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1 Tutorial content

This tutorial will describe various aspects of scaling
up language technologies to many of the world’s
languages by presenting the latest research in Mas-
sively Multilingual Language Models (MMLMs).
We will cover topics such as data collection, train-
ing and fine-tuning of models, Responsible AI is-
sues such as fairness, bias and toxicity, linguistic
diversity and evaluation in the context of MMLMs,
specifically focusing on issues in non-English and
low-resource languages. Further, we will also talk
about some of the real-world challenges in deploy-
ing these models in language communities in the
field. With the performance of MMLMs improving
in the zero-shot setting for many languages, it is
now becoming feasible to use them for building lan-
guage technologies in many languages of the world,
and this tutorial will provide the computational lin-
guistics community with unique insights from the
latest research in multilingual models. Although
past tutorials have covered some of these topics
(such as linguistic diversity, data and training of
models), there has been a lot of interesting research
in the recent past that the CL community will ben-
efit from knowing about. Further, this will be the
first tutorial (as per our knowledge) that will dis-
cuss issues of deployment in language communities
and Responsible AI in the context of multilingual
models.

This tutorial will present a broad survey covering
work done by several research groups (as indicated
in the references), including work done by the au-
thors.

Type of the tutorial: cutting-edge
Target audience and pre-requisites: The target

audience for this tutorial are researchers from in-

dustry and academia who work on Large Language
Models, and are interested in learning about the lat-
est research in multilingual models to build systems
for non-English languages, low-resource languages
and multilingual speakers. We will not be covering
the basics of LLMs, so we expect that the audience
will be familiar with (at least the English versions
of) models such as BERT.

1.1 Outline of the tutorial

We plan to have five talks of 30/40 minutes each,
along with a 10 minute introduction, with 10 min-
utes for general discussion/spillover.

Introduction: We will start with a short intro-
duction on MMLMs, describing the models that
are available today and present the SOTA in model
performance on various tasks across different lan-
guages.

Data and pre-training: The main goal of this
section would be to outline the techniques lever-
aged for creating a high quality corpus for pre-
training strong MMLMs. We will cover the chal-
lenges encountered in creating such a corpus as
highlighted in CC100 (Conneau et al., 2020), mC4
(Xue et al., 2021), OSCAR (Ortiz Suárez et al.,
2020), ROOTS (Laurençon et al., 2022) etc., and
provide an overview of the various stages of such
a dataset creation pipeline. Ensuring the quality
of the training corpus is highly important as it is
directly correlated to the performance of MMLMs
(Kaplan et al., 2020). In addition to this, we will
also discuss the pre-training strategies and possi-
ble extensions for extending the recipe to multiple
languages (Conneau and Lample, 2019; Artetxe
and Schwenk, 2019) describing how scaling (both
on the data and model axis) can substantially help
improve model performance (Conneau et al., 2020;
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Xue et al., 2021), aiding in bridging the gap be-
tween the English performance of a multilingual
and an English only model, thereby reducing the
curse of Multilinguality.

Training paradigms and fine-tuning: We will
describe different training paradigms (Eg: an Elec-
tra based approach (Chi et al., 2022; He et al.,
2021)) and how to leverage bitext data, discussing
results of using contrastive learning approaches
(Chi et al., 2021) or extensions to Electra based
approaches (Chi et al., 2022), as well as show-
ing the benefits of going beyond English centric
bitexts (Patra et al., 2022). We will also discuss
some orthogonal approaches of training encoder-
decoder multilingual representation models (Liu
et al., 2020; Ma et al., 2021; ?), as well as compli-
mentary techniques to build better encoder mod-
els (Eg: Adapter based approaches (Pfeiffer et al.,
2022)). We will also focus on different strate-
gies for improving the fine-tuning performance of
these models. This includes techniques encour-
aging models to have more consistent predictions
across languages (Zheng et al., 2021), leveraging
weight perturbations to avoid overfitting (Wu et al.,
2022) or techniques to reduce the sharpness of loss
minima for better generalization (Foret et al., 2021;
Bahri et al., 2022).

Performance evaluation and reliability: While
the state-of-the-art multilingual models support
around 100 languages of the world, most existing
multilingual benchmarks contain evaluation data in
a handful of languages (Ahuja et al., 2022b). We
will discuss some potential approaches to scale up
multilingual evaluation like performance predic-
tion (Lin et al., 2019; Xia et al., 2020; Ahuja et al.,
2022c) and structure probing (Müller-Eberstein
et al., 2022; Clouâtre et al., 2022). We will also fo-
cus on measuring the cost-performance trade-offs
and sample efficiencies of fine-tuning MMLMs
with different sources of data (translation vs man-
ual collection)(Ahuja et al., 2022a). Further, we
will cover how to measure reliability in the con-
fidence predictions of multilingual models under
a zero-shot and few-shot setup by studying their
calibration (Ahuja et al., 2022d).

FATE issues: LLMs are known to pick up the
biases present in the datasets that are trained on. In
case of multilingual LLMs, apart from bias and fair-
ness issues at group and individual level, one also
need to address the issue of disparity of zero-shot
transfer accuracies across languages and varieties

(Choudhury and Deshpande, 2021; Lauscher et al.,
2020). Furthermore, there is little work done on
the interaction among the biases in corpora from
different languages, influence of grammatical gen-
der (Cao and Daumé, 2021) and other syntactic and
semantic factors on measurement and mitigation of
biases, and socio-cultural aspects of biases (Sam-
basivan et al., 2021). In this section of the tutorial,
we will survey the work done so far in non-English
FATE issues and present challenges that remain to
be addressed.

Deploying to language communities: LLMs
today are trained using billions of parameters, mak-
ing them infeasible to be used in low-memory foot-
print devices. Language communities (particularly
those that speak under-resourced languages) that
may benefit the most from Speech and NLP tech-
nologies may not have good enough connectiv-
ity to be able to use models hosted on the cloud.
This necessitates the development or distillation
of lightweight models for low-resource languages,
and in this section, we will present research in this
direction (Diddee et al., 2022). We will study the
state of current LT to serve communities speak-
ing different languages for critical situations such
as healthcare bots (Mondal et al., 2022). Further,
there are many social and cultural factors to be
taken into account while deploying MMLMs to
language communities, which we will also discuss
in this section.

1.2 Diversity considerations

The topic of the tutorial inherently encourages lin-
guistic diversity. In terms of gender diversity, two
of the tutorial presenters are female, while four are
male. In this tutorial, we will cover issues related to
Responsible AI (fairness, toxicity) and deploying
to under-resourced language communities which
will improve diversity considerations while build-
ing LLMs. The instructors are a mix of senior,
mid-career and junior researchers.

1.3 Reading list

Please check the references section for the reading
list.

2 Instructor bios

Sunayana Sitaram is a Senior Researcher at Mi-
crosoft Research India, where she works on mul-
tilingual speech and NLP. Her current research
interests include training and evaluation of Mas-
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sively Multilingual Language Models and Respon-
sible AI for NLP. Prior to coming to MSRI as a
Post Doc, Sunayana completed her MS and PhD
at the Language Technologies Institute, Carnegie
Mellon University in 2015. Sunayana’s research
has been published in top NLP and Speech con-
ferences including ACL, NAACL, EMNLP, Inter-
speech, ICASSP. She has organized special ses-
sions and workshops on under-resourced languages,
code-switching, multilingual evaluation and speech
for social good. She has also led the creation of
several benchmarks and datasets in code-switching,
ASR, NLI and TTS that have been used by research
groups all over the world.

Monojit Choudhury is a Principal Applied Sci-
entist at Microsoft Turing, prior to which he was
a Principal Researcher at Microsoft Research In-
dia. He is also a Professor of Practice at Plak-
sha University, and had held adjunct faculty posi-
tions at Ashoka University, IIIT Hyderabad and IIT
Kharagpur. Over the past 15 years, Monojit has
worked on several impactful projects on process-
ing of code-mixed text, evaluation and linguistic
fairness of large language models, and social im-
pact through participatory design of technology for
under-resourced languages like Gondi, Mundari,
Idu Mishmi and Swahili. Monojit has served as Se-
nior Area Chair and Area chair in leading NLP and
AI conferences including EMNLP, ACL, NAACL,
IJCNLP and AAAI. He has organized several suc-
cessful workshops in *ACL conferences (SUMEval
2022, CALCS series, TextGraph series, etc.) and
has delivered a tutorial on Code-mixed text pro-
cessing at EMNLP 2019. He is the general chair
of the Panini Linguistics Olympiad and the found-
ing co-chair of Asia Pacific Linguistics Olympiad
– programs to introduce bright young students to
linguistics and computational linguistics through
puzzles. Dr. Choudhury holds PhD and B.Tech de-
grees in Computer Science and Engineering from
IIT Kharagpur.

Vishrav Chaudhary is a Principal Researcher
at Microsoft Turing where he works on scaling
and building efficient Multilingual and Multimodal
representation and generation models. Prior to Mi-
crosoft, Vishrav was a Lead Researcher at FAIR
and focused on several aspects of Machine Trans-
lation, Quality Estimation and Cross-lingual un-
derstanding. Over the past 10 years, Vishrav’s re-
search work has been published in several leading
NLP and AI conferences and journals including

ACL, EMNLP, NAACL, EACL, AACL, TACL,
JMLR and AMTA. He has also organized several
workshops successfully including SUMEval 2022,
AmericasNLP 2021, WMT 2021 etc. He has also
served as an Area Chair for EMNLP 2022. Vishrav
has also led creation of benchmarks and datasets
targeting 100+ languages which have been used to
train state-of-the-art Cross Lingual Representation
and Machine Translation models.

Barun Patra is an Applied Scientist at Mi-
crosoft Turing. His research interest revolves
around building better foundational models that
can help support numerous NLP tasks across dif-
ferent languages. Barun’s research work focuses
on improving the quality and efficiency of training
these large multilingual foundational models, help-
ing achieve state-of-the-art performance on cross-
lingual NLP tasks.

Kabir Ahuja is a Research Fellow at Microsoft
Research India, where he works on building linguis-
tically fair multilingual models covering different
aspects around their performance, calibration, eval-
uation, interpretation, and data collection. He is
also interested in the analysis and interpretability
of the computation mechanisms utilized by neural
sequence models for solving different tasks.

Kalika Bali is a Principal Researcher at Mi-
crosoft Research India working in the areas of Ma-
chine Learning, Natural Language Systems and
Applications, as well as Technology for Emerg-
ing Markets. Her research interests lie broadly
in the area of Speech and Language Technology
especially in the use of linguistic models for build-
ing technology that offers a more natural Human-
Computer as well as Computer-Mediated interac-
tions.

3 Other

Estimate of audience size: 50
Venues: We would prefer ACL 2023 to be the

venue for the tutorial, but EMNLP and EACL are
also acceptable. We do not forsee any special re-
quirements for technical equipment.

3.1 Ethics statement

This tutorial will present current research on Mul-
tilingual model training, evaluation, Responsible
AI issues and deploying models in the field. Al-
though we aim to promote linguistic diversity by
discussing issues pertaining to multilingual models
trained on around 100 languages, many languages
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of the world are not supported by these models.
Further, the techniques that we will discuss mainly
apply to written languages, while unwritten lan-
guages will be excluded from the tutorial.
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