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Abstract

Numerous studies found that the linguistic
properties of a person’s native language affect
the cognitive processing of other languages.
However, only one study has shown that it was
possible to identify the native language based
on eye-tracking records of natural L2 reading
using machine learning. A new corpus allows
us to replicate these results on a more interre-
lated and larger set of native languages. Our
results show that comparable classification per-
formance is maintained despite using less data.
However, analysis shows that the correlation be-
tween L2 eye movements and native language
similarity may be more complex than the origi-
nal study found.

1 Introduction

Research has shown that a speaker’s native lan-
guage can affect their learning and performance
in a foreign language (Berkes and Flynn, 2012;
Alonso, 2016; Cop et al., 2017). The eye move-
ments of a reader, namely fixations and saccades,
are a window to the online cognitive processing of
text with milliseconds accurateness (Rayner, 1998).
Native speakers of different languages may exhibit
different eye movement patterns when reading a
foreign language, with those reading in their na-
tive language making shorter and more frequent
fixations while making longer fixations due to the
increased cognitive load when reading in other lan-
guages (Hopp, 2010; Rayner et al., 2012; Berzak
et al., 2022).

Several researchers have examined eye-
movement patterns across different nationalities,
exploring various aspects such as sentence reading
times, fixation count, and saccade duration (Cop
et al., 2015). Roberts and Siyanova-Chanturia
(2013) showed that gaze data could be used
for examining, e.g., reading processes, second
language acquisition, and discourse processing,
as well as give relevant insights into fields of

second language acquisition and processing. Early
research in Native Language Identification (Tsur
and Rappoport, 2007) focused on the relationship
between a person’s native language and their
writing in a second language, while Berzak et al.
(2017) for the first time predicted a reader’s native
language using machine learning across four
languages (Chinese, Japanese, Portuguese, and
Spanish) using only eye-tracking features from
natural reading in their second language (L2),
English. The study leveraged the knowledge that
different languages have unique features, such as
word order, grammatical rules, and phonological
features, that affect language processing in other
languages.

Despite a general interest in eye-tracking cor-
pora for L2 reading, e.g., (Cop et al., 2017), un-
til recently, there has not been a publicly avail-
able dataset with enough languages to reproduce
the results of Berzak et al. (2017). Berzak et al.
(2017) used a subset of the licensed CELER dataset
(Berzak et al., 2022) which is the largest eye-
tracking corpus by the number of L2 readers en-
compassing five different native language back-
grounds. The Multilingual Eye-movement COrpus
(MECO) L2 dataset (Kuperman et al., 2022)1 com-
prises English L2 reading by 12 different language
backgrounds and allows replication of the findings
by Berzak et al. (2017) on a different and larger set
of languages which is why we employ the MECO
dataset for this study.

In this study, we replicate the study by Berzak
et al. (2017) and classify the native language of the
reader from eye-tracking records of them reading
English from another corpus.2 We include readers
from seven different language backgrounds that
are more interrelated than the original study; the

1Publicly available at https://osf.io/q9h43/
2The code and data used in the project is publicly avail-

able at https://github.com/linaskerath/ANLP_
project
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LANGUAGE ISO n PARTICIPANTS

Estonian et 23
English en 21
Finnish fi 23
German de 23
Hebrew he 18
Italian it 20
Spanish es 21

Table 1: Number of participants by native language and
language ISO code in the data set.

linguistic similarity of the languages used in this
study is in the range of 0.64–0.893. The original
study did not explore languages in this range but
only less similar languages (linguistic similarity
<.5) plus one very similar language pair (linguistic
similarity >.95).

2 Data

The MECO data was collected in 12 eye-tracking
laboratories around the world. Participants were
young adults ranging from 18 to 39 years old with
high levels of L2 proficiency, which was ensured
through English instruction in higher education.
For more comprehensive information about the
dataset, we refer to the authors’ paper (Kuperman
et al., 2022).

The MECO data set includes eye-tracking in-
put gathered from native speakers of 12 languages
recorded during reading an English encyclopedic
text. Due to an insufficient number of participants
in some of the cohorts, we used the subset of seven
languages with the most participants. To avoid
overfitting, we randomly undersampled 23 partic-
ipants for the two largest cohorts, equivalent in
size to the third largest group within the dataset as
shown in Table 1. Berzak et al. (2017) used 36 to
37 readers for each language.

We only use the texts read by all the partici-
pants (also named “shared regime” in Berzak et al.
(2017)). The total amount of words read per partic-
ipant is 595 words, while the original study used
900 words. The feature set employed comprises
three word-based measurements: First Fixation du-
ration (FF), First Pass duration (FP) which is the
sum of all fixations during the first pass reading of
the word, and Total fixation duration (TF).

3The calculation is explained in §3.3.1

3 Methods

In this section, we describe the methods employed
to replicate Berzak et al. (2017), giving a detailed
description of the steps deviating from the setup of
the original study.

3.1 Features
All data gaps encountered in the MECO dataset
related to words marked as skipped by participants
during reading, so it is legitimized to replace such
shortages with zeros. Additionally, following the
approach of the original research, we normalize all
fixation times with the reading time of the entire
sentence. The final data set consists of three fixa-
tion measures columns per word or cluster, where
each row represents data collected from one person.

Words in Fixed Context (WFC) The WFC fea-
ture set considers the fixation times for specific
words, and no aggregation is performed on the un-
igram level. The bigrams and trigrams fixation
times are then obtained by simply summing val-
ues of unigrams that are a part of the interest area.
Columns of the dataset consist of the 3 features for
every n-gram in the corpus - 5364 features in total.

Syntactic Clusters (SC) In Berzak et al. (2017),
syntactic features were obtained from the original
Penn Treebank. As no manually annotated syn-
tactic features are available for our data we use
predicted syntactic information instead (described
in detail in Appendix B). Following Berzak et al.
(2017) we use the average FF, FP and TF over n-
grams (n=1-3) of the UPOS labels, PTB POS tags,
and UD dependency labels as features. For exam-
ple: the average fixation time of a participant on
the UPOS sequence ADV ADJ is a single feature.

Information Clusters (IC) Next to grouping the
features by syntactic labels, the average fixation
times were calculated for clusters created by the
length of the words, measured as a number of char-
acters. For bi- and trigrams, lengths of words were
summed and thus clusters were created based on
this sum.

3.2 Model
For interpretation, we compare to a majority class
baseline. Following the original paper, we use a log-
linear model to obtain the Native Language Identi-
fication from Reading (NLIR) performance as well
as the model-based language similarity (3.3.2). We
implement the model using scikit-learn (Pedregosa
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Shared regime
Majority Class 15.44

unigrams +bigrams +trigrams
IC 47.52 48.19 48.86
SC 57.62 73.29 76.57
SC+IC 52.29 73.29 77.95
WFC 81.29 79.29 77.95

Table 2: NLIR results for log-linear model and majority
class baseline.

et al., 2011) and use the ‘lbfgs’ solver in accor-
dance with the original paper. A reader’s native
language encoded as a categorical variable is used
as the model’s target variable. We report our results
based on 10-fold cross-validation. To preserve a
similar distribution of languages in train and test
data, we employ a stratified K-Folds split. We train
the same model on the three feature sets described
in the previous section and an additional combina-
tion of SC and IC feature sets.

To ensure comparability with the original paper
despite the different amounts of languages, we an-
alyze model performance with different amounts
of languages. We train the model on each possible
combination of languages and group them by the
number of languages. We take the mean accuracy
score of each group size and plot the results (figure
1). We note that our classes are slightly imbalanced,
so arguably F1 could be a better metric but to com-
pare to previous work and because the classes are
almost balanced, we choose to use accuracy.

3.3 Similarity metrics
Berzak et al. (2014, 2017) suggest a link between
English as a second language (ESL) production
and linguistic similarities. To recreate the language
similarity plots from the original study, we derive
the same model-based metric and a cosine similar-
ity based on syntactic and geographical features of
a language.

3.3.1 Linguistic-based similarity
We use the same procedure and data as the original
study to derive this similarity metric.The data is ob-
tained from URIEL Typological Compendium (Lit-
tell et al., 2017a). Information selected is data de-
rived from the World Atlas of Language Structures,
features from Syntactic Structures of the World’s
Languages, and data from parsing the prose topo-
logical descriptions in Ethnologue. This informa-
tion is supplemented by data on the languages be-
longing to different families, retrieved from Glot-

tolog’s world language tree. We use lang2vec (Lit-
tell et al., 2017b) for obtaining the complete fea-
ture vectors (with KNN completion). After trun-
cating features with the same values among all
languages,4 we get a total of 189 features. The
similarity scores between languages are then calcu-
lated as a cosine similarity of their feature vectors.

3.3.2 Model-based similarity
The model-based similarity captures native lan-
guage similarities paralleled in reading patterns.
In the same way as Berzak et al. (2017), we define
“the classification uncertainty for a pair of native
languages y and y

′
in our data collection D, as

the average probability assigned by the NLIR clas-
sifier to one language given the other being the
true native language.” It is called English Reading
Similarity (ERS) and is defined as:

ERSy,y
′ =

∑
(x,y)∈Dy

p(y
′ |x; θ) + ∑

(x,y
′
)∈D

′
y

p(y|x; θ)

|Dy|+ |D′
y|

The model, trained on all seven languages to
perform NLIR, is used to extract language similar-
ity. We separately feed test data sets for a single
language y at a time and extract prediction proba-
bilities for each other language y

′
. Then a mean of

the two language probabilities is calculated.
It is suggested that a higher classification un-

certainty indicates greater language similarity. In
figure 2 we plot the similarity metrics against each
other to test this in the original study implied link.

4 Results

Table 2 presents the results for the baseline and
the log-linear model when using 10-fold cross-
validation. The model is trained and evaluated on
all seven languages.

All variants of the model perform substantially
better than the majority class baseline. Similarly
to the results by Berzak et al. (2017), the model
trained on the WFC feature set achieves the high-
est cross-validation accuracy (81.29%). While the
model trained on syntactic and information cluster
features improves with additional bi- and tri-grams,
the words in the fixed context feature set do not
follow this trend which differs from the original
paper’s results.

4Note that this can be considered non-standard, as the
features of a language might impact the similarity between
two other languages. We mainly used this strategy to follow
the previous setup
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Figure 1: Mean performance of all combinations of
languages using uni+bi+trigram features.

Figure 2: Linguistic similarities from URIEL against
mean NLIR classification uncertainty of the unigram
SC+IC model.

Since the original study was done with a dif-
ferent number of languages, we investigate how
the performance changes depending on the number
of target classes. Figure 1 shows the changes in
model performance depending on how many target
classes it has. E.g., 3 on the x axis corresponds
to a group of all combinations (C3

7 ) of any three
languages in the train set. The y-axis shows the
mean performance of all classifiers in that group.
The results of each classifier in a group vary, thus,
we plot the mean performance. As expected, we
see that for all feature sets the performance drops
when the number of language increase.

5 Discussion

As evident from Table 2, our model seems to per-
form similarly to the original paper’s results (Table
3, Appendix A). We can not compare these results
directly due to the difference in languages, yet, for
all combinations of four languages in our data set,

(a) Linguistic similarities (b) Class uncertainty

Figure 3: Ward hierarchical clustering. Based on the
unigrams SC+IC model.

we observe in Figure 1) that the average perfor-
mance is 81 % (compared to 71% in Berzak et al.
(2017). However, since we train our model with
3 more languages than the original study and still
get similar results, we can confirm that machine
learning models can pick up the differences in read-
ing patterns of different native language readers.
Contrary to the original paper, we do not see large
improvements in performance with additional bi-
gram and trigram features.

We also explore language similarity by look-
ing at the suggested positive correlation between
classification uncertainty and linguistic similarities.
Results from Berzak et al. (2017) are included in
Figure 5, Appendix A for convenience. The plot
reproduced in Figure 2 does not seem to confirm
this hypothesis as no clear trend is visible. We
observe that the uncertainty when classifying na-
tive speakers vs. L2 reading is substantially lower
(mean 0.01) than when distinguishing two groups
of L2 readers from those of different native lan-
guages (mean 0.11). We also compute a correlation
coefficient of 0.06 which does not indicate a signif-
icant correlation found by Berzak et al. Similarly,
Ward hierarchical clustering for linguistic similar-
ities and classification uncertainty, presented in
Figure 3, does not present a closeness between
grouping using either of these metrics. The plots
have little overlaps on the set of languages we used,
contrary to the original finding, see Figure 4, and
share a little similarity both in terms of languages
in each cluster and the general shape of the tree.
This suggests that the relation between the English
reading patterns and language similarities of the
native language found by Berzak et al. (2017) may
be more nuanced than the original plot (Figure 4,
Appendix A) initially suggests.
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6 Conclusion

We replicate the finding of Berzak et al. (2017) and
are the first to confirm their finding that a reader’s
native language can be predicted from gaze pat-
terns when reading English text. Having a larger
set of more interrelated languages than the orig-
inal study, we achieve comparable classification
results supporting the suggested cross-linguistic in-
fluence from the native language to L2. Despite
the satisfactory performance of the NLIR model,
the results of investigating the relationship between
reading patterns and linguistic similarity are not
as straightforward. We believe the relation to be
more nuanced than suggested as we are not able to
replicate the same outcomes.
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A Results by Berzak et al. (2017)

Shared regime
Majority Class 25.52
Random Clusters 22.76

unigrams +bigrams +trigrams
Information Clusters (IC) 41.38 44.14 46.21
Syntactic Clusters (SC) 45.52 57.24 58.62
Information Clusters (IC) 51.72 57.24 60.0
Words in Fixed Context (WFC) 64.14 68.28 71.03

Table 3: Native Language Identification from Reading results by Berzak et al. (2017)

Figure 4: Ward hierarchical clustering of linguistic similarities between languages and NLIR average pairwise
classification uncertainties by Berzak et al. (2017)

Figure 5: Linguistic similarities against mean NLIR classification uncertainty from Berzak et al. (2017)

B Obtaining Syntactic Annotations

We trained a multi-task MaChAmp model (van der Goot et al., 2021), including UPOS, PTB POS,
lemmatization, morphological tagging, and dependency parsing. We used MaChAmp v0.4 with default
settings, trained on the English Web Treebank v2.11 (because it has PTB tags and is English). It uses the
combined (summed cross-entropy) loss of all tasks. We do not use the morphological tags and lemmas but
include them for future work. All default hyperparameters are used and the default dev-split is used for
model picking. We first ran the parser on the untokenized input but noticed that it quite commonly outputs
the PUNCT label and corresponding relations to (end-of-sentence) words that have punctuation attached.
So we pre-split using the BasicTokenizer from huggingface (which only separates punctuations) and use
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the labels of the words for the combined string. We compared mBERT (Devlin et al., 2019) with XLM-R
Large (Conneau et al., 2020) and MLUKE (Ri et al., 2022). We compared their outputs on the MECO
dataset manually and found the best performance with the XLM-R Large model (although MLUKE gets
higher accuracies on EWT-dev).

C Limitations

The MECO dataset (Kuperman et al., 2022) is recorded at different labs following the same strict protocol.
Nevertheless, location and experimenter effects may be confounding factors for the NLIR task. The
CELER data (Berzak et al., 2022), used by (Berzak et al., 2017), seems to all be recorded at the same
lab. Since we confirm their hypothesis, we do not see this as a fatal flaw in our study. There is no other
available dataset that would allow us to replicate their finding.
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