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Abstract

A modular design encourages neural models to
disentangle and recombine different facets of
knowledge to generalise more systematically
to new tasks. In this work, we assume that
each task is associated with a subset of latent
skills from an (arbitrary size) inventory. In turn,
each skill corresponds to a parameter-efficient
(sparse / low-rank) model adapter. By jointly
learning adapters and a routing function that
allocates skills to each task, the full network
is instantiated as the average of the parameters
of active skills. We propose several inductive
biases that encourage re-usage and composi-
tion of the skills, including variable-size skill
allocation and a dual-speed learning rate. We
evaluate our latent-skill model in two main set-
tings: 1) multitask reinforcement learning for
instruction following on 8 levels of the BabyAI
platform; and 2) few-shot fine-tuning of lan-
guage models on 160 NLP tasks of the CrossFit
benchmark. We find that the modular design of
our network enhances sample efficiency in rein-
forcement learning and few-shot generalisation
in supervised learning, compared to a series of
baselines. These include models where param-
eters are fully shared, task-specific, or condi-
tionally generated (HyperFormer), as well as
sparse mixture-of-experts (Task-MoE).

1 Introduction

Task-level generalisation involves training a model
on multiple tasks (in parallel or sequentially) and
then performing zero-shot inference or few-shot
adaptation on new tasks (Caruana, 1997; Ye et al.,
2021). However, the training signals from different
tasks may interfere with each other (McCloskey
and Cohen, 1989) or lead to catastrophic forgetting
of previous knowledge (French, 1999). Moreover,
when the nature of the tasks varies between training
and evaluation, models often struggle to generalise
systematically (Hupkes et al., 2020).

A potential solution to these challenges consists
in a modular design of neural architectures. In
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Figure 1: A diagram of our latent-skill model: 1) a
row of the task–skill binary matrix is selected accord-
ing to the active task; 2) the sparse (SFT) or low-rank
(LoRA) adapters corresponding to active skills from a
layer-specific inventory are combined; 3) the resulting
combination is applied to the weights of a neural net-
work, e.g. BART in our multi-task experiments.

fact, these are endowed with an inductive bias to-
wards updating and activating modules locally and
asynchronously, thus preventing negative interfer-
ence (Jacobs et al., 1991b). Additionally, by dis-
entangling autonomous facets of knowledge (also
known as skills) that are re-used and recombined in
original ways for new tasks, modularity facilitates
systematic generalisation (Alet et al., 2018; Ponti,
2021; Kingetsu et al., 2021, inter alia).

Previous work on task-level generalisation fo-
cused on settings where the skills relevant for new
tasks are already known a priori (Pfeiffer et al.,
2020; Ansell et al., 2022). However, this requires
expert knowledge, possibly with sub-optimal gran-
ularity and limited to a few domains. In alternative,
mixture-of-expert (MoE) methods such as Task-
MoE (Kudugunta et al., 2021a) learn a routing
function that allocates modules to tasks end-to-end.
However, MoEs mostly focus on scaling large lan-
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guage models trained from scratch, and their effec-
tiveness for out-of-domain generalisation is a moot
point (Artetxe et al., 2021; Fedus et al., 2022).

In this work, we introduce a modular architecture
that can efficiently adapt to new tasks, by virtue of
a series of inductive biases that facilitate general-
isation. The full model is shown in Figure 1. For
each task, we learn a binary vector that specifies
which skills (from a fixed inventory) are used to
solve it. In the example, skills 2 and 4 are active.
We implement each skill as a parameter-efficient
adapter, either sparse (Ansell et al., 2022, SFT)
or low-rank (Hu et al., 2021, LoRA). The param-
eters corresponding to every active skill (red and
blue in the example) are then combined, by simple
averaging. The resulting combination adapts a pre-
trained model, such as BART (Lewis et al., 2020),
towards a specific task during multitask learning.
The variable-size allocation of skills encourages
their re-usage and re-combination in new tasks. To
promote a coarse-to-fine dynamic where skill allo-
cation is determined before skill-specific parame-
ters, we explore a dual-speed learning rate for these
two components (see Section 2.3).

We evaluate our model on reinforcement learn-
ing on BabyAI (Chevalier-Boisvert et al., 2019), a
platform for instruction following in a simulated en-
vironment, and supervised learning on CrossFit (Ye
et al., 2021), a benchmark recasting 160 NLP tasks
as text-to-text generation problems. Compared to
a series of competitive baselines, we obtain higher
sample efficiency and higher performance in few-
shot adaptation to held-out tasks. In particular, our
latent-skill model surpasses non-modular methods
for multi-task adaptation, such as HyperFormers
(Karimi Mahabadi et al., 2021) and CA-MTL (Pi-
lault et al., 2021), and mixture-of-experts methods
such as Task-MoE (Kudugunta et al., 2021a).

Finally, we probe the learnt task–skill alloca-
tion matrix and illustrate how our method also en-
hances interpretability, as it discovers which pairs
of tasks require common skills. The code is made
available at https://github.com/McGill-NLP/
polytropon.

2 A Latent-Skill Multitask Model

The goal of multitask learning in modelling a set
of tasks T = (T1, . . . , T|T |) is two-fold: 1) in-
creasing sample efficiency on each seen task by
borrowing statistical strength from the others; and
2) attaining systematic generalisation, the ability

to adapt robustly to new tasks, possibly based on
a few target-domain examples. In particular, in su-
pervised learning, each task Ti is associated with a
dataset Di ≜ {(x1,y1), . . . , (xn,yn)} and a loss
function L(ŷ,y), where x is an input and y is an
output. In reinforcement learning, each task is char-
acterised by an initial state distribution q(x1), a
transition distribution q(xt+1 | xt, at), and a loss
function L(x1, a1, . . . ,xh, ah) → R,1 where x is
a state, a is an action, and h is the temporal horizon
of each episode. Thus, each task defines a Markov
Decision Process (MDP).

Fully sharing the parameters of a model across
tasks (Stickland and Murray, 2019) may exhaust
its capacity or create interference among the gradi-
ents from task-specific losses (Wang et al., 2021).
These limitations can be countered by instead com-
posing task-specific adapters (Pfeiffer et al., 2021)
or softly sharing parameters (Ponti et al., 2021a;
Karimi Mahabadi et al., 2021; Ansell et al., 2021).
The first method leads to an explosion in parame-
ter count, which grows with the number of tasks.
Moreover, the second method suffers during few-
shot adaptation to new tasks as the entangled (i.e.,
non-modular) knowledge may overfit the training
distribution.

Instead, we posit that there exists a (possibly
small) fixed inventory of skills S = (S1, . . . ,S|S|),
where |S| ≪ |T |. Each skill is an independent
facet of knowledge that is reused across a subset of
tasks. These assumptions guarantee both scalabil-
ity and modularity. In particular, we seek to create
a model that jointly learns which skills are active
for which task, aggregates the corresponding skill
parameters according to some deterministic func-
tion, and maximises the multitask log-likelihood:

argmax
Z,Φ

∑

Ti

∑

(x,y)∈Ti
log p(y | x,ϑi) p(Z) p(Φ),

where ϑi = δ(Zi,Φ,ϑ0)
(1)

The learnable parameters, as shown in Figure 1, are:
i) Z, which denotes the task–skill allocation matrix,
representing a soft partition of skills across tasks;
ii) Φ, a tensor containing the parameters of each
skill. As we explain in Section 2.4, these consist
in either sparse or low-rank linear adapters. δ is
a deterministic combination function that takes as
input the task–skill allocation vector Zi for task Ti,

1This is the negative of the reward: L(·) = −R(·).
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the skill parameters Φ and some shared parameters
across tasks ϑ0 and creates a task-dependent set
of parameters ϑi, i.e. in our model, we use simple
averaging of the active skills (see Figure 1). ϑi is
then used to predict the task label y given the input
x. In what follows, we illustrate each component
separately.

2.1 Soft Partitions

What is the best strategy to determine which skills
are active for which task? The cognitively inspired
notion of modularity at the level of structured in-
puts assumes that modules compete with each other
for activation and updating (Bengio, 2017; Goyal
et al., 2021). This intuition is translated in practice
into a softmax across modules and top-k selection,
such as in mixtures of experts (MoEs; Kudugunta
et al., 2021a; Fedus et al., 2022). Nevertheless, we
argue, modularity at the task level should reflect the
fact that tasks fall into a hierarchy: more complex
ones subsume simpler ones as sub-tasks. This idea
has a long history, harking back to early works on
MoEs (Jacobs et al., 1991b) and neural programme
induction (Rosenbaum et al., 2019). Hence, we
allow for variable-size subsets of skills.

As a consequence, we assume that the matrix
Z ∈ {0, 1}|T |×|S| representing task–skill alloca-
tions is a soft partition: each cell zij is a binary
scalar indicating if skill-specific parameters Φj are
active for a certain task Ti. However, being dis-
crete, such a binary matrix is not differentiable and
therefore cannot be learned end-to-end via gradi-
ent descent. Instead, we implement it as a collec-
tion of Bernoulli distributions continuously relaxed
through a Gumbel-sigmoid (Maddison et al., 2017;
Jang et al., 2017), which ensures stochasticity while
allowing for differentiable sampling:

ẑi,j = σ

[
log

σ(zi,j)u

(1− σ(zi,j)) (1− u)

1/τ
]

u ∼ Uniform(0, 1). (2)

In principle, either a coarse-grained soft partition
can be learned globally for the entire neural net-
work, or different fine-grained soft partitions can
be assigned to each layer. We opt for the second
alternative as it affords the model more flexibility
and, foreshadowing, yields superior performance.
Therefore, Z and Φ are henceforth assumed to be
layer-specific, although we will omit layer indexes
in the notation for simplicity’s sake.

2.2 Skill-specific Parameters

Given the matrix row Ẑi for task Ti from Equa-
tion (2) and a matrix of skill-specific parameters
Φ ∈ R|S|×d, where d is the dimension of the layer
parameters, the aggregate of the parameters of ac-
tive skills is superimposed to a base parameterisa-
tion ϑ0 ∈ Rd shared across tasks. For instance, ϑ0

may be either the initialisation from a pre-trained
model or learned from scratch:

ϑi = δ(Zi,Φ,ϑ0) ≜ ϑ0 +
∑

Sj

Φj
ẑi,j∑
Sj

ẑi,j
, (3)

where ϑi denote the parameters obtained by com-
bining the active skills for the specific task Ti. Note
that we normalise the rows of the task–skill allo-
cation matrix Ẑ prior to composition because the
variable number of active skills per task would oth-
erwise affect the norm of the combined parameters
ϑi, thus making training unstable.

2.3 Inductive Biases

A possible failure mode during training is a col-
lapse into a highly entropic or non-sparse alloca-
tion matrix Ẑ, e.g., where all skills are active and
skill-specific parameters remain general-purpose
rather than specialising. Thus, we also provide an
inductive bias to encourage the model to learn a
low-entropy, highly-sparse allocation matrix.

In particular, we experiment with a dual-speed
learning rate, setting its value for Z higher than for
Φ. Intuitively, by accelerating learning of the soft
partition matrix, to minimise the loss it becomes
more convenient to discover better task–skill alloca-
tions over settling for general-purpose parameters
that are agnostic with respect to the subset of ac-
tive skills. This is reminiscent of the hypothesis
that different kinds of knowledge require faster or
slower rates of learning (Kahneman, 2011).

2.4 Parameter Efficiency

In order to keep the skills modular, each of them
must correspond to a separate layer parameterisa-
tion. Nevertheless, this may lead to a significant
increase in both time and space complexity. Thus,
we explore parameter-efficient implementations of
Φ that only add a negligible amount of parameters
to the base model. In particular, we contemplate
both sparse and low-rank approximations.

Sparse Fine-Tuning (SFT; Ansell et al., 2022)
learns a highly sparse vector of differences Φ with
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respect to a base model ϑ0. Its non-zero entries
are identified by a binary matrix M ∈ {0, 1}|S|×d.
For simplicity, we randomly draw M , as this was
shown to perform almost on par with more sophisti-
cated criteria without requiring a separate selection
phase (Ansell et al., 2022). SFT is agnostic with
respect to the underlying neural architecture.

Low-Rank Adapters (LoRA; Hu et al., 2021) is
another method for parameter-efficient fine-tuning
designed specifically for Transformer architectures.
It factorises each weight of the linear projections
inside self-attention as a batched matrix multiplica-
tion between two low-rank tensors A ∈ R|S|×o×r

and B ∈ R|S|×r×i, where r stands for the rank. In
our model, each linear projection f : Ri → Ro is
implemented as:

x′ = [W0 + (z⊤AB)]x+ b0 (4)

where Φ ≜ flatten(AB).
We employed sparse adapters (LT-SFT) for the

reinforcement learning experiments and low-rank
adapters (LoRA) for the NLP experiments. The
rationale behind this choice is showing that our
method is effective independent of the choice of
adapters.

2.5 Baselines

We measure the performance of our SKILLED

model, where we learn the skill–task allocation ma-
trix Z end-to-end, against these baselines, which
derive from a certain configuration of Z:

• PRIVATE: each task has a separate model param-
eterisation. During few-shot adaptation, given
that Ttrain ∩ Teval = ∅, this model cannot ben-
efit from any transfer of information between
training and evaluation tasks. This is equivalent
to the special case where the task–skill alloca-
tion matrix is an identity matrix Z = I of size
|T | × |T | and |S| = |T |.

• SHARED: a shared skill is learnt on the training
tasks and then fine-tuned for each evaluation
task separately. This is equivalent to the special
case where the task–skill allocation matrix is
a matrix of ones Z = 1 of size |T | × 1 and
|S| = 1.

• EXPERT, where the task–skill allocation is con-
tingent on expert knowledge about task relation-
ships. Crucially, Z is fixed a priori rather than
being learned.

In addition, for the NLP experiments, we com-
pare our SKILLED method to two state-of-the-
art baselines for multitask learning. In the first
baseline, HYPER, parameters are softly shared
(Karimi Mahabadi et al., 2021; Pilault et al., 2021).
These methods generate adapters for the pre-trained
model parameters with hyper-networks conditioned
on task embeddings. Note that HYPER has a hidden
connection with SKILLED, despite their apparent
difference. In fact, we can draw an equivalence be-
tween i) binary skill vectors z and task embeddings;
ii) the matrix of skill-specific parameters Φ and lin-
ear hyper-network weights. Crucially, in our case z
is binary and modular, rather than continuous and
entangled.

Secondly, we compare SKILLED with TASK-
MOE (Kudugunta et al., 2021a). MoEs were orig-
inally conceived for scaling large language mod-
els trained from scratch, rather than model adapta-
tion. Moreover, their modules consist of multiple
feed-forward networks after the attention layer in-
side Transformers. The routing function to allocate
modules to tasks is based on softmax and top-k
selection. This, however, does not favour module
re-usage, contrary to variable-size allocation, and
instead creates a rich-gets-richer mechanism.

Contrary to their original formulation, we im-
plement the modules of HYPER and TASK-MOE
through LoRA adapters rather than Adapter layers
and FFNs, respectively. This ensures that the num-
ber of updated parameters is similar to SKILLED as
implemented in Equation (4) and thus their results
are comparable. On top of this, LoRA was shown
to offer a better trade-off between performance and
efficiency (Liu et al., 2022).

3 Reinforcement Learning Experiments

3.1 Dataset

As a proof-of-concept experiment, we perform mul-
titask reinforcement learning on the BabyAI plat-
form (Chevalier-Boisvert et al., 2019). This bench-
mark consists in a series of increasingly complex
levels, where an agent must execute a linguistic
command by navigating a two-dimensional grid
world and manipulating objects. Crucially, levels
are procedurally generated to reflect different sub-
sets of skills (e.g., PICKUP, UNLOCK, et cetera).
This enables us to test our model in a controlled
setting where performance based on learned skills
can be compared with ‘ground truth’ skills. In par-
ticular, we focus on a similar subset of 8 levels as
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Hui et al. (2020).

3.2 Experimental Setup
The neural architecture adheres to the best model
reported in Hui et al. (2020), BOW_ENDPOOL_RES.
It encodes the linguistic input through a Gated Re-
current Unit (GRU; Cho et al., 2014) and the vi-
sual input through a convolutional network (CNN).
These two streams from different modalities are
then merged into a single representation through
FiLM (Perez et al., 2018). This component per-
forms a feature-wise affine transformation of the
CNN output conditioned on the GRU output.

Afterwards, a Long Short-Term Memory net-
work (LSTM; Hochreiter and Schmidhuber, 1997),
a recurrent module keeping track of the agent state
trajectory, receives the multimodal representation
and returns the current hidden state. This in turn
is fed into two distinct MLPs, an actor and a critic
(Sutton, 1984). The actor yields a distribution over
actions, whereas the critic a reward baseline for the
current state. In our experiments, each row of the
matrix Φ corresponds to a possible parameterisa-
tion for all these components.

To determine a priori a skill–task allocation for
the EXPERT baseline, we harness the information
about the skills employed to procedurally generate
each level by Chevalier-Boisvert et al. (2019, p.
6). For the SKILLED model, we set |S| = 9 simi-
larly to EXPERT. This allows us to compare learned
skills and ‘ground-truth’ skills from an inventory of
identical size. As a parameter-efficient implemen-
tation of Φ, we employ SFT (Ansell et al., 2022)
with a sparsity of 90%. For all model variants, ϑ0

and Φ are both initialised from a Kaiming uniform
(He et al., 2015) and learnable. During training, we
sample levels uniformly. The full specification of
hyper-parameters is available in Appendix A.

3.3 Results
We now measure if our latent-skill model facili-
tates sample efficiency, which following Chevalier-
Boisvert et al. (2019) is defined as the number of
episodes required for an agent to reach a success
rate greater than 0.99.2 Success in turn is defined
as executing an instruction in a number of steps
n < nmax, where the threshold again depends on
the level complexity.

We plot our results in Figure 2. Firstly, mod-
els sharing information across tasks (either fully

2Success rate alone is insufficient as a performance metric
as most models can solve all the levels if given enough time.

or mediated by skills) enjoy higher sample ef-
ficiency than assigning disjoint parameters for
each task (PRIVATE), as they can borrow statis-
tical strength from each other. Crucially, among
information-sharing models, dual-speed SKILLED

(where knowledge is modular) surpasses SHARED

(where knowledge is entangled among tasks). Thus,
considering a task as a collection of fine-grained
skills that can be separated and reused is the most
effective way of sharing information. Finally, re-
sults surprisingly show that learning a task–skill al-
location matrix end-to-end (SKILLED) is more ben-
eficial than leveraging the ground-truth task–skill
decomposition used to create the BabyAI levels
(EXPERT). This highlights the fact that different
tasks might mutually benefit in ways that go be-
yond what is posited a priori by experts, and that
our proposed approach can successfully uncover
and exploit such task synergies.

Moreover, we run ablations to study the impact
of the inductive biases and the parameter-efficient
implementation. We compare the SKILLED model
in the standard setup (with dual-speed learning
rates and sparse skill-specific parameters) with
other variants (with a single learning rate or with
fully dense skill-specific parameters) in terms of
sample efficiency in Table 3 in Appendix B. We
find that assigning the same learning rate to every
model component drastically slows convergence to
an almost-perfect success rate. In addition, employ-
ing fully dense skill-specific parameters increases
sample efficiency only to a limited degree (~1.9M).
Thus, we can verify that parameter sparsification
offers an effective trade-off between performance
and space complexity.

4 Supervised Learning Experiments

4.1 Dataset

In order to measure the benefits of a modular design
for systematic generalisation to new tasks, we run
a second set of experiments on CrossFit (Ye et al.,
2021), a benchmark including 160 diverse natural
language processing tasks in English sourced from
Huggingface Datasets (Lhoest et al., 2021). The
tasks in CrossFit are all converted into a unified
text-to-text format inspired by Raffel et al. (2020).
Moreover, they are partitioned into three disjoint
subsets. First, a model is pre-trained in a multitask
fashion on training tasks Ttrain. Afterwards, it is
adapted to each evaluation task from Teval in a few-
shot learning setting. Hyper-parameter are tuned
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TASK Metric Ye et al.
(2021)

Shared Private Expert Hyper-
Former

Task-MoE Skilled

AG-NEWS C–F1 84.6 ± 1.4 59.6 ± 21.1 74.7 ± 10.2 47.0 ± 9.9 64.6 ± 13.4 79.2 ± 13.1 81.2 ± 8.0
AI2-ARC Acc 22.8 ± 1.9 23.7 ± 2.4 20.3 ± 0.8 28.3 ± 3.7 23.8 ± 6.7 19.6 ± 5.6 22.3 ± 3.4
AMAZON-POLARITY C–F1 92.2 ± 0.6 92.4 ± 2.8 94.4 ± 0.4 57.4 ± 3.1 93.8 ± 1.5 87.3 ± 14.0 93.7 ± 0.9
BSN-NPI-LICENSOR Acc 99.9 ± 0.2 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.2
BSN-NPI-SCOPE Acc 85.7 ± 13.0 99.8 ± 0.3 99.6 ± 0.9 99.9 ± 0.2 99.9 ± 0.0 99.9 ± 0.0 99.9 ± 0.2
BREAK-QDMR EM 4.8 ± 0.4 4.1 ± 0.5 1.9 ± 1.7 4.1 ± 0.9 3.8 ± 1.2 4.2 ± 0.8 4.9 ± 0.6
CIRCA C–F1 42.3 ± 7.8 44.3 ± 7.5 22.2 ± 6.3 13.0 ± 7.0 25.0 ± 6.3 39.9 ± 9.3 45.9 ± 5.7
CRAWL-DOMAIN EM 20.7 ± 2.0 40.9 ± 2.2 36.2 ± 6.3 37.1 ± 5.3 34.9 ± 3.8 44.5 ± 2.7 39.0 ± 4.2
ETHOS-DISABILITY C–F1 75.3 ± 2.2 66.9 ± 11.8 64.7 ± 12.1 59.2 ± 15.8 79.4 ± 3.9 66.8 ± 5.2 72.2 ± 5.2
ETHOS-SEXUAL C–F1 59.7 ± 5.7 62.4 ± 8.4 71.2 ± 9.8 40.3 ± 11.4 76.8 ± 10.0 76.7 ± 14.4 86.1 ± 2.6
FREEBASE-QA EM 1.3 ± 0.1 0.7 ± 0.2 0.2 ± 0.1 1.3 ± 0.5 1.6 ± 0.8 0.7 ± 0.6 0.7 ± 0.3
GLUE-COLA M-Corr 3.5 ± 6.7 12.9 ± 5.5 9.1 ± 6.3 7.6 ± 5.6 6.8 ± 4.2 10.8 ± 10.7 7.1 ± 5.3
GLUE-QNLI Acc 74.7 ± 2.9 75.5 ± 3.6 57.1 ± 7.7 56.6 ± 19.7 73.9 ± 3.2 75.0 ± 3.3 78.1 ± 1.6
HATEXPLAIN C–F1 44.9 ± 2.5 33.1 ± 8.2 26.5 ± 7.8 11.9 ± 4.0 23.2 ± 6.2 41.9 ± 4.2 32.6 ± 13.6
QUOREF QA-F1 41.2 ± 1.6 46.0 ± 4.4 36.3 ± 4.6 48.4 ± 4.3 41.7 ± 6.5 44.3 ± 3.1 47.3 ± 3.5
RACE-HIGH Acc 30.5 ± 1.5 34.0 ± 2.7 28.5 ± 1.4 38.5 ± 2.0 30.8 ± 1.9 30.2 ± 3.2 34.8 ± 2.0
SUPERGLUE-RTE Acc 60.4 ± 3.6 60.6 ± 2.9 49.7 ± 5.1 51.7 ± 4.8 60.9 ± 3.8 59.5 ± 5.2 60.4 ± 5.9
TWEET-EVAL-IRONY C–F1 55.2 ± 3.6 52.1 ± 8.0 50.1 ± 14.2 25.6 ± 8.9 38.4 ± 6.0 51.8 ± 12.6 57.2 ± 2.4
WIKI-SPLIT Rouge-L 79.3 ± 0.5 80.1 ± 0.6 80.3 ± 0.6 79.2 ± 0.8 79.2 ± 0.7 80.0 ± 0.7 80.6 ± 0.3
YELP-POLARITY C–F1 71.8 ± 21.1 88.3 ± 14.9 65.0 ± 20.5 53.9 ± 12.7 95.0 ± 0.9 76.2 ± 17.6 94.5 ± 1.1
ALL - 52.5 ± 1.5 53.9 ± 1.7 49.4 ± 1.6 43.0 ± 2.2 52.7 ± 1.0 54.9 ± 1.4 56.9 ± 1.2

Table 1: Few-shot adaptation results of SKILLED and five baselines, including the original model from Ye et al.
(2021), on 20 evaluation tasks of CrossFit (Ye et al., 2021). For the full name of the metrics, refer to Section 4.1.
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Figure 2: Sample efficiency (success rate vs. number of
episodes) for different multitask models across 8 levels
of BabyAI. Moving average with window of 100.

on the held-out set Tdev.
We adopt the partition 1 (called RANDOM) from

Ye et al. (2021), where |Ttrain| = 120, |Tdev| =
|Teval| = 20, and tasks are split randomly. This is
the most comprehensive partition and most suited
for general-purpose models, as it includes all types
of tasks. Every task is associated with 5 different
few-shot data splits for train Dtrain and develop-
ment Ddev and 1 larger data split for evaluation
Deval. During multitask pre-training, we concate-
nate all Dtrain and Ddev from Ttrain. During few-
shot adaptation, for each task in Teval we use each
Dtrain and Ddev separately in 5 distinct runs and

evaluate on Deval. We measure the performance
of a model with 7 evaluation metrics according to
the type of task: C[lassification]-F1, Acc[uracy],
QA-F1, E[xact] M[atch], Rouge-L, M[atthew]-
Corr[elation], and P[earson]-Corr[elation].

4.2 Experimental Setup

As pre-trained weights ϑ0 and architecture for con-
ditional text generation, we choose BART Large
(Lewis et al., 2020), a 24-layer Transformer-based
encoder–decoder. We use LoRA (Hu et al., 2021)
to implement skill-specific parameters efficiently,
as it was explicitly designed for the Transformer
architecture (cf. Section 2.4). While ϑ0 remains
frozen, A matrices in Φ are initialised to zero ma-
trices following Hu et al. (2021).

As a source of expert knowledge for the EXPERT

baseline, we associate each task to a unique skill
corresponding to one of the 4 task types of Ye
et al. (2021, p. 20)’s taxonomy: question answering,
conditional text generation, classification, or other
(e.g., regression). The skill inventory size of 8
for SKILLED was chosen among {2, 4, 8, 16, 32}
based on validation. We set the embedding size e
and hidden size h of HYPER to an identical value
to ensure a fair comparison. Both SKILLED and
HYPER therefore increase the parameter count by
∼ 0.78% per skill and task embedding dimension,
respectively. We provide more information on the
hyper-parameter configuration in Appendix A.
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Figure 3: Delta in performance in terms of task-specific metrics between SKILLED (bottom) and HYPER (top) on
the one hand and SHARED on the other, across 120 CrossFit tasks seen during multitask pre-training.

4.3 Results

Few-shot Adaptation to New Tasks In the few-
shot adaptation setting, our goal is to evaluate the
capability of the model to quickly generalise to
new tasks unseen during training. This is the most
realistic setting as tasks encountered by models
deployed ‘in the wild’ will be characterised by dif-
ferent distributions or involve different input / out-
put spaces. Performance in terms of task-specific
metrics is reported in Table 1 for the 20 evaluation
tasks individually and on average.

Crucially, results show that SKILLED outper-
forms alternative formulations of the task–skill al-
location matrix, such as SHARED, PRIVATE and
EXPERT. Importantly, we note that SKILLED also
surpasses HYPER by a sizeable margin despite the
two models having comparable parameter counts.
This points to the fact that explicitly modularising
knowledge learnt during multitask training is im-
portant for systematic adaptation to unseen tasks,
whereas entangled knowledge is more brittle to dis-
tribution shifts in cross-task transfer. Similarly, the
average performance of SKILLED is significantly
higher that TASK-MOE, which illustrates the im-
portance of variable-size module allocation. Also,
it demonstrates that modularity holds promise not
only for scaling large language models, but also
as a strategy to favour generalisation. Finally, we
corroborate the soundness of our experiment setup
by reproducing the results of Ye et al. (2021).3

Multitask Evaluation on Seen Tasks Moreover,
to ensure that modularity does not adversely affect
in-domain performance, we evaluate models on the
test sets of seen tasks after multitask training. In

3Note that in Ye et al. (2021) the pre-trained model is
BART Small and all parameters are fine-tuned. Hence, these
results are not directly comparable.

Figure 3, we report the delta in performance in
terms of task-specific metrics between two models
(SKILLED on top, HYPER on the bottom) and a
baseline (SHARED) for the 120 training tasks. Both
models yield positive gains for most tasks over
SHARED. Most importantly, SKILLED achieves a
performance (48.95 on average) comparable to HY-
PER (49.37 on average), therefore confirming that
explicit modularisation can be as effective as con-
ditional parameter generation when evaluated on
seen tasks, but also engenders vast improvements
on held-out tasks.

In-Depth Analysis of Learned Skills Finally,
we run an in-depth analysis of the task–skill alloca-
tion matrices Z learned by SKILLED. We visualise
its posterior for |S| = 4 in Figure 5. Specifically,
we measure:

1. Discreteness. How close is the continuous re-
laxation to a binary matrix? To this end, we
report the average normalised entropy across all
probabilities in the cells of the matrix:

Discrete(Z) =
1

|T | · |S|
∑

Ti

∑

Sj

H(zij)

log 2
(5)

For instance, a binary matrix yields a score of 1,
a matrix where every cell is 0.5 yields a score of
0.

2. Sparsity. How many skills are active per task on
average? We count the rate of non-zero cells in
the values rounded to the closest integer:

Sparsity(Z) =
1

|T | · |S|
∑

Ti

∑

Sj

⌊zij⌉ (6)

3. Usage. Is the allocation of skills across tasks
balanced or are some preferred over others? We
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Figure 4: Statistics of the task–skill matrices for differ-
ent choices of skill inventory size, including: discrete-
ness, sparsity, usage, and the average exact match on
the development set of 120 CrossFit tasks.

provide the normalised entropy of a categorical
distribution parameterised by

∑
j Z⋆,j , the sum

of the columns of Z:

Usage(Z) =
H

[∑
Ti zi,⋆

]

log |S| (7)

Note that the entropy values are normalised into the
range [0, 1] to make them invariant to the number
of skills: this quantity is known as ‘efficiency’.

We plot these metrics—as well as the perfor-
mance on in-domain train tasks in terms of exact
match—as a function of the skill inventory size in
Figure 4. We find that, whilst a continuous relax-
ation, the learned matrices are highly discretised
and all their values are extremely close to either
0 or 1. Moreover, the level of sparsity decreases
as the number of skills increases. This means that
relatively smaller subsets of skills are required. In-
stead, usage stays consistently near the maximum
value, which implies that there is uniformity in how
frequently each skill is active across tasks. Finally,
exact match is consistently high for sufficiently
large (|S| ≥ 8) skill inventories.

Overall, these results demonstrate that a quasi-
binary, highly-sparse, and non-trivial allocation ma-
trix can be successfully learned in an end-to-end
fashion even with simple inductive biases such as
a dual-speed learning rate.

Crucially, learning a skill allocation also facili-
tates interpreting black-box multitask models. In
fact, the structure of Z corresponds to an explicit
hierarchy of tasks, where simpler ones are sub-
sumed by more complex ones, and similar tasks
can be grouped into the same category if they share
the same subset of skills. We plot this hierarchy
as a dendrogram in Figure 6. For instance, most
GLUE tasks (Wang et al., 2018) are grouped to-
gether as they are all focused on natural language
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Figure 6: Task partitions for |S| = 4, which corresponds
to 2|S| = 16 possible subsets of skills.

understanding: for instance, they require skill 1
(COLA), 2 (MRPC, RTE, SST2, WNLI), or both 1
and 2 (MNLI, QQP).

5 Related Work

Modular Networks Modularising neural net-
works has long been sought as a way to achieve
better generalisation to unseen inputs (Jacobs et al.,
1991b; Andreas et al., 2016; Kirsch et al., 2018),
tasks (Jacobs et al., 1991a; Alet et al., 2018), and
recently to improve continual learning (Ostapenko
et al., 2021), to be more robust to changes in the
environment (Goyal et al., 2021) and for sequence
generation (Zhang et al., 2022).

In routing networks (Rosenbaum et al., 2019), a
learnable router decides the order in which mod-
ules are applied to the input. Learning the structure
of this composition has been achieved using an ex-
ternal parser (Andreas et al., 2016) or by sampling
structures with simulated annealing (Alet et al.,
2018). In mixture of experts (MoE), the system
selects a soft subset of modules depending on the
input to be processed (Jacobs et al., 1991b; Shazeer
et al., 2017). MoEs can be interpreted invoking the
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theory of independent mechanisms (Parascandolo
et al., 2018) that Goyal et al. (2021) further extend
to handle sequential problems. Sun et al. (2020)
share subsets of parameters among sparse sub-
networks corresponding to different tasks. Within
NLP, Fedus et al. (2021) uses a MoE architecture to
scale large language model pre-training to trillions
of parameters.

Our model conditions the computation on the
task rather than on task inputs. Attempts to en-
force parameter reuse and modularity for multi-
task learning include (Rajendran et al., 2017; Ponti
et al., 2021a; Kingetsu et al., 2021; Kudugunta
et al., 2021b). Rajendran et al. (2017) learn sepa-
rate modules for each task and then learn how to
reuse those modules for a new task. Kudugunta
et al. (2021b) uses a set of modules for each task
in a multi-lingual translation setting. Our approach
does not assume a set of modules for each task
but instead decomposes a task into a set of skills
themselves reusable across tasks.

Multitask NLP Joint multitask learning in NLP
proved an effective strategy for improving model
performance in low-resource tasks and for quickly
adapting to new tasks (Ruder et al., 2019; Min
et al., 2021; Wei et al., 2021; Aribandi et al., 2021;
Sanh et al., 2022), languages (Ponti et al., 2019),
and modalities (Bugliarello et al., 2022). Liu et al.
(2019) trained a shared model for all GLUE tasks
and achieved impressive performance on GLUE.
Pfeiffer et al. (2021) share information across task-
specific parameters while alleviating negative task
interference.

In our experiments we parameterise each skill
with two kinds of adapters: either SFT (Ansell
et al., 2022) or LoRA (Hu et al., 2021). Re-
cently, Karimi Mahabadi et al. (2021) and Pilault
et al. (2021) ensure cross-task information sharing
by using a hyper-network to generate adapters from
task embeddings. Differently, our task-specific pa-
rameters are composed of a set of skills from a
shared inventory, which makes our approach mod-
ular and more scalable.

Several multitask approaches specifically target
adaptation to new tasks, such as meta-learning ap-
proaches (Alet et al., 2018; Rusu et al., 2019; Ponti
et al., 2021b; Garcia et al., 2021; Ostapenko et al.,
2021). In our paper, we efficiently achieve few-
shot task adaptation by inferring the skill allocation
for new tasks and fine-tuning skill parameters ini-
tialised from multitask learning.

6 Conclusions

We argued that a modular design is crucial to en-
sure that neural networks can learn from a few
examples and generalise robustly across tasks by
recombining autonomous facets of knowledge. To
this end, we proposed a model where a subset of
latent, discrete skills from a fixed inventory is al-
located to each task in an end-to-end fashion. The
task-specific instantiation of a neural network is
then obtained by combining efficient parameterisa-
tions of the active skills, such as sparse or low-rank
adapters. We evaluate the sample efficiency of our
model on multitask instruction following through
reinforcement learning and its few-shot adaptability
on multitask text-to-text generation through super-
vised learning. In both experiments, we surpass
competitive baselines such as conditional param-
eter generation (HyperFormer) and mixture of ex-
perts (Task-MoE). Finally, we show that modularity
helps interpret multi-task models by inferring ex-
plicit relationships between tasks according to the
skills they share.

Limitations

Firstly, the kind of knowledge captured by indi-
vidual skills is not fully interpretable. In terms of
task–skill allocation, while some patterns based
on task type and textual domain emerge from the
clusters of Figure 6, it remains unclear how to sys-
tematically probe this information. Moreover, in
terms of skill-specific parameters, it is hard to mea-
sure the diversity among learned skills. In fact, due
to the under-specification of neural networks, dif-
ferent configurations in the parameter space may
in fact correspond to the same function.

Secondly, few-shot adaptation in our experi-
ments is based on the assumption that the skill in-
ventory is fixed. Therefore, the model is compelled
to recombine and possibly fine-tune old skills. In-
stead, each unseen task should involve a combi-
nation of newly discovered and previously honed
skills. In the future, a possible extension of our
method for continuous learning should adopt this
more natural assumption.

Finally, we explore only a subset of the prob-
lems where different skills can be combined. In
addition to instruction following and conditional
text generation, our results should be replicated
also in multilingual and multimodal benchmarks
(Bugliarello et al., 2022, inter alia).
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and Ivan Vulić. 2022. Composable sparse fine-tuning
for cross-lingual transfer. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics.

Alan Ansell, Edoardo Maria Ponti, Jonas Pfeiffer, Se-
bastian Ruder, Goran Glavaš, Ivan Vulić, and Anna
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A Hyper-parameters

A.1 BabyAI
We follow closely the best hyper-parameter setup
of Hui et al. (2020). Tiles in the visual input are
encoded into embeddings of size 128 via a look-up
table. The CNN has 2 layers, filter size 3, stride
1, and padding 1; whereas the FiLM module has
2 layers. A residual layer is added between the
CNN output and each of the FiLM layers. The
output of FiLM is max-pooled with a layer of size
7 and stride 2. Both the LSTM and the GRU have
a hidden size of 128.

A learning rate of 1e-4 is adopted for Adam
(Kingma and Ba, 2015). We optimise the model
with Proximal Policy Optimisation (PPO; Schul-
man et al., 2017) and Back-Propagation Through
Time (BPTT; Werbos, 1990). Additionally, we use
an Advantage Actor–Critic (A2C; Wu et al., 2017)
with Generalised Advantage Estimation (GAE;
Schulman et al., 2015). The reward is calculated
as (1−0.9n/nmax) if the agent completes a task—
where n is the number of steps required and nmax

is a threshold set according to the level difficulty, 0
otherwise. Returns are discounted by γ = 0.99.

A.2 CrossFit
During both multitask pre-training and few-shot
adaptation, we use the Adam optimiser (Kingma
and Ba, 2015) and select a learning rate for Φ
among {1e − 2, 1e − 3, 1e − 4} based on perfor-
mance on the development sets of Ttrain and Tdev,
respectively. As a more aggressive learning rate
for Z in SKILLED instead we search in the range
[1e− 1, 1e− 2]. We run multitask pre-training for
30 epochs with an effective batch size of 32, with
a warm-up of 6% of the total steps. Instead, dur-
ing few-shot adaptation, the effective batch size is
8 for 1000 training steps, with a warm-up rate of
10% and a weight decay of 1e-2. For each held-out
task, a newly added row in Z (initialised with a
vector of 0.5) and Φ (initialised from pre-training)
are fine-tuned, but not ϑ0.

For a comparison of parameter counts, LoRA
adds 4l(2hr + |T |) · |S| parameters to the pre-
trained model, where l is the number of layers in
the encoder and decoder, h is the hidden size, and 4
is the number of linear projections in self-attention
(query, key, value, output). We use r = 16,
l = 24 and h = 1024 for BART Large, so we
add ∼ 3 · 106 parameters per skill. Given that the
pre-trained model has ∼ 4 · 108 parameters, this

implies an increase of ∼ 0.78% per skill. HYPER

adds 4l(2he + 2e) · e parameters, an increase of
∼ 0.78% per task embedding dimension.

B Additional Results for BabyAI

Skills Level

1 2 3 4 8 GOTO

1 8 GOTOOBJMAZE

1 2 3 6 7 PICKUPLOC

1 2 3 5 PUTNEXTLOCAL

1 2 3 4 GOTOLOCAL

1 2 3 GOTOREDBALL

1 2 GOTOREDBALLGREY

1 GOTOOBJ

Table 2: BabiAI EXPERT task–skill allocation.

Model Episodes

PRIVATE >6000000
SHARED 3544294
EXPERT 4608019

SKILLED 2218226
- SPARSITY 1853060

Table 3: Sample efficiency of various models on 8
BabyAI levels measured as the number of episodes
needed to reach a success rate > 0.99.

C Additional Results for CrossFit

Metric SHARED HYPER SKILLED

TASK-SPECIFIC

Acc 58.47 62.63 62.66
C-F1 41.76 56.74 55.39

EM 20.05 21.68 21.70
P-Corr 56.83 61.54 52.60
QA-F1 48,88 51.04 52.35

Rouge-L 28.02 26.71 28.05

GLOBAL

Average 43.09 49.37 48.95

Table 4: Performance of multitask models averaged
over test sets of 120 seen CrossFit task. Performance
is both aggregated globally across all tasks (in terms of
task-specific metrics) and across subsets of tasks with
the same evaluation metric.
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ELI5-ASKS, ELI5-ELI5, ETHOS-SEXUAL-ORIENTATION

3 GOOGLE-WELLFORMED-QUERY, REDDIT-TIFU-TITLE

2 APP-REVIEWS, CLIMATE-FEVER, DBPEDIA-14, EMOTION, GLUE-MRPC, GLUE-RTE,
GLUE-SST2, GLUE-WNLI, HATEXPLAIN, IMDB, LIAR, MOCHA, ONESTOP-ENGLISH,
PAWS, PIQA, POEM-SENTIMENT, ROTTEN-TOMATOES, SCICITE, TAB-FACT, TREC-
FINEGRAINED, TWEET-EVAL-EMOJI, TWEET-EVAL-SENTIMENT, TWEET-EVAL-STANCE-
ABORTION, TWEET-EVAL-STANCE-ATHEISM, TWEET-EVAL-STANCE-CLIMATE, TWEET-
EVAL-STANCE-FEMINIST, WIKI-AUTO, YAHOO-ANSWERS-TOPICS, YELP-REVIEW-FULL

2 3 ADE-CORPUS-V2-DOSAGE, BIOMRC, BOOLQ, EMO, ETHOS-DISABILITY, HATE-SPEECH18,
KILT-AY2, LAMA-CONCEPTNET, LAMA-GOOGLE-RE, LAMA-SQUAD, MC-TACO, NUMER-
SENSE, PROTO-QA, ROPES, SEARCH-QA, SMS-SPAM, SUPERGLUE-RECORD, TWEET-EVAL-
HATE, TWEET-EVAL-IRONY, TWEET-EVAL-OFFENSIVE

1 CIRCA, CRAWL-DOMAIN, GLUE-COLA, SUPERGLUE-RTE

1 3 LAMA-TREX, LIMIT, QA-SRL, SUPERGLUE-MULTIRC, TWEET-EVAL-STANCE-HILLARY,
WIKISQL

1 2 AI2-ARC, ANLI, AQUA-RAT, BLIMP-SENTENTIAL-NEGATION-NPI-LICENSOR-PRESENT,
CODAH, ETHOS-GENDER, ETHOS-NATIONAL-ORIGIN, ETHOS-RACE, ETHOS-RELIGION,
FREEBASE-QA, GLUE-MNLI, GLUE-QQP, HELLASWAG, MEDICAL-QUESTIONS-PAIRS,
OPENBOOKQA, QUAREL, QUARTZ-NO-KNOWLEDGE, QUARTZ-WITH-KNOWLEDGE, RACE-
MIDDLE, SCITAIL, SICK, SOCIAL-I-QA, SUPERGLUE-CB, SUPERGLUE-COPA, SUPERGLUE-
WIC, SUPERGLUE-WSC, SWAG, WIKI-QA

1 2 3 ADVERSARIALQA, ART, COMMONSENSE-QA, COS-E, DEFINITE-PRONOUN-RESOLUTION,
ETHOS-DIRECTED-VS-GENERALIZED, HOTPOT-QA, SCIQ, SQUAD-WITH-CONTEXT, WINO-
GRANDE, WIQA

0 BREAK-QDMR, BREAK-QDMR-HIGH-LEVEL, E2E-NLG-CLEANED, ELI5-ASKH, MULTI-
NEWS

0 3 AESLC, COMMON-GEN, GIGAWORD, RACE-HIGH, REDDIT-TIFU-TLDR, TWEET-QA, WIKI-
SPLIT

0 2 AG-NEWS, KILT-WOW

0 2 3 BLIMP-SENTENTIAL-NEGATION-NPI-SCOPE, DISCOVERY, HATE-SPEECH-OFFENSIVE,
JEOPARDY, KILT-HOTPOTQA, KILT-NQ, KILT-TREX, KILT-ZSRE, SQUAD-NO-CONTEXT,
WEB-QUESTIONS, XSUM

0 1 ADE-CORPUS-V2-CLASSIFICATION, ASLG-PC12, FINANCIAL-PHRASEBANK, GLUE-QNLI,
SPIDER

0 1 3 SAMSUM, TREC, WIKI-BIO

0 1 2 AMAZON-POLARITY, BLIMP-ANAPHOR-GENDER-AGREEMENT, BLIMP-ANAPHOR-
NUMBER-AGREEMENT, BLIMP-DETERMINER-NOUN-AGREEMENT-WITH-ADJ-
IRREGULAR-1, BLIMP-ELLIPSIS-N-BAR-1, BLIMP-ELLIPSIS-N-BAR-2, BLIMP-
EXISTENTIAL-THERE-QUANTIFIERS-1, BLIMP-IRREGULAR-PAST-PARTICIPLE-
ADJECTIVES, BLIMP-WH-QUESTIONS-OBJECT-GAP, COSMOS-QA, CROWS-PAIRS,
DREAM, KILT-FEVER, MATH-QA, QUOREF

0 1 2 3 ACRONYM-IDENTIFICATION, ADE-CORPUS-V2-EFFECT, DUORC, EMPATHETIC-
DIALOGUES, HEALTH-FACT, QASC, QUAIL, TWEET-EVAL-EMOTION, YELP-POLARITY

Table 5: Skill allocation to 120 training CrossFit tasks for |S| = 4.
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Figure 7: Per-layer discreteness (top) and per-layer sparsity (bottom).
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