ,W, S,P∩) has

• N∩ = {S} ∪ Q× (N ∪{S̃}∪Σ)×Q as the
set of nonterminals, where S̃ is a new symbol;

• P∩ as the augmented set of production rules
given in Construction 2 of Fig. 2.

Our generalized construction adds additional
production rules that traverse the ε-arcs. Rules
(5g) can traverse a WFSA subpath labeled with
ε∗a to yield a terminal symbol a ∈ Σ. At the
end of the yielded string, rules (5b) can traverse
a WFSA subpath labeled with ε∗ that ends at a
final state qF . Our construction carefully avoids
overcounting11 by ensuring that each matching
pair of an A-path and a G-derivation of its string
corresponds to exactly one G∩-derivation of that
string, as illustrated in Fig. 1. Note that rules (5d)
to (5f) are identical to their counterparts in the
original construction. Rules (5a) are a modified
version of rules (4a) with the special start symbol
S̃; this allows our construction to handle ε-arcs
immediately before the final state—by repeated
applications of rule (5b)—before switching S̃ back
to S with rule (5c). In App. A we illustrate the
mechanism with examples.

We now state the theorem of correctness.

Definition 6. Let Σ be an alphabet and W be a
commutative semiring. Let G be a WCFG and A
be a WFSA—both over Σ and W . The weighted
join of the derivations in DG with the paths in DA
is defined as:

(DG ./ DA)
def
=
{
〈d,π〉 | d ∈ DG ,π ∈ DA (6)

s.t. yield(d) = yield(π)
}

with w (〈d,π〉) = w(d)⊗ w(π).
11As Fig. 1d illustrates, we do this by introducing a single,

right-branching subderivation for each A-subpath ε∗a that
matches an input symbol a. A nonterminal of the form
(q0, ε, q1) is never used as a right child, nor does it ever
combine with a nonterminal of the form (q0,X, q1), except at
the end of the input, which is specially handled by rules (5b).
Similarly, Allauzen et al. (2010) avoid overcounting when in-
tersecting or composing finite-state machines that have ε-arcs.

740

Construction 1

S
λ(qI)⊗ρ(qF)−−−−−−−−→ (qI ,S, qF) (4a)

∀qI ∈ I, ∀qF ∈ F

(q0,X, qM)
w−→ (q0,X1, q1) ··· (qM−1,XM , qM)

∀(X w−→ X1 ···XM) ∈ P,M > 0 (4d)

∀q0, . . . , qM ∈ Q
(q0,X, q0)

w−→ ε (4e)

∀(X w−→ ε) ∈ P, ∀q0 ∈ Q
(q0, a, q1)

w−→ a (4f)

∀(q0
a/w−−→ q1) ∈ δ

Construction 2

S
λ(qI)⊗ρ(qF)−−−−−−−−→ (qI , S̃, qF) (5a)

∀qI ∈ I, ∀qF ∈ F
(qI , S̃, q1)

1−→ (qI , S̃, q0)(q0, ε, q1) (5b)

∀qI ∈ I, ∀q0, q1 ∈ Q
(qI , S̃, q0)

1−→ (qI ,S, q0) (5c)

∀qI ∈ I, ∀q0 ∈ Q
(q0,X, qM)

w−→ (q0,X1, q1) ··· (qM−1,XM , qM)

∀(X w−→ X1 ···XM) ∈ P,M > 0 (5d)

∀q0, . . . , qM ∈ Q
(q0,X, q0)

w−→ ε (5e)

∀(X w−→ ε) ∈ P,∀q0 ∈ Q
(q0, a, q1)

w−→ a (5f)

∀(q0
a/w−−→ q1) ∈ δ, a ∈ Σ ∪ {ε}

(q0, a, q2)
1−→ (q0, ε, q1)(q1, a, q2) (5g)

∀a ∈ Σ, ∀q0, q1, q2 ∈ Q

Figure 2: The original Bar-Hillel construction (left) and our generalized version (right) that covers ε-arcs. We
highlight the differences from the original construction in red. Note that the weights of rules (4a) and (4f) (respec-
tively (5a) and (5f)) encode the weights of the WFSA, while the weights of rules (4d) and (4e) (respectively (5d)
and (5e)) encode weights of the WCFG. All other rules in the generalized construction ((5b), (5c) and (5g)) are
assigned weight 1, and, thus, they do not change the weight of a derivation.

Theorem 1. Let G be a WCFG and A a WFSA
over the same alphabet Σ and commutative
semiringW . Let G∩ be the grammar obtained with
our generalized construction. Then we have strong
equivalence between G∩ and 〈G,A〉; meaning
that there is a weight-preserving, yield-preserving
bijection between DG∩ and (DG ./ DA).

Corollary 1. G∩ and 〈G,A〉 are weakly equivalent,
meaning that LG∩(s) = LG(s)⊗LA(s) whenever
the values on the right-hand side are defined.

See App. B for proofs. Theorem 1 may be seen
as a generalization of Theorem 8.1 by Bar-Hillel
et al. (1961) and Theorem 12 by Nederhof and
Satta (2003). Indeed, the set of derivations
produced by Construction 1 is equivalent to the set
of derivations produced by Construction 2, modulo
an unfold transform (Tamaki and Sato, 1984) to
remove rules containing S̃. Among the groups of
rules listed in Fig. 2, the set of rules with maximum
cardinality is the one defined by Eq. (5d). This set
has cardinality O

(
|P||Q|M?

)
, where M? is 1 plus

the length of the longest right-hand side among all
the rules P . All other equations in this construction
lead to smaller sets of added rules. Since Eq. (5d)
is unchanged from Eq. (4d) in the original
construction, the asymptotic bound on the number
of rules in our output grammar remains unchanged.

4 Conclusion

We generalized the weighted Bar-Hillel inter-
section construction so that the given WFSA
may contain ε-arcs. Our construction is strongly
equivalent to the product of the original WCFG and
WFSA, i.e., every derivation tree in the resulting
grammar represents a pairing of a derivation tree
in the input WCFG and a path in the WFSA with
the same yield. We gave a full proof of correctness
for our construction. By adding output strings to
the WFSA arcs and having rule (5f) rewrite to the
arc’s output string, our method can also be used
to compose a WCFG with a weighted finite-state
transducer (WFST) that could usefully model
morphological post-processing or speaker errors.

741

5 Acknowledgements

The authors acknowledge Roger Levy for corre-
spondence about Levy (2008) and Levy (2011).

6 Limitations

In this note, we generalize a fundamental theoret-
ical result in formal language theory, which has
seen a variety of practical applications, including
human sentence comprehension under uncertain
input (Levy, 2008, 2011) and infix probability com-
putation (Nederhof and Satta, 2003). Although we
motivate our paper by discussing the necessity of
performing intersections on automata with ε-arcs,
we do not explore any such practical applications.
Further, while we show that the asymptotic bound
on the size of our intersection grammar matches the
original Bar-Hillel construction’s, we do not dis-
cuss multiplicative or added constants introduced
in our grammar’s size.

Ethical Statement

We do not foresee any ethical issues with our work.

References
Cyril Allauzen, Michael Riley, and Johan Schalkwyk.

2010. Filters for efficient composition of weighted
finite-state transducers. In Proceedings of the 15th
International Conference on Implementation and
Application of Automata, International Conference
on Implementation and Application of Automata,
page 28–38, Berlin, Heidelberg. Springer-Verlag.

Yehoshua Bar-Hillel, M. Perles, and E. Shamir. 1961.
On formal properties of simple phrase structure
grammars. Zeitschrift für Phonetik, Sprachwis-
senschaft und Kommunikationsforschung, 14:143–
172. Reprinted in Y. Bar-Hillel. (1964). Language
and Information: Selected Essays on their Theory
and Application, Addison-Wesley 1964, 116–150.

Manfred Droste, Werner Kuich, and Heiko Vogler.
2009. Handbook of Weighted Automata. Springer
Berlin, Heidelberg.

Thomas Hanneforth and Colin de la Higuera. 2010. ε-
removal by loop reduction for finite-state automata.
In Language and Logos, pages 297–312, Berlin.
Akademie Verlag.

John E. Hopcroft, Rajeev Motwani, and Jeffrey D.
Ullman. 2006. Introduction to Automata Theory,
Languages, and Computation, 3 edition. Addison-
Wesley Longman Publishing Co., Inc., USA.

Liang Huang. 2008. Advanced dynamic programming
in semiring and hypergraph frameworks. In Coling

2008: Advanced Dynamic Programming in Compu-
tational Linguistics: Theory, Algorithms and Appli-
cations - Tutorial notes, pages 1–18, Manchester,
UK. Coling 2008 Organizing Committee.

Roger Levy. 2008. A noisy-channel model of hu-
man sentence comprehension under uncertain input.
In Proceedings of the 2008 Conference on Empiri-
cal Methods in Natural Language Processing, pages
234–243, Honolulu, Hawaii. Association for Com-
putational Linguistics.

Roger Levy. 2011. Integrating surprisal and uncertain-
input models in online sentence comprehension: for-
mal techniques and empirical results. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies, pages 1055–1065, Portland, Oregon,
USA. Association for Computational Linguistics.

Andreas Maletti. 2010. Why synchronous tree substitu-
tion grammars? In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 876–884, Los Angeles, California.
Association for Computational Linguistics.

Andreas Maletti and Giorgio Satta. 2009. Parsing al-
gorithms based on tree automata. In Proceedings of
the 11th International Conference on Parsing Tech-
nologies, pages 1–12, Paris, France. Association for
Computational Linguistics.

Mehryar Mohri. 2001. Generic ε-removal algorithm
for weighted automata. In Implementation and Ap-
plication of Automata, pages 230–242, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Mehryar Mohri. 2002. Semiring frameworks and
algorithms for shortest-distance problems. Jour-
nal of Automata, Languages and Combinatorics,
7(3):321–350.

Mark-Jan Nederhof and Giorgio Satta. 2003. Proba-
bilistic parsing as intersection. In Proceedings of the
Eighth International Conference on Parsing Tech-
nologies, pages 137–148, Nancy, France.

Mark-Jan Nederhof and Giorgio Satta. 2011a. Compu-
tation of infix probabilities for probabilistic context-
free grammars. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1213–1221, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Mark-Jan Nederhof and Giorgio Satta. 2011b. Pre-
fix probabilities for linear context-free rewriting sys-
tems. In Proceedings of the 12th International Con-
ference on Parsing Technologies, pages 151–162,
Dublin, Ireland. Association for Computational Lin-
guistics.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science,
88(2):191–229.

742

https://dl.acm.org/doi/10.5555/1964285.1964289
https://dl.acm.org/doi/10.5555/1964285.1964289
https://doi.org/https://doi.org/10.1524/stuf.1961.14.14.143
https://doi.org/https://doi.org/10.1524/stuf.1961.14.14.143
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/doi:10.1524/9783050062365.297
https://doi.org/doi:10.1524/9783050062365.297
https://www.pearson.com/en-us/subject-catalog/p/introduction-to-automata-theory-languages-and-computation/P200000003517/9780321455369
https://www.pearson.com/en-us/subject-catalog/p/introduction-to-automata-theory-languages-and-computation/P200000003517/9780321455369
https://aclanthology.org/C08-5001
https://aclanthology.org/C08-5001
https://aclanthology.org/D08-1025
https://aclanthology.org/D08-1025
https://aclanthology.org/P11-1106
https://aclanthology.org/P11-1106
https://aclanthology.org/P11-1106
https://aclanthology.org/N10-1130
https://aclanthology.org/N10-1130
https://aclanthology.org/W09-3801
https://aclanthology.org/W09-3801
https://doi.org/10.1007/3-540-44674-5_19
https://doi.org/10.1007/3-540-44674-5_19
https://dl.acm.org/doi/10.5555/639508.639512
https://dl.acm.org/doi/10.5555/639508.639512
https://aclanthology.org/W03-3016
https://aclanthology.org/W03-3016
https://aclanthology.org/D11-1112
https://aclanthology.org/D11-1112
https://aclanthology.org/D11-1112
https://aclanthology.org/W11-2919
https://aclanthology.org/W11-2919
https://aclanthology.org/W11-2919
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1016/0304-3975(91)90374-B

Michael Sipser. 2006. Introduction to the Theory of
Computation, 2 edition. Thomson Course Technol-
ogy.

Hisao Tamaki and Taisuke Sato. 1984. Unfold/fold
transformation of logic programs. In Proceedings of
the Second International Logic Programming Con-
ference, pages 127–138, Uppsala, Sweden. Uppsala
University.

743

https://books.google.ch/books/about/Introduction_to_the_Theory_of_Computatio.html?id=1aMKAAAAQBAJ&redir_esc=y
https://books.google.ch/books/about/Introduction_to_the_Theory_of_Computatio.html?id=1aMKAAAAQBAJ&redir_esc=y
https://ci.nii.ac.jp/naid/10000035006/
https://ci.nii.ac.jp/naid/10000035006/

A Failure Cases of Original Construction

We distinguish two types of failure cases: (i) supp(LG∩) 6= supp(LA) ∩ supp(LG) and (ii) LG∩ 6=
LA ∩ LG , both of which we will exemplify now. Notably, the case (ii) follows from (i), but—to be
comprehensible—we will nonetheless give an example where (ii) fails without (i). For case (i), consider
the following unweighted FSA:

q0 q1 q2 q3
a ε b

and the following unweighted CFG:

S→ A B

A→ a

B→ b

It is easy to see that the intersection of the language accepted by the FSA and the language generated by
the CFG is {ab}. Construction 1, however, outputs an empty grammar (after pruning useless rules as in
footnote 9) and, hence, an empty language. To see this, consider Eq. (4d) and Eq. (4f). First, Eq. (4f)
will create a rule (q1, ε, q2)→ ε, but (q1, ε, q2) will be useless because it cannot be reached from any of
the rules produced by Eq. (4d). Second, Eq. (4d) will produce reachable nonterminals (q0,A, qi) and
(qi,B, q3), with i ∈ {1, 2}. The case of i = 1 will reach a but not b, and i = 2 will reach b but not
a. Let us now show how our generalized construction fixes this failure case. Eq. (5g) generates the
rule (q1, b, q3)→ (q1, ε, q2)(q2, b, q3) which then combines with rule (q1,B, q3)→ (q1, b, q3) to form a
subderivation12 that covers the substring εb, as shown in the picture below.

(q1,B, q3)

(q1, b, q3)

(q1, ε, q2)

ε

(q2, b, q3)

b

Note that rules generated by Eq. (5g) can only mention symbol ε in the left child, not in the right child, as
discussed in footnote 11.

As stated above, to be comprehensive, we also show a case where only case (ii) fails, without (i). Take
the following WFSA over the Inside semiring (Huang, 2008):

q0/1 q1 q2/1
a/1

ε/13

b/1

and the same grammar as above with weight 1 for all rules. It is easy to see that the language’s weight for
s = ab in the WFSA is a geometric series LA(s) =

∑∞
i=0

(
1
3

)i
= 3

2 , while in the WCFG, LG(s) = 1.
However, the output grammar G∩ of Construction 1 will contain one single derivation d:

12In App. B we give a formal definition of subderivation.

744

S

(q0,S, q2)

(q0,A, q1)

(q0, a, q1)

a

(q1,B, q2)

(q1, b, q2)

b

with w (d) = 1, as all rules either stem from G or from the arcs q0
a/1−−→ q1 and q1

b/1−−→ q2.This will result
in LG∩ = 1, but LA ∩ LG = 3

2 . This is because there are no derivations rooted at S in G∩ that match with
the ε-arcs in A: Similarly to the example above, (q1, ε, q1) will not be reachable. We will now briefly
show how our construction fixes this failure case as well. Note that there are infinitely many paths in the
WFSA with yield s = ab; but there is also only a single derivation in DG with this yield. Our construction
thus ensures that there is exactly one derivation in DG∩ for every ab path in DA. As the ε-loop allows
unboundedly long subpaths from q1 to q2 that are labeled with ε∗b, the rules generated by Eq. (5g) will
build corresponding unboundedly deep subderivations of the following form:

(q1, b, q2)

(q1, ε, q1)

ε

(q1, b, q2)

(q1, ε, q1)

ε

(q1, b, q2)

b

· · ·

Finally we observe that a similar argument holds for rules generated by Eq. (5b), and ε-arcs that occur
immediately before a final state.

B Proofs

B.1 Proof of Theorem 1

Theorem 1 gives a result for derivations (which are always rooted at S) and paths (which always connect
an initial state with a final state). However, in order to prove this theorem we must also consider
subderivations and subpaths. We define subderivations as follows: a subderivation d̃ is a sequence
α0, . . . ,αN with N ≥ 0, where (i) in the case of N > 0, α0 = X, X ∈ N , and αN ∈ (ε∪Σ∗), such that
for all 0 < n ≤ N , we have αn−1

pn⇒L αn for some pn ∈ P , and (ii) in the case of N = 0, α0 ∈ Σ∪{ε}.
The weight and yield of subderivations are defined analogously to that of derivations. In the extended case
of N = 0, the yield is equal to α0 and the weight is set to 1. We will say that a subderivation is rooted
at X if α0 = X. We denote the set of subderivations rooted at X with DG(X). Moreover, a subpath is
defined as follows: A subpath π̃ (of length N ≥ 0), is (i) in the case of N > 0, a sequence of arcs in δ∗

where the states of adjacent arcs are matched, and (ii) in the case of N = 0 a single state q ∈ Q.13 The
subpath’s weight, denoted w̃ (π̃), is the product w̃ (π̃) =

⊗N
n=1wn of the weights of the arcs along the

subpath. In the extended case N = 0 we set the weight to 1 and the yield to ε. Note that, in contrast to the

13We note the difference to paths defined in §2.3: a subpath does not need to start in an initial state and end in a final state.

745

weight of a path, the weight of a subpath does not account for initial and final weights. The yield is defined
identically to that of paths. We denote the set of all paths starting at qi and ending at qj with DA({qi, qj}).
Note that the definitions of subderivation and subpath encapsulate the definitions of derivation and path
respectively. Furthermore, we will denote with p (π) and n (π), respectively, the first and the last state
encountered along a path.

We will now prove two lemmas that will be necessary for the proof of Theorem 1.

Lemma 1. For any triplet (q0,X, qm) ∈ N∩, with X 6= S̃ and q0, qm ∈ Q, there is a bijection
ψ(d̃∩) = 〈d̃, π̃〉 from DG∩

(
(q0,X, qm)

)
to the weighted join (DG(X) ./ DA({q0, qm})), restricted to

tuples in which the path does not have an ε-arc immediately before a final state. Moreover, it holds that:

w
(
d̃∩
)

= w
(
d̃
)
⊗ w̃ (π̃) (7)

yield
(
d̃∩
)

= yield
(
d̃
)

= yield (π̃) (8)

Proof. We begin by showing that ψ is well defined, that it is injective and that it satisfies the properties in
Eqs. (7) and (8). We prove this by induction on subderivations.

Lemma 1’s Base Case. We begin by observing that the only terminal rules from P∩ are defined by Eq. (5f)
and Eq. (5e).

Lemma 1’s Base Case, Part #1. d̃∩ is obtained by the application of a single production rule

(q0, a, q1)
w−→ a from Eq. (5f). We define ψ(d̃∩) = 〈d̃, π̃〉, where π̃ = q0

a/w−−→ q1 and d̃ = a is the
subderivation that contains just the string a with weight 1. It is easy to see that the yield is preserved.
Moreover:

w
(
d̃∩
)

= w (by Eq. (5f)) (9a)

= w ⊗ 1 (9b)

= w̃ (π̃)⊗ w
(
d̃
)

(9c)

Lemma 1’s Base Case, Part #2. d̃∩ is obtained by the application of a single production rule
(q0,X, q0)

w−→ ε from Eq. (5e). We construct ψ as follows: ψ(d̃∩) = 〈d̃, π̃〉, where d̃ = X
p⇒L ε with

p = X
w−→ ε, and π̃ is the subpath q0 with weight 1. Clearly the yield is preserved and:

w
(
d̃∩
)

= w (by Eq. (5e)) (10a)

= w ⊗ 1 (10b)

= w
(
d̃
)
⊗ w̃ (π̃) (10c)

Lemma 1’s Induction Step. In the induction step, we show that the properties that we have shown
for the base case propagate upwards along the derivation. In general, we will show that for any
d̃∩ = (q0,X, qM)

p⇒L (q0,X1, q1), . . . , (qM−1,XM, qM) ⇒L . . ., we can construct ψ(d̃∩) = 〈d̃, π̃〉
such that the mapping is injective and that the properties in Eqs. (7) and (8) hold. Additionally, as for
the base case, we will show that π̃ connects q0 with qM and that d̃ is rooted at X. As our inductive
hypothesis, we will assume that each of these hypotheses hold for the subderivations rooted at each of
the child nonterminals (q0,X1, q1), . . . , (qM−1,XM, qM). We note that the rules from P∩ which apply
to a nonterminal of form (q0,X, qM) with X ∈ Σ are discussed in base case #1, if instead X ∈ N , we
either have base case #2 or one of the rules defined by Eq. (5d) and Eq. (5g); we discuss each now.

Lemma 1’s Induction Step, Part #1. The topmost rule applied in d̃∩ is p =

(q0, a, q2)
1−→ (q0, ε, q1)(q1, a, q2) defined by Eq. (5g). We denote with d̃∩,1 the subderivation

rooted at (q0, ε, q1), and we observe that the only possible form for this derivation is (q0, ε, q1)
p⇒L ε for

746

some p = (q0, ε, q1)
w−→ ε. We denote with d̃∩,2 the subderivation rooted at (q1, a, q2), then by inductive

hypothesis, we know that there is a mapping ψ(d̃∩,2) = 〈d̃2, π̃2〉 such that Eqs. (7) and (8) are satisfied.

Then we construct ψ(d̃∩) = 〈d̃, π̃〉, so that d̃ = d̃2 and π̃ = q0
ε/w−−→ q1 ◦ π̃2. As the yield of the

subderivation rooted at (q0, ε, q1) is ε, the yield of d̃∩ is the same as that of d̃∩,2. Further, the yield of
π̃ is the same as π̃2. We thus have that:

yield
(
d̃∩
)

= yield
(
d̃∩,2

)
, yield

(
d̃
)

= yield
(
d̃2

)
, yield (π̃) = yield (π̃2) (11)

By induction, we have that the yield is preserved. Similarly, we have that the weight is preserved:

w
(
d̃∩
)

= 1⊗ w
(
d̃∩,1

)
⊗ w

(
d̃∩,2

)
(12a)

= 1⊗ w ⊗ w
(
d̃2

)
⊗ w̃ (π̃2) (inductive hypothesis) (12b)

= w
(
d̃2

)
⊗
(
w ⊗ w̃ (π̃2)

)
(commutativity) (12c)

= w
(
d̃
)
⊗ w̃ (π̃) (12d)

Finally, by induction we assume that π̃2 connects state q1 with state q2, which implies that π̃ connects
state q0 with state q2.

Lemma 1’s Induction Step, Part # 2. The topmost rule applied in d̃∩ is p =
(q0,X, qM)

w−→ (q0,X1, q1), . . . , (qM−1,XM, qM) defined by Eq. (5d). By induction we assume
that the subderivation d̃∩,m rooted at (qm−1,Xm, qm) is mapped by ψ into a subderivation d̃m rooted

at Xm and a path π̃m, so that yield
(
d̃∩,m

)
= yield

(
d̃m

)
= yield (π̃m) and that w

(
d̃∩,m

)
=

w
(
d̃m

)
⊗ w̃ (π̃m). We then define ψ(d̃∩) = 〈d̃, π̃〉 where d̃ = X

p⇒L X1, . . . ,XM ⇒L . . . with

p = X
w−→ X1, . . .XM and π̃ = π̃1 ◦ . . . ◦ π̃M . As the states of neighboring triplets are matched, and

by induction we assume that π̃m connects states qm−1 with state qm, we have that π̃ is a path from q0

to qM . We note that the yield of d̃ is obtained by concatenation of yield
(
d̃m

)
from left to right, and

that similarly the yield of π̃ is obtained by concatenation of yield (π̃m) from left to right. This, together
with the inductive hypothesis proves Eq. (8) of the lemma—as the yield of d̃∩ will also be given by the
concatenation of yield

(
d̃∩,m

)
from left to right. We now show that Eq. (7) on weights holds:

w
(
d̃∩
)

= w ⊗
M⊗

m=1

w
(
d̃∩,m

)
(13a)

= w ⊗
M⊗

m=1

w
(
d̃m

)
⊗ w̃ (π̃m) (inductive hypothesis) (13b)

=

(
w ⊗

M⊗

m=1

w
(
d̃m

))
⊗

M⊗

m=1

w̃ (π̃m) (commutativity) (13c)

= w
(
d̃
)
⊗ w̃ (π̃) (13d)

We have defined ψ in a bottom-up fashion. At each step changing the topmost rule would result either in
a different tree d̃ or in a different path π̃, which proves injectivity. The proof that ψ is surjective is very sim-
ilar, and consists in showing by induction, that for any d̃ ∈ DG(X), and for any path π̃ that does not have a
sequence of ε-arc before a final state, it is always possible to build a derivation in DG∩((p (π),X, n (π))).
We limit ourselves to noting that it is always possible to do so by using rules from Eqs. (5d) to (5f), as in
the original Bar-Hillel construction, and by using rules defined by Eq. (5g) to cover ε-arcs in the WFSA.

�

747

Lemma 2. For any triplet (qI , S̃, q) ∈ N∩, with qI ∈ QI , q ∈ Q, there is a bijection ξ(d̃∩) = 〈d̃, π̃〉
from DG∩

(
(qI , S̃, q)

)
to the join (DG(S) ./ DA({qI , q})), and we have that:

w
(
d̃∩
)

= w
(
d̃
)
⊗ w̃ (π̃) (14)

yield
(
d̃∩
)

= yield
(
d̃
)

= yield (π̃) (15)

Proof. We now present an inductive proof (similar to the above) for this lemma.

Lemma 2’s Base Case. The topmost rule applied in d̃∩ is (qI , S̃, q)
1−→ (qI ,S, q) from rules defined by

Eq. (5c). We denote with d̃∩,1 the subderivation rooted at (qI ,S, q). Then by Lemma 1, we know
that there is a mapping ψ(d̃∩,1) = 〈d̃1, π̃1〉 such that Eqs. (14) and (15) are satisfied. We then define
ξ(d̃∩) = 〈d̃1, π̃1〉, and one can easily see that the properties in Eqs. (14) and (15) are satisfied.

Lemma 2’s Induction Step. The topmost rule applied in d̃∩ is (qI , S̃, q1)
1−→ (qI , S̃, q0)(q0, ε, q1) from

rules defined by Eq. (5b). We denote with d̃∩,1 the subderivation rooted at (qI , S̃, q0), and we assume by
induction that ξ(d̃∩,1) = 〈d̃1, π̃1〉 and that properties in Eqs. (14) and (15) hold. We denote with d̃∩,2
the subderivation rooted at (q0, ε, q1), and we observe that the only possible form for this derivation is
(q0, ε, q1)

p⇒L ε for some p = (q0, ε, q1)
w−→ ε. Then we can construct ξ(d̃∩) = 〈d̃, π̃〉, where d̃ = d̃1

and π̃ = π̃1 ◦ q0
ε/w−−→ q1. The property in Eq. (15) is clearly satisfied, for property Eq. (14), we have:

w
(
d̃∩
)

= 1⊗ w
(
d̃∩,1

)
⊗ w

(
d̃∩,2

)
(16a)

= w
(
d̃∩,1

)
⊗ w (weight of d̃∩,2) (16b)

= w
(
d̃1

)
⊗ w̃ (π̃1)⊗ w (inductive hypothesis) (16c)

= w
(
d̃
)
⊗ w̃ (π̃) (weight of π̃) (16d)

As for Lemma 1 we note that modifying the topmost rule in d̃∩, would always result either in a different
derivation d̃ or in a different path π̃, which proves injectivity. Surjectivity can be shown by induction,
similarly to how we did for injectivity. We will simply note that given any derivation d̃ rooted at S,
and given any path π̃ starting from an initial state, it is always possible to build a matching derivation
d̃∩in DG∩((p (π), S̃, n (π))), by using the result from Lemma 1, and applying rules defined by Eqs. (5b)
and (5c). �

We can finally prove Theorem 1, which we restate here for convenience.

Theorem 1. Let G be a WCFG and A a WFSA over the same alphabet Σ and commutative semiringW .
Let G∩ be the grammar obtained with our generalized construction. Then we have strong equivalence
between G∩ and 〈G,A〉; meaning that there is a weight-preserving, yield-preserving bijection between
DG∩ and (DG ./ DA).

Proof. Any derivation d∩ in DG∩(S) takes the form S
p⇒L (qI , S̃, qF) ⇒L . . . with p =

S
λ(qI)⊗ρ(qF)−−−−−−−−→ (qI , S̃, qF), for qI ∈ QI and qF ∈ QF . We denote with d̃∩ the subderivation rooted

at (qI , S̃, qF). We can thus define φ(d∩) = 〈d,π〉 = 〈d̃, π̃〉, where ξ(d̃∩) = 〈d̃, π̃〉, and ξ is the
bijection defined in Lemma 2. By Lemma 2 we have that d̃ = d is rooted at S, and that π̃ = π has
initial and final states: p (π̃) = qI and n (π̃) = qF . Clearly, yield (d∩) = yield

(
d̃∩
)

and, by

Lemma 2, yield
(
d̃∩
)

= yield
(
d̃
)

= yield (π̃). Further, by definition yield (d) = yield
(
d̃
)

748

and yield (π̃) = yield (π). Moreover, we have that:

w (d∩) = w (p)⊗ w
(
d̃∩
)

(weight of a derivation) (17a)

= w (p)⊗ w
(
d̃
)
⊗ w̃ (π̃) (Lemma 2) (17b)

= λ(qI)⊗ ρ(qF)⊗ w
(
d̃
)
⊗ w̃ (π̃) (weight of p) (17c)

= w
(
d̃
)
⊗ λ(qI)⊗ w̃ (π̃)⊗ ρ(qF) (commutativity) (17d)

= w (d)⊗ w (π) (definition of weight of a path) (17e)

which proves that φ is weight and yield preserving. By Lemma 2 we know that ξ is a bijection, which
implies that modifying the topmost rule p would result in a different tuple 〈d,π〉. This proves the
injectivity of φ. Conversely, consider any path π connecting an initial state with a final one and any
derivation d rooted at S, such that yield (d) = yield (π). By Lemma 2 we know that it is always
possible to construct a subderivation d̃∩, rooted at (qI , S̃, qF), that satisfies Eqs. (14) and (15). Thus we

can construct d∩ = S
p⇒L (qI , S̃, qF) ⇒L · · · with p = S

λ(qI)⊗ρ(qF)−−−−−−−−→ (qI , S̃, qF) a rule from Eq. (5a).
This shows the surjectivity of φ.

�

B.2 Proof of Corollary 1
Corollary 1. G∩ and 〈G,A〉 are weakly equivalent, meaning that LG∩(s) = LG(s)⊗ LA(s) whenever
the values on the right-hand side are defined.

Proof. §2.1 defined both LA(s) and LG(s) as sums over derivations that yield s. If there are only finitely
many such derivations, then the sum is well-defined by applying the associative–commutative operator ⊕
finitely many times. However, footnote 5 noted that countably infinite sums can arise. We treat this issue
by augmenting the semiring with an operator

⊕
that is applied to a countable (possibly infinite) multiset

of weights and returns a value that is interpreted as the sum of those weights, or else returns a special
“undefined” value ⊥ /∈ A to indicate that the sum diverges.

We require
⊕

to satisfy the following axioms for any two countable multisets I, J ⊆ A such that
⊕

I = W ∈ A
⊕

J = V ∈ A (18)

• Infinite distributivity: Let I
⊗
J denote the multiset ⦃i ⊗ j : i ∈ I, j ∈ J⦄. Then

⊕
(I
⊗
J) =

W ⊗ V ∈ A.

• Infinite associativity: for any partition14 I =
⋃
k∈K Ik, we have

⊕
Ik ∈ A for each k ∈ K and

furthermore
⊕

k∈K (
⊕
Ik) = W .

• Base cases: For any w,w′ ∈ A,
⊕⦃w,w′⦄ = w ⊕ w′,⊕⦃w⦄ = w, and

⊕⦃⦄ = 0. Together with
the previous property, this ensures that

⊕
agrees with the ⊕-based definition on finite multisets.

The first two axioms are adapted from part of Mohri (2002)’s definition of closed semirings. The proof
of Corollary 1 uses only the first axiom, as follows. Given a string s such that LA(s), LG(s) ∈ A. By
definition (§§2.3–2.4), LA(s) =

⊕
I and LG(s) =

⊕
J if we define I = ⦃w (π) : π ∈ DA(s)⦄ and

J = ⦃w (d) : d ∈ DG(s)⦄. Then also LG∩(s) =
⊕

(I
⊗
J) since I

⊗
J = ⦃w (d) : d ∈ DG∩(s)⦄

according to Theorem 1. By infinite distributivity, then, LG∩(s) = (
⊕
I)⊗(

⊕
J) = LA(s)⊗LG(s) ∈ A

as claimed. �

14Recall that partitions are definitionally disjoint.

749

