*SEM 2022

The 11th Joint Conference on Lexical and Computational
Semantics

Proceedings of the Conference

July 14-15, 2022

©2022 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street

Stroudsburg, PA 18360

USA

Tel: +1-570-476-8006

Fax: +1-570-476-0860

acl@aclweb.org

ISBN 978-1-955917-98-8

Message from the General Chair and the Program Chairs

Welcome to *SEM 2022, the 11th Joint Conference on Lexical and Computational Semantics! We are
pleased to present this volume containing the accepted long and short papers. *SEM 2022 was held as
a hybrid conference following NAACL 2022, on July 14th-15th, 2022, due to the precautions for the
COVID-19 pandemic.

Since its first edition in 2012, *SEM has become a major venue to present recent advances in all areas
of lexical and computational semantics, including semantic representations, semantic processing, multi-
lingual semantics, and others. *SEM is sponsored by SIGLEX, the ACL Special Interest Group on the
Lexicon.

*SEM 2022 had a hybrid format with respect to ARR. We accepted both direct submissions through the
START system and also those already reviewed through ARR. In total, we received 52 submissions in 9
areas:

* Theoretical and formal semantics

» Semantics in NLP applications

* Semantic composition and sentence-level semantics

* Resources and evaluation

* Psycholinguistics, cognitive linguistics and semantic processing
* Multilinguality

* Lexical semantics and word representations

* Commonsense reasoning and natural language understanding

We compiled an exciting program across all these areas. This year saw a particularly strong batch of
submissions; finally, 30 papers were accepted — 18 long papers and 12 short papers.

The submitted papers were carefully evaluated by a program committee led by 11 area chairs, who
coordinated a panel of 100 reviewers (who were assigned papers to review in the START system). Almost
all submissions were reviewed by three reviewers, who were encouraged to discuss any divergence in
evaluations. The papers in each area were subsequently assessed by the area chairs, who added meta-
reviews to explain their accept/reject suggestions. The final selection was made by the program co-chairs
after an independent check of all the reviews, meta-reviews, and discussions with the area chairs. The
reviewers’ recommendations were also used to shortlist a set of papers nominated for the Best Paper
Award.

We are also very excited to have two excellent keynote speakers: Allyson Ettinger (University of Chi-
cago) discussing controlled examinations of meaning sensitivity in pre-trained NLP models, and Jacob
Andreas (Massachusetts Institute of Technology) discussing the extent to which language modeling
induces representations of meaning.

We are deeply thankful to all area chairs and reviewers for their invaluable help in the selection of the
program, for their readiness in engaging in thoughtful discussions about individual papers, and for pro-
viding valuable feedback to the authors. We are grateful to our Publicity chair, Jose Camacho-Collados
(Cardiff University), who set up and regularly updated *SEM’s website and publicized it through social
media. We thank the Publication Chair, Alessandro Raganato (University of Milano-Bicocca), for his
help with the compilation of the proceedings, and the NAACL 2022 workshop organizers for all the val-
uable help and support with organisational aspects of the conference. Finally, we thank all our authors
and presenters for making *SEM 2022 such an exciting event. We hope you will find the content of these
proceedings as well as the program of *SEM 2022 enjoyable, interesting and inspirational!

Ellie Pavlick and Mohammad Taher Pilehvar, Program Co-Chairs
Vivi Nastase, General Chair

ii

Organizing Committee

General Chair

Vivi Nastase, University of Zurich

Program Chairs

Ellie Pavlick, Brown University
Mohammad Taher Pilehvar, Tehran Institute for Advanced Studies

Publicity Chair

Jose Camacho-Collados, Cardiff University

Publication Chair

Alessandro Raganato, University of Milano-Bicocca

iii

Program Committee

Area Chairs

Marianna Apidianaki, University of Pennsylvania
Vered Shwartz, University of British Columbia
Allyson Ettinger, University of Chicago

Nafise Sadat Moosavi, TU Darmstadt

Malihe Alikhani, University of Pittsburgh

Anders Sggaard, University of Copenhagen
Najoung Kim, Johns Hopkins University

Daniel Khashabi, Allen Institute for Artificial Intelligence
Gene Kim, University of Rochester

Keisuke Sakaguchi, Allen Institute for Al
Nazneen Rajani, Salesforce Research

Program Committee

Lasha Abzianidze, Utrecht University

Rodrigo Agerri, HiTZ Center - Ixa, University of the Basque Country UPV/EHU
Md. Shad Akhtar, Indraprastha Institute of Information Technology, Delhi
Dimitris Alikaniotis, Grammarly Inc.

Forrest Sheng Bao, Iowa State Univerity

Mohamad Hardyman Barawi, University of Malaysia, Sarawak

Pierpaolo Basile, Department of Computer Science, University of Bari Aldo Moro
Tilman Beck, UKP Lab, Technical University of Darmstadt

Farah Benamara, University of toulouse

Gabor Berend, University Of Szeged

Jean-philippe Bernardy, University of Gothenburg

Eduardo Blanco, Arizona State University

Michael Bloodgood, The College of New Jersey

Marianna Bolognesi, University of Bologna

Johan Bos, University of Groningen

Paul Buitelaar, National University of Ireland Galway

Elena Cabrio, Université Cote d’ Azur, Inria, CNRS, I3S

Aoife Cahill, Dataminr

Franklin Chang, Kobe City University of Foreign Studies

Aditi Chaudhary, Carnegie Mellon University

Pinzhen Chen, University of Edinburgh

Emmanuele Chersoni, Hong Kong Polytechnic University

Patricia Chiril, University of Chicago

Christos Christodoulopoulos, Amazon Research

Philipp Cimiano, Univ. Bielefeld

Robin Cooper, University of Gothenburg

Bonaventura Coppola, University of Trento

Walter Daelemans, University of Antwerp, CLiPS

Joachim Daiber, Apple

Luna De Bruyne, LT3, Language and Translation Technology Team, Ghent University
Gagél Dias, Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC
Liviu P. Dinu, University of Bucharest

v

Lucia Donatelli, Saarland University

Jakub Dotlacil, Utrecht University

Luis Espinosa Anke, Cardiff University

Dan Garrette, Google Research

Debela Gemechu, Centre for Argument Technology, School of Science & Engineering,University
of Dundee

Voula Giouli, ATHENA Research & Innovation Centre, Institute for Language & Speech Proces-
sing

Max Glockner, UKP, Computer Science Dpt., TU Darmstadt
Binod Gyawali, Educational Testing Service

Ivan Habernal, Technische Universitiat Darmstadt

Udo Hahn, Friedrich-Schiller-Universitit Jena

Mareike Hartmann, University of Copenhagen

Alessandro Raganato, University of Milano-Bicocca

Dag Haug, University of Oslo

Yoshihiko Hayashi, Waseda University

Daniel Hershcovich, University of Copenhagen

Xinyu Hua, Northeastern University

Nancy Ide, Vassar College

Joseph Marvin Imperial, National University, Manila, Philippines
Sk Mainul Islam, IIT Kharagpur

Kokil Jaidka, National University of Singapore

Jenna Kanerva, University of Turku

Mladen Karan, Queen Mary University

Omid Kashefi, ETS

Roman Klinger, University of Stuttgart

Thomas Kober, NULL

Elena Kochkina, Queen Mary University

Valia Kordoni, Humboldt-Universitit zu Berlin

Dan Lassiter, University of Edinburgh

Yitong Li, Huawei Technology Co. ltd

Zongxi Li, Hong Kong Metropolitan University

Nikola Ljubesié, Jozef Stefan Institute

Lorenzo Malandri, University of Milan - Bicocca

Alda Mari, http://www.institutnicod.org/

Eugenio Martinez-cdmara, University of Granada

Jonathan May, USC Information Sciences Institute

Sahisnu Mazumder, Intel Labs

Nick Mckenna, University of Edinburgh, School of Informatics
Julian Michael, University of Washington

Koji Mineshima, Keio University

Amita Misra, IBM

Ali Modarressi, Iran University of Science and Technology
Andrew Moore, Lancaster University

Richard Moot, CNRS

Véronique Moriceau, IRIT, Université Toulouse 3

Gaku Morio, Research & Development Group, Hitachi, Ltd.
Larry Moss, Indiana University, Bloomington

Philippe Muller, IRIT, University of Toulouse

Nona Naderi, University of Applied Sciences HES-SO Geneve, Swiss Institute of Bioinformatics
(SIB)

Vivi Nastase, University of Stuttgart

Timothy Niven, Doublethink Lab

Debora Nozza, Bocconi University

Tim O’gorman, Thorn

Emerson Paraiso, Pontificia Universidade Catolica do Parana - PUCPR
Patrick Paroubek, University Paris-Saclay - CNRS - LISN
Maxime Peyrard, EPFL

Sandro Pezzelle, University of Amsterdam

Jonas Pfeiffer, TU Darmstadt

Yuval Pinter, Ben-Gurion University of the Negev

Marco Polignano, University of Bari

Sara Rajaee, Iran University of Science and Technology
Carlos Ramisch, Aix Marseille University, CNRS, LIS
Christian Retoré, University of Montpellier

Elijah Rippeth, University of Maryland

Alla Rozovskaya, Queens College, City University of New York
Irene Russo, ILC CNR

Farig Sadeque, Educational Testing Service

Mehrnoosh Sadrzadeh, University College London
Marina Santini, RISE, Research Institutes of Sweden. Division: Digital Systems
Ryohei Sasano, Nagoya University

David Schlangen, University of Potsdam

Sabine Schulte Im Walde, University of Stuttgart

Weiyan Shi, Columbia University

Melanie Siegel, Hochschule Darmstadt - University of Applied Sciences
Egon Stemle, Eurac Research

Kevin Stowe, Educational Testing Services (ETS)

Sara Stymne, Uppsala University

Yoshi Suhara, Grammarly

Alexandros Tantos, Aristotle University of Thessaloniki
Andon Tchechmedjiev, IMT Mines Ales

Gaurav Singh Tomar, Google Research

Samia Touileb, University of Bergen

Shyam Upadhyay, Google

L. Alfonso Urefia-16pez, University of Jaen

Sowmya Vajjala, National Research Council

Tim Van De Cruys, University of Leuven

Rossella Varvara, University of Fribourg

Eva Maria Vecchi, Universitét Stuttgart, Institut fiir Maschinelle Sprachverarbeitung
Noortje Venhuizen, Saarland University

Serena Villata, Université Cote d’ Azur, CNRS, Inria, I3S
Ivan Vuli¢, University of Cambridge

Ekaterina Vylomova, University of Melbourne

Wenbo Wang, GoDaddy Inc.

Jin Wang, Yunnan University

Zhongqing Wang, Soochow University

Jin Wang, Megagon Lab

Bonnie Webber, University of Edinburgh

Michael Wiegand, Alpen-Adria-Universitaet Klagenfurt
Adina Williams, Facebook, Inc.

Genta Winata, Bloomberg

vi

Tak-lam Wong, Department of Computing Studies and Information Systems, Douglas College
Shijie Wu, Johns Hopkins University

Rong Xiang, The Hong Kong Polytechnic University

Ruifeng Xu, Harbin Institute of Technology, Shenzhen

Bei Yu, Syracuse University

Alessandra Zarcone, Hochschule fiir angewandte Wissenschaften

Chrysoula Zerva, Instituto de Telecomunicagdes, Instituto Superior Técnico, University of Lisbon
Lei Zhang, LinkedIn

Shuai Zhang, Amazon

vii

Keynote Talk: “Understanding” and prediction: Controlled

examinations of meaning sensitivity in pre-trained models

Allyson Ettinger
University of Chicago

Abstract: In recent years, NLP has made what appears to be incredible progress, with performance even
surpassing human performance on some benchmarks. How should we interpret these advances? Have
these models achieved language “understanding”? Operating on the premise that “understanding” will
necessarily involve the capacity to extract and deploy meaning information, in this talk I will discuss
a series of projects leveraging targeted tests to examine NLP models’ ability to capture meaning in a
systematic fashion. I will first discuss work probing model representations for compositional meaning,
with a particular focus on disentangling compositional information from encoding of lexical properties.
I'll then explore models’ ability to extract and use meaning information when executing the basic pre-
training task of word prediction in context. In all cases, these investigations apply tests that prioritize
control of unwanted cues, so as to target the desired model capabilities with greater precision. The results
of these studies suggest that although models show a good deal of sensitivity to word-level information,
and to certain semantic and syntactic distinctions, when subjected to controlled tests they show little sign
of representing higher-level compositional meaning, or of being able to retain and deploy such informa-
tion robustly during word prediction. Instead, models show signs of heuristic predictive strategies that
are unsurprising given their training, but that differ critically from systematic understanding of meaning.
I will discuss potential implications of these findings with respect to the goals of achieving “understan-
ding” with currently dominant pre-training paradigms.

Bio: Allyson Ettinger is an Assistant Professor in the Department of Linguistics at the University of
Chicago. Her interdisciplinary work combines methods and insights from cognitive science, linguistics,
and computer science to examine meaning extraction and predictive processes executed during language
processing in artificial intelligence systems and in humans. She received her PhD in Linguistics from
the University of Maryland, and spent a year as research faculty at the Toyota Technological Institute at
Chicago (TTIC) before beginning her appointment at the University of Chicago. She holds an additional
courtesy appointment at TTIC.

viii

Keynote Talk: Models of meaning?

Jacob Andreas
Massachusetts Institute of Technology

Abstract: The extent to which language modeling induces representations of meaning—and the broader
question of whether it is even in principle possible to learn about meaning from text alone—have remai-
ned a subject of ongoing debate across the language sciences. I’ll present some evidence that transformer
language models build (rudimentary) structured representations of the meaning of input sentences; that
these representations support LMs’ ability to reason about the entities and events described in a discour-
se; and that they can be modified with predictable effects on downstream language generation. Despite
all this, even the largest LMs are prone to glaring semantic errors: they refer to entities that have not yet
been mentioned, present contradictory facts, or describe impossible events. By understanding how (and
where) LMs build models of meaning, we identify the causes of these errors, and in some cases correct
them with extremely small amounts of targeted supervision.

Bio: Jacob Andreas is the X Consortium Assistant Professor at MIT. His research aims to build intelligent
systems that can communicate effectively using language and learn from human guidance. Jacob earned
his Ph.D. from UC Berkeley, his M.Phil. from Cambridge (where he studied as a Churchill scholar)
and his B.S. from Columbia. As a researcher at Microsoft Semantic Machines, he founded the language
generation team and helped develop core pieces of the technology that powers conversational interaction
in Microsoft Outlook. He has been the recipient of Samsung’s Al Researcher of the Year award, MIT’s
Kolokotrones teaching award, and paper awards at NAACL and ICML.

iX

Table of Contents

What do Large Language Models Learn about Scripts?
Abhilasha Sancheti and Rachel Rudinger i, 1

DeepA2: A Modular Framework for Deep Argument Analysis with Pretrained Neural Text2Text Lan-
guage Models
Gregor Betz and Kyle Richardson. i e 12

Semantics-aware Attention Improves Neural Machine Translation
Aviv Slobodkin, Leshem Choshen and Omri Abend. i, 28

Compositional generalization with a broad-coverage semantic parser
Pia Weillenhorn, Lucia Donatelli and Alexander Koller 44

AnalLog: Testing Analytical and Deductive Logic Learnability in Language Models
Samuel Ryb, Mario Giulianelli, Arabella Sinclair and Raquel Ferndndez.................... 55

Pairwise Representation Learning for Event Coreference
Xiaodong Yu, Wenpeng Yinand DanRoth.............. 69

A Simple Unsupervised Approach for Coreference Resolution using Rule-based Weak Supervision
Alessandro Stolfo, Chris Tanner, Vikram Gupta and Mrinmaya Sachan..................... 79

Multilingual Extraction and Categorization of Lexical Collocations with Graph-aware Transformers
Luis Espinosa Anke, Alexander Shvets, Alireza Mohammadshahi, James Henderson and Leo

Dyna-bAbl: unlocking bAbI’s potential with dynamic synthetic benchmarking
Ronen Tamari, Kyle Richardson, Noam Kahlon, Aviad Sar-shalom, Nelson F. Liu, Reut Tsarfaty
and Dafna Shahaf 101

When Polysemy Matters: Modeling Semantic Categorization with Word Embeddings
Elizabeth Soper and Jean-pierre Koenig i 123

Word-Label Alignment for Event Detection: A New Perspective via Optimal Transport
Amir Pouran Ben Veyseh and Thien Nguyen........... ...ttt 132

Comparison and Combination of Sentence Embeddings Derived from Different Supervision Signals
Hayato Tsukagoshi, Ryohei Sasano and Koichi Takeda, 139

Distilling Hypernymy Relations from Language Models: On the Effectiveness of Zero-Shot Taxonomy
Induction
Devansh Jain and Luis ESpinosa AnKe.c.c.uuieeniiieeiiiiiie i 151

A Dynamic, Interpreted CheckList for Meaning-oriented NLG Metric Evaluation — through the Lens of
Semantic Similarity Rating
Laura Zeidler, Juri Opitz and Anette Frank 157

Assessing the Limits of the Distributional Hypothesis in Semantic Spaces: Trait-based Relational Know-
ledge and the Impact of Co-occurrences
Mark Anderson and Jose Camacho-collados i, 173

A Generative Approach for Mitigating Structural Biases in Natural Language Inference
Dimion Asael, Zachary Ziegler and Yonatan Belinkov 186

Measuring Alignment Bias in Neural Seq2seq Semantic Parsers
Davide Locatelli and Ariadna QuUattoni.............c.couiitiiiiineeeiiiie e iiiaaeaann 200

Improved Induction of Narrative Chains via Cross-Document Relations
Andrew Blair-stanek and Benjamin Van Durmeo i 208

DRS Parsing as Sequence Labeling
Minxing Shen and Kilian Evang e 213

How Does Data Corruption Affect Natural Language Understanding Models? A Study on GLUE data-
sets
Aarne Talman, Marianna Apidianaki, Stergios Chatzikyriakidis and Jorg Tiedemann. 226

Leveraging Three Types of Embeddings from Masked Language Models in Idiom Token Classification
Ryosuke Takahashi, Ryohei Sasano and Koichi Takeda 234

“What makes a question inquisitive?” A Study on Type-Controlled Inquisitive Question Generation
Lingyu Gao, Debanjan Ghosh and Kevin Gimpel oo, 240

Pretraining on Interactions for Learning Grounded Affordance Representations
Jack Merullo, Dylan Ebert, Carsten Eickhoff and Ellie Pavlick............................ 258

PropBank Comes of Age—Larger, Smarter, and more Diverse
Sameer Pradhan, Julia Bonn, Skatje Myers, Kathryn Conger, Tim O’ gorman, James Gung, Kristin
Wright-bettner and Martha Palmer e 278

Speech acts and Communicative Intentions for Urgency Detection
Laurenti Enzo, Bourgon Nils, Farah Benamara, Mari Alda, Véronique Moriceau and Courgeon
Camille 289

What Drives the Use of Metaphorical Language? Negative Insights from Abstractness, Affect, Discour-
se Coherence and Contextualized Word Representations
Prisca Piccirilli and Sabine Schulte ImWalde i i, 299

Unsupervised Reinforcement Adaptation for Class-Imbalanced Text Classification
Yuexin Wu and Xiaolei Huang e 311

Event Causality Identification via Generation of Important Context Words
Hieu Man, Minh Nguyen and Thien Nguyen............coooiiiiiiiiiiiiiiiiiie... 323

Capturing the Content of a Document through Complex Event Identification
Zheng Qi, Elior Sulem, Haoyu Wang, Xiaodong Yuand DanRoth 331

Online Coreference Resolution for Dialogue Processing: Improving Mention-Linking on Real-Time
Conversations
Liyan Xuand Jinho D. Choi.o e 341

X1

Program

Thursday, July 14, 2022

08:30 - 10:00

10:00 - 10:30

10:30 - 12:00

Sentence-Level Semantics

Compositional generalization with a broad-coverage semantic parser
Pia Weillenhorn, Lucia Donatelli and Alexander Koller

DRS Parsing as Sequence Labeling
Minxing Shen and Kilian Evang

Measuring Alignment Bias in Neural Seq2seq Semantic Parsers
Davide Locatelli and Ariadna Quattoni

Semantics-aware Attention Improves Neural Machine Translation
Aviv Slobodkin, Leshem Choshen and Omri Abend

Multilingual Extraction and Categorization of Lexical Collocations with Graph-
aware Transformers

Luis Espinosa Anke, Alexander Shvets, Alireza Mohammadshahi, James
Henderson and Leo Wanner

Comparison and Combination of Sentence Embeddings Derived from Different
Supervision Signals
Hayato Tsukagoshi, Ryohei Sasano and Koichi Takeda

Break

Evaluation

Dyna-bAbl: unlocking bAbI’s potential with dynamic synthetic benchmarking
Ronen Tamari, Kyle Richardson, Noam Kahlon, Aviad Sar-shalom, Nelson F.
Liu, Reut Tsarfaty and Dafna Shahaf

A Dynamic, Interpreted CheckList for Meaning-oriented NLG Metric Evaluation
— through the Lens of Semantic Similarity Rating

Laura Zeidler, Juri Opitz and Anette Frank

A Generative Approach for Mitigating Structural Biases in Natural Language

Inference
Dimion Asael, Zachary Ziegler and Yonatan Belinkov

Xii

Thursday, July 14, 2022 (continued)

12:00 - 13:30

13:30 - 15:00

15:00 - 15:30

15:30 - 17:00

How Does Data Corruption Affect Natural Language Understanding Models? A
Study on GLUE datasets

Aarne Talman, Marianna Apidianaki, Stergios Chatzikyriakidis and Jorg
Tiedemann

Analog: Testing Analytical and Deductive Logic Learnability in Language
Models
Samuel Ryb, Mario Giulianelli, Arabella Sinclair and Raquel Fernandez

Unsupervised Reinforcement Adaptation for Class-Imbalanced Text Classifica-
tion
Yuexin Wu and Xiaolei Huang

Break

Invited Talk: Models of meaning? - Jacobs Andreas

Break

Lexical Semantics

Distilling Hypernymy Relations from Language Models: On the Effectiveness of
Zero-Shot Taxonomy Induction

Devansh Jain and Luis Espinosa Anke

PropBank Comes of Age—Larger, Smarter, and more Diverse

Sameer Pradhan, Julia Bonn, Skatje Myers, Kathryn Conger, Tim O’gorman,

James Gung, Kristin Wright-bettner and Martha Palmer

Pretraining on Interactions for Learning Grounded Affordance Representations
Jack Merullo, Dylan Ebert, Carsten Eickhoff and Ellie Pavlick

Leveraging Three Types of Embeddings from Masked Language Models in Idiom
Token Classification
Ryosuke Takahashi, Ryohei Sasano and Koichi Takeda

When Polysemy Matters: Modeling Semantic Categorization with Word
Embeddings
Elizabeth Soper and Jean-pierre Koenig

xiii

Thursday, July 14, 2022 (continued)

What Drives the Use of Metaphorical Language? Negative Insights

from Abstractness, Affect, Discourse Coherence and Contextualized Word
Representations

Prisca Piccirilli and Sabine Schulte Im Walde

Assessing the Limits of the Distributional Hypothesis in Semantic Spaces: Trait-
based Relational Knowledge and the Impact of Co-occurrences
Mark Anderson and Jose Camacho-collados

X1V

Friday, July 15, 2022

08:30 - 10:00
10:00 - 10:30
10:30 - 12:00

Discourse and Dialog

A Simple Unsupervised Approach for Coreference Resolution using Rule-based
Weak Supervision
Alessandro Stolfo, Chris Tanner, Vikram Gupta and Mrinmaya Sachan

Online Coreference Resolution for Dialogue Processing: Improving Mention-
Linking on Real-Time Conversations
Liyan Xu and Jinho D. Choi

DeepA2: A Modular Framework for Deep Argument Analysis with Pretrained
Neural Text2Text Language Models
Gregor Betz and Kyle Richardson

“What makes a question inquisitive?” A Study on Type-Controlled Inquisitive
Question Generation

Lingyu Gao, Debanjan Ghosh and Kevin Gimpel

Speech acts and Communicative Intentions for Urgency Detection

Laurenti Enzo, Bourgon Nils, Farah Benamara, Mari Alda, Véronique Moriceau

and Courgeon Camille

What do Large Language Models Learn about Scripts?
Abhilasha Sancheti and Rachel Rudinger

Break
Events

Pairwise Representation Learning for Event Coreference
Xiaodong Yu, Wenpeng Yin and Dan Roth

Event Causality Identification via Generation of Important Context Words
Hieu Man, Minh Nguyen and Thien Nguyen

Word-Label Alignment for Event Detection: A New Perspective via Optimal

Transport
Amir Pouran Ben Veyseh and Thien Nguyen

XV

Friday, July 15, 2022 (continued)

12:00 - 13:30

13:30 - 15:00

15:00 - 15:30

15:30 - 17:00

Capturing the Content of a Document through Complex Event Identification
Zheng Qi, Elior Sulem, Haoyu Wang, Xiaodong Yu and Dan Roth

Improved Induction of Narrative Chains via Cross-Document Relations

Andrew Blair-stanek and Benjamin Van Durme

Break

Invited Talk: “Understanding” and prediction:

Controlled examinations of

meaning sensitivity in pre-trained models - Allyson Ettinger

Break

Panel discussion, Closing

XVi

What do Large Language Models Learn about Scripts?

Abhilasha Sancheti
University of Maryland, College Park
Adobe Research

sancheti@{umd.edu, adobe.com}

Abstract

Script Knowledge (Schank and Abelson, 1975)
has long been recognized as crucial for lan-
guage understanding as it can help in filling in
unstated information in a narrative. However,
such knowledge is expensive to produce man-
ually and difficult to induce from text due to
reporting bias (Gordon and Van Durme, 2013).
In this work, we are interested in the scientific
question of whether explicit script knowledge
is present and accessible through pre-trained
generative language models (LMs). To this
end, we introduce the task of generating full
event sequence descriptions (ESDs) given a sce-
nario as a natural language prompt. Through
zero-shot probing, we find that generative LMs
produce poor ESDs with mostly omitted, irrele-
vant, repeated or misordered events. To address
this, we propose a pipeline-based script induc-
tion framework (S IF) which can generate good
quality ESDs for unseen scenarios (e.g., bake
a cake). SIF is a two-staged framework that
fine-tunes LM on a small set of ESD examples
in the first stage. In the second stage, ESD gen-
erated for an unseen scenario is post-processed
using RoBERTa-based models to filter irrele-
vant events, remove repetitions, and reorder the
temporally misordered events. Through auto-
matic and manual evaluations, we demonstrate
that SIF yields substantial improvements (1-3
BLEU points) over a fine-tuned LM. However,
manual analysis shows that there is great room
for improvement, offering a new research di-
rection for inducing script knowledge'.

1 Introduction

Scripts are structured commonsense knowledge in
the form of event sequences that characterize com-
monplace scenarios, such as, eating at a restau-
rant (Schank and Abelson, 1975). Scripts are fun-
damental pieces of commonsense knowledge that
humans share and assume to be tacitly understood

'Code and dataset are available at https://github.

com/abhilashasancheti/script—-generation

1

Rachel Rudinger
University of Maryland, College Park
rudinger@umd.edu

Scenario Baking a cake

Event Sequence Description (ESD) 1. gather ingredients 2. mix cake mix,
eggs and water in bowl 3. pour into pan 4. turn on oven 5. put in oven and bake
at specified temperature 6.remove cake from oven to cool 7. turn off oven 8. mix
frosting 9. frost cake 10. serve cake 11. refrigerate any leftovers.

Input to LM Here is a sequence of events that happen when you bake a cake :

Natural Language Prompt Scenario

Figure 1: Sample event sequence description (ESD)
from Wanzare et al. (2016) for BAKING A CAKE sce-
nario. We use natural language prompts (Table 2) to
generate completely ordered ESDs for evaluating extent
of script knowledge accessible through LMs.

by each other. When someone says “I went to a
restaurant for lunch", our script knowledge allows
us to infer that a waiter would have taken the order,
the speaker would have eaten the lunch, payed for
it, and tipped the waiter, even if these events are
not explicitly mentioned. Knowledge of scripts,
whether implicit or explicit, has been recognized
as important for language understanding tasks (Mi-
ikkulainen, 1995; Mueller, 2004).

Earlier efforts to automatically induce scripts
from text on a large scale include Chambers and
Jurafsky (2008) who treat the problem of script in-
duction as one of learning narrative chains using
textual co-occurrence statistics. However, report-
ing bias (Gordon and Van Durme, 2013) remains an
obstacle for script induction as many events are not
mentioned explicitly in text, relying on the reader’s
ability to infer missing script-related events. More-
over, manual creation of such knowledge resources
is challenging due to the wide coverage and com-
plexity of relevant scenario knowledge. Although
crowdsourced efforts (Singh et al., 2002; Regneri
etal., 2010; Modi et al., 2017; Wanzare et al., 2016;
Ostermann et al., 2018, 2019) address these issues
and acquire script knowledge in the form of ESDs,
the collected datasets are small, domain-specific,
and crowdsourcing is not scalable.

With the success of pre-trained language mod-

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 1 - 11
July 14-15, 2022 ©2022 Association for Computational Linguistics

els (henceforth, PLMs) (Devlin et al., 2018; Liu
et al., 2019; Radford et al., 2019) in various natural
language understanding tasks, we are interested in
investigating the extent and accessibility of explicit
script knowledge present in PLMs. In this work, un-
like cloze-based script evaluations (Chambers and
Jurafsky, 2008; Mostafazadeh et al., 2016) which
LMs are uniquely optimized for (Rudinger et al.,
2015), we evaluate PLMs on the ability to fully gen-
erate event sequence descriptions (ESDs) (Regneri
et al., 2010) in free-form natural language (Fig-
ure 1). This is a challenging task as scripts are
complex structures with varied granularity of de-
scribing a scenario (e.g., starting from going to
grocery store to buy ingredients or starting with
finding a recipe for BAKING A CAKE scenario),
and the requirement to produce all the scenario-
relevant events in the correct temporal order.

To this end, we first probe LMs via carefully
crafted prompts to analyze the quality of ESDs
generated in a zero-shot setting (§3) and find that
the generated ESDs are of poor quality with many
scenario-irrelevant, repeated, temporally misor-
dered, and missing events. To address this we
propose a, LM-agnostic, pipeline-based script in-
duction framework (§4), SIF, which can generate
good quality ESDs for novel scenarios that LM has
not seen during the training phase of the frame-
work. SIF is a two-staged framework with fine-
tuning LM on a small set of ESDs as the first stage
followed by a three-stepped post-processing stage
which corrects the ESDs generated from a fine-
tuned LM for irrelevant, repeated, and temporally
misordered events. This work makes the following
contributions:

* We present an analysis of the extent of script
knowledge accessible through LMs using
probing techniques, in a zero-shot setting, via
the task of generating full ESDs from natural
language prompts.

* We propose script induction framework that
can generate ESDs for held-out and novel sce-
narios drawn from a different distribution.

* We present automatic and manual evaluation
of the generated ESDs, establishing the via-
bility of our framework and paving way for
future research in this direction.

2 Related Work

Narrative Chain Induction There has been a
growing body of research into statistical script
learning systems which can automatically infer im-
plicit events from text. Seminal work by (Cham-
bers and Jurafsky, 2008, 2009) describe a number
of simple event co-occurrence based systems that
infer (verb, dependency) pairs (known as narrative
events) with partial-ordering related to one or mul-
tiple participants (Pichotta and Mooney, 2014) in
discourse (known as narrative chains). As statisti-
cal co-occurrences cannot capture long-range de-
pendencies between events, Pichotta and Mooney
(2016a) represent events using LSTM leading to
improved narrative cloze task performance. How-
ever, much of the information about events is
usually left implicit in text. Moreover, narrative
events are highly abstracted (Ostermann, 2020) and
cloze task is insufficient to evaluate script knowl-
edge (Chambers, 2017). Therefore efforts have
been made to acquire crowdsourced ESDs (Singh
et al., 2002; Regneri et al., 2010; Modi et al.,
2017; Wanzare et al., 2016; Ostermann et al., 2018,
2019) and to learn similar events in a scenario us-
ing unsupervised (Regneri et al., 2010) and semi-
supervised (Wanzare et al., 2017a) approaches.

Temporal Ordering and Relevance Previous
works (Modi and Titov, 2014; Wanzare et al.,
2017b; Lyu et al., 2020) have investigated induction
or prediction of temporal ordering of prototypical
events. Others have predicted next (Pichotta and
Mooney, 2016b) or related (Lyu et al., 2020) events
in natural language form. Zhou et al. (2019) ac-
quire commonsense procedural knowledge directly
from natural language source, like wikiHow, by
learning representations for scenarios and events
which are predictive of both relevance of event to
the scenario and temporal ordering. Zhang et al.
(2020) propose a non-learning based approach to
predict fixed-length events given an unseen sce-
nario and related scenarios with their events. A
recent work (Sakaguchi et al., 2021) generates
partially-ordered scripts using PLMs by predict-
ing events and edges for partial-order while we
are interested in completely ordered event descrip-
tions. Lyu et al. (2021) propose the task of goal ori-
ented script construction for multilingual wikiHow
dataset and propose generation and retrieval-based
approaches. However, their generation-based ap-
proach using LM only involves fine-tuning. We
focus on different LMs to evaluate them on the task

Prompt Beginnings Continuations

here is a sequence of events that None
happen while baking a cake:

these are the things that happen 1.
when you bake a cake:

describe baking a cake in small
sequences of short sentences:

here is an ordered sequence of events
that occur when you bake a cake:

1. get a cake mix

1. get a cake mix 2. gather
together other ingredients

Figure 2: Different prompt formulations for BAKING A
CAKE scenario for probing. 16 prompts are created by
combining a prompt beginning with a continuation.

of generating scripts both in zero-shot and fine-
tuning settings. Our proposed framework is shown
to outperform the fine-tuning approach.
Knowledge-acquisition from PLMs With the
success of PLMs (Devlin et al., 2018; Liu et al.,
2019; Radford et al., 2019) in various natural lan-
guage understanding tasks, a number of works
investigate how commonsense knowledge is cap-
tured in these models (Feldman et al., 2019; Petroni
et al., 2020; Weir et al., 2020; Shwartz et al., 2020).
Successful efforts have been made to induce rela-
tional (Bouraoui et al., 2020), numerical (Lin et al.,
2020), temporal (Zhou et al., 2020) and common-
sense knowledge in PLMs using fine-tuning.

Unlike prior works, we focus on investigating
the extent and accessibility of explicit script knowl-
edge from PLMs via probing techniques and induc-
ing such knowledge in them using a pipeline-based
framework to generate full ESDs for novel scenar-
ios in free-form natural language.

3 Probing for Script Knowledge

We design a zero-shot probing experiment to eval-
uate PLMs’ ability to generate ESDs by carefully
selecting natural language prompts, which LMs are
known to be sensitive to (Bouraoui et al., 2020).
We experiment with 16 manually crafted prompts?
(Table 2) with different phrasing and levels of con-
ditioning to enquire large versions of GPT2, BART,
and T5 for script knowledge. The intuition be-
hind these prompts is similar to asking questions
(prompts) to a knowledge source in various ways
to get the required answer (ESD for a scenario).
BART and T5 were not able to output anything
except the input prompt or start, end, and pad to-
kens and hence we only present qualitative outputs
from GPT2, when probed with various prompts
for BAKING A CAKE scenario, in Table 2. We ob-

2We also experiment with capitalized prompts but did not
find significant change in the quality of generations.

I o b
1| _Fine-tuning [[vaking a cake: | |

——— ;
i

" o ! ‘

i
1 « -

! Relevance
i Classifier

Q 1. buy ingredients.
2. put the batter in
A ven 3. mix

-

Stop Mo,
4

Figure 3: SIF: Pre-trained LM is fine-tuned on De-
Script (Wanzare et al., 2016). Generated scripts are then
post-processed with RoOBERTa-based classifiers to cor-
rect for event relevance (Step 1), repetition (Step 2), and
temporal ordering (Step 3).

serve that the quality of generated ESDs vary for
different prompts. Although GPT2 is able to gen-
erate some scenario-relevant events with just the
prompt beginnings and no continuations (e.g., 1
and 2 in Table 2), the ESDs are incomplete with
many auxiliary details, and incorrect event order-
ing (e.g., ‘3. The cake is served at the table’ be-
fore ‘6. The cake is transferred to the oven.” in
2). It sometimes outputs (e.g., 4) narrations rather
than procedural descriptions. As generation from
scratch is an open-ended task, we use a prompt
with a number to guide GPT2 to generate a proce-
dural script. Although 4 and 5 are more procedural,
the events are still at a coarse-grained level with
most of the intermediate events missing. To further
guide the generation towards a fine-grained level,
we condition the generation on a few events (man-
ually curated by authors looking at sample ESDs)
along with the prompt beginning. This helps us in
examining whether GPT2 has temporal knowledge
about the events related to a scenario. Conditioning
on the events results in a better quality ESD (e.g.,
6,7,8). However, there is a repetition of events
(‘let it cool for another 10 minutes’ in 6, ‘add in
your flour and mix by hand’ in 7) in addition to
wrong event ordering, irrelevant (e.g., ‘is it hot?’
in 8) and missing events. As GPT2 produces poor
quality ESDs in this zero-shot setting with BART
and TH not even being able to output any events,
we propose a script induction framework detailed
in the following section.

4 SIF: Script Induction Framework

In this section, we provide details on our pipeline-
based script induction framework, SIF (Figure 3),
which addresses the limitations of zero-shot ESD
generation. SIF is a two-staged framework which
fine-tunes LM on a small set of ESDs in the first

these are the things that happen when you bake a cake: 3 tablespoons (30ml) of unsalted butter, at room temperature 2 tablespoons (30ml) of granulated sugar 2
tablespoons (30ml) of brown sugar, sifted 1 large egg, at room temperature 1 teaspoon vanilla extract 3 large egg yolks 1 cup (350ml) buttermilk To the bowl of an
electric mixer fitted with a paddle attachment, add the butter, sugar, brown sugar, egg yolks, and vanilla extract and beat until light and fluffy. Add the buttermilk, then
continue beating until fully incorporated. Sift the flour, baking powder, and salt into the bowl of the mixer and beat

here is an ordered sequence of events that occur when you bake a cake: 1. The cake is baked. 2. The cake is cooled. 3. The cake is served at the table. 4. The
dessert is placed on the table. 5. The cake is placed in a baking pan. 6. The cake is transferred to the oven. 7. The cake is put to the middle of the oven and baked. 8.
The cake is left in the oven until it is done. 9. The cake is removed from the oven and placed on a plate. 10. The cake is transferred to a cake rack. 11. The cake is
placed on a cake plate.

describe baking a cake in small of short “I want my cake to be soft and moist." (And, you know, don’t do this: “If T use a pastry bag, I can
get it back to me in less than two minutes.") You may be looking for the most simple recipe for cake, but baking requires skill and a lot of practice. You don’t need to
learn how to make a cake recipe. You don’t even need to know the difference between the cake and the sponge. All you need is a great recipe and a couple of ovens
and an oven thermometer. 2. Use a mixer. Mixers are really, really good. (A great idea is to invest in one of those mini, little, portable ones.

here is a sequence of events that happen while baking a cake: 1. The cake goes into the oven. 2. The cake cools down in the oven, because the water vapor from
the oven condenses onto the top of the cake. 3. The cake is cooled and the frosting set (the sugar crystals are not allowed to fall off). 4. The frosting is set (a little
more water vapor condenses onto the top of the frosting). 5. The frosting is set (more water vapor condenses onto the top of the frosting). 6. The cake cools down
(the water vapor cools off). 7. The cake comes out of the oven and it is ready to eat. How is this cake not a cake? The first step is that the cake is a cake.

ot

here is an ordered sequence of events that occur when you bake a cake: 1. You have a cake. 2. You have a batch of flour (or other ingredient, such as water, sugar
or corn syrup) 3. You have your flour prepared 4. You have your flour mixture 5. You have your flour mixture pre-floured 6. You have your batter prepared 7. You
have your batter made 8. You have your batter placed on a baking sheet 9. You have your batter removed from the oven 10. You have your cake cooled in the tray
(you must place your cake in the tray before you take it out of the oven) 11. You take your cake out of the tray and remove it from the oven 12. You eat your cake, or
leave it out to cool.

here is a sequence of events that happen while baking a cake: 1. get a cake mix 2. pour the cake mix into the pan 3. let it bake for 10 minutes 4. get out the oven
lid and turn it on 5. let it bake for another 10 minutes 6. get out the oven lid and flip it on 7. let it bake for another 10 minutes 8. get out the oven lid and switch it
back on 9. let it bake for another 10 minutes 10. get out the oven lid, turn it back on, and let it bake again 11. get out the oven lid and get out the knife 12. bake the
cake again, and then let it cool on a rack 13. use the cake mix to make cupcakes 14. cut the cake, and then use the cupcake for serving!

these are the things that happen when you bake a cake: 1. get a cake mix 2. gather together other ingredients that you’ll need for your cake (coconut oil,
powdered sugar, eggs, etc.) 3. preheat oven to 350 4. pour on flour and mix by hand 5. pour in egg and mix by hand 6. add in powdered sugar and mix by hand 7. add
in coconut oil and mix by hand 8. let it all sit for a minute 9. add in your flour and mix by hand 10. add in your sugar and mix by hand 11. add in your flour and mix
by hand 12. add in your flour and mix by hand 13. add in your flour and mix by hand 14. add in your flour and mix by hand 15. add in your egg and mix by hand 16.
add in your salt

describe baking a cake in small seq of short : 1. get a cake mix 2. gather together other ingredients 3. start to bake 4. bake a cake 5. take it to
the oven 6. the cake is done 7. is it done? 8. is it still hot? 9. what is that crust? 10. what does the cake look like? If we think of a sequence of a few hundred or so
words, we can take the basic idea of this example and say that we could write an equivalent, yet shorter, sentence: 1. Get a cake mix 2. Get together the ingredients 3.
Bake a cake 4. Take it to the oven 5. The cake is done 6. Is it done? 7. is it hot? 8. what is that crust? 9. what does the cake look like

Table 1: Scripts generated from GPT2-L for BAKING A CAKE scenario with bold-faced prompts.

SEQUENCE here is a sequence of events that happen while
baking a cake: 1. e1 2. e

EXPECT these are the things that happen when you bake a
cake: 1. e1 2. ez

ORDERED here is an ordered sequence of events that occur
when you bake a cake: 1. e 2. ez

DESCRIBE describe baking a cake in small sequences of
short sentences: 1. e1 2. es

DIRECT baking a cake: 1. e1 2. e2

TOKENS (SCR) baking a cake (ESCR): 1. e1 2. e2
ALLTOKENS (SCR) baking a cake (ESCR): (BEVENT)
e1 (EEVENT) (BEVENT) ez (EEVENT)

Table 2: Different prompt formulations for BAKING A
CAKE scenario with two events (e and es).

stage. In the second stage, ESDs generated using
the fine-tuned LM are passed through a sequence
of RoBERTa-based classifiers (Liu et al., 2019) to
identify relevant events, remove redundant events,
and predict pair-wise temporal ordering between
the events. These pair-wise orderings are then used
to create a full event ordering using topological
sorting on a directed graph created from the pre-
dicted orderings.

4.1 Stage I: Fine-tuning PLMs

PLMs fine-tuned on commonsense datasets like
ATOMIC (Sap et al., 2019) can generalize beyond
the scenarios observed during fine-tuning (Bosselut
et al., 2019). Hence, we investigate the learning
capability of LMs when a small number of script
examples are available. We fine-tune LMs on ESDs

using different natural language and pseudo-natural
language prompt formulations for encoding ESDs
(Table 2) to study the effect of prompt formula-
tions on this task as observed during the probing
experiments. We fine-tune LMs using negative log-
likelihood objective.

4.2 Stage II: Post-processing Generated ESDs

We sample ESDs for an unseen scenario using
the fine-tuned LMs and employ a 3-step post-
processing method to correct them for relevance,
repetitions, and ordering.

4.2.1 Step 1: Irrelevant Events Removal

The first post-processing step is to remove non-
scenario-relevant events from an ESD. An event
is not relevant for a scenario if it is not a part of
the scenario (e.g., ‘tipping a waiter’ is not a part of
BAKING A CAKE scenario). For irrelevant events
removal, we first need to identify irrelevant events
for a scenario. We pose this identification prob-
lem as a binary classification task to predict if a
given event belongs to a given scenario. For train-
ing purpose, a positive example is constructed by
pairing a scenario with an event belonging to that
scenario; negative samples are drawn from another
scenario in the training data. Using this data, we
train a RoOBERTa-L-based (Liu et al., 2019) classi-
fier and remove those events from an ESD which
are predicted as irrelevant by this classifier.

4.2.2 Step 2: Event De-duplication

The second step involves the identification and re-
moval of repeated events. Repetition of events can
occur by an exact copy of an event or by a para-
phrase of an event (e.g., ‘6. You have your batter
prepared‘ and ‘7. You have your batter made’ in 5
of Table 1). To identify such de-duplications, we
train a ROBERTa-L-based paraphrase identification
system using MRPC (Dolan and Brockett, 2005)
dataset. However, we observe many false-positives
(e.g., ‘open a faucet’ and ‘close a faucet’ were
identified as paraphrases) with this system. Since
false-positives can lead to unnecessary removal of
events, we employ a conservative approach of only
identifying repeated events. We find edit distance
between each pair of events in an ESD and remove
multiple occurrences of an event from the ESD, as
identified by the edit distance score of 0.

4.2.3 Step 3: Temporal Order Correction

The final step is to correct the order of events in
an ESD. We correct the ESDs for ordering by first
obtaining pair-wise event orderings and then using
a graph-based approach to get the final overall or-
dering. We pose the problem of pair-wise event
ordering as a binary classification task to predict if
the order of a given pair of events is correct with re-
spect to the given scenario. We sample event pairs
from gold ESDs to construct positive (sequence or-
der) and negative (reverse order) examples to train
a RoBERTa-L-based classifier. Topological sort is
then used to get the final ESD for a scenario from
the ordering predictions for all the (]g) pairs of
events in an ESD. We construct a directed graph
G = (V,€&) of events in a scenario with events as
nodes (V) of the graph and a directed edge from
node v; € V to vy € V if event represented by vo
is predicted to occur after the event represented by
v1. We keep the original ordering of events in case
the constructed graph is cyclic® due to incorrect
predictions from the classifiers.

4.3 Implementation Details

4.3.1 Dataset pre-proccessing

We fine-tune LMs on ESDs from DeScript (Wan-
zare et al., 2016) dataset which consists of 100
ESDs each for 40 scenarios, collected via crowd-
sourcing. The scenarios are randomly partitioned
into 8 folds with each fold consisting of ESDs from

366415% (averaged across all the input variants and folds)
of the complete graphs are acyclic for GPT2.

5 scenarios to perform 8-fold cross-validation of
SIF for each of the prompt formulation. We low-
ercase and enclose each ESD within a begin of sce-
nario (BOS) and an end of scenario (EOS) token
for fine-tuning. The input to the relevance classifier
is: scenario (/s) e and to the temporal classi-
fieris scenario name (/s) e (/s) ez, where
(/s) is a separator token and e, e1, e are events.

4.3.2 Training details

We use huggingface’s transformers library (Wolf
et al., 2020) to fine-tune LMs on each of the 7
prompt formulations, leading to 7 variations for
each LM, for 1 epoch with a batch size of 1, gra-
dient accumulation per 16 steps, and block size
of 150. At inference time, 5 ESDs are sampled
for each of the given scenarios with top 50 prob-
able tokens, nucleus sampling (Holtzman et al.,
2019) probability of 0.9, and maximum length set
at 150. We use RoBERTa-L architecture from the
transformers library for relevance and temporal or-
der classifiers. Relevance (Temporal) classifier is
trained for 10 (5) epochs with average validation
accuracy of 84.50% (83.87%) across the folds. The
model with the best accuracy on the valid split is
used in the post-processing stage. We use python’s
editdistance library to compute edit distance for
the de-duplication step. We use Adam optimizer
with an initial learning rate of 2e ~°, warm-up steps
set at 0.06 of total steps, batch size of 16, and max-
imum input length 150 for both the classifiers. All
the models are trained and tested on NVIDIA Tesla
V100 SXM2 16GB GPU machine.

5 Evaluation

We use SIF to induce script knowledge in GPT2,
BART, and T5, and evaluate full ESDs generated
for a given unseen scenario using BLEU metric (Pa-
pineni et al., 2002), following Pichotta and Mooney
(2016b) who use BLEU to score individual LM-
generated events. As BLEU is a precision-based
metric, we measure n-gram overlap of the sampled
ESDs against multiple gold-reference ESDs* for
each scenario in the test fold.

Additionally, for deeper analysis of the gener-
ated ESDs, two of the authors evaluate a subset
of the generated ESDs (blinded to the identity of
the models and prompt variants) on three levels —

*We use NLTK python library to calculate BLEU score
with add-1 smoothing function and n-grams upto n = 4. We
convert the outputs of different variants & gold references into
numbered form, 1. e; 2. e ...n. e, for a fair comparison.

Models TOKENS EXPECT SEQUENCE ALLTOKENS DESCRIBE DIRECT ORDERED
(1) Zero-shot 03.1 (5.2) 03.6 (5.5) 05.4 (2.8) 03.1 (5.2) 03.2 (3.6) 03.9 (5.1) 06.2 (6.6)
(2) GPT2-LscrarcH 17.2 (3.1) 19.3 (3.7) 16.8 (2.9) 18.6 (4.5) 17.6 (2.6) 14.4 (3.9) 17.7 (3.2)
(3) BART-FT 15.5 (6.0) 20.8 (3.5) 19.6 (3.5) 19.7 (9.2) 19.2 (3.9) 18.0 (6.6) 11.7 (4.8)
(4) GPT2-FT 30.7 (5.1) 31.3 (5.5) 32.4 (6.3) 30.7 (6.6) 32.3 (5.9) 31.4 (5.8) 31.0 (4.8)
(5) BART-SIF 16.8 (5.1) 21.1(4.2) 19.9 (3.7) 20.5 (11.1) 20.0 (3.8) 19.6 (7.2) 13.7 (5.0)
(6) GPT2-SIF 33.6 (5.4) 33.9 (5.6) 35.2 (6.9) 32.5 (6.9) 34.2 (5.3) 33.6 (5.7) 33.2 (5.5)

Table 3: Automatic evaluation results: Mean BLEU scores (and std. dev.) over 8 folds of held-out scenarios
are reported. (1) is pre-trained GPT2 (no fine-tuning or post-processing); (2) is randomly initialized GPT2 with
fine-tuning; (3-4) are fine-tuned BART and GPT2; (5-6) are SIF applied to BART and GPT2.

Models TOKENS EXPECT SEQUENCE ALLTOKENS DESCRIBE DIRECT ORDERED
(1) GPT2-FT 30.7 (5.1) 31.3(5.5) 32.4(6.3) 30.7 (6.6) 32.3(5.9) 31.4(5.8) 31.0(4.8)
(2) GPT2-FT+Relevance (R) 33.1(5.1) 33.1(49) 34.7(6.9) 31.9 (6.7) 33.7(5.0) 32.6(5.8) 33.2(5.2)
(3) GPT2-FT+R+De-duplicate (D) 33.5(5.2) 33.6(52) 35.1(6.9) 32.1 (6.7) 34.3(5.0) 329(5.7) 33.6(5.5)
(4) GPT2-FT+R+D+Reorder (GPT2-SIF) | 33.6 (5.4) 33.9 (5.6) 35.2(6.9) 32.5 (6.9) 34.2(5.3) 33.6(5.7) 33.2(5.5)

Table 4: Ablation analysis of each step in the proposed pipeline for GPT2. Mean BLEU scores (and std. dev.)
over 8 folds of held-out scenarios are reported. (1) fine-tuned GPT2; (2-4) are fine-tuned GPT2 with successive

post-processing steps.

individual events (Relevance (R)), pairwise events
(Order (0)), and the overall sequence (Missing
(M)). R measures the % of generated events rele-
vant to a scenario; O measures the % of consecutive
event pairs correctly ordered given a scenario; and
M measures the degree to which important events
are missing on a 4-point Likert scale defined as (1)
no or almost no missing events, (2) some insignif-
icant missing events, (3) notable missing events,
and (4) severe missing events. As scripts are com-
plex structures and require an understanding of
scenarios, we chose not to resort to a crowdsourc-
ing platform for manual analysis. We manually
analyze the outputs to evaluate SIF as well as per-
form an error analysis to identify opportunities for
future research directions.

We evaluate our framework on scenarios in each
of the eight folds as well as novel scenarios from
Regneri et al. (2010), and day-to-day activities. As
we do not have access to gold-reference ESDs for
the novel scenarios, we demonstrate our frame-
work’s performance only using manual evaluation.

6 Results and Analysis

6.1 Automatic Evaluation

We present the automatic evaluation results on held-
out scenarios in Table 3. As baselines, we report
scores from non-fine-tuned GPT2-L (Zero-shot), a
randomly-initialized GPT2-Lscrarcu model fine-
tuned on DeScript ESDs, and BART-FT and GPT2-
FT models which are fine-tuned in the first stage of
SIF. We do not report any results for TH as it was
even struggling to learn the input ESD formulations
during fine-tuning. We explain the findings from

automatic evaluation below.

SIF significantly outperforms fine-tuning base-
lines. Both GPT2-SIF and BART-SIF have higher
BLEU scores as compared to their correspond-
ing fine-tuned (GPT2-FT and BART-FT) models
across all the prompt variants. This clearly reflects
the advantage of the post-processing stage in SIF
framework. Improvement across different LMs re-
inforces the LM-agnostic nature of our framework.
Variation in the extent of induction across prompt
variants indicates the sensitivity of LMs to prompt
formulations.

Script knowledge is best accessible through
GPT2 than other LMs. As previously mentioned
in probing experiments, BART and T5 were not
able to output anything useful in the zero-shot set-
ting while GPT2 could produce ESDs, although
erroneous and of poor quality. We observe same
trends even after fine-tuning these LMs or using
SIF to induce script knowledge in these LMs. In-
terestingly, a randomly initialized and fine-tuned
GPT2 (GPT2-LgcraTcn) is able to perform com-
parable to a pre-trained BART fined-tuned using
DeScript (BART-FT), and even better for TOKENS
and ORDERED variants. Overall, GPT2 is found
to be better than BART in terms of the presence
and accessibility of script knowledge through them.
One possible explanation for this is that GPT2 is a
generative language model while BART and T5 are
encoder-decoder-based language models making it
challenging to encode complete script knowledge
within a scenario name.

Performance across LMs is sensitive to prompt
formulation and scenario. We consistently ob-

Variants BLEU+ - Manual E(;?luatlon -
TOKENS 19.2/22.8 | 77.2/84.3 72.3/89.3 2.6/2.6
EXPECT 22.8/26.0 | 81.9/82.7 74.5/86.5 3.0/3.0
SEQUENCE | 27.8/33.4 | 73.3/83.2 74.0/87.5 2.5/2.5
ALLTOKENS | 33.5/35.0 | 83.5/85.7 82.7/89.5 2.6/2.6
DESCRIBE | 27.1/28.6 | 80.7/86.3 83.9/85.9 2.8/2.8
DIRECT 30.9/34.1 | 81.2/84.2 88.5/86.1 2.6/2.6
ORDERED | 31.9/31.5 | 84.9/86.2 78.6/86.8 2.6/2.6

Table 5: Manual and BLEU scores on fine-tuned GPT2
(GPT2-FT) SIF applied to GPT2 (FI/SIF), computed
for a stratified sample of outputs (one ESD per sce-
nario across two folds). Mean scores across two an-
notators are reported. Annotator agreement is mea-
sured with Cohen’s Kappa (Cohen, 1960) (x=0.61 for
0, x=0.56 for R) and Spearman’s correlation (p=0.64
for M). Underline and bold denotes the best across vari-
ants, and between FT and Ours, respectively. O scores
are calculated only when both the events are marked as
relevant by the two annotators.

serve variation in performance across prompt vari-
ants. Moreover, this variation is also observed
across LMs. For BART, EXPECT outperforms other
prompt variants while SEQUENCE performs the
best for GPT2. High variance across folds also
shows that different prompts perform differently
depending upon a scenario. This indicates the sen-
sitivity of LMs to prompt formulations and thus
justifies our experiments with different prompt for-
mulations to study the extent of script knowledge
that can be accessed through PLMs.

6.2 Ablation Analysis of SIF

We next analyze the contribution of each the stage
of STF and each step of stage II leading to improve-
ment in the performance via an ablation study, on
GPT2, in Table 4. As expected stage I contributes
maximum to the performance boost. and There is
a consistent improvement in BLEU after each of
the post-processing steps except in the case of DE-
SCRIBE and ORDERED wherein, reordering leads
to a slight decrease in BLEU as the trained classi-
fiers are not perfectly accurate. We present qual-
itative outputs when SIF is used to induce script
knowledge in GPT2 in Table 7.

6.3 Manual Evaluation and Error Analysis

We manually evaluate a total of 140 ESDs (for M)
comprising 652 individual events (for R) and 582
consecutive pair of events (for O) generated from
GPT2-FT and GPT2 SIF across all the prompt
variants (Table 5). BLEU scores are also reported
for the same set of ESDs to study the correlation

Scenario R?T ot Ml

Order fastfood online 81.5 84.6 2.6
Cook in a microwave 89.5 92.0 2.4
Answer telephone 65.5 91.7 2.0
Buy from vending machine 771 81.3 3.4
Tie shoe laces 65.8 66.7 3.6
Brush teeth 75.9 71.4 2.6
Make ginger paste 41.5 85.7 3.4
Attend a wedding 71.9 100.0 2.4
Wash a car 85.7 90.0 3.0
Take out trash 88.5 92.3 2.2
Take a taxi 85.7 76.2 2.0
Surf the internet 73.3 62.5 2.8
Watch television 77.4 73.7 3.0
Go to a club to dance 100.0 93.5 1.4
Average Score 77.1 83.0 2.6

Table 6: Manual evaluation of ESDs for novel scenarios.
Averaged across 5 sampled ESDs per scenario generated
using the best performing SEQUENCE variant of GPT2-
SIF as per automatic measure.

between manual and automatic metrics. We find
that outputs from SIF have higher BLEU, R, and
O scores than FT across all prompt variants (except
O for DIRECT and BLEU for ORDERED). M scores
do not change, which shows that significantly im-
portant events are not dropped during the irrelevant
events removal step. Different prompts perform
well in different aspects. DESCRIBE generates most
relevant events, ALLTOKENS has the best temporal
ordering knowledge, and SEQUENCE leads to least
severe missing events after Stage Il of SIF. To our
surprise, we find no statistically significant correla-
tion between BLEU and any of the manual evalu-
ation metrics (pearson correlation between BLEU
and R, O and M was r = 0.23, —0.06, —0.49 with
p> 0.1, respectively), emphasizing a need for more
sophisticated automatic metrics than BLEU for
evaluating full ESDs, having a complex structure.
The best performing variant as per BLEU score
differs from the best one in Table 3 due to variance
in performance across scenarios as well as different
sampled ESDs of the same scenario in Table 5.
Manual evaluation revealed that a model can
miss significant events, even though it can gener-
ate many relevant ones. As we only de-duplicate
multiple occurrences of exactly the same events in
a scenario, we observe repeated paraphrases (4.6%
across all prompt variants) of the same event, such
as ‘pour some milk in the pot’ and ‘pour the milk
into the coffee pot” (MAKING COFFEE scenario).
23.9% of the irrelevant events (13.5% across all
prompt variants) are incoherent (‘take the flat to the
bathroom’ for CLEANING A FLAT), 11.4% mixed
(‘sit in front of coffee shop’ for MAKING COF-

Good quality generations

1. get dressed 2. go to station 3. buy ticket 4. get on train 5. wait for train 6. get on train 7. sit in seat 8. read newspaper 9. wait for

1. go to station 2. buy ticket 3. wait for train 4. get on train 5. sit in seat 6. get off train 7. leave station

1. go to airport 2. get boarding pass 3. go to the airline counter 4. present boarding pass and boarding pass id to attendant 5. present
ticket and id to attendant 6. sit down in seat 7. make sure you are in seat 8. board airplane

1. go to airport 2. go to the airline counter 3. present ticket and id to attendant 4. present boarding pass and boarding pass id to
attendant 5. get boarding pass 6. board airplane 7. make sure you are in seat 8. sit down in seat

Poor quality generations

1. get the flat 2. take the flat to the bathroom 3. take some water 4. take the flat to the sink 5. turn on the water 6. let it wash the flat 7.
then put in some dryer sheet 8. get a sponge 9. scrub the flat 10. put the flat in the dryer 11. when done dry the flat with a towel 12.

1. get the flat 2. take the flat to the bathroom 3. take some water 4. take the flat to the sink 5. turn on the water 6. let it wash the flat 7.
then put in some dryer sheet 8. get a sponge 9. scrub the flat 10. put the flat in the dryer 11. when done dry the flat with a towel 12.

1. arrive at the designated location 2. get in car 3. park in car 4. walk into the designated area 5. enter the room 6. find a chair 7. sit on

FT
GOING ON A train 10. get off train 11. get dressed 12. leave station
TRAIN
SIF
FT
FLYING IN AN
AIRPLANE SIF
FT
CLEANING UP put away the flat
A FLAT SIF
put away the flat
TAKING THE FT
UNDER- a chair 8. watch movie
GROUND SIF 1. walk into the designated area

Table 7: Scripts generated using SEQUENCE variant of GPT2 for held-out scenarios. FT denotes output from the
fine-tuned model and SIF refers to outputs from our framework applied to GPT2.

Good quality generations

. go into bathroom 2. turn on faucet 3. remove any dirt or debris 4. grab a brush 5. scrub and floss the teeth 6. leave the bathroom

BRUSHING FT 1
TEETH SIF 1. go into bathroom 2. grab a brush 3. scrub and floss the teeth 4. leave the bathroom
GOING TO A FT 1. choose which club to attend. 2. drive or park your car. 3. get in your car. 4. go to the club. 5. enter the club. 6. get up and dance.
CLUB TO SIF 1. choose which club to attend. 2. get in your car. 3. go to the club. 4. drive or park your car. 5. enter the club. 6. get up and dance.
DANCE
TAKING A FT 1. getin car 2. get into car 3. wait for taxi 4. enter the car 5. pay the fare 6. get out the driver 7. get out the door 8. exit car
TAXI SIF 1. getinto car 2. getin car 3. wait for taxi 4. enter the car 5. pay the fare 6. get out the driver 7. exit car 8. get out the door
Poor quality generations
FT 1. get your hot water 2. get your bowl 3. turn on the hot water 4. whisk a bowl of sugar into a paste 5. put the bowl on the stove 6. turn
on the hot water 7. boil the paste 8. add salt to the paste 9. turn off the water 10. put the bowl on a rack 11. pour the hot water into a
MAKING saucepan 12. put some salt and sugar in the saucepan 13. turn the heat on 14. pour the sauce on to the bowl 15. eat the paste
GINGER PASTE SIF 1. get your hot water 2. get your bowl 3. turn on the hot water 4. whisk a bowl of sugar into a paste 5. put the bowl on the stove 6. boil
the paste 7. add salt to the paste 8. put the bowl on a rack 9. pour the hot water into a saucepan 10. put some salt and sugar in the
saucepan 11. turn the heat on 12. pour the sauce on to the bowl 13. eat the paste
FT 1. get in the car. 2. drive to the beach. 3. rent a surfboard. 4. go to the beach. 5. put on my sunglasses. 6. get in my car. 7. drive to my
SURFING THE
INTERNET beach. 8. go to the surfing.)
SIF 1. 1. rentasurfboard. 2. get in the car. 3. go to the surfing.
FT 1. schedule an appointment for the reception 2. drive to the venue 3. show your guest information 4. present your wedding ceremony/
reception to the guests 5. invite the friends/ family/ coworkers/ etc. to the wedding 7. present your wedding present to the guests 8.
make the guest list 9. take the invitation 10. go to the reception 11. pay the fee/ gratuity 12. give your guest his/her ticket 13. leave the
ATTENDING A venue
WEDDING SIF 1. schedule an appointment for the reception 2. drive to the venue 3. show your guest information 4. present your wedding ceremony/
reception to the guests 5. invite the friends/ family/ coworkers/ etc. to the wedding 6. present your wedding present to the guests 7.
make the guest list 8. take the invitation 9. go to the reception 10. leave the venue
BUYING FROM FT l enter the shop 2. look forAthe item you wish to purchase 3. go into the register to purchase the item 4. pay for the item 5. take your
A VENDING item to your car 6. take the item to the car a}nd remove the card 7 leave the §hop 8. return the card 9. leave the shop
MACHINE SIF 1. enter the shop 2. look for the item you wish to purchase 3. go into the register to purchase the item 4. pay for the item 5. take your

item to your car 6. take the item to the car and remove the card 7. leave the shop 8. return the card

Table 8: Scripts generated using SEQUENCE variant of GPT2 for novel scenarios. FT denotes output from the
fine-tuned model and STF refers to outputs from our framework applied to GPT2>.

FEE), 61.4% unrelated (‘add shampoo’ for WASH-
ING DISHES), and rest ungrammatical.

We present a manual evaluation of novel sce-
narios to gauge the generalizability of our frame-
work in Table 6. The framework generalizes to
most of the novel scenarios except for those which
involve very granular events like MAKING GIN-
GER PASTE or TYING SHOE LACES. Although
GPT?2 is a contextualized model, it confuses BUY-
ING FROM VENDING MACHINE with buying from
a store, SURFING THE INTERNET with the ‘surfing’
activity, or ATTENDING A WEDDING with ‘getting
married’. Additionally, we provide a few good and
bad quality outputs from GPT2 models for held-out
(Table 7) and novel (Table 8) scenarios to identify
the avenues for improving script induction in LMs.

7 Limitations

De-duplication of Events. As mentioned previ-
ously, SIF cannot de-deuplicate paraphrased ver-
sion of an event. Therefore, more sophisticated
paraphrase identification systems could be used
to de-duplicate such events. There could be sce-
narios where multiple occurrence of same event is
required. For instance, WASHING DISHES wherein
faucet needs to be opened and closed once at the
starting before applying soap and secondly after
applying soap (when washed by hands). Hence, it
is required to differentiate between desirable and
undesirable repetition of events.

Full vs Partial Temporal Ordering. While we
consider the task of generating full event sequence

descriptions for a scenario, we acknowledge that
many scenarios may not have strict ordering of
events (e.g., either wet ingredients can be mixed
first or dry ones in a BAKING A CAKE scenario) or
there can be overlapping events (e.g., while oven
is pre-heating, batter can be prepared). Instead of
considering partial ordering of events (Sakaguchi
etal., 2021), we focus on generating multiple possi-
ble full sequence of events for a scenario and report
the averaged scores.

8 Conclusion and Future Work

We investigate whether pre-trained language mod-
els are capable of generating full event sequence
descriptions with minimal prompting and find that
pre-trained GPT2 has an incomplete understanding
of scripts, while BART and T5 did not even pro-
duce anything useful through zero-shot probing ex-
periments. We propose SIF, an LM-agnostic script
induction framework, that is shown to produce
meaningful ESDs for unseen scenarios and mit-
igate errors (such as scenario-irrelevant, repeated,
and misordered events) that were observed during
probing experiments, as measured by automatic
and manual evaluation. We also provide evidence
for the generalization capability of our framework
to novel scenarios. However, there is great room for
improvement which is evident from manual error
analysis and qualitative outputs. Future work may
focus on developing more sophisticated automatic
metrics as well as an end-to-end system for script
induction which might help in mitigating cascading
of errors, due to each component, common to any
pipeline-based approaches.

Acknowledgements

We would like to thank Benjamin Van Durme,
Sweta Agrawal, and all the anonymous reviewers
for their valuable feedback ad suggestions.

References

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for auto-
matic knowledge graph construction. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4762—4779, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Zied Bouraoui, Jose Camacho-Collados, and Steven
Schockaert. 2020. Inducing relational knowledge

from BERT. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 7456—
7463.

Nathanael Chambers. 2017. Behind the scenes of an
evolving event cloze test. In Proceedings of the 2nd
Workshop on Linking Models of Lexical, Sentential
and Discourse-level Semantics, pages 41-45.

Nathanael Chambers and Dan Jurafsky. 2008. Unsuper-
vised learning of narrative event chains. In Proceed-
ings of ACL-08: HLT, pages 789-797.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference
of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 602-610.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and psychological mea-
surement, 20(1):37-46.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Joshua Feldman, Joe Davison, and Alexander M Rush.
2019. Commonsense knowledge mining from pre-
trained models. arXiv preprint arXiv:1909.00505.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 workshop on Automated knowledge
base construction, pages 25-30.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Bill Yuchen Lin, Seyeon Lee, Rahul Khanna, and
Xiang Ren. 2020. Birds have four legs?! nu-
mersense: Probing numerical commonsense knowl-

edge of pre-trained language models. arXiv preprint
arXiv:2005.00683.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretraining
Approach. arXiv preprint arXiv:1907.11692.

Qing Lyu, Li Zhang, and Chris Callison-Burch. 2020.
Reasoning about goals, steps, and temporal ordering
with wikihow. In Proceedings of The 2020 Confer-
ence on Empirical Methods In Natural Language
Proceedings (EMNLP).

Qing Lyu, Li Zhang, and Chris Callison-Burch. 2021.
Goal-oriented script construction. In Proceedings of
the 14th International Conference on Natural Lan-
guage Generation, pages 184-200, Aberdeen, Scot-
land, UK. Association for Computational Linguistics.

Risto Miikkulainen. 1995. Script-based inference and
memory retrieval in subsymbolic story processing.
Applied Intelligence, 5(2):137-163.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann,
and Manfred Pinkal. 2017. Inscript: Narrative texts
annotated with script information. arXiv preprint
arXiv:1703.05260.

Ashutosh Modi and Ivan Titov. 2014. Inducing neural
models of script knowledge. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning, pages 49-57.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839-849.

Erik T Mueller. 2004. Understanding script-based sto-
ries using commonsense reasoning. Cognitive Sys-
tems Research, 5(4):307-340.

Simon Ostermann. 2020. Script knowledge for natural
language understanding.

Simon Ostermann, Ashutosh Modi, Michael Roth,
Stefan Thater, and Manfred Pinkal. 2018. Mc-
script: A novel dataset for assessing machine com-
prehension using script knowledge. arXiv preprint
arXiv:1803.05223.

Simon Ostermann, Michael Roth, and Manfred Pinkal.
2019. Mecscript2. 0: A machine comprehension cor-
pus focused on script events and participants. arXiv
preprint arXiv:1905.09531.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim
Rocktéschel, Yuxiang Wu, Alexander H Miller, and
Sebastian Riedel. 2020. How context affects lan-
guage models’ factual predictions. arXiv preprint
arXiv:2005.04611.

Karl Pichotta and Raymond Mooney. 2014. Statisti-
cal script learning with multi-argument events. In
Proceedings of the 14th Conference of the European
Chapter of the Association for Computational Lin-
guistics, pages 220-229.

10

Karl Pichotta and Raymond J Mooney. 2016a. Learning
statistical scripts with 1stm recurrent neural networks.
In AAAI, pages 2800-2806.

Karl Pichotta and Raymond J Mooney. 2016b. Using
sentence-level Istm language models for script infer-
ence. arXiv preprint arXiv:1604.02993.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Proceedings of the 48th Annual
Meeting of the Association for Computational Lin-
guistics, pages 979-988, Uppsala, Sweden. Associa-
tion for Computational Linguistics.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro,
and Benjamin Van Durme. 2015. Script induction as
language modeling. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1681-1686, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le
Bras, Niket Tandon, Peter Clark, and Yejin Choi.
2021. proscript: Partially ordered scripts genera-
tion via pre-trained language models. arXiv preprint
arXiv:2104.08251.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for if-
then reasoning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages
3027-3035.

Roger C Schank and Robert P Abelson. 1975. Scripts,
plans, and knowledge. In IJCAI, volume 75, pages
151-157.

Vered Shwartz, Peter West, Ronan Le Bras, Chan-
dra Bhagavatula, and Yejin Choi. 2020. Unsuper-
vised commonsense question answering with self-
talk. arXiv preprint arXiv:2004.05483.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim,
Travell Perkins, and Wan Li Zhu. 2002. Open mind
common sense: Knowledge acquisition from the gen-
eral public. In OTM Confederated International Con-
ferences" On the Move to Meaningful Internet Sys-
tems", pages 1223-1237. Springer.

Lilian Wanzare, Alessandra Zarcone, Stefan Thater,
and Manfred Pinkal. 2017a. Inducing script struc-
ture from crowdsourced event descriptions via semi-
supervised clustering.

Lilian Wanzare, Alessandra Zarcone, Stefan Thater,
and Manfred Pinkal. 2017b. Inducing script struc-
ture from crowdsourced event descriptions via semi-
supervised clustering. In Proceedings of the 2nd

Workshop on Linking Models of Lexical, Sentential
and Discourse-level Semantics, pages 1-11, Valencia,
Spain. Association for Computational Linguistics.

Lilian DA Wanzare, Alessandra Zarcone, Stefan Thater,
and Manfred Pinkal. 2016. A crowdsourced database
of event sequence descriptions for the acquisition of
high-quality script knowledge.

Nathaniel Weir, Adam Poliak, and Benjamin
Van Durme. 2020. Probing neural language models
for human tacit assumptions. CogSci.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu
Song, and Dan Roth. 2020. Analogous process
structure induction for sub-event sequence prediction.
arXiv preprint arXiv:2010.08525.

Ben Zhou, Qiang Ning, Daniel Khashabi, and Dan Roth.
2020. Temporal common sense acquisition with min-
imal supervision. arXiv preprint arXiv:2005.04304.

Yilun Zhou, Julie A Shah, and Steven Schockaert. 2019.
Learning household task knowledge from wikihow
descriptions. arXiv preprint arXiv:1909.06414.

11

DeepA2: A Modular Framework for Deep Argument Analysis
with Pretrained Neural Text2Text Language Models

Gregor Betz
Karlsruhe Institute of Technology
Karlsruhe, Germany
gregor.betz@kit.edu

Abstract

In this paper, we present and implement a multi-
dimensional, modular framework for perform-
ing deep argument analysis (DeepA2) using
current pre-trained language models (PTLMs).
ArgumentAnalyst — a TS5 model (Raffel et al.,
2020) set up and trained within DeepA2 — re-
constructs argumentative texts, which advance
an informal argumentation, as valid arguments:
It inserts, e.g., missing premises and conclu-
sions, formalizes inferences, and coherently
links the logical reconstruction to the source
text. We create a synthetic corpus for deep
argument analysis, and evaluate ArgumentAna-
lyst on this new dataset as well as on exist-
ing data, specifically EntailmentBank (Dalvi
et al., 2021). Our empirical findings vindicate
the overall framework and highlight the advan-
tages of a modular design, in particular its abil-
ity to emulate established heuristics (such as
hermeneutic cycles), to explore the model’s un-
certainty, to cope with the plurality of correct
solutions (underdetermination), and to exploit
higher-order evidence.

[© Demo] [© Model] [« Datasets]

1 Introduction

Argumentative text analysis is an interpretation
method for clarifying arguments (Fisher, 2004).
Being studied in argumentation theory, logic, or
epistemology, it is widely taught and applied as
a key critical thinking skill in, e.g., law (Alexy,
1989), the humanities (Bruce and Barbone, 2011),
social sciences (Fairclough and Fairclough, 2012),
policy advice (Hansson and Hirsch-Hadorn, 2016),
or public debate (Beck et al., 2019). This paper
presents a computational approach for deep argu-
ment analysis, i.e., for reconstructing natural-
language arguments from a given text, as in the
following example (adapted from Siegel, 2018):

12

Kyle Richardson
Allen Institute for Al

Seattle, WA, USA
kyler@allenai.org

source text ~~ reconstructed argument
It is unethical to destroy hu- (P1) It is impermissible to
man embryos. The most ba- kill innocent human beings.
sic argument supporting this (P2) The human embryo is an
claim just stresses that it is innocent human being.
wrong to intentionally kill in- (C) THUS: It is impermissi-
nocent human beings. ble to kill the human embryo.

The literature on argument reconstruction (cf.
Feldman, 1998; Scholz, 2000; Lau, 2011; Bowell
and Kemp, 2014; Brun, 2014; Brun and Betz, 2016)
characterizes deep argument analysis as:

* a complex task involving a variety of sub-
tasks, such as identifying reasons and conclu-
sions in a text, formalizing sentences, check-
ing validity of an inference, logical streamlin-
ing, or explicating implicit premises.

* a non-conservative, creative task that goes
beyond mere text annotation and essentially
generates a new, more transparent text.

 an iterative process through which recon-
structions are built and revised step-by-step,
and the solution space is gradually explored.

* a hermeneutical task, guided by the principle
of charity, which urges one to come up with
an interpretation (reconstruction) as strong
and plausible as possible.

* assuming a normative background theory
about what constitutes a strong and plausible
argument in the first place.

* being affected by severe underdetermina-
tion, both in terms of the process and the final
outcome; in particular, there typically exist
rival, yet equally legitimate reconstructions of
one and the same text.

Given these special characteristics, deep argu-
ment analysis poses many challenges for machine
models of natural language understanding. In this
paper, we introduce a novel modular modeling ap-
proach for analysing complex argumentation that
builds on recent pre-trained text2text transformers
(Raffel et al., 2020). Our approach — DeepA2 (il-
lustrated in Figure 1) — works by systematically

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 12 - 27
July 14-15, 2022 ©2022 Association for Computational Linguistics

decomposing a complex reconstruction problem to
smaller text2text sub-tasks (see Section 3), which
allows for emulating the types of interpretation
strategies and heuristics studied in argument theory.
Referring to the different components of a com-
prehensive argumentative analysis, we may also
define tailor-made metrics for assessing argument
reconstructions. To demonstrate the benefits of
our approach, we construct a new argumentation
dataset (AAAC) that exhibits several complex infer-
pretive dimensions, show how to map other existing
datasets into our framework (Section 4), and train
and evaluate our main model, referred to as Argu-
mentAnalyst, within DeepA2 (Section 5).

Our empirical results show:

1. ArgumentAnalyst generates — out-of-domain —
semantically meaningful argument reconstructions,
70% of which are logically valid. By pooling alter-
native reconstructions, virtually every source text
in the synthetic dataset can be reconstructed as a
valid argument.

2. Modular generation chains which emulate
iterative reconstruction strategies are highly suc-
cessful: they yield, in particular, a more coherent
interpretation of an argumentative text, exploit the
text more thoroughly, and generally outperform
one-step generation as soon as problems become
difficult.

3. ArgumentAnalyst outperforms Entailmen-
tWriter (Dalvi et al., 2021) on difficult Entailment-
Bank problems with respect to telling apart relevant
premises from distractors.

4. ArgumentAnalyst generates reliable higher-
order evidence (Christensen, 2010) which can be
used for diagnosing logical fallacies — despite the
fact that ArgumentAnalyst is maximally charitable
and is trained to reconstruct any input whatsoever
as a logically valid argument, even if the input
argument, taken at face value, is painstakingly fal-
lacious.

In concluding this paper, we sum-up and in-
terpret these findings as general vindication of
DeepA2’s modular, multi-angular design (Sec-
tion 6).

2 Related Work

Taking transformers as soft reasoners, recent
work, pioneered by Clark et al. (2020), has shown
that pre-trained language models (PTLMs) possess
basic deductive and abductive reasoning capabili-
ties on diverse domains (Banerjee and Baral, 2020;

13

Betz et al., 2021; Bostrom et al., 2021), but are
equally prone to fallacies and biases (Kassner and
Schiitze, 2020; Talmor et al., 2020). Besides draw-
ing the correct conclusion, transformers are able
to generate correct reasoning chains that justify
an answer, which in turn further increases answer
accuracy (Saha et al., 2020; Tafjord et al., 2020;
Gontier et al., 2020; Saha et al., 2021; Dalvi et al.,
2021).

Neural semantic parsing uses sequence mod-
els to formalize natural language sentences (Ka-
math and Das, 2019). Shin et al. (2021) show that
PTLMs are zero-shot parsers, and that intermediate
steps which rephrase and streamline the original in-
put before parsing it to a formal language improve
accuracy.

Argument mining is an active research field
that studies computational methods for retriev-
ing argumentative components from a text corpus
(Wachsmuth et al., 2017; Moens, 2018; Potthast
et al., 2019; Lawrence and Reed, 2020). Recently,
work in this field has started to use PTLMs: Ein-
Dor et al. (2020) and Gretz et al. (2020) succeed
in retrieving relevant pro- or con-arguments for a
given topic from a large corpus with a fine-tuned
BERT model (Devlin et al., 2019). Using BERT,
Bar-Haim et al. (2020) map argumentative texts
to key points that succinctly summarize the argu-
ment’s gist. Akiki and Potthast (2020) explore
abstractive argument retrieval by means of text gen-
eration with GPT2 (Radford et al., 2019). Similarly,
Syed et al. (2021) deploy BART (Lewis et al., 2019)
to generate conclusions of argumentative texts on a
challenging corpus compiled from Reddit and vari-
ous online debate corpora. Rodrigues et al. (2020),
revisiting the argument comprehension task (Haber-
nal et al., 2014, 2018), demonstrate that identifying
implicit premises — and deep argument analysis a
fortiori — remains a hard, unsolved task. Recently,
Chakrabarty et al. (2021) have shown that augment-
ing training data with discourse-aware common-
sense knowledge improves the plausibility of au-
tomatically identified implicit premises. Such a
knowledge-driven perspective is orthogonal to, and
may eventually complement the logical approach
adopted in this paper.

3 Framework

3.1 Problem Definition

Deep argument analysis of a given text seeks to
answer the following central question: Can we

-
conjectures: source:
Socrates is mortal because
every human is.

\

(Socrates is mortal)

(1) Socrates is human.

p
argdown: source: Socrates

is mortal because every human
is. conjectures: Socrates is

Analyst

\[Argument-
>

(2) If someone is human, then
they are mortal.

mortal
|

p
formalize: premises:
Socrates is human | If someone
is human, then they are mortal
| 7

(3) Socrates is mortal.

[F a| (x): Fx-—>Gx]

Figure 1: Example text-to-text tasks for deep argument analysis, defined by DeepAZ2.

make sense of the text as a presentation of a rational
argument? And if so, what exactly is the argument;
and how precisely is it related to the text?

In carrying out a deep argument analysis, one
explicates, rephrases and rebuilds — even repairs
— the text’s argument in one’s own words. That
is why deep argument analysis is also referred to
as rational reconstruction (cf. Leitgeb and Carus,
2021). The reconstructed argument forms, together
with details about its logical properties and about
its relation to the source text, a comprehensive ar-
gumentative analysis of a text. The latter can be
seen as an interpretative hypothesis that is abduc-
tively inferred from a source text by means of an
inference to the best explanation. Here is another
example that illustrates how far a reconstruction
may deviate from the original text that presents the
argument (adapted from Brun and Betz, 2016):

source text ~~ reconstructed argument
So, the researcher’s central
dilemma exists in an espe-

cially acute form in psychol- (P1) If the animal is not like

ogy: either the animal is not
like us, in which case there
is no reason for performing
the experiment; or else the
animal is like us, in which
case we ought not to perform
on the animal an experiment
that would be considered out-
rageous if performed on one
of us.

us, it is wrong to perform the
experiment.

(P2) If the animal is like us,
it is wrong to perform the ex-
periment.

(C) THus (with classical di-
lemma): It is wrong to per-
form the experiment.

A compelling argumentative analysis yields (i) a
rational argument that is (ii) closely related to the
source text. Deep argument analysis is, accordingly,
guided by a dual goal (cf. Brun and Betz, 2016).
An argument reconstruction should both be

(i) systematically correct, i.c., the reconstructed
argument itself is, e.g., transparent, deduc-
tively valid, non-circular, or doesn’t contain

irrelevant premises; and
(ii) exegetically adequate, i.e., the reconstructed

14

argument accounts for the original text, be-
cause, e.g., its premises merely reformulate
parts of the text, or because its overall inferen-
tial structure can be traced within the source
text.

The fact that there typically exists — regarding a
specific text — a trade-off between these two goals
is one major reason for the underdetermination of
deep argument analysis and the plurality of legiti-
mate reconstructions of a given text (cf. Brun and
Betz, 2016).

Against this background, we may finally define
the problem of

Deep artificial argument analysis: Describe,
analyse and implement an effective computa-
tional system for deep argument analysis!

3.2 Multi-angular Data

The DeepA2 framework is built upon a multi-
angular data structure (Tafjord and Clark, 2021)
whose dimensions represent the essential compo-
nents of a comprehensive argumentative analysis
(see Section 3.1). Structured argumentative data is
rendered as plain text (cf. Voigt, 2014). The differ-
ent data dimensions, which are related as shown in
Figure 2, are (with an illustrating example):

argument source text (S)
It is unethical to destroy human embryos. The basic
argument supporting this claim just stresses that it is
wrong to intentionally kill innocent human beings.
verbatim reason statements in source text (R)
it is wrong to intentionally kill innocent human beings
(ref: (1))
verbatim conjectures in the source text (J)
It is unethical to destroy human embryos (ref: (3))
argument reconstruction (A)
(1) It is impermissible to kill innocent human beings.
(2) The human embryo is an innocent human being.
— with hypothetical syllogism from (1) (2) —
(3) It is impermissible to kill the human embryo.

po)

& | i S — formalizes F £ 0,
/ S %
)
& & ol
o {v -
reconstructs
drgument in K

9

\.

& / «

S e
formalizes Lormalizes Q\&ﬁ

/~ o

Figure 2: Relationships between dimensions of the
multi-angular argumentative data.

premises of the reconstructed argument (P)
It is impermissible to kill innocent human beings | The
human embryo is an innocent human being
final conclusion of reconstr. argument (C)
It is impermissible to kill the human embryo
formalizations of premises (F)
x):Fx—=Gx|(x):Hx—Fx
formalization of conclusion (O)
x):Hx—=Gx
keys for the formalizations’ constants (K)
F: innocent human being | G: must not be killed | H:
human embryo

Each record in a DeepA2 dataset contains a
source text plus a legitimate comprehensive argu-
mentative analysis, which is, given underdetermi-
nation, not necessarily the only compelling recon-
struction of the text; moreover, a dataset may con-
tain different records with one and the same source
text analysed in several ways. So, for example, an
alternative, equally legitimate argument reconstruc-
tion of the above source text (S) may read:
argument reconstruction (A)

(1) If it is wrong to kill innocent human beings, then it
is wrong to kill a human embryo.
(2) It is wrong to kill innocent human beings.

— with modus ponens from (1) (2) —
(3) It is wrong to kill a human embryo.

Beyond this structural and functional character-
ization, DeepA?2 is agnostic about the nature and
origin of the argumentative data. Synthetically gen-
erated, automatically retrieved, manually created
datasets as well as translations of other databases
are all compatible with the framework and can be
used side by side.

3.3 Generative Modes and Chains

Given DeepA2’s multi-dimensional data structure
described in the previous section, a generative
mode maps data from some input dimensions to
a target dimension. For example, the mode s~ A

takes a source text (S) as input and outputs an argu-
ment reconstruction (A), the mode RJ~A recon-
structs the argument (A) given the verbatim reasons
(R) and conjectures (J). All in all, we define and

15

investigate 21 different generative modes (see Ap-
pendix B). Every mode represents a task on which
a text-to-text model can be trained.

By taking some mode’s output as another mode’s
input, modes can be concatenated into generative
chains. For example, the output of modes s~r
and s~J (reasons and conjectures from source)
can be fed into mode RJ~A to reconstruct an
argument. Such generative chains allow us to em-
ulate different strategies (heuristics) for analysing
a given argumentative text (see Appendix C for
technical details).

Three generative chains which model distinct
interpretative strategies, taking a source text (S) as
sole input, are:

straight
S~A S~R S~1J
hermeneutic cycle
S~A SA~R SA~J RJ-A
logical streamlining
S~+A AP A~C C~O CO~K
OK~C PC~A SA~R SA~J

While the chain straight, where no output ever
serves as input to another mode, represents a simple
baseline, hermeneutic cycle and logical streamlin-
ing mimic prominent, equally-named methods in ar-
gument analysis (cf. Bowell and Kemp, 2014; Brun
and Betz, 2016). One goes through a hermeneutic
cycle, generally speaking, if one revisits a text in
view of its previous interpretation, as, for example,
insteps sA~R SA~J, where the source text (S)
is re-interpreted (identifying reason statements and
conjectures) given the previously reconstructed ar-
gument (A), so as to subsequently re-reconstruct the
argument itself (step RI~A). To logically stream-
line a reconstruction means to rephrase its con-
clusion or premises in order to make their logico-
semantic structure more transparent. Such seman-
tic clarification can be emulated by (i) formalizing
a statement (e.g., A~C Cc~0 co~K)and (ii)
using the keys (K) to retrieve the original statement
from the generated logical formulas (such as in
oK~ C), from which the argument can be re-built
(step PC~A).
For evaluation, we append to each generative
chain the following sub-chain that formalizes the
reconstructed argument:

formalization
A~P A~C PwF CPF~0 PFCO~K

A generative chain can be construed as hy-
pergraph on the dimensions of DeepA2’s multi-
angular datasets, with each of its modes represent-
ing a directed hyper-edge. Summing up the num-
ber of input dimensions (except S) over all modes
yields a simple graph centrality measure, which
gauges a chain’s sophistication. Thus, straight,
hermeneutic cycle and logical streamlining display
a sophistication of 0, 4, and 11, respectively.

3.4 Metrics

As discussed in Section 3.1, an argument recon-
struction should both be sound and make sense
of the text to-be-interpreted. In line with the dual
goal of argument analysis, we propose metrics both
for the systematic correctness and for the exegetic
adequacy of a given analysis. The following met-
rics measure the degree to which a given generated
argument is systematically correct:

SYS-PP 1 if the argument is not a petitio principii
(i.e., if no premise is identical with its final
conclusion), 0 otherwise;

SYS-RP 1 if the argument has no redundant
premises (i.e., if no premise occurs more than
once), 0 otherwise;

SYS-RC 1 if the argument has no redundant conclu-
sions (i.e., if no conclusion — intermediary or
final — occurs more than once), O otherwise;

SYS-US 1 if all statements in the argument other
than the final conclusion are explicitly used in
an inference, O otherwise;

SYS-SCH ratio of sub-arguments which correctly
instantiate the explicitly stated inference
scheme (e.g., hypothetical syllogism);

SYS-VAL 1 if the argument is globally valid (i.e., if
the final conclusion deductively follows from
the premises), 0 otherwise;

All six systematic metrics can be computed au-
tomatically (SYS-SCH tries to parse the argument
based on the inference schemes and templates used
to construct the synthetic dataset in the first place;
SYS-VAL passes the model-generated formalizations
of premises and conclusion to a symbolic theorem
prover (De Moura and Bjgrner, 2008); and the re-
maining metrics check for string identity).

Whereas systematic metrics apply primarily to
the generated argument (A), a reconstruction’s in-
terpretative adequacy will also depend on how rea-
sons (R) and conjectures (J) coherently link the
argument’s components to the original text. As a
first set of exegetic metrics, we thus propose

16

EXE-MEQ 1 if the reasons and conjectures are
mutually exclusive verbatim quotes from the
source text, 0 otherwise;

EXE-RSS semantic similiarity (BLEURT, see Sel-
lam et al., 2020) of each reason statement and
its counterpart premise in the reconstructed
argument (if such exists, -1 otherwise);

EXE-JSS semantic similiarity (see EXE-RSS) of each
conjecture statement and its counterpart in
the reconstructed argument (if such exists, -1
otherwise).

Each source text presents (more or less faithfully)
an underlying target argument, which in turn marks
some of the text’s statements as ‘target’ reasons,
others as ‘target’ conjectures. The following two
metrics assess the degree to which a comprehen-
sive argumentative analysis correctly predicts (R,
J) those target reasons and conjectures.

EXE-PPR predictive performance (F1-score) for
identifying (target) reason statements in the
source text;

EXE-PP] predictive performance (F1-score) for
identifying (target) conjecture statements in
the source text.

An argument’s final conclusion may be implicit or
explicit in a given text. The ability to fully exploit
a text can be measured by verifying whether the re-
constructed argument’s final conclusion is implicit
(= prediction) if and only if the target argument’s
one is.

EXE-TE text exploitation, as measured by ability
(F1-score) to reconstruct arguments with ex-
plicit final conclusions (prediction) if and only
if the target final conclusions are explicit.

3.5 Models

Any text-to-text language model is compatible with
the proposed DeepA?2 framework. We refer to mod-
els used within the framework as ArgumentAna-
lyst. In this study, we train and evaluate the trans-
former model T5 (Raffel et al., 2020) with 770M
parameters as implemented by (Wolf et al., 2020).

3.6 Limitations

In the DeepA2 framework, arguments are recon-
structed from relatively short and isolated texts,
disregarding both the broader context of the argu-
ment and domain-specific background knowledge.
This limits the framework, as presented here, in

important ways: Implicit premises that are expli-
cated in an argument reconstruction can neither
be checked for plausibility nor for agreement with
the author’s broader convictions. In addition, the
framework cannot assess an argument’s dialectic
function in a wider debate. It seems worthwhile to
explore according extensions of the framework in
future research.

4 Datasets

For the experiments reported below, we syntheti-
cally create two artificial argument analysis corpora
that comply with the DeepA2 framework (see also
Appendix A): AAACO01 and AAAC02. In addition,
we translate the synthetic RuleTaker (Clark et al.,
2020) and the manually compiled EntailmentBank
(Dalvi et al., 2021) datasets into our framework.

In argument analysis, one proceeds from a source
text fo its reconstruction. Creating the synthetic
corpora, we reverse-engineer this process:

Step 1. We sample, first of all, a possibly com-
plex argument (A) from a set of valid inference
schemes. In doing so, we use a multi-step templat-
ing strategy (inspired by Betz et al., 2021) to trans-
late symbolic forms into natural language schemes
(which were generated by local domain experts)
and to substitute natural language terms for place-
holders. Premises (P), conclusion (C) and their
formalization (F, O, K) are side-products of such a
construction of an argument.

Step 2. Given the fully explicit argument (A), we
compose a text (S) that presents the argument in a
more or less transparent and faithful way. Such text
creation involves: rendering the argument tree as
a linear story, leaving out premises or conclusions
(implicit premises and conclusions), inserting ir-
relevant material (distractors), using templates that
obfuscate the logical form of a sentence, limiting
the use of premise and conclusion indicators (such
as “therefore”), applying rule-based and automatic
paraphrasing. In composing the argumentative text
(S), we may record its reasons (R) and conjectures
@).

Given the synthetic and controlled nature of our
dataset, which involved eliciting rule templates
from a group of local domain experts, all data is
assumed to be correct by construction. As an addi-
tional check of correctness on the logic of our exam-
ples, we ran a symbolic theorem prover (De Moura
and Bjgrner, 2008) over the argument formaliza-
tions to verify their validity. To ensure the fluency

17

of the underlying language templates, all templates
were hand verified by the authors.

Our two datasets AAACO1 and AAACO2 differ in
the following ways:

1. predicates and names are sampled from dif-
ferent, disjunct domains (texts are about, e.g.,
allergies and family relations versus, e.g., bad-
minton and cooking) to test a model’s robust-
ness to lexical diversity (Rozen et al., 2019);
similarly, AAACO1 applies automatic para-
phrasing (Alisetti, 2021) to the final source
text whereas AAACO02 doesn’t;

AAACO2 allows for imprecise renditions of log-
ical formulas, while AAACO1 sticks to plain
formulations to test robustness to variations in
description of rules.

Each dataset contains diverse texts and argu-
ments. Broadly speaking, data records may dif-
fer in terms of properties of the argument (step
1 above) and properties of the argument’s presen-
tation (step 2). Along these two dimensions, we
define five homogeneous subsets of the data:

simple inference: arguments with a single infer-
ence step that neither involves negation nor
compositional predicates;

complex inference: arguments with four infer-
ence steps that heavily rely on syntactically
intricate schemes (e.g., transposition, or de
Morgan);

plain presentation: all premises and conclusions
are explicit in the source text which, in addi-
tion, contains no distractors;

mutilated presentation: at least two premises
and one conclusion are implicit, while the text
contains two distractors and explicitly states
the final conclusion;

C&M: the argument’s inference is complex, plus
the text contains at least two distractors.

The RuleTaker and EntailmentBank datasets con-
tain multi-hop inference trees (A). To import these
into the DeepA2 framework, we create source texts
(S) for the given arguments by means of simple
templates (such as “{theory} All this entails: {hy-
pothesis}”) and record reasons (R) and conjectures
(J) on the fly. Unlike AAAC and EntailmentBank,
RuleTaker (as updated in Tafjord et al., 2020) con-
tains an equal share of arguments for which (i)
the conclusion follows from the premises, (ii) the
conclusion contradicts the premises, (iii) the con-
clusion is independent of the premises.

5 Experiments and Results

As first and main experiment we train our
base model (see Section 3.5) on the AAACO1 cor-
pus, and evaluate the resulting ArgumentAnalyst
model out-of-domain on AAAC02. ArgumentAna-
lyst undergoes multi-task training on 21 genera-
tive modes, which are interpreted as sequence-to-
sequence tasks (the training set-up is further de-
scribed in Appendix B).

The evaluation of ArgumentAnalyst on AAAC02
proceeds in two steps: (1.) prediction: produces
output in accordance with 16 different generative
chains (Appendix C); (2.) metrics application:
assesses the quality of the generated output by
means of the systematic and exegetic metrics of
the DeepA2 framework (see Section 3.4).

Table 1 reports the ability of ArgumentAnalyst
to generate systematically correct and exegetically
adequate argument reconstructions. We obtain sim-
ilar global results with the three chains straight,
hermeneutic cycle, and logical streamlining, whose
generated reconstructions mainly differ in terms
of internal coherence (EXE-RSS, EXE-JSS) and text
exploitation (EXE-TE). However, the different gen-
erative chains complement each other, as shown by
pooling, which does not only outperform individual
chains, but nearly attains oracle performance.

Moreover, ArgumentAnalyst produces much bet-
ter reconstructions of simple inferences and plain
presentations — compared to complex inferences
and mutilated presentations, i.e., difficult problems
(cf. Table 5 in App. D). In addition, within one
and the same subset, substantial differences show
up between the three generative chains. Globally
speaking, hermeneutic cycle outperforms the other
two chains for difficult problems.

Is ArgumentAnalyst capable of reliable self-
evaluation? We have validated the logic metric
(SYS-VAL), which passes on a self-generated formal-
ization of the reconstructed argument to a theorem
prover, in three ways: First of all, ArgumentAna-
lyst correctly recognizes target arguments as valid
(with accuracy 92.7%), which has been verified
by running the formalization subchain on target
data. Secondly, virtually every generated argument
with all-correct scheme instantiations (i.e., SYS-
SCH = 1) is also — and correctly — recognized as
logically valid. Thirdly, a manual analysis (human-
in-the-loop) of 100 generated arguments with in-
correct scheme instantiation (i.e., SYS-SCH < 1)
reveals a high rate of false negatives: roughly one

18

half of all inferences that are not automatically
identified as an instantiation of the given scheme
actually do correctly instantiate it. The accordingly
adjusted global ratio of correct scheme instanti-
ations (Table 1) equals roughly 0.65 (rather than
0.31-0.33), which is consistent with the ratio of
logically valid arguments being 0.72-0.73.

Do reconstructed arguments exhibit basic seman-
tic flaws? Regarding the full dataset, Argument-
Analyst produces nearly flawless argument re-
constructions, committing basic errors (petitio,
redundancy, unused statements) only very rarely
(Table 1). And even for very difficult problems,
two thirds of all generated arguments display no
basic flaw whatsoever (Table 5, SYS-PP & SYS-RP &
SYS-RC & SYS-US).

Are reconstructed arguments logically valid?
Roughly 70% of all arguments generated by one of
the three chains are logically valid (Table 1). More
importantly, though, for virtually every source
text in the dataset, there is at least one chain
(out of 16) which reconstructs the text as a valid
argument (pooling). Given that logical validity
can be automatically assessed, the pooled system
may thus guarantee to yield a valid reconstruc-
tion. Concerning different problem types (Table 5),
hermeneutic cycle clearly outperforms the other
chains as soon as the problem gets difficult. Ad-
ditional analysis shows that ArgumentAnalyst can
also cope with underdetermination, as 68% of all
generated arguments whose final conclusion differs
(BLEU < .8) from the target argument’s one — i.e.,
arguments that are not reconstructed as expected
given the target data — are still logically valid.

Are the generated interpretations internally coher-
ent? The generative chain hermeneutic cycle yields
comprehensive argument reconstructions where
premises (P) and conclusions (C) fit much better
to detected reasons (R) and conjectures (J) than
straight or logical streamlining (EXE-RSS, EXE-JSS).
This holds globally (Table 1), as well as for easy,
and for difficult problems (Table 5). Note that the
oracle baseline for metrics EXE-RSS, EXE-JSS is well
below 1, which reflects the fact that source texts
may present arguments in highly mutilated ways;
it is nearly attained by pooling the 16 different
generative chains (Table 1).

Can ArgumentAnalyst detect reasons and conjec-
tures, and fully exploit the text? The evaluation
demonstrates that reason/conjecture detection on
AAACO?2 is a relatively easy task (EXE-PPR, EXE-PPJ).

systematic metrics (SYS-*)

exegetic metrics (EXE-*)

chain PP RP RC UsS SCH VAL MEQ RSS JSS PPR PPJ TE
straight 95 97 .96 .96 .33 73 .80 -.08 -.10 .93 .93 .63
herm. cy. .95 98 95 .93 31 72 .82 .16 12 .93 92 71
logic. str. .95 97 .96 .95 32 72 .82 11 .00 .93 .92 .69
pooling 1.0 1.0 1.0 1.0 13 1.0 1.0 .26 .29 .96 .96 97
oracle 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .30 37 1.0 1.0 1.0

Table 1: Performance of ArgumentAnalyst on the AAACO02 data as measured by systematic and exegetic metrics.
Rows display results for three illustrative generative chains (straight, hermeneutic cycle, logical streamlining), for
the item-wise best performing generative chain out of all 16 chains (pooling), and for oracle performance (oracle),
which one obtains by applying the metrics to the target data itself.

ArgAnEB ArgAnAAAC,EB EntWr
steps straight herm. straight herm.
cycle cycle
1 .863 .866 .816 871 951
2 798 815 813 .826 .886
3 812 815 .826 .806 .858
4 157 791 .820 822 .838
>5 795 811 786 773 742
any .819 .830 .816 .834 .879

Table 2: Predictive performance of ArgumentAnalyst
(ArgAngg, ArgAnaaaces) and EntailmentWriter (En-
tWr) for identifying reason statements in an input text
(metric SYS-PPR) on the EntailmentBank task2 dataset.

In contrast, fully exploiting a text (i.e., generating
an argument with implicit final conclusion if and
only if the underlying target argument has an im-
plicit final conclusion, EXE-TE) is seemingly more
challenging (Table 1). Again, hermeneutic cycle
achieves best text exploitation, performing, how-
ever, clearly below oracle baseline — which may
simply reflect the degree of underdetermination in
the AAACO2 corpus.

In a second experiment we train two models
on the imported EntailmentBank (taskl and task2)
dataset (see Section 4), namely: (1.) our base
model (T5), which yields ArgumentAnalystgg; (2.)
the ArgumentAnalyst model pretrained on AAAC02
(resulting in an intermediary pre-training set-up
similar to Phang et al., 2018; Geva et al., 2020),
which yields ArgumentAnalystasAc.EB-

Since the EntailmentBank data doesn’t contain
formalizations, we can only train on 14 modes,
which are interpreted as sequence-to-sequence
tasks (see Appendix B). We evaluate the models
on task2 of EntailmentBank only, which contains
problems with a relatively large number of distrac-
tors, and proceed in two steps as before: prediction
(with 11 different generative chains) and metrics

19

application. Dalvi et al. (2021) report the ability of
EntailmentWriter (a fine-tuned T5-11b model) to
correctly distinguish relevant premises of an argu-
ment from distractors in terms of a F1-score, which
corresponds to our metric EXE-PPR. That’s why the
sole focus in this second experiment is on EXE-PPR.

Table 2 describes the ability of ArgumentAna-
lyst models to correctly tell apart relevant premises
from mere distractors in the EntailmentBank task2
dataset for two generative chains (straight, which
directly outputs reason statements, and hermeneu-
tic cycle, which tries to reconstruct the argument
first and uses both source text and argument to
identify reasons), and compares this with the per-
formance of EntailmentWriter (scores from Dalvi
et al., 2021). The results, shown separately for ar-
guments with a specific number of inference steps,
let us draw three conclusions:

First, ArgumentAnalyst outperforms Entailmen-
tWriter on difficult problems with more than 4 in-
ference steps / sub-arguments.

Second, using the sophisticated chain hermeneu-
tic cycle improves predictive performance com-
pared to the simple straight chain.

Third, the chain hermeneutic cycle (unlike
straight) generally benefits from intermediary pre-
training on AAAC — caveat: not so for arguments
with more than 4 steps. This latter observation
might be due to the fact that the AAACO2 corpus, by
construction, doesn’t contain arguments with more
than 4 steps, so that pre-training biases the model
towards shorter arguments.

In a third experiment we explore the following
hypothesis:

Informative higher-order evidence. The degree
to which ArgumentAnalyst struggles in recon-
structing a given argument (presented in the
source text) as logically valid is a reliable in-

dicator for whether the original argument is
fallacious or not.

To test this hypothesis, we apply ArgumentAnalyst
(trained on AAAC02, see above) to the RuleTaker
data as imported into the DeepA2 framework (see
Section 4): ArgumentAnalyst produces — by means
of 13 generative chains — comprehensive recon-
structions, to which the systematic and exegetic
metrics are applied. RuleTaker contains an equal
share of arguments whose conclusions follow from
(label=valid), contradict (label=contradiction), or
are independent of (label=neutral) the correspond-
ing premises. Now, informative higher-order ev-
idence would allow us to correctly predict these
labels. And this is exactly what we observe: First,
if reconstructions of one and the same source text
which are independently generated with different
chains agree (disagree), then the original argument
tends to be valid (invalid). Second, by training
simple classifiers on our argumentative metrics and
further properties of the reconstructions, we ro-
bustly achieve a predictive accuracy 10% above
the random baseline. While this is far below the
SOTA results of tailor-made RuleTaker (Clark et al.,
2020) and ProofWriter (Tafjord et al., 2020) mod-
els on this data, our findings nonetheless confirm
the above hypothesis.

6 Conclusion

In this paper, we have presented and implemented
a multi-angular, modular framework for deep ar-
gument analysis (DeepA2). It allows for defining
a large variety of generative modes by combining
different dimensions of the data. These modes, in
turn, can be concatenated into complex generative
chains. ArgumentAnalyst — a text-to-text model
set up and trained within the DeepA2 framework —
yields plausible reconstructions of argumentative
texts. Our empirical findings vindicate the overall
framework and highlight the following advantages
of a multi-angular, modular design in general:
First of all, modular chains may emulate estab-
lished, well-proven, typically piece-meal, schol-
arly techniques for text analysis (heuristics), which
hence may provide normative, methodological
guidance in setting up NLP systems. Secondly,
by defining and implementing different modular
chains, and investigating the plurality of gener-
ated solutions, one can systematically explore the
system’s uncertainty as well as the tasks’s un-
derdetermination. Thirdly, monitoring the sys-

20

tem during modular computation yields diagnosti-
cally useful information (e.g., intermediary results)
which not only describes the model’s performance
on the given problem, but which additionally al-
lows us — as higher-order evidence — to character-
ize (e.g., classify) the original problem in the first
place. Fourthly, breaking down a complex task into
sub-tasks with intermediary results that can be fur-
ther processed and re-combined helps to overcome
input size limitations of neural language models.
Fifthly, modular generation with meaningful modes
allows users to follow the system, comprehend gen-
erated solutions, verify sub-steps and detect errors
— the NLP system becomes a transparent, explain-
able AI (Miller, 2019). Finally, modular NLP sys-
tems as described by DeepA2 may be connected
to a user-interface which promises fine-grained
interactive control of modular generations and
seamless cognitive cooperation of Al and human
experts in analysing texts.

Acknowledgments

We’re indebted to Christian Voigt for his critical
and constructive feedback throughout the DeepA2
project.

References

Christopher Akiki and Martin Potthast. 2020. Exploring
argument retrieval with transformers notebook for the
touche lab on argument retrieval at clef 2020.

Robert Alexy. 1989. A theory of legal argumentation:
the theory of rational discourse as theory of legal
Jjustification. Clarendon Press, Oxford.

Sai Vamsi Alisetti. 2021. Paraphrase generator with t5.
https://github.com/Vamsi995/Paraphrase-Generator.

Pratyay Banerjee and Chitta Baral. 2020. Self-
supervised knowledge triplet learning for zero-shot
question answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 151-162.

Roy Bar-Haim, Lilach Eden, Roni Friedman, Yoav Kan-
tor, Dan Lahav, and N. Slonim. 2020. From argu-
ments to key points: Towards automatic argument
summarization. In ACL.

Jordan Beck, Bikalpa Neupane, and John M. Carroll.
2019. Managing conflict in online debate communi-
ties. First Monday, 24(7).

Gregor Betz, Christian Voigt, and Kyle Richardson.
2021. Ceritical thinking for language models. In
Proceedings of the 14th International Conference on
Computational Semantics (IWCS). Association for
Computational Linguistics.

Kaj Bostrom, Xinyu Zhao, Swarat Chaudhuri, and Greg
Durrett. 2021. Flexible operations for natural lan-
guage deduction. ArXiv, abs/2104.08825.

Tracey Bowell and Gary Kemp. 2014. Critical Thinking:
A Concise Guide, 4th edition edition. Routledge,
London.

Michael Bruce and Steven Barbone. 2011. Just the
arguments: 100 of the most important arguments in
Western philosophy. Wiley-Blackwell, Chichester,
West Sussex, U.K.

Georg Brun. 2014. Reconstructing arguments: Formal-
ization and reflective equilibrium. Logical Analysis
and History of Philosophy, 17:94-129.

Georg Brun and Gregor Betz. 2016. Analysing practical
argumentation. In Sven Ove Hansson and Gertrude
Hirsch-Hadorn, editors, The Argumentative Turn in
Policy Analysis. Reasoning about Uncertainty, pages
39-77. Springer, Cham.

Tuhin Chakrabarty, Aadit Trivedi, and Smaranda
Muresan. 2021. Implicit premise generation with
discourse-aware commonsense knowledge models.
In EMNLP.

David Christensen. 2010. Higher-order evidence. Phi-

losophy and Phenomenological Research, 81(1):185—
215.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020.
Transformers as soft reasoners over language. In Pro-
ceedings of the Twenty-Ninth International Joint Con-
ference on Artificial Intelligence (IJCAI-20), pages
3882-3890.

Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan
Xie, Hannah Smith, Leighanna Pipatanangkura, and
Peter Clark. 2021. Explaining answers with entail-
ment trees. arXiv preprint arXiv:2104.08661.

Leonardo De Moura and Nikolaj Bjgrner. 2008. Z3:
An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and
Analysis of Systems, pages 337-340. Springer.

J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

L. Ein-Dor, Eyal Shnarch, Lena Dankin, Alon Halfon,
Benjamin Sznajder, Ariel Gera, Carlos Alzate, Mar-
tin Gleize, Leshem Choshen, Yufang Hou, Yonatan
Bilu, R. Aharonov, and N. Slonim. 2020. Corpus
wide argument mining - a working solution. ArXiv,
abs/1911.10763.

Isabela Fairclough and Norman Fairclough. 2012. Polit-
ical Discourse Analysis. Routledge, London.

Richard Feldman. 1998. Reason and Argument, 2nd
edition. Pearson, Prentice hall.

21

Alec Fisher. 2004. The Logic of Real Arguments, 2nd
ed edition. Cambridge University Press, New York.

Mor Geva, Ankit Gupta, and Jonathan Berant. 2020.
Injecting numerical reasoning skills into language
models. In ACL.

Nicolas Gontier, Koustuv Sinha, Siva Reddy, and
Christopher Pal. 2020. Measuring systematic gener-
alization in neural proof generation with transform-
ers.

Shai Gretz, Roni Friedman, Edo Cohen-Karlik, Assaf
Toledo, Dan Lahav, R. Aharonov, and N. Slonim.
2020. A large-scale dataset for argument qual-

ity ranking: Construction and analysis. ArXiv,
abs/1911.11408.

Ivan Habernal, Judith Eckle-Kohler, and Iryna
Gurevych. 2014. Argumentation mining on the web
from information seeking perspective. In Elena
Cabrio, Serena Villata, and Adam Wyner, editors,
ArgNLP 2014. Frontiers and Connections between
Argumentation Theory and Natural Language Pro-
cessing. Proceedings of the Workshop on Frontiers
and Connections between Argumentation Theory and
Natural Language Processing. CEUR-WS.org.

Ivan Habernal, Henning Wachsmuth, Iryna Gurevych,
and Benno Stein. 2018. The argument reasoning
comprehension task: Identification and reconstruc-
tion of implicit warrants. In NAACL-HLT.

Sven Ove Hansson and Gertrude Hirsch-Hadorn, editors.
2016. The Argumentative Turn in Policy Analysis.
Reasoning about Uncertainty. Springer, Cham.

Aishwarya Kamath and R. Das. 2019. A survey on
semantic parsing. ArXiv, abs/1812.00978.

Nora Kassner and Hinrich Schiitze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7811-7818, Online. Asso-
ciation for Computational Linguistics.

Joe Y. F. Lau. 2011. An Introduction to Critical Think-
ing and Creativity: Think More, Think Better. Wiley,
Hoboken, N.J.

John Lawrence and Chris Reed. 2020. Argument
Mining: A Survey. Computational Linguistics,
45(4):765-818.

Hannes Leitgeb and André Carus. 2021. Rudolf Car-
nap. Supplement D: Methodology. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philos-
ophy, Summer 2021 edition. Metaphysics Research
Lab, Stanford University.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension.

Tim Miller. 2019. Explanation in artificial intelligence:
Insights from the social sciences. Artif. Intell., 267:1—
38.

Marie-Francine Moens. 2018. Argumentation mining:
How can a machine acquire common sense and world
knowledge? Argument & Computation, 9:1-14.

Jason Phang, Thibault Févry, and Samuel R. Bowman.
2018. Sentence encoders on stilts: Supplementary
training on intermediate labeled-data tasks. CoRR,
abs/1811.01088.

Martin Potthast, Lukas Gienapp, F. Euchner, Nick
Heilenkotter, Nicolas Weidmann, Henning
Wachsmuth, Benno Stein, and Matthias Hagen. 2019.
Argument search: Assessing argument relevance.
Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in
Information Retrieval.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage models are unsupervised multitask learners.
Preprint.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-

former. Journal of Machine Learning Research,21:1—
67.

. Rodrigues, Ruben Branco, J. Silva, and A. Branco.
2020. Reproduction and revival of the argument
reasoning comprehension task. In LREC.

Ohad Rozen, Vered Shwartz, Roee Aharoni, and Ido
Dagan. 2019. Diversify your datasets: Analyzing
generalization via controlled variance in adversarial
datasets.

Swarnadeep Saha, Sayan Ghosh, Shashank Srivastava,
and Mohit Bansal. 2020. Prover: Proof generation
for interpretable reasoning over rules. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2020, Online,
November 16-20, 2020, pages 122—136. Association
for Computational Linguistics.

Swarnadeep Saha, Prateek Yadav, and M. Bansal. 2021.
multiprover: Generating multiple proofs for im-
proved interpretability in rule reasoning. ArXiv,
abs/2106.01354.

Oliver R. Scholz. 2000. Was es heilit, eine argumen-
tation zu verstehen? - zur konstitutiven rolle von
prasumtionen. In Geert-Lueke Lueken, editor, For-
men der Argumentation, pages 161-176. Leipziger
Universitatsverlag, Leipzig.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh.
2020. Bleurt: Learning robust metrics for text gener-
ation. arXiv preprint arXiv:2004.04696.

22

Richard Shin, C. H. Lin, Sam Thomson, Charles Chen,
Subhro Roy, Emmanouil Antonios Platanios, Adam
Pauls, D. Klein, J. Eisner, and Benjamin Van Durme.
2021. Constrained language models yield few-shot
semantic parsers. ArXiv, abs/2104.08768.

Andrew Siegel. 2018. Ethics of Stem Cell Research.
In Edward N. Zalta, editor, The Stanford Encyclope-
dia of Philosophy, Winter 2018 edition. Metaphysics
Research Lab, Stanford University.

Shahbaz Syed, Khalid Al-Khatib, Milad Alshomary,
Henning Wachsmuth, and Martin Potthast. 2021.
Generating informative conclusions for argumenta-
tive texts. In FINDINGS.

Oyvind Tafjord and Peter Clark. 2021. General-purpose
question-answering with macaw.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter
Clark. 2020. Proofwriter: Generating implications,
proofs, and abductive statements over natural lan-
guage. arXiv preprint arXiv:2012.13048.

Alon Talmor, Yanai Elazar, Yoav Goldberg, and
Jonathan Berant. 2020. olmpics - on what language
model pre-training captures. Trans. Assoc. Comput.
Linguistics, 8:743-758.

Christian Voigt. 2014. Argdown and the stacked ma-
sonry layout: Two user interfaces for non-expert

users. In Computational Models of Argument, pages
483484, Amsterdam et al. IOS Press.

Henning Wachsmuth, Martin Potthast, Khalid Al Khatib,
Yamen Ajjour, Jana Puschmann, Jiani Qu, Jonas
Dorsch, Viorel Morari, Janek Bevendorff, and Benno
Stein. 2017. Building an argument search engine for
the web. In ArgMining@EMNLP.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

A Synthetic Argument Data

The AAAC datasets used in this study are pub-
licly available via Huggingface’s Hub — https:
//huggingface.co/datasets/debatelab/aaac
— where the construction of the datasets is
documented meticulously.

A synthetically generated AAAC record, which
nicely illustrates the underdetermination of argu-
ment reconstruction, with two implicit premises,

one distracting statement and a simple (one-step)

argument (formatted as presented to the model):
source: It is not the case that Tracy
is not an admirer of Fullerton and Tracy
has seen La Habra. Plus, if someone
loves Chico, then they haven’t visited
Monterey, owing to the fact that loving
Laguna Beach is sufficient for not
having visited Monterey.

reasons: loving Laguna Beach is
sufficient for not having visited
Monterey (ref: (2))

conjectures: 1f someone loves Chico,
then they haven’t visited Monterey (ref:
(4))

argdown:

(1) If someone is an admirer of Chico,
then they are an admirer of Laguna Beach
or a visitor of Stockton.

(2) If someone admires Laguna Beach,
then they haven’t visited Monterey.

(3) If someone has visited Stockton,
then they haven’t visited Monterey.

with generalized dilemma
from (1) (2) (3)

(4) If someone admires Chico,
haven’t visited Monterey.
premises: I1f someone is an admirer
of Chico, then they are an admirer of
Laguna Beach or a visitor of Stockton.

(neg variant)

then they

(ref: (1)) | If someone admires Laguna
Beach, then they haven’t visited
Monterey. (ref: (2)) | If someone

has visited Stockton, then they haven’t
visited Monterey. (ref: (3))
conclusion: If someone admires Chico,
then they haven’t visited Monterey.
(ref: (4))

premises_form: (x) : Fx —> (G x v H x)
(ref: (1)) | (x): G x —> not I x (ref:
(2)) | (x): H x -> not I x (ref: (3))
conclusion_ form: (x): F x -> not I x
(ref: (4))

keys: F: admirer of Chico | G: admirer

of Laguna Beach | H: visitor of Stockton
| I: visitor of Monterey

B Training Set-up

By interpreting a generative mode as a sequence-
to-sequence task, we may translate a multi-angular
DeepA2 dataset (e.g., AAACO1) into a multi-task
sequence-to-sequence format, on which a sequence-
to-sequence model can be trained. For each record
in the multi-angular DeepA2 dataset, we randomly
sample 14 modes in accordance with the weights
provided in Table 3 and add, for each mode, a corre-
sponding sequence-to-sequence record to the train-
ing data. This results, for AAACO1, in a sequence-to-
sequence training dataset with 14 x 16.000 records.

Our models (base model T5-large with 770M
parameters, and pretrained ArgumentAnalyst) are

23

mode wiws | mode wiwy | mode W1W2
S~ A 1. 1. S~R 1. 1. P~F -
SR~A 1. 1. SJI~R 1. 1. PCO~F .7 —
SJ~A 1. 1. SA~R 1.1. C~O0 -
SRJ~A 1. 1. S~J 1. 1. CPF~O0O 7 -
RJ~A 1. 1. SR~J 1. 1. PF~K 1 -
PC~A 1. 1. SA~J 1. 1. CO~—K -
A~P 2.2 A~C 22 PFCO~K .7 —
FK~P .7 — OK~C .7 —

Table 3: 21 generative modes with corresponding
weights in AAAC (w)) and EntailmentBank (w,) train-
ing data.

trained with batch-size 2 and learning rate 0.00001.
For AAACO1, eval loss starts to increase at epoch 8;
with EntailmentBank data, eval loss increases from
epoch 2 onwards.

C Iterative Prediction with Generative
Chains

Generative chains are implemented with a dynamic
dictionary (9 keys, corresp. to the dimensions of
DeepA2 data), which is initialized with the source
text, provides input for the generative modes, and is
updated after each generative step with the mode’s
generated output. Output is generated with beam
search decoding and beam width 2.

Table 4 displays all generative chains we resort
to in this study, all of which are used in the first
experiment. The second experiment makes use of
chains 1-11. The third experiment deploys chains
1-13.

D Additional Results

Table 5 assesses ArgumentAnalyst’s reconstruc-
tions on specific subsets of the AAAC02 dataset (de-
fined in Section 4) for three representative genera-
tive chains.

Table 6 details the performance of Argument-
Analyst on the entire AAAC02 dataset as measured
by tailor-made argumentative metrics. Table 7
shows the corresponding performance on out-of
-sample eval data AAACOI.

Distinguishing four mutually exclusive subsets
of AAAC02, Tables 8—11 detail the the quality of
ArgumentAnalyst’s reconstruction for easy and
difficult problems. Tables 12—-15 present the
corresponding out-of-sample performance on the
equally partitioned AAACO1 dataset (eval split).

mode sequence

len. soph.

12

13

15

16

S~A S~R S~1J

S~J S~R SJ~A

S~J S~R SR~A

S~J S~R RJ-A

S~J SJ—vR RJ~A

S~J SJ~R SRJ-A

S~R SR~J RJ-A

S~R SR~J SRJ-A

S~A SA~R SA~J RJ-A
S~A SA~R SA~J SRJ-A
S~A SA~R SA~J SRJIJ-A
SA~R SA~J SRJ-A
S~A A~P A~C P~F
PFvK FK~P PCw—A
SA~R SA~J

S~A A~P A~C C~O
CO~K OK~C PCwA
SA~R SA~J

S~+A A~P A~C C~O
CO~+~K OK~C PC~vA A~P
A~C P-vF PFvK FK~P
PC—-A SA~R SA~J

S~A A~P A~C P~F
CPF~O PFCO~K FK~P
OK~C PC—vA SA~R
SA~J

S~A A~P A~C P~F
CPF~O PCO~F PFCO~K
FK~P OK~C PC~A
SA~R SA~J

w

N R R WW W W W W W

15

11

12

0 A A W W W W N = = O

—
—_

11

20

18

21

Table 4: 16 generative chains (without final formal-
ization sub-sequences) evaluated in this study. The
illustrative chains highlighted in the main paper are
#1 (straight), #9 (hermeneutic cycle), and #13 (logical

streamlining).

24

inference presentation
simple compl. plain mutil. C&M
chain N=1274 N=180 N=330 N=114 N=70
SYS-PP & SYS-RP & SYS-RC & SYS-US
straight .95 72 .98 .61 .69
herm. c. .94 .68 .96 .67 .61
log. str. .95 .68 .98 .64 .61
SYS-VAL
straight .84 48 .88 40 34
herm. c. .83 .56 .84 49 .50
log. str. .82 47 .86 46 37
EXE-RSS
straight .03 -.25 .05 =31 -.30
herm. c. .20 .08 15 .08 11
log. str. 17 -.01 13 .01 -.06
EXE-JSS
straight .06 -.32 .10 -.37 -.37
herm. c. 23 -.06 21 -.03 -21
log. str. 13 -.26 .07 -.26 -40

Table 5: Performance of ArgumentAnalyst on specific
subsets (columns) of the AAACO02 data as measured by
selected systematic and exegetic metrics (sub-tables).
Rows display results for three illustrative generative
chains (straight, hermeneutic cycle, logical streamlin-
ing).

systematic metrics (SYS-*) exegetic metrics (EXE-*)

chain PP RP RC Us SCH VAL MEQ RSS JSS PPR PPJ TE

#1 0.95 0.97 0.96 0.96 0.33 0.73 0.80 -0.08 -0.10 0.93 0.93 0.63
#2 0.95 0.97 0.94 0.94 0.33 0.71 0.80 -0.09 0.04 0.93 0.93 0.67
#3 0.95 0.98 0.95 0.93 0.31 0.70 0.80 0.10 -0.11 0.93 0.93 0.62
#4 0.94 0.97 0.94 0.92 0.30 0.70 0.80 0.12 -0.00 0.93 0.93 0.66
#5 0.94 0.97 0.95 0.91 0.30 0.70 0.83 0.13 0.05 0.94 0.93 0.69
#6 0.94 0.97 0.95 0.93 0.31 0.70 0.83 0.10 0.03 0.94 0.93 0.67
#7 0.93 0.97 0.95 0.92 0.29 0.70 0.83 0.13 0.05 0.93 0.92 0.68
#8 0.94 0.97 0.95 0.93 0.30 0.69 0.83 0.10 0.02 0.93 0.92 0.67
#9 0.95 0.98 0.95 0.93 0.31 0.72 0.82 0.16 0.12 0.93 0.92 0.71

#10 0.96 0.98 0.96 0.94 0.32 0.71 0.82 0.14 0.09 0.93 0.92 0.69
#11 0.96 0.98 0.96 0.93 0.32 0.71 0.82 0.15 0.11 0.93 0.92 0.71
#12 0.93 0.95 0.94 0.94 0.32 0.71 0.81 -0.17 -0.08 0.93 0.92 0.68
#13 0.95 0.97 0.96 0.95 0.32 0.72 0.82 0.11 -0.00 0.93 0.92 0.69
#14 0.93 0.95 0.94 0.94 0.32 0.70 0.81 -0.18 -0.14 0.93 0.92 0.66
#15 0.92 0.96 0.94 0.95 0.33 0.71 0.81 -0.20 -0.19 0.93 0.92 0.65
#16 0.92 0.96 0.94 0.94 0.33 0.72 0.81 -0.20 -0.19 0.93 0.92 0.65

Table 6: Performance of ArgumentAnalyst for systematic and exegetic metrics on the entire OOD eval data
(AAAC02). Rows display mean results for each of the 16 generative chains.

systematic metrics (SYS-*) exegetic metrics (EXE-*)

chain PP RP RC US SCH VAL MEQ RSS JSS PPR PPJ TE

#1 0.97 0.98 0.97 0.98 0.61 0.87 0.78 0.08 0.13 0.95 0.95 0.64
#2 0.97 0.98 0.96 0.97 0.60 0.87 0.78 0.09 0.24 0.95 0.95 0.68
#3 0.96 0.98 0.96 0.97 0.58 0.86 0.78 0.26 0.12 0.95 0.95 0.64
#4 0.95 0.98 0.95 0.96 0.57 0.85 0.78 0.26 0.20 0.95 0.95 0.67
#5 0.96 0.98 0.95 0.96 0.57 0.84 0.80 0.27 0.27 0.96 0.95 0.70
#6 0.97 0.98 0.96 0.96 0.58 0.84 0.80 0.26 0.24 0.96 0.95 0.69
#7 0.95 0.98 0.96 0.96 0.57 0.86 0.79 0.27 0.26 0.95 0.94 0.71
#8 0.96 0.98 0.96 0.96 0.57 0.85 0.79 0.26 0.25 0.95 0.94 0.70
#9 0.97 0.99 0.97 0.97 0.59 0.88 0.79 0.31 0.36 0.96 0.95 0.78
#10 0.97 0.99 0.97 0.97 0.60 0.87 0.79 0.30 0.34 0.96 0.95 0.77
#11 0.97 0.99 0.97 0.97 0.60 0.87 0.79 0.31 0.35 0.96 0.95 0.77

#12 0.95 0.97 0.95 0.96 0.54 0.84 0.79 0.17 0.25 0.96 0.94 0.75
#13 0.97 0.99 0.97 0.97 0.61 0.87 0.79 0.29 0.32 0.96 0.95 0.76
#14 0.95 0.97 0.95 0.96 0.54 0.84 0.79 0.16 0.24 0.96 0.94 0.74
#15 0.94 0.97 0.95 0.96 0.54 0.85 0.79 0.15 0.18 0.96 0.95 0.73
#16 0.94 0.97 0.95 0.95 0.54 0.85 0.79 0.15 0.19 0.96 0.95 0.73

Table 7: Performance of ArgumentAnalyst for systematic and exegetic metrics on the entire OOS eval data (AAACO1).
Rows display mean results for each of the 16 generative chains.

25

inference presentation inference presentation

chain simple complex plain mutilat. C&M chain simple complex plain mutilat. C&M
SYS-PP & SYS-RP & SYS-RC & SYS-US EXE-RSS
#1 0.95 0.72 0.98 0.61 0.69 #1 0.03 -0.25 0.05 -0.31 -0.30
#2 0.93 0.66 0.96 0.59 0.60 #2 0.02 -0.27 0.07 -0.33 -0.31
#3 0.92 0.69 0.96 0.68 0.73 #3 0.15 -0.03 0.12 -0.01 -0.06
#4 0.92 0.66 0.95 0.69 0.60 #4 0.16 0.01 0.12 -0.01 0.04
#5 0.92 0.68 0.95 0.59 0.61 #5 0.18 0.04 0.13 0.04 0.06
#6 0.93 0.66 0.97 0.68 0.59 #6 0.17 -0.04 0.12 -0.02 -0.09
#7 0.92 0.67 0.96 0.62 0.64 #7 0.18 0.05 0.14 0.03 0.08
#8 0.92 0.66 0.95 0.64 0.66 #8 0.16 -0.02 0.12 -0.02 -0.07
#9 0.94 0.68 0.96 0.67 0.61 #9 0.20 0.08 0.15 0.08 0.11
#10 0.94 0.73 0.98 0.68 0.77 #10 0.19 0.04 0.15 0.05 -0.01
#11 0.94 0.69 0.98 0.66 0.73 #11 0.21 0.04 0.15 0.07 -0.03
#12 0.93 0.60 0.95 0.57 0.50 #12 -0.14 -0.20 -0.12 -0.23 -0.25
#13 0.95 0.68 0.98 0.64 0.61 #13 0.17 -0.01 0.13 0.01 -0.06
#14 0.92 0.57 0.93 0.58 0.49 #14 -0.17 -0.22 -0.16 -0.23 -0.26
#15 0.92 0.66 0.95 0.59 0.56 #15 -0.19 -0.23 -0.24 -0.24 -0.23
#16 0.92 0.64 0.95 0.56 0.60 #16 -0.19 -0.23 -0.24 -0.25 -0.24

Table 8: Performance of ArgumentAnalyst for selected ~ Table 10: Performance of ArgumentAnalyst for selected
systematic metric (SYS-PP & SYS-RP & SYS-RC & SYS-US) on exegetic metrics (EXE-RSS) on specific subsets (columns)

specific subsets (columns) of the OOD eval data. of the OOD eval data.
inference presentation inference presentation
chain simple complex plain mutilat. C&M chain simple complex plain mutilat. C&M
SYS-VAL EXE-JSS
#1 0.84 0.48 0.88 0.40 0.34 #1 0.06 -0.32 0.10 -0.37 -0.37
#2 0.82 0.54 0.84 0.47 0.46 #2 0.16 -0.17 0.19 -0.12 -0.26
#3 0.82 0.44 0.87 0.39 0.36 #3 0.02 -0.32 0.03 -0.42 -0.33
#4 0.81 0.48 0.83 0.44 0.43 #4 0.12 -0.17 0.13 -0.14 -0.19
#5 0.82 0.44 0.85 0.45 0.37 #5 0.15 -0.11 0.15 -0.08 -0.18
#6 0.81 0.46 0.85 0.42 0.41 #6 0.16 -0.14 0.15 -0.22 -0.22
#7 0.83 0.44 0.82 0.46 0.49 #7 0.16 -0.11 0.16 -0.10 -0.18
#8 0.80 0.44 0.83 0.40 0.40 #8 0.15 -0.18 0.14 -0.19 -0.27
#9 0.83 0.56 0.84 0.49 0.50 #9 0.23 -0.06 0.21 -0.03 -0.21
#10 0.82 0.50 0.85 0.46 0.43 #10 0.23 -0.12 0.21 -0.15 -0.27
#11 0.82 0.48 0.84 0.46 0.41 #11 0.25 -0.13 0.20 -0.11 -0.27
#12 0.81 0.47 0.84 0.42 0.37 #12 0.06 -0.36 0.04 -0.28 -0.47
#13 0.82 0.47 0.86 0.46 0.37 #13 0.13 -0.26 0.07 -0.26 -0.40
#14 0.80 0.48 0.82 0.41 0.40 #14 -0.02 -0.39 -0.07 -0.31 -0.48
#15 0.82 0.45 0.84 0.50 0.33 #15 -0.08 -0.41 -0.16 -0.36 -0.49
#16 0.83 0.52 0.85 0.46 0.43 #16 -0.08 -0.37 -0.15 -0.35 -0.45

Table 9: Performance of ArgumentAnalyst for se- Table 11: Performance of ArgumentAnalyst for selected
lected systematic metric (SYs-VAL) on specific subsets exegetic metric (EXE-JSS) on specific subsets (columns)
(columns) of the OOD eval data. of the OOD eval data.

26

inference presentation inference presentation

chain simple complex plain mutilat. C&M chain simple complex plain mutilat. C&M
SYS-PP & SYS-RP & SYS-RC & SYS-US EXE-RSS
#1 0.98 0.78 1.00 0.75 0.76 #1 0.19 -0.16 0.11 -0.07 -0.18
#2 0.97 0.77 0.99 0.70 0.73 #2 0.21 -0.13 0.10 -0.05 -0.15
#3 0.95 0.79 0.96 0.77 0.74 #3 0.30 0.11 0.17 0.22 0.06
#4 0.95 0.76 0.96 0.69 0.73 #4 0.29 0.16 0.16 0.24 0.16
#5 0.97 0.75 0.98 0.66 0.74 #5 0.32 0.18 0.19 0.23 0.18
#6 0.96 0.77 0.98 0.73 0.78 #6 0.31 0.11 0.18 0.19 0.07
#7 0.96 0.73 0.96 0.71 0.72 #7 0.30 0.15 0.17 0.25 0.16
#8 0.97 0.75 0.97 0.73 0.74 #8 0.30 0.12 0.17 0.24 0.08
#9 0.98 0.80 0.99 0.80 0.70 #9 0.33 0.23 0.19 0.30 0.23
#10 0.98 0.78 0.99 0.80 0.73 #10 0.33 0.20 0.19 0.27 0.16
#11 0.98 0.78 0.99 0.80 0.71 #11 0.33 0.21 0.19 0.28 0.16
#12 0.97 0.71 0.97 0.70 0.67 #12 0.20 0.06 0.11 0.16 0.04
#13 0.98 0.81 0.99 0.76 0.78 #13 0.33 0.12 0.19 0.26 0.07
#14 0.96 0.73 0.96 0.70 0.69 #14 0.20 0.06 0.10 0.16 0.03
#15 0.97 0.72 0.96 0.70 0.68 #15 0.18 0.04 0.07 0.14 0.00
#16 0.97 0.72 0.96 0.68 0.68 #16 0.18 0.04 0.07 0.11 0.02

Table 12: Performance of ArgumentAnalyst for selected ~ Table 14: Performance of ArgumentAnalyst for selected
systematic metric (SYS-PP & SYS-RP & SYS-RC & SYS-US) on exegetic metrics (EXE-RSS) on specific subsets (columns)

specific subsets (columns) of the OOS eval data. of the OOS eval data.
inference presentation inference presentation
chain simple complex plain mutilat. C&M chain simple complex plain mutilat. C&M
SYS-VAL EXE-JSS

#1 0.97 0.68 0.96 0.74 0.74 #1 0.35 -0.14 0.36 -0.09 -0.13
#2 0.97 0.68 0.97 0.73 0.71 #2 0.40 0.02 0.39 0.10 0.02
#3 0.94 0.70 0.94 0.72 0.71 #3 0.30 -0.15 0.29 -0.08 -0.15
#4 0.95 0.65 0.94 0.68 0.71 #4 0.36 0.03 0.33 0.08 -0.02
#5 0.96 0.59 0.95 0.65 0.62 #5 0.41 0.15 0.39 0.17 0.11

#6 0.95 0.62 0.96 0.69 0.63 #6 0.40 0.04 0.38 0.10 -0.01
#7 0.94 0.66 0.94 0.66 0.71 #7 0.39 0.12 0.37 0.15 0.06
#8 0.95 0.67 0.95 0.69 0.69 #8 0.39 0.08 0.38 0.10 -0.02
#9 0.97 0.65 0.97 0.72 0.69 #9 0.47 0.16 0.42 0.31 0.13

#10 0.97 0.67 0.97 0.68 0.72 #10 0.47 0.11 0.42 0.26 0.02
#11 0.97 0.70 0.97 0.68 0.74 #11 0.47 0.11 0.42 0.26 0.02
#12 0.95 0.63 0.95 0.72 0.70 #12 0.40 -0.01 0.35 0.14 -0.08
#13 0.97 0.68 0.95 0.73 0.73 #13 0.45 0.03 0.36 0.21 -0.01
#14 0.95 0.63 0.94 0.72 0.69 #14 0.38 -0.00 0.30 0.15 -0.05
#15 0.95 0.65 0.94 0.75 0.71 #15 0.30 -0.04 0.22 0.07 -0.07
#16 0.95 0.65 0.95 0.73 0.71 #16 0.30 -0.03 0.22 0.11 -0.06

Table 13: Performance of ArgumentAnalyst for se- Table 15: Performance of ArgumentAnalyst for selected
lected systematic metric (SYs-VAL) on specific subsets exegetic metric (EXE-JSS) on specific subsets (columns)
(columns) of the OOS eval data. of the OOS eval data.

27

Semantics-aware Attention Improves Neural Machine Translation

Aviv Slobodkin

Leshem Choshen

Omri Abend

School of Computer Science and Engineering
The Hebrew University of Jerusalem
{aviv.slobodkin, leshem.choshen,omri.abend}@mail.huji.ac.il

Abstract

The integration of syntactic structures into
Transformer machine translation has shown
positive results, but to our knowledge, no work
has attempted to do so with semantic struc-
tures. In this work we propose two novel
parameter-free methods for injecting seman-
tic information into Transformers, both rely on
semantics-aware masking of (some of) the at-
tention heads. One such method operates on the
encoder, through a Scene-Aware Self-Attention
(SASA) head. Another on the decoder, through
a Scene-Aware Cross-Attention (SACrA) head.
We show a consistent improvement over the
vanilla Transformer and syntax-aware models
for four language pairs. We further show an
additional gain when using both semantic and
syntactic structures in some language pairs.

1 Introduction

It has long been argued that semantic representa-
tion can benefit machine translation (Weaver, 1955;
Bar-Hillel, 1960). Moreover, RNN-based neural
machine translation (NMT) has been shown to ben-
efit from the injection of semantic structure (Song
et al., 2019; Marcheggiani et al., 2018). Despite
these gains, to our knowledge, there have been
no attempts to incorporate semantic structure into
NMT Transformers (Vaswani et al., 2017). We ad-
dress this gap, focusing on the main events in the
text, as represented by UCCA (Universal Cogni-
tive Conceptual Annotation; Abend and Rappoport,
2013), namely scenes.

UCCA is a semantic framework originating
from typological and cognitive-linguistic theories
(Dixon, 2009, 2010, 2012). Its principal goal is
to represent some of the main elements of the se-
mantic structure of the sentence while disregarding
its syntax. Formally, a UCCA representation of a
passage is a directed acyclic graph where leaves
correspond to the words of the sentence and nodes
correspond to semantic units. The edges are la-
beled by the role of their endpoint in the relation

28

corresponding to their starting point (see Fig. 1).
One of the motivations for using UCCA is its capa-
bility to separate the sentence into "Scenes"”, which
are analogous to events (see Fig. 1). Every such
Scene consists of one main relation, which can be
either a Process (i.e., an action), denoted by P, or a
State (i.e., continuous state), denoted by S. Scenes
also contain at least one Participant (i.e., entity),
denoted by A. For example, the sentence in Fig. la
comprises two scenes: the first one has the Process
"saw" and two Participants — "I" and "the dog"; the
second one has the Process "barked" and a single
Participant — "dog".

So far, to the best of our knowledge, the only
structure-aware work that integrated linguistic
knowledge and graph structures into Transform-
ers used syntactic structures (Strubell et al., 2018;
Bugliarello and Okazaki, 2020; Akoury et al., 2019;
Sundararaman et al., 2019; Choshen and Abend,
2021, inter alia). The presented method builds on
the method proposed by Bugliarello and Okazaki
(2020), which utilized a Universal Dependencies
graph (UD; Nivre et al., 2016) of the source sen-
tence to focus the encoder’s attention on each to-
ken’s parent, namely the token’s immediate ances-
tor in the UD graph. Similarly, we use the UCCA
graph of the source sentence to generate a scene-
aware mask for the self-attention heads of the en-
coder. We call this method SASA (see §2.1).

We test our model (§2) on translating English
into four languages. Two that are more syntac-
tically similar to English (Nikolaev et al., 2020;
Dryer and Haspelmath, 2013): German (En-De),
Russian (En-Ru), and two that are much less so:
Turkish (En-Tr) and Finnish (En-Fi). We selected
these language pairs for their varied grammatical
properties and the availability of reliable parallel
datasets for each of them in the WMT benchmark.
We find consistent improvements across multiple
test sets for all four cases.

In addition, we create a syntactic variant of

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 28 - 43
July 14-15, 2022 ©2022 Association for Computational Linguistics

H — Parallel Scene
P — Process
A — Participant
C - Center
E — Elaborate
R - Relator
| saw the dog that barked o
the
& doy
AT B\ A P ih;
I saw the dog dog barked barked

H —Parallel Scene
P — Process

A — Participant

C - Center

E —Elaborate

L - Linker

he said goodbye and

he said goodbye he

left

barked

the

party

goodbye
and
left
the
party

said

left the party

(b) He said goodbye and left the party.

Figure 1: Examples of UCCA parse graphs of the sentences "I saw the dog that barked" (1a) and "He said goodbye
and left the party" (1b), accompanied by their segmentation into scenes (+ corresponding UCCA sub-graphs) and
equivalent Scene-Aware masks. The dark-green color in the masks represents the value *1°, and the light-green

color to the value ’0’.

our semantic model for better comparability. We
observe that on average, our semantically aware
model outperforms the syntactic models. Moreover,
for the two languages less similar to English (En-Tr
and En-Fi), combining both the semantic and the
syntactic data results in a further gain. While im-
provements are often small, at times the combined
version outperforms SASA and UDISCAL (our
syntactic variant, see §3) by 0.52 and 0.69 BLEU
points (or 0.46 and 0.43 chrF), respectively.

We also propose a novel method for introducing
the source graph information during the decoding
phase, namely through the cross-attention layer in
the decoder (see §2.2). We find that it improves
over the baseline and syntactic models, although
SASA is generally better. Interestingly, for En-
Fi, this model also outperforms SASA, suggesting
that some language pairs may benefit more from
semantic injection into the decoder.

Overall, through a series of experiments (see §4),
we show the potential of semantics as an aid for
NMT. We experiment with a large set of variants
of our method, to see where and in what incorpora-
tion method they best help. Finally, we show that

29

semantic models outperform UD baselines and can
be complementary to them in distant languages,
showing improvement when combined.

2 Models

Transformers have been shown to struggle when
translating some types of long-distance dependen-
cies (Choshen and Abend, 2019; Bisazza et al.,
2021a), and when facing atypical word order
(Bisazza et al., 2021b). Sulem et al. (2018a) pro-
posed UCCA based preprocessing at inference
time, splitting sentences into different scenes. They
hypothesized that models need to decompose the
input into scenes implicitly, and provide them with
such a decomposition, as well as with the original
sentence. They show that this may facilitate ma-
chine translation (Sulem et al., 2020) and sentence
simplification (Sulem et al., 2018b) in some cases.

Motivated by these advances, we integrate
UCCA to split the source into scenes. However,
unlike Sulem et al., we do not alter the sentence
length in pre-processing, as this method allows
less flexibility in the way information is passed,
and as preliminary results in reimplementing this

method yielded inferior results (see §A.5). Instead,
we investigate ways to integrate the split into the
attention architecture.

We follow previous work (Bugliarello and
Okazaki, 2020) in the way we incorporate our se-
mantic information. In their paper, Bugliarello and
Okazaki (2020) introduced syntax in the form of a
parent-aware mask, which was applied before the
softmax layer in the encoder’s self-attention. We
mask in a similar method to introduce semantics.
However, parent in the UCCA framework is an
elusive concept, given that nodes may have mul-
tiple parents. Hence, we use a different way to
express the semantic information in our mask, i.e.,
we make it scene-aware, rather than parent-aware.

Following Sulem et al. (2018b), we divide the
source sentence into scenes, using the sentence’s
UCCA parse. We then define our Scene-Aware
mask:

L
0,

if 1,j in the same scene

Mcli, j] =)

otherwise

Intuitively, an attention head masked this way
is allowed to attend to other tokens, as long as
they share a scene with the current one.! Figure 1
demonstrates two examples of such masks, accom-
panied by their UCCA parse graphs and the seg-
mentation into Scenes from which these masks
were generated.

Our base model is the Transformer (Vaswani
et al., 2017), which we enhance by making the
attention layers more scene-aware. We force one”
of the heads to attend to words in the same scene
which we assume are more likely to be related than
words from different scenes. As we replace regular
self-attention heads with our scene-aware ones, we
maintain the same number of heads and layers as
in the baseline.

2.1 Scene-Aware Self-Attention (SASA)

Figure 2 presents the model’s architecture. For
a source sentence of length L, we obtain the
keys, queries, and values matrices denoted by
K Q" Vi € RI*4 respectively. Then, to get
the output matrix O° € R“*?, we perform the fol-
lowing calculations:

'Tn case a token belongs to more than one scene, as is the
case with the word “dog” in Fig. 1a, we allow it to attend to
tokens of all the scenes it belongs to.

’Initial trials with more than one head did not show further
benefit for UCCA based models.

30

o
matmul

Pointwise mul

5
| softmax |
[scale |
[matmul |
KooQ

vi

L

Figure 2: Scene-aware self-attention head for the input
sentence "I saw the dog that barked", consisting of two
scenes: "I saw the dog" and "dog barked".

S* = Softmazx (Q’ x (KHT .

3)

is a scaling factor, the softmax in equa-

O'=5"0M;x V'

1
Where NG

tion 2 is performed element-wise, M fg €0,
our pre-generated scene-aware mask and the © in
equation 3 denotes an element-wise multiplication.
The difference between our method and a vanilla
Transformer (Vaswani et al., 2017) lies in equation
3, with the element-wise multiplication between
M fg and S*, which is absent from the vanilla Trans-
former (the rest is the same).

]_LXL is

2.2 Scene-Aware Cross-Attention (SACrA)

Next, we design a model in which we integrate
information about the scene structure through the
cross-attention layer in the decoder (see Fig. 3).
Thus, instead of affecting the overall encoding of
the source, we bring forward the splits to aid in
selecting the next token.

Formally, for a source sentence of length L.
and target sentence of length L.,, we compute
for each head the queries and values matrices, de-
noted by Q' € REtrgXdmodet and V' ¢ REsrexd
accordingly. Regarding key values, denoted by
Kie RELsrexLirg e calculate them as follows:

1

LST’C (4)

K = (X

)T x M) -
where X7, € REsreXdmodet g the encoder’s out-
put and Mg € {0, 1}FsreXLsre s our pre-generated
mask.

|

e ot i

|

saw

the

LSTC

dog

that

barked

Lsrc_l ‘é
&)
dinodel

M;
Ls'r't'

Figure 3: Scene-aware cross-attention head for the
source sentence "I saw the dog that barked."

i
Xene

LSTL‘

Finally, we pass V?, Q" and K through a regular
attention layer, as with the standard Transformer
architecture.

Scene-Aware Key Matrix. The rationale behind
the way we compute our scene-aware keys matrix
lies in the role of the keys matrix in an attention
layer. In the cross-attention layer, the queries come
from the decoder. Source-side contextual informa-
tion is encoded in the keys, which come from the
encoder. Therefore, when we assign the same scene
masks to all the words that are included in the same
set of scenes, the key values for these words will
be the same, and they will thus be treated similarly
by the query. As a result, the query will give the
same weight to source tokens that share the same
set of scenes. Therefore, a complete scene (or a
few scenes), rather than specific tokens (as with the
vanilla Transformer), will influence what the next
generated token will be, which will in turn yield a
more scene-aware decoding process.

3 Experimental Setting

Data Preparation. First, we unescaped HTML
characters and tokenized all our parallel corpora
(Koehn et al., 2007). Next, we removed empty
sentences, sentences longer than 100 tokens (ei-
ther on the source or the target side), sentences
with a source-target ratio larger than 1.5, sentences
that do not match the corpus’s language as deter-

31

mined by langid Lui and Baldwin, 2012, and sen-
tences that fast align (Dyer et al., 2013) considers
unlikely to align (minimum alignment score of -
180). Then, for languages with capitalization, we
trained true-casing models on the train set (Koehn
et al., 2007) and applied them to all inputs to the
network. Finally, we trained a BPE model (Sen-
nrich et al., 2016), jointly for language pairs with
a similar writing system (e.g., Latin, Cyrillic, etc.)
and separately otherwise, and then applied them
accordingly.

We trained our model on the full WMT16 dataset
for the English—German (En-De) task, using the
WMT newstest2013 as development set. We also
trained our models on a train set consisting of Yan-
dex Corpus, News Commentary v15, and Wikititles
v2 for the English—Russian (En-Ru) task. In ad-
dition, we trained our models on the full WMT19
dataset (excluding ParaCrawl, in order to avoid
noisiness in the data) for the English—Finnish (En-
Fi). Finally, we trained on the full WMT18 dataset
for the English—Turkish (En-Tr) task. For the test
sets, we used all the newstests available for every
language pair since 2012, excluding the one desig-
nated for development.

Models. Hyperparameters shared by all models
are described in §3. We tune the number of heads
that we apply the mask to (#heads) and the layers
of the encoder we apply SASA to (layer), using the
En-De development set. We start with tuning the
layers for SASA, which we find is layer = 4, and
then we tune the #heads (while fixing layer =
4), and get #head = 1. We also use the En-De
development set to tune the #heads and the layers
of the SACrA model in a similar fashion, namely
first the layers and then the #heads (with the tuned
layers fixed). We find the best hyperparameters are
#heads = 1 and layers = 2&3. For both models,
we apply the tuned hyperparameters to all other
language pairs. Interestingly, while it is common
practice to change all the layers of the model, we
find it suboptimal. Moreover, the fact that semantic
information is more beneficial in higher layers, in
contrast to the syntactic information that is most
helpful when introduced in lower layers (see §3)
may suggest that semantics is relevant for more
complex generalization, which is reminiscent of
findings by previous work (Tenney et al., 2019a;
Belinkov, 2018; Tenney et al., 2019b; Peters et al.,
2018; Blevins et al., 2018; Slobodkin et al., 2021).

UCCA parses are extracted using a pretrained

BERT-based TUPA model, that was trained on
sentences in English, German and French (Her-
shcovich et al., 2017).

Binary Mask. For the SASA model, we experi-
ment with two types of masks: a binary mask, as
described in §2, and scaled masks, i.e.,

L
C,

if i,j in the same scene
(&)

Ml 3] = { otherwise

where C' € (0, 1). By doing so, we allow some
out-of-scene information to pass through, while
still emphasizing the in-scene information (by keep-
ing the value of M for same-scene tokens at 1). In
order to tune C, we performed a small grid search
over C' € {0.05,0.1,0.15,0.2,0.3,0.5}.

Additionally, similarly to Bugliarello and
Okazaki (2020), we test a normally-distributed
mask, according to the following equation:

Mi,j - fnov-m(m =C- dlSt(l,,])) (6)

where fyorm is the density function of the nor-
mal distribution:

22

1 e_ 202
V2ro?

We define a scene-graph where nodes are scenes
and edges are drawn between scenes with over-
lapping words. dist(i,j) is the shortest distance
between tokens ¢ and j. to ensure

Jrnorm (33) = (N

the value of M is 1 for words that share a scene

(dist(i,7)=0), and C is a hyperparameter, which
is determined through a grid search over C' €
{0.1,0.2,0.5,+/0.5}. For each of those two scaled
versions of the mask, we choose the mask which
has the best performance and compare it to the bi-
nary mask (see 1). We find that neither outperforms
the binary mask. Therefore, we report the rest of
our experiments with the binary mask.

g =

Baselines.
models:

We compared our model to a few other

e Transformer. Standard Transformer-based
NMT model, using the standard hyperparame-
ters, as described in §3.

* PASCAL. Following Bugliarello and Okazaki
(2020), we generate a syntactic mask for the
self-attention layer in the encoder. We extract
a UD-graph (Nivre et al., 2016) with udpipe

32

(Straka and Strakovd, 2017). The value of the
entries of the masks equal (see equation 7):

Mpt,j = fnorm(x = (] - pt)) (3)
with 0 = 1 and p; being the middle position
of the ¢-th token’s parent in the UD graph of
the sentence.

We use the same general hyperparameters as
in the Transformer baseline. In addition, fol-
lowing the tuning of Bugliarello and Okazaki
(2020), we apply the PASCAL mask to five
heads of the first attention layer of the encoder,
but unlike the original paper, we apply it after
the layer’s softmax, as it yields better results
and also resembles our model’s course of ac-
tion.

UDISCAL. In an attempt to improve the PAS-
CAL model, we generate a mask that instead
of only being sensitive to the dependency par-
ent, is sensitive to all the UD relations in the
sentences. We denote it UD-Distance-Scaled
mask (UDISCAL). Namely, in order to com-
pute the mask, we use a similar equation to
that of PASCAL, with a minor alteration:

M;j = fuorm(x = dist(i,7)) (9

Where 0 = 1, and dist(i,j) is defined to
be the distance between the token i and the
token j in the UD graph of the sentence while
treating the graph as undirectional. As with
the PASCAL layer, we apply the UD-scaled
mask after the softmax layer. But, unlike the
PASCAL head, we tuned the architecture’s
hyperparameters to be just one head of the
first layer, after performing a small grid search,
namely testing with all layers [€ [1, 4], and
then with #head € [1,5].

Training Details. All our models are based
on the standard Transformer-based NMT model
(Vaswani et al., 2017), with 4000 warmup steps.
In addition, we use an internal token representa-
tion of size 256, per-token cross-entropy loss func-
tion, label smoothing with ¢, = 0.1 (Szegedy
et al., 2016), Adam optimizer, Adam coefficients
B1 = 0.9 and B = 0.98, and Adam € = e~ !. Fur-
thermore, we incorporate 4 layers in the encoder
and 4 in the decoder, and we employ a beam-search
during inference, with beam size 4 and normaliza-
tion coefficient « = 0.6. In addition, we use a

| models

| 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2020B |

| Transformer | 17.60 | 20.49 | 20.55 | 22.17 | 25.46 | 19.70 | 28.01 | 26.84 | 17.71 | 16.94 |
:#El_“frly_nf)“k 17.64 | 2037 | 20.84 | 22.48 | 2532 | 19.76 | 28.36 | 26.80 | 17.74 | 16.98
+ scaled mask

(#h=2, =4, C=0.1) 17.41 | 2021 | 20.53 | 22.43 | 24.95 | 19.81 | 28.25 | 27.21 | 18.03 | 17.01
+ normally distributed mask

(#h=2, 1=4, C=/05) 17.39 | 20.52 | 20.57 | 22.24 | 25.44 | 19.63 | 28.35 | 26.6 | 17.14 | 16.77

Table 1: BLEU scores for the top versions of our binary mask, scaled mask, and normally-distributed mask
methods across all the WMT En-De newstests. Each column contains the BLEU scores over the WMT newstest
corresponding to the year the column is labeled with (e.g., the scores under column 2015 are for En-De newstest2015).
For newstest2020, there was more than one version on WMT, each translated by a different person. Both versions
were included, with the second version denoted with a "B". The best score for each test set is boldfaced, unless

none is better than the baseline Transformer.

batch size of 128 sentences for the training. We
use chrF++.py with 1 word and beta of 3 to ob-
tain chrF+ (Popovic, 2017) score as in WMT19
(Ma et al., 2019) and detokenized BLEU (Papineni
et al., 2002) as implemented in Moses. We use the
Nematus toolkit (Sennrich et al., 2017), and we
train all our models on 4 NVIDIA GPUs for 150K
steps. The average training time for the vanilla
Transformer is 21.8 hours, and the average training
time for the SASA model is 26.5 hours.

4 Experiments

We hypothesize that NMT models may benefit from
the introduction of semantic structure, and present
a set of experiments that support this hypothesis
using the above-presented methods.

4.1 Scene-Aware Self-Attention

We find that on average, SASA outperforms the
Transformer for all four language pairs (see 3), at
times having gains larger than 1 BLEU point. More-
over, we assess the consistency of SASA’s gains,
using the sign-test, and get a p-value smaller than
0.01, thus exhibiting a statistically significant im-
provement (see §A.4). We see a similar trend when
evaluating the performance using the chrF metric
(see §A.2), which further highlights our model’s
consistent gains.

We also evaluate our model’s performance on
sentences with long dependencies (see A.3), which
were found to pose a challenge for Transformers
(Choshen and Abend, 2019). We assume that such
cases could benefit greatly from the semantic in-
troduction. In contrast to our hypothesis, we find
the gain to be only slightly larger than in the gen-

33

eral case, which leads us to conclude the improve-
ments we see do not specifically originate from
the syntactic challenge. Nevertheless, we still ob-
serve a consistent improvement, with gains of up
to 1.41 BLEU points, which further underscores
our model’s superiority over the baseline model.

Qualitative Analysis. Table 2 presents a few ex-
amples in which the baseline Transformer errs,
whereas our model translates correctly (see §A.6
for the UCCA parsings of the examples). In the
first example, the Transformer translates the word
“show” as a verb, i.e. to show, rather than as a
noun. In the second example, the baseline model
makes two errors: it misinterprets the word "look
forward to" as "look at", and it also translates it
as a present-tense verb rather than past-tense. The
third example is particularly interesting, as it high-
lights our model’s strength. In this example, the
Transformer makes two mistakes: first, it translates
the part "play with (someone) in the yard" as "play
with the yard". Next, it attributes the descriptive
clause "which never got out" to the yard, rather
than the children. It seems then that introducing in-
formation about the scene structure into the model
facilitates the translation, since it both groups the
word "kids" with the phrase "I used to play with
in the yard", and it also separates "never got out"
from the word "yard". Instead, it clusters the latter
with "kids", thus highlighting the relations between
words in the sentence. In general, all these ex-
amples are cases where the network succeeds in
disambiguating a word in its context.

Source sentences and Translations

Literal Translations into English

SRC Ipromised a show ? ‘
BASE ¢l obeman mokaszarh? ‘ I promised to show?
SASA 4 obemau moy? ‘ I promised a show?
SRC Students said they looked forward to his class . ‘
BASE CTyneHTHl CKa3asd, 9T0 OHH Students said, that they
CMOTPAT Ha CBOM KJacc. look at one’s classroom.
SASA CTyZeHTHl CKa3aJd, 9T0 OHH Students said, that they
C HeTepIIeHNeM KJAJIM CBOETO KJIACCA. impatiently waited one’s classroom.
I remember those kids I used to play
SRC o
with in the yard who never got out .
BASE 41 momHIO Tex JieTeit, KOTOpPbhIE §I UT'PAT I remember those kids, that I played with yard, that
C JBOPOM, KOTOPBI# HUKOTJA He Bhixoams. | never got out ("that" and "got out" refer to yard).
SASA ¢l mommuIO TEx mereit, ¢ Koropeimu s urpaj | I remember those kids, with which I played in yard,

Ha OBOp€, KOTOPbI€ HUKOI'/ZIa HE BBIILIA.

that never got out ("that" and "got out" refer to kids).

Table 2: Examples of correct translations generated by SASA, compared to the baseline Transformer.

4.2 Comparison to Syntactic Masks

Next, we wish to compare our model to other base-
lines. Given that this is the first work to incorporate
semantic information into the Transformer-based
NMT model, we compare our work to syntactically-
infused models (as described in §3): one is the
PASCAL model (Bugliarello and Okazaki, 2020),
and the other is our adaptation of PASCAL, the
UD-Distance-Scaled (UDISCAL) model, which re-
sembles better our SASA mask. We find (Table 3)
that on average, SASA outperforms both PASCAL
and UDISCAL. We also compare SASA with each
of the syntactic models, finding that it is signifi-
cantly (sign-test p < 0.01; see §A.4) better. This
suggests that semantics might be more beneficial
for Transformers than syntax.

4.3 Combining Syntax and Semantics

Naturally, our next question is whether combin-
ing both semantic and syntactic heads will further
improve the model’s performance. Therefore, we
test the combination of SASA with either PASCAL
or UDISCAL, retaining the hyperparameters used
for the separate models. We find that combining
with UDISCAL outperforms the former, and so
we continue with it. Interestingly, En-De and En-
Ru hardly benefit from the combination compared
just to the SASA model. We hypothesize that this
might be due to the fact that the syntax of each
language pair is already quite similar, and there-

fore the model mainly relies on it to separate the
sentence that UCCA gives it as well. On the other
hand, En-Fi and En-Tr do benefit from the combi-
nation, both on average and in most of the test sets.
Evaluating the performance using the chrF metric
(see §A.2) yields a similar behavior, which further
confirms its validity. It leads us to hypothesize
that language pairs that are more typologically dis-
tant from one another can benefit more from both
semantics and syntax; we defer a more complete
discussion of this point to future work. In order
to confirm that the combined version persistently
outperforms each of the separate versions for ty-
pologically distant languages, we compare each of
the pairs using the sign-test (only on the test sets of
En-Fi and En-Tr). We get a p-value of 0.02 for the
comparison with SASA and 0.0008 for the compar-
ison with UDISCAL. This suggests that for these
language pairs, there is indeed a significant benefit,
albeit small, from the infusion of both semantics
and syntax.

4.4 Scene-Aware Cross-Attention

Following the analysis on the scene-aware self-
attention, we wish to examine whether Transform-
ers could also benefit from injecting source-side
semantics into the decoder. For that, we develop
the Scene-Aware Cross-Attention (SACrA) model,
as described in §2.2. Table 3 presents the results of
SACrA, compared to the Transformer baseline and
SASA. We find that in general SASA outperforms

34

models	2012	2014	2015	2016	2017	2018	2019	2020	2020B	average
Transformer	17.6	2055	22.17	2546	197	2801	2684	17.71	16.94	21.66
PASCAL	1734	2059	22.62	25.1	1992	28.09	26,61	175	1681	21.62
UDISCAL	1742	2086	2253	2523	19.95	27.87	268	17.06	1639	21.57
SASA	17.647	20.84	2248	2532	19.76	28.36"	268	17.74"	16.98"	21.77"
SASA + UDISCAL	1751	2042	22.1	249	1972	2835	27.14*	1759	16.68	21.60
SACrA	17.11	2097	2259	24.64	1979	27.88	2628	168	1625	21.36
SACrA + UDISCAL	17.07	21.09*	22.26	24.85	19.56	28.1*	2649	16.66	1593	21.33
En-Ru										
models	2012	2013	2014	2015	2016	2017	2018	2019	2020	2020B
Transformer	2432	1811	2535	211	1977	2234	19	20.14	1564	2233
PASCAL	23.78	1837	24.87	2097	19.81	21.83	1881	19.93	1542	2148
UDISCAL	23.88	1831	2523	20.82	20.31	22.15	1927	2032	157	2219
SASA	24.17	18.43"	25,537	21.59"	20.11	22.69"	19.53T	202	15.76"	23.367
SASA + UDISCAL	24.36"	1829	2543	21.01	1979 2249	1925	204"	1597*	2242	2094
SACrA	2412	1824	2543"	21	2007	2249"	193"	2018	15.79"	22.15
SACrA + UDISCAL	2354	17.99	2491	20.62	19.67	21.55	18.63	19.89	1564	20.79
En-Fi

models	2015	2016	2016B	2017	2017B	2018	2019	average
Transformer	1122	1276	102	1335	1137	932	1221	1149
PASCAL	112	1267	1013	1354	1124	9.62	1223	1152
UDISCAL	10.87	1278	1023	1351	1143	92	1199	1143
SASA	11377	12.88"	10.52"	13747	1157	956	12,12	11.67"
SASA + UDISCAL	11.56*	128	1028	13.91*	11.52* 9.75*	12.64"	11.78"	
SACrA	11.48"	12.86"	10417	13.66"	11.49"	9.62	12517	11.721

|

| SACrA + UDISCAL | 11.06 | 12.6 | 10.13 | 1343 | 1126 | 923 | 12.05 | 1139

En-Tr
| models | 2016 | 2017 | 2018 | avera
‘Transformer ‘ 8.43 ‘ 8.55 ‘ 8.1 ‘ 8.36
| PASCAL | 85 | 876 | 798 | 84l
| UDISCAL | 833 | 866 | 803 | 834
| SASA | 859" | 8.86" | 8.167 | 8.54"
| SASA + UDISCAL | 8.64 | 8.87* | 82* | 857
| SACrA | 864" | 8811 | 796 | 847"
| SACrA + UDISCAL | 823 | 854 | 795 | 824

Table 3: BLEU scores for the baseline Transformer model, previous work that used syntactically infused models
— PASCAL and UDISCAL, our SASA and SACrA models, and models incorporating UDISCAL with SASA or
SACrA, across all WMT’s newstests. For every language pair, each column contains the BLEU scores over the
WMT newstest corresponding to the year the column is labeled with (e.g., for En-Ru, the scores under column 2015
are for En-Ru newstest2015). For some newstests, there was more than one version on WMT, each translated by a
different person. For those test sets, we included both versions, denoting the second one with a "B". In addition,
for every language pair, the right-most column represents the average BLEU scores over all the pair’s reported
newstests. For every test set (and for the average score), the best score is boldfaced. For each of the semantic models
(i.e., SASA and SACrA), improvements over all the baselines (syntactic and Transformer) are marked with an arrow
facing upwards. For models with both syntactic and semantic masks, improvements over each mask individually are

marked with an asterisk.

35

SACTrA, suggesting that semantics is more benefi-
cial during encoding. With that said, for three out
of the four language pairs, SACrA does yield gains
over the Transformer, albeit small, and for one
language pair (En-Fi) it even outperforms SASA
on average. Moreover, comparing SACrA to the
Transformer using the sign-test (see §A.4) shows
significant improvement (p = 0.047).

Surprisingly, unlike its self-attention counterpart,
combining the SACrA model with UDISCAL does
not seem to be beneficial at all, and in most cases
is even outperformed by the baseline Transformer.
We hypothesize that this occurs because appoint-
ing too many heads for our linguistic injection is
inefficient when those heads cannot interact with
each other directly, as the information from the UD-
ISCAL head reaches the SACrA head only after
the encoding is done. One possible direction for
future work would be to find ways to syntactically
enrich the decoder, and then to combine it with our
SACrA model.

5 Conclusion

In this work, we suggest two novel methods for
injecting semantic information into an NMT Trans-
former model — one through the encoder (i.e.
SASA) and one through the decoder (i.e. SACrA).
The strength of both methods is that they both do
not introduce more parameters to the model, and
only rely on UCCA-parses of the source sentences,
which are generated in advance using an off-the-
shelf parser, and thus do not increase the complex-
ity of the model. We compare our methods to pre-
viously developed methods of syntax injection, and
to our adaptation to these methods, and find that
semantic information tends to be significantly more
beneficial than syntactic information, mostly when
injected into the encoder (SASA), but at times also
during decoding (SACrA). Moreover, we find that
for sufficiently different languages, such as English
and Finnish or English and Turkish, incorporating
both syntactic and semantic structures further im-
proves the performance of the translation models.
Future work will further investigate the benefits of
semantic structure in Transformers, alone and in
unison with syntactic structure.

Acknowledgments

This work was supported in part by the Israel Sci-
ence Foundation (grant no. 2424/21), and by the

36

Applied Research in Academia Program of the Is-
rael Innovation Authority.

References

Omri Abend and Ari Rappoport. 2013. Universal Con-
ceptual Cognitive Annotation (UCCA). In Proc. of
ACL, pages 228-238.

Nader Akoury, Kalpesh Krishna, and Mohit Iyyer. 2019.
Syntactically supervised transformers for faster neu-
ral machine translation. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 1269-1281, Florence, Italy. Asso-
ciation for Computational Linguistics.

Y. Bar-Hillel. 1960. The present status of automatic
translation of languages. Adv. Comput., 1:91-163.

Yonatan Belinkov. 2018. On internal language repre-
sentations in deep learning: an analysis of machine
translation and speech recognition.

Arianna Bisazza, Ahmet Ustiin, and Stephan Sportel.
2021a. On the difficulty of translating free-order
case-marking languages. CoRR, abs/2107.06055.

Arianna Bisazza, Ahmet Ustiin, and Stephan Sportel.
2021b. On the difficulty of translating free-
order case-marking languages. arXiv preprint
arXiv:2107.06055.

Terra Blevins, Omer Levy, and Luke Zettlemoyer. 2018.
Deep RNNs encode soft hierarchical syntax. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 14-19, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Emanuele Bugliarello and Naoaki Okazaki. 2020. En-
hancing machine translation with dependency-aware
self-attention. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1618—1627, Online. Association for
Computational Linguistics.

Leshem Choshen and Omri Abend. 2019. Automati-
cally extracting challenge sets for non-local phenom-
ena in neural machine translation. In Proceedings
of the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 291-303, Hong
Kong, China. Association for Computational Linguis-
tics.

Leshem Choshen and Omri Abend. 2021. Transition
based graph decoder for neural machine translation.
arXiv preprint arXiv:2101.12640.

Christos Christodoulopoulos and Mark Steedman. 2015.
A massively parallel corpus: the bible in 100 lan-
guages. Lang. Resour. Evaluation, 49(2):375-395.

R.M.W. Dixon. 2009. Basic Linguistic Theory Volume
1: Methodology. Basic Linguistic Theory. OUP Ox-
ford.

R.M.W. Dixon. 2010. Basic Linguistic Theory Volume
2: Grammatical Topics. Basic Linguistic Theory.
OUP Oxford.

R.M.W. Dixon. 2012. Basic Linguistic Theory Volume
3: Further Grammatical Topics. Basic Linguistic
Theory. OUP Oxford.

Matthew S Dryer and Martin Haspelmath. 2013. The
world atlas of language structures online.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644-648, Atlanta,
Georgia. Association for Computational Linguistics.

Daniel Hershcovich, Omri Abend, and Ari Rappoport.
2017. A transition-based directed acyclic graph
parser for UCCA. In Proc. of ACL, pages 1127—
1138.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondfej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177-180, Prague, Czech Republic. Association
for Computational Linguistics.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Proceed-
ings of the ACL 2012 System Demonstrations, pages
25-30, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Qingsong Ma, Johnny Wei, Ondiej Bojar, and Yvette
Graham. 2019. Results of the WMTI19 metrics
shared task: Segment-level and strong MT sys-
tems pose big challenges. In Proceedings of the
Fourth Conference on Machine Translation (Volume
2: Shared Task Papers, Day 1), pages 62-90, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Diego Marcheggiani, Jasmijn Bastings, and Ivan Titov.
2018. Exploiting semantics in neural machine trans-
lation with graph convolutional networks. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 2 (Short Papers), pages 486492, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Dmitry Nikolaev, Ofir Arviv, Taelin Karidi, Neta Ken-
neth, Veronika Mitnik, Lilja Maria Saeboe, and
Omri Abend. 2020. Fine-grained analysis of cross-
linguistic syntactic divergences.

37

Joakim Nivre, Marie-Catherine de Marneffe, Filip
Ginter, Yoav Goldberg, Jan Hajic, Christopher D
Manning, Ryan T McDonald, Slav Petrov, Sampo
Pyysalo, Natalia Silveira, et al. 2016. Universal de-
pendencies v1: A multilingual treebank collection.
In Proc. of LREC.

Kishore Papineni, S. Roukos, T. Ward, and Wei-Jing
Zhu. 2002. Bleu: a method for automatic evaluation
of machine translation. In ACL.

Matthew E. Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018. Dissecting contextual word
embeddings: Architecture and representation. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1499—
1509, Brussels, Belgium. Association for Computa-
tional Linguistics.

Maja Popovic. 2017. chrf++: words helping character
n-grams. In WMT.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Laubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde.
2017. Nematus: a toolkit for neural machine transla-
tion. In Proceedings of the Software Demonstrations
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics, pages
65-68, Valencia, Spain. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715-1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Aviv Slobodkin, Leshem Choshen, and Omri Abend.
2021. Mediators in determining what processing
BERT performs first. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 86-93, Online. Asso-
ciation for Computational Linguistics.

Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang,
and Jinsong Su. 2019. Semantic neural machine
translation using AMR. Transactions of the Associa-
tion for Computational Linguistics, 7:19-31.

Milan Straka and Jana Strakovd. 2017. Tokenizing,
pos tagging, lemmatizing and parsing ud 2.0 with
udpipe. In Proceedings of the CoNLL 2017 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 88-99, Vancouver, Canada.
Association for Computational Linguistics.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages

5027-5038, Brussels, Belgium. Association for Com-
putational Linguistics.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018a.
Semantic structural evaluation for text simplification.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 685-696, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Elior Sulem, Omri Abend, and Ari Rappoport. 2018b.
Simple and effective text simplification using seman-
tic and neural methods. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 162—173,
Melbourne, Australia. Association for Computational
Linguistics.

Elior Sulem, Omri Abend, and Ari Rappoport. 2020. Se-
mantic structural decomposition for neural machine
translation. In Proceedings of the Ninth Joint Confer-
ence on Lexical and Computational Semantics, pages
50-57, Barcelona, Spain (Online). Association for
Computational Linguistics.

Dhanasekar Sundararaman, Vivek Subramanian,
Guoyin Wang, Shijing Si, Dinghan Shen, Dong
Wang, and Lawrence Carin. 2019. Syntax-infused
transformer and bert models for machine translation
and natural language understanding.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019a.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593—
4601, Florence, Italy. Association for Computational
Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim, Ben-
jamin Van Durme, Sam Bowman, Dipanjan Das, and
Ellie Pavlick. 2019b. What do you learn from con-
text? probing for sentence structure in contextualized
word representations. In International Conference
on Learning Representations.

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In Proceedings of the Eight Inter-
national Conference on Language Resources and
Evaluation (LREC’12), Istanbul, Turkey. European
Language Resources Association (ELRA).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

38

Warren Weaver. 1955. Translation. Machine translation
of languages, 14:15-23.

Krzysztof Wotk and Krzysztof Marasek. 2014. Build-
ing subject-aligned comparable corpora and mining
it for truly parallel sentence pairs. Procedia Technol-
ogy, 18:126-132. International workshop on Inno-
vations in Information and Communication Science
and Technology, IICST 2014, 3-5 September 2014,
Warsaw, Poland.

A Appendix

A.1 Layer Hyperparameter-tuning for SASA

In order to optimize the contribution of the SASA
model, we tuned the hyperparameter of the best
layers in the encoder to incorporate our model, us-
ing the En-De newstest2013 as our development
set. Table 4 presents the results.

A.2 ChrF Results

In order to reaffirm our results, we also evaluate
the performance of all the models using the chrF
metric (see 7). Indeed, all the different behaviors
and trends we observed when evaluating using the
Bleu metric (see §4) seem to be preserved when
under the chrF metric. This further validates our
results.

A.3 Challenge Sets

In addition to testing on the full newstests sets, we
also experiment with sentences characterized by
long dependencies, which were shown to present a
challenge for Transformers (Choshen and Abend,
2019). In order to acquire those challenge sets, we
use the methodology described by Choshen and
Abend (2019), which we apply on each of the new-
stest sets. In addition, for the En-Tr task, which
has a limited number of newstests, we generate
additional challenge sets, extracted from corpora
downloaded from the Opus Corpus engine (Tiede-
mann, 2012): the Wikipedia parallel corpus (Wotk
and Marasek, 2014), the Mozilla and EUbookshop
parallel corpora (Tiedemann, 2012), and the bible
parallel corpus (Christodoulopoulos and Steedman,
2015). We observe (see 8) a similar trend to the
general case, which reaffirms our results. In fact,
there seem to be bigger gains over the Transformer,
albeit not drastically, compared to the general case.

A4 Sign-Test

In order to assess the consistency of the improve-
ments of our models, we perform the Sign-Test on
every two models (see 5). Evidently, SASA per-
sistently outperforms the Transformer baseline and
the syntactic models, as does the combined model
of SASA and UDISCAL.

A.5 SemSplit

Following Sulem et al. (2020), we implement the
SemSplit pipeline. First, we train a Transformer-
based Neural Machine Translation model. Then,
during inference time, we use the Direct Semantic

BASELINE ———

39

‘ Layers ‘ Bleu ‘

1	203
2	2033
3	201
4	2037
12	202
23 2017	
34	203

Table 4: Validation Bleu as a function of layers incorpo-
rating SASA (for En-De).

BETTER SASA
SASA | UDISCAL

SACTA SACrA

) PASCAL UDISCAL + UDISCAL

Transformer >0.5 >0.5 <0.01 <0.01 0.047 >0.5
PASCAL 0.17 <0.01 <0.01 0.06 >0.5
UDISCAL <0.01 <0.01 0.06 >0.5
SASA 0.17 >0.5 >0.5
SASA + UDISCAL >0.5 >0.5

SACrA >0.5

Table 5: We perform a significance test over all
test sets across all languages for every cell, where
the null hypothesis is H Bleu(model,o,) >
Bleu(model coiymn)

Splitting algorithm (DSS; Sulem et al., 2018b) to
split the sentences, and then translate each sepa-
rated sentence separately. Finally, we concatenate
the translation, using a period (".") as a delimiter.
Table 6 presents the results, using the Bleu and
chrF metrics. We find that the architecture does not
have gains over the baseline Transformer. These
results can be accounted for by the fact that in their
work, Sulem et al. (2020) assessed the pipeline’s
performance using Human Evaluation and manual
analysis, rather than the Bleu and chrF metrics,
which punish for sentence separation in translation.
In addition, they tested their pipeline in a pseudo-
low resource scenario, and not in normal NMT
settings.

A.6 Qualitative Analysis - UCCA Parsings

figure 4 presents the UCCA parsings of the exam-
ples featured in table 2.

H - Parallel Scene
P —Process .

A— Participant
C- Center
E - Elaborate
R - Relator
H — Parallel Scene
P—Process
A— Participant
C - Center ENC
E — Elaborate
?‘)- sAt:te i | promised a show Students said they looked forward to his class
- Adverbials
A
A
e C Eﬁ EN\C
I promised show @ show Students said they looked forward they looked forward to his class

(a) I promised a show? (b) Students said they looked forward to his class.

H —Parallel Scene
P —Process

A - Participant
C- Center

E - Elaborate

R - Relator

D - Adverbials

F - Functions

| remember the kids kids | used to play with in the yard kids ~ who never gotout

(c) I remember those kids I used to play with in the yard who never got out.

Figure 4: UCCA parse graphs of the Qualitative Analysis examples, with the equivalent UCCA sub-graphs
representing the segmentation into scenes.

40

En-De

| Metric | Models | 2012 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2020B | average |
\ | Transformer | 17.6 | 20.55 | 22.17 | 2546 | 19.7 |28.01|26.84 | 17.71 | 1694 | 21.66 |
\ Bleu | SemSplit | 12.16 | 1425 | 1446 | 17.53 | 13.18 | 1939 | 18.46 | 15.12 | 14.93 | 1550 |
\ | Transformer | 47.37 | 51.85 | 52.52 | 55.06 | 50.87 | 57.81 | 5548 | 45.19 | 44.18 | 5115 |
\ chrk | SemSplit | 43.42 | 47.19 | 47.05 | 49.86 | 45.87 | 51.50 | 50.24 | 47.71 | 4693 | 4775 |
En-Ru
| Metric | Models | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2020B | average |
\ | Transformer | 24.32 | 18.11 | 2535 | 21.1 | 19.77 [2234 | 19 | 20.14 | 1564 | 2233 | 20.81 |
\ Bleu | SemSplit | 1529 | 109 | 1643 | 13.28 | 1279 | 14.61 | 1195 | 1256 | 992 | 1525 | 1330 |
\ | Transformer | 51.39 | 45.69 | 5331 | 50.16 | 48.10 | 50.54 | 48.01 | 45.78 | 4251 | 53.07 | 4886 |
\ chrk | SemSplit | 46.10 | 40.50 | 47.66 | 44.58 | 43.16 | 4534 | 43.38 | 4097 | 38.93 | 47.84 | 4385 |
En-Fi
| Metric | Models | 2015 | 2016 | 2016B | 2017 | 2017B | 2018 | 2019 | average |
\ | Transformer | 11.22 | 12.76 | 102 | 1335 | 11.37 | 932 | 1221 | 1149 |
\ Bleu | SemSplit | 697 | 772 | 655 | 875 | 754 | 618 | 7.73 | 735 |
\ | Transformer | 43.79 | 4548 | 43.43 | 4639 | 43.96 | 42.06 | 43.10 | 44.03 |
\ chrk | SemSplit | 40.18 | 41.42 | 39.94 | 42.18 | 40.20 | 38.76 | 40.12 | 4040 |
En-Tr
| Metric | Models | 2016 | 2017 | 2018 | average |
\ | Transformer | 843 | 855 | 81 | 836 |
\ Bleu | SemSplit | 6.15 | 6.07 | 537 | 586 |
\ | Transformer | 40.24 | 40.37 | 39.75 | 40.12 |
|| Semsplit | 30.04 | 39.00 | 3885 | 3897 |

Table 6: Bleu and ChrF scores of the baseline Transformer and the SemSplit model.

41

En-De

models	2012	2014	2015	2016	2017	2018	2019	2020	2020B	average
Transformer	47.37	51.85	5252	55.06	50.87	57.81	5548	4519	44.18	51.15
PASCAL	4727	51.87	52.82	5473	50.83	57.65	5528	44.80	43.78	51.00
UDISCAL	47.26	51.95	5245	5499	50.78	57.40	5530	44.48	4343	5089
SASA	47.48"	52.03"	5274	5499	51.23"	57.88"	55.697	45.03	43.99	51.23"
SASA + UDISCAL	47.42	51.94	52.50	55.00*	50.86	57.74	55.62	4472	43.62	51.05
SACrA	47.02	51.66	5248	5449	50.55	57.16	55.05	44.08	43.15	50.63
SACrA + UDISCAL	46.71	51.63	52.18	5437	5022	5720	5496	4342	4240	5034

En-Ru
models	2012	2013	2014	2015	2016	2017	2018	2019	2020	2020B	average
Transformer	51.39	45.69	5331	50.16	48.10	50.54	48.01	4578	42.51	53.07	48.86
PASCAL	51.03	45.66	53.04	49.87	48.05	5032	47.98	4586	4235	5242	48.66
UDISCAL	5126	45.73	5345	5001	48.57	5050	4827	46.03	42.60	5289	48.93
SASA	51.34	45.817	53.497	50.32"	48.60"	50.67"	48.45"	4581	42.76"	53.62T	49.09"
SASA + UDISCAL	51.43*	45.67	53.56*	50.03	4829 50.67	48.25	46.08	42.81"	53.14	4899	
SACrA	5128	4557	53507	49.81	48.42	50.82"	48287	4592	42.68"	5276	48.90
SACrA + UDISCAL	50.58	4531	52.90	49.40	47.77	50.03	47.49	4526	4233	5193	4830

En-Fi
models	2015	2016	2016B	2017	2017B	2018	2019	average
Transformer	43.79	45.48	4343	4639	43.96	42.06	43.10	44.03
PASCAL	43.91	4493	4299	46.02	43.57	41.88	42.60	43.70
UDISCAL	4342	4537	4342	4651	44.07	42.03	43.03	43.98
SASA	4376	4533	4338	4640	43.89	42.107	43.02	43.98
SASA + UDISCAL	43.77"	4520	43.17	46.74"	44.15* 4234	43.08"	44.07"	
SACrA	43.88	4520	43.15	46.62"	44.02"	42.25"	43.237	44.05"
SACrA + UDISCAL	43.80	45.53*	43.52"	46.71%	44.19" 4216	43.28"	44.17"	
En-Tr

‘models ‘ 2016 ‘ 2017 ‘ 2018 ‘ avera; e‘
Transformer	4024	4037	3975	40.12
PASCAL	4059	40.64	39.89	4037
UDISCAL	4027	4049	40.01	4026
SASA	40.27	4046	3998	4024
SASA + UDISCAL	40.61*	40.92"	40.12*	40.55"
SACrA	40.44	40.68"	39.85	4033

|

| SACrA + UDISCAL | 40.23 | 4048 | 39.96 | 40.22

Table 7: ChrF scores for the baseline Transformer model, the baseline Syntactically infused models PASCAL and

UDISCAL, our SASA and SACrA models, and models incorporating UDISCAL with each of SASA and SACrA,

across all WMT’s newstests. For every language pair, each column contains the Bleu scores over the WMT newstest
equivalent to the column’s year (e.g., for En-Ru, the scores under column 2015 are for En-Ru newstest2015). For

some newstests, there was more than one version on WMT, each translated by a different person. For those test sets,

we included both versions, denoting the second one with a "B". In addition, for every language pair, the right-most
column represents the average Bleu scores over all the pair’s reported newstests. For every test set (and for the

average score), the best score is boldfaced. For each of the semantic models (i.e., SASA and SACrA), improvements

over all the baselines (syntactic and Transformer) are marked by an arrow facing upwards. For models with both
syntactic and semantic masks, improvements over each mask individually are marked by an asterisk.

42

7
S
&

| models | 2012 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2020B | average |

| Transformer | 1508 | 1694 | 1736 | 2111 | 1484 | 2343 | 2242 | 1679 | 1575 | 18.19 |

| PASCAL | 1496 | 1745 | 1785 | 2022 | 1466 | 2376 | 2128 | 169 | 1622 | 18.14 |

| UDISCAL | 1446 | 17.84 | 177 | 2126 | 1548 | 2375 | 2236 | 1637 | 1537 | 1829 |

| SASA | 1467 | 17.68 | 18.04" | 2089 | 1509 | 2487 |2286" | 1685 | 1576 | 18.52" |

| SASA + UDISCAL | 15.39* 17.07 | 1738 | 2042 | 1535 | 23.53 |22.87*| 1679 | 1598 | 1831 |

| SACrA | 1467 | 17.03 | 1689 | 1969 | 1445 | 2221 | 2208 | 1664 | 156 | 17.70 |

| SACrA + UDISCAL | 15.07* | 17.23 | 1652 | 2082 | 146 | 2238 |2261* | 1653 | 1581 | 17.95 |

En-Ru
models	2012	2013	2014	2015	2016	2017	2018	2019	2020	2020B	average
Transformer	234 1467	24	1682	1752	1974	1778	17.12	13.39	1947	1839	
PASCAL	226 1567	2356	17.08	1779	1946	179	1613	137	1944	1833	
UDISCAL	23.19 1475	2346	1706	1817	19.67	1832	157	1344	2114	1849	
SASA	23537 1538	239	17777	1837"	202"	18337	1655	13.37	20.88	18.827	
SASA + UDISCAL	23.77* 14.67	2365	1696	1821	198	18.06	17.15"	13.57*	20.02	18.59	
SACrA	23.837 1515	2286	18.09"	1813	19.98"	187"	17.1	13.83"	1941	18711	
SACrA + UDISCAL	2298 14.58	23.16	1676	1737	1889	174	1607	13.18	1853	17.89	
En-Fi

| models | 2015 | 2016 | 2016B | 2017 | 2017B | 2018 | 2019 | average |

| Transformer | 957 | 1105 | 88 | 1145 | 999 | 778 | 1022 | 9.84 |

| PASCAL | 975 | 1077 | 872 | 1143 | 1011 | 806 | 1024 | 987 |

| UDISCAL | 904 | 1085 | 863 | 1146 | 1001 | 77 | 985 | 9.66 |

| SASA | 965 1087 | 9.03" | 11620 | 1001 | 799 | 10537 | 997" |

| SASA + UDISCAL | 945 1096* | 891 | 11.88* | 10.33* | 842° | 10.62* | 10.08" |

| SACrA | 1026" 1095 | 889" | 1157t | 1013t | 817" | 10.76" | 10.10" |

| SACrA + UDISCAL | 9.42 | 10.84 | 8383 | 1151 | 9.9 | 771 | 107 | 9384 |

En-Tr

| models | 2016 | 2017 | 2018 | wikipedia | Eubookshop | mozilla | bible | average |

| Transformer | 799 815 | 806 | 755 | 487 | 334 | 036 | 576 |

| PASCAL | 781 783 | 769 | 752 | 504 | 341 | 054 | 569 |

| UDISCAL | 768 783 | 74 | 763 | 492 | 334 | 049 | 561 |

| SASA | 82" 831" | 812" | 763 | 5217 | 309 | 052 | 587" |

| SASA+UDISCAL | 781 792 | 81 | 758 | 528 | 336" | 035 | 577 |

| SACrA | 775 833" | 751 | 7.68" | 511t | 359" | 05 | 578" |

| SACrA + UDISCAL | 8.23* 854" | 795 | 751 | 522¢ | 345 | 052° | 592" |

Table 8: Bleu scores of challenge sentences for the baseline Transformer model, the baseline Syntactically infused

models PASCAL and UDISCAL, our SASA and SACrA models, and models incorporating UDISCAL with each of

SASA and SACrA, across all WMT’s newstests. For every language pair, each column contains the Bleu scores over
the WMT newstest equivalent to the column’s year (e.g., for En-Ru, the scores under column 2015 are for En-Ru

newstest2015). For some newstests, there was more than one version on WMT, each translated by a different person.

For those test sets, we included both versions, denoting the second one with a "B". In addition, for every language
pair, the right-most column represents the average Bleu scores over all the pair’s reported newstests. For every
test set (and for the average score), the best score is boldfaced. For each of the semantic models (i.e., SASA and

SACrA), improvements over all the baselines (syntactic and Transformer) are marked by an arrow facing upwards.

For models with both syntactic and semantic masks, improvements over each mask individually are marked by an

asterisk.

43

Compositional generalization with a broad-coverage semantic parser

Pia WeiBenhorn and Lucia Donatelli and Alexander Koller
Department of Language Science and Technology
Saarland Informatics Campus
Saarland University, Germany

{piaw, donatelli,

Abstract

We show how the AM parser, a compositional
semantic parser (Groschwitz et al.,, 2018),
can solve compositional generalization on the
COGS dataset. It is the first semantic parser
that achieves high accuracy on both naturally
occurring language and the synthetic COGS
dataset. We discuss implications for corpus
and model design for learning human-like gen-
eralization. Our results suggest that compo-
sitional generalization can be best achieved
by building compositionality into semantic
parsers.

1 Introduction

A growing body of recent research investigates
compositional generalization, the ability of a se-
mantic parser to predict the meaning of unseen sen-
tences by recombining training instances in novel
ways. Such generalization is thought to mimic the
Principle of Compositionality (Partee, 1984), es-
sential for human language learning and use. For
example, COGS (Kim and Linzen, 2020), a dataset
based on fragments of English, contains training in-
stances with sentences semantically annotated with
up to two recursive PPs; a semantic parser must
then predict meaning representations for sentences
with three or more recursive PPs (Table 1).
Previous work has shown that compositional
generalization on COGS is a difficult and com-
plex task. Intricate sequence-to-sequence (seq2seq)
models, which achieve very high accuracy on
broad-coverage semantic parsing tasks on natu-
rally occurring language (Bevilacqua et al., 2021),
achieve overall accuracy of 88% or less on COGS
(Akyiirek and Andreas, 2021; Csordas et al., 2021;
Zheng and Lapata, 2021). Much of this accuracy
is due to lexical generalization, tasks that test for
generalization to new words in known structures
(Sec. 2); when evaluated only on structural gener-
alization cases that test novel structures such as the

44

koller}@coli.uni-saarland.de

PP example above, the accuracy of most of these
models drops to 10% or less.

In contrast, models that achieve high accuracy
on synthetic compositional generalization datasets
may not be able to generalize to naturally occur-
ring language. For instance, Shaw et al. (2021) de-
scribe a synchronous grammar induction approach
that achieves perfect accuracy on SCAN (Lake and
Baroni, 2018), but has very low accuracy on cor-
pora of naturally occurring text such as GeoQuery
(Zelle and Mooney, 1996) and Spider (Yu et al.,
2018). Similarly, the compositional LeAR parser
(Liu et al., 2021) solves COGS with near-perfect
accuracy and performs very well on other synthetic
datasets, but has not been evaluated on corpora of
naturally occurring text. This points to a funda-
mental tension between broad-coverage semantic
parsing on natural text and the ability to generalize
compositionally from structurally limited synthetic
training sets (see also Shaw et al., 2021). To our
knowledge, the only parser that does well on both
is the CSL-T5 system of Qiu et al. (2022), which
fine-tunes TS using a complex data augmentation
(DA) method involving synchronous grammars.

In this paper, we show that the AM parser
(Groschwitz et al., 2018), a compositional semantic
parser that achieves high accuracy across a range of
different broad-coverage graphbanks (Lindemann
et al., 2019; Donatelli et al., 2019), can also solve
COGS at near-perfect accuracy. This high perfor-
mance is due in large part to handling cases of struc-
tural generalization much better than the seq2seq
models. The AM parser is thus the first semantic
parser shown to perform accurately both on nat-
urally occurring language and on COGS without
requiring DA. Given that all semantic parsers that
do well on COGS are either compositional (LeAR,
AM parser) or perform compositionality-based DA
(CSL-T5), we conjecture that building a semantic
parser on the Principle of Compositionality is ben-
eficial to solving compositional generalization. We

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 44 - 54
July 14-15, 2022 ©2022 Association for Computational Linguistics

discuss the challenge of structural, as opposed to
lexical, generalization for future work on this task.

2 Compositional Generalization in
COGS

Compositional generalization is the ability to de-
termine the meaning of unseen sentences using
compositional principles. Humans can understand
and produce a potentially infinite number of novel
linguistic expressions by dynamically recombin-
ing known elements (Chomsky, 1957; Fodor and
Pylyshyn, 1988; Fodor and Lepore, 2002). For
semantic parsers, compositional generalization re-
quires systems to recombine parts of multiple train-
ing instances to predict the meaning of a single test
instance by learning correct generalizations. Sev-
eral synthetic datasets for evaluating compositional
generalization now exist, notably SCAN (Lake and
Baroni, 2018) and CFQ (Keysers et al., 2020).

COGS (Kim and Linzen, 2020) is a synthetic se-
mantic parsing dataset in which English sentences
must be mapped to logic-based meaning represen-
tations. It distinguishes 21 generalization types,
each of which requires generalizing from training
instances to test instances in a particular systematic
and linguistically-informed way.

Lexical generalization cases (18 types) test how
known grammatical structures are recombined with
words that were not observed in these particular
structures during training. For instance, the com-
mon noun “hedgehog” is only exposed to the model
as subject at training time as part of an ‘exposure ex-
ample’ sentence, but generalization requires object
usage of the same word based on forming analo-
gies to other common nouns seen in both positions.
This is illustrated in Table 1.

Structural generalization cases (3 types) involve
generalizing to linguistic structures that were not
observed in training. The PP recursion example
above is of this type: the COGS training set con-
tains sentences and logic-based semantic represen-
tations with up two nested prepositional phrases.
In-domain development and test sets also consist
of sentences with PP nesting depth up to two, but
the generalization set contains sentences with 3—12
nested PPs. Additional structural generalization
includes CP recursion (predict deeply nested CPs
when trained on shallow examples, similar to PPs)
and “object PP to subject PP, where PPs modify
only objects in training (e.g. “Noah ate the cake
on the plate.””) and only subjects at test time (“The

45

cake on the table burned.”).

Kim and Linzen themselves show that seq2seq
models based on LSTMs and Transformers do not
perform well on COGS, achieving exact-match ac-
curacies below 35%. Intensive subsequent work
has tailored a wide range of seq2seq models to
the COGS task (Tay et al., 2021; Akyiirek and An-
dreas, 2021; Conklin et al., 2021; Csordas et al.,
2021; Orhan, 2021; Zheng and Lapata, 2021), but
none of these have reached an overall accuracy of
90% on the overall generalization set. On struc-
tural generalization in particular, the accuracy of
all these models is below 10%, with the exception
of Zheng and Lapata (2021), who achieve 39%
on PP recursion. By contrast, the compositional
model of Liu et al. (2021) and the model of Qiu
et al. (2022), which uses compositional data aug-
mentation, achieve accuracies upwards of 98% on
the full generalization set.

3 Parsing COGS with the AM parser

3.1 The AM parser

We adapt the broad-coverage AM parser to COGS.
The AM parser (Groschwitz et al., 2018) is a com-
positional semantic parser that learns to map sen-
tences to graphs. It was the first semantic parser to
perform with high accuracy across all major graph-
banks (Lindemann et al., 2019) and can achieve
very high parsing speeds (Lindemann et al., 2020).

Instead of predicting the graph directly, the AM
parser first predicts a graph fragment for each to-
ken in the sentence and a dependency tree that con-
nects them (Fig. 1a). This dependency tree is then
evaluated deterministically into a graph (Fig. 1b)
using the operations of the AM algebra. The “Ap-
ply” (APP) operation fills an argument slot of a
graph (drawn in red) by inserting the root node
(drawn with a bold outline) of another graph into
this slot; for instance, the APP; operation inserts
the “boy” node into the ARGO of “want”. The
“Modify” (MOD) operation attaches a modifier to a
node; MOD,,, attaches the “manner-sound” graph
to the “sleep” node. The dependency tree captures
how the meaning of the sentence can be composi-
tionally obtained from the meanings of the words.

AM parsing is done by combining a neural de-
pendency parser with a neural tagger for predicting
the graph fragments. We follow Lindemann et al.
(2019) and rely on the dependency parsing model
of Kiperwasser and Goldberg (2016), which scores
each dependency edge by feeding neural represen-

Class : Type Training

Generalization

Lexical: A hedgehog ate the cake. The baby liked the hedgehog.

Sub_]%Ob] xcake (z4) ; hedgehog(z1) A *baby (x1); =*hedgehog(za4) ;

(common eat.agent (z2,x1) A eat.theme (w2,x4) like.agent (z2,71) A like.theme(xg,ﬂ)

noun)

Structural: Ava saw a ball in a bowl on the table. Ava saw a ball in a bowl on the table on the floor.

PP recursion xtable (zg); see.agent (zi1,Ava) A xtable (xg); =*floor (zxi2); see.agent (xi,
see.theme (z1,23) A ball (x3) A Ava) A see.theme (z1,x3) A
ball.nmod.in (xz3,z6) A bowl (xg) A ball (x3z) A ball.nmod.in (z3,xs) A
bowl.nmod.on (s, T9) bowl (zg) A bowl.nmod.on (xs,T9)

A table.nmod.on (xg, Z12)

Table 1: One example of a lexical and a structural generalization type from the COGS dataset.

(2) I APP, } { APP_ l {MOD "‘l

The boy wants to sleep soundly

LGD LG G
© @ ®

Figure 1: (a) AM dependency tree with (b) its value.

Figure 2: Logical form to graph conversion for “Ava
saw a ball in a bowl on the table” (cf. Table 1).

tations for the two tokens to an MLP. We train the
parser using the setup of Groschwitz et al. (2021),
which does not require explicit annotations with
AM dependency trees.

3.2 AM parsing for COGS

We apply the AM parser to COGS by converting
the semantic representations in COGS to graphs.
The conversion is illustrated in Fig. 2.

Given a logical form of COGS, we create a
graph that has one node for each variable x;
and each constant (e.g. Ava). If a variable ap-
pears as the first argument of an atom of the
form pred.arg(z,y), we assign it the node label
pred in the graph. We also add an edge from
x to y with label arg. E.g. see.agent (z,
Ava) turns into an ‘agent’ edge from ‘see’ to
‘Ava’. Each iota term xnoun (Xpoun) 1S treated
as an edge from a node for the preceeding “the”
token to the respective noun node. Preposition
meaning bowl .nmod. on (xg,xg) isrepresented
as a node (labeled ‘on’) with outgoing edges to
the two arguments/nouns (‘nmod.opl’ to “bowl”,
‘nmod.op2’ to “table”). By encoding the logical

46

form as a graph, we lose the ordering of the con-
juncts. The ‘correct’ order is restored in postpro-
cessing. More details and graph conversion exam-
ples are in Appendix C.

4 Experiments on COGS

4.1 Experimental setup

We evaluate the AM parser on COGS and compare
its accuracy against a number of strong baselines.
We follow standard COGS practice and evaluate
on both the (in-distribution) test set and the gen-
eralization set. We report exact match accuracies
averaged across 5 training runs with their standard
deviations.

Training regime. In addition to the regular
COGS training set (‘train’) of 24,155 training in-
stances, we also report numbers for models trained
on the extended training set ‘train100’ of 39,500
instances (Kim and Linzen, 2020, Appendix E.2).
These training sets allow to test 1-shot (train) or
100-shot (train100) lexical generalization. For in-
stance, for the “hedgehog” example in Table 1,
train contains exactly one sentence with this noun,
whereas there are 100 different sentences with
“hedgehog” in train100 (all in subject position). As
this change can only be done for lexical general-
ization (tied to specific lexical items), structural
generalization is not directly modulated by a train-
ing set change.

Compositional models. We train the AM parser
on the COGS graph corpus (cf. Section 3.2). Most
hyperparameter values come from Groschwitz et al.
(2021)’s training setup for AMR to make overfitting
to COGS less likely; see Appendix A for details.
The AM parser either receives pretrained word
embeddings from BERT (Devlin et al., 2019)
(‘AM+B’) or learns embeddings from the COGS

train train100

Test Gen Test Gen

o Kim and Linzen 2020
é’ Csordds et al. 2021 - 75.4
g' Akyiirek and Andreas 2021 - 99 84.5
Zheng and Lapata 2021 - - -
— Qiuetal. 2022 - 995 - -
§ Liuetal. 2021: LeAR' - 989109 - -
2 AM 100 59.9+ 27 100 91.1+23
& AM-+dist 100 62.6x108 100 88.6449
S AM+B T 100 79.6+ 64 100 93.6+1.4
AM+B+dist T 100 78.34+229 100 98.4+0.9

Table 2: COGS exact match scores. ') models use pre-
training.

data only (‘AM’). We run the training algorithm
with up to three argument slots to enable the analy-
sis of ditransitive verbs. For evaluation, we reverse
graph conversion to reconstruct the logical forms.

To handle PP recursion, we hypothesize that ex-
plicit distance information between tokens could
help the AM parser: COGS eliminates potential PP
attachment ambiguities and assumes that each PP
modifies the noun immediately to its left. Instead
of passing only the representations of the potential
parent and child node to the edge-scoring model,
we also pass an encoding of their relative distance
in the string (Vaswani et al., 2017), yielding the
AM parser models with the “+dist” suffix. Dis-
tance information is then available as an explicit
feature for any dependency edge decision, and the
neural model learns how to weight this feature for
different edges.

Finally, we report evaluation results for LeAR,
the compositional COGS parser of Liu et al. (2021).
LeAR learns to predict trees of corpus-specific al-
gebraic operations using reinforcement learning
with an intricate training setup.

4.2 Results

The results are summarized in Table 2. Gray num-
bers are taken from original papers; black numbers
we reproduced in separate experiments. Table 3
shows results by structural and lexical generaliza-
tion type. See Appendix B for details.

Compositional models solve COGS. We find
that when trained on ‘train100’, the modified AM
parser solves COGS with near-perfect accuracy.
The evaluation results in Table 2 suggest a clear

'All LeAR numbers are based on our reproduction of their
COGS evaluation; they report an accuracy of 97.7.

47

split between compositional and seq2seq mod-
els, with both compositional models outperform-
ing all seq2seq models. This split becomes even
clearer when we distinguish different generaliza-
tion types. On the three structural generalization
types, no seq2seq model has an accuracy above
40%, whereas both LeAR and AM+B+dist still
achieve near-perfect accuracy.

PP vs. CP recursion. A closer error analysis on
PP recursion reveals (as hypothesized) that the ac-
curacy of the AM+B parser degrades with increas-
ing PP depth. The AM+B+dist parser maintains a
high accuracy across all embedding depths.

There is an interesting asymmetry between the
behavior of the AM parser on PP recursion and
CP recursion: The accuracy of AM+B is stable
across recursion depths for CP recursion, and the
distance feature is only needed for PPs. This can
be explained by the way in which the AM parser
learns to incorporate PPs and CPs into the depen-
dency tree: it uses APP edges to combine verbs
with CPs, which ensures that only a single CP can
be combined with each sentence-embedding verb.
By contrast, each NP can be modified by an ar-
bitrary number of PPs using MOD edges. Thus a
confusion over attachment is only possible for PPs.

Effect of training regime. Parsers on COGS are
traditionally not allowed any pretraining (Kim and
Linzen, 2020), in order to judge their ability to
generalize from limited observations. We see in the
experiments above that the use of pretrained word
embeddings helps the AM parser achieve accuracy
parity with LeAR, but is not needed to outperform
all seq2seq models on ‘train100’.

Training on ‘train100’ helps the AM parser more
than any other model in Table 2. The difference
between its accuracy on ‘train’ and ‘train100’ is
due to lexical issues: we found that when trained on
‘train’, the AM parser typically predicts the correct
delexicalized formulas and then inserts an incorrect
but related constant or predicate symbol.

For example, when tested on common nouns,
“kennel” may be used instead of “hedgehog”; when
tested on unaccusative to transitive generalization,
the model may choose another verb seen commonly
in that pattern instead of the target verb (e.g. “value”
instead of “shatter”).

We ablate the different model components (pre-
trained BERT embeddings, +dist) and training se-
tups (train100 vs. train) in Table 3. Trained on

Class

STRUCTURAL
Gen. type | Obj to Subj PP CP recursion PP recursion | mean of 18 other types

LEXICAL
Overall

AM+B+dist
AM+B
AM+B+dist
AM+B
AM-+dist
AM

LeAR

train100
train100
train
train
train
train
train

compositional

100
100

Kim and Linzen 2020
Akyiirek and Andreas 2021
Zheng and Lapata 2021
Kim and Linzen 2020
Csordas et al. 2021

train
train
train
train100
train100

seq2seq

Table 3: Exact match accuracies on the individual generalization types.

‘train’, AM+B+dist achieves a mean accuracy on
structural generalization cases of §9.6 (compared to
92.1 for ‘train100’), whereas the mean accuracy on
lexical generalization cases drops to 76. This again
illustrates that the larger training set compensates
for a lexical weakness in the AM parser rather than
a structural one. Even without BERT and trained
on ‘train’, AM+dist gets 74.6 on structural cases,
drastically outperforming the seq2seq models.

5 Conclusion

The AM parser is the first compositional seman-
tic parser to solve COGS and achieve high accu-
racy on naturally occurring language.” Particu-
larly on complex structural generalization cases,
compositionality-based parsers seem to outperform
seq2seq models systematically. By contrast, lexical
generalization cases are solved easily by most mod-
els and do not require a compositionality bias. We
suggest that future corpus design and evaluation
focus on model accuracy for structural generaliza-
tion types; an extension to COGS that incorporates
a greater variety of these types would allow more
insight on the overall task.

Though synthetic datasets like COGS allow fo-
cused probing parser performance on specific lin-
guistic phenomena, it remains unclear exactly how
accurate performance on such datasets transfers to
naturally occurring language, and vice-versa. An-
other strand of future work is thus extending the
broad-coverage AM parser to more compositional
generalization datasets. While COGS offers a good
starting point to test multiple types of both lexical
and structural generalization similar to what is at-
tested for humans, other datasets offer insight into
generalization less clearly connected to human lin-
guistic abilities (e.g. CFQ; Keysers et al., 2020) but

2Qur code is available at https://github.com/
coli-saar/am-parser.

48

important for generalization abilities more gener-
ally. Additional assessment of models’ generaliza-
tion performance ought to combine broad-coverage
parsing and focused evaluation with hand-crafted
datasets in a systematic way, yet to be defined.

Acknowledgments

We thank Yuekun Yao for his insights from related
experiments on COGS and Jonas Groschwitz and
Matthias Lindemann for their advice on adapting
the AM parser to COGS. We also thank the re-
viewers for their helpful comments. This research
was funded in part by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation),
project KO 2916/2-2.

References

Ekin Akyiirek and Jacob Andreas. 2021. Lexicon learn-
ing for few shot sequence modeling. In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 4934-4946,
Online. Association for Computational Linguistics.

Michele Bevilacqua, Rexhina Blloshmi, and Roberto
Navigli. 2021. One SPRING to rule them both:
Symmetric AMR semantic parsing and generation
without a complex pipeline. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI-
21), volume 35, pages 12564-12573. AAAI Press.

Noam Chomsky. 1957.
Gruyter Mouton.

Syntactic Structures. De

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan
Titov. 2021. Meta-learning to compositionally gen-
eralize. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 3322-3335, Online. Association for Computa-
tional Linguistics.

Rébert Csordas, Kazuki Irie, and Juergen Schmidhu-
ber. 2021. The devil is in the detail: Simple tricks
improve systematic generalization of transformers.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
619-634, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Lucia Donatelli, Meaghan Fowlie, Jonas Groschwitz,
Alexander Koller, Matthias Lindemann, Mario Mina,
and Pia WeiBlenhorn. 2019. Saarland at MRP
2019: Compositional parsing across all graph-
banks. In Proceedings of the Shared Task on Cross-
Framework Meaning Representation Parsing at the
2019 Conference on Natural Language Learning,
pages 66-75, Hong Kong. Association for Compu-
tational Linguistics.

Jerry A. Fodor and Ernest Lepore. 2002. The Composi-
tionality Papers. Oxford University Press.

Jerry A. Fodor and Zenon W. Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1):3-71.

Jonas Groschwitz, Meaghan Fowlie, and Alexander
Koller. 2021. Learning compositional structures for
semantic graph parsing. In Proceedings of the 5th
Workshop on Structured Prediction for NLP (SPNLP
2021), pages 22-36, Online. Association for Compu-
tational Linguistics.

Jonas Groschwitz, Matthias Lindemann, Meaghan
Fowlie, Mark Johnson, and Alexander Koller. 2018.
AMR dependency parsing with a typed semantic al-
gebra. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1831-1841, Melbourne,
Australia. Association for Computational Linguis-
tics.

Daniel Keysers, Nathanael Schirli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In International Confer-
ence on Learning Representations (ICLR).

Najoung Kim and Tal Linzen. 2020. COGS: A com-
positional generalization challenge based on seman-
tic interpretation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9087-9105, Online. Association
for Computational Linguistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,

4:313-327.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In Pro-
ceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 2873-2882, Stock-
holmsmassan, Stockholm Sweden. PMLR.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2019. Compositional semantic parsing
across graphbanks. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 4576-4585, Florence, Italy. Asso-
ciation for Computational Linguistics.

Matthias Lindemann, Jonas Groschwitz, and Alexan-
der Koller. 2020. Fast semantic parsing with well-
typedness guarantees. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 3929-3951, On-
line. Association for Computational Linguistics.

Chenyao Liu, Shengnan An, Zeqi Lin, Qian Liu, Bei
Chen, Jian-Guang Lou, Lijie Wen, Nanning Zheng,
and Dongmei Zhang. 2021. Learning algebraic re-
combination for compositional generalization. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 1129-1144, On-
line. Association for Computational Linguistics.

A. Emin Orhan. 2021. Compositional generaliza-
tion in semantic parsing with pretrained transform-
ers. Computing Research Repository (CoRR), arXiv:
2109.15101.

Barbara H. Partee. 1984. Compositionality. In Vari-
eties of Formal Semantics: Proceedings of the 4th
Amsterdam Colloquium, September 1982, volume 3,
pages 281-311. Foris Publications, Dordrecht.

Linlu Qiu, Peter Shaw, Panupong Pasupat,
Pawel Krzysztof Nowak, Tal Linzen, Fei Sha,
and Kristina Toutanova. 2022. Improving composi-
tional generalization with latent structure and data
augmentation. In Proceedings of NAACL.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and
Kristina Toutanova. 2021. Compositional general-
ization and natural language variation: Can a se-
mantic parsing approach handle both? In Proceed-
ings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 922-938,
Online. Association for Computational Linguistics.

Yi Tay, Mostafa Dehghani, Jai Prakash Gupta, Vamsi
Aribandi, Dara Bahri, Zhen Qin, and Donald Met-
zler. 2021. Are pretrained convolutions better than

pretrained transformers? In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 4349—4359, Online. As-
sociation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30 (NIPS 2017). Curran Associates,
Inc.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911-3921, Brussels, Belgium. Association for
Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, AAAT’ 96, page 1050-1055. AAAI Press.

Hao Zheng and Mirella Lapata. 2021. Disentangled
sequence to sequence learning for compositional
generalization. Computing Research Repository
(CoRR), arXiv: 2110.04655. To appear at ACL2022.

A Training details of the AM parser

Hyperparameters. For the AM parser, we pri-
marily copy hyperparameter values from the AMR
experiments of Groschwitz et al. (2021). This helps
prevent overfitting on COGS, but we also note that
hyperparameter tuning for compositional general-
ization datasets can be difficult anyways since one
can typically easily achieve perfect scores on an in-
doman dev set. Copied values include for instance
the number of epochs (60 due to supervised loss for
edge existence and lexical labels), the batch size,
the number and dimensionality of neural network
layers and not using early stopping (but selecting
best model based on per epoch evaluation metric
on the dev set). Choosing 3 sources has worked
well on other datasets (Groschwitz et al., 2021) and
we adopt this hyperparameter choice. We note that
with ditransitive verbs (i.e. verbs requiring NPs
filling agent, theme, and recipient roles) present in
COGS we need at least three sources anyway to
account for these.

Deviations from Groschwitz et al. (2021)’s set-
tings. For training on train (but not train100), we
set the vocabulary threshold from 7 down to 1 to
account for the fact that the lexical generalizations
rely on a single occurrence of a word in the training
data; on train100 we keep 7 as a threshold since
trigger words (e.g. “hedgehog”) occur 100 times.
For word embeddings, we either use BERT-Large-
uncased (Devlin et al., 2019) like Groschwitz et al.
(2021) or learn embeddings from the dataset only
(embedding dimension 1024, same as for the BERT
model). We decrease the learning rate from 0.001
to 0.0001: we observed that the learning curves are
still converging very quickly and hypothesize that
COGS training set might also be easier than the
AMR one used in Groschwitz et al. (2021).

We use the projective A* decoder (Lindemann
et al., 2020, §4.2): in pre-experiments this showed
better results. In addition, it makes comparison to
related work (such as LeAR by Liu et al. (2021))
easier which uses only projective latent trees. We
use supervised loss for edge existence and lexical
labels.

Relative distance encoding. For the relative dis-
tance encodings we use sine-cosine interleaved en-
coding function introduced by Vaswani et al. (2017,
§3.5) and as input to it use the relative distance
dist(i,j) = i — j between sentence positions i and
j. We use a dimensionality of 64 for the distance

51

encodings (d;o4e; in Vaswani et al. (2017) is 512).
These distance encodings are then concatenated
together with the BiLSTM representations for pos-
sible heads and dependents used in the standard
Kiperwasser and Goldberg (2016) edge scoring
model. This constitutes the input to the MLP emit-
ting a score for each token pair. These models have
the suffix ‘dist’ in the tables.

Runtimes. Training the AM parser took 5 to 7
hours on train with 60 epochs and 6 to 9.5 hours
on train100. In general, training with BERT took
longer than without, same holds for adding relative
distance encodings. Inference with a trained model
on the full 21k generalization samples took about
15 minutes using the Astar decoder with the ‘ignore
aware’ heuristic. All AM parser experiments were
performed using Intel Xeon E5-2687W v3 10-core
processors at 3.10Ghz and 256GB RAM, and MSI
Nvidia Titan-X (2015) GPU cards (12GB).

Number of parameters. For their models, Kim
and Linzen (2020) tried to keep the number of pa-
rameters comparable (9.5 to 11 million) and there-
fore rule out model capacity as a confound. The
number of trainable parameters of the AM parser
model used is 10.7 to 11.5 million (lower one is
with BERT, higher without. Impact of relative dis-
tance encoding is rather minimal: < 17k), so the
improved performance is not just due to a higher
number of parameters.

Dev set performance. For compositional gener-
alization datasets, it is relatively easy to get (near)
perfect results on the (in domain) dev/test sets. We
observe this too: all AM parser models had an ex-
act match score of at least 99.9 on the dev set and
at least 99.8 on the (in distribution) test set.

Evaluation procedure. Kim and Linzen (2020)
do not provide a separate evaluation script but use
(string) exact match accuracy on the logical forms
as the main evaluation metric. This metric requires
models to learn the ‘correct’ order of conjuncts:
even if a logically equivalent form with a different
order of conjuncts would be predicted, string exact
match would count it as a failure. In lack of an
official evaluation script we implemented our own
evaluation script to compute exact match.

B Evaluation details

For descriptions of the generalization types we re-
fer to Kim and Linzen (2020, §3 and Fig. 1).

AM parser. Full results for the 8 AM parser con-
figurations (two types of embeddings, two train-
ing sets, presence/absence of distance encodings)
are displayed in Table 4. Averages and standard
deviations were computed across 5 runs for each
configuration. For the AM+B+dist configuration
trained on the smaller train set, one outlier run was
observed with 39.9% overall generalization accu-
racy, and the other four runs ranging from 76.4%
t0 96.6%. This outlier therefore greatly contributed
to the high variance for this configuration.

LeAR. Due to our reproduction experiment, we
can report a breakdown by generalization type for
Liu et al.’s LeAR model, displayed in Table 5. We
observed that the LeAR model skips 22 sentences
in the generalization set due to out-of-vocabulary
tokens.> We include these sentences in the accuracy
computation (as failures) for the generalization set.
The published LeAR code does not convert its in-
ternally used representation back to logical forms,
therefore we evaluate on the logical forms like it is
done for other models, but have to rely on accuracy
computation done in the LeAR code for the inter-
nal representation. From inspecting the published
code,* LeAR makes the preprocessing choice to
ignore the contribution of the definite determiner,
treating indefinite and definite NPs equally, result-
ing in a big conjunction without any iota (‘) pre-
fixes.

Model numbers copied from other papers.
Kim and Linzen (2020) provide three baseline mod-
els, among which the Transformer model reached
the best performance on train and train100. Per
generalization type results can be found in their
Appendix F (Table 5 on page 9105) from which we
report the Transformer model numbers.

The strongest model of Akyiirek and Andreas
(2021) is ‘Lex:Simple:Soft’ (cf. their Table 5) with
a generalization accuracy of 83% (also reported in
our Table 2), whereas their Lex:Simple model lags
1 point behind. For the latter, the authors provide
per generalization type output: link. Numbers in
Table 3 are for Lex:Simple, not Lex:Simple:Soft.

For Zheng and Lapata (2021), our reported num-
ber was provided directly by the authors after pub-
lication of their paper.

3The words “gardener” and “monastery” occur zero times
in the train set, but in total in 22 sentences of the generalization
set. The majority (15) of these appear in PP recursion samples.

*nttps://github.com/thousfeet/LEAR

52

A

A go.agent (r4,x1)

* boy(x1) ; want.agent (z2,x1)

want . xcomp (T2, x4)

Figure 3: Logical form to graph conversion for “The
boy wanted to go” (cf. (1)). For illustration only we
use node names (the part before the /’) to outline the
token alignment.

Lexical vs. structural generalization. As said
above, structural generalization is underrepresented
in COGS (3 out of 21 generalization types), and
lexical generalization (the remaining 18 types) is
therefore dominating the evaluation. As a conse-
quence, an overall generalization accuracy above
80% can be achieved without even touching upon
structural generalization. In Table 6 we report the
average accuracy of both classes (by averaging over
all types of the respective class), along with the
overall generalization accuracy. Some models do
not report standard deviations.

C Additional information on COGS to
graph conversions

This is a more detailed explanation of the COGS
logical form to graph conversion described in Sec-
tion 3.2 based on four additional example sen-

tences:
(1) The boy wanted to go.

*boy (x1); want.agent (x2,x1)

want . xcomp (T2, x4)

A go.agent (x4,1)

A

Ava was lended a cookie in a bottle.
lend.recipient (z2, Ava)

A lend.theme (z2,%4)

A cookie (x4)

A cookie.nmod.in (x4, Z7)
AN bottle (x7)

(@)

(3) Avasaid that Ben declared that Claire slept.
say.agent (z1, Ava)

AN say.ccomp (T1,T4)

A declare.agent (x4, Ben)

N declare.ccomp (T4, T7)

N sleep.agent (z7, Claire)

touch
Aa.Ab.\e. touch.agent (e,b)
touch.theme (e, a)

“)
N

The first of these is used as the main example for
now. Its graph conversion can be found in Fig. 3.

Basic ideas. Arguments of predicates (variables
like x; or proper names like Ava) are translated

| train

| train100

Type ‘ AM AM-+dist AM+B AM+B+dist AM AM-+dist AM+B AM+B+dist
Subj to Obj (common noun) 65.84+43.4 88.3+10.9 99.7+ 0.1 96.5+ 6.8 99.9+ 0.1 99.9+ 0.1 100.0+ 0.1 99.9+ 0.2
Subj to Obj (proper noun) 69.9+ 9.8 48.14+32.0 66.3+38.8 61.8+47.3 98.9+ 1.7 100.0+ 0.0 89.6+ 8.1 95.8+ 9.3
Obj to Subj (common noun) 53.14+45.0 97.9+ 4.4 99.9+ 0.2 88.0+26.7 99.94+ 0.1 99.8+ 0.2 100.0+ 0.1 99.9+ 0.1
Obj to Subj (proper noun) 90.0+21.4 88.3+25.9 88.9+11.2 78.8+42.9 99.84+ 0.0 99.8+ 0.1 99.9+ 0.0 99.9+ 0.0
Prim to Subj (common noun) 3.4+ 7.6 0.0 0.0 76.2+42.2 80.3+42.2 98.0+ 4.5 59.9454.7 100.0-£ 0.0 100.0+ 0.0
Prim to Subj (proper noun) 4.7£10.6 1.0+ 2.3 99.9+ 0.1 100.0+ 0.0 99.8+ 0.3 99.9+ 0.1 100.0+ 0.0 100.0+ 0.1
Prim to Obj (common noun) 0.2+ 0.4 0.0+ 0.0 74.5+32.5 80.1+40.7 95.94+ 8.9 59.9+54.7 100.0+ 0.0 100.0+ 0.0
Prim to Obj (proper noun) 10.4+ 9.1 22.0+15.6 90.5+ 9.9 94.9+ 3.7 98.84+ 2.4 99.8+ 0.4 84.9+ 9.1 94.4+ 9.0
Prim verb to Infin. arg 59.74+54.2 55.2+50.5 100.0+ 0.0 82.9+ 38.2 17.6+30.8 1.0+ 2.2 100.0+ 0.0 100.0+ 0.0
ObjmodPP to SubjmodPP 38.14+23.1 26.1+£15.1 59.0+40.8 71.5+24.0 48.0+17.3 44.8423.9 49.1+£27.5 77.7+ 7.1
CP recursion 100.0+ 0.0 100.04+ 0.1 100.0+ 0.0 100.0+ 0.0 99.9+4+ 0.1 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0
PP recursion 60.5+ 4.2 97.6+ 0.9 36.3+ 8.0 97.3+ 2.0 57.2+ 8.3 97.0+ 1.1 41.5+11.2 98.6+ 0.5
Active to Passive 69.3+42.2 41.7+52.3 83.0+24.8 78.8+31.3 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0
Passive to Active 51.6+45.2 46.6+50.2 45.5+27.2 52.0+43.6 99.6+ 0.7 99.9+ 0.1 100.0+ 0.0 100.0+ 0.0
ObjOTrans. to trans. 79.6+33.6 77.8+28.2 22.3+24.0 35.6+ 33.4 99.9+4+ 0.1 100.0+ 0.1 100.0+ 0.0 100.0+ 0.0
Unacc to transitive 33.2+36.1 51.24+47.2 48.2+35.8 48.9+41.5 99.6+ 0.7 100.0+ 0.1 100.0+ 0.0 100.0+ 0.0
Dobj dative to PP dative 99.3+ 0.8 98.8+ 2.0 99.84+ 0.1 95.0+11.0 99.9+ 0.1 99.9+ 0.1 100.0+ 0.0 100.0+ 0.0
PP dative to Dobj dative 90.44+11.9 79.5+£44.5 85.6+21.7 89.5+11.5 99.74+ 0.1 99.8+ 0.1 100.0+ 0.0 100.0+ 0.0
Agent NP to Unacc Subj 78.5+43.4 99.7+ 0.6 95.3+ 6.4 78.2+43.9 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0
Theme NP to ObjOTrans. Subj 99.9+ 0.1 99.2+ 1.7 99.9+ 0.1 70.5+41.9 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0
Theme NP to Unergative Subj 100.0+ 0.1 96.6+ 7.6 99.9+ 0.1 64.4+49.0 |100.04+ 0.0 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0
Total ‘ 59.9+21.1 62.7+18.7 79.6+15.4 T78.3+27.7 ‘ 91.1+ 3.6 88.6+ 6.6 93.6+ 2.7 98.4+ 1.3

Table 4: Exact match accuracy on the generalization set by generalization type for all AM parser models.

train

Type LeAR
Subj to Obj (common noun) 99.84+ 0.0
Subj to Obj (proper noun) 93.14+10.2
Obj to Subj (common noun) 100.0+ 0.0
Obj to Subj (proper noun) 99.94+ 0.0
Prim to Subj (common noun) 100.0+ 0.0
Prim to Subj (proper noun) 100.0+ 0.0
Prim to Obj (common noun) 99.84+ 0.0
Prim to Obj (proper noun) 93.14+10.2
Prim verb to Infin. arg 100.0+ 0.0
ObjmodPP to SubjmodPP 92.54+ 9.4
CP recursion 100.0+ 0.0
PP recursion 98.54+ 0.0
Active to Passive 100.0+ 0.0
Passive to Active 100.0+ 0.0
ObjOTrans. to trans. 100.0+ 0.0
Unacc to transitive 100.0+ 0.0
Dobj dative to PP dative 99.94+ 0.0
PP dative to Dobj dative 90.94+ 0.0
Agent NP to Unacc Subj 100.0+ 0.0
Theme NP to ObjOTrans. Subj 100.0+ 0.0
Theme NP to Unergative Subj 100.0+ 0.0
Total 98.94+ 0.9

Table 5: Exact match accuracy on the generalization set
by generalization type for the LeAR reproduction runs
on train.

to nodes. The first part of each predicate name
(e.g. boy, want, go) is the lemma of the token
pointed to by the first argument (e.g. x1, x2, £4), we
strip this lemma (‘delexicalize’) from the predicate
and insert it as the node label of the first argument
(post-processing reverses this).

Binary predicates (i.e. terms with 2 ar-
guments) are translated into edges, pointing
from their first to their second argument,
e.g. want.agent (xg,x1) is converted to an
‘agent’ edge from node xy (the ‘want’ node) to
node 7.

For unary predicates like boy (x1) the delex-

Model trained on ‘ Lexical Structural Overall
AM train 2.7 66.2+ 8.2 59.9+ 2.7
AM-+dist train 2.4 74.5+ 5.2 62.7+10.8
AM+B train 7.3 65.1+11.6 79.6+ 6.4
AM+B-+dist train 25.4 89.6+ 8.7 78.3+22.9
AM train100 2.1 68.4+ 6.7 91.1+ 2.3
AM-+dist train100 6.0 80.6+ 8.2 88.6+ 4.9
AM+B train100 0.9 63.5+ 9.2 93.6+ 1.4
AM+B-+dist train100 1.0 92.1+ 2.3 98.4+ 0.9
LeAR train 1.1 97 + 3.1 98.9+ 0.9
Kim and Linzen 2020 train | 41.2 0 35
Akyiirek and Andreas 2021 train | 75.7+ 1.1 0.5+ 0.6 82.1+ 0.6
Zheng and Lapata 2021 train | 99.8 16.8+4 87.9+

Kim and Linzen 2020 train100 | 73 0 63
Csordés et al. 2021 train100 | 88 0 -+ 75 +

Table 6: Lexical vs structural generalization for
seq2seq and compositional models

icalization already suffices, so we don’t add any
edge (in lack of a proper target node). We restore
unary predicates during postprocessing for nodes
with no outgoing edges.

For a definite NP covering input token positions
1 — 1 and ¢ (i.e. “the;_1 noun;”), COGS includes a
iota term xnoun (x;) ; in the output. This def-
inite NP meaning is treated as if it was a con-
junction of the noun meaning (i.e. noun (x;))
and ‘definite determiner meaning’ binary predicate
the.iota (xj—1,x;) .
The AM parser further requires one node to be the
root node. For non-primitives we select it heuristi-
cally as the node with no incoming edges (exclud-
ing preposition and determiner nodes).

Prepositions. We ‘reify’ prepositions so each be-
comes a node of the graph with outgoing ‘nmod’
edges to the modified NP and the argument NP.

53

Alignments. For training the AM parser addi-
tionally needs alignments of the nodes to the input
tokens. Luckily all z; nodes naturally provide align-
ments (alignment to :th input token). For proper
names we simply align them to the first occurrence
in the sentence. The determiner node is aligned
to the token preceding the corresponding xyoun.
Edges are implicitly aligned by the blob heuristics,
which are pretty simple here; every edge belongs
to the blob of the node it originates from.

Primitives. For primitive examples (e.g. “touch”
(4)) we mostly follow the same procedure. Unlike
non-primitives, however, their resulting graph
can have open sources beyond the root node,
e.g. “touch” would have sources at the nodes b and
a (incoming ‘agent’ or ‘theme’ edge respectively).
These nodes can receive any source out of the
three available (S0,S1,S2)%, so the tree automaton
build as part of Groschwitz et al. (2021)’s method
would allow any combination of source names for
the unfilled ‘arguments’. Because there is only one
input token, alignment is trivial. Primitives quite
closely resemble the ‘supertags’ of the AM parser.

The graph conversion for (1) was already pre-
sented in Fig. 3. For the other three examples (2)—
(4), we present the graph conversions in Fig. 4.

>With the restriction that different nodes should have dif-
ferent sources to prevent the nodes from being merged. We
don’t consider non-empty type requests for these nodes here.

54

hmod.opl

mod.op2

x4 / cookie

(a) See also (2).

ccomp ccom
Cor /sy

agent
(b) See also (3).

agent

theme

(c) See also (4).

Figure 4: Results of the logical form to graph conver-
sion for (2)—(4). Actually for (c) the tree automaton
contained all possible source name combinations for
nodes a and b, not just (SO,S1).

AnaLog: Testing Analytical and Deductive Logic Learnability
in Language Models

Samuel Ryb
Tufts University
samuel.ryb@tufts.edu

Arabella Sinclair
University of Aberdeen

arabella.sinclair@abdn.ac.uk

Abstract

We investigate the extent to which pre-trained
language models acquire analytical and deduc-
tive logical reasoning capabilities as a side ef-
fect of learning word prediction. We present
Anal.og, a natural language inference task de-
signed to probe models for these capabilities,
controlling for different invalid heuristics the
models may adopt instead of learning the de-
sired generalisations. We test four language
models on Anal.og, finding that they have all
learned, to a different extent, to encode in-
formation that is predictive of entailment be-
yond shallow heuristics such as lexical over-
lap and grammaticality. We closely analyse
the best performing language model and show
that while it performs more consistently than
other language models across logical connec-
tives and reasoning domains, it still is sensitive
to lexical and syntactic variations in the reali-
sation of logical statements.

1 Introduction

Logical reasoning (Lakoff, 1970; MacCartney and
Manning, 2007; Smith, 2020) is at the core of
many downstream NLP tasks, such as dialogue
and story generation (Fan et al., 2018; Welleck
et al., 2019); narrative understanding and summari-
sation (Mostafazadeh et al., 2016; Vashishtha et al.,
2020); question answering (Weber et al., 2019; Shi
et al., 2021); relation extraction (Massey et al.,
2015; Kassner et al., 2020; Yanaka et al., 2021);
and visual comprehension (Suhr et al., 2017, 2019;
Sethuraman et al., 2021). Because most of the cur-
rent approaches to these tasks rely on pre-trained
language models (LMs), it is essential to under-
stand whether LMs can perform logical reasoning.

One way of verifying LMs’ reasoning abilities is
using a natural language inference (NLI) task (Da-
gan et al., 2005; Giampiccolo et al., 2007; Bowman
et al., 2015; Bhagavatula et al., 2020; Rudinger
et al., 2020). In NLI, an LM is given a premise

55

Mario Giulianelli
University of Amsterdam
m.giulianelli@uva.nl

Raquel Fernandez
University of Amsterdam
raquel.fernandez@uva.nl

and a hypothesis, and its task is to predict the
logical relation between the two. Yet, LMs typ-
ically learn to solve NLI by using invalid heuris-
tics, for example by extracting overlapping patterns
between premises and hypotheses (McCoy et al.,
2019), or by using specific lexical items and sen-
tence grammaticality as simplistic predictors of
entailment (Poliak et al., 2018).

In this paper, we examine whether pre-trained
LMs rely solely on shallow heuristics, or whether
they can use relevant reasoning abilities to make
inferences. To do so, we develop a new NLI task,
AnaLog,' that requires LMs to encode different
logical reasoning patterns and we probe the be-
haviour of four masked and autoregressive LMs
on this new dataset. Using interpretability mea-
sures, we find that, as a side effect of learning word
prediction, all LMs under scrutiny have—to some
extent—learned to encode information that is pre-
dictive of entailment relations.

We analyse the behaviour of the best perform-
ing model, BERT (Devlin et al., 2019), across the
various inference categories present in Anal.og,
finding that its reasoning abilities go beyond shal-
low heuristics and yield relatively consistent per-
formance on deductive and analytical reasoning, as
well as across reasoning domains (spatial and com-
parative) and logical connectives. Nevertheless,
the model’s behaviour within connectives varies,
pointing out its sensitivity to lexical and syntactic
variations in the realisation of logical statements.

2 Related Work

2.1 Learning Logic from Text

Recent work has explored which aspects of logi-
cal reasoning are statistically learnable from text.
Examining how well LMs encode the semantics of

"The dataset is available at https://github.com/
dmg-illc/analog

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 55 - 68
July 14-15, 2022 ©2022 Association for Computational Linguistics

logical connectives can give us insight into their
reasoning capabilities, i.e., their ability to reach a
conclusion from one or more statements.

Kim et al. (2019b) showed that BERT (Devlin
et al., 2019) achieves 10% higher accuracy than
humans on tasks that involve conjunctions. How-
ever, it has also been shown that LMs fail to encode
the semantics of logical formulas (Traylor et al.,
2021b) and struggle to differentiate between con-
junction and disjunction (Traylor et al., 2021a),
particularly in instances where the operands are
noun phrases (Talmor et al., 2020), suggesting that
the models find it difficult to understand the scope
of the logical operator. It is also known that neu-
ral LMs have difficulty understanding argument
order (Kassner et al., 2020), which is arguably
a pre-requisite for any logical reasoning. Clark
et al. (2020) and Tian et al. (2021) showed that
RoBERTa (Liu et al., 2019), in contrast to BERT,
performs well at encoding instructional texts that
involve conditionals. Good performance on con-
ditionals in LMs is surprising, since humans typ-
ically find reasoning about conditionals challeng-
ing due to the fact that it requires accommodating
degrees of belief (Politzer, 2007). Finally, regard-
ing universal quantification, which implicitly in-
volves encoding a hidden conditional statement
(e.g. Vx.P(z) — Q(z)), BERT’s performance has
been shown to vary substantially (Kim et al., 2019b;
Tian et al., 2021).

Besides different logical connectives, some re-
cent work has studied different types of reasoning
domains. Kassner et al. (2020) showed that models
such as BERT and RoBERTa struggle to encode
the semantics of comparative reasoning phrases.
Yet, Kim et al. (2019b) showed that BERT’s perfor-
mance is only 11% less than human performance
on comparative reasoning tasks, and 10% less than
human performance on spatial reasoning tasks.

Overall, there is a lot of variation in LMs’ abili-
ties to interpret different aspects of logical reason-
ing. We suspect that low performance stems from
the fact that LMs are struggling to encode world
knowledge, which is often required in NLI and
logic datasets (Clark et al., 2007; Wang et al., 2018;
Lauscher et al., 2020; Kassner et al., 2020; Ryb and
Van Schijndel, 2021), while high performance may
be due to extracting overlapping heuristics (Beall
et al., 2019; McCoy et al., 2019), or to attending to
shallow predictors such as the presence of specific
words or sentence grammaticality (Poliak et al.,

56

2018). We control for these factors in Analog.

2.2 Diagnostic Probing

A well established way of investigating what type
of linguistic information is tracked by neural LMs
is diagnostic probing (Ettinger et al., 2016; Adi
et al., 2017; Belinkov et al., 2017; Conneau et al.,
2018; Hupkes et al., 2018). Probing typically con-
sists of extracting model representations, feeding
them as input to a supervised classifier trained to
predict a hypothesised linguistic property (e.g., the
grammatical number agreement of the main verb of
a sentence), and testing the probing classifier on a
set of unseen representations. Good probing perfor-
mance cannot directly be taken to indicate that the
hypothesised linguistic property is tracked by the
LM (Belinkov, 2021). It is thus common practice
to compare the true probing performance of classi-
fiers with performance on control representations
(Zhang and Bowman, 2018; Tenney et al., 2018;
Chrupata et al., 2020), tasks (Hewitt and Liang,
2019a), or datasets (Ravichander et al., 2021).

In this paper, we set up a careful evaluation pro-
cedure to interpret the performance of our prob-
ing classifier, by training it on increasingly small
portions of training data, and comparing its perfor-
mance in relation to two baselines.

3 Dataset Design and Construction

We extend the LAKNLI dataset (Ryb and Van Schi-
jndel, 2021) and present AnalLog, an NLI dataset
that explicitly targets different types of logical rea-
soning. The dataset contains a total of 24,000 items
(see Table 2), where each item consists of a premise,
a hypothesis, and their logical relation: entailment
or non-entailment. Premises and hypotheses are
generated from templates, using a restricted and
carefully selected vocabulary. The templates and
the vocabulary can be found in Appendices A.1
and A.2. The dataset is designed to contain a
balanced distribution of logical connectives and
reasoning categories. Examples are provided in
Table 1.

3.1 Premises

Sentences in AnalLog are constructed from tem-
plates designed for specific logical connectives. For
example:

(1) N1 P1 N2 and N3

A premise is constructed through filling a tem-

Premise

Hypothesis

OVERLAP NO-OVERLAP
AND Jennifer is in front of Elizabeth — Jennifer is in front of Elizabeth. ~— A person is behind some woman.
and Jennifer is to the north of - Elizabeth is to the north of - A person is behind some man.
Linda. Linda.
OR Jennifer is to the north of — Jennifer is to the north of Linda. — Some person is to the south of some
Linda or is below Robert. Jen- — Robert is below Jennifer. woman.
nifer is not below Robert. —+ Some boy is to the east of a man.
CON If Elizabeth Jen- — Linda is smaller than Jennifer. ~ — A person is larger than some woman.
nifer then Linda -» Jennifer is smaller than Linda. - A woman is arriving later than some boy.
Jennifer. Elizabeth
Jennifer.
UNI Every director is to the west of — James is to the west of Patricia. — Some woman is to the east of some man.

Patricia. James is a director.

— Patricia is to the west of James.

-+ Some woman is to the right of some man.

Table 1: Examples of premises and hypotheses for each of the logical connectives. Within the premises, connec-

tives are bolded and spatial and comparative reasoning predicates are highlighted in blue and

plate’s slots with nouns and predicates. For in-
stance, N1 = Patricia, No = James, N3 = Mary,
and P; = is to the left of would result in:

(2) Patricia is to the left of James and Mary

Logical Connectives Anal.og systematically dis-
tinguishes between the following four types of log-
ical connectives in the premise:

e AND: conjunction (and)

e OR: disjunction (or)

e CON: conditionals (unless, if, if then, only if)
e UNI: universal quantification (every, all)

This is in contrast to both SuperGLUE (Wang et al.,
2020) where the logical connectives vary between
being positioned in the premise or hypothesis, and
LogicNLI (Tian et al., 2021), where premises con-
sist of multiple facts and rules and do not isolate
logical connectives. LogicNLI premises may also
feature negation, existential quantification, and
equivalence. Since negation is often used as a
heuristic to predict non-entailment in NLI tasks
(McCoy and Linzen, 2019), we only include it
within premises when absolutely necessary to asses
LMs’ understanding of a specific reasoning schema
(such as disjunction and certain forms of condition-
als). Existential quantification and equivalence are
implicitly present in our hypotheses construction,
as explained in Section 3.2.

Nouns The noun slots in our premise templates
are filled with proper names, as this avoids possible
confounding factors carried over by the semantics
of common nouns. We choose the eight most fre-
quent male and female first names according to the
1990 U.S. Census Bureau’s Population Division.
For the restrictor noun in universal quantification

57

, respectively.

premises (e.g., director in the UNI premise in Ta-
ble 1), we use the four most common nouns in
COCA (Davies, 2010) which correspond to the cat-
egory NOUN.PERSON in Wordnet (Fellbaum, 1998),
do not begin with a vowel,? and are semantically
compatible with our predicates. Selecting high fre-
quency nouns ensures that LMs are not thrown off
by infrequent occurrences, nor heavily influenced
by specific lexical material. This enables LMs to
output representations that are as stable as possible.

Predicates The predicates in our templates are
also instantiated with a restricted vocabulary that
limits interference with additional sorts of knowl-
edge. We focus on two reasoning domains: spa-
tial (3) and comparative (4) reasoning. We select
pairs of spatial reasoning predicates from Kim et al.
(2019a), such as left-right and above-below. To
collect comparative reasoning predicates, we select
pairs from the FraCaS project (Cooper et al., 1996),
such as smaller-larger and weaker-stronger. Rea-
soning about these two types of predicates requires
models to encode truth equivalent relationships,
such as:

(3) Njis above Ny < N, is below IV;

(4) N is stronger than No <= N, is weaker
than V;

3.2 Hypotheses

Assessing whether a given hypothesis is entailed by
a premise may require different kinds of reasoning.
For example, some hypotheses follow purely on the
basis of structural aspects, i.e., they can be derived
by direct deduction on surface form: e.g., ‘A and

2So that they are all compatible with the article a.

B’ logically entails ‘A’ as well as ‘B’, as in (5-a).>
Such hypotheses require deductive reasoning. In
contrast, other cases of entailment go beyond ma-
nipulations at the level of surface form and instead
rely on additional semantic knowledge, as in (5-c).
Such hypotheses require analytical reasoning.

To test both types of reasoning, we generate en-
tailment and non-entailment hypotheses for each
type. For the example premise in (5), this results in
the following four hypotheses, where — denotes
an entailment, and -» a non-entailment relation:

(5) Patricia is to the left of James and Mary

a. — Patricia is to the left of James

b. - Mary is to the left of James

c. — Some man is to the right of some other
person

d. -+ Some man is older than some woman

For AND, we randomly select one of the conjuncts
to construct the entailed direct logical deduction
hypotheses. That is, (5-a) could have also been
Patricia is to the left of Mary. Details of the other
connectives can be found in Appendix A.2 (Ta-
ble 7).

Analog clearly distinguishes between deduc-
tive and analytical reasoning, which gives rise to
a systematic distinction between hypotheses that
exhibit lexical overlap and those that do not ex-
hibit any overlap of content words (see examples
in Table 1). Hence, in addition to isolating LMs’
abilities to both deductively and analytically rea-
son, this offers a way to control LMs’ potential
use of overlap-related heuristics, which have been
shown to artificially inflate previous results on the
NLI task (McCoy et al., 2019). We explain this
distinction in more detail next.

Overlapping Hypotheses Overlapping hypothe-
ses only consist of words reiterated from the
premise. Overlapping entailment (O™) hypothe-
ses are a direct logical deduction (5-a), which cor-
responds to the strictest case of premise overlap
considered by McCoy et al. (2019). Overlapping
non-entailment (O™) hypotheses, in contrast, do
not logically follow from the premise (5-b). We
generate two types of O™ hypotheses: grammati-
cal instances O such as (5-b) and ungrammatical
instances Og;, which correspond to an ungram-
matical bag-of-words subset of the premise (e.g.

31n this example, B’ is the implicit proposition ‘Patricia
is to the left of Mary’.

58

‘and to left the of Patricia’).

While it may not be realistic to expect that LMs
have had exposure to ungrammatical sentences dur-
ing training—and hence that they will have learned
to properly reason with them (i.e., to systematically
classify them as non-entailment)—including un-
grammatical instances allows us to test the strength
of possible overlap-based heuristics: if LMs more
frequently incorrectly assign the label entailment
to ungrammatical cases that exhibit lexical overlap,
then we can consider lexical overlap as a stronger
heuristic than grammaticality.

Non-Overlapping Hypotheses Non-
overlapping hypotheses are generated by replacing
proper names with person-related hypernyms and
replacing the predicate with its counterpart (e.g.,
James ~» some man, left ~ right).* We generate
both Non-Overlap entailment (NO™) hypotheses
(i.e., proper instances of analytical reasoning, such
as (5-¢)) and Non-Overlap non-entailment (NO™)
hypotheses, such as (5-d).

O E G AND OR CON UNI

(0 v v v 1500 1,500 1,500 1,500
pat v X v 750 750 750 750
O Vv X X 750 750 750 750
NO™” X v v 1500 1,500 1,500 1,500
NO” X X v 1500 1,500 1,500 1,500
6,000 6,000 6,000 6,000

Table 2: Anal.og dataset statistics. The dataset contains
24,000 items in total. Overlap (O), Entailment (E), and
Grammaticality (G) are marked. For each category (nu-
merical cell), half of the items are constructed with spa-
tial, and half with comparative reasoning predicates.

4 Experimental Setup
4.1 Models

We probe four pre-trained Transformer (Vaswani
et al., 2017) language models using AnalLog. To
ensure a fair comparison, we use the large ar-
chitecture size for all models, as available in the
HuggingFace library (Wolf et al., 2020). We com-
pare the following architectures:

BERT (Devlinetal., 2019) A Transformer-based
LM pre-trained on masked language modeling and
*We minimize the risk of the probe memorizing facts in

the dataset by choosing to not have 1-to-1 mappings of proper
names to person-related hypernyms.

next sentence prediction, known for its high perfor-
mance at sentence and token classification tasks, in-
cluding NLI (Talman and Chatzikyriakidis, 2019).

LUKE (Yamada et al., 2020) A masked LM
with an entity-aware self-attention mechanism, that
builds upon the RoBERTa architecture (Liu et al.,
2019). Using LUKE enables us to investigate the
degree to which entity tracking can assist in solving
logic-based NLI.

StructBERT (Wang et al., 2019) A masked LM
based on BERT with additional word and sentence
order training objectives. We expect StructBERT
to provide insight on whether structural cues are
useful in solving logic-based NLI.

GPT-2 (Radford et al., 2019) An autoregressive
Transformer-based LM which is known for its high
performance across text-generation tasks, yet has
not been frequently tested on NLI datasets. We are
interested in how abstract representations built by
an autoregressive LM compare to those built by
masked LMs.

4.2 Probing Procedure

For each premise-hypothesis pair in Anal.og, we
concatenate the text of the premise with that of
the hypothesis and with the special sentence token
from each LM’s vocabulary.> We feed this text to
the LM and extract the last layer’s hidden activa-
tions corresponding to the special token; we take
the activations to be the abstract representation of a
premise-hypothesis pair. Repeating this procedure
for all the items in Anal.og, we collect a dataset of
representations, which we split into a training and
a test set (see Section 4.3). We fit a binary logistic
regression classifier®>—as more powerful classifiers
have been shown to produce unreliable results (He-
witt and Liang, 2019a)—to the training set, obtain
predictions for the test set, and compute accuracy
and baselined probing scores, as described in the
next section.

4.3 Controlled Evaluation

Diagnostic probes are known for achieving high
accuracy on linguistic tasks despite representations

For BERT and StructBERT, we prepend the [CLS] to-
ken; for GPT-2, we append the < | endoftext | > token; for
LUKE, we append the </ s> token.

®We use the scikit-learn implementation with default hy-
perparameters. We do not tune the hyperparameters to reduce
the risk of overfitting to the collected representations, which
would inflate the probing results. All logistic regression clas-
sifiers are trained until convergence.

59

not necessarily encoding relevant linguistic infor-
mation (Hewitt and Liang, 2019b; Belinkov, 2021).
To address this issue, following the approach taken
by Zhang and Bowman (2018), we measure prob-
ing performance as the difference between the clas-
sification accuracy of the probing classifier trained
on the original dataset, and the accuracy of a base-
line. We call this baselined probing performance
(BPP), adopting the terminology proposed by He-
witt et al. (2021). To select the strictest baseline
setup, we consider two aspects: 1) the amount
of data, and 2) the type of data—i.e., controlled
baseline representations obtained from the Anal.og
dataset, on which the probe is trained.

Partial Training Sets We split AnalLog into a
main training and testing set using an 80-20 split.
To prevent overfitting of the probing classifier, we
evaluate it by varying the quantity of data it is
exposed to: we create partial training sets by sam-
pling increasingly larger fractions of our main train-
ing set (1%, 2%, 4%, 6%, 8%, 10%, 12.5%, 25%,
50%, 100%), using an approach similar to that
of Zhang and Bowman (2018). The testing set
remains fixed, so that regardless of the split and
baseline probe, we evaluate on a consistent set of
sentences. All the resulting training sets and the
testing set are balanced with respect to the two clas-
sification labels (entailment and non-entailment),
logical connectives, reasoning predicates, and over-
lap vs. non-overlap.

Baselines We train the probing classifier on two
baseline settings. For the Scrambled baseline, we
scramble words in the premises and hypotheses
separately, and train the probing classifier on their
concatenation. Humans should achieve 50% accu-
racy on this version of the dataset because random
word order impedes logical reasoning. For the Ran-
dom baseline, we train the probing classifier on
randomly initialised vector representations.

We consider these baselines as sufficient to en-
sure that entailment relations can only be predicted
by using logical reasoning and not by exploit-
ing dataset artifacts. For example, if the probes
were solely learning associations between proper
names and person-related hypernyms, the scram-
bled probe could suffice to achieve the same per-
formance as the probe optimised on the original
AnalLog testing set.

We train the probing classifier from scratch for
each LM, training split, and baseline. As shown in

STRUCTBERT

100

o
=)

Accuracy

0

a

0 20 40 B0 80 100 0 20 40 60 80

100

Task

—— TRUE
SCRAMBLED
RANDOM

0 20 40 60 B0 100 a 20 40 60 80 100

% of training split

Figure 1: Accuracies of the original (true) vs. baseline (scrambled, random) probes for different training splits.

Figure 1, the Scrambled baseline achieves the high-
est accuracy (around 60%) across all LMs and train-
ing splits. The Random baseline achieves chance-
level accuracy across LMs and training splits, con-
firming that the complexity of our probing clas-
sifier is appropriate for this task.” We therefore
use Scrambled to compute BPP scores, as it yields
the strictest (or most selective; Hewitt and Liang,
2019a) baseline setup.

5 Results across Models

All four LMs achieve positive average BPP scores:
the average accuracy is above baseline by ca. 20
percentage points (see Figure 2). These overall
results indicate that the LMs encode information
that is predictive of entailment relations above and
beyond simple heuristics which can be captured by
a baseline. We also observe that the highest BPP
scores are obtained at a relatively small training
split size. This suggests training probes on more
data can decrease their ability to extract the targeted
linguistic features, and cause them to overfit on the
dataset instead.

BERT and StructBERT are the best performing
models with BPP scores ranging roughly between
15 and 40 (except for the smallest training split
sizes). Their similar performance across all splits
shows that StructBERT’s explicit modelling of sen-
tence and discourse structure does not produce
more informative representations for our Anal.og
task than BERT’s simpler next word and next sen-
tence prediction training objectives.

GPT-2’s high standard deviation across splits
(on average, 20.82) indicates a severe instability in
its capacity to correctly encode logical reasoning
cues. A closer look at GPT-2’s performance shows

"We would have seen an accuracy greater than 50% for
Random if the complexity of the classifier had been excessive.

60

that its representations are predictive of entailment
relations when there is lexical overlap between
premises and hypotheses, and of non-entailment
relations when there is no lexical overlap. While
GPT-2 is an autoregressive LM, as opposed to the
other masked LMs, we are not certain that this fac-
tor is what causes this learning pattern. We leave
exploring this further to future work.

Lastly, LUKE’s performance, with an average
score of 15.05, is significantly lower than that of the
other three models (¢-tests against BERT, Struct-
BERT and GPT-2 yield p-values approaching zero),
suggesting that its ability to track entities does not
significantly help in solving logical deductions.

For the detailed results presented in the next
sections, we focus on the model that achieves the
highest BPP score with the lowest standard devi-
ation. As can be seen in Figure 2, this model is
BERT, probed with a classifier trained on 12.5% of
the full training split.

100 BERT STRUCTBERT
80
60
o
o 40
m
20 ﬁ—‘_‘— - L |
0
-20
LUKE GPT-2

BPP

fr————

0 0 40 &0 80

% of training split

100 40 &0 80

20 100
% of training split

Figure 2: BPP scores for different training splits.

Overlap Non Overlap

100

34.92:8.31 EHESS 17.5+5.42

0 - .

20.83+6.91 28.17+6.26

0 . .

(a) Overlap (all grammatical)

80
20.83+0.71

Entailment

Non-Entailment

G
(b) Grammaticality (O™)

uG

100 100
80 80 31.5
27.75+8.87 26.46+7.61 2458 2;;3-.3237 +9.48
60 60
40 40

(c) Reasoning domains

20

25.0
+5.87
CON UNI

(d) Logical connectives

0

AND

Spatial Comparative OR

Figure 3: BERT probing results across dataset categories. Overall bar height indicates accuracy, broken down by
baseline accuracy (dark blue) and BPP score (light blue with superimposed average score and standard deviation).

6 Detailed Results with BERT

6.1 Solving Inference without Heuristics

We start by analysing the extent to which the per-
formance of the best model, BERT, may be the
result of exploiting heuristics unrelated to logical
reasoning.

Overlap If lexical overlap were used as a heuris-
tic to predict entailment, we would expect lower
performance for overlap-non-entailment O™ and
no-overlap-entailment NO™ instances, where us-
ing the overlap heuristic yields incorrect predic-
tions. This is not the pattern we observe. As shown
in Figure 3a, accuracy is highest in these two cases.
We see that O™ items yield the lowest BPP scores
and NO™ the highest (this difference is statisti-
cally significant and in principle compatible with
the heuristics). However, there is no significant dif-
ference between no-overlap items with entailment
vs. non-entailment labels. This indicates a lexical
overlap heuristic is not prominently at play.

As pointed out in Section 3.2, the overlap vs.
non-overlap distinction also corresponds to the con-
trast between direct deduction and analytical rea-
soning. We do not observe any significant differ-
ences in performance across these two reasoning
types. More generally, the fact that BPP scores are
positive across the board for overlapping and non-
overlapping cases shows that the model is solving
our logic-based NLI task by using information that
goes beyond simple heuristic cues.

Grammaticality If a model were to judge entail-
ment relations purely on the basis of grammatical-
ity, we would expect it to wrongly predict entail-
ment for OF (overlap-non-entailment grammati-
cal) instances and correctly predict non-entailment
for O/ (overlap-non-entailment ungrammatical).

61

This is not what we observe: BPP scores are posi-
tive and not significantly different between O and
O which indicates grammaticality is not being
used as a heuristic to predict entailment.

Finally, we find that performance on ungram-
matical sentences is more unstable (standard devi-
ation is almost 8 times higher than for Of); this
may be due to BERT producing noisier representa-
tions for out of distribution, partially ungrammati-
cal, strings.

6.2 Consistency across Reasoning Domains

Having established that two plausible heuristics are
not behind our probing results, we now turn to com-
paring reasoning domains. We have already seen
that BERT s representations seem to be amenable
to both deductive and analytical reasoning. We
next hypothesize that if LMs can indeed reason
logically, their performance should not be signif-
icantly affected by the specific choice of lexical
items. We therefore compare the probes’ perfor-
mance on spatial vs. comparative reasoning pred-
icates in Analog (see Figure 3c). We find no sig-
nificant difference (t = 0.442, p = 0.662) in BPP
scores across predicate types. This indicates that
BERT’s encoding of lexical semantic relations (in
particular, antonymy) is stable across reasoning do-
mains. This result is in line with the findings of
Kim et al. (2019b), who show no substantial differ-
ences between spatial and comparative reasoning
for BERT and humans.

6.3 Logical Connectives

Finally, we break down the results per logical con-
nective. As can be seen in Figure 3d, BPP scores
are positive and similar across operators, suggest-
ing that BERT representations encode the seman-
tics of logical connectives in a relatively stable way.

We observe the lowest BPP scores with conjunc-
tion and conditionals (in both cases significantly
lower than UNI, p < 0.05). This is somewhat
surprising, particularly for conjunction, given the
previous results by Kim et al. (2019b) mentioned
in Section 2.1. In the next section, we conduct two
case studies to further examine whether there are
specific linguistic phenomena linked to conjunction
and conditionals that may be confusing BERT.

7 Analysis
7.1 Case Study 1: Parsing Conjunction

In Anal.og, the arguments of a conjunction can be
sentences (S), noun phrases (NP), or verb phrases
(VP).8 For example, the AND premise in Table 1
includes sentential conjuncts, while the one in ex-
ample (5) features conjuncts that are NPs. We test
two related hypotheses regarding aspects that may
lead to lower performance in some of these condi-
tions: (7) We conjecture that, when the conjuncts
are NPs or VPs, deducing information to the right
of the conjunct may be more difficult because this
involves parsing long-range dependencies. For ex-
ample, in instances such as David is to the left of
John and Linda — Some girl is to the right of a boy,
predicting the entailment relation requires encod-
ing syntactic and semantic information to both the
left and right of the logical connective. (iz) Conse-
quently, we hypothesise that identifying the argu-
ments of a conjunction may be easier for the model
when these arguments are sentential rather than
phrasal, since the former does not require parsing
long-range dependencies; this would be compatible
with the results by Talmor et al. (2020), who found
that models struggle at making correct predictions
when the conjunction is positioned between NPs.

Our two hypotheses, however, are not confirmed.
On the one hand, we find no significant difference
between left and right for any conjunct type (S, NP,
and VP). This suggests that BERT’s representations
consistently encode information regardless of its
position relative to the conjunction operator, which
could be due to BERT’s bidirectional training. On
the other hand, as can be seen in Figure 4a, we
observe that when the conjunction is positioned be-
tween sentences, the results are in fact significantly
worse than when it is positioned between NPs or
VPs.? Why this may be the case remains an open
question that we leave for future work.

8These three types appear with equal frequency.
° All relevant t-tests yielded p > 0.05.

62

100 100

80 80

1917
+1123 21501 89

UNLESS(P) UNLESS(I) IF IFTHEN ONIYIF

15.9
+12.26

28.13
+11.03

29.42
+16.92

300 2875 275

+13.06

19.58
+9.83

60

40

20

S NP VP

(a) Conjunction (b) Conditionals

Figure 4: BERT results within logical connectives.

7.2 Case Study 2: Types of Conditional

In this second case study, we investigate whether
BERT’s representations struggle to encode some
types of conditionals more than others.!® We ex-
pect to observe the highest performance for if then
sentences, as BERT and RoBERTA reason well
about modus-ponens (Clark et al., 2020). How-
ever, as shown in Figure 4b there is no significant
differences between if then, if, and unless(infix).
The most challenging types are only if and un-
less(prefix). We find that unless(prefix) is signifi-
cantly outperformed by unless(infix). This again
shows that BERT is able to successfully encode
relevant information to both the left and right of a
connective.

8 Conclusions

We present a new NLI dataset, AnalLog, designed
to test LMs’ abilities to deductively and analyti-
cally reason. We choose diagnostic probing as an
interpretability technique, and probe using Anal.og
to inspect whether LMs acquire such logical reason-
ing abilities from text-based pre-training. We find
that masked LMs, in particular BERT and Struct-
BERT, can solve the inference task through encod-
ing properties of both deductive and analytic logic,
rather than solely relying on shallow heuristics such
as lexical overlap and sentence grammaticality.
One main benefit of AnalLog is that it isolates
different reasoning types, domains, and logical con-
nectives, in order to gain a better understanding of
which of these factors makes inference more chal-
lenging for an LM. We choose high frequency lex-
ical items to ensure that the LMs’ representations
are as stable as possible, and not thrown off by sur-
prising low frequency occurrences. We also use a
fine-grained probing setup consisting of different

9The conditionals present in AnaLog are: if, if then, only
if, unless(prefix), unless(infix); see Appendix A.2.

training splits and multiple baselines to ensure that
probes are using relevant linguistic and logical in-
formation, rather than learning the dataset artifacts,
to solve the task.

We perform an in-depth analysis of BERT’s be-
haviour. Its overall stable performance is promis-
ing, though our case studies show some variance at
the level of different natural language formulations
of the same logical connective or their arguments
as opposed to at higher reasoning levels. Overall,
we think that BERT learns to encode approxima-
tions of the types of logical reasoning information
necessary to solve AnalLog, although its sensitivity
to surface forms can make these approximations in-
consistent. While extending the Anal.og test set to
also include lower frequency items may be helpful
to ensure generalizability over noun and predicate
relations (which we leave for future work), we hope
that as it currently stands, Anal.og can be used as a
benchmark to check whether LMs reason correctly
by using elementary linguistic knowledge and logi-
cal semantics, as opposed to surface heuristics.

Acknowledgements

We would like to thank the anonymous ARR and
*SEM 2022 reviewers for their feedback and sug-
gestions, as well as Ece Takmaz for her comments.
Samuel Ryb and Arabella Sinclair worked on this
project while affiliated with the University of Am-
sterdam. The project has received funding from
the European Research Council (ERC) under the
European Union’s Horizon 2020 research and inno-
vation programme (grant agreement No. 8§19455).

References

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2017. Fine-grained anal-
ysis of sentence embeddings using auxiliary pre-
diction tasks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net.

Jc Beall, Greg Restall, and Gil Sagi. 2019. Logical
Consequence. In Edward N. Zalta, editor, The Stan-
ford Encyclopedia of Philosophy, Spring 2019 edi-
tion. Metaphysics Research Lab, Stanford Univer-
sity.

Yonatan Belinkov. 2021. Probing Classifiers:
Promises, Shortcomings, and Advances. Computa-
tional Linguistics, pages 1-13.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2017. What do neural ma-

63

chine translation models learn about morphology?
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 861-872.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya
Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-
nah Rashkin, Doug Downey, Wen tau Yih, and Yejin
Choi. 2020. Abductive commonsense reasoning. In
International Conference on Learning Representa-
tions.

Samuel R. Bowman, Christopher Potts, and Christo-
pher D. Manning. 2015. Recursive neural networks
can learn logical semantics. In Proceedings of the
3rd Workshop on Continuous Vector Space Models
and their Compositionality, pages 12-21, Beijing,
China. Association for Computational Linguistics.

Grzegorz Chrupata, Bertrand Higy, and Afra Alishahi.
2020. Analyzing analytical methods: The case of
phonology in neural models of spoken language. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4146—
4156.

Peter Clark, Phil Harrison, John Thompson, William
Murray, Jerry Hobbs, and Christiane Fellbaum.
2007. On the role of lexical and world knowledge
in RTE3. In Proceedings of the ACL-PASCAL Work-
shop on Textual Entailment and Paraphrasing, pages
54-59, Prague. Association for Computational Lin-
guistics.

Peter Clark, Oyvind Tafjord, and Kyle Richardson.
2020. Transformers as soft reasoners over language.
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-
20, pages 3882-3890. International Joint Confer-
ences on Artificial Intelligence Organization. Main
track.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loic Barrault, and Marco Baroni. 2018. What
you can cram into a single $&!#* vector: Probing
sentence embeddings for linguistic properties. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2126-2136, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Robin Cooper, Richard Crouch, Jan van Eijck, Chris
Fox, Josef Genabith, Jan Jaspars, Hans Kamp, David
Milward, Manfred Pinkal, Massimo Poesio, Steve
Pulman, Ted Briscoe, Holger Maier, and Karsten
Konrad. 1996. Using the Framework: The FraCaS
Consortium. Technical report, FraCaS deliverable
D-16.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Proceedings of the Machine Learning
Challenges Workshop, pages 177-190.

Mark Davies. 2010. The Corpus of Contemporary
American English as the first reliable monitor cor-
pus of English. Literary and Linguistic Computing,
25(4).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Allyson Ettinger, Ahmed Elgohary, and Philip Resnik.
2016. Probing for semantic evidence of composition
by means of simple classification tasks. In Proceed-
ings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 134—139.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889-898, Melbourne, Australia. Association
for Computational Linguistics.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and Bill Dolan. 2007. The third PASCAL recogniz-
ing textual entailment challenge. In Proceedings of
the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 1-9, Prague. Association
for Computational Linguistics.

John Hewitt, Kawin Ethayarajh, Percy Liang, and
Christopher D. Manning. 2021. Conditional prob-
ing: measuring usable information beyond a base-
line.

John Hewitt and Percy Liang. 2019a. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733-2743.

John Hewitt and Percy Liang. 2019b. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733-2743, Hong
Kong, China. Association for Computational Lin-
guistics.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and’diagnostic classifiers’ re-
veal how recurrent and recursive neural networks
process hierarchical structure. Journal of Artificial
Intelligence Research, 61:907-926.

64

Nora Kassner, Benno Krojer, and Hinrich Schiitze.
2020. Are pretrained language models symbolic
reasoners over knowledge? In Proceedings of
the 24th Conference on Computational Natural Lan-
guage Learning, pages 552-564, Online. Associa-
tion for Computational Linguistics.

Najoung Kim, Roma Patel, Adam Poliak, Alex Wang,
Patrick Xia, R. Thomas McCoy, Ian Tenney, Alexis
Ross, Tal Linzen, Benjamin Van Durme, Samuel R.
Bowman, and Ellie Pavlick. 2019a. Probing what
different NLP tasks teach machines about function
word comprehension. In *SEMEVAL.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, lan Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, Samuel R. Bow-
man, and Ellie Pavlick. 2019b. Probing what dif-
ferent NLP tasks teach machines about function
word comprehension. In Proceedings of the Eighth
Joint Conference on Lexical and Computational Se-
mantics (*SEM 2019), pages 235-249, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

George Lakoff. 1970. Linguistics and natural logic.
Synthese, 22(1/2):151-271.

Anne Lauscher, Olga Majewska, Leonardo F. R.
Ribeiro, Iryna Gurevych, Nikolai Rozanov, and
Goran Glavas. 2020. Common sense or world
knowledge? investigating adapter-based knowledge
injection into pretrained transformers. In Proceed-
ings of Deep Learning Inside Out (DeeLlO): The
First Workshop on Knowledge Extraction and Inte-
gration for Deep Learning Architectures, pages 43—
49, Online. Association for Computational Linguis-
tics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

Bill MacCartney and Christopher D. Manning. 2007.
Natural logic for textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pages 193-200, Prague. As-
sociation for Computational Linguistics.

Philip Massey, Patrick Xia, David Bamman, and Noah
Smith. 2015. Annotating character relationships in
literary texts. arXiv:1512.00728.

Richard T McCoy and Tal Linzen. 2019. Non-entailed
subsequences as a challenge for natural language in-
ference. Proceedings of the Society for Computation
in Linguistics, 2(1):358-360.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428-3448,

Florence, Italy. Association for Computational Lin-
guistics.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839—849, San Diego,
California. Association for Computational Linguis-
tics.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180-191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Guy Politzer. 2007.
Topoi, 26:79-95.

Reasoning with conditionals.

Alec Radford, Jeff Wu, R. Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language mod-
els are unsupervised multitask learners. Technical
report, OpenAl blog.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard
Hovy. 2021. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:

Main Volume, pages 3363-3377.

Rachel Rudinger, Vered Shwartz, Jena D. Hwang,
Chandra Bhagavatula, Maxwell Forbes, Ronan
Le Bras, Noah A. Smith, and Yejin Choi. 2020.
Thinking like a skeptic: Defeasible inference in nat-
ural language. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pages
4661-4675, Online. Association for Computational
Linguistics.

Samuel Ryb and Marten Van Schijndel. 2021. Analyti-
cal, symbolic and first-order reasoning within neural
architectures. In Proceedings of the 2021 Workshop
on Computing Semantics with Types, Frames and Re-
lated Structures.

Muralikrishnna Sethuraman, Ali Payani, Faramarz
Fekri, and James Kerce. 2021. Visual question an-
swering based on formal logic. In Proceedings
of the 20th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA), pages
952-957.

Jihao Shi, Xiao Ding, Li Du, Ting Liu, and Bing
Qin. 2021. Neural natural logic inference for in-
terpretable question answering. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 3673-3684, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Robin Smith. 2020. Aristotle’s Logic. In Edward N.
Zalta, editor, The Stanford Encyclopedia of Philos-
ophy, Fall 2020 edition. Metaphysics Research Lab,
Stanford University.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi.
2017. A corpus of natural language for visual rea-
soning. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 217-223, Vancou-
ver, Canada. Association for Computational Linguis-
tics.

Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang,
Huajun Bai, and Yoav Artzi. 2019. A corpus for
reasoning about natural language grounded in pho-
tographs. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6418-6428, Florence, Italy. Association for
Computational Linguistics.

Aarne Talman and Stergios Chatzikyriakidis. 2019.
Testing the generalization power of neural network
models across NLI benchmarks. In Proceedings of
the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
85-94, Florence, Italy. Association for Computa-
tional Linguistics.

Alon Talmor, Yanai FElazar, Yoav Goldberg, and
Jonathan Berant. 2020. oLMpics-on what language
model pre-training captures. Transactions of the As-
sociation for Computational Linguistics, 8:743-758.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R Bowman, Dipan-
jan Das, et al. 2018. What do you learn from con-
text? Probing for sentence structure in contextual-
ized word representations. In International Confer-
ence on Learning Representations.

Jidong Tian, Yitian Li, Wenqing Chen, Liqgiang Xiao,
Hao He, and Yaohui Jin. 2021. Diagnosing the first-
order logical reasoning ability through LogicNLI.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3738-3747, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Aaron Traylor, Roman Feiman, and FEllie Pavlick.
2021a. AND does not mean OR: Using formal lan-
guages to study language models’ representations.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
158-167, Online. Association for Computational
Linguistics.

Aaron Traylor, Ellie Pavlick, and Roman Feiman.
2021b. Transferring representations of logical con-
nectives. In Proceedings of the Ist and 2nd Work-
shops on Natural Logic Meets Machine Learning

(NALOMA), pages 22-25, Groningen, the Nether-
lands (online). Association for Computational Lin-
guistics.

Siddharth Vashishtha, Adam Poliak, Yash Kumar Lal,
Benjamin Van Durme, and Aaron Steven White.
2020. Temporal reasoning in natural language infer-
ence. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4070-4078,
Online. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel R. Bowman. 2020. Superglue: A
stickier benchmark for general-purpose language un-
derstanding systems.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

Wei Wang, Bin Bi, Ming Yan, Chen Wu, Zuyi Bao,
Jiangnan Xia, Liwei Peng, and Luo Si. 2019. Struct-
bert: Incorporating language structures into pre-
training for deep language understanding.

Leon Weber, Pasquale Minervini, Jannes Miinchmeyer,
UIf Leser, and Tim Rocktédschel. 2019. NLProlog:
Reasoning with weak unification for question an-
swering in natural language. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 6151-6161, Florence,
Italy. Association for Computational Linguistics.

Sean Welleck, Jason Weston, Arthur Szlam, and
Kyunghyun Cho. 2019. Dialogue natural language
inference. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3731-3741, Florence, Italy. Association for
Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38—45, Online. Asso-
ciation for Computational Linguistics.

66

Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki
Takeda, and Yuji Matsumoto. 2020. LUKE: Deep
contextualized entity representations with entity-
aware self-attention. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 6442—6454, On-
line. Association for Computational Linguistics.

Hitomi Yanaka, Koji Mineshima, and Kentaro Inui.
2021. Exploring transitivity in neural NLI models
through veridicality. In Proceedings of the 16th
Conference of the European Chapter of the Associ-
ation for Computational Linguistics: Main Volume,
pages 920-934, Online. Association for Computa-
tional Linguistics.

Kelly Zhang and Samuel Bowman. 2018. Language
modeling teaches you more than translation does:
Lessons learned through auxiliary syntactic task
analysis. In Proceedings of the 2018 EMNLP Work-
shop BlackboxNLP: Analyzing and Interpreting Neu-
ral Networks for NLP, pages 359-361.

Appendix
A Dataset Construction Details

A.1 Lexical Items

Tables 3 and 6 respectively, show the noun, spatial
and comparative analytic reasoning phrases used
in AnalLog.

Name Gender | % Freq. | Count

James M 3.318 4,840,833
John M 3.271 4,772,262
Robert M 3.143 4,585,515
Michael M 2.629 3,835,609
William M 2.451 3,575,914
David M 2.363 3,447,525
Richard M 1.703 2,484,611
Charles M 1.523 2,221,998
Mary F 2.629 3,991,060
Patricia F 1.073 1,628,911
Linda F 1.035 1,571,224
Barbara F 0.98 1,487,729
Elizabeth | F 0.937 1,422,451
Jennifer F 0.932 1,414,861
Maria F 0.828 1,256,979
Susan F 0.794 1,205,364

Table 3: Noun phrases. Source: 1990 U.S. Census Bu-
reau’s Population Division.

As mentioned in Section 3.1, for the restrictors
of the universal quantification premises (i.e., the
UNIy slot in the Table 7 template), we used the
four most common nouns in COCA (Davies, 2010)
which do not begin with a vowel, and that cor-
respond to the category NOUN.PERSON in Word-
net (Fellbaum, 1998), ensuring grammaticality
when used within our templates (see Table 4).

Restrictor Noun | POS | Frequency
model n 191,448
director n 158,028
participant n 81,371
soldier n 78,276

Table 4: UNIy restrictor noun entries. Source: Corpus
of Contemporary American English. POS stands for
Part of Speech.

We replace the nouns from Table 3 with lexical
entries from Table 5 within non-overlapping entail-
ment (NO™) and non-overlapping non-entailment
(NO™) sentences, to ensure that models (and
probes) are not using non-linguistic heuristics when
solving the inference task.

Gender | Hypernyms

Female | a girl, some girl, some other girl, a
woman, some woman, sSome person, a
person

Male a boy, some boy, some other boy, a
man, Some man, SOme person, a person

Table 5: Noun hypernyms used within Anal.og.

A.2 Premise Constructions

Premises are constructed according to different tem-
plates (see Table 7). Let N be some noun (e.g.
Patricia, David ...) and P be some spatial or com-
parative reasoning predicate (e.g. is fo the right
of, is younger than ...). We use the - symbol
to denote negation. See Table 8 for information
pertaining to the Specificity.

B Computing Infrastructure and Budget

Our experiments were carried out using a single
GPU on a computer cluster with Debian Linux OS.
The GPU nodes on the cluster are GPU GeForce
1080Ti, 11GB GDDRS5X, with NVIDIA driver ver-
sion 418.56 and CUDA version 10.1. The total
computational budget required to perform all our
experiments amounts to 15 hours.

67

Spatial Reasoning Comparative Reasoning

Nj is to the left of N <= N3 is to the right of N;
N is on top of N2 <= N3 is below N;
N; is to the north of No <= N is to the south of N;
N; is in front of N2 <= N is behind N;
N; is to the east of No <= Ny is to the west of N

N is smaller than N> <= N is larger than N,
N; is faster than N> <= Ny is slower than N;
N; is arriving earlier than No <= N is arriving later than N
N, is stronger than N, <= N is weaker than N,
N; is younger than N> <= N is older than N;

Table 6: Predicates and their reasoning categories.

LC Specificity Premise Overlap Entailment

AND S N1 P1 N2 and N3 P2 N4. Random[N1 Pl Nz, N3 P2 N4].

AND NP N1 P1 N2 and N3. Random[N1 Pl Nz, N1 Pl N3].

AND VP N1 P1 N2 and P2 N3. Random[N1 Pl Nz, N1 P2 N3].

OR S N1 Py N2 or N3 P2 Ny. Random[N; = Py N2, N3 The non-negated non-selected random
— P2 Ny]. sentence.

OR NP P: N; P1 N2 or N3. Random[N; = Py N2, N; = P; The non-negated non-selected random
Ns]. sentence.

OR VP N; P1 N2 or P2 N3. Random[N; — P; N2, N; = The non-negated non-selected random
P2 N3]. sentence.

CON UNLESS Prefix Unless N1 P1 NQ, N3 P2 N4. N1 - P1 N2. N3 P2 N4.

CON UNLESS Infix N1 P1 NQ unless N3 P2 N4. N3 - P2 N4. N1 Pl N2.

CON IF N; P1 N2 Random([if, when, even though] N3 P2 N; P; No.
Ns. N3 P2 Ny.

CON IF THEN IfN1 P1 N2 then N3 PQ N4. N1 P1 Nz. N3 P2 N4.

CON ONLY IF N1 P1 N2 only if N3 P2 N4. N1 P1 N2. N3 P2 N4.

UNI Each Each UNIN P1 N1. N2 isa UNIN. NQ P1 N1.

UNI Every Every UNIy P; Nj. Ngis a UNIy. N5 P; Nj.

Table 7: Syntactic templates for premises and their corresponding overlapping entailment hypotheses. The logi-

cal connectives (LC) are bolded within each premise. Specificity indicates the lexical representation and/or the
position in which the LCs are used within premises.

Specificity Definition

S Conjunction/disjunction is positioned between sentences.

NP Conjunction/disjunction is positioned between between noun phrases.

VP Conjunction/disjunction is positioned between verb phrases.

UNLESS Prefix The logical conditional connective is denoted by the word unless prefixed to the premise.

UNLESS Infix
IF

The logical conditional connective is denoted by the word unless within the premise.
The logical conditional connective is denoted by the word if.

IF THEN The logical conditional connective is denoted by the phrase if ... then
ONLY IF The logical conditional connective is denoted by the phrase only if.
Each The universal quantifier is denoted by the word each.

Every The universal quantifier is denoted by the word every.

Table 8: Specificity definitions.

68

Pairwise Representation Learning for Event Coreference

Xiaodong Yu'

{xdyu,

Abstract

Natural Language Processing tasks such as re-
solving the coreference of events require under-
standing the relations between two text snip-
pets. These tasks are typically formulated as
(binary) classification problems over indepen-
dently induced representations of the text snip-
pets. In this work, we develop a Pairwise Rep-
resentation Learning (PAIRWISERL) scheme
for the event mention pairs, in which we jointly
encode a pair of text snippets so that the rep-
resentation of each mention in the pair is in-
duced in the context of the other one. Fur-
thermore, our representation supports a finer,
structured representation of the text snippet to
facilitate encoding events and their arguments.
We show that PAIRWISERL, despite its simplic-
ity, outperforms the prior state-of-the-art event
coreference systems on both cross-document
and within-document event coreference bench-
marks. We also conduct in-depth analysis in
terms of the improvement and the limitation
of pairwise representation so as to provide in-
sights for future work. !

1 Introduction

In this work, we study the event coreference
resolution problem. Event coreference resolution is
commonly modeled as a binary classification prob-
lem over independently induced representations on
the text snippets of each event mention (Lee et al.,
2012; Barhom et al., 2019).2 Understanding the
relations between two text snippets is the essential
part in the tasks. In this work, we argue that the
representations of prior work are not expressive
enough to learn the pairwise relations due to the
following two reasons:
(1) Counterpart Unawareness. The relationship
between two mentions can be different in different

'Our code is available at http://cogcomp.org/
page/publication_view/979

2Some work maps the two mentions into a single matching

score, e.g., (Barhom et al., 2019); this can be treated as a
special case of binary classification.

Wenpeng Yin?
'University of Pennsylvania

danroth}@seas.upenn.edu

69

Dan Roth'
>Temple University

wenpeng.yin@temple.edu

contexts. To address different scenarios, it is better
for each mention to ensure that its representation
is aware of what its counterpart’s representation.
However, most early work induces mention rep-
resentations independently by extracting features
only from the sentence that contains the mention,
without using the context of the other mention
(Barhom et al., 2019; Huang et al., 2019). Some
more recent work attempts to encode the whole
document to represent each mention (Lee et al.,
2017; Cattan et al., 2020). This is beneficial for
short documents, since the representation of each
mention will also include information from the
context of the other candidate mention. However,
this is not sufficient for cross-document settings,
when the comparison is, for example, between two
event mentions that appear in separate documents.
In this case even encoding large pieces of text leave
the candidate mention representations independent
of each other.

(i1) Unstructured representation learning. An
event mention consists of multiple arguments that
describe the event: who, when, where, etc. When
determining the relationship of two event mentions,
the mismatch of some arguments could be decisive.
Consider the following two sentences s; and s
(event trigger is underlined; argument #0 is in
blue, location is in purple)

s1: “Over 69,000 people lost their lives in the quake,
including 68,636 in Sichuan.”

s2: “Up to 6,434 people lost their lives in Kobe earth-
quake and about 4,600 of them were from Kobe.”

These two events “lost” are not the same events
because the earthquake in Sichuan and the earth-
quake in Kobe are two different earthquakes, and
Sichuan and Kobe do not have any geographic over-
lap. The mismatch of the locations “Sichuan” and
“Kobe” may be enough to determine that the two
events are different from each other without even
considering the rest of the sentence. Most prior

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 69 - 78
July 14-15, 2022 ©2022 Association for Computational Linguistics

work encodes all of the arguments into a single
distributed representation vector and just compares
the overall vector representations of two mention
triggers. Although contextual representation could
encode all of the arguments’ information, this is
less optimal than explicitly representing all of the
arguments, thus making it easier for the model to
conduct fine-grained reasoning over each of the
argument.

To address the drawbacks of prior representa-
tions, we propose pairwise representation learning
(PAIRWISERL). PAIRWISERL alleviates the afore-
mentioned two limitations with two designs:

Pairwise representation learning. We suggest
treating a mention pair, rather than a single men-
tion, as the object for the representation learning.
We encode the two mentions’ sentences as a whole
sequence so that one sentence’s token representa-
tion is able to interact with the other sentence’s
from the very beginning. This is advantageous over
learning two separate and independent representa-
tions because it allows for learning how compatible
one mention is with the other mention’s context.

Structured representation learning. The ob-
servation that mismatching arguments are critical
to making the coreference decision indicates that
using a single combined representation for all of
the arguments could be less informative for cross-
mention comparison. In this work, we explicitly
represent all the arguments, and compare each ar-
gument separately.

To our knowledge, this is the first work that
applies pairwise representation learning to event
coreference problems. We report our performance
on both within-document and cross-document
event coreference benchmarks. We show that
PAIRWISERL, despite its simplicity, clearly sur-
passes more complex state-of-the-art event coref-
erence systems on two most popular benchmarks
ECB+ (Cybulska and Vossen, 2014) and KBP17
(Getman et al., 2015). We also conduct in-depth
analysis in terms of the improvement and the lim-
itation of pairwise representation so as to provide
insights for future work.

2 Related Work

In this section, we discuss prior representation
learning approaches for event coreference and how
pairwise representation learning has been used in
other NLP problems.

70

Event Coreference. Earlier work uses hand-
engineered event features to represent events (Chen
et al., 2009; Bejan and Harabagiu, 2010).

Most recent neural models use contextual em-
bedding and character-based embedding of event
triggers with some pairwise features to represent
events (Kenyon-Dean et al., 2018; Huang et al.,
2019; Cattan et al., 2020). These works do not use
argument information, and expect the contextual
embedding includes all the necessary information.

Argument information has been integrated into
event representations either by encoding some
string-level features (Peng et al., 2016; Choubey
and Huang, 2017) or by entity-level coreference
co-training (Lee et al., 2012; Barhom et al., 2019).

In contrast, our representation learning of events
has a unified system to encode the event triggers
and the argument entities, which avoids the costly
co-training while learning more advanced features
that express the arguments on their own and their
interactions with the event triggers.

Pairwise Representation Learning in Other
NLP Tasks. Pairwise representation learning has
been widely adopted to model the relationships of
two pieces of text. The main goal is to learn con-
textualized sentence representations. Earlier sys-
tems commonly implement with attention mecha-
nisms in recurrent (Hermann et al., 2015), convolu-
tional (Yin and Schiitze, 2018) or Transformer-style
(Vaswani et al., 2017) neural networks to deal with
text generation, such as neural machine translation
(Bahdanau et al., 2015), document reconstruction
(Lietal., 2015), and document summarization (Nal-
lapati et al., 2016); machine comprehension (Her-
mann et al., 2015), textual entailment (Rocktidschel
et al., 2016; Devlin et al., 2019), etc.

In this work, we develop the pairwise representa-
tion learning for modeling the relationship of two
mentions within two separate sentences rather than
the relationship of the two sentences themselves.
To the best of our knowledge, we are the first to
(i) study pairwise representation for event pairs by
letting two mentions learn from each other’s con-
text from the beginning 3 , and (ii) build structured
representation between events by fine-grained ar-
gument reasoning, without any hand-engineered
features.

vt(iaj)

EREAT

auuﬁbmgmﬂm

RoBERTa

[CLS I sentence 1]SEP I sentence j IPAD]

token rep. token rep.

event i event j

input pair (i,j) as a single sequence

Figure 1: PAIRWISERL learns the trigger-only pair-
wise representation. v} (resp. v;) is the contextualized
representation vector for the trigger in event ¢ (resp. j).
The whole trigger-based event pair (3, j) is denoted by

v¢(4, 7) which is the concatenation: [v}, v, v} o v]].

3 PAIRWISERL for Coreference

PAIRWISERL takes two sentences containing each
mention as the input and outputs a score indicat-
ing how likely the two mentions refer to the same
event. Given the mention pair e; and e; with their
arguments [arg0; argl; loc; time], as shown in Fig
1, we concatenate the sentences of e; and e;, and
encode the concatenated sentence using RoOBERTa
(Liu et al., 2019). After encoding each token of
the sequence to a representation vector, we sum up
the token representations of the mention span as
the representations for event trigger and event argu-
ments respectively: v for event trigger, vVargo/Vargl
for argument #0 or #1, v, for location and vgjme
for time.

Next, we conduct fine-grained coreference rea-
soning, as Figure 2 shows. The goal is to let each
role of event arguments learn its contribution to the
final task. For each role, where role € {t, arg0,
argl, loc, time}, we first build the following role-
wise representation:

ey

where o is element-wise multiplication. Because
these four arguments may not always exist in the
local context, if one of the role is missing, then the
corresponding vﬁole will be a zero vector.

We keep the vy as the main representation in
PAIRWISERL, and let each of the remaining four ar-

guments contribute a feature value indicating their

Urole (Zv]) = [Uiolm Uiole? fUll“ole 0 Uljﬂole]

3(Zeng et al., 2020) uses a similar method, and is a con-
temporary work with ours.

71

MLP,

Qargd | Gargl

Qargd Qargl -aluc

MLPW MLPlT MLP,

) |) [o

][var Vargl Viime]

Figure 2: The full reasoning process in PAIRWISERL.
The final PAIRWISERL representation is the concate-
nation of the trigger’s representation and four feature
values, each coming from a mention argument.

own decisiveness. The feature value is learnt with
a multi-layer perceptron (MLP) as follows:

arole(iaj) = MLPI(Urole(iyj)))

where “role” refers to mention arguments other
than the trigger, MLP; has four layers and the
output of MLP; is a single scalar as the argument
feature value. As a result, the final representation
PAIRWISERL for event coreference is:

3)

U(i’]) = [Ut (i,])7 Aarg0, Aargl, Aloc, atime]

Since entities do not have arguments, the final rep-
resentation PAIRWISERL for entity coreference is:

)

Once obtaining the pairwise representation v (3, j),
another four-layer MLP, as shown in Figure 2, will
act as a binary classifier (i.e., is coreferential or not)

’U(iaj) = 'Ut(iaj)

pli,) = Softmax(MLP2(v(i, 7)) (5)

where p(i, 7)[0] is the probability that the two men-
tions ¢ and j are coreferential.

4 Experiments

We apply PAIRWISERL to cross-document and
within-document event coreference problems.

4.1 Cross-document Event Coreference

Dataset We use the ECB+ (Cybulska and Vossen,
2014) corpus to train and test our model. ECB+
is the largest and most popular dataset for cross-
document Event Coreference, which is extended
from ECB (Bejan and Harabagiu, 2010). For each
topic in ECB, Cybulska and Vossen (2014) add dif-
ferent but similar events as subtopics. We follow

Train Dev Test
Topics 25 8 10
Documents 574 196 206
Sentences 1,037 346 457
Event mentions 3,808 1,245 1,780
Event Singletons | 1,116 280 623
Event Clusters 1,527 409 805
Entity mentions 4,758 1,476 2055
Entity Singletons 472 125 196
Entity Clusters 1,286 330 608

Table 1: ECB+ statistics. We follow the data split by
Cybulska and Vossen (2015): train: 1, 3, 4, 6-11, 13-17,
19-20, 22, 24-33; dev: 2, 5, 12, 18, 21, 23, 34, 35; test:
36-45. Event/Entity Clusters include singletons.

the same setup as previous work (Cybulska and
Vossen, 2015; Kenyon-Dean et al., 2018; Barhom
et al., 2019). The detailed statistics are shown in
Table 1. For both training and evaluation, we use
gold event mentions. ECB+ also annotates corefer-
ence between entities that are arguments of events.
We also use gold entity mentions to evaluate Entity
Coreference on ECB+.

Preprocessing:

Argument generation. ECB+ annotates argu-
ments of each event in the same sentence, but does
not annotate the role of the arguments and the event
that the arguments belong to. To predict arguments
for each event mention, we use AI2 SRL system A
which is a reimplementation of Shi and Lin (2019),
and then we map the predicted arguments to the
gold arguments. If any gold argument span over-
laps with a predicted argument span, we assign the
predicted role to it.

Topic Clustering. Topic clustering is a common
componet of cross-document coreference because
it is computationally inefficient to calculate sim-
ilarity of the mention pairs in all the documents.
People prefer to only collect mention pairs within
documents that are related. Barhom et al. (2019)
implements a strong topic clustering model that
uses the K-Means algorithm on the documents rep-
resented by TF-IDF scores of unigrams, bi-grams,
and trigrams. They choose the K value based
on the Silhouette Coefficient method (Rousseeuw,
1987), and perfectly get the number of gold topics.
Though there still exist wrong documents in each

*https://demo.allennlp.org/
semantic-role-labeling

72

topic cluster, their nearly perfect clustering allows
very simple baseline models to achieve very good
results (Barhom et al., 2019). Since we focus on
the improvement that the pairwise representation
can bring, we use exactly the same topic clustering
model they implemented. We use gold topics for
training, and predicted topics for inference.

Postprocessing: Mention Clustering. After
training the pairwise coreference scorer, follow-
ing previous work (Choubey and Huang, 2017;
Kenyon-Dean et al., 2018; Barhom et al., 2019; Cat-
tan et al., 2020), we apply agglomerative clustering
to the event pairs by the score from the trained
scorer in Equation 5. Agglomerative clustering
merges event clusters until no cluster pairs have a
similarity score higher than a threshold. We define
the cluster pair similarity score as the average score
of all the event pairs across two clusters, and tune
the threshold on development data.

Results: We compare with two state-of-the-art
cross-document Event Coreference models using
different methods: Barhom et al. (2019), which
jointly trains Entity Coreference and Event Corefer-
ence, and Cattan et al. (2020), which jointly learns
mention detection and coreference. We also com-
pare with the same head lemma baseline imple-
mented by Barhom et al. (2019), which simply
clusters events with same head lemma.

To reveal the true merit of PAIRWISERL, in Ta-
ble 2, we separately show the effectiveness of the
structured and pairwise representations as proposed
in PAIRWISERL. In “Unstructured”, our system
only uses the trigger representation, Equation 4,
to denote the representation of a pair of mention;
in “Structured”, the structured representation de-
picted in Equation 3 is used; in “Unpaired”, the
representations of trigger and arguments are gen-
erated with their own sentence only instead of the
concatenated two sentences; in “Pairwise”, the rep-
resentations are generated by the two concatenated
sentences as described in Sec 3. We see that us-
ing only structured representations improves F1
by 1.6 (from 81.3 to 82.9) from the baseline un-
paired+unstructured setting, and using only pair-
wise representation improves F1 by 2.7 (from 81.3
to 84.0). Both 82.9 and 84.0 already outperform
the state-of-the-art model Cattan et al. (2020) on all
of the evaluation metrics with large margins, par-
ticularly when using pairwise representation, 84.0
vs. 81.0 by CoNLL F1 score. When incorporating

MUC B3 CEAF, CoNLL

Model R P F1 R P F1 R P F1 F1
same head lemma 76.5 79.9 78.1 717 85 77.8 755 71.7 73.6 76.5
Barhom et al. (2019) 77.6 84.5 80.9 76.1 85.1 80.3 81 73.8 773 79.5
Cattan et al. (2020) 85.1 81.9 83.5 82.1 82.7 824 752 789 77.0 81.0
Unpaired

Unstructured 81.7 84.4 83.1 79.8 86.3 829 79.6 76.7 78.1 81.3

Structured 84.6 84.6 84.6 83.6 84.2 83.9 80.2 80.2 80.2 82.9
Pairwise

Unstructured 91.6 83.1 87.2 894 81.1 85.1 75.0 855 799 84.0

Structured 88.1 85.1 86.6 86.1 84.7 854 79.6 83.1 81.3 84.4

StructuredggrT 874 814 84.3 85.7 80.2 82.9 73.7 809 77.1 81.4

Table 2: Cross-document event coreference performance on ECB+. All the models use gold mentions and predicted
topics. “Unstructured” means the model only uses the representation of the event trigger. “Structured” means
the model uses the structured representation of arguments. ‘“Unpaired” is the baseline model without pairwise
representation. “Pairwise” is the model using pairwise representation. Structuredggr means this baseline model
uses BERT (Devlin et al., 2019) as contextual embeddings instead of RoOBERTa. Details in Sec 4.1.

MUC B3 CEAF, CoNLL
Model R P FI R P FI R P Fl Fl
Barhomet al. (2019) 78.6 80.9 79.7 655 764 70.5 654 613 63.3 71.2
Cattan et al. (2020) 85.7 81.7 83.6 707 748 727 593 674 63.1 73.1
PAIRWISERL 923 86.8 89.5 821 81.0 81.5 68.0 80.2 73.6 81.5

Table 3: Cross-document Entity coreference performance on ECB+. All the models evaluate on gold mentions and

predicted topics.

structured representation into pairwise representa-
tion, the system obtains further improvement (from
82.9 to 84.4 CoNLL F1). Please note that both
Barhom et al. (2019) and Cattan et al. (2020) have
relatively complex systems to learn event features
as well as entity features. Our system only models
the trigger and arguments representations given the
context of two involved mentions. It clearly demon-
strates the superiority of our model in learning the
event-pair representation.

ECB+ also annotates coreference between enti-
ties that are arguments of events. Because entities
do not have arguments, we just use PAIRWISERL to
learn the pairwise representation as Equation 4. We
compare with the same two baselines: Barhom et al.
(2019) and Cattan et al. (2020). Both of these two
baselines train their model on gold mentions, so
the comparison is fair. As shown in Table 3, our
system PAIRWISERL significantly outperforms the
two baselines: 81.5 vs. 73.1.

73

Train Dev Test
Documents 360 169 167
Event mentions 12,976 4,155 4,375
Event Singletons 5,256 2,709 2,358
Event Clusters 7,460 3,191 2,963

Table 4: KBP statistics. We use KBP2015 for #rain,
KBP 2016 for dev and KBP 2017 for test. Event Clusters
include singletons.

4.2 Within-document Event Coreference

Within-document event coreference focuses on
event pairs in the same document, so topic cluster-
ing of documents is not needed. We use the same
pairwise scorer and mention clustering algorithm
described in Section 4.1.

We evaluate on the most widely used KBP bench-
mark. Similar to Huang et al. (2019) and Lu et al.
(2020), we use the KBP 2015 dataset (Ellis et al.,
2015) as training data, the KBP 2016 dataset (Ellis
et al., 2016) as dev data, and the KBP 2017 (Get-

Model MUC B? CEAF, BLANC AVG-F
Huang et al. (2019)

Predicted Mentions 35.66 43.20 40.02 32.43 36.75
Lu et al. (2020)

Predicted Mentions 39.06 47.77 45.97 30.60 40.85

Gold Mentions - - - - 53.72
Unpaired (Gold Mentions) 60.23 52.34 47.44 45.32 51.33
PAIRWISERL (Gold Mentions) 63.67 58.41 54.66 51.72 57.12
PAIRWISERLgEgrT (Gold Mentions) 59.11 53.11 50.6 45.81 52.16

Table 5: Within-document event coreference performance on KBP17. Please note that the KBP15 corpus (training
data) only provides trigger annotation, so we only evaluate the performance of trigger representation. “Unpaired” is
the baseline model without pairwise representation. PAIRWISERLpgrT means this baseline model uses BERT as

contextual embeddings instead of RoOBERTa.

man et al., 2015) as test data. The detailed statistics
are shown in Table 4. Because the training data
KBP 2015 dataset does not have the annotation
of arguments, we evaluate the performance of the
representation with trigger only.

We compare with two state-of-the-art systems
on the KBP benchmark: Huang et al. (2019), which
exploits unlabeled data to learn argument compati-
bility in order to improve coreference performance,
and Lu et al. (2020), which jointly learns event
detection and event coreference. Lu et al. (2020)
claims the state-of-the-art performance when pre-
dicting event coreference given predicted events,
and they also report numbers using gold event men-
tions. Our model does not conduct mention detec-
tion, so we report our performance on gold men-
tions only (this is still fair since the prior SOTA
system Lu et al. (2020) reports on gold mentions
too) and leave our numbers on predicted mentions
as future work. As shown in Table 5, PAIRWISE-
RL outperforms the unpaired baseline model with
a big margin: 57.12 vs. 51.33 (on “AVG-F”). This
further verifies the effectiveness of the pairwise
representation in modeling event coreference re-
gardless of whether it is within-document or cross-
document. We also need to give credit to ROBERTa
that helps our simple model easily outperform the
state-of-the-art model (57.12 vs. 53.72), which is a
much more complicated model than ours.

4.3 Implementation Details

For both ECB+ and KBP models, we use
RoOBERTap ye as the encoder. The sizes of four
layers of MLP; are: 3076/1024/1024/1. The sizes
of four layers of MLP, are: 3072/1024/1024/1.

74

We set the learning rate as 1e-06, the batch size as
32, and we run 10 epochs for training. All hyper-
parameters are tuned based on development data,
including the threshold of agglomerative cluster-
ing.

5 Analysis

To further understand why pairwise representation
performs much better than unpaired representation,
and what limitations pairwise representation still
has, we do a quantitative analysis on the errors
of PAIRWISERL and the errors of the unpaired
baseline model on ECB+. For each model, we
randomly sample 100 errors: 50 false negatives and
50 false positives. False negative means that the
gold label of the event pair is “coref”, but the model
predicts “not coref”. False positives mean that the
gold label of the event pair is “not coref”, but the
model predicts “coref”. We manually classify these
errors into different types, and study the difference
between the error distributions of the two models.

5.1 False Negatives

Given event mention pairs with the two sentences,
as listed on the bottom of Figure 3, we classify
these false negatives into these 7 types: “No di-
rect evidence”, “Different contexts”. “Similar con-
texts”, “Require argument matches”, “Annotation
mistakes”, “Require commonsense knowledge”,
and “Other”.

“No direct evidence” means that, just by
reading the two sentences, there is no evidence in
them to decide that these two mentions must be the
same event. For example:

(@) Unpaired Model Error Distribution

6% 4%
6%

16%

(b) Pairwise Model Error Distribution

(c) Unpaired Wrong, Pairwise Correct

18%

@ No direct evidence @ Different contexts

Similar contexts @ Require argument matches

@ Annotation mistakes @ Require Commonsense Knowledge @ Other

False Negative Distributions

Figure 3: False Negative distributions of unpaired model, and pairwise model. False negative refers to gold
coreferential event pairs that the model predicts “not coref”. More details in Sec 5.1

s1: Smith, 26, who played a young political re-
searcher in the show, will become the biggest star
of all after winning the role of the 11th Doctor.

so: The guy is relatively unknown and the skeptics
wondered if the right person was chosen.

Just by reading these two sentences, we really do
not know whether the event “winning” and the
event “chosen” are same event or not. To make
the correct prediction, more contexts are needed.
Most prior work encoded events within only a
single sentence; in this work, we use a single
sentence as event context for fair comparison. As
shown in Figure 3, the unpaired model has 30%
mistakes belong to “No direct evidence”, while the
pairwise model only has 18.4%. This indicates
that pairwise model may be more capable to learn
the similarity between the context in order to
make a “guess” that is more likely to be correct.
However, 18.4% is also high. This indicates
that sentence-level representation is not enough
to represent an event. Event arguments usually
appear in multiple sentences. Representing events
in a multi-sentence level could be interesting to
future work.

“Different contexts” means that the two sen-
tences are too hard for the model to understand and
there is no obvious textual similarity for the model
to rely on. However, if the model understands the
contexts completely, it should make the correct
prediction. For example:

75

s1: Scott Peterson has been found guilty of first-
degree murder, a verdict that means he could be
executed if these same jurors vote as the “con-
science of their community” that he deserves to die
for his crimes.

so: Laci Peterson’s loved ones have “a hole in their
hearts that will never be repaired,” a prosecutor told
jurors today as he asked them to send convicted
double-murderer Scott Peterson to his death for
killing his wife and unborn son.

In this example, sentences are both complicated
and sharing limited vocabulary, but by under-
standing the sentences, we can say that two event
mentions are the same event. We regard this error
type as hard cases, and the pairwise model suffers
from these hard cases. 40.2% mistakes of the
pairwise model belong to hard cases “Different
contexts”. Please note that a higher ratio (40.2%
vs. 36%) doesn’t mean our pairwise model is
worse than the unpaired competitor; this is because
our system has resolved most of the simpler cases
so the hard cases occupied the majority proportion
of remaining errors. Improving the performance
on complicated sentences still acts as the main
challenge.

“Similar contexts” means that the two sentences
are very similar, which should be easy for the
model to make the correct prediction. For example:

s1: A strong earthquake struck Indonesia’s Aceh
province on Tuesday, killing at least one person and
leaving two others missing.

A powerful 6.1 magnitude earthquake hit
Indonesia’s Aceh province, on the island of Sumatra

So.

These two sentences have similar context and
similar structure, which should be easy to predict
two mentions as the same events. We regard this
error type as easy cases. Our pairwise model
reduces the error rate dramatically from 20% to 8%
in this category, which indicates that the pairwise

model is very effective to solve these simple cases.

“Require argument matches” means that to
make the correct prediction, systems need to use
more context or external knowledge to conduct
non-trivial argument matching. For example:

s1: An earthquake with a preliminary magnitude of
4.4 struck in Sonoma County this morning near The
Geysers, according to the U.S. Geological Survey.

s9: The temblor occurred at 9:27 a.m. , 13 miles
east of Cloverdale and 2 miles southeast of The
Geysers , where geothermal forces by more than 20

power plants are harnessed to provide energy for
several North Bay counties.

In order to make the correct prediction of these
two sentences, the model need to realize the match
between “9:27 a.m.” and ‘“this morning”, and
know that “Sonoma County” is “13 miles east of
Cloverdale”, which requires more context or exter-
nal knowledge.

We also sample 50 errors of unpaired model
where the pairwise model could predict correctly.
As shown in Figure 3(c), the improvement of the
pairwise representation mainly comes from better
performance on “No direct evidence”, “Different
contexts” and “Similar contexts”. We find that the
sentences are usually very long for these errors,
which suggests that the pairwise representation is
better at understanding the meaning of long sen-
tences than the unpaired representation is.

5.2 False Positives

For the sampled false positives, we also manually
classify them into 7 types same as the types
of false negatives. The only difference is that,
now “Similar contexts” become hard cases, and
“Different contexts” become easy cases. As shown
in Figure 4, for both the unpaired model and
the pairwise model, most of the precision errors

76

(@) Unpaired Model Error Distribution

(b) Pairwise Model Error Distribution

@ No direct evidence @ Different contexts Similar contexts
@ Argument matches @ Annotation mistakes @ Require Commonsense Knowledge
@ Other

False Positive Distributions

Figure 4: False positive distributions of unpaired model,
and pairwise model. False positive refers to gold event
pairs that are not coreferential, but the model predicts
“coref”. More details in Sec 5.2

belong to “No direct evidence” and “Annotation
mistakes”. After carefully studying these errors,
we find that it is actually very hard to determine
that two mentions are not the same event. For
example:

s1: Four bombs were dropped within just a few
moments - two landed inside the camp itself, while
the other two bombs were dropped near the airstrip
where a UN helicopter was delivering much needed
food aid.

so: "Two of the bombs fell within the Yida camp ,
including one close to the school," said UNHCR
spokesman Adrian Edwards .

By understanding these two sentences, we think,
without knowing whether “the camp itself” in the
first sentence is the same camp as “Yida camp’
in the second sentence, it is impossible to make
the correct prediction. The gold label for this pair
is “not coref”, so we can only classify it to “No
direct evidence”. We think that these errors again
emphasize that the representation of events should
be multi-sentences level instead of sentence level.
We only use SRL to find event arguments, which
limits arguments to be in the same sentences. We
think that it may be essential to find events across
sentences in future works.

>

‘We also find that there exist some errors that we
think are annotation mistakes. For example:

s1: Smith, 26, who played a young political re-
searcher in the show, will become the biggest star
of all after winning the role of the 11th Doctor .
s2: The BBC says little-known actor Matt Smith
will take over the title role in the long-running
sci-fi series “Doctor Who.”

We do not see any reasons that these two mentions
are not the same event, but if there are other
contexts indicating that they are not the same
event, this error would be classified to “No direct
evidence”. So in conclusion, to further improve
the performance on false positives, longer-range
context will be needed.

6 Conclusion

In this work, we propose a simple representation
learning scheme, PAIRWISERL, for event corefer-
ence. PAIRWISERL learns a mention-pair represen-
tation by forwarding concatenated sentences into
RoBERTa, where sentences provide the context of
mentions. This representation is applied to both
within-document and cross-document event coref-
erence benchmarks and obtains state-of-the-art per-
formance. In addition, we augment this pairwise
representation with structured argument features to
further improve its performance.

Acknowledgments

This work was supported by Contract FA8750-19-
2-1004 with the US Defense Advanced Research
Projects Agency (DARPA), the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), via
IARPA Contract No. 2019-19051600006 under
the BETTER Program, and a Focused Award from
Google. Approved for Public Release, Distribu-
tion Unlimited. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, the Department of Defense, or the
U.S. Government. The U.S. Government is autho-
rized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright
annotation therein.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Shany Barhom, Vered Shwartz, Alon Eirew, Michael
Bugert, Nils Reimers, and Ido Dagan. 2019. Revis-
iting joint modeling of cross-document entity and
event coreference resolution. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pages 4179—4189, Florence, Italy.
Association for Computational Linguistics.

77

Cosmin Bejan and Sanda Harabagiu. 2010. Unsuper-
vised event coreference resolution with rich linguistic
features. In Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics,
pages 14121422, Uppsala, Sweden. Association for
Computational Linguistics.

Arie Cattan, Alon Eirew, Gabriel Stanovsky, Mandar
Joshi, and Ido Dagan. 2020. Streamlining cross-
document coreference resolution: Evaluation and
modeling. arXiv preprint arXiv:2009.11032.

Zheng Chen, Heng Ji, and R Haralick. 2009. Event
coreference resolution: Algorithm, feature impact
and evaluation. In Proceedings of Events in Emerg-
ing Text Types (eETTs) Workshop, in conjunction with
RANLP, Bulgaria.

Prafulla Kumar Choubey and Ruihong Huang. 2017.
Event coreference resolution by iteratively unfold-
ing inter-dependencies among events. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2124-2133,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Agata Cybulska and Piek Vossen. 2014. Using a sledge-
hammer to crack a nut? lexical diversity and event
coreference resolution. In LREC, pages 4545—-4552.

Agata Cybulska and Piek Vossen. 2015. " bag of events"
approach to event coreference resolution. supervised
classification of event templates. Int. J. Comput. Lin-
guistics Appl., 6(2):11-27.

. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL-HLT.

Joe Ellis, Jeremy Getman, Dana Fore, Neil Kuster, Zhiyi
Song, Ann Bies, and Stephanie M Strassel. 2015.
Overview of linguistic resources for the tac kbp 2016
evaluations: Methodologies and results. In TAC.

Joe Ellis, Jeremy Getman, Neil Kuster, Zhiyi Song, Ann
Bies, and Stephanie M Strassel. 2016. Overview of
linguistic resources for the tac kbp 2015 evaluations:
Methodologies and results. In TAC.

Jeremy Getman, J. Ellis, Zhiyi Song, Jennifer Tracey,
and S. Strassel. 2015. Overview of linguistic re-
sources for the tac kbp 2017 evaluations: Methodolo-
gies and results. Theory and Applications of Cate-
gories.

Karl Moritz Hermann, Tomds Kocisky, Edward Grefen-
stette, Lasse Espeholt, Will Kay, Mustafa Suleyman,
and Phil Blunsom. 2015. Teaching machines to read
and comprehend. In NeurIPS, pages 1693-1701.

Yin Jou Huang, Jing Lu, Sadao Kurohashi, and Vincent
Ng. 2019. Improving event coreference resolution by
learning argument compatibility from unlabeled data.
In Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 785-795.

Kian Kenyon-Dean, Jackie Chi Kit Cheung, and Doina
Precup. 2018. Resolving event coreference with
supervised representation learning and clustering-
oriented regularization. In Proceedings of the Sev-
enth Joint Conference on Lexical and Computational
Semantics, pages 1-10, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai
Surdeanu, and Dan Jurafsky. 2012. Joint entity and
event coreference resolution across documents. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
489-500.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188—197, Copenhagen, Denmark. Association
for Computational Linguistics.

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs and
documents. In ACL, pages 1106-1115.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yaojie Lu, Hongyu Lin, Jialong Tang, Xianpei Han, and
Le Sun. 2020. End-to-end neural event coreference
resolution. arXiv preprint arXiv:2009.08153.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
Santos, Caglar Giilgehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In CoNLL, pages 280-
290. ACL.

Haoruo Peng, Yangqiu Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 392—402, Austin, Texas. Association for
Computational Linguistics.

Tim Rocktidschel, Edward Grefenstette, Karl Moritz
Hermann, Tomds Kocisky, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention. In
ICLR.

Peter J Rousseeuw. 1987. Silhouettes: a graphical aid
to the interpretation and validation of cluster analysis.
Journal of computational and applied mathematics,
20:53-65.

Peng Shi and Jimmy Lin. 2019. Simple bert models for
relation extraction and semantic role labeling. arXiv
preprint arXiv:1904.05255.

78

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, pages 5998-6008.

Wenpeng Yin and Hinrich Schiitze. 2018. Attentive
convolution: Equipping cnns with rnn-style attention
mechanisms. TACL, 6:687-702.

Yutao Zeng, Xiaolong Jin, Saiping Guan, Jiafeng Guo,
and Xueqi Cheng. 2020. Event coreference resolu-
tion with their paraphrases and argument-aware em-
beddings. In Proceedings of COLING, pages 3084—
3094.

A Simple Unsupervised Approach for Coreference Resolution
using Rule-based Weak Supervision

Alessandro Stolfo!

Chris Tanner’ Vikram Gupta® Mrinmaya Sachan

1

'ETH Ziirich 2Harvard University >Sharechat

{alessandro.stolfo,

mrinmaya.sachan}@inf.ethz.ch

christanner@g.harvard.edu
vikramgupta@sharechat.co

Abstract

Labeled data for the task of Coreference Res-
olution is a scarce resource, requiring signifi-
cant human effort. While state-of-the-art coref-
erence models rely on such data, we propose
an approach that leverages an end-to-end neu-
ral model in settings where labeled data is
unavailable. Specifically, using weak super-
vision, we transfer the linguistic knowledge
encoded by Stanford’s rule-based coreference
system to the end-to-end model, which jointly
learns rich, contextualized span representa-
tions and coreference chains. Our experiments
on the English OntoNotes corpus demonstrate
that our approach effectively benefits from the
noisy coreference supervision, producing an
improvement over Stanford’s rule-based sys-
tem (+3.7 F1) and outperforming the previous
best unsupervised model (+0.9 F;). Addition-
ally, we validate the efficacy of our method on
two other datasets: PreCo and Litbank (+2.5
and +5 F; on Stanford’s system, respectively).

1 Introduction

Coreference resolution is an important problem in
language understanding. In the recent years, sig-
nificant progress has been made on this task with
coreference annotated corpora (Hovy et al., 2006)
and deep neural network architectures (Wiseman
etal., 2015; Clark and Manning, 2016a,b; Lee et al.,
2017). Further gains have been obtained by lever-
aging contextualized text encoders like ELMo (Lee
et al., 2018), BERT, SpanBERT, and Longformer
(Kantor and Globerson, 2019; Joshi et al., 2019,
2020; Wu et al., 2020; Kirstain et al., 2021).

The progress in supervised coreference resolu-
tion has not been accompanied by analogous im-
provements in unsupervised methods. The best
performing work in this domain is the unsuper-
vised mention-ranking systems proposed by Ma
et al. (2016). Approaches that do not rely on gold
annotation are highly desirable for this task, as

79

coreference corpora are expensive to create. Ad-
dressing this issue, weak supervision has been used
for multilingual coreference resolution to automati-
cally obtain labels for languages with no annotated
datasets (Wallin and Nugues, 2017).

In this paper, we introduce a simple yet effec-
tive approach for unsupervised coreference resolu-
tion, which leverages an end-to-end span-ranking
coreference model (Lee et al., 2018) and contextu-
alized span representations. The end-to-end model
is trained with weak supervision from Stanford’s
coreference system (Lee et al., 2011), which, in
turn uses a set of linguistic rules for coreference.
Previous works have used Stanford system’s rules
as feature extractors (Fernandes et al., 2012; Wise-
man et al., 2015; Ma et al., 2016). However, our
approach uses Stanford’s rule-based sieves to pro-
duce noisy labels that are subsequently used to train
the neural end-to-end resolver.

The rationale behind the use of Stanford’s re-
solver for producing noisy labels lies in its ease
of use and its modular structure, which allows us
to interpret the value of the linguistic knowledge
encoded in the system. Linguists building a coref-
erence resolver in a new domain can encode their
prior knowledge via rules and improve the Stan-
ford system. Our approach would further boost the
resolver by incorporating pre-trained representa-
tions. Nevertheless, our framework can be applied
in combination with any method able to produce
informative coreference labels.

We assess our approach on three coreference
corpora: English OntoNotes (Pradhan et al., 2012),
PreCo (Chen et al., 2018), and Litbank (Bamman
et al., 2020). Our experiments show that the imper-
fect information contained in the noisy labels can
be effectively used to train the end-to-end model,
producing an improvement over Stanford’s system.
Experimenting with different pre-trained language
models, we observe that using BERT boosts the
performance of the end-to-end resolver. Results

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 79 - 88
July 14-15, 2022 ©2022 Association for Computational Linguistics

further improve by using SpanBERT (Joshi et al.,
2020), which outperforms previous unsupervised
models (Ma et al., 2016) on the English OntoNotes
benchmark. We also evaluate the approach on two
other coreference datasets: PreCo and Litbank, and
show strong gains over the Stanford system. Fi-
nally, we present a set of analyses that examine
the information incorporated by weakly supervised
training.

2 Method

Our approach relies on the c2f-coref end-to-end
architecture proposed by Lee et al. (2018), and on
the classic rule-based Stanford coreference system
(Leeetal., 2011, 2013) for the CoNLL 2011 shared
task (Pradhan et al., 2011).

Overview of c2f-coref The end-to-end corefer-
ence resolution system (Lee et al., 2017) uses a
span-based neural model that learns a distribution
P(-) over antecedents y for each span i. Spans
are represented using fixed-length embeddings ob-
tained via bidirectional LSTMs (Hochreiter and
Schmidhuber, 1997) and taken as input by a pair-
wise scoring function.

Subsequent models revisited this approach: Lee
et al. (2018) proposed the c2f-coref method, intro-
ducing coarse-to-fine antecedent pruning and em-
bedding representations from ELMo (Peters et al.,
2018) at the input to the LSTMs. Later, Joshi et al.
(2019) used BERT to represent spans, demonstrat-
ing the power of pre-trained language models for
coreference resolution. Most recently, Joshi et al.
(2020) introduced SpanBERT and further improved
the state of the art.

Stanford’s Rule-based System Stanford’s sys-
tem is a deterministic coreference resolver consist-
ing of a set of sieves applied in a cascade fashion.
Initially, the Mention Detection considers all noun
phrases, pronouns, and named entity mentions as
candidate mentions, then filters them according to a
set of exclusion rules. Specifically, each identified
mention is considered as a singleton cluster. Then,
akin to agglomerative clustering, the clusters are
sequentially processed by the sieves. Each sieve
embodies a specific linguistic rule and builds on the
result of the previous sieve by merging a mention
into a partially-formed entity cluster, depending on
whether it satisfies a set of constraints. The archi-
tecture guarantees that high-precision constraints
are given high priority (e.g., exact string match,

80

head match), while rules with lower precision but
higher recall are applied later (e.g., the Pronominal
Coreference Sieve). We provide a description of
the most important sieves in Appendix A.

Weak Supervision using Linguistic Rules Al-
though Stanford’s sieve-based system is unsuper-
vised, it captures rich, task-specific coreference
information in English, and we hypothesize that
it could effectively serve as supervision for train-
ing the neural span-ranking model. By exploiting
contextualized span representations within the end-
to-end learning framework, the neural model can
exhibit stronger generalization capabilities.
Specifically, we employ Stanford’s system to
obtain cluster labels, representing a noisy (i.e., non-
gold) signal for both mention identification and
coreference. As in the supervised case, only clus-
tering information is observed. The training is car-
ried out by optimizing the marginal log-likelihood
of the antecedents ¢ implied by the noisy cluster

assignment: N

where N is the total number of mentions in the
document and C(7) is the set of antecedents of span

1 that are coreferent to ¢ according to the cluster
assignment produced by Stanford’s system.

3 Experiments

We assess the proposed approach on three datasets:
the English OntoNotes v5.0 data from the CoNLL-
2012 shared task (Pradhan et al., 2012), PreCo
(Chen et al., 2018), and Litbank (Bamman et al.,
2020). We evaluate the c2f-coref model combined
with different pre-trained language models (ELMo,
BERT, and SpanBERT). These results are com-
pared to the ones produced by Stanford’s system,
in order to show the efficacy of the noisy super-
vision. Moreover, we examine the performance
of our weakly-supervised approach in contrast to
two previous unsupervised models: Multigraph
(Martschat, 2013) and the EM-based ranking model
by Ma et al. (2016).

3.1 Experimental Setup

We use the original implementations of the ELMo-

based c2f-coref! (Lee et al., 2018) and of the

BERT/SpanBERT-based models? (Joshi et al.,
"https://github.com/kentonl/e2e-coref

https://github.com/mandarjoshi90/
coref

MUC B3 CEAF,, CoNLL
P R F P R F P R F Fy
Stanford (Lee et al., 2011) 643 652 647 492 568 527 525 466 494 556
Multigraph (Martschat, 2013) - - 654 - - 544 - - 502 567
Unsup. Ranking (Ma et al., 2016) - - 67.7 - - 55.9 - - 51.8 58.4
c2f-coref 657 680 669 509 594 548 529 491 509 @ 575
BERT-base + c2f-coref 668 692 680 515 60.6 557 531 503 517 585
SpanBERT-base + c2f-coref 67.6 685 68.1 531 60.1 564 548 504 525 59.0
BERT-large + c2f-coref 672 69.7 685 523 612 564 540 510 525 59.1
SpanBERT-large + c2f-coref 674 698 68.6 524 618 567 541 514 527 593

Table 1: Results on the test set of the English CONLL-2012 shared task®. The c2f-coref models were trained via
weak supervision. Scores for Multigraph and the Unsupervised Ranking model are reported in Ma et al. (2016).

2019), while using their original, respective hy-
perparameters. We use the implementation of Stan-
ford’s system provided with the Stanford CoreNLP
suite (Manning et al., 2014). Further training de-
tails are provided in Appendix B.

We report precision, recall, and F; for the stan-
dard MUC (Vilain et al., 1995), B® (Bagga and
Baldwin, 1998), and CEAF,, (Luo, 2005) met-
rics. We use the CoNLL F; score (average F; of
the three metrics) as the main evaluation measure,

which is common practice in coreference?.

3.2 Results on OntoNotes

Table 1 shows that the c2f-coref model trained
with noisy supervision is able to produce a gain
over Stanford’s system. The incremental improve-
ment produced by the pre-trained language mod-
els highlights the importance of the representation
of spans for this task, and suggests that the end-
to-end model learns how to effectively exploit it
from the noisy supervision. The version of the
c2f-coref model augmented with SpanBERT-large
achieves 59.3 CoNLL F;, improving on the Unsu-
pervised Ranking model (Ma et al., 2016) by 0.9
F;1. In contrast with what was observed in the super-
vised realm (Joshi et al., 2019), the score increase
produced by BERT-base over ELMo (+1.0 Fy) is
larger than the gain yielded by the large versions of
BERT and SpanBERT over their base counterparts
(+0.6 and +0.3 Fy, respectively). This might be ex-
plained as an effect of the weak supervision, which
is likely to reduce the marginal improvement pro-
duced by an increase in model complexity. Table
3 illustrates the mention detection performance of
Staford’s system and the c2f-coref models based

3The metrics are computed using the most recent version
of the official CoNLL scorer (Pradhan et al., 2014)

81

Dataset MUC B® CEAF,, CoNLL
Stanford PC 597 497 452 515
SB-B+c2f PC 620 523 476 54.0
Stanford LB 658 416 268 447
SB-B+c2f LB 714 465 312 49.7

Table 2: F; sccore comparison between Stanford’s sys-
tem and the c2f-coref model based on SpanBERT-base
(SB-B) on PreCo (PC) and Litbank (LB).

on SpanBERT-Base and SpanBERT-Large.

3.3 Results on PreCo and Litbank

An important feature of PreCo and Litbank is that
they contain annotations for singleton mentions, un-
like OntoNotes. However, both Stanford’s system
and the c2f-coref model present a recall-oriented
mention detection strategy, which tends to overes-
timate the number of proposed mentions, as sin-
gletons typically would be filtered out from the
response. Moreover, the training process of the
c2f-coref model does not take singleton mentions
into account. For this reasons, we adapt the eval-
uation on Litbank and PreCo to the OntoNotes
guidelines, which assert that predicted singleton
mentions should be ignored and non-coreferent
spans should be removed from the response. Ta-
ble 2 shows performance gains consistent with the
results on OntoNotes, with the weakly-supervised
c2f-coref model improving by 2.5 and 5 CoNLL
F; on PreCo and Litbank, respectively.

4 Analysis

Performance on Different Types of Coreference
We investigate the capabilities of the weakly super-

3We observed a small discrepancy between the results
relative to Stanford’s system reported by Ma et al. (2016) and
the ones we obtained (~0.2 F1). Here we report the scores we
produce, which are the higher ones.

P R Fy
Stanford 88.7 402 554
SpanBERT-base + c2f-coref 76.2 77.1 76.6
SpanBERT-large + c2f-coref 75.3 77.8 76.5

Table 3: Comparison of mention detection precision
(P), recall (R) and F; score on the development set of
the CoNLL-2012 shared task.

Link Type Stanford SB-L +c2f A (%)
Nominal - Pronominal 35.7 38.9 +9.0
Nominal - Nominal 54.1 58.6 +8.3
Nominal - Proper 15.1 17.1 +13.2
Pronominal - Proper 60.2 60.4 +0.3
Pronominal - Pronominal 70.9 73.1 +3.1
Proper - Proper 80.8 82.8 +3.5

Table 4: Performance (F; scores) on CoNLL-2012 de-
velopment set in terms of identification of coreference
links between different kinds of mentions.

vised end-to-end model in identifying the different
kinds of coreference links given by the combination
of three mention categories: proper, nominal, and
pronominal. We study the performance of the c2f-
coref model based on SpanBERT-large in compari-
son to Stanford’s system. The results are illustrated
in Table 4. We observe a global improvement in all
the considered types of links, with the most signifi-
cant gains from links involving nominal mentions.
This improvement is coherent with the observations
of Durrett and Klein (2013): coreference decisions
involving nominal mentions usually require richer
semantic inference, which in our setting is provided
by the contextualized span representations

Impact of Document Length We compare the
c2f-coref model to Stanford’s system on docu-
ments of different lengths. As reported in Table 5,
Stanford’s resolver performs better than the span-
ranking system on particularly short documents.
However, for all groups of documents longer than
64 tokens, we observe a consistent improvement
provided by the c2f-coref model. This could be ex-
plained by the contextualized span representations,
which were shown to be more informative when
larger context is available (Beltagy et al., 2020).

Varying the Amount of Training Data We as-
sess the performance of the model on PreCo when
the training is carried out on subsets of different
sizes (Fig. 1). We observe that the c2f-coref model
requires only 100 weakly-annotated documents to
outperform Stanford’s system, indicating that the
noisy signal is quickly incorporated by the model.

82

Doc Length #of Docs Stanford SB-L +c2f A (%)
0-64 17 52.1 49.6 -4.8
64 - 128 39 57.2 58.6 +2.4
128 - 256 74 56.2 60.9 +8.4
256 - 512 76 58.9 62.3 +5.8
512 -768 73 56.5 59.6 +5.5
768 - 1152 52 53.3 56.3 +5.6
1152+ 12 47.0 50.7 +7.9

Table 5: Average CoNLL F; on the OntoNotes develop-
ment split for sets of documents with different lengths
(expressed as number of tokens).

70 T T T T TT1T1]
65| —® SB-B + c2f

—— Stanford’s System
60

55
50
45
40
35
30
25 -

20
10!

CoNLL F; Score

10*

Ll Lol
10° 10°

of Docs used for training

Figure 1: Performance on a held-out set of 1000 PreCo
documents using the c2f-coref model as the number of
documents used for training varies.

Using more than 1000 documents does not seem
to boost the score further. We suspect that this be-
havior might be caused by the homogeneity and
the small vocabulary size of the documents of the
PreCo dataset.

Using Different Linguistic Priors We study
how the performance of our approach is impacted
as we vary the complexity of the linguistic rules
used for the weak supervision. We do this by train-
ing the c2f-coref model on the noisy labels obtained
using three different implementations of Stanford’s
system: (1) 1-sieve, which considers only the
Exact String Match rule; (2) 3—-sieve, which con-
sists of the three most effective sieves: Exact String
Match, Strict Head Match, and the Pronominal
Coreference sieve; and (3) complete, which im-
plements all ten sieves. Results in Table 6 show
that the improvement provided by the end-to-end
model increases as the noisy signal for the train-
ing becomes more accurate, suggesting that bet-
ter supervision helps the model benefit from the
knowledge-rich span representations.

Rule Implementation ~ Stanford SB-B +c2f A (%)
l-sieve 27.9 27.6 -1.1
3-sieve 53.5 56.2 +5.0
complete 57.0 60.0 +5.3

Table 6: CoNLL F; scores on the OntoNotes develop-
ment set using different combinations of sieves.

Directly facing [him], was [the box of old)> Mrs.
Manson Mingott, whose monstrous obesity had long
since made [it]> impossible for |her|s to attend the
Opera...

Directly facing [him], was the box of |old Mrs. Man-
son Mingott]s, whose monstrous obesity had long
since made it impossible for |her|, to attend the
Opera...

I persuaded [two), young neighbors to stop playing
basketball and to help us get the tree into the house
and set [it]1 correctly in the stand.

I persuaded two young neighbors to stop playing bas-
ketball and to help us get [the tree]: into the house
and set [it]1 correctly in the stand.

Table 7: Example predictions by Stanford’s system (up-
per sub-row) and c2f-coref (lower sub-row) on Litbank
(sentence 1) and PreCo Dev (sentence 2). [-], repre-
sents a mention assigned to cluster x.

Qualitative Analysis In order to better illustrate
how the end-to-end system profits from model-
ing choices unavailable to Stanford’s resolver (e.g.,
contextualized representations), in Table 7 we pro-
vide instances of coreference clusters predicted by
the two models. In the first example, the c2f-coref
model, unlike Stanford’s system, correctly identi-
fies the valid mention Mrs. Manson Mingott, links
it to the appropriate pronoun (%er), and correctly ne-
glects the expletive pronoun it. This is perhaps be-
cause pre-trained models are known to strongly en-
code syntax (Goldberg, 2019). A similar improve-
ment is observed in the second sentence, where
the response produced by our weakly-supervised
model correctly identifies the noun phrase the tree
and correctly links it to the pronoun it. We present
additional examples of predicted chains in Ap-
pendix C.

5 Conclusion

We presented an approach for coreference reso-
lution that, while being simple, effectively lever-
ages the end-to-end span-ranking model in settings
where labeled data is unavailable. Experimental re-
sults highlight the efficacy of the weak supervision
that the method is based upon, and showed perfor-
mance gains over previous unsupervised systems.

&3

6 Ethical Considerations

Since our approach is unsupervised and based on
the coreference signal produced by Stanford’s de-
terministic coreference system (Lee et al., 2011,
2013), it is prone to echoing biases present in the
linguistic rules embodied by Stanford’s resolver.
Moreover, as most coreference resolvers, the ap-
proach we presented is not designed for a partic-
ular use case, but it is rather expected to be em-
ployed within more complex NLP systems. Spe-
cific domains in which these systems are applied
(e.g., biomedical data, legal documents) might re-
veal potential fairness shortcomings in the underly-
ing Stanford’s sieve-based system. Depending on
the setting of application (e.g., voice assistants or
search engines), these possible defects could pro-
duce undesirable outcomes. For instance, wrongly
classifying two people as the same person is pos-
sible to affect information extraction results (e.g.,
search engines). Further studies on alternative do-
mains are needed to assess these aspects.

Contextual word embedding models such as
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019), and SpanBERT (Joshi et al., 2020) are pre-
trained with self-supervised procedures on large
portions of unlabeled text. These models are op-
timized to capture statistical dependencies and
might retain and amplify prejudices and stereotypes
present in the training data (Kurita et al., 2019).
Since the method we propose relies on such pre-
trained models, it inevitably inherits possible biases
that might affect its fairness.

Acknowledgements

This research is supported by armasuisse Science
and Technology through a CYD Doctoral Fellow-
ship to Alessandro Stolfo.

References

Amit Bagga and Breck Baldwin. 1998. Algorithms
for scoring coreference chains. In The first interna-
tional conference on language resources and evalua-
tion workshop on linguistics coreference, volume 1,
pages 563-566. Citeseer.

David Bamman, Olivia Lewke, and Anya Mansoor.
2020. An annotated dataset of coreference in En-
glish literature. In Proceedings of the 12th Lan-
guage Resources and Evaluation Conference, pages
44-54, Marseille, France. European Language Re-
sources Association.

Iz Beltagy, Matthew E Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150.

Hong Chen, Zhenhua Fan, Hao Lu, Alan Yuille, and
Shu Rong. 2018. PreCo: A large-scale dataset
in preschool vocabulary for coreference resolution.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
172-181, Brussels, Belgium. Association for Com-
putational Linguistics.

Kevin Clark and Christopher D. Manning. 2016a.
Deep reinforcement learning for mention-ranking
coreference models. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2256-2262, Austin, Texas.
Association for Computational Linguistics.

Kevin Clark and Christopher D. Manning. 2016b. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 643-653, Berlin, Germany. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171-4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1971-1982,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Eraldo Fernandes, Cicero dos Santos, and Ruy Milidid.
2012. Latent structure perceptron with feature in-
duction for unrestricted coreference resolution. In
Joint Conference on EMNLP and CoNLL - Shared
Task, pages 41-48, Jeju Island, Korea. Association
for Computational Linguistics.

Yoav Goldberg. 2019. Assessing bert’s syntactic abili-
ties. CoRR, abs/1901.05287.

1997.
Neural computation,

Sepp Hochreiter and Jirgen Schmidhuber.
Long short-term memory.
9(8):1735-1780.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. OntoNotes:
The 90% solution. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 57-60,
New York City, USA. Association for Computa-
tional Linguistics.

84

Mandar Joshi, Danqgi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64-77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 58035808, Hong Kong,
China. Association for Computational Linguistics.

Ben Kantor and Amir Globerson. 2019. Coreference
resolution with entity equalization. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 673-677, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Yuval Kirstain, Ori Ram, and Omer Levy. 2021.
Coreference resolution without span representations.
arXiv preprint arXiv:2101.00434.

Keita Kurita, Nidhi Vyas, Ayush Pareek, Alan W Black,
and Yulia Tsvetkov. 2019. Measuring bias in contex-
tualized word representations. In Proceedings of the
First Workshop on Gender Bias in Natural Language
Processing, pages 166—172, Florence, Italy. Associ-
ation for Computational Linguistics.

Heeyoung Lee, Angel Chang, Yves Peirsman,
Nathanael Chambers, Mihai Surdeanu, and Dan
Jurafsky. 2013. Deterministic coreference resolu-
tion based on entity-centric, precision-ranked rules.
Computational Linguistics, 39(4):885-916.

Heeyoung Lee, Yves Peirsman, Angel Chang,
Nathanael Chambers, Mihai Surdeanu, and Dan
Jurafsky. 2011. Stanford’s multi-pass sieve corefer-
ence resolution system at the CoNLL-2011 shared
task. In Proceedings of the Fifteenth Conference
on Computational Natural Language Learning:
Shared Task, pages 28-34, Portland, Oregon, USA.
Association for Computational Linguistics.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
Iution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188-197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687-692, New Orleans, Louisiana. Association for
Computational Linguistics.

Xiaoqgiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 25-32, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Xuezhe Ma, Zhengzhong Liu, and Eduard Hovy. 2016.
Unsupervised ranking model for entity coreference
resolution. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 1012—-1018, San Diego, Califor-
nia. Association for Computational Linguistics.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55-60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Sebastian Martschat. 2013. Multigraph clustering for
unsupervised coreference resolution. In 57st Annual
Meeting of the Association for Computational Lin-
guistics Proceedings of the Student Research Work-
shop, pages 81-88, Sofia, Bulgaria. Association for
Computational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227-2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Sameer Pradhan, Xiaoqiang Luo, Marta Recasens, Ed-
uard Hovy, Vincent Ng, and Michael Strube. 2014.
Scoring coreference partitions of predicted men-
tions: A reference implementation. In Proceed-
ings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 30-35, Baltimore, Maryland. Associa-
tion for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task, pages
1-40, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Sameer Pradhan, Lance Ramshaw, Mitchell Marcus,
Martha Palmer, Ralph Weischedel, and Nianwen
Xue. 2011. CoNLL-2011 shared task: Modeling un-
restricted coreference in OntoNotes. In Proceedings
of the Fifteenth Conference on Computational Nat-
ural Language Learning: Shared Task, pages 1-27,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

85

Shubham Toshniwal, Sam Wiseman, Allyson Ettinger,

Karen Livescu, and Kevin Gimpel. 2020. Learn-
ing to Ignore: Long Document Coreference with
Bounded Memory Neural Networks. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8519-8526, Online. Association for Computational
Linguistics.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-

nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Sixth Mes-
sage Understanding Conference (MUC-6): Proceed-
ings of a Conference Held in Columbia, Maryland,
November 6-8, 1995.

Alexander Wallin and Pierre Nugues. 2017. Corefer-

ence resolution for Swedish and German using dis-
tant supervision. In Proceedings of the 21st Nordic
Conference on Computational Linguistics, pages 46—
55, Gothenburg, Sweden. Association for Computa-
tional Linguistics.

Sam Wiseman, Alexander M. Rush, Stuart Shieber, and

Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1416-1426, Beijing, China. Association for Compu-
tational Linguistics.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Ji-

wei Li. 2020. CorefQA: Coreference resolution as
query-based span prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6953—-6963, Online. As-
sociation for Computational Linguistics.

CoNLL F;
Stanford 57.0
c2f-coref 58.3
BERT-base + c2f-coref 59.1
SpanBERT-base + c2f-coref 60.0
BERT-large + c2f-coref 60.1
SpanBERT-large + c2f-coref 60.1

Table 8: CoNLL F; scores computed on the develop-
ment set of the CONLL-2012 shared task.

A Stanford’s System

The coreference method proposed by Stanford Uni-
versity at the CoNLL 2011 shared task (Pradhan
et al., 2011) is based on a succession of ten inde-
pendent coreference models (or sieves), applied
from highest to lowest precision. Here we report a
short description of the three most effective sieves,
according to Lee et al. (2013).

Exact String Match: links two mentions only if
they consist of the exact same text string;

Strict Head Match: implements multiple con-
straints that must all be matched in order to
yield a link. First, the mention head word
matches any head word of mentions in the
antecedent cluster. Then, all the non-stop
words* in the cluster of the current mention to
be solved are included in the set of non-stop
words of the antecedent entity cluster. More-
over, the mention’s modifiers (e.g., possessive
and personal pronouns) must be all included
in the modifiers of the antecedent candidate.
Eventually, the two mentions cannot be in an
i-within-i construct, (i.e., one must not be a
child NP in the other’s NP constituent);

Pronominal Coreference Sieve: links pronouns
to their compatible antecedents enforcing
agreement constraints on a set of attributes,
such as gender, number, and animacy.

B Implementation and Training Details

As in previous unsupervised work (Ma et al., 2016),
we use the version of the OntoNotes corpus in
which the supplementary layers of annotation (e.g.,

4Stop words are, for instance, there, Itd., etc., ’s.

86

parse trees) were provided automatically using off-
the-shelf tools. Using Stanford’s system, we ob-
tained the noisy labels for the training and devel-
opment sets of the CoONLL-2012 shared task data
(2802 and 343 documents, respectively), for the
PreCo training split (36620 documents), and for
Litbank (100 documents). As common practice
(Toshniwal et al., 2020), on Litbank we perform
10-fold cross-validation, using sets of 80/10/10 doc-
uments for train/development/test.

We trained the models using a batch size of 1
document. On the OntoNotes corpus, the ELMo-
based c2f-coref model is trained for a maximum
of 150 epochs and the BERT and SpanBERT-based
models for 20 epochs. On PreCo and Litbank, the
SpanBERT-based c2f-coref model is trained for a
maximum of 2 and 400 epochs, respectively. Dur-
ing training, BERT and SpanBERT are fine-tuned.
The validation sets used to monitor the training
are the development set of OntoNotes and Litbank
and a held-out portion of 500 documents from the
PreCo corpus. For all datasets, the validation met-
rics were computed with respect to the Stanford’s
system-produced noisy labels (i.e., no gold corefer-
ence information was used in this process).

We keep the hyperparameter configurations as in
Lee et al. (2018) and in Joshi et al. (2020). In par-
ticular, for each version of BERT and SpanBERT,
we use the combination of max_segment_len
and learning rates illustrated in table 9.

Training the c2f-coref model based on ELMo,
BERT-base and SpanBERT-base took ~6 hours on a
24GB Nvidia TITAN RTX, while the training of the
models based on the large versions of BERT and
SpanBERT required ~12 hours on a 32GB Nvidia
Tesla V100.

C Qualitative Examples

Table 10 displays additional examples of corefer-
ence chain predictions. In the first example, the
weakly-supervised c2f-coref model shows an im-
proved response in terms of both mention identifica-
tion and cluster assignment, correctly establishing
the chains relative to Alice and book. In example
2, Stanford’s system incorrectly links the pronoun
her to Mother, while the neural model rightly asso-
ciates it with the speaker (Beth). Similar improve-
ments are illustrated in sentence 3. Finally, we
report an example of an error propagated from the
noisy supervision (sentence 4). Note that singleton
mentions were removed from the response cluster,

Model max_segment_len bert_learning_rate task_learning_rate

BERT-base + c2f-coref 128 107° 21074
SpanBERT-base + c2f-coref 384 2-.107° 1074

BERT-large + c2f-coref 384 107 2-1074
SpanBERT-large + c2f-coref 512 107° 3.107%

Table 9: Hyperparameters used for the BERT/SpanBERT-based cef-coref models.

[CHAPTER I. Down [the Rabbit-Hole Alicel, |, was beginning to get very tired of sitting by
[[her]2 sister |3 on the bank, and of having nothing to do: once or twice [she)s had peeped into the
book [[her]s sister |3 was reading, but [it|; had [no pictures or conversations in it|; |4, ‘and what
is the use of a book,” thought Alice ‘without [pictures or conversations|,?’

CHAPTER [1.|, Down the Rabbit-Hole [Alice|y was beginning to get very tired of sitting by [[her]2
sister |3 on the bank, and of having nothing to do: once or twice [shel had peeped into the [book] 4
[[her]y sister |3 was reading, but [it]4 had no pictures or conversations in [it]y, ‘and what is the use
of a book,” thought [Alice]s ‘without pictures or conversations?’

"[We]1’ve got [Father)s and [Mother]s, and each other," said [Beth|y contentedly from |her|3
corner.

"[We]1’ve got [Father)s and [Mother]s, and each other," said [Beth)y contentedly from |her|,
corner.

At [most terrestrial men|, fancied there might be other men upon [Mars|,, perhaps inferior to
[themselves|s and ready to welcome a missionary enterprise.

At [most terrestrial men|, fancied there might be other men upon [Mars),, perhaps inferior to
[themselves|| and ready to welcome a missionary enterprise.

To prevent [this|,, humans on [Mars|y have to wear special shoes to make [themselves|; heavier.

To prevent [this|,, humans on [Mars)s have to wear special shoes to make [themselves|, heavier.

Table 10: Example predictions by Stanford’s system (upper sub-row) and c2f-coref (lower sub-row) on Litbank
(examples 1-3) and PreCo Dev (example 4). [-],, represents a mention assigned to cluster .

87

and the mentions that appear as singletons in the
reported examples are predicted as coreferent to
mentions present in other portions of the text.

D Results on the OntoNotes
Development Set

We additionally report in Table 8 the results ob-
tained on the development set of the OntoNotes
corpus for the five c2f-models.

88

Multilingual Extraction and Categorization of Lexical Collocations with
Graph-aware Transformers

Luis Espinosa-Anke’ Alexander Shvets® Alireza Mohammadshahi®#
James Henderson® Leo Wanner®"
fCardiffNLP (Cardiff University) - AMPLYFI YTALN Group, Universitat Pompeu Fabra
©Idiap Research Institute *EPFL *ICREA
espinosa—ankel@cardiff.ac.uk
{alexander.shvets, leo.wanner}@Qupf.edu
{alireza.mohammadshahi, james.henderson}@idiap.ch

Abstract

Recognizing and categorizing lexical colloca-
tions in context is useful for language learning,
dictionary compilation and downstream NLP.
However, it is a challenging task due to the
varying degrees of frozenness lexical colloca-
tions exhibit. In this paper, we put forward a
sequence tagging BERT-based model enhanced
with a graph-aware transformer architecture,
which we evaluate on the task of collocation
recognition in context. Our results suggest that
explicitly encoding syntactic dependencies in
the model architecture is helpful, and provide
insights on differences in collocation typifica-
tion in English, Spanish and French.'

1 Introduction

Native speech is idiosyncratic. Of special promi-
nence are syntactically-bound restricted binary co-
occurrences of lexical items, in which one of the
items conditions the selection of the other item.
Consider a CNN sports headline from 02/15/2021:

Rafael Nadal eases into Australian Open
quarterfinals, remains on course for
record-breaking grand slam (cnn.com).

In this short headline, we see already three of
such co-occurrences: ease [into] quarterfinals, re-
main [on] course, and record-breaking grand slam.
Quarterfinals conditions the selection of [fo] ease
[into], course of remain [on], and grand slam of
record-breaking. The idiosyncrasy of these co-
occurrences becomes obvious when we look at
them from a multilingual angle. Thus, in French,
instead of the literal translation of ease [into], we
would use se qualifier ‘qualify [oneself]’, in Span-
ish, remain [on] will be translated as seguir [en]
‘continue in’, and in Italian record-breaking will be
da record, lit. ‘of record’ — while the translation of
'Data and code are available at

https://github.com/TalnUPF/
graph-aware-collocation-recognition.

89

quarterfinals, course, and grand slam will be literal.
In lexicology, such binary co-occurrences are re-
ferred to as collocations (Hausmann, 1985; Cowie,
1994; Mel’Cuk, 1995; Kilgarriff, 2006), with the
conditioning item called the base and the condi-
tioned item the collocate. Collocations in this sense
are of high relevance to second language learning,
lexicography and NLP alike, and constitute a chal-
lenge for computational models because of their
heterogeneity in terms of idiosyncrasy and degree
of semantic composition (Mel’Cuk, 1995).

Research in NLP has already addressed a num-
ber of collocation-related tasks, in particular: (1)
collocation error detection, categorization, and cor-
rection in writings of second language learners
(Ferraro et al., 2011; Wanner et al., 2013; Ferraro
et al., 2014; Rodriguez-Fernandez et al., 2015); (2)
creation of collocation-enriched lexical resources
(Espinosa-Anke et al., 2016; Maru et al., 2019;
Di Fabio et al., 2019); (3) use of knowledge on
collocations in downstream NLP tasks, among
them, e.g., machine translation (Seretan, 2014),
word sense disambiguation (Maru et al., 2019), nat-
ural language generation (Wanner and Bateman,
1990), or semantic role labeling (Scozzafava et al.,
2020); (4) probes involving collocations for under-
standing to which extent language models are able
to identify non-compositional meanings (Shwartz
and Dagan, 2019; Garcia et al., 2021); and (5)
detection and categorization of collocations with
respect to their semantics (Wanner et al., 2006;
Espinosa Anke et al., 2019; Levine et al., 2020;
Espinosa-Anke et al., 2021). It is this last task
which is the focus of this paper.

In general, collocation identification and cate-
gorization tend to be treated as two disjoint tasks.
Most of the research deals only with collocation
identification (Smadja, 1993; Lin, 1999; Pecina
and Schlesinger, 2006; Bouma, 2009; Dinu et al.,
2014; Levine et al., 2020). Some works deal with
the categorization of manually precompiled lists

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 89 - 100
July 14-15, 2022 ©2022 Association for Computational Linguistics

of collocations, either in isolation (Wanner, 2004,
Wanner et al., 2006; Espinosa Anke et al., 2019) or
with their original sentence-level contextual infor-
mation (Wanner et al., 2017). Only a few works
in the early phase of the neural network era of
NLP address the problem of collocation identifica-
tion and semantic categorization as a joint task in
monolingual settings (Rodriguez-Ferndndez et al.,
2015; Espinosa-Anke et al., 2016). Accordingly,
the performance of the models put forward in these
works is still rather low. In this paper, we pro-
pose a sequence tagging framework for simultane-
ous collocation identification and categorization,
with respect to the taxonomy of lexical functions
(LFs) (Mel’¢uk, 1996). The proposed framework
is based on mono- and multilingual BERT-based
sequence taggers, which are enhanced by a Graph-
aware Transformer (Mohammadshahi and Hender-
son, 2020, 2021a) in order to ensure that the spe-
cific syntactic dependencies between the base and
the collocate are taken into account. The sequence
taggers are executed as part of a multitask learning
setup, which is complemented by a sentence classi-
fication task, which predicts the occurrence of an
instance of a specific LF instance in the sentence un-
der consideration. Our results for English, French
and Spanish show the flexibility of our framework
and shed light on the multilingual idiosyncrasies of
collocations.

2 Background on Collocations

Although widely used in lexicology in the sense de-
fined above, the term collocation is ambiguous in
linguistics. As introduced by Firth (1957), it refers
to common word co-occurrences in discourse in
general. Thus, cast and vote, strong and tea, but
also public and sector, night and porter, supermar-
ket and price form collocations in English in Firth’s
sense. In computational linguistics, Firth’s defini-
tion has been taken up, e.g., by (Church and Hanks,
1989; Lin, 1999; Evert, 2007; Pecina, 2008; Bouma,
2009; Dinu et al., 2014; Levine et al., 2020). To
avoid confusion between the two different senses,
Krenn (2000) proposed to use the narrower term
lexical collocation to refer to restricted binary lexi-
cal item co-occurrences. In what follows, we will
use this term to refer to the definition underlying
our work.

Lexical collocations can be typified with respect
to the meaning of the collocate and the syntac-
tic structure formed by the base and the collocate.

90

relation example LF label
intense heavyc ~ smokerp Magn

minor occasionalc ~ smokerg AntiMagn
genuine legitimatec ~ demandp Ver
non-genuine illegitimatec ~ demandg ~ AntiVer
Increase.existence temperaturep ~ risec IncepPredPlus
End.existence fireg ~ go outc FinFuncO
A0.Come.to.effect avalanchep ~ strikec Fact0
A0/A1.Cause.existence raisec ~ hopep CausFunc0

A0/A1.Cause.function
Cause.decrease
A0/A1.Cause.involvement

startc ~ enginep
relievec ~ tensiong
raisec hopeg [in]

CausFactO
CausPredMinus
CausFuncl

Emit.sound elephanty ~ trumpetc Son
AO0/Al.act lendc ~ supportg Operl
A0/A1.begin.act gaing ~ impressiong IncepOperl
AO0.end.act withdrawc ~ supportp FinOperl
AO0/Al.Act.acc.expectation provec ~ accusationp Reall
A2.Act.acc.expectation enjoyc ~ supportg Real2
A2.Act.x.expectation betrayc ~ trustg AntiReal2

Table 1: LF relations used in this paper. ‘A;’ refer to
AMR argument labels (Banarescu et al., 2013).

Practical collocations dictionaries such as, e.g., the
Oxford Collocations Dictionary® or the McMillan
Collocations Dictionary®, already offer a coarse-
grained semantic typification. However, their typi-
fication still does not make a distinction between,
e.g., control and cut in co-occurrence with expen-
diture or between cavernous and palatial in co-
occurrence with room — distinctions which are
essential in the context of both second language
learning and NLP. To the best of our knowledge,
lexical Functions (LFs) (Mel’Cuk, 1996) are the
most fine-grained taxonomy of lexical collocations.

A lexical function (LF) is defined as a func-
tion f(B) that delivers for a base B a set of
synonymous collocates that express the meaning
of f. LFs are assigned Latin abbreviations as
labels; cf., e.g., “Operl” (“operare” ‘perform’):
Operl(condolences) = {convey, express, extend};
“Magn” (“magnum” ‘big’/‘intense’): Magn(grief) =
{deep, inconsolable, great, ...}. Each LF can also
be considered as a specific lexico-semantic relation
between the base and the collocate of a collocation
in question (Evens, 1988). Table 1 displays the
subset of the relations we experiment with, along
with their corresponding LF names and illustrative
examples.

As seen in Table 1, where pertinent, an LF label
also encodes the subcategorization structure of the
base+collocate combination; cf., e.g., FinFunc0,
Operl, Real2, etc. Thus, the index ‘1’ in Operl
encodes the information that the first argument of
the base (A0/A1) is realized as grammatical sub-
ject and the base itself as object; the ‘2’ in Real2

Zhttps://www.freecollocation.com/
3https://www.macmillandictionary.com/collocations

encodes the realization of the second argument of
the base (A2) as grammatical subject and the base
as object; etc. This generic structure translates into
a number of Universal Dependency (UD) patterns.

3 Related Work

Previous works that consider collocations in a
Firthian sense look at word adjacency in terms
of n-grams (Smadja, 1993), although most often,
statistical measures of co-occurrence are used; cf.
Pearce et al. (2002); Pecina and Schlesinger (2006);
Pecina (2010); Garcia et al. (2019). Some comple-
ment statistical measures by morphological (Krenn
and Evert, 2001; Evert and Krenn, 2001) and/or
syntactic (Heid and Raab, 1989; Lin, 1999; Seretan
and Wehrli, 2006) patterns. In view of the asym-
metrical nature of the relation between the base
and the collocate, e.g., Gries (2013) proposes to
investigate “directional measures” as an addition
to association measures; Carlini et al. (2014) ex-
plicitly encode this asymmetry in terms of NPMI
(Bouma, 2009), which is a normalized version of
PMI; see also (Garcia et al., 2019). In the colloca-
tion classification task, substantial research focused
on the identification of Light Verb Constructions,
which are captured by the Oper- (and partially by
the Real-) families of LFs; cf., e.g., (Dras, 1995;
Vincze et al., 2013; Kettnerova et al., 2013; Chen
et al., 2016; Cordeiro and Candito, 2019; Shwartz
and Dagan, 2019), whereas Huang et al. (2009)
and Wanner et al. (2017) focus on broad seman-
tic collocation categories. Several works also use
LFs as a collocation taxonomy. Thus, Wanner et al.
(2006) leverage a vector-based similarity metric on
a subset of LFs, whereas Gelbukh and Kolesnikova
(2012) explore a suite of classical supervised ML
algorithms.

More recently, word embeddings have been suc-
cessfully applied in unsupervised setups, e.g., Ro-
driguez Ferndndez et al. (2016a) use simple vec-
tor arithmetic. In supervised setups, we find, first,
the “collocate retrieval” approach proposed by Ro-
driguez Ferndndez et al. (2016b), who train a linear
transformation to go from a “base” to a “collocate”
vector space, exploiting regularities in multilingual
word embeddings (Mikolov et al., 2013), and sec-
ond, Espinosa Anke et al. (2019), who train an
SVM on a dedicated relation vector space for base
and collocate. Embeddings have also been used in
multilingual English/Spanish (Rodriguez Fernéan-
dez et al., 2016b) and English/Portuguese/Spanish

91

| He played the piano. |

w

rrrrrr

UDPipe Parser

—

cis) [me] [
Graph-to-Collocation Transformer

[es | [e | [omea | [] [| [~][5 |

+
1 2 3 4 5 6 7
+
PRON VERB DET NOUN PUNCT

Ix

(I I S I I I

G
l—)
C_| L] L]

o] Lo L] o] [] (o] (]

I [

| Sentence Classifier | | BIO sequence tagging |

C J

| He-O played-Operl-B-collocate the-O piano-Operl-B-Base |

Figure 1: Graph-to-Collocation Transformer, which gen-
erates a BIO-tagged sequence given a sentence with,
optionally, its parsed tree.

(Garcia et al., 2017) LF classification. While suc-
cessful, none of these approaches explicitly lever-
aged in the language model the crucial syntactic
dependency information between base and collo-
cate, or considered how sentence-level information
could benefit the extraction task — as we do.

4 Graph-to-Collocation Transformer

We propose a Graph-to-Collocation Transformer
(G2C-Tr) to: (1) cast collocation identification and
classification as a sequence tagging problem: as
pointed out above, lexical collocations are lexico-
semantic relations, and relation extraction has been
recently successfully addressed as sequence tag-
ging (Ji et al., 2021); (2) boost performance by
enabling multitask learning via joint sentence clas-
sification and LF-instance BIO tagging; and (3)
capture the asymmetric semantic and syntactic
dependency between the base and the collocate by
the use of a modified attention mechanism.

The G2C-Tr is implemented as a suite of BERT-
based models for joint sentence classification and
sequence tagging. The syntactic dependency graph
of the sentence is input to a G2C-Tr model through
its attention mechanism. Figure 1 illustrates the
framework of our model. Given the input sen-

tence W = (wy,wa, ..., wy), we first use a pre-
trained dependency parser DP() to build the de-
pendency graph G, and Part-of-Speech (PoS) tags
P = (p1, P2, ---, PN). Due to the fact that each LF
is characterized by the PoS of its lexical items and
the syntactic dependency between them, this infor-
mation is of significant importance. Then, G2C-Tr

predicts the tagged sequence Y = (y1,y2,--,YN)
as follows:
P,G = DP(W)
H = Enc(W, P,G) (1)
Y = Dec(H)

where Enc(), Dec() are the encoder and decoder
parts of our model, described below. H
[hy, ..., h7] is the contextualised vector represen-
tation, and 7' is the length of the tokenized se-
quence. The parameters of DP() are frozen for
training.

4.1 Encoder

To compute the contextualised vector embeddings
H, we use a modified version of the Graph-to-
Graph Transformer model proposed by Moham-
madshahi and Henderson (2021a) to encode both
PoS tags (P) and the dependency graph (G). Let
us first introduce the encoding mechanism.

4.1.1 Input Embeddings

Given an input sentence (W) with its associated
PoS tags (P), the G2C-Tr model first computes
the input embeddings (X = (x1, X2, ...,x7)). To
make it compatible with BERT (Devlin et al., 2019),
we append two special tokens, CLS, and SEP to
the start and end of the tokenized sequence, re-
spectively. The input embeddings are calculated as
the summation of pre-trained token embeddings of
BERT, position embeddings, and PoS tag embed-
dings (as shown in the green part of Figure 1).

4.1.2 Self-attention Mechanism

Given the input embeddings (X), and a depen-
dency graph (), we compute the contextualised
vector representations (H) using a modified ver-
sion of the Transformer architecture. The origi-
nal Transformer model (Vaswani et al., 2017) is
composed of several Transformer layers. Each
Transformer layer includes a self-attention module
and a position-wise feed-forward network. Previ-
ous work (Ying et al., 2021; Mohammadshahi and
Henderson, 2020, 2021a,b) modified the attention

92

Algorithm 1: Build Relation Matrix R
Inmput: Graph G = {(4,5,0)},j =1, ..,

/* i,j,l are parent node id,

T

*/
*/

dependent id and label
/+ CLS is the root node
Output: Relation Matrix R
1 R=zeros(T,T)
2 for (i,5,1) € Gdo
3 Tig = k‘l
4 rji = ki + ’G|

/* k; is the index of label [*/

mechanism by adding scalar biases to the atten-
tion scores (Ying et al., 2021), or multiplying the
query representation with relation vectors (Moham-
madshahi and Henderson, 2021a, 2020) to encode
graph structures.

Since in collocations, base and collocate are syn-
tactically related and LFs are characterized by spe-
cific dependency relations, we modify the attention
mechanism of the base transformer model to in-
ject syntactic information. In each Transformer
layer, given Z,, = (z1,22,...,27) as the output
representations of the previous layer, the attention
weights are calculated as a Softmax over the atten-
tion scores «;;, defined as:

1
Ny = —F— ZiWQZ'W/KT
RVEY (= W™)

+ ZiWQ (rij WE)T + I'Z'ij(Zj WK)T}
2
where W@ WK ¢ R%*? are learned query and
key parameters. W4 € RGI+1Xd s the graph
relation embedding matrix, learned during training,
dp, is the dimension of hidden vectors, d is the
head dimension of self-attention module, and |G|
is the overal number of dependency labels. r;; is
the one-hot vector representing both the relation
and direction of syntactic relation between token
x; and X, SO Iy; Wf selects the embedding vector
for the appropriate syntactic relation. Algorithm 1
shows the procedure of building relation matrix R.
Finally, we also add the graph information to the
value computation of the Transformer as:
exp(aw

Z Z exp ozlj)
cxp(a”)
> exp(aij)
weights, WV € R4 x4 is the learned value ma-
trix, WR R2IGI+1xd s the graph embedding

WV + rijW‘I,—%) 3)

where is the Softmax for the attention

parameter, and v; is the output representation of the
self-attention mechanism for the token ¢. To find
the output representations (H), we use the same
mechanism for position-wise feed-forward layer,
and layer normalisation as proposed in Vaswani
et al. (2017).

Intuitively, additional terms in Equation 2 (second
and third multiplications), and Equation 3 (second
addition) add a soft bias toward the syntactic in-
formation. The model can still decide to use the
injected syntactic information, or just rely on the
context information (first terms in both Equation 2
and 3).

4.2 Decoder

BERT-based joint sentence classification and se-
quence tagging has already been used, e.g., for nat-
ural language understanding in the context of ques-
tion answering and goal-oriented dialogue systems,
where it serves for speaker intent identification
and semantic frame slot filling (Chen et al., 2019;
Castellucci et al., 2019). In the context of sentence
classification, we can specify such a model as:

y' = softmax (W'hy + b), “4)

with ¢ as the index of the sentence that is to be
classified, and h; as the hidden state of the first
pooled special token (CLS in the case of BERT).
For sequence tagging, this equation is extended
such that the sequence [ho, ..., hy] is fed to word-
level softmax layers:

y5 = softmax (W'h, + b,,) ,n € 1...|[W| (5)

where h,, is the hidden state corresponding to wy,.
Finally, the joint model combines both architec-
tures and is trained, end-to-end, by minimizing the
cross-entropy loss for both tasks.

N
p (v W) =p (v'|H) [[p il H)

n=1

(6)

S Experimental setup

5.1 Dataset Construction

We carry out experiments on English, French, and
Spanish datasets constructed from manually com-
piled instances of LFs. For English and French, we

93

start from Fisas et al. (2020). For English, Fisas
et al.’s list is enriched by 500 instances of low-
resourced LFs in order to obtain a more balanced
distribution of samples across different LFs; for
French, we work with their original list. To obtain
the LF instances for Spanish, we use the English
list: for each English LF instance, we retrieve from
the web via the multilingual search index Reverso-
Context* its translation equivalents, which are then
examined and filtered manually.

In all three lists, the bases and collocates are an-
notated with PoS and lemmas. As corpora, we use
the 2019 Wikipedia dumps. First, we preprocess
(removing metadata and markups) and parse the
dumps with the UDPipe2.5 parsers.’> Then, we ex-
tract from the parsed dumps sentences that contain
LF instances from any of our collocation lists, ob-
serving the PoS of the base and collocate and the
dependency relation between them. To further filter
the remaining erroneous samples in which the base
and the collocate items do not form a collocation,
an additional manual check is performed.

The validated sentences and the collocations they
contain are labeled. As sentence label, the sen-
tence’s most frequent LF or the first one in case of
a draw is chosen. In practice, this most often means
that the label of the only LF instance in the sentence
is chosen. For instance, in the case of CausFuncO,
in the French dataset, only in 1.63% of the cases its
instances appear together with instances of other
LFs in a sentence, in the Spanish dataset these are
1.85% and in the English dataset 3.42%. However,
it should be noted that this varies from LF to LF
and for some of the LFs our labeling strategy might
be an oversimplification. The highest percentage of
“cohabitation” with instances of other LFs can be
observed for Operl: in the French dataset in 7.19%
of the cases, in the Spanish dataset in 14.32% and
in the English dataset in 25.61%. A more detailed
study is necessary to identify potential correlations
between different LFs.°

To annotate collocations, we use the BI la-
bels of the BIO sequence annotation schema (‘B-
<LF>;’ and ‘I-<LF>};’ for the base, ‘B-<LF>.’,
‘I-<LF>.’ for the collocate, and ‘O’ for other to-
kens) (Figure 1). The BIO annotation facilitates a
convenient labeling of multi-word elements, and
the separate annotation of the base and collocate

*https://context.reverso.net/

5https://ufal.mff.cuni.cz/udpipe

®We would like to thank an anonymous reviewer for point-
ing out the relevance of the correlation between LFs.

allows for flawless annotation of cases where they
are not adjacent.

For the experiments, the annotated datasets are
split into training, development, and test subsets in
proportion 80—10-10 in terms of LF-wise unique
instances, such that all occurrences of a specific
instance, i.e., a specific lexical collocation, appear
only in one of the subsets. Sentences with sev-
eral collocations that belong to different splits are
dropped. The distribution of samples per LF and
language is shown in Figure 2.

= English ® French = Spanish

% within a language

Ml

10.0

by g ®
o o

n
o

0.0

'\ <l < S O S
S ; 0 N 4 N o O
o Qi” @"’ oQ <<° <<*>Q Q@ oQ Qp v“\ I SO oég’ °&
S
¥ \Qo"' d"\) C;o" ®§ @‘2& @ <
« Ofb°

Figure 2: Distribution of examples across lexical func-
tions within a language.

5.2 Experiments

In our experiments, we compare the following ar-
chitectures:’

¢ Baseline BERT (or similar)-based models
(denoted as — in the results tables), specif-
ically BERT-base and large (Devlin et al.,
2019), RoBERTa-base and large (Liu et al.,
2019); CamemBERT (Martin et al., 2019)
and RoBERTa-BNE (Gutiérrez-Fandiio et al.,
2021) as monolingual French and Spanish
models; and XLM-R for cross-lingual experi-
ments (Conneau et al., 2019).

Enhanced architectures with the G2C archi-
tecture, but without access to the PoS embed-
dings (G2C (wo) PoS).

The full model, as depicted in Figure 1, which
we refer to as ‘G2C’.

In terms of hyperparameter tuning, we fine-tune
learning rate and warmup independently for the
baseline, G2C(wo)PoS and G2C English models,

"In all cases, we report only results for the joint architec-
ture, as initial experiments showed a consistent improvement
with respect to a sequence tagging-only setup.

94

and fix these values for both French and Spanish.
We also use early stopping on the validation set
for selecting the best performing models in each
configuration.

6 Results

In what follows, we first present the outcome of
the sentence classification and collocation extrac-
tion and categorization experiments for the three
datasets and then analyze the performance with
respect to the individual LFs.

6.1 Sentence classification and collocation
extraction results

Tables 2—4 show the performance of various joint
models in their original form (marked by ‘-), as
well as of their G2C(wo)PoS and G2C enhanced
variants. We display results on the development
(‘Dev*’) and test sets (‘Test*’) for the tasks of both
sentence classification (“*SentClf”) and collocation
extraction (“*CollExt’). Sentence classification re-
sults are reported in terms of accuracy (there are
18 distinct LF labels), whereas for the collocation
extraction task, we report macro F1 over correctly
predicted spans. For all experiments, we report
average score and standard deviation after three
independent runs.

DevSentClf DevCollExt TestSentClf TestCollExt

- 66.86+-5.08 63.21+-1.41 66.04+-1.13 62.95+-3.51
BERT,, G2C(wo)PoS 61.72+-2.92 59.90+-1.50 65.18+-1.61 63.61+-1.25
G2C 64.23+-1.34 62.48+-0.94 67.25+-0.82 64.44+-1.12
- 66.79+-1.89 65.69+-1.66 63.05+-1.23 61.61+-1.15
BERT; G2C(wo)PoS 67.58+-1.19 66.13+-1.48 66.24+-3.30 64.38+-3.36

G2C 70.30+-1.89 68.82+-0.86 64.57+-3.60

58.09+-0.49 55.93+-1.52 60.96+-1.72
RoBERTa;, G2C(wo)PoS 59.89+-1.06 58.05+-0.40 62.51+-0.37
G2C 59.76+-0.78 58.00+-0.35 62.17+-0.67
67.47+-2.77 66.97+-1.14 65.55+-0.83
RoBERTa; G2C(wo)PoS 67.40+-3.49 67.97+-4.77 65.95+-2.44
G2C 61.71+-2.57 59.85+-2.95 65.10+-3.24

62.70+-3.74
59.20+-3.31
62.17+-0.74
61.90+-0.97
64.79+-3.12
64.84+-1.29
64.98+-2.85

Table 2: Main results for the English dataset, comparing
BERT and RoBERTa, in their base (;) and large (;)
variants, and in vanilla (-) and G2C versions.

The results let us conclude, firstly, that the pro-
posed model is considerably more competitive
for the task of the compilation of LF-classified
collocation resources than competitive baselines.
Secondly, incorporating the G2C architecture con-
tributes to an improvement in performance across
the board, for all three languages and for most of
the models. Thus, for English we see that BERT
base sees an improvement of 1 and 2 points in the

sentence classification and sequence labeling re-
sults on both the development and test sets, with
the improvement on BERT large and RoBERTa
base being even more pronounced. ROBERTa large
seems to be the model that benefits least from G2C
architectures in relative terms, although compara-
tively, this model is the best performing one on the
collocation extraction task on the test set.

With respect to the experiments on French,
we can observe that the French camemBERT
model does not profit from an enhancement with
G2C(wo)PoS; just on the contrary, for the collo-
cation extraction task, performance drops signif-
icantly when expanded with either of the G2C
variants. This is not the case for XLM-R with
its different training variants; its performance is
largely maintained in collocation extraction with
G2C regimes. The best performance is achieved
when XLM-R is enhanced with G2C and trained
on both French and English. This also true for the
sentence classification task. It is interesting to ob-
serve that when trained on English, XLLM shows on
the development set a higher performance than its
extensions for both tasks.

DevSentClf DevCollExt TestSentClf TestCollExt
66.69+-2.37 62.18+-3.32 54.52+-3.10 51.96+-2.78

camembert _

Tr FR G2C(wo)PoS 64.38+-1.79 38.99+-2.45 50.43+-3.09 30.63+-3.50
G2C 63.60+-1.33 39.36+-6.38 50.16+-0.46 30.62+-5.24
- 62.22+-2.40 59.30+-5.04 56.38+-3.47 55.23+-3.33

")l"(rLI\:l: G2C(wo)PoS 67.08+-4.07 64.32+-6.20 58.41+-3.51 56.97+-2.24
G2C 64.63+-5.93 61.05+-5.57 56.99+-1.54 55.92+-1.78
- 67.18+-1.99 64.54+-5.65 54.60+-0.69 52.84+-0.04

;f:‘l\él; G2C(wo)PoS 65.86+-1.83 64.42+-6.84 54.23+-3.12 50.96+-1.05
G2C 65.46+-1.49 64.09+-1.03 55.20+-3.62 52.43+-3.77

XLM.r - 63.07+-2.46 61.59+-1.88 63.35+-2.15 61.32+-1.27
G2C(wo)PoS 64.40+-0.34 63.88+-1.27 64.95+-0.85 63.55+-0.84

Tr: FR+EN

G2C 62.02+-1.53 61.03+-3.72 66.48+-1.55 64.96+-2.02

Table 3: Main results for French, comparing the
monolingual model CamemBERT with XLM-R vari-
ants trained on different slices of the dataset, and
G2C(wo)PoS-based extensions.

For Spanish, the performance of the monolingual
RoBERTa is in clear contrast to its performance on
English. Although it somewhat profits from the
G2C enhancement, it seems to underperform com-
pared to XLM-R (which is not the case for English).
The reason might be the corpus on which it has
been pre-trained (the National Library of Spain cor-
pus) or under-tuning of the set of hyperparameters,
which we optimized on the English dataset. We
also experiment with XLLM-R, trained also only on
the Spanish monolingual data (Tr: ES), as well as
on the English training set (Tr: EN), and both com-

95

DevSentClf DevCollExt TestSentClf TestCollExt
34.42+-0.65 26.65+-1.20 37.90+-0.67 27.94+-0.16

RoBERTacs

Tr: ES G2C(wo)PoS 35.62+-1.90 28.42+-2.20 38.60+-1.33 29.73+-2.05
G2C 37.60+-3.14 31.20+-1.63 40.49+-0.84 31.20+-5.47
XIMor - 66.44+-1.02 62.77+-0.01 52.99+-0.29 51.57+-0.12
Te: BS G2C(wo)PoS 68.69+-1.96 66.08+-1.95 54.96+-0.35 53.74+-0.42
G2C 63.96+-5.06 65.32+-2.20 56.42+-0.84 55.07+-0.71
XLMor - 65.02+-1.61 63.16+-1.93 60.56+-0.52 56.95+-2.48
Te: EN G2C(wo)PoS 63.00+-0.72 62.21+-0.67 58.82+-1.41 57.90+-0.62
G2C 62.54+-0.45 61.37+-0.48 57.65+-1.81 54.50+-1.57
XILMor - 65.91+-0.13 62.73+-0.59 64.26+-1.97 63.37+-0.72
Tr: ES+EN G2C(wo)PoS 74.18+-1.01 71.20+-0.88 75.42+-0.02 72.89+-0.07
G2C 74.52+-0.18 71.64+-0.01 75.55+-0.18 72.18+-0.92

Table 4: Main results for Spanish, comparing the
monolingual model RoBERTa-bne with XLM-R vari-
ants trained on different slices of the dataset, and
G2C(wo)PoS-based extensions.

bined (Tr: ES+EN). Surprisingly enough, XLM-R
(stand-alone and G2C+POS-enhanced) performs
somewhat better on the test set for both sentence
classification and LF-classification when trained on
English than when trained on Spanish. In general,
the increase in performance provided by the mul-
tilingual setting becomes apparent®, with the G2C
model yielding the best results in 3 out of 4 met-
rics. The best test results of a non-G2C-enhanced
model on the collocation extraction task are almost
10 points below the G2Cs models. Moreover, com-
bining both EN and ES training sets into a multi-
lingual language model results in an increase of
6% F1 score. Finally, the differences in the per-
formance of sentence classification and collocation
extraction for all three datasets suggest that the pre-
dicted sentence label does not always match the
label predicted by the BIO-tagger. However, since
our primary intention was to use the sentence classi-
fier as an auxiliary task that boosts the performance
of the BIO-tagger in a multitask learning setup,
we did not analyze the behavior of the sentence
classifier and these mismatches in detail.

6.2 Lexical Function analysis

To obtain a more detailed picture, we report in Ta-
ble 5 the results of a run for the best performing
models for each language and LF, for both of its
collocation elements, the base (_b) and the collo-
cate (_c). While there is certain consistency across
LFs and languages, there are also notable cases
of discrepancies. For instance, we see that Real2
(as, e.g., enjoy support), Ver (as, e.g., legitimate

8We leave for future work an analysis of whether these
results can be fully attributed to multilingual transfer, to having
access to more training data, or to a combination of the two.

(a) English.

___/-i.

1.0 L0

os
p=0763,p=0.000|,

0.8 0.8

0.6
0.6

0.4

F1

i
0.4
0.2 |

0.2

0.0

L}
1000

-0.2 0.0

500 1000 1500

Test frequency

(d) English.

2000 2000

(b) Spanish.

el

p=0.383,p=0.025

Test frequency

(e) Spanish.

0.0 =
1000

3000 4000 2000 3000

Test frequency

(f) French.

4000

Figure 3: LF analysis visualization. Top row shows confusion matrices for the three languages under study, for all
LFs and their corresponding base and collocate label. Bottom row shows scatter plot where we show frequency in
the x axis, and F1 score in the y axis, again, for each LF.

demand) and Magn (as, e.g., heavy smoker) have
been better captured in Spanish than in English
and French. This can probably be explained by
the number of unique instances of the LFs in our
training / test data. For instance, in the case of
Magn, the ratio between the total number of in-
stances and the number of the unique number of
instances in the English test set is 16.8, while in
the Spanish test set it is 31.8. In other words, our
Spanish dataset contains less variety to express the
meaning of intensification than English and French,
and is thus easier to capture. Conversely, the perfor-
mance on FactO (as, e.g., an avalanche strike(s)) is
much better for English, which is likely due to the
limitations of the training dataset: out of the 2,112
occurrences of FactO instances in total, [el] avion
vuela ‘the airplane flies’ is counted 602 times.

Note the overall high figures of the recognition
of the Magn and AntiMagn instances, and thus
a clear distinction between these antonymic LFs,
which is a well-known challenge (Rodriguez Fer-
nandez et al., 2016b; Wanner et al., 2017). In the
case of AntiVer (as, e.g., illegitimate demand), the
figures are lower in the case of Spanish, which

96

may again hint at the limitations of the Spanish
dataset. For the prediction of the individual col-
location items, in general, similar results are ob-
tained for the base and collocate. However, some
interesting outliers emerge. For instance, for the
Spanish CausFactO (as, e.g., start an engine), the
performance for the base elements (in our exam-
ple, engine) is more than twice as high as for the
collocate elements (in our example, start). We hy-
pothesize that this is because most of the CausFact0
base elements in the Spanish dataset denote arte-
facts and the model learns to recognize them well.
Finally, note that only the Spanish model is able to
correctly identify a few FinFuncO collocations (as,
e.g., fire going out), possibly due to the fact that
Spanish contains less multiword expressions and
certainly less phrasal verbs associated with this LF.

To understand whether there are obvious sources
of confusion across LFs, and whether we can at-
tribute performance to frequency in the datasets,
we plot in Figure 3 confusion matrices, as well
as the relationship between results and frequency.
In English and French, Operl and Reall are great
sources of confusion for Real2, especially when it

EN ES FR
P R F1 |P R F1 |P R F1

AntiMagn_b 90.99 93.15 92.06|85.92 89.46 87.65|86.55 81.78 84.10
AntiMagn_c 90.16 94.39 92.23|82.11 91.72 86.65|85.60 83.55 84.56
AntiReal2_b 77.13 83.19 80.05|66.47 86.39 75.14|83.69 65.71 73.62
AntiReal2_c 83.83 93.19 88.26|70.81 92.10 80.07|79.57 68.40 73.62
AntiVer_b 96.05 83.81 89.51|78.53 46.53 58.44(89.57 45.78 60.59
AntiVer_c 93.52 88.88 91.14|78.81 44.95 57.25(86.90 46.12 60.26

CausFact0_b 25.81 08.26 12.51(62.79 16.39 25.99(66.93 19.47 30.17
CausFact0_c 18.33 06.31 09.39|28.36 7.79 12.22{67.20 19.55 30.29
CausFunc0_b 76.94 30.66 43.85|66.27 38.24 48.49(50.02 32.86 39.66
CausFunc0_c 72.05 34.67 46.81|71.04 42.84 53.44|52.19 32.27 39.88
CausFuncl_b 91.15 75.79 82.76|78.37 70.94 72.05(89.00 79.40 83.93
CausFuncl_c 89.40 77.52 83.04|78.37 71.84 74.96|87.63 78.48 82.80
CausPredMinus_b |88.44 68.09 76.94|82.31 91.81 86.80|78.34 62.86 69.75
CausPredMinus_c [86.97 69.70 77.38|82.57 95.26 88.46|86.97 71.05 78.21

FactO_b 80.10 45.82 58.30{10.28 6.65 8.07/19.40 3.64 6.13
Fact0_c 73.89 49.14 59.02110.59 7.26 8.61]26.78 4.63 7.90
FinFunc0_b 0.00 0.00 0.00{10.28 6.65 8.07| 0.00 0.00 0.00
FinFunc0_c 0.00 0.00 0.00{36.69 12.36 18.50| 0.00 0.00 0.00
FinOperl_b 98.44 99.53 98.98193.83 99.16 96.42192.20 95.96 94.04
FinOperl_c 97.44 99.69 98.55|64.52 99.46 96.93|92.20 95.96 94.04

IncepOperl_b 78.54 74.91 76.68160.40 62.15 61.26/96.30 97.25 96.77
IncepOperl_c 82.10 85.59 83.81|58.47 66.09 62.04|71.41 53.95 61.46
IncepPredPlus_b |95.53 99.10 97.28|87.12 90.50 88.78|71.41 53.95 61.46
IncepPredPlus_c |93.75 98.85 96.24|88.21 92.87 90.48|95.42 90.34 92.81

Magn_b 40.35 85.01 54.72|58.21 82.08 68.05(49.24 63.03 55.27
Magn_c 36.94 97.22 51.90|64.44 83.91 70.94|48.63 63.92 55.23
Operl_b 38.11 79.47 51.90|41.61 59.48 48.97|34.81 68.95 46.26
Operl_c 37.11 82.24 51.14{39.06 72.75 50.83|32.85 74.13 45.52
Reall_b 41.22 46.48 43.69(29.13 25.30 27.08|37.55 60.57 46.36
Reall_c 37.11 82.24 51.14|29.16 30.07 29.61{39.02 63.45 48.32
Real2_b 50.82 42.43 46.25|59.61 95.56 73.42|54.64 54.53 54.59

Real2_c 50.66 42.53 46.24|59.86 94.65 73.34|55.67 48.91 52.07

Ver_b 80.97 31.99 45.86|84.16 85.30 84.73/89.17 70.31 78.62
78.52 32.74 46.21|84.16 85.30 84.73|88.72 70.17 78.36

Ver_c

Table 5: Results breakdown per language and per LF,
where, for each LF, we list individual results for base
and collocate categorization.

comes to categorizing Real2 collocates. However,
this is not the case for Spanish. In this context, we
need to keep in mind that Reall and Real?2 differ
only with respect to their subcategorization pattern
(in Reall, it is AO/A1, which is realized grammat-
ical subject, and in Real2, it is A2) and that the
semantic difference betweeen Oper and Real is
rather fine. Still, for Spanish this difference is cap-
tured, while for English and French it is not. This
is similar for the distinction between CausFact; /
Oper; and Real;. Why the confusions are minor for
Spanish requires a deeper analysis. We can also
see that Magn and Oper bases are often confused
in French, but not in English and Spanish. This
might be due to parsing and PoS tagging errors. Fi-
nally, in the lower part of Figure 3, we see that for
English, there is a clear correlation between results
and LF frequencies (p=0.76), followed by French

(p=0.46) and, finally, Spanish (p=0.38), where we
also find highest dispersion across all F1 bins.

7 Conclusions and Future Work

We have proposed an architecture for joint collo-
cation extraction and lexical function typification
by explicitly encoding syntactic dependencies in
the attention mechanism. Our experiments show
that our proposed architecture drastically improves
over its language model-only counterparts, and that
joint multilingual training is a promising direction
for less resourced languages. For the future, we
would like to extend these experiments to other lan-
guages and explore zero or few-shot prompt-based
methods.

Acknowledgements

Many thanks to Beatriz Fisas, Alba Téboas, and
Inmaculada Lépez for their help with the datasets.
We would also like to thank the anonymous review-
ers for their very helpful comments. The work
by Alexander Shvets and Leo Wanner has been
supported by the European Commission in the con-
text of the Horizon 2020 Research Program under
the grant numbers 825079 and 870930. Alireza
Mohammadshahi is supported by the Swiss Na-
tional Science Foundation (grant number CRSIIS-
180320).

References

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178-186.

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. Proceedings
of GSCL, 30:31-40.

Roberto Carlini, Joan Codina-Filba, and Leo Wanner.
2014. Improving collocation correction by ranking
suggestions using linguistic knowledge. In Proceed-
ings of the third workshop on NLP for computer-
assisted language learning, pages 1-12.

Giuseppe Castellucci, Valentina Bellomaria, Andrea
Favalli, and Raniero Romagnoli. 2019. Multi-lingual
intent detection and slot filling in a joint bert-based
model. arXiv preprint arXiv:1907.02884.

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. Bert
for joint intent classification and slot filling. arXiv
preprint arXiv:1902.10909.

Wei-Te Chen, Claire Bonial, and Martha Palmer. 2016.
English light verb construction identification using
lexical knowledge. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence,
pages 2375-2381.

Kenneth W. Church and Patrick Hanks. 1989. Word As-
sociation Norms, Mutual Information, and Lexicog-
raphy. In Proceedings of the 27th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 76—83, Vancouver, Canada.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Silvio Ricardo Cordeiro and Marie Candito. 2019.
Syntax-based identification of light-verb construc-
tions. In Proceedings of the 22nd Nordic Conference
on Computational Linguistics, pages 97-104, Turku,
Finland. Link6ping University Electronic Press.

Anthony P. Cowie. 1994. Phraseology. In R.E. Asher
and J.M.Y. Simpson, editors, The Encyclopedia of
Language and Linguistics, Vol. 6, pages 3168-3171.
Pergamon, Oxford.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Andrea Di Fabio, Simone Conia, and Roberto Navigli.
2019. Verbatlas: a novel large-scale verbal semantic
resource and its application to semantic role labeling.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 627-637.

A. Dinu, L.P. Dinu, and I.T. Sorodoc. 2014. Aggrega-
tion methods for efficient collocation detection. In
Proceedings of LREC, pages 4041-4045.

Mark Dras. 1995. Automatic identification of support
verbs: A step towards a definition of semantic weight.
In Proceedings of the Eighth Australian Joint Confer-
ence on Artificial Intelligence, pages 451-458.

Luis Espinosa-Anke, Jose Camacho-Collados, Sara Ro-
driguez Fernandez, Horacio Saggion, and Leo Wan-
ner. 2016. Extending wordnet with fine-grained col-
locational information via supervised distributional
learning. In Proceedings of COLING 2016: Tech-
nical Papers. The 26th International Conference on
Computational Linguistics; 2016 Dec. 11-16; Osaka
(Japan): COLING; 2016. p. 900-10. COLING.

98

Luis Espinosa-Anke, Joan Codina-Filb4, and Leo Wan-
ner. 2021. Evaluating language models for the re-
trieval and categorization of lexical collocations. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1406—-1417.

Luis Espinosa Anke, Steven Schockaert, and Leo Wan-
ner. 2019. Collocation classification with unsuper-
vised relation vectors. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5765-5772, Florence, Italy. Asso-
ciation for Computational Linguistics.

Martha W. Evens. 1988. Relational Models of the Lexi-
con: Representing Knowledge in Semantic Networks.
Cambridge University Press, Cambridge, UK.

Stefan Evert. 2007. Corpora and Collocations. In
A. Lideling and M. Kyto, editors, Corpus Linguis-
tics. An International Handbook. Mouton de Gruyter,
Berlin.

Stefan Evert and Brigitte Krenn. 2001. Methods for the
qualitative evaluation of lexical association measures.
In Proceedings of the 39th annual meeting of the

association for computational linguistics, pages 188—
195.

Gabriela Ferraro, Rogelio Nazar, Margarita Alonso
Ramos, and Leo Wanner. 2014. Towards advanced
collocation error correction in spanish learner cor-

pora. Language resources and evaluation, 48(1):45—
64.

Gabriela Ferraro, Rogelio Nazar, and Leo Wanner. 2011.
Collocations: A challenge in computer assisted lan-
guage learning.

John R. Firth. 1957. Modes of Meaning. In J.R. Firth,
editor, Papers in Linguistics, 1934-1951, pages 190—
215. Oxford University Press, Oxford.

Beatriz Fisas, Luis Espinosa Anke, Joan Codina-Filb4,
and Leo Wanner. 2020. CollFrEn: Rich bilingual
English-French collocation resource. In Proceedings
of the Joint Workshop on Multiword Expressions and
Electronic Lexicons, pages 1-12, online. Association
for Computational Linguistics.

Marcos Garcia, Marcos Garcia Salido, and Mar-
garita Alonso Ramos. 2017. Using bilingual word-
embeddings for multilingual collocation extraction.
In Proceedings of the 13th Workshop on Multiword
Expressions (MWE 2017), pages 21-30.

Marcos Garcia, Marcos Garcia Salido, and Mar-
garita Alonso Ramos. 2019. A comparison of statisti-
cal association measures for identifying dependency-
based collocations in various languages. In Proceed-
ings of the Joint Workshop on Multiword Expressions
and WordNet (MWE-WN 2019), pages 49-59.

Marcos Garcia, Tiago Kramer Vieira, Carolina Scarton,
Marco Idiart, and Aline Villavicencio. 2021. Probing

for idiomaticity in vector space models. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3551-3564.

Alexander Gelbukh and Olga Kolesnikova. 2012. Se-
mantic analysis of verbal collocations with lexical
functions, volume 414. Springer.

Stefan Th Gries. 2013. 50-something years of work on
collocations: What is or should be next.. .. Interna-
tional Journal of Corpus Linguistics, 18(1):137-166.

Asier Gutiérrez-Fandifio, Jordi Armengol-Estapé, Marc
Pamies, Joan Llop-Palao, Joaquin Silveira-Ocampo,
Casimiro Pio Carrino, Aitor Gonzalez-Agirre, Carme
Armentano-Oller, Carlos Rodriguez-Penagos, and
Marta Villegas. 2021. Spanish language models.
arXiv preprint arXiv:2107.07253.

Franz Josef Hausmann. 1985. Kollokationen im
Deutschen Woerterbuch: ein Beitrag zur Theorie
des lexicographischen Biespiels. Lexikographie und
Grammatik.

Ulrich Heid and Sybille Raab. 1989. Collocations in
multilingual generation. In Fourth Conference of the
European Chapter of the Association for Computa-
tional Linguistics.

Chung-Chi Huang, Kate H. Kao, Chiung-Hui Tseng,
and Jason S. Chang. 2009. A thesaurus-based seman-
tic classification of english collocations. Computa-
tional Linguistics and Chinese Language Processing,
14(3):257-280.

Bin Ji, Shasha Li, Jie Yu, Jun Ma, and Huijun Liu.
2021. Boosting span-based joint entity and re-
lation extraction via squence tagging mechanism.
https://arxiv.org/abs/2105.10080.

Viclava Kettnerovd, Markéta Lopatkovd, Eduard Be-
j¢ek, Anna Vernerova, and Marie Podobova. 2013.
Corpus based identification of czech light verbs. In
Proceedings of the Seventh International Conference
Slovko, Natural Language Processing, Corpus Lin-
guistics, E-Learning, pages 118128, Liidenscheid,
Germany. RAM Verlag.

Adam Kilgarriff. 2006. Collocationality (And How to
Measure it). In Proceedings of the 12th Euralex In-
ternational Congress on Lexicography (EURALEX),
pages 997-1004, Turin, Italy. Springer-Verlag.

Brigitte Krenn. 2000. The Usual Suspects: Data-
Oriented Models for the Identification and Repre-
sentation of Lexical Collocations, volume 7 of Saar-
briicken Dissertations in Computational Linguistics
and Language Technology. DFKI and Universitit
des Saarlandes.

Brigitte Krenn and Stefan Evert. 2001. Can we do better
than frequency? a case study on extracting pp-verb
collocations. In Proceedings of the ACL Workshop
on Collocations, pages 39—46.

99

Yoav Levine, Barak Lenz, Opher Lieber, Omri Abend,
Kevin Leyton-Brown, Moshe Tennenholtz, and Yoav
Shoham. 2020. Pmi-masking: Principled masking of
correlated spans. arXiv preprint arxiv:2010.01825.

Dekang Lin. 1999. Automatic identification of non-
compositional phrases. In Proceedings of the 37th
Annual of the Association for Computational Linguis-
tics (ACL), pages 317-324.

Hairong Liu, Mingbo Ma, Liang Huang, Hao Xiong,
and Zhongjun He. 2019. Robust neural machine
translation with joint textual and phonetic embed-
ding. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, pages
3044-3049, Florence, Italy. Association for Compu-
tational Linguistics.

Louis Martin, Benjamin Muller, Pedro Javier Ortiz
Sudrez, Yoann Dupont, Laurent Romary, Eric Ville-
monte de La Clergerie, Djamé Seddah, and Benoit
Sagot. 2019. Camembert: a tasty french language
model. arXiv preprint arXiv:1911.03894.

Marco Maru, Federico Scozzafava, Federico Martelli,
and Roberto Navigli. 2019. Syntagnet: challeng-
ing supervised word sense disambiguation with
lexical-semantic combinations. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3525-3531.

Igor A. Mel’¢uk. 1995. Phrasemes in Language and
Phraseology in Linguistics. In M. Everaert, E.-J.
van der Linden, A. Schenk, and R. Schreuder, editors,
Idioms: Structural and Psychological Perspectives,
pages 167-232. Lawrence Erlbaum Associates, Hills-
dale.

Igor A. Mel’€uk. 1996. Lexical functions: A tool for the
description of lexical relations in the lexicon. In Leo
Wanner, editor, Lexical Functions in Lexicography
and Natural Language Processing, pages 37-102.
Benjamins Academic Publishers, Amsterdam.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

Alireza Mohammadshahi and James Henderson. 2020.
Graph-to-graph transformer for transition-based de-
pendency parsing. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3278-3289, Online. Association for Computational
Linguistics.

Alireza Mohammadshahi and James Henderson.
2021a. Recursive Non-Autoregressive Graph-to-
Graph Transformer for Dependency Parsing with It-
erative Refinement. Transactions of the Association
for Computational Linguistics, 9:120—138.

Alireza Mohammadshahi and James Henderson. 2021b.
Syntax-aware graph-to-graph transformer for seman-
tic role labelling.

Darren Pearce et al. 2002. A comparative evaluation of
collocation extraction techniques. In LREC.

Pavel Pecina. 2008. A Machine Learning Approach to
Multiword Expression Extraction. In Proceedings of
the LREC 2008 Workshop Towards a Shared Task
for Multiword Expressions), pages 54—57, Marrakech,
Morocco.

Pavel Pecina. 2010. Lexical association measures and
collocation extraction. Language resources and eval-
uation, 44(1):137-158.

Pavel Pecina and Pavel Schlesinger. 2006. Combining
association measures for collocation extraction. In
Proceedings of the COLING/ACL 2006 main confer-
ence poster sessions, pages 651-658.

Sara Rodriguez Ferndndez, Roberto Carlini, Luis
Espinosa-Anke, and Leo Wanner. 2016a. Example-
based acquisition of fine-grained collocational re-
sources. In Calzolari N, Choukri K, Declerck T,
Goggi S, Grobelnik M, Maegaard B, Mariani J, Mazo
H, Moreno A, Odijk J, Piperidis S, editors. LREC
2016, Tenth International Conference on Language
Resources and Evaluation; 2016 May 23-28; Por-
toroz (Slovenia).[Sl]: European Language Resources
Association (ELRA); 2016. Session P28, Multiword
expressions; p. 2317-22. ELRA (European Language
Resources Association).

Sara Rodriguez-Ferndndez, Roberto Carlini, and Leo
Wanner. 2015. Classification of grammatical collo-
cation errors in the writings of learners of spanish.
Procesamiento del Lenguaje Natural, 55.

Sara Rodriguez Fernidndez, Luis Espinosa-Anke,
Roberto Carlini, and Leo Wanner. 2016b. Semantics-
driven recognition of collocations using word embed-
dings. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics; 2016
Aug. 7-12; Berlin (Germany).[place unknown]: ACL;
2016. Vol. 2, Short Papers; p. 499-505. ACL (Associ-
ation for Computational Linguistics).

Federico Scozzafava, Marco Maru, Fabrizio Brignone,
Giovanni Torrisi, and Roberto Navigli. 2020. Per-
sonalized pagerank with syntagmatic information for
multilingual word sense disambiguation. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 37-46.

Violeta Seretan. 2014. On collocations and their in-
teraction with parsing and translation. Informatics,

1(1):11-31.

Violeta Seretan and Eric Wehrli. 2006. Accurate col-
location extraction using a multilingual parser. In
Proceedings of the 21st international conference on
computational linguistics and 44th annual meeting of
the Association for Computational Linguistics, pages

953-960.

Vered Shwartz and Ido Dagan. 2019. Still a pain in
the neck: Evaluating text representations on lexical
composition. Transactions of the Association for
Computational Linguistics, 7:403-419.

Frank Smadja. 1993. Retrieving collocations from text:
Xtract. Computational linguistics, 19(1):143-178.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Veronika Vincze, Istvdn Nagy, and Janos Zsibrita. 2013.
Learning to detect English and Hungarian light verb
constructions. ACM Transactions on Speech and
Language Processeing, 10(2):1-25.

Leo Wanner. 2004. Towards automatic fine-grained se-
mantic classification of verb-noun collocations. Nat-
ural Language Engineering, 10(2):95-143.

Leo Wanner and John A. Bateman. 1990. A colloca-
tional based approach to salience sensitive lexical
selection. In Proceedings of the 5th International
Workshop on Natural Language Generation, Daw-
son, PA.

Leo Wanner, Bernd Bohnet, and Mark Giereth. 2006.
Making sense of collocations. Computer Speech &
Language, 20(4):609-624.

Leo Wanner, Gabriela Ferraro, and Pol Moreno. 2017.
Towards distributional semantics-based classification
of collocations for collocation dictionaries. Interna-
tional Journal of Lexicography, 30(2):167-186.

Leo Wanner, M Alonso Ramos, Orsolya Vincze, Roge-
lio Nazar, Gabriela Ferraro, Estela Mosqueira, and
Sabela Prieto. 2013. Annotation of collocations in a
learner corpus for building a learning environment.
Twenty years of learner corpus research. Looking
back, moving ahead, pages 493-503.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. 2021. Do transformers really perform bad
for graph representation?

100

Dyna-bAblI: unlocking bAbI’s potential with dynamic synthetic

benchmarking
Ronen Tamari’™* Kyle Richardson* Noam Kahlon" Aviad Sar-Shalom”
Nelson F. Liu® Reut Tsarfaty** Dafna Shahaf’

"The Hebrew University of Jerusalem
ATel-Aviv University

'Bar-Ilan University

*Allen Institute for Al
°Stanford University

{ronent,dshahaf}@cs.huji.ac.il, {reutt, kyler}t@allenai.org

Abstract

While neural language models often perform
surprisingly well on natural language
understanding (NLU) tasks, their strengths
and limitations remain poorly understood.
Controlled synthetic tasks are thus an
increasingly important resource for diagnosing
model behavior. In this work we focus on
story understanding, a core competency
for NLU systems. However, the main
synthetic resource for story understanding,
the bADbI benchmark, lacks such a systematic
mechanism for controllable task generation.
We develop Dyna-bAbl, a dynamic framework
providing fine-grained control over task
generation in bAbl. We demonstrate our ideas
by constructing three new tasks requiring
compositional generalization, an important
evaluation setting absent from the original
benchmark. We tested both special-purpose
models developed for bAbI as well as
state-of-the-art pre-trained methods, and found
that while both approaches solve the original
tasks (>99% accuracy), neither approach
succeeded in the compositional generalization
setting, indicating the limitations of the
original training data. We explored ways to
augment the original data, and found that
though diversifying training data was far
more useful than simply increasing dataset
size, it was still insufficient for driving robust
compositional generalization (with <70%
accuracy for complex compositions). Our
results underscore the importance of highly
controllable task generators for creating robust
NLU systems through a virtuous cycle of
model and data development.!

1 Introduction

Considerable progress has been made recently
in natural language understanding (NLU), driven
largely by advances in model pre-training (Devlin
* Work begun during an internship at the Allen Institute.

! Data and code available at https://
dyna-babi-project.github.io/.

101

Codebase for
generating tasks

Develop &
evaluate models

New dataset
(collection of tasks)

H

(a) Static benchmarking on bAbI
Hard to generate new tasks, leading to benchmark

saturation & unreliable estimates of model efficacy
(b) Dynamic benchmarking on bAbI
[z G evaluate models

Provides new "knobs" forhlgh\y
controlled task generation

|

Develop &

Detailed
error
analysis

Easily generate new
experiments pushing
models' limits

Task Generator
(Dyna-bAbI)

OD
e

(©)
bAbl task 2: Object tracking
1 John picked up the football.
2 John is in the office.
3 John dropped the football.
4 Bob went to the kitchen.
5 Where is the football? office 1 2

Control task Control task

composition | difficulty ‘\
mix tasks to test H
compositionality 1

¥
1 Mary moved to the garden.
2 Fred traveled to the park.
3 Bob took the football. -
4 Then he went to the kitchen " |
5 Where is Mary7 garden 1 &

6 Bob ps) Jeit I
Hard]
moved = T

7 Julie gral
8 Then e]

ed tf) Daniel. v
10 Where is Daniel? kitchen 34 6 9

bAbI task 5: Give events

1 John picked up the milk.

2 John is in the garden.

3 Bob went to the garden.

4 John gave the milk to Bob.

5 What did John give Bob? milk 4

Easy

ball tc
twe milk.

bAbl task 11: coreference

1 John went to the park.

2 Then he moved to the kitchen.
3 Mary went to the garden. Underlined numbers denote the

4 Where is John? kitchen 1 2 "—/ | sentence indices of the supporiing facts |

9 Jeff pass

Figure 1: (a) Low task configurability leads to
static datasets, benchmark saturation & unreliable
model development. (b) We propose a dynamic
benchmarking approach; developing models and tasks
in a tight feedback loop using (c) Dyna-bAblI task
generator. Dyna-bAbl provides fine-grained control
over task structure, composition and difficulty, yielding
challenging new test sets exposing limitations of state-
of-the-art models.

et al.,, 2019; Raffel et al., 2020) and the
development of large-scale NLU benchmarks
across a wide range of tasks (Wang et al., 2018,
2019; Liang et al., 2020). Such successes, however,
have coincided with the discovery of various
shortcomings in existing human curated datasets,
largely related to annotation artifacts (Gururangan

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 101 - 122
July 14-15, 2022 ©2022 Association for Computational Linguistics

et al., 2018), or systematic biases that create
shortcuts that can inflate model performance and
harm generalization.

In order to overcome these issues, two
avenues of research have recently gained traction:
1) development of dynamic benchmarks (Potts
et al., 2021; Kiela et al., 2021) where, in contrast
to conventional sfatic benchmarks, evaluation
and data collection are conducted interactively
with humans and models in a rapidly evolving
feedback loop and; 2) renewed interest in synthetic
benchmarks (Lake and Baroni, 2018; Sinha et al.,
2019; Clark et al., 2020; Ruis et al., 2020) that
allow for absolute control over the data creation
process in order to help understand the strengths
and weaknesses of existing models on targeted
tasks and language phenomena.

Story understanding is a particularly important
domain for research on dynamic and synthetic
benchmarks; it is a core competency for NLU
systems (McClelland et al., 2020; Dunietz et al.,
2020), but the scale and annotation detail required
make human data collection prohibitively costly.
However, the main synthetic resource for story
understanding remains the bAbI task suite (Weston
et al.,, 2016), which is saturated by models
reaching near-perfect performance (Liu et al.,
2021), and further limited by exploitable biases
in the data (Kaushik and Lipton, 2018). Despite
its creators’ initial intentions, bAbI has largely
remained a static benchmark limited to a small
subset of the tasks potentially possible to generate
within the bAbI “micro-world”. Accordingly, two
natural questions arise: (Q1) is near-perfect model
performance on the original bAbI tasks a reliable
indicator of story understanding competence?;
(Q2) are there still interesting challenges to
discover inside the broader bAbI task space that
help identify weaknesses in current models and
drive modelling innovation?

To answer these questions, we employ a
dynamic synthetic benchmarking approach on
bAbI, combining the benefits of the agile approach
of recent dynamic benchmarks with the scale
and control provided by synthetic datasets. As
illustrated in Figure 1, in dynamic synthetic
benchmarks the data generator itself is designed
for agile development, enabling experimentation
with increasingly complex tasks and a wider
range of linguistic phenomena.> Constructing

2 While our framework does not enable automatic collection

challenging tasks is a challenge in and of itself,
requiring precise control over the reasoning
patterns underlying each question. To meet these
requirements, we developed a new task generator
for bAbI called Dyna-bAbI?.

Using Dyna-bAbl, we first devise new splits that
systematically test compositional generalization
across tasks; as shown in Fig. 1c, we test models
on novel combinations (right side, line 10) of
concepts seen at training, like co-reference and
object tracking (left). We find that training on the
original bAbI tasks (hereafter: bAbI 1.0) is not
sufficient for models to attain good compositional
generalization. Though general purpose pre-trained
models far outperform special-purpose (non-pre-
trained) architectures developed for bAbl, they still
suffer a 20-50% drop in accuracy compared to
the non-pre-trained models which suffer a 50-80%
drop. Both types attain near perfect performance
on the original tasks, suggesting that bAbI 1.0 is
not challenging enough to differentiate between the
two classes of models (Q1).

We next investigate how different enhancements
of training data affect compositional generalization:
(a) injecting more questions into bAbI 1.0, and
(b) generating new, more diverse training samples.
Compared to question injection, we find that
diverse training data better facilitates compositional
generalization, as well as being more data
efficient. However, neither approach drives reliable
compositional generalization; a representative
state-of-the-art (SOTA) model, T5 (Raffel et al.,
2020), demonstrates a lack of robustness to
novel combinations and also exhibits knowledge
inconsistency, for example, by correctly answering
certain types of questions but systematically
failing to answer equivalent paraphrases. These
results suggest that there remain many important
challenges within the broader bAblI task space (Q2)
which can be discovered through more careful
control of task generation.

To sanity-check the quality of our new tests
compared with bAbI 1.0, we employ the notion
of concurrence proposed by Liu et al. (2021);

of new data based on model errors as in other dynamic
benchmarks, we still chose the term “dynamic” to
highlight their important common function: data generation
frameworks that enable easily “moving the goalposts” in
meaningful directions (in our case, for probing models’
systematic generalization capacities).

3 Implemented in Python for improved accessibility compared
with the original Lua implementation (https://github.
com/facebookarchive/bAbI-tasks).

102

concurrence is a measure of correlation between
models’ performance on a synthetic task and their
performance on an existing, non-synthetic NLU
benchmark. We find high concurrence between our
new challenge tasks and the widely used SQuAD
dataset (Rajpurkar et al., 2016), in contrast to bAbl
1.0, which achieved low concurrence.

Giving the continued interest in using bAbI 1.0
to evaluate new modelling approaches (Banino
et al., 2020, 2021; Schlag et al., 2021), our new
challenge splits and the Dyna-bAbl task generator
contribute to more reliably guiding future efforts.
While we focused on bADbI, our results apply more
generally, telling a cautionary tale about the limits
of static synthetic datasets, and motivating the
development of controllable task generators for
dynamic synthetic benchmarking.

2 Related Work

Our work brings together two promising areas of
current research: dynamic benchmarking such as
Dynabench (Kiela et al., 2021) that address many
existing issues with static benchmarks (Bowman
and Dahl, 2021), and synthetic benchmarking,
which is widely used for high-precision and data-
intensive problems such as relational and logical
reasoning (Sinha et al., 2019; Clark et al., 2020;
Betz et al., 2021; Richardson and Sabharwal, 2022),
robot planning (Banerjee et al., 2020), instruction
following and language grounding (Long et al.,
2016; Lake and Baroni, 2018) among many others
(Richardson et al., 2020; Khot et al., 2021). Most
approaches to synthetic benchmarking focus on
model development on a static benchmark, and
are not designed to facilitate agile and highly
controlled task space exploration, which is our
focus here.

The recent gSCAN dataset (Ruis et al., 2020) and
later extensions (Qiu et al., 2021; Wu et al., 2021)
can be seen as an example of a synthetic benchmark
“going dynamic”. Our work differs in terms of
target domain (story understanding as opposed to
multi-modal language grounding), and we further
focus attention on a more general research direction
of intentional, a-priori design of NLU benchmarks
for agile development. In this regard, our work
can be seen as part of a trend towards data-centric
research efforts in response to prevailing model-
centric research, which generally focuses heavily
on architectural design and novelty (Kaushik and
Lipton, 2018), at the expense of work on the data

side (Sambasivan et al., 2021; Rogers, 2021).

We address the domain of story understanding
as a particularly core (and data-intensive) capacity
underlying language use (McClelland et al., 2020),
thought to require constructing and manipulating
situation models of entities and their relations as
they unfold throughout discourse (Zwaan, 2016;
Tamari et al., 2020). Procedural text datasets (Dalvi
et al., 2018; Tandon et al., 2020) are closely related
in that they provide detailed annotation of entities
and state changes, and have mostly focused on
relatively small and static benchmarks using human
collected data. Overall, recent works identify a
lack of benchmarks which systematically probe the
situation models constructed by systems processing
discourse-level texts (Sugawara et al., 2021).

The bAbI benchmark (Weston et al., 2016)
is seen as highly relevant in terms of objective
(targeting situation modelling) (Dunietz et al.,
2020), but has been viewed critically due
to its constrained nature and exploitable
artifacts (Kaushik and Lipton, 2018). Our
work focuses on improving the evaluation in bAbI
through compositional generalization, widely
used across NLP to more rigorously probe model
robustness (Finegan-Dollak et al., 2018; Keysers
et al., 2020; Gontier et al., 2020; Yanaka et al.,
2021), but to our knowledge still not applied to
story understanding or bAbI.

3 Synthetic Dynamic Benchmarking on
bAbI

3.1 Dyna-bAbl

What makes a synthetic benchmark dynamic? We
think of a dynamic synthetic benchmark as a
highly controllable task generator, enabling rapid
exploration of interesting areas of a task space.
The original bAbl 1.0 simulator code does not
readily facilitate such exploration; each of the
bADI 1.0 tasks is generated by a hard-coded script
which does not enable parametric manipulation
of interesting generation aspects such as question
difficulty or compositionality.

Accordingly, we developed Dyna-bAbl, a
Python-based version of the original simulator.
Dyna-bAbl facilitates control of task generation
through a configuration file, effectively abstracting
away much of the underlying implementation
complexity. The configuration file allows users
to specify high-level task parameters such as the
set of target concepts, passage length, and filtering

103

conditions to mine for harder/rarer examples. We
also modularized the code to facilitate adding new
questions and other concepts more easily.

In this next sections we describe the underlying
structure of the bADbI 1.0 tasks, and how we
combine them using Dyna-bAblI to create more
complex compositional generalization tasks.

3.2 DbADI task structure

A task in bAbI 1.0 is a set of train, validation
and test splits. Each split is a set of instances,
where an instance is a tuple (p, g, a)=(passage,
question, answer). Passages are generated using
a micro-world simulator by sampling a valid
sequence of world events from an event set £ and
generating a linguistic description of them. By
default, linguistic descriptions are generated by a
simple sentence-level mapping from an event to a
natural language sentence. For example, the event
move (john, park) could be translated to “John
moved to the park.”

Some tasks also incorporate more complex

linguistic mappings between events and
sentences, such as co-reference: the
event sequence (move (john, park),

move (john, kitchen)) could be mapped to
“John moved to the park. Then he went to the
kitchen.” We denote the set of possible linguistic
mappings by L.

Finally, a valid question-answer pair (g,a) over p
is sampled from question set Q. In bAbI, each
split is generated using some particular subset
of all possible events, linguistic constructs and
questions (§3.3); for a given split we can then
define its concept set, C = £ U L U Q. Instances
also include a set of supporting facts (f), or the
relevant lines from which a can be derived (see
Fig. 1). The support composition (f.) is the set of
events and linguistic constructs contained in f (see
examples in §4.2.1), and is useful for characterizing
compositionality performance (§3.4).

3.3 Original bAbI 1.0 tasks

Our focus here is on a particular subset of 12 bAbI

1.0 tasks evaluating aspects of story understanding.

Table 1 summarizes them, detailing £,£,0Q for
each task. For £, we list only complex constructs
beyond the default event-sentence mapping (which
is present in every task). See appendix A.l for
additional details on task construction. Not all
of the story understanding tasks are considered.
For example, tasks 14 and 20 address time

Linguistic . Avg. sents. &
Task E\(fgr)lts Constructs Qu?g)ons supp. facts
(L) per story
1 MOVE - where-P 6,1
2 N]ig\slg ’ - where-O 15.52,2
3 Nlig\slg ’ - where-was-O 51.9,3
MOVE,
5 GIVE, - give-qs 20.1,1
POSS
6 MOVE - yes-no 6.27,1
MOVE,
7 GIVE, - counting 8.67,2.33
POSS
MOVE, .
8 POSS - list 8.75,1.94
9 MOVE NEGATE yes-no 6,1
10 MOVE INDEF yes-no 6,1
11 MOVE CO-REF where-P 6,2
12 MOVE CONJ. where-P 6,1
CONI.,
13 MOVE CO-REF where-P 6,2
Table 1: Subset of 12 bAbI 1.0 tasks considered

here. Each task is characterized by the possible events,
linguistic constructs and questions that can occur in
instances. POSS (possession) is short for GRAB and
DROP events. Statistics based on training sets. A large
space of task configurations remains unexplored.

reasoning and agent motivations, and we leave their
integration for future work.

3.4 Compositional generalization on bAbI

As can be seen in Table 1, many possible task
configurations are not covered by the original
benchmark; which directions should be explored?
We focus on out-of-distribution (OOD) robustness,
which is increasingly seen as a vital evaluation
criteria across AI/NLP research (Shanahan
et al., 2020; Hendrycks et al., 2020). We target
compositional generalization, a particularly
important class of OOD problems (Lake et al.,
2017; Lake and Baroni, 2018). Compositional
generalization refers to the ability to systematically
generalize to test inputs containing novel
combinations of more basic elements seen at
training time (Partee et al., 1995). For example,
a model that has learned basic object tracking
and co-reference separately (tasks 2 and 11,
see Fig. 1c) could be expected to solve tasks
requiring a mixture of both object tracking and
co-reference (Fig. lc, line 10 question on right
side). Compositional tasks are absent from bAbI
1.0 which features only IID test sets (independent,

104

identically distributed).*

Compositional task generation. To create
compositional generalization tasks in practice, we
create training (and validation) splits composed of
M sub-tasks with concept sets {Cfrain}ij\il, and a
test set Ciese such that Ciest # Cppi, Vi, but Ciegt =
Uf\i 1 Cline In other words, each training sub-
task can be thought of focusing on a particular
subset of test concepts, so models are exposed to
all test concepts at training time, but not to all
combinations of them (Yanaka et al., 2021).

Task difficulty. We hypothesize that support
composition (f.) and supporting fact set size
(|f|) are main factors underlying a particular
instance’s difficulty, and especially novel
support compositions not seen at training time.
Additionally, the difference between train and test
splits results in potentially harder distractors, as
test-time distractors appear in novel contexts.

Our notions of concepts and support composition
resemble atoms and compounds in DBCA, a
related study on compositionality (Keysers et al.,
2020). While DBCA enables automatic creation
of compositional train and test splits, we opt
here for a more human-interpretable representation
that allows more precise manual control of the
combinations of concepts a model is exposed to
at train and test time.

Quality comparison vs. bAbI 1.0 tasks.
Intuitively, good synthetic datasets help drive the
development of better modelling approaches. Our
new compositional tasks might be harder than
bAbI 1.0, but how do we know whether they are
a more useful target? To provide a preliminary
answer to this question, we adopt the notion of
concurrence as a quality measure (Liu et al., 2021).
Two benchmarks are said to have high concurrence
when they rank a set of modelling approaches
similarly. Concurrence offers a way to formalize
the intuition above, as high concurrence between a
synthetic and natural language benchmark suggests
that the synthetic benchmark could have driven
similar innovations. We follow the setup of Liu
et al. (2021) using SQuAD for the natural language
benchmark.> Notably, bAbI 1.0 achieved very
low concurrence with SQuAD; for example, pre-

* Weston et al. (2016) noted that transfer learning was an
important goal out of the original work’s scope.

5 Liu et al. (2021) consider a set of 20 modelling approaches
used on SQuAD, including 10 pre-trained and 10 non-pre-
trained methods.

. Avg. . Avg. supp.
Split Type lenith Size fac% set Is)iI:;e
concat(T2) Train 10.76 18,000 2
concat(T7) ~ Train 135 =~ 63,000 =~ 1.68
inject(T7) Train 23.25 190,158 1.42
diverse(T7) Train 20 17,000 2.17
concat(T12) Train 10.8 =~ 108,000 ~ 1.42
inject(T12) Train 1597 368,831 1.28
diverse(T12) Train 20 24,772 2.45
mix(T2) Test 13.25 1,000 2.05
mix(T7)" ~ Test 20 ~ 3,000 250
mix(T12) = Test 20 ~ 6,000 370

Table 2: Splits used for our experiments. All except the
original data (concat) are created with Dyna-bAblI.

training consistently yields large gains on SQuAD,
but on bAbI 1.0, both pre-trained and non-pre-
trained models achieve perfect performance on
many tasks. The low concurrence thus suggests
that bAbI 1.0 may be an unreliable benchmark for
model development, and highlights the importance
of improving its quality.

4 Experiments

With the controllable task generation afforded by
Dyna-bAbl, we can now create datasets probing
deeper story understanding capabilities of models.

We present two main experiments targeting the

following questions:

* Exp. 1: (ql.a) What role does model
architecture play in the capacity for
compositional generalization? (ql.b) What is
the concurrence of our compositional tasks
with real datasets, compared with bAbI 1.0?

* Exp. 2: (gq2) How do training data
quantity and diversity affect compositional
generalization?

Data

For our experiments we created 4 kinds of
splits over three subsets of bAbI 1.0 tasks,
summarized in Table 2. We denote a subset
of tasks 7, and consider 7o = {2,11},
T = {1,2,3,5,11,12,13}, and T2 =
{1,2,3,5,...,13}.

* concat splits are simply concatenations of the
official data for the tasks 7. We considered
the larger version where each task consists of
9,000/1,000 training/development examples;
e.g., concat('I3) consists of 18,000 training
examples and 2,000 development examples.

* inject splits enrich the concat data as follows:

105

for each question in the original data, we
supplement it with all possible additional
questions of the specified types. In this work,
the supplement question types were where-P
and where-O (to provide location information
of objects and agents).

* diverse splits use rejection sampling to
generate more diverse samples, such that
the number of supporting facts per question
is roughly uniform across all sub-task
instances for a given question type. Without
rejection sampling, most generated questions
would be trivial (e.g., 1-2 supporting facts).
Compositionality is retained by holding out
certain combinations. In particular, at training
time, complex linguistic constructs (e.g., co-
reference) are only seen with MOVE events.

* mix are test splits generated using rejection
sampling like diverse, and consist of instances
which may feature elements from any of
the considered tasks. As a result, questions
in mix splits require novel/more complex
reasoning patterns compared to those seen
during training.

See appendix A.l for examples and extended

details on task generation.

4.1 Exp. 1: Can training on bAbI 1.0
facilitate compositional generalization?

For this experiment, we compared models on 75
and 17, since they allow for a direct conversion to
an extractive QA format,® enabling us to use the
same concurrence framework of Liu et al. (2021).

Models. We considered 3 classes of models:

* Non-pre-trained specialized architectures for
bAbI 1.0 including EntNet (Henaff et al.,
2017) and STM (Le et al., 2020), the latter
being current SOTA on bAbI 1.07.

* Non-pretrained general-purpose QA methods,
such as BiDAF (Seo et al., 2017).

* General purpose pre-trained approaches
including RoBERTa (Liu et al., 2020) and TS5
(base) (Raffel et al., 2020).

The last two categories are comprised of the
20 models evaluated in Liu et al. (2021), with
the addition of TS5 to the last group. For
implementation details, see appendix A.2.

® Tasks 6-10 require generative QA, for answering yes-no,
count and list questions.
7 As of March 10, 2022.

Results & Analysis

Experiment results are summarized in Table 3.
All models perform well in IID settings, but
performance drops considerably in OOD settings

Architecture alone is not a significant
compositionality driver (ql.a). The large
OQOD performance gap between pre-trained and
non-pre-trained models indicates that pre-training
plays a much greater role than specialized
architectures for QA performance, adding to
similar findings in other NLP domains (Hendrycks
et al., 2020). These results raise questions about
special purpose relational reasoning architectures
that continue to be developed today: the poor OOD
performance suggests that such models may not
be fulfilling their intended design. Either way,
these results underscore the importance of rigorous
evaluation to verify that modelling motivations are
borne out in practice (Aina et al., 2019).

Compositionality increases concurrence (q1.b).
As can be seen in the Fig. 2 plots®, increasing
compositionality is correlated with increased
concurrence. In contrast to the original bAbI 1.0
tasks which exhibited virtually no correlation with
SQuAD, our compositional task mix(I%) exhibits
high concurrence of r = 0.92,7 = 0.78 (Pearson
and Kendall correlation functions, resp.). These
results are comparable to other natural language as
well as purpose-built synthetic datasets considered
in Liu et al. (2021), which feature 7,7 in the
ranges [0.87,0.99] and [0.77,0.94], respectively.
Our results thus extend the findings of Liu et al.
(2021); they demonstrated the existence of high
concurrence synthetic benchmarks, we additionally
suggest a guiding principle for how to create them
(incorporate compositionality evaluation).

4.2 Exp. 2: enriching bAbI 1.0 training data

The results above suggest that the bAbI data in
their current form may not be rich enough to drive
compositional generalization.” In this experiment
we probe this question, enriching the training data
to better understand its impact on compositional
generalization. In particular, we investigate
two approaches to enriching the training data
while maintaining the compositionality evaluation,
corresponding to the inject and diverse splits.

8 See appendix A.4 for full numeric results.

° An alternate hypothesis is that certain patterns may be too
hard for models to learn; we confirm this is not the case by
using the inoculation methodology of Liu et al. (2019), see
details in Appendix A.3.

106

Name Train Test Evaluation accuracy SQuAD Concurrence
EntNet STM BiDAF Roberta T5 p T

2-task 1ID concat(T2) concat(T2) 98.95 99.85 100 100 99.85 [-0.35,0.08] [-0.35,-0.19]

2-task OOD concat(T2) mix(T2) 72.0 67.6 97.2 98.7 98.1 0.48 0.51

7-taskIID ~ ~concat(T7) concat(T7) 96.8 994 ~ 9998 9998 = 998 [-0.4,0.08] [-0.35,0.03]

7-task OOD concat(T7) mix(T7) 22.2 26.7 30.5 57.7 49.57 0.92 0.78

12-task IID ~ ~concat(T12) concat(T12) 96.19 ~ 9934 -~ -~ 9954 -~~~ * -

12-task OOD concat(T12) mix(T12) 31.97 35.65 - - 67.4 - -

Table 3: Experiment 1. OOD evaluation exposes large differences between pre-trained and non-pre-trained models,
and also achieves high concurrence with the SQuUAD benchmark. We report [min,max] concurrence for bAbI 1.0.

r=0.08 e non-pretrained models r=0.92
T=-0.19 o pretrained models T=0.78

@cegme 80

s 95 S
w =
< =
8 90 [
i X550
3 €
Qo

85 40

°
80 ° 30 e
70 80 90 70 80 90
SQUAD EM SQUAD EM

Figure 2: SQuAD concurrence plots for bAbI

1.0 task 2 (left; reproduced from Liu et al. (2021)
with permission) and mix(T7) (right). bAbI task
2 has the highest concurrence of all 7% tasks, yet
exhibits virtually no correlation with SQuAD. mix(1%)
exhibits high concurrence, highlighting the relevance of
compositional evaluation.

Notably, Exp. 2 can be seen as a first iteration
of the dynamic benchmarking loop depicted in
Fig. 1: based on the error analysis of Exp. 1,
we leverage Dyna-bAbl for targeted creation of
new tasks, which allow us to systematically test
our hypotheses.

In this experiment we focus on pre-trained
models, as they significantly out-performed non-
pre-trained methods. We use TS as a representative
since its generative abilities make it straightforward
to apply also to 115 (unlike the extractive methods
which were applicable only to 7%).

Injecting supplementary questions. One
hypothesis for the poor performance of models on
the mix splits could be that the original bAbI tasks
do not provide enough supervision for models to
learn the basic event semantics. For example, tasks
5 and 7 are the only bAbI 1.0 tasks featuring the
GIVE event, and neither includes any questions
about the location of participants. However, test-
time compositional questions may require models
to infer that the participants in a GIVE event

Evaluation accuracy /

Train Test # supporting facts

1 2 3+ Total
inject(T7) concat(T7) 99.83 100 9335 99.05
inject(T7) mix(T7) 89.82 80.55 64.16 71.57
diverse(T7) ~ concat(T7) ~ 99.58 = 100 ~ 78.36 ~ 96.94
diverse(T7) mix(T7) 100 9844 9384 958
inject(T12) concat(T12) 99.94 9997 9191 99.35
inject(T12) mix(T12) 9245 8529 67.67 _ 722
diverse(T12) concat(T12) 99.75 98.773 76.81 97.73
diverse(T12) mix(T12) 99.01 96.29 81.24 84.82
Table 4: Enriching the training data. Injecting
knowledge to the original bAbI tasks doesn’t

substantially improve compositionality. Sampling more
structurally diverse instances yields more significant
improvements, though is still limited, especially for
more complex compositions.

share the same location (e.g., line 10 question in
Fig. 1c). Error analysis shows that such implicit
inferences are indeed challenging for models
trained on the concat splits (see details in appendix
A.5). Perhaps the inject splits supplementing
the original tasks with relevant information will
improve compositionality performance? Table 4
displays the result of this experiment; performance
on mix is improved only marginally, despite a 3-
fold increase in training data (Table 2).

Sampling structurally diverse training data. As
shown in Table 2, though inject splits significantly
increase dataset size, their diversity remains
low: most questions require only one or two
supporting facts. Therefore, we next enrich training
data through sampling more structurally diverse
samples. This method is known to improve data
efficiency for both compositional generalization
as well as IID settings (Oren et al., 2021). As
can be seen in Table 4, training on the diverse
splits yields a more significant improvement;
similar to the findings of Oren et al. (2021),
sampling more diverse training data leads to greater

107

Evaluation accuracy for

questions requiring n supporting facts

Support Question type Support Question type
composition (f ¢) n<=2 n=3 composition (f ¢) n>=
v v v 0.96 v v v v (130,67 0.7 0.44 vV v v v v
v v v o,ga vV v v 0.85 0.83 0.9 [JE] v u v
v v v 0.94 v v v LS \ \% \% v
v v v 1.0 v v v 0.91 v v v
\ v \ 0.91 0.87
v % 0.98 v \ v 0.97 0.93
\% v v % 0.78
\ \% \% 091 094 0.92 \% v \% v |0.85 1.0
v v 0.97 0.99
\ v v v 0.96 0.92
v v v 0.58 0.67 k] HEH
v v " v v v [0.97 0.81 o.asﬁcs:& 0.27
v K BK
\% v 0.98 o - v v 0.99]0.94
Accuracy on where-0, 0.99 Y T
questions over all
instances with f_c= v 0.99 1 0.99 v v 1.0
{GIVE,MOVE}, n<=2 v 10 v v v '
S 5 @ &5 e 5 R o S5 oo S5 e85 . > » R p o
ST g FET L gEL8E FSEFTLEFLEL]SS
& 5, S § & Q & Q'} & 1% [¢; (9 S 5 .8 < 00 S ¥ .8 Q él é < o9
g v & g E e $ S g S &S g s
& ¢ s S & & S SSe
S S S QQ/
S

Figure 3: Error analysis on mix(T}2) for TS trained on diverse(T75) data. The sub-plots break down performance
on questions requiring {< 2, 3, > 4} supporting facts. For each sub-plot, the left side of each row corresponds to
a particular support composition (f.), and the right side displays accuracy over inputs sharing f, across various
question types. Performance on f. seen at training time (blue frames) is generally high, but overall generalization is
not systematic, as evidenced by high variance across different f., especially for higher complexity (n = 3,n > 4)

and more novel compositions.

generalization as well as much improved data
efficiency.!? However, as the error analysis of the
next section shows, performance on compositional
generalization is still fundamentally limited.

4.2.1 Discussion and error analysis

Figure 3 breaks down the performance of T5
on mix(T12) after training on diverse(T12). The
heatmaps plot performance across various support
compositions (f.) occurring in the test data, sub-
divided by the number of required supporting
facts n per question. Performance on support
compositions seen at training time (blue frames)
is generally high, indicating the importance of
training pattern diversity for better generalization.
The plots indicate that TS shows some ability to
generalize to new support compositions, especially
for lower n. Furthermore, certain question types
appear to be more learned more robustly; for
list and count questions, performance remains
relatively high even for larger n and across novel
fe. We hypothesize that such questions may be
easier as simple counting rules suffice to reach
an answer, and these are “close to the surface”;
unlike other events that may implicitly convey

1%The relatively low performance of diverse trained models in
the “3+” column for concat splits is predominantly due to
length discrepancies at train and test time: concat contains
some very long stories which are challenging for the model
trained on the uniform length and shorter diverse stories.

1 Bill and Jeff moved to the park.

2 Following that they journeyed to the bathroom.
3 Bill is either in the hallway or the office.

4 Jeff picked up the apple.

5 Following that he dropped the apple.

6 John is in the school.

7 Fred is either in the garden or the office.

8 Mary is in the bedroom.

9 Bill grabbed the milk.

10 Afterwards he grabbed the football.

11 Julie and John travelled to the bedroom.

12 Bill is either in the kitchen or the bathroom.
13 Daniel is in the hallway.

14 sandra is in the school.

15 Bill got the apple.

16 Jeff travelled to the garden.

17 After that he travelled to the bathroom.

18 Daniel is either in the garden or the school.
19 Bill dropped the apple.

20 Bill handed the milk to Jeff.

21 Is Bill in the bathroom? yes 1 2 4 5 15 T5: maybe
22 Where 1is Bill?bathroom 12 45 15 T5: bathroom

Figure 4: Example mix(T}2) instance demonstrating
the question phrasing sensitivity failure mode in TS: the
model correctly answers the question in where-P form
(line 22), and incorrectly in yes-no form (line 21).

information, in our stories, changes of possession
are always explicit in the text.

In general however, the plots indicate that TS is
far from robust compositional generalization:

Performance deteriorates with increased
complexity. Performance is near perfect for simple
compositions (n < 2) but deteriorates significantly
for more complex cases (n > 3).

108

Question phrasing sensitivity. The discrepancy
between the relatively high performance on
where-P questions compared with very low
performance on yes-no questions suggests that
models are learning highly question-dependent
story representations. E.g., if a model answers
y correctly to some “Where is p?” question, we
would expect it to answer “yes” correctly for the
same question in yes-no format, “Is p at y?”. Figure
4 shows a characteristic example: T5 answers
correctly in the where-P format, but incorrectly
answers “maybe” for the yes-no format, likely
thrown off by the distractor indefinite phrase in
sentence 3.

We present further empirical support for
question phrasing sensitivity in appendix A.6.
These results suggest models may be learning
shortcuts that work well for the story/question pairs
seen at training time, but not more robust rules
that also generalize to novel test instances. Such
highly question-dependent story representation
stands in contrast to more human-like narrative
comprehension, which is thought to involve the
construction of situation models, or structured
representations of entities and their relations as
depicted by the text. Situation models are less
dependent on a-priori knowledge of a question
(or its phrasing), and are often generated on-line
during the course of comprehension (Graesser et al.,
1994).

Performance below chance for certain question
types. The heatmaps expose a particularly
challenging class of yes-no questions involving
disjunctions over indefinites (center and right plots,
bottom right); accuracy for such questions is close
to zero. See appendix A.7 for an example instance.

5 Future work & conclusions

Our work opens up multiple new directions
for future research. Our new tool, Dyna-bAbl
is readily extendable for systematic probing of
more diverse linguistic phenomena. A beneficial
first step could include integration of additional
bADbI tasks. That said, our experience suggests
that the design of truly scalable synthetic and
dynamic benchmarks poses significant theoretical
and engineering challenges, warranting deeper
research on their own right.

Our results raise new questions about the
viability of learning robust situation models using
standard question-answering training, and our

datasets present new challenges for future efforts.

Additionally, = Dyna-bAbl can naturally
complement parallel work probing the the situation
representations constructed by neural language
models (Li et al., 2021) by facilitating tailored data
generation for specific questions, thus broadening
and deepening the scope of possible research.

In conclusion, we introduced Dyna-bAbl, a
new framework for highly controllable bAbI task
generation. We used it to create compositional
generalization datasets providing new modelling
challenges for state-of-the-art neural language
models. More broadly, our results underscore
the importance in development of benchmarks
themselves, beyond only the models solving them.

Broader Impact

While large, neural language models are
increasingly seen as foundations for a wide array
of NLP tasks, we still lack a clear understanding
of their capabilities and failure modes. Our work
joins many recent efforts using carefully controlled
synthetic tasks to more rigorously evaluate models’
language comprehension abilities.

While our choice of a synthetic language
benchmark allows more precise control over
evaluation, the synthetic nature of the data is an
obvious limitation. Similar to the original bAbI
benchmark, our tasks are not a substitute for
real natural language datasets, but should rather
complement them. Even if a method works well
on our data, it should be shown to perform well
on real data as well. Rather, our tasks are better
thought of as comprehension “unit-tests”, where
poor performance on our tasks serves as a warning
sign suggesting the model may exhibit limited
systematicity and robustness on more difficult,
naturalistic inputs.

Acknowledgements

We thank the Aristo team at the Allen Institute
for Al for valuable support and feedback.
Ronen Tamari was supported by the Center for
Interdisciplinary Data-science Research at HUJL.
This work was supported by the European Research
Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme
(grant no. 852686, SIAM, Shahaf). Part of
this research is also supported by the European
Research Council, ERC-StG grant no. 677352
(Tsarfaty), which we gratefully acknowledge.

109

References

Laura Aina, Carina Silberer, Ionut-Teodor Sorodoc,
Matthijs Westera, and Gemma Boleda. 2019. What
do entity-centric models learn? insights from entity
linking in multi-party dialogue. In Proceedings
of the 2019 Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 3772—
3783, Minneapolis, Minnesota. Association for
Computational Linguistics.

Pratyay Banerjee, Chitta Baral, Man Luo, Arindam
Mitra, Kuntal Pal, Tran C. Son, and Neeraj Varshney.
2020. Can transformers reason about effects
of actions? Computing Research Repository,
arXiv:2012.09938.

Andrea Banino, Adria Puigdomenech Badia, Raphael
Koster, Martin J. Chadwick, Vinicius Zambaldi,
Demis Hassabis, Caswell Barry, Matthew Botvinick,
Dharshan Kumaran, and Charles Blundell. 2020.
Memo: A deep network for flexible combination
of episodic memories. In International Conference
on Learning Representations.

Andrea Banino, Jan Balaguer, and Charles Blundell.
2021. Pondernet: Learning to ponder. In 8th
ICML Workshop on Automated Machine Learning
(AutoML).

Gregor Betz, Christian Voigt, and Kyle Richardson.
2021. Critical thinking for language models.
Proceedings of IWCS.

Lukas Biewald. 2020.
weights and biases.
wandb.com.

Experiment tracking with
Software available from

Samuel R. Bowman and George Dahl. 2021. What
will it take to fix benchmarking in natural language
understanding? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4843-4855, Online.
Association for Computational Linguistics.

Peter Clark, Oyvind Tafjord, and Kyle Richardson.
2020. Transformers as soft reasoners over language.
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20,
pages 3882-3890. International Joint Conferences on
Artificial Intelligence Organization. Main track.

Bhavana Dalvi, Lifu Huang, Niket Tandon, Wen-tau
Yih, and Peter Clark. 2018. Tracking state changes in
procedural text: a challenge dataset and models for
process paragraph comprehension. In Proceedings of
the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 1595-1604, New Orleans, Louisiana.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training
of deep bidirectional transformers for language
understanding. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4171-4186, Minneapolis, Minnesota.
Association for Computational Linguistics.

Jesse Dunietz, Greg Burnham, Akash Bharadwaj, Owen
Rambow, Jennifer Chu-Carroll, and Dave Ferrucci.
2020. To test machine comprehension, start by
defining comprehension. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7839-7859, Online. Association
for Computational Linguistics.

William Falcon et al. 2019. Pytorch lightning. GitHub.
Note: https://github.com/PyTorchLightning/pytorch-
lightning, 3.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui
Zhang, and Dragomir Radev. 2018. Improving text-
to-SQL evaluation methodology. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 351-360, Melbourne, Australia. Association
for Computational Linguistics.

Nicolas Gontier, Koustuv Sinha, Siva Reddy, and
Christopher Pal. 2020. Measuring systematic
generalization in neural proof generation with
transformers. In Advances in Neural Information
Processing Systems 33. Curran Associates, Inc.

Arthur C. Graesser, Murray Singer, and Tom Trabasso.
1994. Constructing Inferences During Narrative Text
Comprehension. Psychological Review, 101(3):371—
395.

Suchin Gururangan, Swabha Swayamdipta, Omer Levy,
Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation artifacts in natural
language inference data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107-112, New Orleans, Louisiana. Association
for Computational Linguistics.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2017. Tracking the world
state with recurrent entity networks. 5Sth International
Conference on Learning Representations, ICLR 2017
; Conference date: 24-04-2017 Through 26-04-2017.

Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam
Dziedzic, Rishabh Krishnan, and Dawn Song.
2020. Pretrained transformers improve out-of-
distribution robustness. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 2744-2751, Online. Association
for Computational Linguistics.

110

Divyansh Kaushik and Zachary C. Lipton. 2018. How
much reading does reading comprehension require?
a critical investigation of popular benchmarks. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
5010-5015, Brussels, Belgium. Association for
Computational Linguistics.

Daniel Keysers, Nathanael Schirli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
Wang, Marc van Zee, and Olivier Bousquet.
2020. Measuring compositional generalization:
A comprehensive method on realistic data.
In International Conference on Learning
Representations.

Tushar Khot, Kyle Richardson, Daniel Khashabi,
and Ashish Sabharwal. 2021. Learning to Solve
Complex Tasks by Talking to Agents. arXiv preprint
arXiv:2110.08542.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh
Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik
Ringshia, Zhiyi Ma, Tristan Thrush, Sebastian Riedel,
Zeerak Waseem, Pontus Stenetorp, Robin Jia, Mohit
Bansal, Christopher Potts, and Adina Williams. 2021.
Dynabench: Rethinking benchmarking in nlp.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Brenden Lake and Marco Baroni. 2018. Generalization
without systematicity: On the compositional skills
of sequence-to-sequence recurrent networks. In
International conference on machine learning, pages
2873-2882. PMLR.

Brenden M Lake, Tomer D Ullman, Joshua B
Tenenbaum, and Samuel J Gershman. 2017. Building
machines that learn and think like people. Behavioral
and brain sciences, 40.

Hung Le, Truyen Tran, and Svetha Venkatesh. 2020.
Self-attentive associative memory. In International
Conference on Machine Learning, pages 5682-5691.
PMLR.

Belinda Z. Li, Maxwell Nye, and Jacob Andreas.
2021. Implicit representations of meaning in
neural language models. In Proceedings of
the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1813—1827, Online.
Association for Computational Linguistics.

Yaobo Liang, Nan Duan, Yeyun Gong, Ning Wu, Fenfei
Guo, Weizhen Qi, Ming Gong, Linjun Shou, Daxin
Jiang, Guihong Cao, Xiaodong Fan, Ruofei Zhang,
Rahul Agrawal, Edward Cui, Sining Wei, Taroon
Bharti, Ying Qiao, Jiun-Hung Chen, Winnie Wu,
Shuguang Liu, Fan Yang, Daniel Campos, Rangan

Majumder, and Ming Zhou. 2020. XGLUE: A
new benchmark datasetfor cross-lingual pre-training,
understanding and generation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6008—6018,
Online. Association for Computational Linguistics.

Nelson F. Liu, Tony Lee, Robin Jia, and Percy
Liang. 2021. Can small and synthetic benchmarks
drive modeling innovation? a retrospective
study of question answering modeling approaches.
Computing Research Repository, arXiv:2102.01065.

Nelson F. Liu, Roy Schwartz, and Noah A. Smith. 2019.
Inoculation by fine-tuning: A method for analyzing
challenge datasets. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2171-2179, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du,
Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms
via model projections. In Proceedings of the
54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 14561465, Berlin, Germany. Association for
Computational Linguistics.

James L. McClelland, Felix Hill, Maja Rudolph, Jason
Baldridge, and Hinrich Schiitze. 2020. Placing
language in an integrated understanding system: Next
steps toward human-level performance in neural
language models. Proceedings of the National
Academy of Sciences, arXiv:1707(Xx):201910416.

Inbar Oren, Jonathan Herzig, and Jonathan Berant.
2021. Finding needles in a haystack: Sampling
structurally-diverse training sets from synthetic data
for compositional generalization.

Barbara Partee et al. 1995. Lexical semantics and
compositionality. An invitation to cognitive science:
Language, 1:311-360.

Christopher Potts, Zhengxuan Wu, Atticus Geiger,
and Douwe Kiela. 2021. DynaSent: A dynamic
benchmark for sentiment analysis. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 23882404, Online.
Association for Computational Linguistics.

Linlu Qiu, Hexiang Hu, Bowen Zhang, Peter Shaw, and
Fei Sha. 2021. Systematic generalization on gscan:
What is nearly solved and what is next? Computing
Research Repository, arXiv:2109.12243.

111

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research,
21(140):1-67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2383—
2392, Austin, Texas. Association for Computational
Linguistics.

Kyle Richardson, Hai Hu, Lawrence Moss, and Ashish
Sabharwal. 2020. Probing natural language inference
models through semantic fragments. In Proceedings
of AAAL

Kyle Richardson and Ashish Sabharwal. 2022. Pushing
the limits of rule reasoning in transformers through
natural language satisfiability. Proceedings of AAAL

Anna Rogers. 2021. Changing the world by changing
the data. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics
and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 2182-2194, Online. Association for
Computational Linguistics.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane
Bouchacourt, and Brenden M Lake. 2020. A
benchmark for systematic generalization in grounded
language understanding. In Advances in Neural
Information Processing Systems, volume 33, pages
19861-19872. Curran Associates, Inc.

Nithya Sambasivan, Shivani Kapania, Hannah Highfill,
Diana Akrong, Praveen Paritosh, and Lora M Aroyo.
2021. “everyone wants to do the model work, not
the data work™: Data cascades in high-stakes ai. In
Proceedings of the 2021 CHI Conference on Human
Factors in Computing Systems, CHI °21, New York,
NY, USA. Association for Computing Machinery.

Imanol Schlag, Tsendsuren Munkhdalai, and Jiirgen
Schmidhuber. 2021. Learning associative inference
using fast weight memory. In International
Conference on Learning Representations.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In International
Conference on Learning Representations.

Murray Shanahan, Matthew Crosby, Benjamin Beyret,
and Lucy Cheke. 2020. Artificial intelligence and
the common sense of animals. Trends in Cognitive
Sciences, 24(11):862-872.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning from
text. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP),
pages 45064515, Hong Kong, China. Association
for Computational Linguistics.

Saku Sugawara, Pontus Stenetorp, and Akiko
Aizawa. 2021. Benchmarking machine reading
comprehension: A psychological perspective. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational
Linguistics: Main Volume, pages 1592-1612, Online.
Association for Computational Linguistics.

Ronen Tamari, Chen Shani, Tom Hope, Miriam
R L Petruck, Omri Abend, and Dafna Shahaf.
2020. Language (re)modelling: Towards embodied
language understanding. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 6268—6281, Online. Association
for Computational Linguistics.

Niket Tandon, Keisuke Sakaguchi, Bhavana Dalvi,
Dheeraj Rajagopal, Peter Clark, Michal Guerquin,
Kyle Richardson, and Eduard Hovy. 2020. A dataset
for tracking entities in open domain procedural
text. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 6408-6417, Online. Association for
Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language
understanding systems. In Advances in Neural
Information Processing Systems, volume 32. Curran
Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP,
pages 353-355, Brussels, Belgium. Association for
Computational Linguistics.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomds Mikolov. 2016. Towards ai-complete
question answering: A set of prerequisite toy
tasks. In 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System

112

Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Zhengxuan Wu, Elisa Kreiss, Desmond C. Ong, and
Christopher Potts. 2021. ReaSCAN: Compositional
reasoning in language grounding. NeurIPS 2021
Datasets and Benchmarks Track.

Hitomi Yanaka, Koji Mineshima, and Kentaro Inui.
2021. SyGNS: A systematic generalization testbed
based on natural language semantics. In Findings of
the Association for Computational Linguistics: ACL-
IJCNLP 2021, pages 103—119, Online. Association
for Computational Linguistics.

Rolf A. Zwaan. 2016. Situation models, mental
simulations, and abstract concepts in discourse
comprehension. Psychonomic Bulletin and Review,
23(4):1028-1034.

113

A Appendix

A.1 Extended task construction details

This section provides further details of the training
and test splits used for our experiments.

Table 5 enumerates the basic “building blocks”,
or concepts underlying the tasks, as presented in
§3.2.

Tables 6 and 7 detail the concept sets for each of
the sub-tasks comprising the training and test sets,
for the 15, T% and 172 groups of tasks.

As can be seen from the tables, the main sources
of compositionality are:

* Following the bAbI 1.0 task structure, at
training time, all of the more complex
linguistic constructs are seen only with
MOVE events (and none of the other event
types).

* Similarly, at training time, yes-no questions
are always seen only with MOVE events (and
none of the other event types), and with the
INDEF or NEGATE linguistic constructs (but
not others, such as COREF).

* where-was-O questions are never seen in
stories with GIVE events.

Language templates. For our new generated tasks
we use the same language templates as used in the
original bAbI 1.0 benchmark (e.g., the same entity
names, verb synonyms). The only modification
to the language generation engine was that we
completely omit the use of “there”; in the original
benchmark, “there” could be used in confusing
contexts, as shown in Fig. 5.

A.1.1 Example instances

Figure 6 shows examples from each of the 4
types of splits used in our experiments. The
concat instance is from the original bAbI 1.0 task
5. The inject data contains the same passages
as concat, but adds supplementary questions on
agent and object locations. diverse instances

1 Mary journeyed to the bathroom.
2 Sandra went to the garden.

3 Daniel went back to the garden.
4 Daniel went to the office.

5 Sandra grabbed the milk there.

6 Sandra put down the milk there.
7 Where is the milk? garden 6 2

Figure 5: Example from original bAbI 1.0 benchmark
with confusing usage of “there”. In Dyna-bAbl we do
not include “there”, to avoid this confusion.

contain more diverse support compositions (f),
but certain combinations are held out. In particular,
diverse instances only feature non-default linguistic
mappings with MOVE events, never with POSS
(GRAB or DROP) or GIVE. In the mix instances,
all combinations of support compositions are
possible, as shown in the example which features
possession (POSS) events along with co-reference.

A.1.2 Long instances in the bAbI 1.0 tasks

For the T5 experiments, we used a slightly
modified version of the bAbI 1.0 tasks, where
we trimmed all training and validation examples
that didn’t fit into the 512-token input window.
This resulted in trimming 1,585 training instances
and 175 validation instances from 7% and 732
(common to both sets). These data points are
not consequential as our analysis focuses on the
effects of compositionality and not story length;
all instances in diverse and mix are substantially
shorter than the 512-token maximum input window
size.

A.2 Implementation details

TS. We use the publicly available HuggingFace
pre-trained T5-base implementation (Wolf et al.,
2020) which has 220M parameters. We similarly
use the HuggingFace tokenization pipeline. We
fine-tune TS5 for 12 epochs on our bAbI data, using
the Adam optimizer (Kingma and Ba, 2017), an
initial learning rate of 5 * 10~° and training batch
size of 8.

STM. We used the official STM implementation'!,
with the only change being a batch size of 32
instead of 128, due to technical constraints.

EntNet. We re-implemented the model in PyTorch,
similarly using a batch-size of 32. Following the
official Lua reference implementation'?, we used
20 memory units each with dimension 100. We
used the SGD optimizer.

For both the EntNet and STM, we trained models
for 200 epochs, and took the best of 10 tries,
following Henaff et al. (2017).

For the 20-model concurrence benchmark, refer
to Liu et al. (2021) for model details, as we used
the same experimental setup.

Ynttps://github.com/thaihungle/SAM
https://github.com/facebookarchive/
MemNN/tree/master/EntNet—-babi

114

Events Template Example Notes
MOVE P {moved} to the L. John traveled to the park.
GRAB P {grabbed} the O. Mary picked up the apple.
DROP P {dropped} the O. Daniel dropped the milk.
GIVE P1 {gave} P2 the O. John handed Mary the apple.
Linguistic
Constructs
P (MOVEIGRABIDROP)
COREF Following that, {he} {:(())11111:) zier?t :ﬁ;?zgﬁiig d to the store Co-reference
(MOVEIGRABIDROP). & that,
CONIJ P1 and P2 {moved} to the L1. Jeff and Fred went to the cinema. Conjunction
P1 and P2 {moved} to the L1. Jeff and Fred went to the cinema.
COMPOUND Then they {moved} to the L2. Then they traveled to the school. Compound co-reference
NEGATE P is not at the L. Julie is not in the park. Negation
INDEF P is either at the L1 or the L2. John is either in the park or the school. Indefinite expression
Questions
where-P Where is P? Where is John?
where-O Where is the O? Where is the football?
where-was-O Where was the O before the L? Where was the football before the hallway?
yes-no Is P at the L? Is John at the park?
list What is P carrying? What is John carrying?
counting How many objects is P carrying? How many objects is John carrying?
Who gave the O to P2?
Who gave the O? N Constitutes multiple
give-qs Who received the O? Who gave the football to John? question types over

Who did P1 give the P2 to?
What did P1 give to P2?

GIVE events.

Table 5: Details of the events, linguistic constructs and questions constituting the bAblI tasks covered in this work.
Words in {brackets} are drawn from a small set of synonyms.

concat(T12) + inject(T12)

1 Bill travelled to the office.

2 Bill picked up the football there.

3 Bill went to the bedroom.

4 Bill gave the football to Fred.

5 What did Bill give to Fred? football {4}
6 Where is the football? bedroom {3, 4}
7 Where is Bill? bedroom {3}

8 Where is Fred? bedroom {3, 4}

diverse(T12)

1 Fred went back to the garden.

2 Sandra travelled to the cinema.
3 Fred went to the bathroom.

4 Fred got the football.

5 Fred travelled to the garden.

6 Bill journeyed to the garden.

7 Fred passed the football to Bill.
8 Bill discarded the football.

9 Jeff got the football.

10 Jeff discarded the football.

11 Sandra journeyed to the office.
12 Fred journeyed to the kitchen.
13 Bill got the football.

14 Bill travelled to the office.

15 Bill passed the foothall to Julie.

16 Julie passed the football to Daniel.

17 Daniel left the football.

18 Mary journeyed to the bedroom.
19 Bill picked up the football.

20 Bill left the football.

21 Where is Jefi? garden

f={6,8, 9}

f ¢ ={MOVE, POSS}

mix(T12)

1 John is no longer in the bedroom.
2 Billis in the bedroom.

3 Bill took the apple.

4 Afterwards he discarded the apple.
5 Bill is no longer in the bedroom.

6 Daniel is either in the kitchen or the bathroom.

7 Fred and Bill journeyed to the kitchen.
8 Jeff is either in the park or the office.

9 Daniel is either in the garden or the kitchen.

10 Sandra is in the school.

11 Bill is either in the bathroom or the school.

12 Mary is not in the office.
13 Sandra journeyed to the hallway.
14 After that she grabbed the milk.

15 Julie is either in the bedroom or the office.

16 Daniel is no longer in the garden.
17 Jeff moved to the bathroom.

18 Julie picked up the apple.

19 Following that she got the football.
20 Jeff is in the hallway.

21 Where is the football? bedroom
f={2, 3, 4,18, 19}

f ¢ = {MOVE, POSS, COREF}

Figure 6: Example instances from each of the 4 types of splits used in our experiments.

115

Events Linguistic Constructs Questions

&
it Q
@QC;@ &\0 Qbo ‘b%"
© ¥ & & & @
5 Q & §F S
Sub-task Type NGRS & & &S ¥ §°
1 Train v/ v
2 Train v v I Vv
3 Train v v I 1 v
5 Train v/ v vV V /D 1ID v
11 Train v/ v v
12 Train v/ v v
13 Train v/ v v
mix(7T>) Test v v/ v v
mix(77) Test v v v v v v/ v v v

Table 6: Concept sets for the 75 and 77 sub-set of the original bAbI tasks, and the new tasks generated with
Dyna-bAbl. Train sub-task numbering follows the original bAbl numbering. The inject and diverse tasks inherit the
same concept set from the original tasks, and additionally “I”, “D” denote question types included only in the inject
or diverse tasks, respectively. “I/D” denotes question types included in both.

Events Linguistic Constructs Questions
&
KN beo QO
@&@Q 06\\ QQQ,Q ,'\\QQ %’&@J . . . ,4@%’ o &
P K. FFSHFPF &S o

Task Type N & Q‘o & ¢ & & < F & F 3 5\0% Nd & %\4
1 Train v/ v
2 Train v vV i Vv
3 Train v vV I I v
5 Train v v vV V /D 1D v
6 Train v/ /D v
7 Train v vV I 1 v
8 Train v vV I 1 v
9 Train v v /D v
10 Train v v 1D v
11 Train v/ v v
12 Train v/ v v
13 Train = v/ v v

mx(Tw) Tst v v v vV v v v v v v vV VvV Vv VS

Table 7: Concept sets for the 775 sub-set of the original bAbI tasks, and the new tasks generated with Dyna-bAbl.
Train sub-task numbering follows the original bAbI numbering. The inject and diverse tasks inherit the same
concept set from the original tasks, and additionally “I”’, “D” denote question types included only in the inject or
diverse tasks, respectively. “I/D” denotes question types included in both.

116

For the TS5 experiments, we used the
PyTorch Lightning (Falcon et al., 2019) trainer
implementation, and Weights & Biases (Biewald,
2020) for experiment tracking and artifacts
management.

We used standard hyper-parameter settings for
all models, with slight changes in the case of
memory issues as described above.

Experimental infrastructure details. Our
experiments were performed using an RTX-8000
GPU, with a total computational budget of roughly
1,000 GPU hours.

A.3 Inoculation experiment results

To rule out the hypothesis that certain patterns may
be too hard for models to learn, we follow the
inoculation methodology presented in Liu et al.
(2019): after training on the original tasks, we fine-
tune the TS5 on small amounts of OOD data (disjoint
from the test data), and evaluate performance as a
function of “inoculation dose”. As can be seen in
Fig. 7, we find that performance quickly (with only
500 additional inoculation samples per question
type) reaches over 90% accuracy on both the
mix('T%) and mix('T12) challenge sets. These results
support the hypothesis that the training data is not
rich enough, indicating clearly that the model is
capable of quickly learning to solve the challenge
tasks, given exposure to training samples with
similar enough patterns.

A.4 Concurrence experiments

Table 8 presents the full results for the concurrence
experiments of §4.1. SQuAD and bAbI task 2
results are reproduced from Liu et al. (2021), see
there also for implementation details of the models
used.

A.5 Extended error analysis: GIVE events

We analyze the performance of models on the
mix('I7) split after being trained on concat(1%), and
in particular we focus on GIVE events. As noted in
§4.2, compositions involving GIVE are intuitively
challenging as they entail multiple inferences
which are not explicit in the text: the actors share
the same location, and the possession of the object
being given is transferred from the giver to the
recipient. The only task in concat(T7) featuring
GIVE events is task 5, which never asks about the
locations of actors or objects, but only about the
participant roles in the event (e.g., who was the
giver or recipient; see Fig. 1 example from task 5).

Model Evaluation accuracy
SQUAD mix(T2) mix(T7) babi task 2
rasor 64.86 88.20 35.03 100.00
bidaf 67.39 97.20 30.50 100.00
documentreader 69.66 90.20 40.70 100.00
documentreader o 5\ g5 59 3717 100.00
(no_features)
bidafplusplus 69.49 99.50 44.20 80.70
mnemonicreader 73.02 98.20 39.63 100.00
mnemonicreader ., ;9759 38320 100.00
(no_features)
qanet 72.41 67.70 - 100.00
fusionnet 7290 99.50 39.73 100.00
fusionnet 7224 88.10 37.80 100.00
(no_features)
bert 81.46 95.50 47.63 100.00
bert_large 84.17 98.30 59.10 100.00
bert_large_wwm 87.33 98.70 67.63 99.90
albert 81.86 98.20 56.70 100.00
albert_xxlarge 89.07 99.80 80.00 100.00
roberta 83.37 98.70 57.70 100.00
roberta_large 86.96 99.80 64.07 100.00
electra 85.88 98.70 53.47 100.00
spanbert 86.20 98.40 55.70 99.50
spanbert_large 88.74 98.60 62.27 95.40

Table 8: Full results of concurrence experiments
presented in §4.1.

Accuracy after fine-tuning on samples

drawn from challenge distribution
100

95

~
a0
= /
g 85 |
2 Task Set
4 / — T
80 7, Tz
./ Ewval. Split
75 /’ == mix
4 -#= inject
0 100 200 300 400 500
finetune samples per question type
Figure 7: Inoculation experiment results.
Num. Num. .
. Evaluation accuracy
supporting facts samples
BiDAF RoBERTa T5
1 334 53.3 93.4 86.8
2 (w/o GIVE) 734 51.50 82.3 71.8
2 (with GIVE) 99 3.03 7.07 5.05
3 (w/o GIVE) 1365 24.6 47.2 443
3 (with GIVE) 468 4.27 7.05 15.2

Table 9: Breakdown of model performance on mix(17)
for questions including (or not) GIVE events in the
supporting fact set. The poor performance on questions
including GIVE indicates that training on the bAbI
1.0 data does not facilitate generalization to novel
compositions of GIVE.

117

where-P (—)

correct incorrect
yes-no (1)
correct 209 4
incorrect 145 88
Table 10: Confusion matrix displaying question

phrasing sensitivities in T5. We pose a question in two
formats: (1) yes-no: “Is X at L? yes” vs (2) where-P:
“Where is X? L”. We find performance is considerably
higher for questions posed in the where-P format,
indicating the model isn’t learning the equivalence of
both forms.

To measure this intuition empirically, we analyze
a subset of 567 questions including GIVE events
in the supporting facts set. As shown in Table 9,
performance for all models on questions including
GIVE is extremely low, far below performance for
questions without it. Qualitative analysis indicates
many failure cases follow the pattern shown in the
right-side example of Fig. 1lc, question on line
10: the location of an entity (e.g., Daniel) must be
inferred via the known (co-)location of a second
participant in the GIVE event (e.g., Jeff). These
results strengthen the hypothesis that standard QA
training on the original bAbI data does not drive
strong event comprehension in models.

A.6 Extended error analysis: question
phrasing sensitivity

This section presents further empirical analysis
of the question phrasing sensitivities discussed in
§4.2.1, relating to the performance of the TS5 model
trained on the diverse(13) data and evaluated on
the challenge set mix(112).

We collected all yes-no questions from mix(7172)
for which the answer was “yes”, yielding 446
questions in total. For each such (question, answer)
pair, of the form (“Is person atthe location?”,
“yes”), we created an equivalent pair in the format
of a where-P question, (“Where is person?”,
location). Figure 4 shows a characteristic
example. Ideally, we would expect a model to
be agnostic to equivalent phrasings of a question.
However, as displayed in Table 10, we find that T5
is considerably more accurate for questions posed
in the where-P format, likely due to exposure to a
larger variety of such questions at training time.

1 Bill grabbed the milk.

2 Bill put down the milk.

3 John is either in the bedroom or the kitchen.
4 Fred journeyed to the kitchen.

5 John grabbed the football.

6 Following that he put down the football.

7 Bill picked up the milk.

8 Following that he went to the bedroom.

9 Bill is in the office.

10 Bill is in the cinema.

11 Bill passed the milk to Julie.

12 Julie handed the milk to Bill.

13 Jeff is not in the school.

14 John took the football.

15 Fred and Jeff moved to the school.

16 Afterwards they journeyed to the bathroom.
17 Bill handed the milk to Julie.

18 John dropped the football.

19 Daniel is either in the school or the
bedroom.

20 Daniel took the football.

21 Is John in the bedroom? yes 3 18 19 20

Figure 8: Double disjunction example from mix('T}2).

A.7 Extended error analysis: double
disjunctions

As the shown in the §4.2.1 error analysis, a
particularly difficult class of questions are double
disjunctions over indefinite expressions. Figure 8
displays a typical example from mix('T12), where
the locations of two actors are given in indefinite
form (sentences 3 and 19), and are also known to
be co-located, since they share the location of the
object “football”, as inferred from sentences 18 and
20. Hence it is possible to infer their location as the
intersection of the two indefinite expressions (here
“bedroom”). Rather than answering “yes” to the
question “Is John in the bedroom?”, TS5 invariably
answers “maybe” for such cases. This pattern
is likely due to the fact that in the training data
“maybe” is a typical answer for yes-no questions
about actors mentioned by indefinite expressions
(task 10 in bADbI 1.0).

118

B Datasheet for datasets

\ Motivation \

For what purpose was the dataset created?
Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please
provide a description.

Few synthetic resources for probing NLP
models’ performance on discourse-level narrative
understanding texts. Existing resources lack
customizability (control over data created +
amenable to extension).

Who created this dataset (e.g., which
team, research group) and on behalf of
which entity (e.g., company, institution,
organization)?

Joint team of researchers at Hebrew University
of Jerusalem (Israel) and the Allen Institute for
Artifical Intelligence.

Who funded the creation of the dataset? If
there is an associated grant, please provide
the name of the grantor and the grant name
and number.

Work was supported by the Center for
Interdisciplinary Data-science Research (CIDR)
at HUJI. This work was also supported by the
European Research Council (ERC) under the
European Union’s Horizon 2020 research and
innovation programme (grant no. 852686, SIAM)
and NSF-BSF grant no. 2017741 (Shahaf). Part of
this research is also supported by the European
Research Council, ERC-StG grant no. 677352
(Tsarfaty).

Any other comments?

Composition

What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types
of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes
and edges)? Please provide a description.
Instances represent variable length stories.

How many instances are there in total (of
each type, if appropriate)?

Any size dataset can be created (programmatic
generation).

Does the dataset contain all possible
instances or is it a sample (not necessarily

random) of instances from a larger set?
If the dataset is a sample, then what is the
larger set? Is the sample representative of the
larger set (e.g., geographic coverage)? If so,
please describe how this representativeness
was validated/verified. If it is not representative
of the larger set, please describe why not
(e.g., to cover a more diverse range of
instances, because instances were withheld
or unavailable).

Used rejection sampling for some datasets to cover
more diverse instances.

What data does each instance consist
of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please
provide a description.

Simple textual stories generated using templates
(“John went to the kitchen. He grabbed the apple.”).

Is there a label or target associated with
each instance? If so, please provide a
description.

Each instance is accompanied by a (question,
answer) pair, both in natural language.

Is any information missing from individual
instances? If so, please provide a description,
explaining why this information is missing (e.g.,
because it was unavailable). This does not
include intentionally removed information, but
might include, e.g., redacted text.

N/A

Are there recommended data splits (e.g.,
training, development/validation, testing)?
If so, please provide a description of these
splits, explaining the rationale behind them.
The data is organized in splits, which are explained
in section 4 of the paper.

Are there any errors, sources of noise, or
redundancies in the dataset? If so, please
provide a description.

Template based language generation may result in
somewhat unnatural texts.

Is the dataset self-contained, or does it link
to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If
it links to or relies on external resources, a)
are there guarantees that they will exist, and
remain constant, over time; b) are there official
archival versions of the complete dataset

119

(i.e., including the external resources as they
existed at the time the dataset was created); c)
are there any restrictions (e.g., licenses, fees)
associated with any of the external resources
that might apply to a future user? Please
provide descriptions of all external resources
and any restrictions associated with them,
as well as links or other access points, as
appropriate.

Self contained.

Does the dataset contain data that,
if viewed directly, might be offensive,
insulting, threatening, or might otherwise
cause anxiety? If so, please describe why.
No.

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.

No.

Any other comments?

\ Collection Process \

How was the data associated with each
instance acquired? Was the data directly
observable (e.g., raw text, movie ratings),
reported by subjects (e.g., survey responses),
or indirectly inferred/derived from other
data (e.g., part-of-speech tags, model-
based guesses for age or language)? If
data was reported by subjects or indirectly
inferred/derived from other data, was the data
validated/verified? If so, please describe how.
Programmatically generated using logical rules
and templates.

If the dataset is a sample from a larger
set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific
sampling probabilities)?

Rejection sampling was used in some cases,
described in Section 4.

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.

No.

Any other comments?

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling
of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech
tagging, SIFT feature extraction, removal of
instances, processing of missing values)?
If so, please provide a description. If not, you
may skip the remainder of the questions in this
section.

No.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so,
please provide a link or other access point to
the “raw” data.

N/A
Is the software used to
preprocess/clean/label the instances

available? If so, please provide a link or other
access point.
N/A

Any other comments?

\ Uses \

Has the dataset been used for any tasks

already? If so, please provide a description.
Benchmark to guide model development for

reading comprehension and textual reasoning tasks.

Is there a repository that links to any or all
papers or systems that use the dataset?
If so, please provide a link or other access
point.

Not currently, we will use the https://
paperswithcode.com/ integration to track
results.

What (other) tasks could the dataset be
used for?
N/A

Is there anything about the composition of
the dataset or the way it was collected and
preprocessed/cleaned/labeled that might
impact future uses? For example, is there
anything that a future user might need to
know to avoid uses that could result in
unfair treatment of individuals or groups (e.g.,
stereotyping, quality of service issues) or
other undesirable harms (e.g., financial harms,

120

legal risks) If so, please provide a description.

Is there anything a future user could do to
mitigate these undesirable harms?
N/A

Are there tasks for which the dataset
should not be used? If so, please provide a
description.

Similar to the original bAbl benchmark, our
tasks are not a substitute for real natural language
datasets, but should rather complement them. Even
if a method works well on our data, it should be
shown to perform well on real data as well. Rather,
our tasks are better thought of as comprehension
“unit-tests”, where poor performance on our tasks
serves as a warning sign suggesting the model
may exhibit limited systematicity and robustness
on more difficult, naturalistic inputs.

Any other comments?

\ Distribution |

Will the dataset be distributed to third
parties outside of the entity (e.g., company,
institution, organization) on behalf of which
the dataset was created? If so, please
provide a description.

N/A

How will the dataset will be distributed (e.g.,
tarball on website, API, GitHub) Does the
dataset have a digital object identifier (DOI)?

Github + Weights and Biases. No DOI currently.

When will the dataset be distributed?
Data and code-base for task generation to be
uploaded upon publication.

Will the dataset be distributed under a
copyright or other intellectual property (IP)
license, and/or under applicable terms of
use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access
point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees
associated with these restrictions.

Will be available with standard MIT license.

Have any third parties imposed IP-based or
other restrictions on the data associated
with the instances? If so, please describe
these restrictions, and provide a link or other
access point to, or otherwise reproduce, any

relevant licensing terms, as well as any fees
associated with these restrictions.
N/A

Do any export controls or other regulatory
restrictions apply to the dataset or to
individual instances? If so, please describe
these restrictions, and provide a link or other
access point to, or otherwise reproduce, any
supporting documentation.

N/A

Any other comments?

\ Maintenance \

Who will be
supporting/hosting/maintaining the
dataset?

Corresponding author of paper.

How can the owner/curator/manager of
the dataset be contacted (e.g., email
address)?

Via email with corresponding author, and through
dedicated GitHub repository.

Is there an erratum? If so, please provide a
link or other access point.
N/A

Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete
instances)? If so, please describe how
often, by whom, and how updates will be
communicated to users (e.g., mailing list,
GitHub)?

Extensions will be maintained via GitHub.

If the dataset relates to people, are there
applicable limits on the retention of the
data associated with the instances (e.g.,
were individuals in question told that their
data would be retained for a fixed period
of time and then deleted)? If so, please
describe these limits and explain how they will
be enforced.

N/A

Will older versions of the dataset continue
to be supported/hosted/maintained? If so,
please describe how. If not, please describe
how its obsolescence will be communicated to
users.

121

Data versioning supported natively through
Weights and Biases.

If others want to extend/augment/build
on/contribute to the dataset, is there a
mechanism for them to do so? If so, please
provide a description. Will these contributions
be validated/verified? If so, please describe
how. If not, why not? |s there a process for
communicating/distributing these contributions
to other users? If so, please provide a
description.

The codebase can be freely extended, we will only
be responsible of course for changes to the main
branch.

Any other comments?

122

When Polysemy Matters:
Modeling Semantic Categorization with Word Embeddings

Elizabeth Soper and Jean-Pierre Koenig
Department of Linguistics
State University of New York at Buffalo
{esoper, jpkoenig}@buffalo.edu

Abstract

Recent work using word embeddings to model
semantic categorization have indicated that
static models outperform the more recent con-
textual class of models (Majewska et al., 2021).
In this paper, we consider polysemy as a possi-
ble confounding factor, comparing sense-level
embeddings with previously studied static em-
beddings on both coarse- and fine-grained cate-
gorization tasks. We find that the effect of pol-
ysemy depends on how one defines semantic
categorization; while sense-level embeddings
dramatically outperform static embeddings in
predicting coarse-grained categories derived
from a word sorting task, they perform ap-
proximately equally in predicting fine-grained
categories derived from context-free similarity
judgments. Our findings highlight the differ-
ent processes underlying human behavior on
different types of semantic tasks.

1 Introduction

A great deal of work has been devoted in recent
years to creating computational models of meaning
(Landauer and Dumais, 1997; Mikolov et al., 2013;
Pennington et al., 2014; Peters et al., 2018; Devlin
et al., 2019). Such models have been evaluated on
a variety of semantic tasks, from word pair simi-
larity judgments to document classification. One
task that has received relatively little attention is
semantic categorization. Besides making pair-wise
judgments about the similarity between two words,
humans can also reason about higher-order struc-
tures; we can tell not only that robin and sparrow
are similar to each other, for example, but also that
they belong in a group with other birds (e.g. ostrich
and pigeon). Based on the impressive performance
of embedding models on other semantic tasks, we
expect such models to excel at identifying semantic
categories as well.

Our particular interest is on the role of polysemy
in semantic categorization. Because words gener-
ally have multiple distinct senses, categorization

decisions will depend on which sense of a word is
being considered. Representing the distinct senses
of polysemous words, then, should be important to
modeling how humans categorize words. For this
reason, we expect contextual embeddings, which
represent each instance of a word in context as a
unique embedding, to model semantic categoriza-
tion better than static models, which conflate every
use of a word into a single representation. But,
in fact, recent work evaluating different word em-
bedding models on verb categorization suggests
just the opposite; Majewska et al. (2021) found
that contextual models perform poorly compared
to older static models.

In the following paper, we challenge this result.
First, we extend the evaluation from Majewska et al.
(2021), who compare word embedding clusters to
coarse-grained semantic categories generated by
humans in a word sorting task, by evaluating sense-
specific embeddings in addition to the static em-
beddings previously reported. We find that retain-
ing sense-level information from contextual BERT
embeddings more than doubles its F1 score, outper-
forming static embeddings by a large margin. This
result suggests that the reported under-performance
of BERT in Majewska et al. (2021) was due not to
the irrelevance of context to categorization or an
inherent weakness of contextual embedding mod-
els, but rather to the fact that information about
polysemy was thrown away in generating static
embeddings from contextual models.

Next, we evaluate the same set of models on
fine-grained categorization, using categories de-
rived from human similarity judgments. Contrary
to the coarse-grained setting, we find that static
and contextual models perform about the same in
predicting fine-grained categories. We surmise that
humans use different cognitive processes to per-
form word sorting vs similarity judgment tasks.
Choosing the best word embeddings thus depends
on the type of behavior one is trying to model.

123

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 123 - 131
July 14-15, 2022 ©2022 Association for Computational Linguistics

2 Background

Since both static and contextual embeddings have
been shown to model pairwise similarity between
words well (Pereira et al., 2016; Chronis and Erk,
2020), and since similarity is a primary criterion for
categorization, it seems intuitive that word embed-
dings should perform well at categorization tasks.
Some previous work supports this intuition; word
embeddings have excelled at word sense disam-
biguation (Giulianelli et al., 2020; Soler and Apid-
ianaki, 2021; Chronis and Erk, 2020) and topic
modeling (Sia et al., 2020; Aharoni and Goldberg,
2020) when cast as categorization problems.

In the present paper, we are interested in se-
mantic category induction. Instead of grouping in-
stances of a word into distinct senses, or documents
into topics, the goal of semantic categorization is to
group unique words into semantically related clus-
ters. This more abstract type of categorization has
received less attention in the word embedding lit-
erature; a few probing studies have tested whether
different models encode a pre-defined set of cat-
egories (Senel et al., 2018; Yaghoobzadeh et al.,
2019; Michael et al., 2020), but in all cases these
categories were stipulated by the researchers and
had not been experimentally validated.

Majewska et al. (2021) recently published a
more empirical categorization dataset, based on
judgments from non-expert native speakers, rather
than stipulated by trained researchers. The dataset,
SpA-Verb!, contains data from two tasks. The first
is a sorting task, where participants grouped a set
of verbs into broad semantic classes. The second
task involves spatial multi-arrangement, which pro-
vides finer-grained judgments about the similarity
between words within a single semantic domain.
SpA-Verb is valuable as an evaluation resource
for modeling categorization because it allows for
a more direct comparison between human catego-
rization behavior and model behavior than previous
datasets. Also, SpA-Verb contains 825 verbs in 17
semantic classes, which is much more comprehen-
sive than other available category datasets.

Most of the verbs in SpA-Verb are polysemous.
While many words belong to more than one class
(corresponding to distinct senses of those words),
the dataset has so far only been used to evaluate
static word embeddings (either from static mod-
els or extracted static representations from contex-
tual models). Our goal with the following study

'https://github.com/om304/SpA-Verb

is to find out when polysemy matters in modeling
natural language semantics, in particular, whether
sense-specific representations are better predictors
of human behavior on some semantic tasks, but not
others.

3 Models

Below we describe the word embedding models we
evaluate on SpA-Verb:

3.1 Word2vec

The first model we evaluate is a word2vec model
trained on part-of-speech-tagged data (Fares et al.,
2017). POS tagging allows the static model to dis-
tinguish between senses which have different parts
of speech (e.g. duck_NOUN and duck_VERB), al-
though senses which have the same POS are still
conflated into a single vector (e.g. get#ACQUIRE
and get#UNDERSTAND). Skip-gram with negative
sampling was used to train the model on Gigaword
5th Edition (Parker et al., 2011), with a context
window size 5 and 300 dimensions.

3.2 BERT

We evaluate three methods of extracting BERT
embeddings: two baseline methods, which cre-
ate one representation per word form, and a multi-
prototype method which generates one representa-
tion per word sense. For all methods we use BERT
Base Uncased from HuggingFace’s transformers
package (Wolf et al., 2020).

Decontextualized (Decont). First and most sim-
ply, we extract embeddings from BERT by feeding
each word to the model in isolation. This creates a
single, static embedding for each word. This strat-
egy has been used previously as a way to easily
extract ‘context-free’ representations from BERT
(Liu et al., 2019; Vuli¢ et al., 2020).

Aggregated (Aggr). Next, we create static em-
beddings from BERT by averaging a word’s embed-
dings across 100 unique contexts. This aggregated
approach still reduces a word to a single representa-
tion, but has been shown to produce higher quality
representations than the decontextualized strategy
(Bommasani et al., 2020).

Multiprototype (MPro). Finally, to test
whether sense-specific information is important
to semantic categorization, we distill token-level
BERT embeddings into multiple prototype embed-
dings. We use the method of Chronis and Erk
(2020) to generate representations which corre-

124

Model F1-optimal | F1-gold
Random baseline 0.204 0.161
Majewska word2vec 0.355 0.326
Majewska best BERT 0.340 0.322
POS-tagged word2vec 0.442 0.433
Decont. BERT 0.309 0.191
Aggr. BERT 0.398 0.346
MPro BERT 0.743 0.687

Table 1: Average F1 across models on coarse-grained
categories. ‘Gold’ is for k=17, as in the ground truth.
‘Optimal’ is best result for k in the range (5, 50).

spond to different senses of a word, without col-
lapsing every token into a single representation (see
Appendix A).

3.3 Random Baseline

Finally, we generate random vectors and evalu-
ate them in order establish a baseline for random
chance performance.

4 Evaluation

To evaluate the performance of each model on the
ground truth classes, k-means clustering is used
to group verbs into predicted classes. We use the
same metrics as Majewska et al. (2021): modified
purity and weighted class accuracy are combined in
an F1 score, calculated as their balanced harmonic
mean. Modified purity is the mean precision of
predicted clusters, while weighted class accuracy
targets recall (see Appendix B).

Because MPro BERT has multiple representa-
tions for a single word, the same word form may
show up more than once within a single cluster. To
prevent artificially inflating the recall in evaluating
MPro BERT, we eliminate duplicates within each
cluster before evaluation.

5 Coarse-grained Categorization

Next we describe our evaluation of each model on
coarse-grained categorization.

5.1 Dataset

The Phase 1 data of SpA-Verb contains 825 verbs
in 17 broad classes (see Appendix C). 116 verbs
belong to more than one class. No words were
assigned to more than 3 classes.

5.2 Results

Table 1 shows the results of each embedding type,
compared to results reported in Majewska et al.

(2021). The baseline models (Decont. and Aggr.
BERT) perform comparably to previously reported
results. POS-sensitive word2vec model scores
about 10 points higher than reported for a simi-
lar model architecture without POS information.
MPro BERT performs dramatically better than
other embeddings, achieving more than double the
F1 score of the best previously reported BERT re-
sults. This suggests that polysemy does play an
important role in modeling semantic categoriza-
tion.

When we look more closely at MPro BERT, we
find that embeddings from later layers are better
predictors of the ground truth categories than ear-
lier layers (see Appendix D). Interestingly, layer O
performance is about on par with the static BERT
baselines. Earlier layers of BERT have been shown
to contain less contextual information than later
layers (Ethayarajh, 2019), so this result further sup-
ports the idea that contextual information is impor-
tant to semantic categorization, and that averaging
over all contexts or feeding a word in isolation es-
sentially neutralizes the benefit of contextual mod-
els over static models for this task.

The benefit of sense-specific embeddings for this
task is clear in the example of freeze. In the ground
truth data, freeze belongs to just one class, related
to cooking (along with words like bake, fry, melt,
and thaw). Freeze has another figurative sense,
meaning to stop or suspend. Because the word
is polysemous, static embedding clusters struggle
to categorize it appropriately. In the aggregated
BERT clusters, freeze appears in a cluster predom-
inated by verbs related to violence (whip, shoot,
choke, crush, smash). Decontextualized BERT puts
freeze in a heterogeneous cluster with a few cook-
ing words (melt, stew, fry) but also many seemingly
unrelated words (knit, greet, disturb, wander). It
appears that the different senses of the word skew
its static representation and prevent accurate clas-
sification. MPro BERT, by contrast, puts freeze
in two clusters: one related to cooking (as in the
ground truth) and another cluster with words like
stop, delay, arrest and restrict, which seems to
correspond to the figurative sense of freeze. Thus
factoring out different senses allows MPro BERT to
give a more accurate and reasonable categorization.

MPro BERT tends to capture more distinct
senses per word than human participants did, as
they generally focused on a single sense when cate-
gorizing. On average, each word form appeared in

125

3.02 MPro BERT clusters, but only in 1.14 ground
truth classes. For example, the word form jump
occurs in one MPro BERT cluster corresponding
to violence (jump#ATTACK), another cluster corre-
sponding to physical movement (jump#HOP), and
a third one related to change (jump#INCREASE).
In the ground truth data, jump only occurs once,
in a class related to physical movement. Perhaps
this is the most salient sense of the word jump, and
therefore participants were more likely to be think-
ing of this sense during the word sorting task and
ignore its other possible senses. But although the
other two senses of jump counted against MPro
BERT in our evaluation, the fact that embeddings
for jump were assigned three separate clusters is
not necessarily a weakness: the MPro BERT clus-
ters are more thorough as they represent each sense
of the word separately and appropriately assign
them to separate clusters.

This example demonstrates that F1 scores do not
give a full picture of the quality or reasonableness
of the word embedding clusters. Categorization is
a relatively flexible task; there may be many possi-
ble criteria for sorting a group of words, especially
when given such a large set of words to sort (Tver-
sky, 1977; Barsalou, 1982). This might explain the
low inter-annotator agreement between two initial
test participants on Majewska et al. (2021)’s verb
sorting task (0.400 B-Cubed score), suggesting that
humans don’t perform very consistently in creating
broad semantic categories from a large group of
words. As a result, it’s possible for induced cate-
gories from word embeddings to be reasonable, but
still correlate poorly with our ground truth data.

6 Fine-grained Categorization

Next, we examine how word embeddings fare on
finer-grained categories. We speculated that given
a smaller, more focused set of words, there is less
ambiguity about the relevant criteria for categoriz-
ing words, and so evaluating word embeddings on
fine-grained categorization may be a better test of
model quality than coarse-grained categorization.
This section describes how we created a benchmark
for fine-grained categorization from the SpA-Verb
Phase 2 data, and evaluated the same models on
this new benchmark.

6.1 Dataset

In addition to the broad semantic classes created
in Phase 1, SpA-Verb also contains Phase 2: a set

of fine-grained similarity data from a spatial multi-
arrangement task, where participants arranged all
words within a single Phase 1 class on a screen
according to their relative similarity. The result
is a complete matrix of semantic distances for all
words within each Phase 1 class. While the original
authors use this as resource for evaluating models
on standard pair-wise similarity, it can also serve in-
directly as a resource for evaluating category struc-
ture. In order to use this similarity data to evaluate
embedding clusters, we take each row of a class’
distance matrix as the vector representation for that
word. We run k-means clustering on these represen-
tations, and use these clusters as the ground truth
to compare with word embedding clusters.

In the fine-grained categorization setting, we as-
sume that only one sense is relevant for each word;
the other words in the class implicitly disambiguate
between possible senses of a polysemous word,
since they were all assigned to a single semantic
class in Phase 1. For example, when stew occurs
in a class with other words related to cooking, the
sense of sfew meaning to worry or fret is not rel-
evant. Since there is only one relevant sense per
word for the fine-grained categorization task, in
order to evaluate our MPro BERT embeddings in
this setting, we need to automatically decide which
of a word’s sense embeddings is the most relevant
given a particular class. To do this, we apply the
MAXSIM method used by Chronis and Erk (2020):
for each pair of words in a given class, we find the
MPro embeddings that yield the highest similar-
ity between the two words. Then, for each word,
the prototype that produced the MAXSIM for the
most other class members is selected as its most
relevant sense, and all other sense embeddings are
discarded.

6.2 Results

Table 2 shows the average F1 scores across all 17
classes for each type of embedding. Unlike in the
coarse-grained setting, there is not a significant dif-
ference between models. Aggregated BERT has a
slight advantage with an average F1 of 0.643. All
three types of static embeddings do significantly
better on fine-grained than coarse-grained catego-
rization. By contrast, F1 for BERT MPro embed-
dings is 15 points lower in the fine-grained com-
pared to the coarse-grained setting. Furthermore,
the opposite pattern appears across BERT layers,
with earlier layers performing better and later lay-

126

Model Average F1

Random baseline 0.033
word2vec 0.626
BERT decontext. 0.586
BERT aggregated 0.643
MPro BERT 0.582

Table 2: Average F1 across all classes for each embed-
ding type on fine-grained categorization.

ers performing worse. It seems that accounting for
polysemy makes little difference in the ability of
embeddings to identify fine-grained categories.

The ground truth classes with the highest F1
across models were related to sound (buzz, boom,
chirp, rattle) and physiological processes (sweat,
cough, breathe, yawn). The classes with the lowest
F1 across models were transitive verbs related to
physical movement (drag, fling, tow, throw, lift)
and verbs of communication (announce, discuss,
explain, tell). In general, smaller and more spe-
cific classes were easier to categorize than larger,
broader classes (see Appendix E for detailed break-
down of model performance by category).

This stark difference in the relative performance
of static and contextual embeddings on two dif-
ferent levels of category granularity is surprising.
One possible explanation for this result is that the
ground truth for fine-grained categorization was de-
rived from similarity judgment data, and thus may
reflect a fundamentally different cognitive process
than the coarse-grained ground truth, which came
from a sorting task. Phase 2 data was obtained by
asking participants to make similarity judgments
among a group of words. Our assumption was that
since similarity is the primary criteria for catego-
rizing words, similarity data would yield the same
categories as a sorting task. However, in the ab-
sence of any disambiguating context, participants
may have made decisions about similarity based
on all exemplars of a word, rather than focusing
on one particular sense. By contrast, participants
in the Phase 1 sorting task were asked to make
explicit category judgments. Categorizing words
forces participants to select criteria or features for
membership in a particular category. Because of
this, participants in the sorting task may have sin-
gled out a particular sense of a word in making
their decision. Evidence from psycholinguistics
supports the idea that human performance on differ-
ent semantic tasks may derive from very different
cognitive processes (Kumar, 2021).

If context-free similarity judgments activate all
exemplars of a word, this would explain why static
embeddings (in particular the aggregated BERT
embeddings, which average over many exemplars)
would better fit the Phase 2 data. On the other hand,
if semantic categorization activates specific crite-
ria and forces participants to focus on a particular
sense of words in making a decision, this would
explain why MPro BERT better predicts the Phase
1 data. In order to make a more direct comparison
between coarse- and fine-grained categorization,
we plan to replicate the Phase 1 sorting task for
each individual semantic class.

7 Conclusion

Majewska et al. (2021) found that contextual BERT
embeddings performed more poorly than static
word2vec on the SpA-Verb semantic categoriza-
tion benchmark. In this paper, we challenged their
analysis, testing the effect of sense-specific con-
textual information on model performance on two
different levels of category granularity, and find
that the rich sense-specific information contained
in BERT, if properly exploited, allows BERT to
excel in predicting coarse-grained human seman-
tic categories. Our results suggest that polysemy
affects coarse-grained categorization, and that ac-
counting for polysemy can significantly improve
the predictions of embedding models.

On the other hand, contextual information seems
to be less relevant in modeling finer-grained cate-
gories derived from similarity judgments. It seems
that humans rely on different underlying processes
in making context-free similarity judgments be-
tween words than when making decisions about
category membership. While similarity is judged
based on a summary of all of a word’s exemplars,
categorization requires choosing specific criteria
for membership and thus focuses attention on a
particular sense of a word.

While using sense-specific embeddings seems
best for performing category induction, static repre-
sentations are still desirable for some applications.
For example, in making a cross-linguistic or his-
torical comparison of word meanings, clustering
average representations may be more appropriate
than many sense-specific ones. Ultimately, both
types of behavior are of interest within NLP, but
it’s important to choose an approach carefully, by
considering exactly what type of behavior one is
trying to model.

127

References

Roee Aharoni and Yoav Goldberg. 2020. Unsupervised
domain clusters in pretrained language models. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7747—
7763.

Lawrence W Barsalou. 1982. Context-independent and
context-dependent information in concepts. Memory
& cognition, 10(1):82-93.

BNC Consortium. 2007. British national corpus. Ox-
ford Text Archive Core Collection.

Rishi Bommasani, Kelly Davis, and Claire Cardie. 2020.
Interpreting pretrained contextualized representations
via reductions to static embeddings. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4758-4781.

Gabriella Chronis and Katrin Erk. 2020. When is a
bishop not like a rook? when it’s like a rabbi! multi-
prototype BERT embeddings for estimating semantic
relationships. In Proceedings of the 24th Confer-
ence on Computational Natural Language Learning,
pages 227-244, Online. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
41714186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the ge-
ometry of bert, elmo, and gpt-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 55-65.

Murhaf Fares, Andrey Kutuzov, Stephan Oepen, and
Erik Velldal. 2017. Word vectors, reuse, and replica-
bility: Towards a community repository of large-text
resources. Proceedings of the 21st Nordic Confer-
ence on Computational Linguistics, NoDaLiDa, 22-
24 May 2017, Gothenburg, Sweden, 131:271-276.

Mario Giulianelli, Marco Del Tredici, and Raquel Fer-
nandez. 2020. Analysing lexical semantic change
with contextualised word representations. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3960—
3973, Online. Association for Computational Lin-
guistics.

Abhilasha A Kumar. 2021. Semantic memory: A re-
view of methods, models, and current challenges.
Psychonomic Bulletin & Review, 28(1):40-80.

Thomas K Landauer and Susan T Dumais. 1997. A solu-
tion to plato’s problem: The latent semantic analysis
theory of acquisition, induction, and representation
of knowledge. Psychological review, 104(2):211.

Qianchu Liu, Diana McCarthy, Ivan Vuli¢, and Anna Ko-
rhonen. 2019. Investigating cross-lingual alignment
methods for contextualized embeddings with token-
level evaluation. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 33-43.

Olga Majewska, Diana McCarthy, Jasper JF van den
Bosch, Nikolaus Kriegeskorte, Ivan Vuli¢, and Anna
Korhonen. 2021. Semantic data set construction from
human clustering and spatial arrangement. Computa-
tional Linguistics, 47(1):69-116.

Julian Michael, Jan A Botha, and Ian Tenney. 2020.
Asking without telling: Exploring latent ontologies
in contextual representations. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6792—-6812.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space. Ist International Conference
on Learning Representations, ICLR 2013 - Workshop
Track Proceedings, pages 1-12.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39-41.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English Gigaword Fifth Edi-
tion. Linguistic Data Consortium.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing

(EMNLP), pages 1532—1543.

Francisco Pereira, Samuel Gershman, Samuel Ritter,
and Matthew Botvinick. 2016. A comparative evalu-
ation of off-the-shelf distributed semantic represen-
tations for modelling behavioural data. Cognitive
Neuropsychology, 33(3-4):175-190.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 22272237,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Lutfi Kerem Senel, Thsan Utlu, Veysel Yucesoy, Aykut
Koc, and Tolga Cukur. 2018. Semantic structure
and interpretability of word embeddings. IEEE/ACM
Transactions on Audio Speech and Language Pro-

cessing, 26(10):1769-1779.

128

Suzanna Sia, Ayush Dalmia, and Sabrina J Mielke. 2020.
Tired of topic models? clusters of pretrained word
embeddings make for fast and good topics too! In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1728-1736.

Aina Gari Soler and Marianna Apidianaki. 2021. Let’s
play mono-poly: Bert can reveal words’ polysemy

level and partitionability into senses. arXiv preprint
arXiv:2104.14694.

Amos Tversky. 1977. Features of similarity. Psycholog-
ical Review, 84(4):327-352.

Ivan Vuli¢, Simon Baker, Edoardo Maria Ponti, Ulla
Petti, Ira Leviant, Kelly Wing, Olga Majewska, Eden
Bar, Matt Malone, Thierry Poibeau, et al. 2020.
Multi-simlex: A large-scale evaluation of multi-
lingual and crosslingual lexical semantic similarity.
Computational Linguistics, 46(4):847-897.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38—45.

Yadollah Yaghoobzadeh, Katharina Kann, Timothy J
Hazen, Eneko Agirre, and Hinrich Schiitze. 2019.
Probing for semantic classes: Diagnosing the mean-
ing content of word embeddings. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 5740-5753.

A Multi-Prototype BERT embeddings

Multi-prototype embeddings were generated as fol-
lows:

1. For each verb in the dataset, we sampled up
to 100 sentences from the British National
Corpus (BNC Consortium, 2007), excluding
non-verbal uses of the target word. A few
words in the set occurred in BNC fewer than
100 times. Four words (broil, corrupt, exhale,
and misspend) did not occur as verbs at all in
the BNC and were excluded from our analysis.
The average number of occurrences sampled
for a word was 95.6.

2. We extract BERT token embeddings for each
collected occurrence of a word. For words
which BERT tokenizes into multiple word
pieces, we average over all component pieces.

3. We cluster the token embeddings for each
verb. Like Chronis and Erk (2020), we use k-
means clustering to group tokens into ‘sense’

clusters. We use the number of verb senses
listed in WordNet (Miller, 1995) to determine
the appropriate k for each word. Verbs in the
dataset had on average 5.9 senses. (min: 1,
max: 59, for buzz).

4. After identifying clusters, we take the & clus-
ter centroids for each word. These are the em-
beddings we evaluate against the SpA-Verb
categorization data.

B Evaluation metrics

As in Majewska et al. (2021), we evaluate perfor-
mance of word embeddings on semantic catego-
rization using modified purity and weighted class
accuracy, which are combined in an F1 score, cal-
culated as their balanced harmonic mean. Modified
purity is the mean precision of automatically in-
duced verb clusters:

Z CeClust,nprey(c)>1 Nprev(C)

MPUR =
#test_verbs

€]

where each cluster C' from the set of all K¢y
induced clusters Clust is associated with its preva-
lent gold class, and n.c, () is the number of
verbs in an induced cluster C' taking that preva-
lent class, with all other verbs considered errors.
F#test_verbs is the total number of verbs in the
dataset. While modified purity is a measure of
precision, weighted class accuracy targets recall:

> CeGoldMdom(C)
#test_verbs

where for each class C' from the set of gold stan-
dard classes Gold, we identify the dominant cluster
from the set of induced clusters having most verbs
in common with C' (ngom(c))-

WACC =)

C Ground truth coarse-grained
categories

The ground truth categories used for evaluating
models on coarse-grained categorization come
from Phase 1 of SpA-Verb. 825 verbs are grouped
into 17 broad semantic classes. Table 3 gives an
overview of the classes.

D MPro BERT Cross Layer Analysis

The MPro BERT embeddings from later layers of
BERT are better predictors of the ground truth cate-
gories than earlier layers. As shown in Figure 1, F1

129

038

07

06

0.5

Scaore

04

0.3

0.2

=== Gold MPur
Gold Wiacc
Gaold F1

1 § B 10
BERT layer (k=17

09 -
038 /
07 f

06 — I

05 P
&
P

04 A

Score

e m——— -= === Optimal MPur
03 f‘_/ Optimal Wacc
e Optimal F1
0 2 3 5 B 10

BERT layer (k=optimal)

Figure 1: Performance of multi-prototype BERT embeddings from each layer. Left: gold case (k=17), right: optimal

case
Cluster label Example verbs
movement wander, fly, glide, roam
communication persuade, command, tell

crime & law
negative emotion
positive emotion
cognitive process
cooking
possession

beat, abduct, abuse, shoot
offend, aggravate, enrage
admire, respect, adore, like
suppose, assume, realize
cook, slice, stew, boil
belong, obtain, acquire

Table 3: A sample of the 17 gold classes in SpA-Verb
dataset (labels are given for descriptive purposes only)

scores increase virtually monotonically from the
first to last layer of BERT. Layer O performance is
about on par with the static BERT baselines.

In general, recall (WACC) decreases from earlier
to later layers of BERT, while the precision mea-
sure (MPUR) increases. The increase in precision
is steeper than the decrease in recall, leading the
F1 scores to trend up in later layers. The optimal &
value for the middle layers is very low (5-10) but
much higher for early and later layers (20-30). As
can be seen in Figure 1, there is a spike in recall in
the middle layers, likely due to the lower k values.
Having a few large clusters means that clusters are
more likely to overlap with gold classes, even if
they contain extra irrelevant members.

E Fine-Grained Categorization Results

Table 4 shows a breakdown of the F1 scores for
each model by class. The classes which all mod-
els did best at categorizing were Class 13 (which
contains words describing sounds like boom, buzz,
crunch, rattle, squeak), Class 3 (related to change:
accelerate, diminish, grow) and Class 12 (physi-

ological processes: sweat, cough, breathe, yawn).
The classes which models struggled most with were
Class 15 (physical movement: catch, grab, fling,
Jjerk), Class 7 (communication: announce, discuss,
explain, tell), and Class 9 (cognitive processes: an-
alyze, describe, ponder, think).

130

Class | word2vec | BERT decontext. | BERT aggreg. | MPro BERT | Average

1 0.624 0.521 0.547 0.541 0.558
2 0.563 0.606 0.619 0.563 0.588
3 0.679 0.660 0.685 0.629 0.663
4 0.535 0.498 0.654 0.545 0.558
5 0.610 0.676 0.673 0.671 0.657
6 0.600 0.589 0.697 0.61 0.625
7 0.498 0.532 0.605 0.556 0.548
8 0.649 0.542 0.649 0.586 0.606
9 0.579 0.521 0.578 0.539 0.554
10 0.504 0.59 0.587 0.598 0.570
11 0.788 0.624 0.60 0.585 0.651
12 0.722 0.581 0.727 0.616 0.661
13 0.742 0.647 0.764 0.573 0.682
14 0.603 0.499 0.653 0.58 0.584
15 0.508 0.572 0.531 0.561 0.543
16 0.740 0.629 0.672 0.545 0.646
17 0.694 0.658 0.682 0.595 0.657
Average | 0.626 0.586 0.643 0.582 0.609

Table 4: F1 for each class and embedding type on fine-grained categorization.

131

Word-Label Alignment for Event Detection: A New Perspective via
Optimal Transport

Amir Pouran Ben Veyseh
Department of Computer and
Information Science
University of Oregon
Eugene, Oregon, USA
apouranb@cs.uoregon.edu

Abstract

Event Detection (ED) aims to identify men-
tions/triggers of real world events in text. In the
literature, this task is modeled as a sequence-
labeling or word-prediction problem. In this
work, we present a novel formulation in which
ED is modeled as a word-label alignment task.
In particular, given the words in a sentence
and possible event types, the objective is to in-
fer an alignment matrix in which event trigger
words are aligned with the most likely event
types. Moreover, we show that this new per-
spective facilitates the incorporation of word-
label alignment biases to improve alignment
matrix for ED. Novel alignment biases and
Optimal Transport are introduced to solve our
alignment problem for ED. We conduct experi-
ments on a benchmark dataset to demonstrate
the effectiveness of the proposed model for ED.

1 Introduction

Event Detection (ED) is one of the critical tasks
in Information Extraction. Its goal is to identify
and classify event triggers, i.e., the words/phrases
that most clearly refer to the occurrence of an event
of some predefined types in text. For example, in
the sentence “Joe Biden was born on November 20,
1942, an ED system should recognize the word
“born” as a trigger word of an event of type Birth.
A major challenge for ED is to assign an appro-
priate event type label for each word in a given
sentence. In this work, we introduce a new perspec-
tive to solve ED as a word-label alignment problem
that aims to align the set of words in the input sen-
tence with the set of possible event type labels to
represent correct label assignment for words. A key
requirement for ED models in this new perspective
involve inferring an alignment matrix to capture
an alignment likelihood score between each pair
of words and label types. The models can then
be trained by enforcing the similarity between the
predicted alignment matrix and the golden align-
ment matrix (computed from training data). In this

Thien Huu Nguyen
Department of Computer and
Information Science
University of Oregon
Eugene, Oregon, USA
thien@cs.uoregon.edu

way, previous ED models can be seen as a way to
achieve the alignment matrix between words and
labels where label distributions computed by the
models serve as the alignment likelihood scores
(Nguyen and Grishman, 2015; Chen et al., 2015;
Wang et al., 2019; Cui et al., 2020; Ngo et al.,,
2021). However, given the word-label alignment
perspective, previous ED models are suboptimal
in at least two ways. First, the alignment likeli-
hood scores in prior models are only used locally
for each word (i.e., to compute the cross-entropy
loss for each word to train models). The global
uses of alignment matrix (e.g., to compute an over-
all distance between words and labels for training
signals) are thus not yet explored in previous ED
models. Second, current ED models mainly obtain
alignment likelihood scores based on representa-
tion vectors for words and types, thus unable to
exploit assignment biases to improve quality of the
alignment matrix to train ED models. In particu-
lar, we propose two types of alignment biases that
can be helpful for ED: (1) Word Preference: words
with high likelihoods to be event triggers should be
more aligned with event type labels (i.e., not the
Other type for non-trigger words), and (2) Type
Preference: event types that have higher chance
to be appear in the input sentence should be asso-
ciated with greater alignment scores. In all, we
expect that global application and alignment biases
can provide complementary information to boost
current ED models in the new perspective.

To implement this idea, we propose to encode
event trigger likelihoods for words and appearance
likelihoods for event types as two distributions over
words and event type labels (respectively) that will
be induced from a deep learning architecture. Next,
to inject the alignment biases into our ED model,
we propose to feed the two distributions into Op-
timal Transport (OT) (Peyre and Cuturi, 2019) to
induce an alignment matrix between words and
event type labels. OT is an established framework

132

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 132 - 138
July 14-15, 2022 ©2022 Association for Computational Linguistics

to find the optimal alignment between two distribu-
tions, thus providing a decent solution to incorpo-
rate alignment biases to compute alignment matrix
in our ED problem. Finally, the induced alignment
matrix will be leveraged to obtain a distance be-
tween words and event type labels, serving as a
global application of the alignment matrix to in-
troduce new training signals for ED. We conduct
extensive experiments on a benchmark dataset to
deliver state-of-the-art performance for ED. In sum-
mary, our contributions include:

* A new perspective based on word-label align-
ment for event detection.

¢ Introduction of optimal transport to incorpo-
rate novel alignment biases for event detec-
tion.

* State-of-the-art performance for sequence-
labeling event detection.

2 Model

Given an input sentence S = [wy,wo,..., W],
the goal of ED is to predict the label sequence
L = [l3,la,...,1,] where [; € T is the label for
the word w; € S. Here, the label set 7 involves the
BIO encoding tags for the event types in a given
event ontology (e.g., B_Birth, I_Birth, and Other).
In this work, we propose to model ED as a word-
label alignment problem where an alignment matrix
is formed to capture the assignment likelihood for
every pair of words in S and labels in 7. We will
first discuss word/label representations, and align-
ment matrix computation for training afterward.
Word & Label Representation: To represent the
words in S, following prior work (Wang et al.,
2019), we employ the pre-trained BERT model
(Devlin et al., 2019). Concretely, the input sen-
tence [[CLS], w1, ws,...,wy] is fed into BERT
to compute the contextualized embedding vectors
E = [eys, €1, €2, ..., e,]. We employ the average
of vectors in the last layer of BERT to produce E.
For the words with multiple word-pieces, we take
the average of their word-piece representations.
To represent the event type labels /;, we employ
a randomly initialized embedding table 7" in which
every label is represented by a vector ¢;. The repre-
sentations of the labels are updated during training.
Alignment: To predict the label sequence L with
our alignment idea, for every word w;, an align-
ment likelihood score a; ; between w; and each

label /; is required (i.e., forming an alignment ma-
trix A). Using the scores a; ;, the label I; can be
predicted by [; = argmax;a; j. Note that in prior
ED models, the alignment scores a; ; are directly
computed using the final task-specific feed-forward
networks (Wang et al., 2019; Veyseh et al., 2021b).
This approach is equivalent to computing the sim-
ilarity between the representation vectors w; and
tj, e.g., via dot-product. We call this approach
“Vanilla Alignment”. However, as discussed in
the introduction, vanilla alignment scores a; ; are
solely dependent on the learned representations e;
and ¢;. As such, they cannot incorporate the align-
ment biases into the alignment matrix for ED.

To this end, we introduce two alignment biases
that can be exploited to improve the word-label
alignment for ED. In particular, for an effective
ED model, we expect the words that are more
likely to be event triggers to have higher align-
ment scores with event types. In contrast, the other
words should be better aligned with the special
label Other. i.e., non-trigger. We call this bias
“Word Preference” for ED. In addition, among all
event types, it is expected that the event types that
have higher chance to be mentioned in the input
sentence to be associated with greater scores in
the alignment matrix A. We name this bias as
“Type Preference”. In this work, we aim to mod-
ify the vanilla alignment approach such that the
two aforementioned preferences are observed. The
quantification of Word and Type Preference and
their incorporation into alignment matrix will be
discussed in the following.

Word & Type Preference: To compute the word
preference and type preference in the input sen-
tence S, we consider two simpler versions of the
ED problem. Specifically, for word preference,
we utilize the Trigger Identification (TI) task that
seeks to recognize the event trigger words with-
out classifying them by event types. The event
trigger probability computed for TI can be used to
quantify the event trigger likelihood for each word
w; € S. Concretely, the representation e; of w;
is fed into a feed-forward network with sigmoid
activation function to compute the trigger likeli-
hood p¥ for w;: p¥ = o(FF,(e;)), where o and
F'F,, are sigmoid and feed-forward layer, respec-
tively. To supervise the trigger likelihood scores,
we include the binary cross-entropy loss function
for TI into the overall loss for training: Lr; =

— LS (¥ +log(p) + (1 —y) xlog(1— pi)),

133

where y;” is a binary number to indicate whether if
w; is a trigger in S. The likelihood scores p;’ are
employed to represent the word preference.

Next, for the type preference, we exploit the task
of Type Prediction (TP) for ED. In this task, the
objective is to predict which event types are men-
tioned in the sentence S (i.e., without predicting
the trigger words). For an event type label ¢;, we
predict the likelihood for ¢; to be mentioned in S
by concatenating the type representation ¢; with
the sentence representation e.;; and feeding the re-
sult into a separate feed-forward network F'F; with
sigmoid activation to obtain the appearance like-
lihood for t;: pi = o(FFy([t;,eas])). To super-
vise the appearance likelihoods, the binary cross-
entropy loss function for TP is employed: Lrp =

— ST (3 log () + (1 — yt) * log(1 — pt),
where y] is a binary number to indicate the appear-
ance of the event type ¢; in S. The likelihood scores
p§- are utilized to represent the type preference.
Alignment Computation: Given the word and
type preference scores p;” and pz, how can we com-
pute an alignment matrix A between the words
in S and the event type labels in 7 that can in-
corporate both word-label representation similar-
ity (as in vanilla alignment) and designed pref-
erence scores for ED? Note that the preference
scores can be modeled as two distributions over
words and event type labels by applying a soft-
max function over the word and type likelihoods:
DYP = softmax(p¥,p¥,...,p¥) and DTF =
softmax(pl,ph,. .., pk). As such, we propose to
employ Optimal Transport (OT) to elegantly com-
bine the information to produce the alignment ma-
trix A between S and 7 for ED.

Formally, given the probability distributions p(z)
and ¢(y) over the domains X and), and the
cost/distance function C'(z,y) : X x Y — Ry for
mapping &X' to YV, OT finds the optimal joint align-
ment/distribution 7*(z, y) with marginals p(x) and
q(y) that converts p(x) to q(y) (i.e., the cheapest
plan), by solving the following problem:

@) = i 25 m@y)C

stz ~ p(z) and y ~ q(y),

ey

Here, II(x, y) involves all joint distributions with
marginals p(x) and ¢(y). As such, the joint dis-
tribution 7*(z, y) is a matrix whose entry (z,y)
(x € X,y €)) represents the probability of
transforming x to y in the optimal transport. We
use the Sinkhorn algorithm to approximately solve

OT (Peyre and Cuturi, 2019). Finally, given
7*(x,y), one approach to employ its global infor-
mation is to compute the cost of optimal conver-
sion Dist(1*) = YpeaxXyeym(z,y)C(z,y) to
measure the distance between X and) (i.e., the
Wasserstein distance).

To apply OT in our model, the domains X" and)
are defined as the words w; € S and types t; € T;
the distributions p(z) and ¢(y) are set to the pref-
erence distributions D"'* and D?; and the cost
function C(wj, t;) is computed using the Euclidean
distance between the representations e; and £;. As
such, solving the OT equation leads to the opti-
mal alignment 7*(wj, t;), serving as our predicted
alignment matrix (i.e., a; j; = 7*(w;, t;)).

To train the ED model with word-label align-
ment, we propose two training signals obtained
from the predicted alignment 7*(e;, ¢;). First, by
treating the alignment score 7*(e;, t;) as the proba-
bility for w; to be assigned with label £ ;, we employ
the negative log-likelihood loss to train our model:
—1 5% log(m*(w;, 1;)), where ; is the
golden label for w; in S. Second, we propose to
globally enforce the similarity between the pre-
dicted alignment matrix 7*(w;, t;) from OT and
the golden binary alignment matrix 79(w;, t;) (i.e.,
79 (w;j, tj) = 1if only if w; has the golden label).
As such, to aggregate the information in the ahgn-
ment matrices, we first compute the Wasserstein
distances Dist(7*) and Dist(79) based on the pre-
dicted and golden alignments 7* and 79. After-
ward, we seek to minimize the difference between
Dist(n*) and Dist(m9) to achieve alignment ma-
trix similarity to train our ED models, leading to
the loss: Lo = |Dist(n*) — Dist(m9)|. Finally,
the overall loss function for the entire model is
L = atgskLiask +aorLor+ariLri+arpLrp.

£task =

3 Experiments

Datasets & Baselines: We evaluate the perfor-
mance of the proposed model (called OTED) on
the ACE 2005 dataset (Walker et al., 2006) that
annotates 599 documents for 33 event types in
English. We use the same data split and prepro-
cessing as prior work (Wang et al., 2019; Veyseh
et al., 2021b) for this dataset. The numbers of doc-
uments for the training/development/test data are
529/30/40 respectively. Following (Wang et al.,
2020a; Veyseh et al., 2021b), we use the sequence-
labeling setting for the ED task in ACE 2005 that
adheres to the original annotation to allow event

134

Model ACE
P R F1
BiLSTM 77.20 7490 75.40
DMBERT 7149 7695 74.12
BERT+CRF | 71.30 77.10 74.10
ED3C 80.31 76.04 78.12
OTED (ours) | 79.28 79.48 79.38

Table 1: Model performance on the test sets. OTED is
significantly better than the baselines with p < 0.05.

triggers to span multiple words.

As the baselines, we compare with the typical se-
quence labeling models for ED, i.e., BILSTM, DM-
BERT (BERT with dynamic multi-pooling), and
BERT+CREF in (Wang et al., 2020a), and the prior
state-of-the-art (SOTA) model reported for ACE
2005, i.e., ED3C (Veyseh et al., 2021b). For all
the models, we use the same version of pre-trained
BERT},. to achieve a fair comparison. Follow-
ing prior work (Wang et al., 2020b; Veyseh et al.,
2021b), we use span-based precision, recall and
F1 scores for correctly predicting the boundaries
and types of event triggers as the performance met-
rics. Finally, we fine-tune the hyper-parameters for
OTED using the development data of ACE 2005.
In our model we use the BERT},.. model to en-
code data; 2 layers for all the feed-forward neural
networks with 200 hidden dimensions in the layers.
The trade-off parameters a4, o1, 71 and arp
are set to 1.0, 0.01, 0.05, and 0.01 respectively. The
learning rate is set to 3e-5 for the Adam optimizer
and the batch size of 8 is employed during training.

Results: The model performance is presented in
Table 1. This table shows that OTED significantly
outperforms the baseline models on ACE 2005. We
attribute the superiority of OTED to its capability
to incorporate alignment biases, i.e., word and type
preference, into alignment-based ED. The better
performance of OTED over ED3C is important as
unlike this baseline OTED does not require addi-
tional document context or supervision from other
related tasks.

Ablation Study: We conduct an ablation study for
the components of OTED over the ACE 2005 de-
velopment set. Table 2 presents the performance
of three groups of ablated models for OTED. In
the first group (lines 2-4), we exclude one or both
alignment biases, i.e., WP and TP, from OTED.
Concretely, to remove a preference, its correspond-
ing distribution in the OT (i.e., D'* and DTP)

Line Model P R F1

1 OTED (full) 79.12 79.94 79.53
2 OTED - WP 75.14 81.39 78.14
3 OTED - TP 77.32 78.55 77.93
4 OTED - WP-TP | 76.90 76.92 7691
5 OTED - L4k 7524 77.02 76.12
6 OTED - Lor 7592 80.28 78.04
7 OTED - L7y 7891 75.60 77.22
8 OTED - L7p 78.21 76.05 77.12
9 Distance 76.66 78.03 77.34
10 Alignment 77.98 78.93 7845

Table 2: Model performance on the ACE 2005 dev set.

is replaced with the uniform distribution in the
OT computation for OTED. It is clear from the
table that both alignment biases are beneficial for
OTED as removing any of them would hurt the
performance significantly. Next, the second group
(lines 5-8), we exclude each loss component (i.e.,
Liwsk» LoT, LTp, and L) from the overall loss
L to train OTED. As can be seen, all the designed
losses contribute significantly to the performance
of OTED, thus testifying to their effectiveness in
alignment-based ED. Also, in the third group (lines
9-10), we explore two variants of OTED to jus-
tify the design of the loss Lo to incorporate OT
into the model. In one variant (called Distance
in line 9), instead of minimizing the difference
Lot between the Wasserstein distances based on
predicted and golden alignments, we directly mini-
mize the predicted Wasserstein distance Dist(7™*)
between words and labels. Moreover, in the Align-
ment variant in line 10, instead of employing the
Wasserstein distance, we directly minimize the
distance between the predicted and golden align-
ment 7" (w;, t;) and 79 (w;, t;) (i.e., evaluated by
> i [T (wiy ty) — 79 (ws, t5)|/(n|T1)). As can be
seen, both Distance and Alignment lead to inferior
performance for OTED, thereby showing the effec-
tiveness of Lo for ED. As such, we attribute the
poor performance of Distance to the lack of super-
vision from the golden alignment-based distance
79 (wj, t;), and the worse performance of Align-
ment to the missing of contextual similarity (i.e.,
the cost C'(w;, t;)) in the distance computation.

Analysis: In this section, we present a qualitative
analysis to shed more light on the superiority of
the proposed model OTED to the prior sequence
labeling methods. Specifically, we compare our
model with the BERT+CREF baseline by analyzing
the examples in which BERT+CREF fails to recog-

135

D Example BERT+CRF OTED Gold Event
Prediction Prediction Trigger & Type
These are the reasons that none of these Trigger: “shot”, | Trigger: “shot”, | Trigger: “shot”,
1 mothereffers should ever see the light of day ... | Event Type: Event Type: Event Type:
they need to be all lined up and shot. Contact:Meet Justice:Execute | Justice:Execute
Trigger: Trigger: Trigger:
Well , John, given all that you’ve said, we know | “waiting”, “retired”, Event | “retired’, Event
2 that there’s an American retired general Event Type: Type: Type:
waiting in Kuwait. Personnel:End- | Personnel:End- | Personnel:End-
Position Position Position

Table 3: Case study on the development set of the ACE 2005 dataset. The golden trigger words are underlined.

nize the event types and triggers, but OTED can
successfully perform the predictions. A major find-
ings in our analysis is that OTED can exploit the
introduced alignment bias (i.e., word and type pref-
erence) to avoid unlikely event triggers and types
(i..e, the ones that should be obviously eliminated
based on overall sentence context). This leads to
correct predictions for examples that BERT+CRF
make mistakes. Table 3 shows two examples from
the development set of the ACE 2005 dataset to
illustrate our findings. In the first example, the
baseline can recognize the event trigger “shot”, but
fails to predict the event type. Given the context of
the sentence, the predicted event type Contact:Meet
by BERT+CREF should be considered as unlikely
to be mentioned in the sentence. As the proposed
model OTED employs type preference knowledge,
it successfully avoids unlikely event types for this
sentence. In addition, in the second example, the
baseline incorrectly predicts a non-trigger word
(i.e., “waiting”) as a trigger. In contrast, since
OTED employs word preference knowledge, it can
effectively avoid unlikely event triggers.

4 Related Work

Early methods for ED employed feature engineer-
ing models (Ahn, 2006; Ji and Grishman, 2008;
Liao and Grishman, 2010; Hong et al., 2011; Li
et al., 2013; Miwa et al., 2014; Yang and Mitchell,
2016). Recently, deep learning was adopted as the
SOTA approach for ED (Chen et al., 2015; Nguyen
et al., 2016; Sha et al., 2018; Nguyen and Grish-
man, 2018; Yang et al., 2019; Wang et al., 2019;
Lai et al., 2020; Cui et al., 2020; Tong et al., 2020;
Nguyen et al., 2021). Unlike such prior work, we
introduce a new word-label alignment perspective
using OT for ED. Finally, some recent work has
utilized OT for character/word/example alignment
problems (Dou and Neubig, 2021; Xu et al., 2021;
Veyseh et al., 2021a, 2022; Guzman-Nateras et al.,

2022). However, none of them explores OT for
word-label alignment in ED.

5 Conclusion

We present a general word-label alignment formula-
tion for ED in which each pair of words and types is
associated with an alignment score for label assign-
ment likelihood. Moreover, we introduce two align-
ment biases based on type and word preference to
improve the word-label alignment matrix computa-
tion with OT. Extensive analysis on a benchmark
dataset demonstrates the benefits of the proposed
technique for ED. In the future, we plan to evaluate
our method on more datasets for ED (Wang et al.,
2020a; Man et al., 2020; Lai et al., 2021) to better
understand its operation.

Acknowledgement

This research has been supported by the Army Re-
search Office (ARO) grant W911NF-21-1-0112
and the NSF grant CNS-1747798 to the IU-
CRC Center for Big Learning. This research is
also based upon work supported by the Office
of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activ-
ity (IARPA), via IARPA Contract No. 2019-
19051600006 under the Better Extraction from Text
Towards Enhanced Retrieval (BETTER) Program.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies, ei-
ther expressed or implied, of ARO, ODNI, IARPA,
the Department of Defense, or the U.S. Govern-
ment. The U.S. Government is authorized to re-
produce and distribute reprints for governmental
purposes notwithstanding any copyright annotation
therein. This document does not contain technol-
ogy or technical data controlled under either the
U.S. International Traffic in Arms Regulations or
the U.S. Export Administration Regulations.

136

References

David Ahn. 2006. The stages of event extraction. In
Proceedings of the Workshop on Annotating and Rea-
soning about Time and Events.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-
ings of the Annual Meeting of the Association for
Computational Linguistics (ACL).

Shiyao Cui, Bowen Yu, Tingwen Liu, Zhenyu Zhang,
Xuebin Wang, and Jingiao Shi. 2020. Edge-enhanced
graph convolution networks for event detection with
syntactic relation. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2329-2339, Online. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Zi-Yi Dou and Graham Neubig. 2021. Word alignment
by fine-tuning embeddings on parallel corpora. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics (EACL).

Luis Fernando Guzman-Nateras, Minh Van Nguyen,
and Thien Huu Nguyen. 2022. Cross-lingual event
detection via optimized adversarial training. In Pro-
ceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT).

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL).

Heng Ji and Ralph Grishman. 2008. Refining event
extraction through cross-document inference. In Pro-
ceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL).

Viet Lai, Minh Van Nguyen, Heidi Kaufman, and
Thien Huu Nguyen. 2021. Event extraction from
historical texts: A new dataset for black rebellions.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 2390-2400,
Online. Association for Computational Linguistics.

Viet Dac Lai, Tuan Ngo Nguyen, and Thien Huu
Nguyen. 2020. Event detection: Gate diversity and
syntactic importance scores for graph convolution
neural networks. In Proceedings of the Conference
on Empirical Methods in Natural Language Process-

ing (EMNLP).

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

Shasha Liao and Ralph Grishman. 2010. Filtered rank-
ing for bootstrapping in event extraction. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics (Coling 2010).

Duc Trong Hieu Man, Duc Trong Le, Amir Pouran
Ben Veyseh, Thuat Nguyen, and Thien Huu Nguyen.
2020. Introducing a new dataset for event detection
in cybersecurity texts. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Makoto Miwa, Paul Thompson, Ioannis Korkontzelos,
and Sophia Ananiadou. 2014. Comparable study of
event extraction in newswire and biomedical domains.
In Proceedings of the International Conference on
Computational Linguistics (COLING).

Nghia Trung Ngo, Duy Phung, and Thien Huu Nguyen.
2021. Unsupervised domain adaptation for event
detection using domain-specific adapters. In Find-
ings of the Association for Computational Linguis-
tics: ACL-IJCNLP 2021, pages 4015-4025, Online.
Association for Computational Linguistics.

Minh Van Nguyen, Viet Dac Lai, and Thien Huu
Nguyen. 2021. Cross-task instance representation
interactions and label dependencies for joint informa-
tion extraction with graph convolutional networks. In
Proceedings of the Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL-
HLT).

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In Proceedings of the Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT).

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolutional
neural networks. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics

(ACL).

Thien Huu Nguyen and Ralph Grishman. 2018. Graph
convolutional networks with argument-aware pooling
for event detection. In Proceedings of the Association
for the Advancement of Artificial Intelligence (AAAI).

Gabriel Peyre and Marco Cuturi. 2019. Computational
optimal transport: With applications to data science.
In Foundations and Trends in Machine Learning.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and arguments
by dependency-bridge rnn and tensor-based argument
interaction. In Proceedings of the Association for the
Advancement of Artificial Intelligence (AAAI).

137

Meihan Tong, Bin Xu, Shuai Wang, Yixin Cao, Lei
Hou, Juanzi Li, and Jun Xie. 2020. Improving event
detection via open-domain trigger knowledge. In
Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL).

Amir Pouran Ben Veyseh, Viet Lai, Franck Dernon-
court, and Thien Huu Nguyen. 2021a. Unleash GPT-
2 power for event detection. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers).

Amir Pouran Ben Veyseh, Minh Van Nguyen, Franck
Dernoncourt, Bonan Min, and Thien Huu Nguyen.
2022. Document-level event argument extraction via
optimal transport. In Findings of the Association for
Computational Linguistics: ACL 2022.

Amir Pouran Ben Veyseh, Minh Van Nguyen, Nghia
Ngo Trung, Bonan Min, and Thien Huu Nguyen.
2021b. Modeling document-level context for event
detection via important context selection. In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 5403-5413,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilingual
training corpus. In Technical report, Linguistic Data
Consortium.

Xiaozhi Wang, Xu Han, Zhiyuan Liu, Maosong Sun,
and Peng Li. 2019. Adversarial training for weakly
supervised event detection. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and
Short Papers), pages 998—1008.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,
and Jie Zhou. 2020a. MAVEN: A Massive General
Domain Event Detection Dataset. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP).

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,
and Jie Zhou. 2020b. Maven: A massive general
domain event detection dataset. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics (ACL).

Jingjing Xu, Hao Zhou, Chun Gan, Zaixiang Zheng,
and Lei Li. 2021. Vocabulary learning via optimal
transport for neural machine translation. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers).

Bishan Yang and Tom M. Mitchell. 2016. Joint extrac-
tion of events and entities within a document con-
text. In Proceedings of the Conference of the North
American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies
(NAACL-HLT).

Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and
Dongsheng Li. 2019. Exploring pre-trained language
models for event extraction and generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5284—
5294, Florence, Italy. Association for Computational
Linguistics.

138

Comparison and Combination of Sentence Embeddings
Derived from Different Supervision Signals

Hayato Tsukagoshi

Ryohei Sasano

Koichi Takeda

Graduate School of Informatics, Nagoya University
tsukagoshi.hayato.r2@s.mail.nagoya-u.ac.jp,
{sasano, takedasu}@i.nagoya-u.ac. Jjp

Abstract

There have been many successful applications
of sentence embedding methods. However, it
has not been well understood what properties
are captured in the resulting sentence embed-
dings depending on the supervision signals. In
this paper, we focus on two types of sentence
embedding methods with similar architectures
and tasks: one fine-tunes pre-trained language
models on the natural language inference task,
and the other fine-tunes pre-trained language
models on word prediction task from its defini-
tion sentence, and investigate their properties.
Specifically, we compare their performances on
semantic textual similarity (STS) tasks using
STS datasets partitioned from two perspectives:
1) sentence source and 2) superficial similar-
ity of the sentence pairs, and compare their
performances on the downstream and probing
tasks. Furthermore, we attempt to combine
the two methods and demonstrate that combin-
ing the two methods yields substantially better
performance than the respective methods on
unsupervised STS tasks and downstream tasks.

1 Introduction

Sentence embeddings are dense vector representa-
tions of a sentence. A variety of methods have been
proposed to derive sentence embeddings, includ-
ing those based on unsupervised learning (Kiros
et al., 2015; Hill et al., 2016; Logeswaran and Lee,
2018; Cer et al., 2018; Wang et al., 2021) and super-
vised learning (Conneau et al., 2017). Pre-trained
Transformer-based (Vaswani et al., 2017) language
models, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), have been successfully
applied in a wide range of NLP tasks, and sentence
embedding methods that leverage pre-trained lan-
guage models have also performed well on seman-
tic textual similarity (STS) tasks and several down-
stream tasks. These methods refine pre-trained
language models for sophisticated sentence embed-
dings by unsupervised learning (Li et al., 2020;

’ Entailment Neutral ‘ @

Label prediction layer

Contradiction

Definition sentence

Sentence A Sentence B

Figure 1: Overviews of SBERT (left) and DefSent (right).

Wang and Kuo, 2020; Giorgi et al., 2021; Carlsson
et al., 2021; Yan et al., 2021; Gao et al., 2021), or
supervised learning (Reimers and Gurevych, 2019;
Tsukagoshi et al., 2021; Gao et al., 2021).

Among them, Reimers and Gurevych (2019) pro-
posed Sentence-BERT (SBERT), which fine-tunes
pre-trained language models on the natural lan-
guage inference (NLI) task. SBERT performed
well on the STS and downstream tasks. Recently,
Tsukagoshi et al. (2021) proposed DefSent, which
fine-tunes pre-trained language models on the task
of predicting a word from its definition sentence in
a dictionary, and reported that it performed com-
parably to SBERT. Figure 1 shows overviews of
SBERT and DefSent. Although both methods fine-
tune the same pre-trained models and use the same
pooling operations to derive a sentence embedding,
the supervision signals for fine-tuning are different.
That is, SBERT leverages NLI datasets, whereas
DefSent leverages word dictionaries.

It is expected that the properties of the sentence
embeddings depend on their supervision signals.
However, since existing research has mainly fo-
cused on achieving better performance on bench-
mark tasks, it has not been revealed what prop-
erty differences the resulting sentence embeddings
have. Investigating the properties of sentence em-
beddings would give us a better understanding of
existing sentence embedding methods and help de-
velop further methods. In this paper, we empirically
investigate the influence of supervision signals on

139

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 139 - 150
July 14-15, 2022 ©2022 Association for Computational Linguistics

sentence embeddings. We focus on SBERT and
DefSent because they leverage different supervi-
sion signals but have very similar architectures, as
shown in Figure 1; thus, they would be appropri-
ate for analyzing the influence of the supervision
signals on sentence embeddings.

First, we partitioned the STS datasets (Agirre
et al., 2012, 2013, 2014, 2015, 2016; Cer et al.,
2017; Marelli et al., 2014) on the basis of two
different perspectives and examine what type of
meaning each type of sentence embeddings cap-
tures by analyzing the performance of each method
on these partitioned STS datasets. We then ap-
ply each type of embeddings to the downstream
and probing tasks of SentEval (Conneau and Kiela,
2018) and analyze what type of information is cap-
tured. Our results demonstrate that the supervision
signals have a significant impact on performance
on these tasks and that the properties of SBERT and
DefSent would be complementary. Thus, we fur-
ther explore whether combining the two methods
yields better sentence embeddings to confirm their
complementarity, and demonstrate that combining
the two methods yields substantially better perfor-
mance than the respective methods on unsupervised
STS tasks and downstream tasks of SentEval.

2 Preparation

In this section, we present detailed descriptions of
SBERT and DefSent, the two sentence embedding
methods compared in this study, and describe the
tasks and settings for the experiments.

2.1 Sentence-BERT

Sentence-BERT (SBERT) proposed by Reimers
and Gurevych (2019) is a sentence embedding
method that fine-tunes pre-trained language models
in a Siamese network architecture on the NLI task.
An overview of SBERT is given on the left side of
Figure 1!. For fine-tuning of SBERT, NLI datasets,
such as the Stanford NLI (SNLI) dataset (Bow-
man et al., 2015) and Multi-Genre NLI (MultiNLI)
dataset (Williams et al., 2018), are used. These
datasets consist of sentence pairs labeled as either
entailment, contradiction, or neutral. The NLI task
is a classification task to predict these labels.
SBERT first inputs each sentence of a pair into
BERT and obtains sentence embeddings from the
output contextualized word embeddings by a pool-

! Actually, it is possible to use ROBERTa and others instead
of BERT, but for simplicity we refer to it as BERT here.

ing operation. SBERT uses three types of pooling
strategies: CLS, which uses the embedding of the
first token of the input sequence (e.g., the [CLS]
token for BERT); Mean, which uses the average
of all word embeddings; and Max, which uses the
max-over-time of all word embeddings. Let u and
v be the sentence embeddings obtained by such
pooling. SBERT composes a vector [u; v; |[u — v|]
and inputs it into a three-way softmax classifier to
predict the label of the given sentence pair.

2.2 DefSent

DefSent proposed by Tsukagoshi et al. (2021) is
a sentence embedding method that fine-tunes pre-
trained language models on the task of predicting
a word from its definition sentence in a dictionary.
An overview of DefSent is given on the right side of
Figure 1. As well as SBERT, DefSent first inputs
a definition sentence into BERT and obtains the
sentence embedding by a pooling operation, which
uses CLS, Mean, and Max as the pooling strategies.
The derived sentence embedding is then input to the
word prediction layer and fine-tunes the model to
predict the corresponding word. The word predic-
tion layer is the one that was used for masked lan-
guage modeling during pre-training. Tsukagoshi
et al. (2021) reported that DefSent performed com-
parably to SBERT.

2.3 STS tasks

We use STS tasks to investigate the properties of
sentence embeddings. STS tasks evaluate how the
semantic similarity between two sentences calcu-
lated with a model correlates with a human-labeled
similarity score through Pearson and Spearman
correlations. There are two types of settings: super-
vised and unsupervised. In the supervised setting, a
model learns a regression function that maps a pair
of sentences to a similarity score using some of the
STS datasets. In the unsupervised setting, no train-
ing is performed on STS datasets, and we compute
the similarity between two sentence embeddings,
with a similarity score such as cosine similarity.
For the evaluation of the STS tasks, STS12—
STS16 (Agirre et al., 2012, 2013, 2014, 2015,
2016), STS Benchmark (Cer et al., 2017), and
SICK-R (Marelli et al., 2014) are often used. Each
dataset contains sentence pairs with their seman-
tic similarity scores as gold labels given by real
numbers ranging from 0 to 5. Each of the STS12—
STS16 datasets consists of sentence pairs from mul-
tiple sources. For example, STS12 consists of sen-

140

Sources # | Origin
MSRpar 750 | newswire
MSRvid 750 | videos
STS12 SMTeuroparl | 459 | WMT eval.
OnWN 750 | glosses
SMTnews 399 | WMT eval.
FNWN 189 | glosses
STS13 headlines 750 | newswire
OnWN 561 | glosses
deft-forum 450 | forum posts
deft-news 300 | news summary
headlines 750 | newswire headlines
STS14 ; . o
images 750 | image descriptions
OnWN 750 | glosses
tweet-news 750 | tweet-news pairs
answers-forums | 375 | Q&A forum answers
answers-students | 750 | student answers
STS15 belief 375 | committed belief
headlines 750 | newswire headlines
images 750 | image descriptions
answer-answer | 254 | Q&A forum answers
headlines 249 | newswire headlines
STS16 plagiarism 230 | short-answer plag.
postediting 244 | MT postedits
question-question | 209 | Q&A forum questions

Table 1: Statistics of STS datasets partitioned by source.
“#” denotes number of sentence pairs, and “Origin” de-
notes origin of dataset.

tence pairs from five sources: MSRpar, MSRvid,
SMTeuroparl, OnWN, and SMTnews. Table 1 lists
the sources of each dataset in STS12-STS16.

2.4 SentEval

We also compare SBERT and DefSent on SentEval
(Conneau and Kiela, 2018) tasks. SentEval is a
widely used toolkit to evaluate the quality of sen-
tence embeddings by measuring the performance
on classification tasks. Since SentEval provides var-
ious classification tasks, it is suitable for investigat-
ing the properties of sentence embeddings. SentE-
val consists of two types of tasks: downstream tasks
and probing tasks. Downstream tasks are binary or
multi-class classification tasks, such as sentiment
classification in movie reviews and question-type
classification. Probing tasks are classification tasks
for linguistic information, such as sentence length
and tense classification.

2.5 Experimental settings

In the experiments reported in Sections 3 and
4, we use BERT-base (bert-base-uncased), BERT-
large (bert-large-uncased), ROBERTa-base (roberta-
base), and RoBERTa-large (roberta-large) from
Transformers (Wolf et al., 2020) as the pre-trained
language models and adopt Mean as the pooling
strategy. We use the same settings as Reimers and
Gurevych (2019) and Tsukagoshi et al. (2021) for

fine-tuning. We provide further training details in
Appendix A, and report the fine-tuning time and
computing infrastructure in Appendix B.

3 Comparison of Sentence Embeddings

The supervision signal used for fine-tuning sen-
tence embeddings might affect their properties. For
example, since it is crucial to capture the differ-
ences in meaning even when the given sentence
pair is superficially similar in the NLI task, SBERT
is considered suitable for determining the semantic
similarity between superficially similar sentence
pairs. In this section, we attempt to reveal such
properties of each type of sentence embeddings.
First, we partition the STS datasets on the basis of
the source of the sentence pairs and the superficial
similarity of the sentence pair. We then apply each
type of embeddings to the downstream and probing
tasks of SentEval.

3.1 STS partitioned by source

We assume that each sentence embedding method
might better capture the meaning of sentences sim-
ilar to those in the dataset used for fine-tuning,
1.e., NLI datasets for SBERT and word dictionar-
ies for DefSent. Thus, we partition STS12-STS16
datasets in accordance with the source of the sen-
tences and measure the performance for each sub-
set. We adopt the unsupervised setting. We cal-
culate Spearman’s rank correlation coefficient (p)
between semantic similarity scores and each type
of sentence embeddings. For comparison, we con-
duct evaluations on the concatenation of all subsets,
i.e., the STS datasets without partitioning. We fine-
tune and evaluate SBERT and DefSent 10 times
with different seed values and report the average.
We also evaluate the model without fine-tuning (w/o
FT) for comparison.

Figure 2 shows the Spearman’s p for the sub-
sets of the STS12-STS16 datasets. It is worth
noting that since we use correlations, the evalua-
tion score on the concatenation of all subsets is
not the average of the other scores, and in extreme
cases it can be smaller than the minimum of the
other scores. We can see that both SBERT and
DefSent achieve higher scores than w/oFT on most
subsets. Although DefSent consistently performs
better than w/oFT in all subsets, SBERT performs
worse than w/oFT in some subsets. Comparing
SBERT and DefSent, when we focus on individ-
ual subsets, we can find that there are cases in

141

= w/0 FT ® SBERT m DefSent

= 3088

ST ST 2 A L L e (O 7 8

MSRpar I —— . 5 76

I —————————— |/ /|
———— 40 77

67.31

sy ————————— — e iy

STS12 87.96
SMT Ny 5657R214
SNy
O e e 69.23
66.82
Y mcomia
T TS 13 AL L A —— 7251 8176
S R,
STS13 e —————— 5 (7])
headlines e e 70 245 o
L OnWN —5.6.7-3— 7513 86.70
TS AL e 70,47 o3
forum S Cemm———
deft-forum T V7 55.95
71 7
et news e
STS14 headiines E e L = 70,59
images e 7776
OnWN —6-%-6.6_ 7873
e
68.97
TSI AL e s 7795
ansHers - e ——¥ ‘
O LI e — 71.00
A1 S W S - e — 58 60
S U N1 e —— () / /|5 76.21
STS15 792 51
0@ | /| 30 81.72
headlines s 76,02
L images =6§.-9.7—878§S14
[sTS16ALL —6&7-3_ 73.45 76.91
ANSWer- S———— 53] ()
S e e U . 73.0]
headlines 5401 75.92
STS16 76.1579 n
plagiarism L8 83.80
postediting 3120 85.78
86.08
question- 46 55 57,58
L question = 67.33
30 40 50 60 70 80 90

Figure 2: Spearman’s p x 100 for STS12-STS16 datasets partitioned by source. “STS# ALL” denotes the

concatenation of all subsets for each STS dataset.

which SBERT achieves higher scores than Def-
Sent, but we can say that DefSent achieves slightly
higher scores as a whole. DefSent achieves no-
ticeably higher scores than SBERT on OnWN and
FNWN of STS13 and OnWN of STS14. OnWN
and FNWN of STS13 are datasets created using
definition sentences in OntoNotes, FrameNet, and
WordNet. These results, as expected, indicate that
DefSent is capable of adequately representing the
meaning of definition sentences. However, SBERT
achieves higher scores than DefSent on deft-forum
and headlines of STS14 and answer-students of
STS15. Regarding answer-students, since it is built
from a dataset that has a similar format to the NLI
datasets (Agirre et al., 2015), it is considered a
score such as the one observed is as expected for

SBERT, which is trained on the NLI datasets.

3.2 STS partitioned by Dice coefficient

We then explore how the similarity of sentence em-
beddings is affected by the superficial similarity
of the sentences. Generally speaking, it is con-
sidered difficult to correctly order the similarity
of a dataset consisting of pairs with high superfi-
cial similarity. However, since the NLI datasets
contain a relatively large number of superficially
similar sentences, SBERT built on such a dataset
is expected to be relatively robust to sentence pairs
with high superficial similarity. To verify whether
there is such a tendency, we partition STS Bench-
mark datasets in accordance with the superficial
similarity of the sentences and investigate the per-

142

sentence 1 sentence 2 Human Dice | w/oFT SBERT DefSent
A man is playing a guitar. The man is playing the guitar. 4909 0.800 | 0.906 0.985 0.978
A man is playing a guitar. A guy is playing an instrument. 3.800 0.545 | 0.945 0.646 0.895
A man is playing a guitar. A man is playing a guitar and singing. 3200 0.833 | 0.979 0.874 0.977
A man is playing a guitar. The girl is playing the guitar. 2.250 0.600 | 0.900 0.747 0.831
A man is playing a guitar. A woman is cutting vegetable. 0.000 0.400 | 0.890 0.290 0.595

Table 2: Example sentence pairs in STS Benchmark datasets and their scores. “Human” denotes human-labeled
similarity scores, “Dice” denotes Dice coefficients, and “w/oFT”, “SBERT”, and “DefSent” denote cosine similarities
between each sentence embedding computed with BERT without fine-tuning, SBERT, and DefSent, respectively.
The average cosine similarity for w/oFT is 0.816, for SBERT is 0.678, and for DefSent is 0.809.

formance of each embedding method on the par-
titioned datasets. Specifically, we use Dice coeffi-
cients between the sets of words in a sentence pair
as the superficial similarity, which is defined as

. Q‘Wl N W2|
DlCC(Sl,SQ) = m,

where 57 and S5 are the sentence pair, and W7 and
Wy, are the sets of words in S1 and S2, respectively.
We sort the sentence pairs in all STS Benchmark
datasets including training, development, and test
sets in accordance with the Dice coefficient, and
partition them into five subsets, that is, grouping
20% of the sentences from bottom to top.

Figure 3 shows the Spearman’s p for each sub-
sets. We can confirm that the subsets with larger
Dice coefficients, that is, a higher superficial simi-
larity, tend to be more difficult to rank the semantic
similarities. However, as expected, SBERT is more
robust to the subsets with higher superficial simi-
larity, and consequently, SBERT achieves a higher
score than DefSent for these subsets, whereas Def-
Sent achieved a higher score than SBERT for the
subsets with a lower superficial similarity.

For further investigation, we conduct a qualita-
tive analysis of how superficial similarity affects
the behavior of the methods. Table 2 shows exam-
ple sentence pairs from STS Benchmark datasets
with their human-labeled similarity scores, Dice co-
efficients, and cosine similarities between each sen-
tence embedding with the respective methods. As
shown in the second row from the top, we observe
that each sentence of the pair represents almost
the same thing except for minor details (“guitar”
or “instrument”), but SBERT assigns relatively a
much lower similarity than other examples. As
shown in the third row from the top, the similar-
ity score of DefSent is very high, even though the
human-labeled score is not that high. In summary,
we can say that SBERT is better at capturing the se-
mantic similarity of superficially similar sentences,

® w/oFT @ SBERT @ DefSent
80 7520

70.39

35.92

Spearman's p
B
o

0 t t t t t
0.4261 0.5493 0.6675 0.8137
Avg. Dice

Figure 3: Spearman’s p x 100 for STS Benchmark
partitioned in accordance with the ratio of shared words.
Sentence pairs are more superficially similar to right.

while DefSent is better at capturing the similarity
of sentences with low superficial similarity.

3.3 SentEval donwstream tasks

We then apply each type of embeddings to the
downstream tasks of SentEval and analyze what
type of information each type of embeddings cap-
tures that is useful for the downstream task. We
train a logistic regression classifier with 10-fold
cross-validation, a batch size of 64, an epoch size
of 4, and Adam (Kingma and Ba, 2015) optimizer,
the same as the default configurations of SentEval.
Specifically, parameters of sentence embedding
models are fixed during training of the classifier.
We fine-tune and evaluate SBERT and DefSent
three times with different seed values and report
the average of accuracy for each downstream task.
We also evaluate w/oFT for comparison.

Figure 4 shows the accuracy for downstream
tasks. As a whole, SBERT and DefSent perform
comparably. SBERT performs best for MR, CR,
SST2, and MRPC. Since MR, CR, and SST?2 are
sentiment prediction tasks, it suggests that SBERT
encodes the sentiment of sentences into the em-
bedding. Also, MRPC is a paraphrase-prediction

143

= w/o FT ® SBERT ® DefSent

TREC I 85.03
I 00.07

. /3.68
MRPC I /6.19
I 75.38

70 75 80 85 90 95 100

Figure 4: Experimental results on each SentEval
downstream task with the accuracy (%).

task, which predicts whether two sentences have
the same meaning on the basis of their embeddings.
Therefore, MRPC is similar to the NLI task, and
thus it is not surprising that SBERT performs better.

DefSent performs best for MPQA and is com-
parable to w/oFT for SUBJ and TREC. MPQA is
a phrase-level opinion polarity classification task,
and it is necessary to compose the meaning of
phrases adequately. We conjecture that the perfor-
mance of DefSent is high because DefSent success-
fully composes the meaning of the corresponding
words from the definition sentences during fine-
tuning. It is worth noting that w/oFT performs best
for SUBJ and TREC, and SBERT performs much
worse for them. SUBJ is a subjectivity classifica-
tion task and TREC is a question-type classification
task. Since information about words in sentences
is particularly important for these tasks, SBERT is
considered to have less information about which
words are included in sentences than DefSent and
w/oFT. Therefore, we can say that SBERT encodes
mainly sentiment information into the sentence em-
bedding, and the sentence embedding is suitable
for determining whether the meaning is the same.
Also, DefSent successfully composes the meaning
of the sentence from its words and encodes infor-
mation about words the sentence has.

3.4 SentEval probing tasks

Finally, we apply each type of embeddings to the
probing tasks of SentEval and analyze what type
of linguistic information each type of embeddings
captures. We use the same setting as in Section 3.3.

® w/o FT m SBERT m DefSent

82.00

Length I | 63.68
79.09

—— 61.21
WordContent I 5581
I 671.99

I 36.20
Depth §_30.77
R 3441

I 72.74
O N 58.41
Constituents S 70,68

I | 88.77
BigramShift I, /.61
. 53.92

I 66.71
OddManOut I (.68
I 64.92

iation I 6,03
O e 63,0
e 0N | — 66.81

., 73.29
Avg. I, 65.45
I, 71.43

30 40 50 60 70 80 920

Figure 5: Experimental results on each SentEval
probing task with the accuracy (%).

Figure 5 shows the accuracy for probing tasks.
Overall, w/oFT performs best on average, followed
by DefSent, and then SBERT. The overall perfor-
mance of SBERT is relatively low. SBERT encodes
the semantic information of sentences according to
the results of SentEval downstream tasks. These
results also indicate that SBERT encodes semantic
information rather than linguistic information such
as words in a sentence. DefSent is comparable to
w/oFT in WordContent, Tense, and SubjNumber.
This also indicates that the sentence embeddings
from DefSent have information about words the
sentence contains.

4 Combination of Sentence Embeddings

We have shown that SBERT and DefSent have dif-
ferent properties and that they may be complimen-
tary. This suggests that combining the two methods
may yield better sentence embeddings. Thus, we
attempt to combine SBERT and DefSent and evalu-
ate the resulting sentence embeddings on unsuper-
vised STS tasks and SentEval downstream tasks.
Specifically, we use the following five methods of
combining SBERT and DefSent for BERT?.

’The experimental results for ROBERT are given in Ap-
pendix C and D.

144

Model Method STS12 | STS13 | STS14 | STSI5 | STS16 | STS-B | SICK-R || Avg.
BERT-base | w/oFT 30.88 | 59.90 | 47.74 | 6029 | 6373 | 4729 | 5822 | 52.58
BERT-base | SBERT 69.78 | 72.51 | 7042 | 77.95 | 7345 | 7596 | 7226 | 73.19
BERT-base | DefSent 67.31 | 81.76 | 71.83 | 78.18 | 76.91 | 7698 | 7347 | 75.20
BERT-base | S+D 70.71 | 83.48 | 76.66 | 82.00 | 78.70 | 80.76 | 76.83 | 78.45
BERT-base | D+S 68.68 | 73.65 | 70.60 | 76.96 | 72.54 | 7530 | 72.46 | 72.89
BERT-base | MULTI 63.10 | 7434 | 7030 | 77.64 | 74.08 | 7735 | 7342 | 72.89
BERT-base | AVERAGE || 72.40 | 81.36 | 75.80 | 81.90 | 77.64 | 79.74 | 75.87 | 77.81
BERT-base | CONCAT 7113 | 78.54 | 7403 | 79.95 | 76.01 | 7837 | 7417 || 76.03
BERT-large | w/oFT 27.69 | 55.78 | 4448 | 51.67 | 61.85 | 47.00 | 53.85 | 48.90
BERT-large | SBERT 70.76 | 73.68 | 72.56 | 79.00 | 74.61 | 77.11 | 7247 | 7431
BERT-large | DefSent 6330 | 82.16 | 72.67 | 79.06 | 77.52 | 77.40 | 74.02 | 75.16
BERT-large | S+D 69.48 | 83.90 | 76.83 | 82.61 | 80.14 | 8172 | 78.77 | 79.06
BERT-large | D+S 7125 | 7571 | 7339 | 79.68 | 7520 | 77.67 | 7378 || 75.24
BERT-large | MULTI 7033 | 81.16 | 75.84 | 80.02 | 7652 | 78.65 | 7430 | 76.69
BERT-large | AVERAGE | 71.85 | 82.60 | 77.33 | 82.52 | 79.12 | 80.71 | 7630 | 78.63
BERT-large | CONCAT 7137 | 80.28 | 76.08 | 81.10 | 77.63 | 79.57 | 7471 || 77.25

Table 3: Experimental results on unsupervised STS tasks with Spearman’s p x 100.

S+D Fine-tuning the pre-trained model with
SBERT then with DefSent sequentially.

D+S Fine-tuning the pre-trained model with Def-
Sent then with SBERT sequentially.

MULTI Multi-task learning with SBERT and Def-
Sent. The ratio of the size of the NLI dataset
to the dictionary dataset is about 19:1, so we
do 19 steps with SBERT and then 1 step with
DefSent for the same model.

AVERAGE Averaging embeddings of separately
fine-tuned models with SBERT and DefSent.

CoONCAT Concatenate embeddings of separately
fine-tuned models with SBERT and DefSent.

4.1 Evaluation on unsupervised STS tasks

We first estimate the resulting sentence embed-
dings on unsupervised STS tasks. We use the
same settings described in Section 2.5. We use
STS12-STS16, STS Benchmark test set (STS-B),
and SICK-Relatedness (SICK-R) for the evalua-
tion. We compute sentence similarities by using
the cosine similarity of sentence embeddings de-
rived from the respective combinations and calcu-
late Spearman’s p with gold labels. We conduct
fine-tuning and evaluations 10 times with different
seed values and report the average.

Table 3 shows the experimental results. The com-
binations S+D, AVERAGE, and CONCAT always
outperform SBERT and DefSent. Among them,
S+D achieves the best average score for base and
large models. However we cannot confirm much
performance improvement with D+S and MULTI.
We leave an analysis of what affects this difference
in performances as future work.

4.2 Evaluation on the SentEval tasks

We then estimate the resulting sentence embed-
dings on the SentEval tasks. We use the same
settings described in Section 3.3. We conduct fine-
tuning and evaluations three times with different
seed values and report the average.

Table 4 shows the results. We can see that CON-
CAT achieves the highest average score but it should
be noted that since SentEval performed super-
vised learning of a logistic regression classifier, the
high dimensionality of the sentence embeddings
of CONCAT is advantageous. Other than CONCAT,
AVERAGE performs relatively well, which always
outperforms S+D, D+S, and MULTI, unlike in the
STS tasks. This suggests that fine-tuning the same
model with different tasks might degrade the gen-
eralization ability.

5 Related work

Sentence embedding has been studied intensively.
Kiros et al. (2015) proposed SkipThought, which
trains a sentence embedding model by predicting
the previous and next sentence from the embed-
ding of a given sentence. Conneau et al. (2017)
proposed InferSent, which trains a sentence embed-
ding model built on BiLSTM in a Siamese network
architecture on the NLI task. Cer et al. (2018) pro-
posed Universal Sentence Encoder (USE), which
is trained on an NLI dataset, and has also shown
the effectiveness of NLI datasets in obtaining so-
phisticated sentence embeddings.

Recently, methods that leverage pre-trained lan-
guage models to acquire sentence embeddings have
attracted much attention. Pre-trained language
models, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), acquire linguistic

145

Model Method MR CR SUBJ | MPQA | SST-2 | TREC | MRPC Avg.
BERT-base || w/oFT 81.50 | 86.94 | 95.22 | 87.72 8594 | 90.60 | 73.68 85.94
BERT-base || SBERT 82.67 | 89.43 | 9344 | 89.66 88.12 | 85.93 76.19 86.49
BERT-base || DefSent 81.77 | 87.97 | 9491 89.90 86.27 | 90.07 | 75.38 86.61
BERT-base || S+D 81.29 | 89.10 | 93.99 | 90.09 86.69 | 89.33 77.08 86.80
BERT-base || D+S 82.43 | 89.22 | 9324 | 90.16 | 88.98 | 83.33 75.27 86.09
BERT-base || MULTI 81.73 | 88.80 | 93.17 | 89.27 87.28 | 87.87 75.54 86.23
BERT-base || AVERAGE | 83.17 | 89.50 | 94.67 | 90.35 88.50 | 89.67 76.41 87.47
BERT-base || CONCAT 83.24 | 89.64 | 95.18 | 90.51 88.94 | 90.60 | 77.37 87.93
BERT-large || w/oFT 84.30 | 89.16 | 95.60 | 86.65 89.29 | 91.40 | 71.65 86.86
BERT-large || SBERT 84.76 | 90.61 | 94.08 | 90.04 | 90.77 | 85.47 75.90 87.38
BERT-large || DefSent 84.54 | 89.40 | 95.55 | 90.04 89.49 | 88.73 74.82 87.51
BERT-large || S+D 84.01 | 90.49 | 95.07 | 90.50 | 90.35 | 90.20 | 75.61 88.03
BERT-large || D+S 84.55 | 90.68 | 9346 | 90.22 | 90.21 | 84.73 75.01 86.98
BERT-large || MULTI 84.63 | 90.56 | 94.10 | 89.85 90.23 | 88.70 | 76.56 87.80
BERT-large || AVERAGE | 85.46 | 90.92 | 95.20 | 90.53 91.27 | 88.27 | 77.00 88.38
BERT-large || CONCAT 85.53 | 90.83 | 95.27 | 90.66 | 91.95 | 89.60 | 75.88 88.53

Table 4: Experimental results on each SentEval task with the accuracy (%).

knowledge by training on large texts and perform
well on downstream tasks. Pre-trained models
are also considered helpful for sentence embed-
ding. There are two types of methods based on
pre-trained models: unsupervised and supervised.
Unsupervised methods do not require labeled
text but exploit the properties of pre-trained lan-
guage models or create training data artificially. Li
et al. (2020) showed that the sentence embedding
space of BERT is anisotropic, and proposed BERT-
flow, which learns a map to an isotropic Gaussian
distribution to obtain sentence embedding. Sev-
eral studies have also been based on contrastive
learning, and are different in the way to make pos-
itive examples: DeCLUTR (Giorgi et al., 2021)
takes into account different spans of the same doc-
ument as positives; ConSERT (Yan et al., 2021)
takes into account a pair of an original sentence
and a collapsed sentence as positives; unsupervised
SimCSE (Gao et al., 2021) takes into account the
corresponding embeddings of the same sentence
with different dropout masks applied as positives.
Supervised methods use labeled text to encode
higher-level semantic information. Supervised
methods generally produce more sophisticated sen-
tence embeddings than unsupervised methods. In
addition to SBERT and DefSent, supervised Sim-
CSE (Gao et al., 2021) is one of the supervised
sentence embedding methods. Supervised SimCSE
fine-tunes BERT by contrastive learning using en-
tailment pairs in the NLI datasets as positives.

6 Conclusion

In this paper, we empirically investigated the in-
fluence of supervision signals used for obtaining
sentence embeddings. We focused on two methods:

SBERT, which uses NLI datasets, and DefSent,
which uses word dictionaries. We showed that there
is a difference in the ability to order the similarity of
sentences depending on their source or superficial
similarity by comparing their performances on sub-
sets of the STS datasets and tasks of SentEval. We
found that SBERT is suitable for superficially simi-
lar sentence pairs because SBERT is based on the
NLI datasets that contain a relatively large number
of superficially similar sentences, whereas DefSent
is suitable for sentence pairs that need to repre-
sent the compositional meaning because DefSent
is based on definition sentences of a dictionary.

We also showed that SBERT performed better in
tasks where sentiment information was important,
while DefSent performed better in tasks where in-
formation about words and the compositionality of
meaning were important by comparing their per-
formances on downstream and probing tasks of
SentEval. Finally, we demonstrated that combining
the two methods yielded substantially better perfor-
mance than the respective methods on unsupervised
STS tasks and downstream tasks of SentEval.

For future work, we will expand the scope of
our analysis to other pre-trained language mod-
els and sentence embedding methods to obtain in-
sights for better sentence embeddings. In addi-
tion, We will investigate how those combination
methods affect the properties of resulting sentence
embeddings and explore how to effectively com-
bine unsupervised sentence embedding methods,
which have recently achieved good performance,
such as DeCLUTR (Giorgi et al., 2021) and unsu-
pervised SIimCSE (Gao et al., 2021), with super-
vised sentenece embedding methods. Moreover,
the combination of unsupervised methods, which

146

have recently achieved good performance, such as
DeCLUTR (Giorgi et al., 2021) and unsupervised
SimCSE (Gao et al., 2021), and supervised meth-
ods should also be promising.

Acknowledgements

This work was supported by JSPS KAKENHI
Grant Number 21HO04901.

References

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer,
Mona Diab, Aitor Gonzalez-Agirre, Weiwei Guo,
Ifiigo Lopez-Gazpio, Montse Maritxalar, Rada Mihal-
cea, German Rigau, Larraitz Uria, and Janyce Wiebe.
2015. SemEval-2015 Task 2: Semantic Textual Sim-
ilarity, English, Spanish and Pilot on Interpretability.
In Proceedings of the 9th International Workshop on
Semantic Evaluation (SemEval), pages 252-263.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. SemEval-2014 Task 10: Multilingual
Semantic Textual Similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval), pages 81-91.

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. SemEval-2016
Task 1: Semantic Textual Similarity, Monolingual
and Cross-Lingual Evaluation. In Proceedings of the
10th International Workshop on Semantic Evaluation
(SemEval), pages 497-511.

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 Task 6: A
Pilot on Semantic Textual Similarity. In *SEM 2012:
The First Joint Conference on Lexical and Computa-
tional Semantics — Semantic Evaluation (SemEval),
pages 385-393.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic Textual Similarity. In Second Joint
Conference on Lexical and Computational Semantics
(*SEM), pages 32—43.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 632—-642.

Fredrik Carlsson, Amaru Cuba Gyllensten, Evan-
gelia Gogoulou, Erik Ylipad Hellqvist, and Mag-
nus Sahlgren. 2021. Semantic Re-tuning with Con-
trastive Tension. In International Conference on
Learning Representations (ICLR).

Daniel Cer, Mona Diab, Eneko Agirre, Ifiigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemkEval), pages 1-14.

Daniel Matthew Cer, Yinfei Yang, Sheng yi Kong, Nan
Hua, Nicole Limtiaco, Rhomni St. John, Noah Con-
stant, Mario Guajardo-Cespedes, Steve Yuan, C. Tar,
Yun-Hsuan Sung, B. Strope, and R. Kurzweil. 2018.
Universal Sentence Encoder. arXiv:1803.11175.

Alexis Conneau and Douwe Kiela. 2018. SentEval: An
Evaluation Toolkit for Universal Sentence Represen-
tations. In Proceedings of the Eleventh International

Conference on Language Resources and Evaluation
(LREC), pages 1699—-1704.

Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic
Barrault, and Antoine Bordes. 2017. Supervised
Learning of Universal Sentence Representations from
Natural Language Inference Data. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 670—-680.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL), pages 4171-4186.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021.
SimCSE: Simple Contrastive Learning of Sentence
Embeddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-

ing (EMNLP), pages 6894-6910.

John Giorgi, Osvald Nitski, Bo Wang, and Gary Bader.
2021. DeCLUTR: Deep Contrastive Learning for
Unsupervised Textual Representations. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(ACL-1JCNLP), pages 879-895.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning Distributed Representations of Sentences
from Unlabelled Data. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), pages 1367—
1377.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In 3rd Inter-
national Conference on Learning Representations
(ICLR).

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, Richard
Zemel, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Skip-Thought Vectors. In Advances
in Neural Information Processing Systems (NIPS),
pages 3294-3302.

147

Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang,
Yiming Yang, and Lei Li. 2020. On the Sentence
Embeddings from Pre-trained Language Models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9119-9130.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa:
A Robustly Optimized BERT Pretraining Approach.
arXiv:1907.11692.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence represen-
tations. In International Conference on Learning
Representations (ICLR).

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zampar-
elli. 2014. A SICK cure for the evaluation of com-
positional distributional semantic models. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC), pages
216-223.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992.

Hayato Tsukagoshi, Ryohei Sasano, and Koichi Takeda.
2021. DefSent: Sentence Embeddings using Defini-
tion Sentences. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 1 1th International Joint Conference
on Natural Language Processing (ACL-IJCNLP),
pages 411-418.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 5998-6008.

Bin Wang and C.-C. Jay Kuo. 2020. SBERT-WK: A
Sentence Embedding Method by Dissecting BERT-
Based Word Models. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 28:2146—
2157.

Kexin Wang, Nils Reimers, and Iryna Gurevych. 2021.
TSDAE: Using Transformer-based Sequential De-
noising Auto-Encoder for Unsupervised Sentence
Embedding Learning. arXiv:2104.06979.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL),
pages 1112-1122.

148

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-Art Natural Language Processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP):
System Demonstrations, pages 38—45.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. ConSERT: A Con-
trastive Framework for Self-Supervised Sentence
Representation Transfer. In Proceedings of the 59th
Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint
Conference on Natural Language Processing (ACL-
IJCNLP), pages 5065-5075.

A Training Details

For fine-tuning of SBERT and DefSent, we use a
batch size of 16, an epoch size of 1, Adam (Kingma
and Ba, 2015) optimizer with 81 = 0.9, 8y =
0.999, and a linear learning rate warm-up over 10%
of training steps for each, as the same setting as
Reimers and Gurevych (2019) and Tsukagoshi et al.
(2021). We choose the learning rate that achieves
the highest average score on the validation set for
each respective model by fine-tuning three times
with different seed values at each learning rate in
arange of z x 1079,z € {1,2,5,10,20,50}. We
also use smart batching, and the max sequence
length is 128 for training efficiency.

B Average Runtime and Computing
Infrastructure

Fine-tuning of SBERT with BERT-base and
RoBERTa-base took about 120 minutes on a single
NVIDIA GeForce GTX 1080 Ti. Fine-tuning of
DefSent with BERT-base and RoBERTa-base took
about 10 minutes on a single NVIDIA GeForce
GTX 1080 Ti. Fine-tuning of SBERT with BERT-
large and RoBERTa-large took about 130 minutes
on a single Quadro GV100. Fine-tuning of DefSent
with BERT-large and RoBERTa-large took about
15 minutes on a single Quadro GV100.

C The details of evaluation on
unsupervised STS tasks of RoOBERTa

Table 5 shows the average of Spearman’s rho for
RoBERTa-base and RoBERTa-large on unsuper-
vised STS tasks.

D The details of evaluation on SentEval
of RoBERTa

Table 6 shows the average of accuracy for
RoBERTa-base and RoBERTa-large on SentEval.

149

Model Method STS12 | STS13 | STS14 | STS15 | STS16 | STS-B | SICK-R Avg.
RoBERTa-base | w/oFT 30.61 55.55 46.78 58.43 61.21 54.36 62.17 52.73
RoBERTa-base | SBERT 70.20 74.44 71.86 78.70 74.47 76.92 72.11 74.10
RoBERTa-base | DefSent 60.05 76.16 69.06 74.07 77.86 76.58 74.05 72.55
RoBERTa-base | S+D 73.19 83.86 77.45 83.32 78.88 80.67 76.97 79.19
RoBERTa-base | D+S 70.97 75.07 72.50 79.04 74.56 77.13 72.81 74.58
RoBERTa-base | MULTI 69.27 77.34 73.10 80.68 76.08 71.97 73.61 75.44
RoBERTa-base | AVERAGE 71.61 78.65 74.65 80.30 76.71 78.56 74.04 76.36
RoBERTa-base | CONCAT 70.69 76.03 72.92 79.08 75.34 77.50 72.73 74.90
RoBERTa-large | w/oFT 26.00 54.35 44.10 56.35 60.37 47.01 58.11 49.47
RoBERTa-large | SBERT 74.04 79.47 75.47 82.77 79.50 80.49 74.19 77.99
RoBERTa-large | DefSent 57.79 74.67 69.01 72.98 75.48 77.39 72.55 71.41
RoBERTa-large | S+D 66.62 79.60 75.81 77.91 78.45 80.46 77.45 76.61
RoBERTa-large | D+S 74.18 79.81 76.38 82.85 78.78 80.38 74.86 78.18
RoBERTa-large | MULTI 61.34 57.43 60.17 75.56 73.78 74.92 70.10 67.62
RoBERTa-large | AVERAGE 73.43 82.97 77.85 83.82 80.65 82.09 75.91 79.53
RoBERTa-large | CONCAT 74.04 80.96 76.60 83.20 80.33 81.24 74.77 78.73
Table 5: Experimental results on unsupervised STS tasks with Spearman’s p x 100.
Model Method MR CR SUBJ | MPQA | SST-2 | TREC | MRPC Avg.
RoBERTa-base || w/oFT 84.35 | 88.19 | 95.28 86.49 89.46 | 93.20 74.20 87.31
RoBERTa-base || SBERT 85.35 | 91.50 | 93.15 | 90.95 92.06 | 87.07 76.62 88.10
RoBERTa-base || DefSent 84.70 | 91.15 | 94.55 90.56 89.88 | 92.40 76.43 88.52
RoBERTa-base || S+D 85.04 | 91.40 | 94.17 | 90.81 90.63 | 92.00 | 77.14 88.74
RoBERTa-base || D+S 85.20 | 91.34 | 9345 90.84 9220 | 88.20 76.29 88.22
RoBERTa-base || MULTI 85.15 | 91.00 | 9325 | 90.69 91.47 | 89.67 77.08 88.33
RoBERTa-base || AVERAGE | 85.57 | 91.66 | 94.01 91.14 92.55 | 89.67 78.12 88.96
RoBERTa-base || CONCAT 86.04 | 91.68 | 9470 | 91.02 | 9240 | 93.93 78.24 89.72
RoBERTa-large || w/oFT 85.46 | 88.72 | 96.04 | 8834 | 91.27 | 93.80 | 73.80 88.20
RoBERTa-large || SBERT 87.35 | 9256 | 94.13 | 90.99 92.77 | 9220 | 76.00 89.43
RoBERTa-large || DefSent 86.28 | 91.14 | 95.12 | 90.97 90.74 | 92.33 73.74 88.62
RoBERTa-large || S+D 86.77 | 92.28 | 94.68 91.22 91.98 | 92.60 77.51 89.58
RoBERTa-large || D+S 87.02 | 9240 | 93.62 | 90.80 | 92.59 | 90.93 77.35 89.25
RoBERTa-large || MULTI 87.52 | 92.56 | 94.39 91.09 93.15 | 91.60 76.69 89.57
RoBERTa-large || AVERAGE | 87.82 | 92.81 | 94.69 | 91.36 | 93.24 | 93.93 77.49 90.19
RoBERTa-large || CONCAT 87.87 | 92.84 | 95.22 91.64 93.06 | 94.27 76.23 90.16

Table 6: Experimental results on each SentEval task with the accuracy (%).

150

Distilling Hypernymy Relations from Language Models: On the
Effectiveness of Zero-Shot Taxonomy Induction

Devansh Jain®* Luis Espinosa Anke®
Department of Computer Science and Information Systems, BITS Pilani, India
® CardiffNLP (Cardiff University) - AMPLYFI
f20180798@pilani.bits-pilani.ac.in
espinosa—ankel@cardiff.ac.uk

Abstract

In this paper, we analyze zero-shot taxonomy
learning methods which are based on distilling
knowledge from language models via prompt-
ing and sentence scoring. We show that, de-
spite their simplicity, these methods outperform
some supervised strategies and are competitive
with the current state-of-the-art under adequate
conditions. We also show that statistical and

linguistic properties of prompts dictate down-

stream performance’.

1 Introduction

Taxonomy learning (TL) is the task of arranging
domain terminologies into hierarchical structures
where terms are nodes and edges denote is-a (hyper-
nymic) relationships (Hwang et al., 2012). Domain-
specific concept generalization is at the core of hu-
man cognition (Yu et al., 2015), and a key enabler
in NLP tasks where inference and reasoning are
important, e.g.: semantic similarity (Pilehvar et al.,
2013; Yu and Dredze, 2014), WSD (Agirre et al.,
2014) and, more recently, QA (Joshi et al., 2020)
and NLI (Chen et al., 2020).

Earlier approaches to taxonomy learning focused
on mining lexico-syntactic patterns from candidate
(hyponym, hypernym) pairs (Hearst, 1992; Snow
et al., 2004; Kozareva and Hovy, 2010; Boella and
Di Caro, 2013; Espinosa-Anke et al., 2016), cluster-
ing (Yang and Callan, 2009), graph-based methods
(Fountain and Lapata, 2012; Velardi et al., 2013) or
word embeddings (Fu et al., 2014; Yu et al., 2015).
These methods, which largely rely on hand-crafted
features, are still relevant today, and complement
modern approaches exploiting language models
(LMs), either via sequence classification (Chen
et al., 2021), or combining contextual, distributed,
and lexico-syntactic features (Yu et al., 2020). In

* Work done during an internship at CardiffNLP.

'Code available at

https://github.com/devanshrij/
zero—shot—-taxonomy.

parallel, several works have recently focused on us-
ing LMs as zero-shot tools for solving NLP tasks,
e.g., commonsense, relational and analogical rea-
soning (Petroni et al., 2019; Bouraoui et al., 2020;
Ushio et al., 2021; Paranjape et al., 2021), multi-
word expression (MWE) identification (Espinosa-
Anke et al., 2021; Garcia et al., 2021), QA (Shwartz
et al., 2020; Banerjee and Baral, 2020), domain
labeling (Sainz and Rigau, 2021), or lexical substi-
tution and simplification (Zhou et al., 2019). More-
over, by tuning and manipulating natural language
queries (often referred to as prompts), impressive
results have been recently obtained on tasks such as
semantic textual similarity, entailment, or relation
classification (Shin et al., 2020; Qin and Eisner,
2021).

In this paper, we evaluate LMs on TL bench-
marks using prompt-based and sentence-scoring
techniques, and find not only that they are com-
petitive with common approaches proposed in the
literature (which are typically supervised and/or
reliant on external resources), but that they achieve
state-of-the-art results in certain domains.

2 Methodology

We follow Ushio et al. (2021) and define a prompt
generation function 7, (%1, t2) which maps a pair of
terms and a prompt type p to a single sentence. For
instance,

LR N3

Trind(“physics”,
“physics is a kind of science”

science”) =

Then, given a terminology 7, the goal is to, given
an input term ¢ € T, retrieve its top k£ most likely
hypernyms, (in our experiments, k € {1,3,5}), us-
ing either masked language model (MLM) prompt-
ing (§2.1), or sentence-scoring (§2.2).

2.1 MLM Prompting

RestrictMLM Petroni et al. (2019) introduced a
“fill-in-the-blanks” approach based on cloze state-

151

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 151 - 156
July 14-15, 2022 ©2022 Association for Computational Linguistics

ments (or prompts) to extract relational knowledge
from pretrained LMs. The intuition being that
an LM can be considered to “know” a fact (in
the form of a <subject, relation, object> triple)
such as <Madrid, capital-of, Spain> if it can suc-
cessfully predict the correct words when queried
with prompts such as “Madrid is the capital of
[MASK]”. We extend this formulation to define
a hypernym retrieval function fx(-) as follows:

fr(p.t,T) = P(tunsxi|ry(t, taasz))) + T (1)

where p is a prompt type, and T is a one-hot en-
coding of the terms 7 in the LM’s vocabulary. We
follow previous works (Petroni et al., 2019; Kass-
ner et al., 2021) and restrict the output probability
distribution since this task requires the construc-
tion of a lexical taxonomy starting from a fixed
vocabulary.

PromptMLM For completeness, we also report
results for an unrestricted variant of RestrictMILM,
where the LM’s entire vocabulary is considered.

2.2 LMScorer

Factual (and true) information such as “Trout is
a type of fish” should be scored higher by a LM
than fictitious information such as “Trout is a type
of mammal”. The method for scoring a sentence
depends on the type of LM used.

Causal Language Models Given a sentence W,
causal LMs (C) predict token w; using only past
tokens W ;. Thus, a likelihood score can be esti-
mated for each token w; from the LM’s next token
prediction. The corresponding scores are then ag-
gregated to yield a score for sentence W.

W]
sc(W) = exp Z log Pe(w;|W ;) 2)
i=1
Masked Language Models Given a sentence W,

masked LMs (M) replace w; by [MASK] and pre-
dict it using past and future tokens. Thus, a pseudo-
likelihood score can be computed for each token
w; by iteratively masking it and using the LM’s
masked token prediction (Wang and Cho, 2019;
Salazar et al., 2020). The corresponding scores are
then aggregated to yield a score for sentence W.

A

sm(W) = exp [Y logPu(wi[Wy;) | 3)
=1

Given the above, we can cast TL as a sentence-
scoring problem by evaluating the natural fluency
of hypernymy-eliciting sentences. Specifically, for
each term ¢, we score the sentences generated using
7,(+) with every other term ¢’ in the terminology.
We then select the term-pair with the highest sen-
tence score and assume that the corresponding term
t’ is a hypernym of ¢. Formally, we define a hyper-
nym selection function fg(-) as follows:

fs(p,t, T) = argmax[s(rp(t,1)] (4
teT\t

where s refers to the scoring function determined
by the LM used.

3 Experimental setup

This section covers the datasets and prompts we
use in our experiments?, as well as the different
LMs we consider. Concerning evaluation metrics,
we report standard precision (P), recall (R) and
F'-score at the edge level (Bordea et al., 2016).

Dataset Details We evaluate our proposed ap-
proaches on datasets belonging to two TL Se-
mEval tasks (TExEval-1, Bordea et al. (2015) and
TExEval-2, Bordea et al. (2016)). Following recent
literature, we consider the equipment taxonomy
from TExEval-1 and the English-language environ-
ment, science and food taxonomies from TExEval-
2. For the science taxonomy, our results are based
on an average of the 3 subsets, which is in line
with previous work. Since these datasets do not
come with training data, they are well suited for
unsupervised approaches.

Domain | Source | Vv | E
environment | Eurovoc | 261 | 261
Combined 453 465
science Eurovoc 125 124
‘WordNet 429 452
food | Combined | 1556 | 1587
equipment | Combined | 612 | 615

Table 1: Taxonomies statistics. Vertices (V') and Edges
(F) are often used as structural measures.

“We use PyTorch and the t ransformers library (Wolf
et al., 2020), as well as mlm-scoring (Salazar et al., 2020)
(https://github.com/awslabs/mlm-scoring).

152

Prompts We use the following prompts:
e gen.: [t2] is more general than [£;].
* spec.: [t1] is more specific than [Z2].
* type: [t1] is a type of [t2].

gen. and spec. prompts are hand-crafted templates
to encode, in a general way, the hypernymy re-
lationship. The choice of the type prompt, how-
ever, comes from a set of experiments involving all
LPAQA (Jiang et al., 2020) prompts under the “is
a subclass of” category. We do not consider au-
tomatic prompt generation techniques (Shin et al.,
2020) due to the absence of training data. Note that
for each prompt, we replace ¢ with the input term
so that the task is always to predict its hypernym.

Language Models We interrogate BERT (Devlin
etal., 2019) and RoBERTa (Liu et al., 2019) among
masked LMs, and GPT2 (Radford et al., 2019)
among causal LMs. For each LM, we consider
two variants corresponding to approximately 117M
parameters and 345M parameters.

4 Results

Table 2 shows the results on TExEval-2’s science
and environment. We compare with the current
state of the art (Graph2Taxo) (Shang et al., 2020),
as well as with other strong baselines such as 7ax-
oRL (Mao et al., 2018) and TAXI (Panchenko et al.,
2016), the highest ranked system in TExEval-2.
We also compare with CTP (Chen et al., 2021)
to illustrate the advantages of zero-shot methods
vs finetuning. For the environment domain, we
find that RestrictMLM performs similar to CTP
and LMScorer outperforms it. Moreover, all 3
proposed approaches fail to outperform the other
baselines. However, in science, all 3 of our ap-
proaches outperform CTP, while our best model
(RestrictMLM) outperforms TAXI and is compet-
itive with TaxoRL (ours has higher precison, but
lower recall). Note that compared to our zero-shot
approaches, these methods are either supervised,
expensive to train or take advantage of external
taxonomical resources such as WordNet, or lexico-
syntactic patterns mined from the web using differ-
ent hand-crafted heuristics.

We also show results for TExEval-1’s equipment
and TExEval-2’s food (Table 3). Both datasets
are considerably larger than environment and sci-
ence. We compare with the corresponding high-
est ranked system, namely TAXI for food, and IN-
RIASAC (Grefenstette, 2015) for equipment. For

‘ environment ‘ science

Model \ P R F \ P R F

TAXI 33.8 268 299|352 353 352
TaxoRL 323 323 3231(379 379 379
Graph2Taxo | 89.0 240 37.0 | 84.0 300 44.0
CTP 23.1 230 23.0|294 288 29.1
PromptMLM | 192 192 192 | 344 320 33.1
RestrictMLM | 23.0 23.0 23.0 | 39.3 36.7 379
LMScorer 264 264 264 | 33.1 30.7 31.8

Table 2: Comparison of our best performing methods
with previous work (environment and science).

both domains, all 3 of our approaches outperform
the corresponding TExEval best-performing sys-
tems. This suggests that zero-shot TL with LMs
is robust, easily scalable and feasible on large tax-
onomies. However, a clear bottleneck for prompt-
based methods is that only single-token terms can
be predicted (using a single [MASK] token), making
this approach a lower bound for TL.

‘ food ‘ equipment
Model | P R F | P R F
TExEval | 132 251 173518 188 27.6
PromptMILM | 232 22.6 229|294 293 294
RestrictMLM | 252 246 24.9 | 384 382 38.3
LMScorer 252 246 249|377 376 376

Table 3: Comparison of our best configurations with the
best TExEval systems on food and equipment.

5 Analysis

In this section, we provide an in-depth analysis of
our approaches, including comparison of LMs and
statistical and semantic properties of prompts.

LM Comparison Table 4 compares the best con-
figuration for each LM. We can immediately see
that a conservative approach (i.e., & = 1 with
the type prompt) almost always yields the best
F-score. Another important conclusion is that,
among MLMs, BERT-Large performs best across
the board, with BERT generally outperforming
RoBERTa, a finding in line with previous works
(Shin et al., 2020). Concerning causal LMs, GPT-
2 Medium outperforms its smaller counterpart as
well as both MLMs for sentence-scoring.

Sensitivity to Prompts There is interest in un-
derstanding models’ sensitivity to prompts and

153

‘ ‘ environment ‘ science ‘ food ‘ equipment

Method | LM | pk)] P R F |(pk)|] P R F |(pky|] P R F |[(pk)|] P R F
BERT-Base (¢,1) | 18.8 18.8 18.8 | (¢,1) | 30.2 28.1 29.1 (t, 1) | 209 204 206 | (t,1) | 294 293 294
PromptMLM BERT-Large (t,1) | 192 192 192 | (¢t,1) | 344 32.0 33.1| (¢,1) | 232 22.6 229 | (t,1) | 284 283 284
4 RoBERTa-Base | (¢,1) | 180 18.0 18.0 | (¢,1) | 245 23.0 23.7 | (¢,1) | 185 18.0 182 (¢,1) | 26.3 262 263
RoBERTa-Large | (¢,1) | 180 18.0 18.0 | (¢,1) | 28.1 262 27.1 | (¢,1) | 20.3 19.8 20.0 | (¢,1) | 284 28.3 284
BERT-Base (¢,1) | 23.0 23.0 230 (¢t,1) | 358 335 346 (¢,1) | 228 222 225 (1) | 384 382 383
RestrictMLM BERT-Large (t,1) |21.8 21.8 21.8| (¢,1) | 393 36.7 379 | (¢t,1) | 252 246 249 | (¢t,1) | 379 377 378
’ RoBERTa-Base | (¢,1) | 54 54 54| (¢1) | 11.0 106 108 | (¢,1) | 93 9.1 92 (¢1) | 00 00 0.0
RoBERTa-Large | (¢,1) | 84 84 84| (¢,1) | 123 11.8 12.0| (¢t,1) | 10.7 105 106 | (¢t,1) | 0.0 0.0 0.0
BERT-Base (¢,1) [203 203 203 | (¢1) | 152 144 148 | (¢,3) | 68 197 101 | (¢,3) | 7.5 224 112
BERT-Large (¢,3) | 137 41.0 205 | (¢,1) | 13.0 124 126 | (¢,1) | 139 136 137 | (¢,1) | 152 151 15.1
LMScorer RoBERTa-Base | (¢,3) | 7.7 23.0 115 (¢3) | 55 157 81| (¢,3) | 25 72 37 (t,5) | 42 210 7.0
RoBERTa-Large | (¢,3) | 11.1 333 16.7 | (¢,1) | 13.6 128 132 | (t,3) | 3.6 106 54| (t,3) | 9.2 275 138
GPT-2 Base (t,1) | 249 249 249 | (¢,1) [293 274 283 | (¢,1) |21.0 205 207 (t,1) | 36.8 36.6 36.7
GPT-2 Medium | (¢,1) | 264 264 264 | (¢,1) | 33.1 30.7 31.8 | (¢,1) | 252 246 249 | (¢,1) | 37.7 37.6 37.7

Table 4: Comparison of best configuration for each LM and proposed approach. (

p, k) refers to the prompt and

top-k combination that gives the best results for that setting, where p = g for gen., s for spec. and t for type prompt.

whether frequency can explain downstream per-
formance in lexical semantics tasks (Chiang et al.,
2020). In the context of prompt vs. performance
correlation, we find that prompt-based downstream
performance on TL can be attributed to: (1) syn-
tactic completeness and (2) semantic correctness.
For (1), we find that prompts that are syntactically
more complete (e.g., “/X] is a type of [Y]” vs “[X]
is a type [Y]”, the difference being the preposi-
tional phrase) perform better. For (2), we find that
prompts that unambiguously encode hypernymy
are also better (i.e., the fype prompt, as opposed to
other noise-inducing templates such as “is a” or “is
kind of”’). Finally, out of the cleanest prompts, the
most frequent in pretraining corpora are the most
competitive. Table 5 confirms the intuition that
the type prompt is not only unambiguous, but also
highly frequent when compared to similar (noise-
free and syntactically complete) prompts.

Prompt | avg F || Frequency

is a type of 25.5 14,503
is the type of 24.2 809
is a kind of 23.6 2,934
is a form of 22.1 9,518
is one form of 17.9 124
isa 7.4 9,328,426
is a type 1.0 15,085

Table 5: Domain-wise average F'-score of LPAQA
prompts and their frequency in BERT’s pretraining cor-
pora.

Single-Token vs Multi-Token Hypernyms Ta-
ble 6 compares F-score on original terminology
vs filtered terminology, where filtered terminology

contains only the terms that have single-token hy-
pernyms. The results show that % Increase in F-
score is inversely proportional to the % Retained.
This can be explained by the fact that smaller %
of terms retained implies higher % of multi-token
hypernyms in the original dataset that cannot be
predicted using prompting. Thus, the increase in F-
score by removing such hypernyms should increase
as the % Retained decreases.

Domain ‘ Total Terms ‘ % Retained ‘ % Increase
environment 261 29.89 2.32
equipment 612 44.77 1.24
science 452 53.32 0.90
science_ev 125 52.80 0.89
food 1555 59.55 0.57
science_wn 370 69.73 0.51

Table 6: Comparison of F-score on original terminology
vs filtered terminology. % Retained refers to the percent-
age of terms that have single-token hypernyms and are
thus retained for the filtered dataset. % Increase shows
the increase in F-score on filtered dataset compared to
F-score on original dataset.

6 Conclusion and Future Work

We have presented a study of different LMs un-
der different settings for zero-shot taxonomy learn-
ing. Compared with computationally expensive
and highly heuristic methods, our zero-shot alter-
natives prove remarkably competitive. For the fu-
ture, we could explore multilingual signals and the
integration of traditional word embeddings with
contextual representations.

154

References

Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa.
2014. Random walks for knowledge-based word
sense disambiguation. Computational Linguistics,
40(1):57-84.

Pratyay Banerjee and Chitta Baral. 2020. Self-
supervised knowledge triplet learning for zero-shot
question answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 151-162.

Guido Boella and Luigi Di Caro. 2013. Supervised
learning of syntactic contexts for uncovering def-
initions and extracting hypernym relations in text
databases. In Machine learning and knowledge dis-
covery in databases, pages 64—79. Springer.

Georgeta Bordea, Paul Buitelaar, Stefano Faralli, and
Roberto Navigli. 2015. Semeval-2015 task 17: Tax-
onomy extraction evaluation (texeval). In Proceed-
ings of the 9th International Workshop on Semantic
Evaluation. Association for Computational Linguis-
tics.

Georgeta Bordea, Els Lefever, and Paul Buitelaar. 2016.
Semeval-2016 task 13: Taxonomy extraction evalu-
ation (texeval-2). In Proceedings of the 10th Inter-
national Workshop on Semantic Evaluation. Associa-
tion for Computational Linguistics.

Zied Bouraoui, Jose Camacho-Collados, and Steven
Schockaert. 2020. Inducing relational knowledge
from bert. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 7456—7463.

Catherine Chen, Kevin Lin, and D. Klein. 2021. Con-
structing taxonomies from pretrained language mod-
els. In NAACL.

Mingda Chen, Zewei Chu, Karl Stratos, and Kevin Gim-
pel. 2020. Mining knowledge for natural language
inference from wikipedia categories. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: Findings, pages
3500-3511.

Hsiao-Yu Chiang, Jose Camacho-Collados, and Zachary
Pardos. 2020. Understanding the source of semantic
regularities in word embeddings. In Proceedings
of the 24th Conference on Computational Natural
Language Learning, pages 119—-131.

. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
NAACL.

Luis Espinosa-Anke, Joan Codina-Filb4, and Leo Wan-
ner. 2021. Evaluating language models for the re-
trieval and categorization of lexical collocations. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 1406—1417.

155

Luis Espinosa-Anke, Horacio Saggion, Francesco Ron-
zano, and Roberto Navigli. 2016. Extasem! extend-
ing, taxonomizing and semantifying domain termi-
nologies. In Proceedings of AAAI, Phoenix, USA.

Trevor Fountain and Mirella Lapata. 2012. Taxonomy
induction using hierarchical random graphs. In Pro-
ceedings of NAACL, pages 466—476. Association for
Computational Linguistics.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hierar-
chies via word embeddings. In Proceedings of ACL,
volume 1.

Marcos Garcia, Tiago Kramer Vieira, Carolina Scarton,
Marco Idiart, and Aline Villavicencio. 2021. Probing
for idiomaticity in vector space models. In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3551-3564.

Gregory Grefenstette. 2015. Inriasac: Simple hypernym
extraction methods. In Proceedings of the 9th Inter-
national Workshop on Semantic Evaluation (SemEval
2015), pages 911-914.

Marti A Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings of
the 14th conference on Computational linguistics,
pages 539-545.

Sung Ju Hwang, Kristen Grauman, and Fei Sha. 2012.
Semantic kernel forests from multiple taxonomies. In
Advances in Neural Information Processing Systems,
pages 1718-1726.

Zhengbao Jiang, Frank F. Xu, J. Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423-438.

Mandar Joshi, Kenton Lee, Yi Luan, and Kristina
Toutanova. 2020. Contextualized representations us-
ing textual encyclopedic knowledge. arXiv preprint
arXiv:2004.12006.

Nora Kassner, Philipp Dufter, and Hinrich Schiitze.
2021. Multilingual LAMA: Investigating knowledge
in multilingual pretrained language models. In Pro-
ceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 3250-3258, Online.
Association for Computational Linguistics.

Zornitsa Kozareva and Eduard Hovy. 2010. A semi-
supervised method to learn and construct taxonomies
using the web. In Proceedings of EMNLP, pages
1110-1118.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. Roberta:
A robustly optimized bert pretraining approach.
ArXiv, abs/1907.11692.

Yuning Mao, Xiang Ren, J. Shen, X. Gu, and Jiawei
Han. 2018. End-to-end reinforcement learning for
automatic taxonomy induction. In ACL.

Alexander Panchenko, Stefano Faralli, E. Ruppert,
Steffen Remus, Hubert Naets, Cedric Fairon, Si-
mone Paolo Ponzetto, and Chris Biemann. 2016.
Taxi at semeval-2016 task 13: a taxonomy induction
method based on lexico-syntactic patterns, substrings
and focused crawling. In SemEval @ NAACL-HLT.

Bhargavi Paranjape, Julian Michael, Marjan
Ghazvininejad, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2021. Prompting contrastive
explanations for commonsense reasoning tasks.
arXiv preprint arXiv:2106.06823.

Fabio Petroni, Tim Rocktidschel, Patrick Lewis,
A. Bakhtin, Yuxiang Wu, Alexander H. Miller, and
S. Riedel. 2019. Language models as knowledge
bases? In EMNLP.

Mohammad Taher Pilehvar, David Jurgens, and Roberto
Navigli. 2013. Align, Disambiguate and Walk: a
Unified Approach for Measuring Semantic Similar-
ity. In Proceedings of ACL, pages 1341-1351, Sofia,
Bulgaria.

Guanghui Qin and Jason Eisner. 2021. Learning how
to ask: Querying Ims with mixtures of soft prompts.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 5203-5212.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Oscar Sainz and German Rigau. 2021.
Ask2transformers: Zero-shot domain labelling
with pretrained language models. In Proceedings of
the 11th Global Wordnet Conference, pages 44-52.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In ACL.

Chao Shang, Sarthak Dash, Md. Faisal Mahbub Chowd-
hury, Nandana Mihindukulasooriya, and A. Gliozzo.
2020. Taxonomy construction of unseen domains
via graph-based cross-domain knowledge transfer. In
ACL.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Eliciting
knowledge from language models using automati-
cally generated prompts. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4222-4235.

Vered Shwartz, Peter West, Ronan Le Bras, Chandra
Bhagavatula, and Yejin Choi. 2020. Unsupervised
commonsense question answering with self-talk. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 4615-4629.

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. Advances in Neural Information Process-
ing Systems 17.

Asahi Ushio, Luis Espinosa-Anke, Steven Schockaert,
and Jose Camacho-Collados. 2021. BERT is to NLP
what AlexNet is to CV: Can Pre-Trained Language
Models Identify Analogies? In Proceedings of the
ACL-IJCNLP 2021 Main Conference. Association for
Computational Linguistics.

Paola Velardi, Stefano Faralli, and Roberto Navigli.
2013. OntoLearn Reloaded: A graph-based algo-
rithm for taxonomy induction. Computational Lin-
guistics, 39(3):665-707.

Alex Wang and Kyunghyun Cho. 2019. BERT has a
mouth, and it must speak: BERT as a Markov ran-
dom field language model. In Proceedings of the
Workshop on Methods for Optimizing and Evaluat-
ing Neural Language Generation, pages 30-36, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Hui Yang and Jamie Callan. 2009. A metric-based
framework for automatic taxonomy induction. In
Proceedings of ACL/IJCNLP, pages 271-279. Asso-
ciation for Computational Linguistics.

Mo Yu and Mark Dredze. 2014. Improving lexical
embeddings with semantic knowledge. In ACL (2),
pages 545-550.

Yue Yu, Yinghao Li, Jiaming Shen, Haoyang Feng, Ji-
meng Sun, and Chao Zhang. 2020. Steam: Self-
supervised taxonomy expansion with mini-paths.
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining.

Zheng Yu, Haixun Wang, Xuemin Lin, and Min Wang.
2015. Learning term embeddings for hypernymy
identification. In Proceedings of IJCAI, pages 1390-
1397.

Wangchunshu Zhou, Tao Ge, Ke Xu, Furu Wei, and
Ming Zhou. 2019. Bert-based lexical substitution. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3368—
3373.

156

A Dynamic, Interpreted CheckList for Meaning-oriented NLG Metric
Evaluation — through the Lens of Semantic Similarity Rating

Laura Zeidler and Juri Opitz and Anette Frank
Department of Computational Linguistics
Heidelberg University, Germany
{zeidler|opitz]|frank}@cl.uni-heidelberg.de

Abstract

Evaluating the quality of generated text is diffi-
cult, since traditional NLG evaluation metrics,
focusing more on surface form than meaning,
often fail to assign appropriate scores. This is
especially problematic for AMR-to-text evalua-
tion, given the abstract nature of AMR. Our
work aims to support the development and
improvement of NLG evaluation metrics that
focus on meaning, by developing a dynamic
CheckList for NLG metrics that is interpreted
by being organized around meaning-relevant
linguistic phenomena. Each test instance con-
sists of a pair of sentences with their AMR
graphs and a human-produced textual seman-
tic similarity or relatedness score. Our Check-
List facilitates comparative evaluation of met-
rics and reveals strengths and weaknesses of
novel and traditional metrics. We demonstrate
the usefulness of CheckList by designing a
new metric GRACO that computes lexical cohe-
sion graphs over AMR concepts. Our analysis
suggests that GRACO presents an interesting
NLG metric worth future investigation and that
meaning-oriented NLG metrics can profit from
graph-based metric components using AMR.

1 Introduction

Abstract Meaning Representation (AMR, Ba-
narescu et al. (2013)) has become popular in NLP,
one of the reasons being that AMR captures the
essence of a sentence’s meaning, while abstract-
ing away from syntactic idiosyncrasies. Especially
AMR-to-text generation (Konstas et al., 2017; Song
et al., 2018; Wang et al., 2020; Blloshmi et al.,
2021) has received much attention for applications
that require text generation from structured content.
However, the evaluation of text generated from
AMR has been argued to be unsatisfactory (Man-
ning et al., 2020). Also, Opitz and Frank (2021)
show that the syntactic diversity of sentences gener-
ated from AMR is challenging for traditional NLG
metrics, especially when candidates differ from the
reference in surface properties.

Data Setup

AMR humScore AMR’ srcAMR candAMR
/_7/78770/77@”0/7

Metric objective O
examples ©/

amr_metrc(srcAMR, candAMR)}

\
=)
2%% .
%\;‘%‘ 2| a2t_metric(candSnt, SrcAMR),
"
2\

nlg_metric(candSnt, goldSnt)

humScore humScore

Snt phenomenon Snt' goldSnt candSnt

Figure 1: Our CheckList design for evaluating meaning-
oriented NLG metrics against human semantic textual
similarity and relatedness judgements — applicable to
textual, meaning graph based and hybrid metrics.

Several metrics have been proposed that aim
to rate the similarity of the meaning of sentences
or phrases (Zhang et al. (2020); Opitz and Frank
(2021); Zhao et al. (2019)). However, it is difficult
to judge where exactly such a metric fails, mak-
ing it hard for developers to further improve it. To
address similar problems, Ribeiro et al. (2020) re-
cently proposed a "task-agnostic methodology for
testing NLP models" called CheckList. They ar-
gue that such a method should be used for testing
NLP systems instead of solely relying on automatic
metrics, which can overestimate a model’s perfor-
mance. Similar processes have been applied in
early NLP research, e.g. with the TSNLP testsuite
(Lehmann et al., 1996). Inspired by CheckList, in
this work we aim to build a testsuite to enable sys-
tematic study and development of NLG evaluation
metrics, with a focus on meaning.

Given the high variability of surface realizations
that can be mapped into a single AMR graph, build-
ing reliable AMR-to-text NLG evaluation metrics
is hard. Hence, it can be useful to construct a
systematic CheckList, organized around diverse lin-
guistic properties, to measure the performance of
different metrics in an interpretable way. We frame
our proposed CHECKLIST! and analyses derived

"The term CheckList, coined by Ribeiro et al. (2020), refers
to their proposed methodology as well as concrete instantia-
tions of such testsuites. We thus use the term CheckList (in

157

Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 157 - 172
July 14-15, 2022 ©2022 Association for Computational Linguistics

from it in an AMR-to-Text NLG setting, and focus
especially on a metric’s capability to assess how
well a specific meaning component of an AMR
is reflected in its textual realization. We measure
this using sentence pairs that differ in single lin-
guistic aspects and measure how well various NLG
metrics are able to rate such meaning differences.
We compare the metric scores to human judgments
from semantic textual similarity (STS) and relat-
edness datasets and analyze the metrics using our
interpreted CheckList (an outline is shown in Fig.
1). Our contributions in this work are as follows:

i) We empirically identify properties relevant for
rating the quality of generated sentences based
on their meaning.

ii) We design an extensible, interpreted Check-
List for evaluating NLG metrics, which offers
939 paired sentences with human judgements,
covering 11 core linguistic phenomena.

iii) We propose a new metric GRACO to as-
sess the semantic similarity of sentence pairs
through the lens of AMR graphs.

iv) To showcase the potential of our approach,
we provide an extensive comparative analysis
of different types of NLG metrics, measuring
their capacity of rating sentence similarity and
relatedness according to linguistic differences.

2 Related Work

AMR-to-text evaluation Systems generating
text from AMR graphs are typically evaluated us-
ing NLG metrics that were originally designed for
other NLG tasks. BLEU (Papineni et al., 2002) or
the CHRF(++) (Stanojevi¢ et al., 2015; Popovic¢,
2015, 2016; Popov, 2017) metrics, e.g., are exten-
sively used in MT. But May and Priyadarshi (2017)
have shown that BLEU does not correspond well
to human ratings of generations from AMR. Con-
firming this result, Manning et al. (2020) argue that
existing automatic metrics fail to provide nuanced
views on AMR-to-text generation quality. In an
attempt to mitigate such issues, Opitz and Frank
(2021) introduced a metric that combines mean-
ing (M) and form (F) assessment in a weighted
MF score, finding that system performances differ
considerably in these two key quality aspects.

But to date, little is known about how different
metrics measure meaning differences of generated
sentences with regard to specific meaning alter-

italics), to refer to our interpreted NLG testsuite.

ations that may occur between a source and a refer-
ence. Our work provides a method and resources
that can be used for performing such a detailed as-
sessment for AMR-to-text generation metrics, and
NLG evaluation metrics in general.

Checklist The current practice for evaluating
NLP models is to assess their performance on un-
seen test data. Yet, summarizing performance in a
single numerical score makes it difficult to assess
where a model fails and how to fix remaining errors
(Wu et al., 2019). Ribeiro et al. (2020) therefore
proposed CHECKLIST, a methodology and tool
for evaluating NLP systems based on the idea of
behavioural testing, often used in software engi-
neering. It aims at assessing specific capabilities
of a system by testing whether inputs that feature
specific properties will produce the expected out-
put, without requiring knowledge of system’s in-
ner workings. This procedure is well-known in
NLP, where before the rise of large-scale evalua-
tion datasets, systems were tested and evaluated
on so-called restsuites (Lehmann et al., 1996) that
focused on specific linguistic capabilities. Ribeiro
et al. (2020) adopted this approach to make their
methodology applicable to many different NLP
tasks. They evaluate multiple models on Sentiment
Analysis, QA or Machine Reading Comprehension,
showing that their method is beneficial in NLP:
complementary to broad-scale evaluations, it can
reveal specific points of failure, hence giving more
detailed insight into a model’s performance.

Semantic Textual Similarity (STS) Judging the
similarity of texts is essential in tasks such as IR,
text summarization or QA. But capturing seman-
tic ambiguity, syntactic variance and paraphrasing
is difficult. Hence, research started to investigate
Semantic Textual Similarity (STS)?, by tasking sys-
tems to judge the semantic similarity of sentences.
Besides knowledge-based and distributional meth-
ods, neural methods have recently been proposed
for STS estimation (Chandrasekaran and Mago,
2021). For example, S(entence)-BERT (Reimers
and Gurevych, 2019) leverages pre-trained lan-
guage models to predict STS scores, building on
the insight of models that compute general sentence
representations using paired sentence encoders
(Conneau et al., 2017). These models outperform
most traditional STS metrics, but lack interpretabil-

2STS is a main component of SentEval and follow-up
challenges, initiated by Conneau and Kiela (2018).

158

xv0/
hit-01

ARGO ARG1 ARG/ Xmm
xvl/ xv2/ xvl/
baseball child baseball
goldSnt

A boy is hitting a baseball A child is hitting a baseball

Figure 2: Example of a test case in our CheckList con-
sisting of two sentence and AMR pairs. Drawn from the
SICK dataset, with semantic relatedness score 4.4.

ity. In our work we leverage STS and SentEval chal-
lenge datasets with human-rated semantic similar-
ity (STS) and semantic relatedness (SICK) scores,
to construct an interpreted CheckList that can be
used to assess meaning-oriented NLG evaluation
metrics, by evaluating them against human ratings.

3 An Interpreted Testsuite for Meaning-
oriented NLG Evaluation Metrics

3.1 Aims and Method

The challenge of AMR-to-text NLG evaluation lies
in the wide variability of sentences that can ver-
balize an abstract meaning representation. In our
CheckList, we will consider human judgements of
semantic textual similarity as a criterion for eval-
uating the adequacy of different NLG metrics for
the AMR-to-text NLG evaluation task.

Specifically, we employ sentence pairs with hu-
man scores from the SICK and STS benchmarks®
as test instances for our CheckList (cf. Fig. 2). We
select pairs that differ by specific phenomena that
can affect their semantic similarity, such as addi-
tional modifiers of a noun or verb, negation, or
changes in the semantic roles of verb arguments.
We parse such sentence pairs S4 p into pairs of
AMR graphs AM R 4 p that we manually validate.

Given such instances, we consider sentences S 4
and Sp as a reference and candidate generation,
and a pair of AM R and S as a sentence generated
from an input AMR. For AM R4 we can take Sy
as gold reference and Sp as a candidate genera-
tion; conversely, Sp can serve as a reference for
AMRp, and S 4 as a candidate. We then interpret
the human score for S4 p as a gold standard for a
metric score that rates the appropriateness of Sp
for AM R4, given S4 as a reference, or S4 for
AM Rp, given Sp as reference (see Fig. 1).

3https ://github.com/facebookresearch/SentEval

Pheno- Reference AMR-to-text Generation

menon

Antonymy Flowers are so inconsistent ! | flowers are so consistent .

Negation My Drawing Number One . not my picture number one .

Omission the prince laughed , puzzled . | the prince laughed .

Passive The wind blows them away . | they were blown away by wind .

Role Switch | The planet was inhabited by a
conceited man .

the conceit man is inhabited by
the planet .

more
phenomena

hyponymy, co-hyponymy, partial synonymy,
articles, subordinate clause types

Table 1: (Modified) sentence pairs from AMR-to-text
on the Little Prince AMR corpus.

Following this rationale, our CheckList will of-
fer curated input AMR graphs, their underlying
sentences as references, and paired sentences from
STS or SICK data points as candidate generations.
The human scores serve as an objective to assess
and compare various NLG evaluation metrics for
their suitability in (A)MR-to-text evaluation tasks.

Aims Our CheckList is intended as a tool for re-
searchers to build new or assess existing NLG met-
rics, regarding their ability to assess specific mean-
ing aspects by comparing them to human judge-
ments, thereby helping users to improve metrics,
or better understand differences between metrics in
meaning-oriented NLG evaluation in general and
AMR-to-text generation in particular.

The suite is interpreted in two ways: by structur-
ing the instances according to linguistic phenom-
ena, and by pairing each sentence with its AMR
graph, so that sentences can be compared at the
textual and at the meaning representation level. Fi-
nally, the CheckList is conceived to be dynamic, by
inviting developers to add new linguistic phenom-
ena, test cases, and metrics.

Method To achieve this, we proceed as follows:
i) Empirical investigation We investigated sen-
tences generated from the ’Little Prince Corpus’*
using the AMR-to-text system of Song et al. (2018).
We studied differences between the original and the
generated sentences, to determine core phenomena
that may influence the semantic similarity judge-
ment of sentences generated from AMR towards
their references. We distilled a list of phenomena
shown in Table 1 that we further extended with phe-
nomena observed in the STS and SICK datasets.
ii) Selection from STS and SICK Next, we
select instances from the STS and Semantic Relat-
edness datasets (§5.1) that exhibit the phenomena
identified in i), and establish a suite of sentence

*https://amr.isi.edu/download.html

159

pairs with their assigned human scores and respec-
tive AMRs. The data is structured into subsets
exhibiting single phenomena, and is organized as
an extensible CheckList.

iii) NLG metric scores & evaluation We imple-
ment scorers for various NLG metrics, and provide
code to evaluate them via multiple measures to
assess their strengths and weaknesses in view of
phenomena captured in the CheckList. In addi-
tion, we propose a novel metric GRACO (§3.2) that
constructs lexical cohesion graphs over tokens rep-
resented in the sentence’s AMR, and compare it
to existing metrics. The full range of functionali-
ties to investigate NLG metrics is embedded into a
CHECKLIST design (Ribeiro et al., 2020) (cf. A.1).

iv) Analysis and Interpretation We analyze
the results and show how our CheckList enables
systematic assessment of strenghts and weaknesses
of NLG metrics when applied to outputs of AMR-
to-text systems, taking into account the nature of
different metrics in view of different phenomena.

3.2 Textual and AMR-based metrics

With our CheckList we aim at the evaluation of di-
verse metrics used in NLG and in semantic parsing,
which we structure along two dimensions (cf. Ta-
ble 2): metrics that evaluate candidate generations
based on a) their textual (¢tM) vs. graph (gM) rep-
resentations or both (hybrid, 2yM), and b) whether
the metric is based on symbolic as opposed to em-
bedding representations. We don’t include trained
metrics, since their interpretation is difficult and
would go beyond the current scope, but they can be
evaluated on our CheckList, too. Table 6 provides
an overview of characterizing traits of these metric
types, which we will refer to in our analyses in §5.

Word/Char Ngram Matching Metrics Origi-
nally developed for MT evaluation, the BLEU (Pa-
pineni et al., 2002), Meteor (Lavie and Agarwal,
2007) and chrF++ (Popovié, 2015) metrics have
been increasingly used for evaluating NLG systems
by comparing generated text to a reference on tex-
tual symbols. BLEU and Meteor compute overlap
in word ngrams, while chrF++ extends the charac-
ter ngram metric chrF by adding word ngrams.

Embedding-based Metrics BERTSCORE, pro-
posed by Zhang et al. (2020), allows for reference-
based evaluation using dense representations. Ref-
erence and candidate sentences are embedded with
BERT to obtain contextualized representations for
each token. A mapping between candidate and

gold information

category metric 2ldS cndAMR srcAMR
gM S(?)match, W(W)LK n y y
gMe"S §(Z)match, W(W)LK n n y
gM7ie S(*)match, W(W)LK y n n
tM BERTSsc, Meteor, BLEU, chrF++ 'y n n
hyM GRACO (this paper) y y y

Table 2: Categorization of metrics into graph-based
gM, text-based tM and hybrid ~zyM metrics, and their
dependencies on gold information.

reference tokens is computed by greedy matching,
based on cosine similarity of the encoding vectors.
BERTSCORE shows a high correlation with hu-
man judgements for MT and Image Captioning
tasks (Zhang et al., 2020). But while the metric
is clearly meaning-based, it is focused on lexical
meaning, and is not well equipped to capture word
order and compositional meaning.

AMR Parse Evaluation Metrics While the pre-
vious metrics evaluate candidates against a refer-
ence at the textual level (tM), in our CheckList,
we complement them by assessing similarity of
meaning structurally, at the level of AMR graphs
constructed from candidate and reference (g M).

We distinguish three potential setups: i) the met-
ric is computed on manually rectified gold graphs
(gM in Table 2); ii) an integrated parser component
constructs an automatic candidate AMR cndAMR
from the candidate sentence cndSnt to alleviate the
requirement for a golden cndAMR (g M™% in Ta-
ble 2); iii.) the parser constructs both srcAMR and
candAMR from the reference and candidate sen-
tence, i.e., we trade the dependency on a golden
srcAMR against the dependency on a golden ref-
erence sentence (gMgC{él%S in Table 2). Variants ii)
and iii) have also been used in the M (‘Meaning’)
component of MF-score (Opitz and Frank, 2021).
For simplicity, in this paper, we assume access to
gold graphs and only consider gM, tM, and hy M
metrics.

As AMR graph metrics, we use the canoni-
cal SMATCH (Cai and Knight, 2013), the recent
S2MATCH metric proposed by Opitz et al. (2020),
and Weisfeiler-Leman based AMR graph similarity
proposed by Opitz et al. (2021) that match contex-
tualized AMR graphs.

SMATCH is a binary triple overlap metric that
assesses the structural similarity of candidate and
reference AMRs, where a triple is a pair of AMR
nodes connected by a labeled edge. S?2MATCH, by

160

contrast, computes a graded triple overlap score us-
ing the embedding similarity between the concept
nodes of a triple pair, to reflect concept similarity
in the overall AMR similarity score. Given a ref-
erence AMR for ’a kitten meows’, S2MATCH will
assign a relatively high score for a candidate AMR
for ’a cat meows’ that reflects high lexical simi-
larity of kitten and cat in the overall score, while
SMATCH will assign it a much lower score.

The Weisfeiler-Leman AMR metric comes in
two variants: W (eisfeiler)L(eman)K(ernel) (WLK)
compares contextualized AMR graphs structurally,
while W(asserstein) WLK (W WLK) compares the
contextualized AMR graphs in latent space, using
an alignment-based Wasserstein distance. WWLK
extends S?MATCH beyond the lexical level, to
capture compositional meaning similarity at the
phrasal level, as between ’a young cat meows’ vs.
‘a kitten meows’.

Hybrid Metrics The above metrics take as input
sentence pairs or AMR pairs. But a meaning-orien-
ted NLG metric may profit from considering both
explicit meaning structure as captured in AMR,
and the textual level, to leverage knowledge from
pretrained language models trained on text. We
thus propose a hybrid similarity metric GRACO,
which is based on Lexical Cohesion Graphs pro-
posed by Sporleder and Li (2009). They construct
an undirected graph from a text sequence where
each node represents a content word, and compute
edge weights between the lexical nodes using Nor-
malized Google Distance (Cilibrasi and Vitanyi,
2007). By averaging the weights they derive a con-
nectivity score for the graph. In their work they
use the lexical cohesion graph of a given token se-
quence to predict whether it has an idiomatic as op-
posed to a literal meaning, depending on whether
the presence of its subgraph in the overall graph
raises or lowers the overall connectivity score.

We adapt Sporleder and Li (2009)’s approach to
define a hybrid metric that measures the similarity
of sentence pairs via their AMR graphs. We do
this by building a lexical cohesion graph from the
concept nodes present in a sentence’s AMR. To do
so, we align words from the sentence with concepts
in the AMR graph using the JAMR (Flanigan et al.,
2014a) alignment tool. The concepts are either rep-
resented using contextualized BERT embeddings or
pretrained GloVe word embeddings. To compute
edge weights, we follow Haagsma et al. (2018) and
compute cosine similarity between nodes. We pur-

woman

- o woman down
walking down ~ -
\ / dog
- AN
dog street walking street
woman
- ~ woman down
walking down ™ -
cat
\ / SN
cat street walking street

Figure 3: Two lexical cohesion graphs: fully connected
(left) and reduced (right) for sentences S4: The woman
is walking the dog down the street — Sp: The woman is
walking the cat down the street.

sue two strategies. i) We follow Sporleder and Li
(2009) and compute cosine similarity between all
possible pairs of nodes of a single graph, creating
a fully connected graph. Alternatively, ii) we com-
pute a reduced graph that only takes into account
edges connecting nodes that differ between the two
sentences and their respective graphs (see Fig. 3).
In case graph g4 differs from graph gp in a single
concept which is only present in g4, the reduced
graph gp is empty, and we assign a connectivity
score of 1 (consistent with anything).

By applying this method to a pair of sentences
S 4 and Sp, we obtain their connectivity scores cs A
and csp, the average of their respective graphs’
edge weights. From these we compute the GRACO
Score (1) that rates the similarity of S4 and Sp
by taking the difference between cs4 and csp to
model their semantic difference — which we convert
to a similarity score by subtracting it from 1.

GrRACOScore =1 — |csq — csp] €))

The resulting metric is hybrid by relying on the
sentence’s AMR to select text tokens for the con-
nectivity graph — and represents nodes with contex-
tualized embeddings in the BERT variant.

4 Semantic Phenomena

We consider structural and lexical phenomena that
are likely to affect a sentence’s meaning. Details
and example AMRs are given in Appendix A.4.0

4.1 Structural Phenomena

Aspect Given its abstract nature, AMR does not
represent aspect, hence present perfect and simple
present are not distinguished in an AMR graph®.

SAMR specifications follow Banarescu et al. (2019).
®This phenomenon was only found in the STS data.

161

Negation AMR represents negation with the fea-
ture :polarity -. Fig. 10 (A.4.1) shows sen-
tence negation, with polarity attached to the
matrix verb. Fig. 11 (A.4.1) shows an AMR that
negates a constituent in a sentence. Both verb- and
constituent negation are represented in the testsuite.
Omission or Hallucination of words or phrases
is a recurring problem in NLG (Xiao and
Wang, 2021) especially for AMR-to-text (Man-
ning et al., 2020). We sampled three types in-
volving adjectives, adverbs, PPs. In AMR, omis-
sion/hallucination is captured by (non-)existence
of the corresponding structure (see Fig. 13, A.4.2).
Passive AMR does not distinguish active from
passive voice: AMR graphs for active vs. passive
sentences do not differ and do not reflect voice.
Semantic Role Switch describes cases where
two verb arguments switch semantic roles. Fig. 15
(A.4.4) shows that the switch changes the : ARG
roles of both arguments, involving two triples.
Subordinate Clauses In AMR, relative clauses
can involve inverse roles if the relativizer is depen-
dent on a verb. The AMR for A boy who believes,
e.g., contains an inverse ARGO role. Other types of
relative clauses, Noun Compound Expansions, re-
veal a semantic relation between compound nouns.
Such expansions can be expressed in various ways:

(1) a. Amanis playing a flute made of bamboo
b. A man is playing a bamboo flute

(2) a. A child is running in and out
waves of the ocean

b. A child is running in and out of the ocean waves

of the

While the expansions in (la, 2a) differ (made
of vs. of), the two compound nouns in (1b)
and (2b) are connected with same AMR relation
:part—-of, which reveals their semantic relation.
The expansion in (1a), by contrast, emphasizes the
process of the flute being made, which is reflected
in its AMR (see Fig. 12, A.4.5). Hence, whenever
we compare sentences that make use of a noun
compound or an expansion of it, they may differ in
their textual and their AMR representations, which
can have implications for different types of metrics.

4.2 Lexical Phenomena

Articles AMR does not specify articles, so the sen-
tence variants {A|The} child is playing. yield iden-
tical AMRs. l.e., it cannot distinguish sentences
differing in definiteness of an article. Our Check-
List includes pairs exhibiting such differences.

Antonymy denotes a relation of contrast that can
apply to adjectives, adverbs, nouns, prepositions
or verbs. In AMR, antonymy is either implicit for
concept pairs or represented by negating a concept
with :polarity - (Fig.17in A.4.7).

Note that human ratings in STS and SICK dif-
fer for antonymy and negation. While in STS,
antonymy and negation are penalized with low sim-
ilarity scores, this is different for SICK, which rates
semantic relatedness of sentences. Pairs including
a single opposing concept may yield higher scores
than comparison to a random sentence. This must
be observed when interpreting CheckList results.

Hypernymy and Hyponymy, and the derived
Co-Hyponymy relation, while known from Word-
Net, are not explicitly expressed between AMR
concepts. They form the basis for inferential re-
lations between sentences and play an important
role in judging NLG quality from a semantic view.
Often, a candidate may differ from its reference
sentence by resorting to a superordinate, less spe-
cific concept, but may combine it with a differ-
entiating modifier, yielding an equivalent mean-
ing. Equivalence of compositional meaning is dif-
ficult to capture for word-based and lexical NLG
metrics, and is even more challenging for metrics
based on structured meaning representations. Co-
Hyponymy, however, involves contrast and inter-
feres with Antonymy and Negation.

(Partial) Synonymy We distinguish fotal and
partial synonymy. In the former, linguistic ex-
pressions are interchangeable without restriction,
while in the latter this may hold in a context given
their denotative meaning, may not hold when con-
sidering their connotative meaning (Edmonds and
Hirst, 2002). Examples are lie — untruth, or task
— job. While the former type is unproblematic for
meaning-oriented, lexical NLG metrics, the latter
is not, as it requires judging contextual conditions.
Since AMR specifies abstract concepts, choosing
contextually adequate synonyms is a chall