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Abstract

Biomedical argument mining (BAM) aims
at automatically identifying the argumenta-
tive structure in biomedical texts. However,
identifying and classifying argumentative re-
lations (AR) between argumentative compo-
nents (AC) is challenging since it not only
needs to understand the semantics of ACs but
also need to capture the interactions between
them. We argue that entities can serve as
bridges that connect different ACs since entities
and their mentions convey significant semantic
information in biomedical argumentation. For
example, it is common that related AC pairs
share a common entity. Capturing such entity
information can be beneficial for the Relation
Identification (RI) task. In order to incorpo-
rate this entity information into BAM, we pro-
pose an Entity Coreference and Co-occurrence
aware Argument Mining (ECCAM) framework
based on an edge-oriented graph model for
BAM. We evaluate our model on a benchmark
dataset and from the experimental results we
find that our method improves upon state-of-
the-art methods.

1 Introduction

There is a growing interest in evidence-based de-
cision making in the biomedical field, as it can
assist medical practitioners in selecting the best
treatment for a given medical case. However,
extracting relevant evidence from vast amounts
of biomedical publications is time-consuming for
practitioners. Thus, biomedical Argument Min-
ing (BAM), which is the application of Argument
Mining (AM) to biomedical texts, is proposed to
automatically extract argumentative structures in
biomedical texts by identifying Argument Compo-
nents (AC) and Argument Relations (AR) between
ACs (Mayer et al., 2020). BAM includes three
primary tasks (Si et al., 2022): (1) argument com-
ponent identification (ACI)—i.e., distinguishing ar-
gumentative components from non-argumentative
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content; (2) argument component classification
(ACC)—categorizing ACs into different types (e.g.,
claim, and evidence); and (3) relation identification
(RI)—recognizing ARs (e.g., support, attack, or
none) between a pair of ACs.

Among these tasks, the RI task is the hardest one
and existing models tend to underperform on this
task, compared to the ACI and ACC tasks (Mayer
et al., 2020; Galassi et al., 2021; Si et al., 2022).
One possible reason is that these models do not in-
corporate the information about the co-occurrence
of common entities between different ACs. This
is a valuable source of semantic information and
can be particularly important in BAM. As shown
in Fig 1, the AC pairs connected by an AR share
entities with coreference relations. Furthermore,
entity co-occurrence suggests the direction of the
ARs (i.e. ACs with several entities are usually the
tail of ARs, like in Figure 1).

Based on this intuition, we propose an En-
tity Coreference and Co-occurrence aware Argu-
ment Mining (ECCAM) framework that effectively
captures ARs through entity coreference and co-
occurrence. ECCAM is a graph-based model. We
build a heterogeneous graph that consists of nodes
that represent ACs and entities, and edges between
nodes. The entity nodes can serve as bridges that
connect different ACs. Considering that the en-
tity coreference and co-occurrence relations exist
between nodes and thus are represented by edge
embeddings, we employ an edge-oriented graph
model (Christopoulou et al., 2019) that learns edge
representations of any two connected nodes by
combing all paths between the two nodes. This
enables information flow between different rela-
tions and iteratively updates the edge representa-
tions, which is finally used as the representations
of ARs. Here, the edges between AC nodes and
entity nodes are used to pass the entity coreference
information while the edges between entity nodes
aim to leverage entity co-occurrence information.
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1.The rate of efficacy was

significantly higher in the

combined treatment group
(85.36 %; p <0.05 vs.

2.The quality of life improved
in control group by 13.7 %,
while combined treatment
group showed improvement
of 83.5 % (p < 0.05 vs.

control group).
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4.Intraperitoneal perfusion of
verapamil enhances the
efficacy of chemotherapy
drugs, prolongs survival, and
improves the quality of life.

3.Cumulative survival rate
was also significantly higher
in the combined treatment
group.

Figure 1: Part of the argument structure of the abstracts
from PubMed 23589316. Each text in the rectangle
represents an AC. Two ACs connected with an arrow
means that there is an AR between them. Entities with
the same colour are in the same coreference clusters.

Our contributions are shown below:

* To our best knowledge, this paper is the
first to incorporate entity coreference and co-
occurrence information into an argument min-
ing model.

* We propose the ECCAM framework based on
an edge-oriented model to leverage the entity
coreference and co-occurrence information.

* Experimental results show that the entity
coreference and co-occurrence information
can improve the performance of the RI task
significantly.

2 Related Work

Recently, the research community has shown grow-
ing interest in the task of BAM. Mayer et al. (2018)
created a dataset by annotating ACs within random-
ized controlled trial abstracts and employ the Sub-
Set Tree Kernel to classify the types of ACs with
Bag-Of-Words of biomedical text as input. Further,
a dataset with both ACs and ARs are created by
Mayer et al. (2020) to deal with three tasks of BAM:
ACI, ACC and RI. Various contextualized word
embeddings, such as BERT (Devlin et al., 2019),
BioBERT (Lee et al., 2020), SciBERT (Beltagy
et al., 2019a), and RoBERTa (Liu et al., 2019) are
explored to address these tasks. Liu et al. (2022) in-
corporate zoning information (such as background,
result and conclusion) to tackle the ACI and ACC
tasks at the same time. Galassi et al. (2021) em-
ployed a multi-task framework with an attentive
residual network to address the ACC task, RI task,
and link prediction task of BAM, based on the as-
sumption that ACs had been detected. SeqMT (Si
et al., 2022) also assumes the ACI task is solved
and pays attention to the ACC and RI tasks. It
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utilises a multi-task learning approach to benefit
from the sequential dependency between the ACC
and RI tasks by transferring the representation of
the input and output of the ACC task to the RI task.

However, none of the previous models leverages
the entity coreference and co-occurence informa-
tion for the RI task, which is the focus of this paper.

3 Model Architecture

Following previous models (Galassi et al., 2018; Si
et al., 2022; Galassi et al., 2021), we assume that
the outputs of the ACI task are provided, i.e., all
ACs have been detected without AC types. Inspired
by Christopoulou et al. (2019) who employ an edge-
oriented graph model (Christopoulou et al., 2018)
to leverage interactions among sentences that share
the same entities for document-level relation extrac-
tion, we propose a framework for the RI task based
on a similar edge-oriented model. Our framework
contains three parts: the entity cluster extraction
module, the document encoder module and the en-
tity co-occurrence and coreference-aware argument
mining module.

3.1 Entity Cluster Extraction Module

Since we cannot assume golden annotation of enti-
ties and their mentions, the first step of our frame-
work is to identify all named entities in the AM
dataset. One simple way is to train a model on
biomedical coreference resolution datasets and use
such model to predict entity clusters. However,
most biomedical coreference resolution datasets
concern diseases (Dogan et al., 2014; Li et al.,
2015), species (Gerner et al., 2010; Pafilis et al.,
2013) or proteins and genes (Wei et al., 2015;
Collier and Kim, 2004). Most noteably, datasets
with entity annotations related to cancer experi-
ments, such as “quality of life” and “survival rate”,
are absent from the literature, while the biomedi-
cal argument mining dataset (Mayer et al., 2020)
is about the cancer research. Thus, we choose
another method that first predicts the entities in
the AM datasets, and then disambiguates them
by mapping to the Unified Medical Language
System (UMLS) (Bodenreider, 2004) to obtain a
unique identifier of a medical concept to obtain
entity clusters.

Specifically, we use the Transformed NER
model (Stylianou and Vlahavas, 2021) to obtain
entities in the abstracts. This model is trained on
the EMB-NLP (Nye et al., 2018) dataset and thus



extracts four types of entities, namely Patient, Inter-
vention, Comparison and Outcome (PICO). Since
ACs mainly exist in sentences that describe exper-
imental results and conclusions (Liu et al., 2022),
we only use outcome entities, to avoid noise. Then,
we use all the extracted entities as input of the
QuickUMLS tool (Soldaini and Goharian, 2016) to
obtain the corresponding UMLS identifiers (IDs).
It is worth mentioning that given one mention, the
QuickUMLS usually returns multiple IDs. We han-
dle this situation as follows: when there is an exact
match between the predicted entities and the given
mention, we will use the ID of the exactly matched
entity as the ID for the mention. If there is no exact
match entity, we will reserve all the entities whose
Jaccard similarity score with the given mention is
higher than a specific threshold.

All entities in a document that share the same
UMLS ID in a document form an entity cluster.
The extracted entity clusters are denoted as C' =
{01, 02, ceey Clc}, where CZ = {ml, ma, ..., ml},
and [ is total number of mentions in the ¢-th cluster.

3.2 Document Encoder Module

Given a document D = {t1, 1o, ..., t,,} consisting
of n tokens as the input of our framework, a SciB-
ERT model is employed as the encoder to generate
the embeddings of tokens X = {1, 2, ..., x,} in
D.

X = SciBERT (D) ()
To leverage the entity coreference and co-
occurrence information, a two-step method is pro-
posed to generate the embeddings of all entities
occurring in the document D. First, our model
generates the embeddings of each mention m; by
averaging all token embeddings {x;1, T2, ..., Tinr }
in m;. Similarly, the embeddings of each AC n,
and each entity n. are also an average of the tokens
in the AC and entity, respectively.

3.3 Graph Construction

We initially construct a heterogeneous graph that
consists of two different types of nodes (AC nodes
and entity nodes) and three types of edges between
the nodes. The rules for edge generation are out-
lined below.

AC-AC edge. If two ACs are adjacent, an edge
will connect the two AC nodes. There are two situ-
ations where two ACs are adjacent. The first one is
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that the sequences of this two ACs are adjacent in
the document. Another situation is that the words
between the two ACs in the document are all non-
argumentative. This type of edge is used to learn
the context.

AC-Entity edge. If an AC mentions an entity at
least once, there will be an edge between the entity
and the related AC. This type of edge is used to
learn the coreference information.

Entity-Entity edge. We connect all entity pairs so
that the model can learn which co-occurrence of
entity pairs is helpful for the RI task.

We use a concatenation operation to get the rep-
resentation of an edge e;; = [n;,n;] given the
representations of the source node n; and the desti-
nation node n; of the edge, where n;, n; € n.Un,.

3.4 Entity Co-occurrence and Coreference
aware Argument Mining model Module

Given the constructed graph, we employ an
edge-oriented graph model (Christopoulou et al.,
2018) to leverage the entity coreference and co-
occurrence information. The model uses a two step
method to iteratively update the edge embeddings
of two nodes based on the paths between the two
nodes.

First, a path between two nodes ¢ and j is gen-
erated using intermediate nodes k. Then, the rep-
resentations of two consecutive edges e; and ey
are combined by a modified bilinear transforma-
tion. Through this action, an edge representation of
double the length is generated. All existing paths
between ¢ and j through k are combined. The ¢, 7,
and k nodes can be either entity nodes or AC nodes.
Intermediate nodes without adjacent edges to the
target nodes are ignored. Formally, this is written
as:

fleep)) = oley @
where o is the sigmoid non-linear function, W is
a learned parameter matrix, ® represents element-
wise multiplication, [ denotes the length of the edge
and e refers to the representation of the edge
between nodes 7 and k.

At the second step, the original (short) edge rep-
resentation and the new (longer) edge represen-
tation resulting from Equation 2 is aggregated as
follows:
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where 3 € [0,1] is a scalar used to assign the
weight of the shorter edge representation.

A finite number NV of iterations is conducted for
the two steps. The final length of path is directly
proportional to the number of iterations. After NV
iterations, the number of edges of the longest path
will be up to 2.

3.5 Classification Module

Finally, to classify relations between AC pairs, we
incorporate a softmax classifier which takes the
AC-to-AC edges e,q as input:

y = softmazx(Weqq + b) @)

where W and b are learned parameters of the clas-
sification layer. The whole model is trained end-to-
end by minimising the cross-entropy loss between
predicted and gold ACs.

4 Experiment

4.1 Datasets

Following Si et al. (2022), we use the Ab-
stRCT (Mayer et al., 2020) benchmark to evalu-
ate our model and compare it with previous ap-
proaches. The AbstRCT dataset is composed of
three categories of ACs (major claim, claim, and
evidence) and two kinds of ARs (support and at-
tack). It consists of three parts, with the largest
being the neoplasm corpus, which is divided into
training, development, and testing sets. Moreover,
there are two additional test sets. The first one
solely consists of abstracts related to glaucoma,
while the second one is a mixed set containing 20
abstracts for each disease in the dataset (neoplasm,
glaucoma, hypertension, hepatitis, and diabetes).

Documents All ARs Avg. AR
Neo_train 350 1427 4.1
Neo_dev 50 210 4.2
Neo_test 100 424 4.2
Gla_test 100 367 3.7
Mix_test 100 329 33

Table 1: Statistics of the AbstRCT dataset. The data
statistics of the three test sets are reported separately.
Here, Neo, Gla and Mix represent neoplasm, glaucoma
and mixed, respectively.

4.2 TImplementation

We use the same train-development-test split for
the AbstRCT dataset as was used in Si et al.
(2022). We fine-tune cased SciBERT (Beltagy
etal., 2019b) and set the maximum sequence length
to 256. A learning rate of 2 - 107° is used. We
train for 50 epochs with early stopping to avoid
overfitting. Our model is implemented in Py-
Torch (Paszke et al., 2019). We employ an AdamW
optimizer (Loshchilov and Hutter, 2019) for param-
eter optimization and report the macro-averaged
F1 scores of models trained with three different
random seeds.

4.3 Baselines

In order to evaluate our proposed method, we com-
pare it with the following baselines:

ResArg (Galassi et al., 2018) is a hybrid of residual
networks and long short-term memory network.
This model is designed to tackle both the ACC and
RI tasks simultaneously.

ResAttArg (Galassi et al., 2021) is an upgraded
version of ResArg model featuring an attention
module. ResArg and ResAttArg have two versions:
an average version that calculates the final scores
as an average of scores from 10 distinct networks
trained with 10 different seeds, and an ensemble
version that assigns the class based on the majority
vote of the same 10 networks.

SeqMT (Si et al., 2022) utilises a multi-task learn-
ing approach to benefit from the sequential depen-
dency between the ACC and RI tasks. It transfers
the representation of the input and output of the
ACC task to the RI task.

4.4 Main Results

We report the main results in Table 2. It can be
observed that our model improves upon the state-
of-the-art on two of three test sets even though our
model is a single task model while all other base-
lines are multi-task/ensemble models. To be spe-
cific, our model outperforms the current best model
on the neoplasm test set by 1.68% F1 score and the
mixed test set by 1.11% F1 score. However, there
is a gap between the performance of our model and
SegMT on the glaucoma test set. This might be due
to the lack of multi-task training: compared with
the results of SeqMT, the performance of the sin-
gle task version model of SeqMT(SeqMT(-L4cc))
similarly experiences a large drop of performance
of 8.44% F1 score. Without the additional signal



models NEO GLA MIX
RA(avg) 59.15 57.23 60.31
RA(Ensemble) 63.16 61.86 68.35
RAA(avg) 66.49 62.68 63.47
RAA(Ensemble) 70.92 6840 67.66
SeqMT(-Laee) 68.58 64.83 70.30
SegMT 71.24 7327 72.71
ECCAM 7292 68.96 73.82
Table 2: Main results of different models. The best

scores are marked in bold. All the results of baselines
are copied from the related papers. Here, NEO, GLA
and MIX represent neoplasm, glaucoma and mixed.

from the ACC task, SeqMT(-L..) performs signif-
icantly worse than our model on the glaucoma test
set by 4.13% F1 score.

4.5 Ablation Study

To validate the effects of the entity coreference and
entity co-occurrence information, we conduct two
ablation experiments. ECCAM(-EE) is a model
where the edges between the entities are excluded
to test whether the entity co-occurrence informa-
tion can improve the performance of RI. ECCAM(-
EA) aims to reveal the impact of entity coreference
information by removing both edges between enti-
ties and between entities and ACs. The results in
Table 3 show the effectiveness of the entity corefer-
ence and entity co-occurrence information. With-
out the entity co-occurrence information, the per-
formance of our model drops by 0.84%, 2.52% and
1.43% F1 score on the neoplasm, glaucoma and
mixed test sets, respectively. The performance of
ECCAMC(-EA) decreases even more significantly—
2.3%, 5.12% and 4.09% F1 score on the neoplasm,
glaucoma and mixed test sets—showing the posi-
tive impact of entity coreference information.

models NEO GLA MIX
ECCAM 7292 68.96 73.82
ECCAM(-EE) 72.08 66.44 72.39
ECCAM(-AE) 70.62 63.84 69.73

Table 3: Ablation study of our model. ECCAM(-EE)
is a model where the edges between the entities are
excluded. ECCAM(-EA) removes both edges between
entities and between entities and ACs. The best scores
are marked in bold.
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iterations DEV NEO GLA MIX
N=1 60.20 65.32 53.49 66.90
N=2 62.75 67.34 58.67 71.14
N=3 66.04 71.84 63.37 71.80
N =4 67.31 7292 68.96 73.82
N=5 69.64 73.85 6630 68.83

Table 4: Results of hyper-parameter analysis. Here,
NEO, GLA and MIX represent the results of on the neo-
plasm, glaucoma and mixed test sets, respectively. DEV
denotes the results on the development set.

4.6 Hyper-parameter Analysis

We further test, whether number of iterations N
affects the model performance on the three dif-
ferent test sets. We conduct experiments with
N =1,2,3,4,5. The results are shown in Table 4.
From the results on the development set we can see
that as the number of iterations increases, the per-
formance of the model on the development set also
increases. However, though our model obtains the
best score on the neoplasm test set when N = 5,
considering all three test sets, the best overall per-
formance is achieved with four iterations. It is
worth noting that the abstracts in the development
set are all about neoplasm. Taking all these results
into consideration, we can conclude that the more
iterations the edges representations are updated,
the more information is utilised from more distant
nodes, with too many iterations causing overfitting.

5 Conclusion

In this paper, we propose the ECCAM model
that is based on an edge-oriented graph
model (Christopoulou et al., 2019) to incor-
porate entity coreference and co-occurrence
information into BAM. We introduce edges
between entity nodes and AC nodes in a het-
erogeneous graph to help our model capture
entity coreference and co-occurrence information
respectively. Experiments on the AbstRCT dataset
show the effectiveness of these two types of
information for the RI task. In the future, we
will apply our method to other argument mining
domains, such as student essays (Eger et al., 2017).

Limitations

Although our model improves upon state-of-the-art
methods of BAM by incorporating entity coref-
erence and co-occurrence information, there are
still some limitations to our model. First, it is not



easy to apply our model to other domains where
no coreference resolution tool is available. Second,
the number of nodes and edges of the generated
heterogeneous graph will become enormous if the
documents are long and many entities are extracted,
which requires more GPU resources.
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