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Message from the General Chair and the Program Chairs

Welcome to *SEM 2022, the 11th Joint Conference on Lexical and Computational Semantics! We are
pleased to present this volume containing the accepted long and short papers. *SEM 2022 was held as
a hybrid conference following NAACL 2022, on July 14th-15th, 2022, due to the precautions for the
COVID-19 pandemic.
Since its first edition in 2012, *SEM has become a major venue to present recent advances in all areas
of lexical and computational semantics, including semantic representations, semantic processing, multi-
lingual semantics, and others. *SEM is sponsored by SIGLEX, the ACL Special Interest Group on the
Lexicon.
*SEM 2022 had a hybrid format with respect to ARR. We accepted both direct submissions through the
START system and also those already reviewed through ARR. In total, we received 52 submissions in 9
areas:

• Theoretical and formal semantics

• Semantics in NLP applications

• Semantic composition and sentence-level semantics

• Resources and evaluation

• Psycholinguistics, cognitive linguistics and semantic processing

• Multilinguality

• Lexical semantics and word representations

• Commonsense reasoning and natural language understanding

We compiled an exciting program across all these areas. This year saw a particularly strong batch of
submissions; finally, 30 papers were accepted – 18 long papers and 12 short papers.
The submitted papers were carefully evaluated by a program committee led by 11 area chairs, who
coordinated a panel of 100 reviewers (who were assigned papers to review in the START system). Almost
all submissions were reviewed by three reviewers, who were encouraged to discuss any divergence in
evaluations. The papers in each area were subsequently assessed by the area chairs, who added meta-
reviews to explain their accept/reject suggestions. The final selection was made by the program co-chairs
after an independent check of all the reviews, meta-reviews, and discussions with the area chairs. The
reviewers’ recommendations were also used to shortlist a set of papers nominated for the Best Paper
Award.
We are also very excited to have two excellent keynote speakers: Allyson Ettinger (University of Chi-
cago) discussing controlled examinations of meaning sensitivity in pre-trained NLP models, and Jacob
Andreas (Massachusetts Institute of Technology) discussing the extent to which language modeling
induces representations of meaning.
We are deeply thankful to all area chairs and reviewers for their invaluable help in the selection of the
program, for their readiness in engaging in thoughtful discussions about individual papers, and for pro-
viding valuable feedback to the authors. We are grateful to our Publicity chair, Jose Camacho-Collados
(Cardiff University), who set up and regularly updated *SEM’s website and publicized it through social
media. We thank the Publication Chair, Alessandro Raganato (University of Milano-Bicocca), for his
help with the compilation of the proceedings, and the NAACL 2022 workshop organizers for all the val-
uable help and support with organisational aspects of the conference. Finally, we thank all our authors
and presenters for making *SEM 2022 such an exciting event. We hope you will find the content of these
proceedings as well as the program of *SEM 2022 enjoyable, interesting and inspirational!

Ellie Pavlick and Mohammad Taher Pilehvar, Program Co-Chairs
Vivi Nastase, General Chair
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Keynote Talk: “Understanding” and prediction: Controlled
examinations of meaning sensitivity in pre-trained models

Allyson Ettinger
University of Chicago

Abstract: In recent years, NLP has made what appears to be incredible progress, with performance even
surpassing human performance on some benchmarks. How should we interpret these advances? Have
these models achieved language “understanding”? Operating on the premise that “understanding” will
necessarily involve the capacity to extract and deploy meaning information, in this talk I will discuss
a series of projects leveraging targeted tests to examine NLP models’ ability to capture meaning in a
systematic fashion. I will first discuss work probing model representations for compositional meaning,
with a particular focus on disentangling compositional information from encoding of lexical properties.
I’ll then explore models’ ability to extract and use meaning information when executing the basic pre-
training task of word prediction in context. In all cases, these investigations apply tests that prioritize
control of unwanted cues, so as to target the desired model capabilities with greater precision. The results
of these studies suggest that although models show a good deal of sensitivity to word-level information,
and to certain semantic and syntactic distinctions, when subjected to controlled tests they show little sign
of representing higher-level compositional meaning, or of being able to retain and deploy such informa-
tion robustly during word prediction. Instead, models show signs of heuristic predictive strategies that
are unsurprising given their training, but that differ critically from systematic understanding of meaning.
I will discuss potential implications of these findings with respect to the goals of achieving “understan-
ding” with currently dominant pre-training paradigms.

Bio: Allyson Ettinger is an Assistant Professor in the Department of Linguistics at the University of
Chicago. Her interdisciplinary work combines methods and insights from cognitive science, linguistics,
and computer science to examine meaning extraction and predictive processes executed during language
processing in artificial intelligence systems and in humans. She received her PhD in Linguistics from
the University of Maryland, and spent a year as research faculty at the Toyota Technological Institute at
Chicago (TTIC) before beginning her appointment at the University of Chicago. She holds an additional
courtesy appointment at TTIC.
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Keynote Talk: Models of meaning?
Jacob Andreas

Massachusetts Institute of Technology

Abstract: The extent to which language modeling induces representations of meaning—and the broader
question of whether it is even in principle possible to learn about meaning from text alone—have remai-
ned a subject of ongoing debate across the language sciences. I’ll present some evidence that transformer
language models build (rudimentary) structured representations of the meaning of input sentences; that
these representations support LMs’ ability to reason about the entities and events described in a discour-
se; and that they can be modified with predictable effects on downstream language generation. Despite
all this, even the largest LMs are prone to glaring semantic errors: they refer to entities that have not yet
been mentioned, present contradictory facts, or describe impossible events. By understanding how (and
where) LMs build models of meaning, we identify the causes of these errors, and in some cases correct
them with extremely small amounts of targeted supervision.

Bio: Jacob Andreas is the X Consortium Assistant Professor at MIT. His research aims to build intelligent
systems that can communicate effectively using language and learn from human guidance. Jacob earned
his Ph.D. from UC Berkeley, his M.Phil. from Cambridge (where he studied as a Churchill scholar)
and his B.S. from Columbia. As a researcher at Microsoft Semantic Machines, he founded the language
generation team and helped develop core pieces of the technology that powers conversational interaction
in Microsoft Outlook. He has been the recipient of Samsung’s AI Researcher of the Year award, MIT’s
Kolokotrones teaching award, and paper awards at NAACL and ICML.
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Rachel Rudinger
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Abstract

Script Knowledge (Schank and Abelson, 1975)
has long been recognized as crucial for lan-
guage understanding as it can help in filling in
unstated information in a narrative. However,
such knowledge is expensive to produce man-
ually and difficult to induce from text due to
reporting bias (Gordon and Van Durme, 2013).
In this work, we are interested in the scientific
question of whether explicit script knowledge
is present and accessible through pre-trained
generative language models (LMs). To this
end, we introduce the task of generating full
event sequence descriptions (ESDs) given a sce-
nario as a natural language prompt. Through
zero-shot probing, we find that generative LMs
produce poor ESDs with mostly omitted, irrele-
vant, repeated or misordered events. To address
this, we propose a pipeline-based script induc-
tion framework (SIF) which can generate good
quality ESDs for unseen scenarios (e.g., bake
a cake). SIF is a two-staged framework that
fine-tunes LM on a small set of ESD examples
in the first stage. In the second stage, ESD gen-
erated for an unseen scenario is post-processed
using RoBERTa-based models to filter irrele-
vant events, remove repetitions, and reorder the
temporally misordered events. Through auto-
matic and manual evaluations, we demonstrate
that SIF yields substantial improvements (1-3
BLEU points) over a fine-tuned LM. However,
manual analysis shows that there is great room
for improvement, offering a new research di-
rection for inducing script knowledge1.

1 Introduction

Scripts are structured commonsense knowledge in
the form of event sequences that characterize com-
monplace scenarios, such as, eating at a restau-
rant (Schank and Abelson, 1975). Scripts are fun-
damental pieces of commonsense knowledge that
humans share and assume to be tacitly understood

1Code and dataset are available at https://github.
com/abhilashasancheti/script-generation

Figure 1: Sample event sequence description (ESD)
from Wanzare et al. (2016) for BAKING A CAKE sce-
nario. We use natural language prompts (Table 2) to
generate completely ordered ESDs for evaluating extent
of script knowledge accessible through LMs.

by each other. When someone says “I went to a
restaurant for lunch", our script knowledge allows
us to infer that a waiter would have taken the order,
the speaker would have eaten the lunch, payed for
it, and tipped the waiter, even if these events are
not explicitly mentioned. Knowledge of scripts,
whether implicit or explicit, has been recognized
as important for language understanding tasks (Mi-
ikkulainen, 1995; Mueller, 2004).

Earlier efforts to automatically induce scripts
from text on a large scale include Chambers and
Jurafsky (2008) who treat the problem of script in-
duction as one of learning narrative chains using
textual co-occurrence statistics. However, report-
ing bias (Gordon and Van Durme, 2013) remains an
obstacle for script induction as many events are not
mentioned explicitly in text, relying on the reader’s
ability to infer missing script-related events. More-
over, manual creation of such knowledge resources
is challenging due to the wide coverage and com-
plexity of relevant scenario knowledge. Although
crowdsourced efforts (Singh et al., 2002; Regneri
et al., 2010; Modi et al., 2017; Wanzare et al., 2016;
Ostermann et al., 2018, 2019) address these issues
and acquire script knowledge in the form of ESDs,
the collected datasets are small, domain-specific,
and crowdsourcing is not scalable.

With the success of pre-trained language mod-
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els (henceforth, PLMs) (Devlin et al., 2018; Liu
et al., 2019; Radford et al., 2019) in various natural
language understanding tasks, we are interested in
investigating the extent and accessibility of explicit
script knowledge present in PLMs. In this work, un-
like cloze-based script evaluations (Chambers and
Jurafsky, 2008; Mostafazadeh et al., 2016) which
LMs are uniquely optimized for (Rudinger et al.,
2015), we evaluate PLMs on the ability to fully gen-
erate event sequence descriptions (ESDs) (Regneri
et al., 2010) in free-form natural language (Fig-
ure 1). This is a challenging task as scripts are
complex structures with varied granularity of de-
scribing a scenario (e.g., starting from going to
grocery store to buy ingredients or starting with
finding a recipe for BAKING A CAKE scenario),
and the requirement to produce all the scenario-
relevant events in the correct temporal order.

To this end, we first probe LMs via carefully
crafted prompts to analyze the quality of ESDs
generated in a zero-shot setting (§3) and find that
the generated ESDs are of poor quality with many
scenario-irrelevant, repeated, temporally misor-
dered, and missing events. To address this we
propose a, LM-agnostic, pipeline-based script in-
duction framework (§4), SIF, which can generate
good quality ESDs for novel scenarios that LM has
not seen during the training phase of the frame-
work. SIF is a two-staged framework with fine-
tuning LM on a small set of ESDs as the first stage
followed by a three-stepped post-processing stage
which corrects the ESDs generated from a fine-
tuned LM for irrelevant, repeated, and temporally
misordered events. This work makes the following
contributions:

• We present an analysis of the extent of script
knowledge accessible through LMs using
probing techniques, in a zero-shot setting, via
the task of generating full ESDs from natural
language prompts.

• We propose script induction framework that
can generate ESDs for held-out and novel sce-
narios drawn from a different distribution.

• We present automatic and manual evaluation
of the generated ESDs, establishing the via-
bility of our framework and paving way for
future research in this direction.

2 Related Work

Narrative Chain Induction There has been a
growing body of research into statistical script
learning systems which can automatically infer im-
plicit events from text. Seminal work by (Cham-
bers and Jurafsky, 2008, 2009) describe a number
of simple event co-occurrence based systems that
infer (verb, dependency) pairs (known as narrative
events) with partial-ordering related to one or mul-
tiple participants (Pichotta and Mooney, 2014) in
discourse (known as narrative chains). As statisti-
cal co-occurrences cannot capture long-range de-
pendencies between events, Pichotta and Mooney
(2016a) represent events using LSTM leading to
improved narrative cloze task performance. How-
ever, much of the information about events is
usually left implicit in text. Moreover, narrative
events are highly abstracted (Ostermann, 2020) and
cloze task is insufficient to evaluate script knowl-
edge (Chambers, 2017). Therefore efforts have
been made to acquire crowdsourced ESDs (Singh
et al., 2002; Regneri et al., 2010; Modi et al.,
2017; Wanzare et al., 2016; Ostermann et al., 2018,
2019) and to learn similar events in a scenario us-
ing unsupervised (Regneri et al., 2010) and semi-
supervised (Wanzare et al., 2017a) approaches.
Temporal Ordering and Relevance Previous
works (Modi and Titov, 2014; Wanzare et al.,
2017b; Lyu et al., 2020) have investigated induction
or prediction of temporal ordering of prototypical
events. Others have predicted next (Pichotta and
Mooney, 2016b) or related (Lyu et al., 2020) events
in natural language form. Zhou et al. (2019) ac-
quire commonsense procedural knowledge directly
from natural language source, like wikiHow, by
learning representations for scenarios and events
which are predictive of both relevance of event to
the scenario and temporal ordering. Zhang et al.
(2020) propose a non-learning based approach to
predict fixed-length events given an unseen sce-
nario and related scenarios with their events. A
recent work (Sakaguchi et al., 2021) generates
partially-ordered scripts using PLMs by predict-
ing events and edges for partial-order while we
are interested in completely ordered event descrip-
tions. Lyu et al. (2021) propose the task of goal ori-
ented script construction for multilingual wikiHow
dataset and propose generation and retrieval-based
approaches. However, their generation-based ap-
proach using LM only involves fine-tuning. We
focus on different LMs to evaluate them on the task
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Prompt Beginnings
here is a sequence of events that 
happen while baking a cake:
these  are  the  things  that  happen  
when  you bake a cake:
describe baking a cake in small 
sequences of short sentences:
here is an ordered sequence of events 
that occur when you bake a cake:

Continuations
None

1.

1. get a cake mix

1. get a cake mix 2. gather 
together other ingredients

Figure 2: Different prompt formulations for BAKING A
CAKE scenario for probing. 16 prompts are created by
combining a prompt beginning with a continuation.

of generating scripts both in zero-shot and fine-
tuning settings. Our proposed framework is shown
to outperform the fine-tuning approach.
Knowledge-acquisition from PLMs With the
success of PLMs (Devlin et al., 2018; Liu et al.,
2019; Radford et al., 2019) in various natural lan-
guage understanding tasks, a number of works
investigate how commonsense knowledge is cap-
tured in these models (Feldman et al., 2019; Petroni
et al., 2020; Weir et al., 2020; Shwartz et al., 2020).
Successful efforts have been made to induce rela-
tional (Bouraoui et al., 2020), numerical (Lin et al.,
2020), temporal (Zhou et al., 2020) and common-
sense knowledge in PLMs using fine-tuning.

Unlike prior works, we focus on investigating
the extent and accessibility of explicit script knowl-
edge from PLMs via probing techniques and induc-
ing such knowledge in them using a pipeline-based
framework to generate full ESDs for novel scenar-
ios in free-form natural language.

3 Probing for Script Knowledge

We design a zero-shot probing experiment to eval-
uate PLMs’ ability to generate ESDs by carefully
selecting natural language prompts, which LMs are
known to be sensitive to (Bouraoui et al., 2020).
We experiment with 16 manually crafted prompts2

(Table 2) with different phrasing and levels of con-
ditioning to enquire large versions of GPT2, BART,
and T5 for script knowledge. The intuition be-
hind these prompts is similar to asking questions
(prompts) to a knowledge source in various ways
to get the required answer (ESD for a scenario).

BART and T5 were not able to output anything
except the input prompt or start, end, and pad to-
kens and hence we only present qualitative outputs
from GPT2, when probed with various prompts
for BAKING A CAKE scenario, in Table 2. We ob-

2We also experiment with capitalized prompts but did not
find significant change in the quality of generations.

1. buy ingredients 
2. get soap 3. put 

the batter in oven 4. 
mix ingredients to 
make a batter 5. 
pre-heat oven 6. 

bake for 45 mins 7. 
buy ingredients …

baking a cake:

Fine-
tuned LM

Relevance 
Classifier

Ordering 
Classifier

1. buy ingredients 
2. get soap 3. put 

the batter in oven 4. 
mix ingredients to 
make a batter 5. 
pre-heat oven 6. 

bake for 45 mins 7. 
buy ingredients …

1. buy ingredients 
2. put the batter in 

oven 3. mix 
ingredients to make 
a batter 4. pre-heat 
oven 5. bake for 45 

mins 6. buy 
ingredients …

Step 1

Post-processing
De-duplicate

Step 2

Step 3

1. buy ingredients 
2. mix ingredients 
to make a batter 3. 
pre-heat oven 4. 
put the batter in 

oven 5. bake for 45 
mins …

1

2 3

5 4

Final ESD

eating in a 
restaurant: 1. enter 
restaurant 2. look 

at the menu 3. 
place order to the 
waiter 4. wait for 

food 5. eat food 6. 
pay the bill 7. tip 

the waiter 8. leave 
the restaurant

ESDs

Pre-
trained LM

Fine-tuning

Figure 3: SIF: Pre-trained LM is fine-tuned on De-
Script (Wanzare et al., 2016). Generated scripts are then
post-processed with RoBERTa-based classifiers to cor-
rect for event relevance (Step 1), repetition (Step 2), and
temporal ordering (Step 3).

serve that the quality of generated ESDs vary for
different prompts. Although GPT2 is able to gen-
erate some scenario-relevant events with just the
prompt beginnings and no continuations (e.g., 1
and 2 in Table 2), the ESDs are incomplete with
many auxiliary details, and incorrect event order-
ing (e.g., ‘3. The cake is served at the table’ be-
fore ‘6. The cake is transferred to the oven.’ in
2). It sometimes outputs (e.g., 4) narrations rather
than procedural descriptions. As generation from
scratch is an open-ended task, we use a prompt
with a number to guide GPT2 to generate a proce-
dural script. Although 4 and 5 are more procedural,
the events are still at a coarse-grained level with
most of the intermediate events missing. To further
guide the generation towards a fine-grained level,
we condition the generation on a few events (man-
ually curated by authors looking at sample ESDs)
along with the prompt beginning. This helps us in
examining whether GPT2 has temporal knowledge
about the events related to a scenario. Conditioning
on the events results in a better quality ESD (e.g.,
6, 7, 8). However, there is a repetition of events
(‘let it cool for another 10 minutes’ in 6, ‘add in
your flour and mix by hand’ in 7) in addition to
wrong event ordering, irrelevant (e.g., ‘is it hot?’
in 8) and missing events. As GPT2 produces poor
quality ESDs in this zero-shot setting with BART
and T5 not even being able to output any events,
we propose a script induction framework detailed
in the following section.

4 SIF: Script Induction Framework

In this section, we provide details on our pipeline-
based script induction framework, SIF (Figure 3),
which addresses the limitations of zero-shot ESD
generation. SIF is a two-staged framework which
fine-tunes LM on a small set of ESDs in the first

3



1 these are the things that happen when you bake a cake: 3 tablespoons (30ml) of unsalted butter, at room temperature 2 tablespoons (30ml) of granulated sugar 2
tablespoons (30ml) of brown sugar, sifted 1 large egg, at room temperature 1 teaspoon vanilla extract 3 large egg yolks 1 cup (350ml) buttermilk To the bowl of an
electric mixer fitted with a paddle attachment, add the butter, sugar, brown sugar, egg yolks, and vanilla extract and beat until light and fluffy. Add the buttermilk, then
continue beating until fully incorporated. Sift the flour, baking powder, and salt into the bowl of the mixer and beat

2 here is an ordered sequence of events that occur when you bake a cake: 1. The cake is baked. 2. The cake is cooled. 3. The cake is served at the table. 4. The
dessert is placed on the table. 5. The cake is placed in a baking pan. 6. The cake is transferred to the oven. 7. The cake is put to the middle of the oven and baked. 8.
The cake is left in the oven until it is done. 9. The cake is removed from the oven and placed on a plate. 10. The cake is transferred to a cake rack. 11. The cake is
placed on a cake plate.

3 describe baking a cake in small sequences of short sentences: “I want my cake to be soft and moist." (And, you know, don’t do this: “If I use a pastry bag, I can
get it back to me in less than two minutes.") You may be looking for the most simple recipe for cake, but baking requires skill and a lot of practice. You don’t need to
learn how to make a cake recipe. You don’t even need to know the difference between the cake and the sponge. All you need is a great recipe and a couple of ovens
and an oven thermometer. 2. Use a mixer. Mixers are really, really good. (A great idea is to invest in one of those mini, little, portable ones.

4 here is a sequence of events that happen while baking a cake: 1. The cake goes into the oven. 2. The cake cools down in the oven, because the water vapor from
the oven condenses onto the top of the cake. 3. The cake is cooled and the frosting set (the sugar crystals are not allowed to fall off). 4. The frosting is set (a little
more water vapor condenses onto the top of the frosting). 5. The frosting is set (more water vapor condenses onto the top of the frosting). 6. The cake cools down
(the water vapor cools off). 7. The cake comes out of the oven and it is ready to eat. How is this cake not a cake? The first step is that the cake is a cake.

5 here is an ordered sequence of events that occur when you bake a cake: 1. You have a cake. 2. You have a batch of flour (or other ingredient, such as water, sugar
or corn syrup) 3. You have your flour prepared 4. You have your flour mixture 5. You have your flour mixture pre-floured 6. You have your batter prepared 7. You
have your batter made 8. You have your batter placed on a baking sheet 9. You have your batter removed from the oven 10. You have your cake cooled in the tray
(you must place your cake in the tray before you take it out of the oven) 11. You take your cake out of the tray and remove it from the oven 12. You eat your cake, or
leave it out to cool.

6 here is a sequence of events that happen while baking a cake: 1. get a cake mix 2. pour the cake mix into the pan 3. let it bake for 10 minutes 4. get out the oven
lid and turn it on 5. let it bake for another 10 minutes 6. get out the oven lid and flip it on 7. let it bake for another 10 minutes 8. get out the oven lid and switch it
back on 9. let it bake for another 10 minutes 10. get out the oven lid, turn it back on, and let it bake again 11. get out the oven lid and get out the knife 12. bake the
cake again, and then let it cool on a rack 13. use the cake mix to make cupcakes 14. cut the cake, and then use the cupcake for serving!

7 these are the things that happen when you bake a cake: 1. get a cake mix 2. gather together other ingredients that you’ll need for your cake (coconut oil,
powdered sugar, eggs, etc.) 3. preheat oven to 350 4. pour on flour and mix by hand 5. pour in egg and mix by hand 6. add in powdered sugar and mix by hand 7. add
in coconut oil and mix by hand 8. let it all sit for a minute 9. add in your flour and mix by hand 10. add in your sugar and mix by hand 11. add in your flour and mix
by hand 12. add in your flour and mix by hand 13. add in your flour and mix by hand 14. add in your flour and mix by hand 15. add in your egg and mix by hand 16.
add in your salt

8 describe baking a cake in small sequences of short sentences: 1. get a cake mix 2. gather together other ingredients 3. start to bake 4. bake a cake 5. take it to
the oven 6. the cake is done 7. is it done? 8. is it still hot? 9. what is that crust? 10. what does the cake look like? If we think of a sequence of a few hundred or so
words, we can take the basic idea of this example and say that we could write an equivalent, yet shorter, sentence: 1. Get a cake mix 2. Get together the ingredients 3.
Bake a cake 4. Take it to the oven 5. The cake is done 6. Is it done? 7. is it hot? 8. what is that crust? 9. what does the cake look like

Table 1: Scripts generated from GPT2-L for BAKING A CAKE scenario with bold-faced prompts.

SEQUENCE here is a sequence of events that happen while
baking a cake: 1. e1 2. e2
EXPECT these are the things that happen when you bake a
cake: 1. e1 2. e2
ORDERED here is an ordered sequence of events that occur
when you bake a cake: 1. e1 2. e2
DESCRIBE describe baking a cake in small sequences of
short sentences: 1. e1 2. e2
DIRECT baking a cake: 1. e1 2. e2
TOKENS ⟨SCR⟩ baking a cake ⟨ESCR⟩: 1. e1 2. e2
ALLTOKENS ⟨SCR⟩ baking a cake ⟨ESCR⟩: ⟨BEVENT⟩
e1 ⟨EEVENT⟩ ⟨BEVENT⟩ e2 ⟨EEVENT⟩

Table 2: Different prompt formulations for BAKING A
CAKE scenario with two events (e1 and e2).

stage. In the second stage, ESDs generated using
the fine-tuned LM are passed through a sequence
of RoBERTa-based classifiers (Liu et al., 2019) to
identify relevant events, remove redundant events,
and predict pair-wise temporal ordering between
the events. These pair-wise orderings are then used
to create a full event ordering using topological
sorting on a directed graph created from the pre-
dicted orderings.

4.1 Stage I: Fine-tuning PLMs

PLMs fine-tuned on commonsense datasets like
ATOMIC (Sap et al., 2019) can generalize beyond
the scenarios observed during fine-tuning (Bosselut
et al., 2019). Hence, we investigate the learning
capability of LMs when a small number of script
examples are available. We fine-tune LMs on ESDs

using different natural language and pseudo-natural
language prompt formulations for encoding ESDs
(Table 2) to study the effect of prompt formula-
tions on this task as observed during the probing
experiments. We fine-tune LMs using negative log-
likelihood objective.

4.2 Stage II: Post-processing Generated ESDs

We sample ESDs for an unseen scenario using
the fine-tuned LMs and employ a 3-step post-
processing method to correct them for relevance,
repetitions, and ordering.

4.2.1 Step 1: Irrelevant Events Removal
The first post-processing step is to remove non-
scenario-relevant events from an ESD. An event
is not relevant for a scenario if it is not a part of
the scenario (e.g., ‘tipping a waiter’ is not a part of
BAKING A CAKE scenario). For irrelevant events
removal, we first need to identify irrelevant events
for a scenario. We pose this identification prob-
lem as a binary classification task to predict if a
given event belongs to a given scenario. For train-
ing purpose, a positive example is constructed by
pairing a scenario with an event belonging to that
scenario; negative samples are drawn from another
scenario in the training data. Using this data, we
train a RoBERTa-L-based (Liu et al., 2019) classi-
fier and remove those events from an ESD which
are predicted as irrelevant by this classifier.
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4.2.2 Step 2: Event De-duplication
The second step involves the identification and re-
moval of repeated events. Repetition of events can
occur by an exact copy of an event or by a para-
phrase of an event (e.g., ‘6. You have your batter
prepared‘ and ‘7. You have your batter made’ in 5
of Table 1). To identify such de-duplications, we
train a RoBERTa-L-based paraphrase identification
system using MRPC (Dolan and Brockett, 2005)
dataset. However, we observe many false-positives
(e.g., ‘open a faucet’ and ‘close a faucet’ were
identified as paraphrases) with this system. Since
false-positives can lead to unnecessary removal of
events, we employ a conservative approach of only
identifying repeated events. We find edit distance
between each pair of events in an ESD and remove
multiple occurrences of an event from the ESD, as
identified by the edit distance score of 0.

4.2.3 Step 3: Temporal Order Correction
The final step is to correct the order of events in
an ESD. We correct the ESDs for ordering by first
obtaining pair-wise event orderings and then using
a graph-based approach to get the final overall or-
dering. We pose the problem of pair-wise event
ordering as a binary classification task to predict if
the order of a given pair of events is correct with re-
spect to the given scenario. We sample event pairs
from gold ESDs to construct positive (sequence or-
der) and negative (reverse order) examples to train
a RoBERTa-L-based classifier. Topological sort is
then used to get the final ESD for a scenario from
the ordering predictions for all the

(
N
2

)
pairs of

events in an ESD. We construct a directed graph
G = (V, E) of events in a scenario with events as
nodes (V) of the graph and a directed edge from
node v1 ∈ V to v2 ∈ V if event represented by v2
is predicted to occur after the event represented by
v1. We keep the original ordering of events in case
the constructed graph is cyclic3 due to incorrect
predictions from the classifiers.

4.3 Implementation Details

4.3.1 Dataset pre-proccessing
We fine-tune LMs on ESDs from DeScript (Wan-
zare et al., 2016) dataset which consists of 100
ESDs each for 40 scenarios, collected via crowd-
sourcing. The scenarios are randomly partitioned
into 8 folds with each fold consisting of ESDs from

366±15% (averaged across all the input variants and folds)
of the complete graphs are acyclic for GPT2.

5 scenarios to perform 8-fold cross-validation of
SIF for each of the prompt formulation. We low-
ercase and enclose each ESD within a begin of sce-
nario ⟨BOS⟩ and an end of scenario ⟨EOS⟩ token
for fine-tuning. The input to the relevance classifier
is: scenario ⟨/s⟩ e and to the temporal classi-
fier is scenario name ⟨/s⟩ e1 ⟨/s⟩ e2, where
⟨/s⟩ is a separator token and e, e1, e2 are events.

4.3.2 Training details
We use huggingface’s transformers library (Wolf
et al., 2020) to fine-tune LMs on each of the 7
prompt formulations, leading to 7 variations for
each LM, for 1 epoch with a batch size of 1, gra-
dient accumulation per 16 steps, and block size
of 150. At inference time, 5 ESDs are sampled
for each of the given scenarios with top 50 prob-
able tokens, nucleus sampling (Holtzman et al.,
2019) probability of 0.9, and maximum length set
at 150. We use RoBERTa-L architecture from the
transformers library for relevance and temporal or-
der classifiers. Relevance (Temporal) classifier is
trained for 10 (5) epochs with average validation
accuracy of 84.50% (83.87%) across the folds. The
model with the best accuracy on the valid split is
used in the post-processing stage. We use python’s
editdistance library to compute edit distance for
the de-duplication step. We use Adam optimizer
with an initial learning rate of 2e−5, warm-up steps
set at 0.06 of total steps, batch size of 16, and max-
imum input length 150 for both the classifiers. All
the models are trained and tested on NVIDIA Tesla
V100 SXM2 16GB GPU machine.

5 Evaluation

We use SIF to induce script knowledge in GPT2,
BART, and T5, and evaluate full ESDs generated
for a given unseen scenario using BLEU metric (Pa-
pineni et al., 2002), following Pichotta and Mooney
(2016b) who use BLEU to score individual LM-
generated events. As BLEU is a precision-based
metric, we measure n-gram overlap of the sampled
ESDs against multiple gold-reference ESDs4 for
each scenario in the test fold.

Additionally, for deeper analysis of the gener-
ated ESDs, two of the authors evaluate a subset
of the generated ESDs (blinded to the identity of
the models and prompt variants) on three levels –

4We use NLTK python library to calculate BLEU score
with add-1 smoothing function and n-grams upto n = 4. We
convert the outputs of different variants & gold references into
numbered form, 1. e1 2. e2 . . .n. en for a fair comparison.
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Models TOKENS EXPECT SEQUENCE ALLTOKENS DESCRIBE DIRECT ORDERED
(1) Zero-shot 03.1 (5.2) 03.6 (5.5) 05.4 (2.8) 03.1 (5.2) 03.2 (3.6) 03.9 (5.1) 06.2 (6.6)
(2) GPT2-LSCRATCH 17.2 (3.1) 19.3 (3.7) 16.8 (2.9) 18.6 (4.5) 17.6 (2.6) 14.4 (3.9) 17.7 (3.2)
(3) BART-FT 15.5 (6.0) 20.8 (3.5) 19.6 (3.5) 19.7 (9.2) 19.2 (3.9) 18.0 (6.6) 11.7 (4.8)
(4) GPT2-FT 30.7 (5.1) 31.3 (5.5) 32.4 (6.3) 30.7 (6.6) 32.3 (5.9) 31.4 (5.8) 31.0 (4.8)
(5) BART-SIF 16.8 (5.1) 21.1 (4.2) 19.9 (3.7) 20.5 (11.1) 20.0 (3.8) 19.6 (7.2) 13.7 (5.0)
(6) GPT2-SIF 33.6 (5.4) 33.9 (5.6) 35.2 (6.9) 32.5 (6.9) 34.2 (5.3) 33.6 (5.7) 33.2 (5.5)

Table 3: Automatic evaluation results: Mean BLEU scores (and std. dev.) over 8 folds of held-out scenarios
are reported. (1) is pre-trained GPT2 (no fine-tuning or post-processing); (2) is randomly initialized GPT2 with
fine-tuning; (3-4) are fine-tuned BART and GPT2; (5-6) are SIF applied to BART and GPT2.

Models TOKENS EXPECT SEQUENCE ALLTOKENS DESCRIBE DIRECT ORDERED
(1) GPT2-FT 30.7 (5.1) 31.3 (5.5) 32.4 (6.3) 30.7 (6.6) 32.3 (5.9) 31.4 (5.8) 31.0 (4.8)
(2) GPT2-FT+Relevance (R) 33.1 (5.1) 33.1 (4.9) 34.7 (6.9) 31.9 (6.7) 33.7 (5.0) 32.6 (5.8) 33.2 (5.2)
(3) GPT2-FT+R+De-duplicate (D) 33.5 (5.2) 33.6 (5.2) 35.1 (6.9) 32.1 (6.7) 34.3 (5.0) 32.9 (5.7) 33.6 (5.5)

(4) GPT2-FT+R+D+Reorder (GPT2-SIF) 33.6 (5.4) 33.9 (5.6) 35.2 (6.9) 32.5 (6.9) 34.2 (5.3) 33.6 (5.7) 33.2 (5.5)

Table 4: Ablation analysis of each step in the proposed pipeline for GPT2. Mean BLEU scores (and std. dev.)
over 8 folds of held-out scenarios are reported. (1) fine-tuned GPT2; (2-4) are fine-tuned GPT2 with successive
post-processing steps.

individual events (Relevance (R)), pairwise events
(Order (O)), and the overall sequence (Missing
(M)). R measures the % of generated events rele-
vant to a scenario; O measures the % of consecutive
event pairs correctly ordered given a scenario; and
M measures the degree to which important events
are missing on a 4-point Likert scale defined as (1)
no or almost no missing events, (2) some insignif-
icant missing events, (3) notable missing events,
and (4) severe missing events. As scripts are com-
plex structures and require an understanding of
scenarios, we chose not to resort to a crowdsourc-
ing platform for manual analysis. We manually
analyze the outputs to evaluate SIF as well as per-
form an error analysis to identify opportunities for
future research directions.

We evaluate our framework on scenarios in each
of the eight folds as well as novel scenarios from
Regneri et al. (2010), and day-to-day activities. As
we do not have access to gold-reference ESDs for
the novel scenarios, we demonstrate our frame-
work’s performance only using manual evaluation.

6 Results and Analysis

6.1 Automatic Evaluation

We present the automatic evaluation results on held-
out scenarios in Table 3. As baselines, we report
scores from non-fine-tuned GPT2-L (Zero-shot), a
randomly-initialized GPT2-LSCRATCH model fine-
tuned on DeScript ESDs, and BART-FT and GPT2-
FT models which are fine-tuned in the first stage of
SIF. We do not report any results for T5 as it was
even struggling to learn the input ESD formulations
during fine-tuning. We explain the findings from

automatic evaluation below.

SIF significantly outperforms fine-tuning base-
lines. Both GPT2-SIF and BART-SIF have higher
BLEU scores as compared to their correspond-
ing fine-tuned (GPT2-FT and BART-FT) models
across all the prompt variants. This clearly reflects
the advantage of the post-processing stage in SIF
framework. Improvement across different LMs re-
inforces the LM-agnostic nature of our framework.
Variation in the extent of induction across prompt
variants indicates the sensitivity of LMs to prompt
formulations.

Script knowledge is best accessible through
GPT2 than other LMs. As previously mentioned
in probing experiments, BART and T5 were not
able to output anything useful in the zero-shot set-
ting while GPT2 could produce ESDs, although
erroneous and of poor quality. We observe same
trends even after fine-tuning these LMs or using
SIF to induce script knowledge in these LMs. In-
terestingly, a randomly initialized and fine-tuned
GPT2 (GPT2-LSCRATCH) is able to perform com-
parable to a pre-trained BART fined-tuned using
DeScript (BART-FT), and even better for TOKENS

and ORDERED variants. Overall, GPT2 is found
to be better than BART in terms of the presence
and accessibility of script knowledge through them.
One possible explanation for this is that GPT2 is a
generative language model while BART and T5 are
encoder-decoder-based language models making it
challenging to encode complete script knowledge
within a scenario name.

Performance across LMs is sensitive to prompt
formulation and scenario. We consistently ob-
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Variants BLEU↑ Manual Evaluation
R↑ O↑ M↓

TOKENS 19.2/22.8 77.2/84.3 72.3/89.3 2.6/2.6
EXPECT 22.8/26.0 81.9/82.7 74.5/86.5 3.0/3.0
SEQUENCE 27.8/33.4 73.3/83.2 74.0/87.5 2.5/2.5
ALLTOKENS 33.5/35.0 83.5/85.7 82.7/89.5 2.6/2.6
DESCRIBE 27.1/28.6 80.7/86.3 83.9/85.9 2.8/2.8
DIRECT 30.9/34.1 81.2/84.2 88.5/86.1 2.6/2.6
ORDERED 31.9/31.5 84.9/86.2 78.6/86.8 2.6/2.6

Table 5: Manual and BLEU scores on fine-tuned GPT2
(GPT2-FT) SIF applied to GPT2 (FT/SIF), computed
for a stratified sample of outputs (one ESD per sce-
nario across two folds). Mean scores across two an-
notators are reported. Annotator agreement is mea-
sured with Cohen’s Kappa (Cohen, 1960) (κ=0.61 for
O, κ=0.56 for R) and Spearman’s correlation (ρ=0.64
for M). Underline and bold denotes the best across vari-
ants, and between FT and Ours, respectively. O scores
are calculated only when both the events are marked as
relevant by the two annotators.

serve variation in performance across prompt vari-
ants. Moreover, this variation is also observed
across LMs. For BART, EXPECT outperforms other
prompt variants while SEQUENCE performs the
best for GPT2. High variance across folds also
shows that different prompts perform differently
depending upon a scenario. This indicates the sen-
sitivity of LMs to prompt formulations and thus
justifies our experiments with different prompt for-
mulations to study the extent of script knowledge
that can be accessed through PLMs.

6.2 Ablation Analysis of SIF

We next analyze the contribution of each the stage
of SIF and each step of stage II leading to improve-
ment in the performance via an ablation study, on
GPT2, in Table 4. As expected stage I contributes
maximum to the performance boost. and There is
a consistent improvement in BLEU after each of
the post-processing steps except in the case of DE-
SCRIBE and ORDERED wherein, reordering leads
to a slight decrease in BLEU as the trained classi-
fiers are not perfectly accurate. We present qual-
itative outputs when SIF is used to induce script
knowledge in GPT2 in Table 7.

6.3 Manual Evaluation and Error Analysis

We manually evaluate a total of 140 ESDs (for M)
comprising 652 individual events (for R) and 582
consecutive pair of events (for O) generated from
GPT2-FT and GPT2 SIF across all the prompt
variants (Table 5). BLEU scores are also reported
for the same set of ESDs to study the correlation

Scenario R↑ O↑ M↓
Order fastfood online 81.5 84.6 2.6
Cook in a microwave 89.5 92.0 2.4
Answer telephone 65.5 91.7 2.0
Buy from vending machine 77.1 81.3 3.4
Tie shoe laces 65.8 66.7 3.6
Brush teeth 75.9 71.4 2.6
Make ginger paste 41.5 85.7 3.4
Attend a wedding 71.9 100.0 2.4
Wash a car 85.7 90.0 3.0
Take out trash 88.5 92.3 2.2
Take a taxi 85.7 76.2 2.0
Surf the internet 73.3 62.5 2.8
Watch television 77.4 73.7 3.0
Go to a club to dance 100.0 93.5 1.4
Average Score 77.1 83.0 2.6

Table 6: Manual evaluation of ESDs for novel scenarios.
Averaged across 5 sampled ESDs per scenario generated
using the best performing SEQUENCE variant of GPT2-
SIF as per automatic measure.

between manual and automatic metrics. We find
that outputs from SIF have higher BLEU, R, and
O scores than FT across all prompt variants (except
O for DIRECT and BLEU for ORDERED). M scores
do not change, which shows that significantly im-
portant events are not dropped during the irrelevant
events removal step. Different prompts perform
well in different aspects. DESCRIBE generates most
relevant events, ALLTOKENS has the best temporal
ordering knowledge, and SEQUENCE leads to least
severe missing events after Stage II of SIF. To our
surprise, we find no statistically significant correla-
tion between BLEU and any of the manual evalu-
ation metrics (pearson correlation between BLEU
and R, O and M was r = 0.23,−0.06,−0.49 with
p> 0.1, respectively), emphasizing a need for more
sophisticated automatic metrics than BLEU for
evaluating full ESDs, having a complex structure.
The best performing variant as per BLEU score
differs from the best one in Table 3 due to variance
in performance across scenarios as well as different
sampled ESDs of the same scenario in Table 5.

Manual evaluation revealed that a model can
miss significant events, even though it can gener-
ate many relevant ones. As we only de-duplicate
multiple occurrences of exactly the same events in
a scenario, we observe repeated paraphrases (4.6%
across all prompt variants) of the same event, such
as ‘pour some milk in the pot’ and ‘pour the milk
into the coffee pot’ (MAKING COFFEE scenario).
23.9% of the irrelevant events (13.5% across all
prompt variants) are incoherent (‘take the flat to the
bathroom’ for CLEANING A FLAT), 11.4% mixed
(‘sit in front of coffee shop’ for MAKING COF-
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Good quality generations

GOING ON A
TRAIN

FT 1. get dressed 2. go to station 3. buy ticket 4. get on train 5. wait for train 6. get on train 7. sit in seat 8. read newspaper 9. wait for
train 10. get off train 11. get dressed 12. leave station

SIF 1. go to station 2. buy ticket 3. wait for train 4. get on train 5. sit in seat 6. get off train 7. leave station

FLYING IN AN
AIRPLANE

FT 1. go to airport 2. get boarding pass 3. go to the airline counter 4. present boarding pass and boarding pass id to attendant 5. present
ticket and id to attendant 6. sit down in seat 7. make sure you are in seat 8. board airplane

SIF 1. go to airport 2. go to the airline counter 3. present ticket and id to attendant 4. present boarding pass and boarding pass id to
attendant 5. get boarding pass 6. board airplane 7. make sure you are in seat 8. sit down in seat

Poor quality generations

CLEANING UP
A FLAT

FT 1. get the flat 2. take the flat to the bathroom 3. take some water 4. take the flat to the sink 5. turn on the water 6. let it wash the flat 7.
then put in some dryer sheet 8. get a sponge 9. scrub the flat 10. put the flat in the dryer 11. when done dry the flat with a towel 12.
put away the flat

SIF 1. get the flat 2. take the flat to the bathroom 3. take some water 4. take the flat to the sink 5. turn on the water 6. let it wash the flat 7.
then put in some dryer sheet 8. get a sponge 9. scrub the flat 10. put the flat in the dryer 11. when done dry the flat with a towel 12.
put away the flat

TAKING THE
UNDER-

GROUND

FT 1. arrive at the designated location 2. get in car 3. park in car 4. walk into the designated area 5. enter the room 6. find a chair 7. sit on
a chair 8. watch movie

SIF 1. walk into the designated area

Table 7: Scripts generated using SEQUENCE variant of GPT2 for held-out scenarios. FT denotes output from the
fine-tuned model and SIF refers to outputs from our framework applied to GPT2.

Good quality generations
BRUSHING

TEETH

FT 1. go into bathroom 2. turn on faucet 3. remove any dirt or debris 4. grab a brush 5. scrub and floss the teeth 6. leave the bathroom
SIF 1. go into bathroom 2. grab a brush 3. scrub and floss the teeth 4. leave the bathroom

GOING TO A
CLUB TO
DANCE

FT 1. choose which club to attend. 2. drive or park your car. 3. get in your car. 4. go to the club. 5. enter the club. 6. get up and dance.
SIF 1. choose which club to attend. 2. get in your car. 3. go to the club. 4. drive or park your car. 5. enter the club. 6. get up and dance.

TAKING A
TAXI

FT 1. get in car 2. get into car 3. wait for taxi 4. enter the car 5. pay the fare 6. get out the driver 7. get out the door 8. exit car
SIF 1. get into car 2. get in car 3. wait for taxi 4. enter the car 5. pay the fare 6. get out the driver 7. exit car 8. get out the door

Poor quality generations

MAKING
GINGER PASTE

FT 1. get your hot water 2. get your bowl 3. turn on the hot water 4. whisk a bowl of sugar into a paste 5. put the bowl on the stove 6. turn
on the hot water 7. boil the paste 8. add salt to the paste 9. turn off the water 10. put the bowl on a rack 11. pour the hot water into a
saucepan 12. put some salt and sugar in the saucepan 13. turn the heat on 14. pour the sauce on to the bowl 15. eat the paste

SIF 1. get your hot water 2. get your bowl 3. turn on the hot water 4. whisk a bowl of sugar into a paste 5. put the bowl on the stove 6. boil
the paste 7. add salt to the paste 8. put the bowl on a rack 9. pour the hot water into a saucepan 10. put some salt and sugar in the
saucepan 11. turn the heat on 12. pour the sauce on to the bowl 13. eat the paste

SURFING THE
INTERNET

FT 1. get in the car. 2. drive to the beach. 3. rent a surfboard. 4. go to the beach. 5. put on my sunglasses. 6. get in my car. 7. drive to my
beach. 8. go to the surfing.

SIF 1. 1. rent a surfboard. 2. get in the car. 3. go to the surfing.

ATTENDING A
WEDDING

FT 1. schedule an appointment for the reception 2. drive to the venue 3. show your guest information 4. present your wedding ceremony/
reception to the guests 5. invite the friends/ family/ coworkers/ etc. to the wedding 7. present your wedding present to the guests 8.
make the guest list 9. take the invitation 10. go to the reception 11. pay the fee/ gratuity 12. give your guest his/her ticket 13. leave the
venue

SIF 1. schedule an appointment for the reception 2. drive to the venue 3. show your guest information 4. present your wedding ceremony/
reception to the guests 5. invite the friends/ family/ coworkers/ etc. to the wedding 6. present your wedding present to the guests 7.
make the guest list 8. take the invitation 9. go to the reception 10. leave the venue

BUYING FROM
A VENDING

MACHINE

FT 1. enter the shop 2. look for the item you wish to purchase 3. go into the register to purchase the item 4. pay for the item 5. take your
item to your car 6. take the item to the car and remove the card 7. leave the shop 8. return the card 9. leave the shop

SIF 1. enter the shop 2. look for the item you wish to purchase 3. go into the register to purchase the item 4. pay for the item 5. take your
item to your car 6. take the item to the car and remove the card 7. leave the shop 8. return the card

Table 8: Scripts generated using SEQUENCE variant of GPT2 for novel scenarios. FT denotes output from the
fine-tuned model and SIF refers to outputs from our framework applied to GPT25.

FEE), 61.4% unrelated (‘add shampoo’ for WASH-
ING DISHES), and rest ungrammatical.

We present a manual evaluation of novel sce-
narios to gauge the generalizability of our frame-
work in Table 6. The framework generalizes to
most of the novel scenarios except for those which
involve very granular events like MAKING GIN-
GER PASTE or TYING SHOE LACES. Although
GPT2 is a contextualized model, it confuses BUY-
ING FROM VENDING MACHINE with buying from
a store, SURFING THE INTERNET with the ‘surfing’
activity, or ATTENDING A WEDDING with ‘getting
married’. Additionally, we provide a few good and
bad quality outputs from GPT2 models for held-out
(Table 7) and novel (Table 8) scenarios to identify
the avenues for improving script induction in LMs.

7 Limitations

De-duplication of Events. As mentioned previ-
ously, SIF cannot de-deuplicate paraphrased ver-
sion of an event. Therefore, more sophisticated
paraphrase identification systems could be used
to de-duplicate such events. There could be sce-
narios where multiple occurrence of same event is
required. For instance, WASHING DISHES wherein
faucet needs to be opened and closed once at the
starting before applying soap and secondly after
applying soap (when washed by hands). Hence, it
is required to differentiate between desirable and
undesirable repetition of events.

Full vs Partial Temporal Ordering. While we
consider the task of generating full event sequence
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descriptions for a scenario, we acknowledge that
many scenarios may not have strict ordering of
events (e.g., either wet ingredients can be mixed
first or dry ones in a BAKING A CAKE scenario) or
there can be overlapping events (e.g., while oven
is pre-heating, batter can be prepared). Instead of
considering partial ordering of events (Sakaguchi
et al., 2021), we focus on generating multiple possi-
ble full sequence of events for a scenario and report
the averaged scores.

8 Conclusion and Future Work

We investigate whether pre-trained language mod-
els are capable of generating full event sequence
descriptions with minimal prompting and find that
pre-trained GPT2 has an incomplete understanding
of scripts, while BART and T5 did not even pro-
duce anything useful through zero-shot probing ex-
periments. We propose SIF, an LM-agnostic script
induction framework, that is shown to produce
meaningful ESDs for unseen scenarios and mit-
igate errors (such as scenario-irrelevant, repeated,
and misordered events) that were observed during
probing experiments, as measured by automatic
and manual evaluation. We also provide evidence
for the generalization capability of our framework
to novel scenarios. However, there is great room for
improvement which is evident from manual error
analysis and qualitative outputs. Future work may
focus on developing more sophisticated automatic
metrics as well as an end-to-end system for script
induction which might help in mitigating cascading
of errors, due to each component, common to any
pipeline-based approaches.
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Abstract

In this paper, we present and implement a multi-
dimensional, modular framework for perform-
ing deep argument analysis (DeepA2) using
current pre-trained language models (PTLMs).
ArgumentAnalyst – a T5 model (Raffel et al.,
2020) set up and trained within DeepA2 – re-
constructs argumentative texts, which advance
an informal argumentation, as valid arguments:
It inserts, e.g., missing premises and conclu-
sions, formalizes inferences, and coherently
links the logical reconstruction to the source
text. We create a synthetic corpus for deep
argument analysis, and evaluate ArgumentAna-
lyst on this new dataset as well as on exist-
ing data, specifically EntailmentBank (Dalvi
et al., 2021). Our empirical findings vindicate
the overall framework and highlight the advan-
tages of a modular design, in particular its abil-
ity to emulate established heuristics (such as
hermeneutic cycles), to explore the model’s un-
certainty, to cope with the plurality of correct
solutions (underdetermination), and to exploit
higher-order evidence.

[ Demo] [ Model] [ Datasets]

1 Introduction

Argumentative text analysis is an interpretation
method for clarifying arguments (Fisher, 2004).
Being studied in argumentation theory, logic, or
epistemology, it is widely taught and applied as
a key critical thinking skill in, e.g., law (Alexy,
1989), the humanities (Bruce and Barbone, 2011),
social sciences (Fairclough and Fairclough, 2012),
policy advice (Hansson and Hirsch-Hadorn, 2016),
or public debate (Beck et al., 2019). This paper
presents a computational approach for deep argu-
ment analysis, i.e., for reconstructing natural-
language arguments from a given text, as in the
following example (adapted from Siegel, 2018):

source text ; reconstructed argument
It is unethical to destroy hu-
man embryos. The most ba-
sic argument supporting this
claim just stresses that it is
wrong to intentionally kill in-
nocent human beings.

(P1) It is impermissible to
kill innocent human beings.
(P2) The human embryo is an
innocent human being.
(C) THUS: It is impermissi-
ble to kill the human embryo.

The literature on argument reconstruction (cf.
Feldman, 1998; Scholz, 2000; Lau, 2011; Bowell
and Kemp, 2014; Brun, 2014; Brun and Betz, 2016)
characterizes deep argument analysis as:

• a complex task involving a variety of sub-
tasks, such as identifying reasons and conclu-
sions in a text, formalizing sentences, check-
ing validity of an inference, logical streamlin-
ing, or explicating implicit premises.

• a non-conservative, creative task that goes
beyond mere text annotation and essentially
generates a new, more transparent text.

• an iterative process through which recon-
structions are built and revised step-by-step,
and the solution space is gradually explored.

• a hermeneutical task, guided by the principle
of charity, which urges one to come up with
an interpretation (reconstruction) as strong
and plausible as possible.

• assuming a normative background theory
about what constitutes a strong and plausible
argument in the first place.

• being affected by severe underdetermina-
tion, both in terms of the process and the final
outcome; in particular, there typically exist
rival, yet equally legitimate reconstructions of
one and the same text.

Given these special characteristics, deep argu-
ment analysis poses many challenges for machine
models of natural language understanding. In this
paper, we introduce a novel modular modeling ap-
proach for analysing complex argumentation that
builds on recent pre-trained text2text transformers
(Raffel et al., 2020). Our approach – DeepA2 (il-
lustrated in Figure 1) – works by systematically
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decomposing a complex reconstruction problem to
smaller text2text sub-tasks (see Section 3), which
allows for emulating the types of interpretation
strategies and heuristics studied in argument theory.
Referring to the different components of a com-
prehensive argumentative analysis, we may also
define tailor-made metrics for assessing argument
reconstructions. To demonstrate the benefits of
our approach, we construct a new argumentation
dataset (AAAC) that exhibits several complex inter-
pretive dimensions, show how to map other existing
datasets into our framework (Section 4), and train
and evaluate our main model, referred to as Argu-
mentAnalyst, within DeepA2 (Section 5).

Our empirical results show:
1. ArgumentAnalyst generates – out-of-domain –

semantically meaningful argument reconstructions,
70% of which are logically valid. By pooling alter-
native reconstructions, virtually every source text
in the synthetic dataset can be reconstructed as a
valid argument.

2. Modular generation chains which emulate
iterative reconstruction strategies are highly suc-
cessful: they yield, in particular, a more coherent
interpretation of an argumentative text, exploit the
text more thoroughly, and generally outperform
one-step generation as soon as problems become
difficult.

3. ArgumentAnalyst outperforms Entailmen-
tWriter (Dalvi et al., 2021) on difficult Entailment-
Bank problems with respect to telling apart relevant
premises from distractors.

4. ArgumentAnalyst generates reliable higher-
order evidence (Christensen, 2010) which can be
used for diagnosing logical fallacies – despite the
fact that ArgumentAnalyst is maximally charitable
and is trained to reconstruct any input whatsoever
as a logically valid argument, even if the input
argument, taken at face value, is painstakingly fal-
lacious.

In concluding this paper, we sum-up and in-
terpret these findings as general vindication of
DeepA2’s modular, multi-angular design (Sec-
tion 6).

2 Related Work

Taking transformers as soft reasoners, recent
work, pioneered by Clark et al. (2020), has shown
that pre-trained language models (PTLMs) possess
basic deductive and abductive reasoning capabili-
ties on diverse domains (Banerjee and Baral, 2020;

Betz et al., 2021; Bostrom et al., 2021), but are
equally prone to fallacies and biases (Kassner and
Schütze, 2020; Talmor et al., 2020). Besides draw-
ing the correct conclusion, transformers are able
to generate correct reasoning chains that justify
an answer, which in turn further increases answer
accuracy (Saha et al., 2020; Tafjord et al., 2020;
Gontier et al., 2020; Saha et al., 2021; Dalvi et al.,
2021).

Neural semantic parsing uses sequence mod-
els to formalize natural language sentences (Ka-
math and Das, 2019). Shin et al. (2021) show that
PTLMs are zero-shot parsers, and that intermediate
steps which rephrase and streamline the original in-
put before parsing it to a formal language improve
accuracy.

Argument mining is an active research field
that studies computational methods for retriev-
ing argumentative components from a text corpus
(Wachsmuth et al., 2017; Moens, 2018; Potthast
et al., 2019; Lawrence and Reed, 2020). Recently,
work in this field has started to use PTLMs: Ein-
Dor et al. (2020) and Gretz et al. (2020) succeed
in retrieving relevant pro- or con-arguments for a
given topic from a large corpus with a fine-tuned
BERT model (Devlin et al., 2019). Using BERT,
Bar-Haim et al. (2020) map argumentative texts
to key points that succinctly summarize the argu-
ment’s gist. Akiki and Potthast (2020) explore
abstractive argument retrieval by means of text gen-
eration with GPT2 (Radford et al., 2019). Similarly,
Syed et al. (2021) deploy BART (Lewis et al., 2019)
to generate conclusions of argumentative texts on a
challenging corpus compiled from Reddit and vari-
ous online debate corpora. Rodrigues et al. (2020),
revisiting the argument comprehension task (Haber-
nal et al., 2014, 2018), demonstrate that identifying
implicit premises – and deep argument analysis a
fortiori – remains a hard, unsolved task. Recently,
Chakrabarty et al. (2021) have shown that augment-
ing training data with discourse-aware common-
sense knowledge improves the plausibility of au-
tomatically identified implicit premises. Such a
knowledge-driven perspective is orthogonal to, and
may eventually complement the logical approach
adopted in this paper.

3 Framework

3.1 Problem Definition

Deep argument analysis of a given text seeks to
answer the following central question: Can we
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conjectures: source:
Socrates is mortal because
every human is.

argdown: source: Socrates
is mortal because every human
is. conjectures: Socrates is
mortal

formalize: premises:
Socrates is human | If someone
is human, then they are mortal

Argument-
Analyst

(1) Socrates is human.
(2) If someone is human, then
they are mortal.
---
(3) Socrates is mortal.

Socrates is mortal

F a | (x): F x -> G x

Figure 1: Example text-to-text tasks for deep argument analysis, defined by DeepA2.

make sense of the text as a presentation of a rational
argument? And if so, what exactly is the argument;
and how precisely is it related to the text?

In carrying out a deep argument analysis, one
explicates, rephrases and rebuilds – even repairs
– the text’s argument in one’s own words. That
is why deep argument analysis is also referred to
as rational reconstruction (cf. Leitgeb and Carus,
2021). The reconstructed argument forms, together
with details about its logical properties and about
its relation to the source text, a comprehensive ar-
gumentative analysis of a text. The latter can be
seen as an interpretative hypothesis that is abduc-
tively inferred from a source text by means of an
inference to the best explanation. Here is another
example that illustrates how far a reconstruction
may deviate from the original text that presents the
argument (adapted from Brun and Betz, 2016):

source text ; reconstructed argument
So, the researcher’s central
dilemma exists in an espe-
cially acute form in psychol-
ogy: either the animal is not
like us, in which case there
is no reason for performing
the experiment; or else the
animal is like us, in which
case we ought not to perform
on the animal an experiment
that would be considered out-
rageous if performed on one
of us.

(P1) If the animal is not like
us, it is wrong to perform the
experiment.
(P2) If the animal is like us,
it is wrong to perform the ex-
periment.
(C) THUS (with classical di-
lemma): It is wrong to per-
form the experiment.

A compelling argumentative analysis yields (i) a
rational argument that is (ii) closely related to the
source text. Deep argument analysis is, accordingly,
guided by a dual goal (cf. Brun and Betz, 2016).
An argument reconstruction should both be

(i) systematically correct, i.e., the reconstructed
argument itself is, e.g., transparent, deduc-
tively valid, non-circular, or doesn’t contain
irrelevant premises; and

(ii) exegetically adequate, i.e., the reconstructed

argument accounts for the original text, be-
cause, e.g., its premises merely reformulate
parts of the text, or because its overall inferen-
tial structure can be traced within the source
text.

The fact that there typically exists – regarding a
specific text – a trade-off between these two goals
is one major reason for the underdetermination of
deep argument analysis and the plurality of legiti-
mate reconstructions of a given text (cf. Brun and
Betz, 2016).

Against this background, we may finally define
the problem of

Deep artificial argument analysis: Describe,
analyse and implement an effective computa-
tional system for deep argument analysis!

3.2 Multi-angular Data

The DeepA2 framework is built upon a multi-
angular data structure (Tafjord and Clark, 2021)
whose dimensions represent the essential compo-
nents of a comprehensive argumentative analysis
(see Section 3.1). Structured argumentative data is
rendered as plain text (cf. Voigt, 2014). The differ-
ent data dimensions, which are related as shown in
Figure 2, are (with an illustrating example):

argument source text (S)
It is unethical to destroy human embryos. The basic
argument supporting this claim just stresses that it is
wrong to intentionally kill innocent human beings.

verbatim reason statements in source text (R)
it is wrong to intentionally kill innocent human beings
(ref: (1))

verbatim conjectures in the source text (J)
It is unethical to destroy human embryos (ref: (3))

argument reconstruction (A)
(1) It is impermissible to kill innocent human beings.
(2) The human embryo is an innocent human being.
– with hypothetical syllogism from (1) (2) –
(3) It is impermissible to kill the human embryo.
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Figure 2: Relationships between dimensions of the
multi-angular argumentative data.

premises of the reconstructed argument (P)
It is impermissible to kill innocent human beings | The
human embryo is an innocent human being

final conclusion of reconstr. argument (C)
It is impermissible to kill the human embryo

formalizations of premises (F)
(x): F x → G x | (x): H x → F x

formalization of conclusion (O)
(x): H x → G x

keys for the formalizations’ constants (K)
F: innocent human being | G: must not be killed | H:
human embryo

Each record in a DeepA2 dataset contains a
source text plus a legitimate comprehensive argu-
mentative analysis, which is, given underdetermi-
nation, not necessarily the only compelling recon-
struction of the text; moreover, a dataset may con-
tain different records with one and the same source
text analysed in several ways. So, for example, an
alternative, equally legitimate argument reconstruc-
tion of the above source text (S) may read:

argument reconstruction (A)
(1) If it is wrong to kill innocent human beings, then it
is wrong to kill a human embryo.
(2) It is wrong to kill innocent human beings.
– with modus ponens from (1) (2) –
(3) It is wrong to kill a human embryo.

Beyond this structural and functional character-
ization, DeepA2 is agnostic about the nature and
origin of the argumentative data. Synthetically gen-
erated, automatically retrieved, manually created
datasets as well as translations of other databases
are all compatible with the framework and can be
used side by side.

3.3 Generative Modes and Chains
Given DeepA2’s multi-dimensional data structure
described in the previous section, a generative
mode maps data from some input dimensions to
a target dimension. For example, the mode S;A

takes a source text (S) as input and outputs an argu-
ment reconstruction (A), the mode RJ;A recon-
structs the argument (A) given the verbatim reasons
(R) and conjectures (J). All in all, we define and

investigate 21 different generative modes (see Ap-
pendix B). Every mode represents a task on which
a text-to-text model can be trained.

By taking some mode’s output as another mode’s
input, modes can be concatenated into generative
chains. For example, the output of modes S;R

and S;J (reasons and conjectures from source)
can be fed into mode RJ;A to reconstruct an
argument. Such generative chains allow us to em-
ulate different strategies (heuristics) for analysing
a given argumentative text (see Appendix C for
technical details).

Three generative chains which model distinct
interpretative strategies, taking a source text (S) as
sole input, are:

straight
S;A S;R S;J

hermeneutic cycle
S;A SA;R SA;J RJ;A

logical streamlining
S;A A;P A;C C;O CO;K

OK;C PC;A SA;R SA;J

While the chain straight, where no output ever
serves as input to another mode, represents a simple
baseline, hermeneutic cycle and logical streamlin-
ing mimic prominent, equally-named methods in ar-
gument analysis (cf. Bowell and Kemp, 2014; Brun
and Betz, 2016). One goes through a hermeneutic
cycle, generally speaking, if one revisits a text in
view of its previous interpretation, as, for example,
in steps SA;R SA;J , where the source text (S)
is re-interpreted (identifying reason statements and
conjectures) given the previously reconstructed ar-
gument (A), so as to subsequently re-reconstruct the
argument itself (step RJ;A ). To logically stream-
line a reconstruction means to rephrase its con-
clusion or premises in order to make their logico-
semantic structure more transparent. Such seman-
tic clarification can be emulated by (i) formalizing
a statement (e.g., A;C C;O CO;K ) and (ii)
using the keys (K) to retrieve the original statement
from the generated logical formulas (such as in
OK;C ), from which the argument can be re-built

(step PC;A ).
For evaluation, we append to each generative

chain the following sub-chain that formalizes the
reconstructed argument:

formalization
A;P A;C P;F CPF;O PFCO;K
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A generative chain can be construed as hy-
pergraph on the dimensions of DeepA2’s multi-
angular datasets, with each of its modes represent-
ing a directed hyper-edge. Summing up the num-
ber of input dimensions (except S) over all modes
yields a simple graph centrality measure, which
gauges a chain’s sophistication. Thus, straight,
hermeneutic cycle and logical streamlining display
a sophistication of 0, 4, and 11, respectively.

3.4 Metrics
As discussed in Section 3.1, an argument recon-
struction should both be sound and make sense
of the text to-be-interpreted. In line with the dual
goal of argument analysis, we propose metrics both
for the systematic correctness and for the exegetic
adequacy of a given analysis. The following met-
rics measure the degree to which a given generated
argument is systematically correct:

SYS-PP 1 if the argument is not a petitio principii
(i.e., if no premise is identical with its final
conclusion), 0 otherwise;

SYS-RP 1 if the argument has no redundant
premises (i.e., if no premise occurs more than
once), 0 otherwise;

SYS-RC 1 if the argument has no redundant conclu-
sions (i.e., if no conclusion – intermediary or
final – occurs more than once), 0 otherwise;

SYS-US 1 if all statements in the argument other
than the final conclusion are explicitly used in
an inference, 0 otherwise;

SYS-SCH ratio of sub-arguments which correctly
instantiate the explicitly stated inference
scheme (e.g., hypothetical syllogism);

SYS-VAL 1 if the argument is globally valid (i.e., if
the final conclusion deductively follows from
the premises), 0 otherwise;

All six systematic metrics can be computed au-
tomatically (SYS-SCH tries to parse the argument
based on the inference schemes and templates used
to construct the synthetic dataset in the first place;
SYS-VAL passes the model-generated formalizations
of premises and conclusion to a symbolic theorem
prover (De Moura and Bjørner, 2008); and the re-
maining metrics check for string identity).

Whereas systematic metrics apply primarily to
the generated argument (A), a reconstruction’s in-
terpretative adequacy will also depend on how rea-
sons (R) and conjectures (J) coherently link the
argument’s components to the original text. As a
first set of exegetic metrics, we thus propose

EXE-MEQ 1 if the reasons and conjectures are
mutually exclusive verbatim quotes from the
source text, 0 otherwise;

EXE-RSS semantic similiarity (BLEURT, see Sel-
lam et al., 2020) of each reason statement and
its counterpart premise in the reconstructed
argument (if such exists, -1 otherwise);

EXE-JSS semantic similiarity (see EXE-RSS) of each
conjecture statement and its counterpart in
the reconstructed argument (if such exists, -1
otherwise).

Each source text presents (more or less faithfully)
an underlying target argument, which in turn marks
some of the text’s statements as ‘target’ reasons,
others as ‘target’ conjectures. The following two
metrics assess the degree to which a comprehen-
sive argumentative analysis correctly predicts (R,
J) those target reasons and conjectures.

EXE-PPR predictive performance (F1-score) for
identifying (target) reason statements in the
source text;

EXE-PPJ predictive performance (F1-score) for
identifying (target) conjecture statements in
the source text.

An argument’s final conclusion may be implicit or
explicit in a given text. The ability to fully exploit
a text can be measured by verifying whether the re-
constructed argument’s final conclusion is implicit
(= prediction) if and only if the target argument’s
one is.

EXE-TE text exploitation, as measured by ability
(F1-score) to reconstruct arguments with ex-
plicit final conclusions (prediction) if and only
if the target final conclusions are explicit.

3.5 Models

Any text-to-text language model is compatible with
the proposed DeepA2 framework. We refer to mod-
els used within the framework as ArgumentAna-
lyst. In this study, we train and evaluate the trans-
former model T5 (Raffel et al., 2020) with 770M
parameters as implemented by (Wolf et al., 2020).

3.6 Limitations

In the DeepA2 framework, arguments are recon-
structed from relatively short and isolated texts,
disregarding both the broader context of the argu-
ment and domain-specific background knowledge.
This limits the framework, as presented here, in
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important ways: Implicit premises that are expli-
cated in an argument reconstruction can neither
be checked for plausibility nor for agreement with
the author’s broader convictions. In addition, the
framework cannot assess an argument’s dialectic
function in a wider debate. It seems worthwhile to
explore according extensions of the framework in
future research.

4 Datasets

For the experiments reported below, we syntheti-
cally create two artificial argument analysis corpora
that comply with the DeepA2 framework (see also
Appendix A): AAAC01 and AAAC02. In addition,
we translate the synthetic RuleTaker (Clark et al.,
2020) and the manually compiled EntailmentBank
(Dalvi et al., 2021) datasets into our framework.

In argument analysis, one proceeds from a source
text to its reconstruction. Creating the synthetic
corpora, we reverse-engineer this process:

Step 1. We sample, first of all, a possibly com-
plex argument (A) from a set of valid inference
schemes. In doing so, we use a multi-step templat-
ing strategy (inspired by Betz et al., 2021) to trans-
late symbolic forms into natural language schemes
(which were generated by local domain experts)
and to substitute natural language terms for place-
holders. Premises (P), conclusion (C) and their
formalization (F, O, K) are side-products of such a
construction of an argument.

Step 2. Given the fully explicit argument (A), we
compose a text (S) that presents the argument in a
more or less transparent and faithful way. Such text
creation involves: rendering the argument tree as
a linear story, leaving out premises or conclusions
(implicit premises and conclusions), inserting ir-
relevant material (distractors), using templates that
obfuscate the logical form of a sentence, limiting
the use of premise and conclusion indicators (such
as “therefore”), applying rule-based and automatic
paraphrasing. In composing the argumentative text
(S), we may record its reasons (R) and conjectures
(J).

Given the synthetic and controlled nature of our
dataset, which involved eliciting rule templates
from a group of local domain experts, all data is
assumed to be correct by construction. As an addi-
tional check of correctness on the logic of our exam-
ples, we ran a symbolic theorem prover (De Moura
and Bjørner, 2008) over the argument formaliza-
tions to verify their validity. To ensure the fluency

of the underlying language templates, all templates
were hand verified by the authors.

Our two datasets AAAC01 and AAAC02 differ in
the following ways:

1. predicates and names are sampled from dif-
ferent, disjunct domains (texts are about, e.g.,
allergies and family relations versus, e.g., bad-
minton and cooking) to test a model’s robust-
ness to lexical diversity (Rozen et al., 2019);

2. similarly, AAAC01 applies automatic para-
phrasing (Alisetti, 2021) to the final source
text whereas AAAC02 doesn’t;

3. AAAC02 allows for imprecise renditions of log-
ical formulas, while AAAC01 sticks to plain
formulations to test robustness to variations in
description of rules.

Each dataset contains diverse texts and argu-
ments. Broadly speaking, data records may dif-
fer in terms of properties of the argument (step
1 above) and properties of the argument’s presen-
tation (step 2). Along these two dimensions, we
define five homogeneous subsets of the data:

simple inference: arguments with a single infer-
ence step that neither involves negation nor
compositional predicates;

complex inference: arguments with four infer-
ence steps that heavily rely on syntactically
intricate schemes (e.g., transposition, or de
Morgan);

plain presentation: all premises and conclusions
are explicit in the source text which, in addi-
tion, contains no distractors;

mutilated presentation: at least two premises
and one conclusion are implicit, while the text
contains two distractors and explicitly states
the final conclusion;

C&M: the argument’s inference is complex, plus
the text contains at least two distractors.

The RuleTaker and EntailmentBank datasets con-
tain multi-hop inference trees (A). To import these
into the DeepA2 framework, we create source texts
(S) for the given arguments by means of simple
templates (such as “{theory} All this entails: {hy-
pothesis}”) and record reasons (R) and conjectures
(J) on the fly. Unlike AAAC and EntailmentBank,
RuleTaker (as updated in Tafjord et al., 2020) con-
tains an equal share of arguments for which (i)
the conclusion follows from the premises, (ii) the
conclusion contradicts the premises, (iii) the con-
clusion is independent of the premises.
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5 Experiments and Results

As first and main experiment we train our
base model (see Section 3.5) on the AAAC01 cor-
pus, and evaluate the resulting ArgumentAnalyst
model out-of-domain on AAAC02. ArgumentAna-
lyst undergoes multi-task training on 21 genera-
tive modes, which are interpreted as sequence-to-
sequence tasks (the training set-up is further de-
scribed in Appendix B).

The evaluation of ArgumentAnalyst on AAAC02

proceeds in two steps: (1.) prediction: produces
output in accordance with 16 different generative
chains (Appendix C); (2.) metrics application:
assesses the quality of the generated output by
means of the systematic and exegetic metrics of
the DeepA2 framework (see Section 3.4).

Table 1 reports the ability of ArgumentAnalyst
to generate systematically correct and exegetically
adequate argument reconstructions. We obtain sim-
ilar global results with the three chains straight,
hermeneutic cycle, and logical streamlining, whose
generated reconstructions mainly differ in terms
of internal coherence (EXE-RSS, EXE-JSS) and text
exploitation (EXE-TE). However, the different gen-
erative chains complement each other, as shown by
pooling, which does not only outperform individual
chains, but nearly attains oracle performance.

Moreover, ArgumentAnalyst produces much bet-
ter reconstructions of simple inferences and plain
presentations – compared to complex inferences
and mutilated presentations, i.e., difficult problems
(cf. Table 5 in App. D). In addition, within one
and the same subset, substantial differences show
up between the three generative chains. Globally
speaking, hermeneutic cycle outperforms the other
two chains for difficult problems.

Is ArgumentAnalyst capable of reliable self-
evaluation? We have validated the logic metric
(SYS-VAL), which passes on a self-generated formal-
ization of the reconstructed argument to a theorem
prover, in three ways: First of all, ArgumentAna-
lyst correctly recognizes target arguments as valid
(with accuracy 92.7%), which has been verified
by running the formalization subchain on target
data. Secondly, virtually every generated argument
with all-correct scheme instantiations (i.e., SYS-

SCH = 1) is also – and correctly – recognized as
logically valid. Thirdly, a manual analysis (human-
in-the-loop) of 100 generated arguments with in-
correct scheme instantiation (i.e., SYS-SCH < 1)
reveals a high rate of false negatives: roughly one

half of all inferences that are not automatically
identified as an instantiation of the given scheme
actually do correctly instantiate it. The accordingly
adjusted global ratio of correct scheme instanti-
ations (Table 1) equals roughly 0.65 (rather than
0.31–0.33), which is consistent with the ratio of
logically valid arguments being 0.72–0.73.

Do reconstructed arguments exhibit basic seman-
tic flaws? Regarding the full dataset, Argument-
Analyst produces nearly flawless argument re-
constructions, committing basic errors (petitio,
redundancy, unused statements) only very rarely
(Table 1). And even for very difficult problems,
two thirds of all generated arguments display no
basic flaw whatsoever (Table 5, SYS-PP & SYS-RP &

SYS-RC & SYS-US).

Are reconstructed arguments logically valid?
Roughly 70% of all arguments generated by one of
the three chains are logically valid (Table 1). More
importantly, though, for virtually every source
text in the dataset, there is at least one chain
(out of 16) which reconstructs the text as a valid
argument (pooling). Given that logical validity
can be automatically assessed, the pooled system
may thus guarantee to yield a valid reconstruc-
tion. Concerning different problem types (Table 5),
hermeneutic cycle clearly outperforms the other
chains as soon as the problem gets difficult. Ad-
ditional analysis shows that ArgumentAnalyst can
also cope with underdetermination, as 68% of all
generated arguments whose final conclusion differs
(BLEU ≤ .8) from the target argument’s one – i.e.,
arguments that are not reconstructed as expected
given the target data – are still logically valid.

Are the generated interpretations internally coher-
ent? The generative chain hermeneutic cycle yields
comprehensive argument reconstructions where
premises (P) and conclusions (C) fit much better
to detected reasons (R) and conjectures (J) than
straight or logical streamlining (EXE-RSS, EXE-JSS).
This holds globally (Table 1), as well as for easy,
and for difficult problems (Table 5). Note that the
oracle baseline for metrics EXE-RSS, EXE-JSS is well
below 1, which reflects the fact that source texts
may present arguments in highly mutilated ways;
it is nearly attained by pooling the 16 different
generative chains (Table 1).

Can ArgumentAnalyst detect reasons and conjec-
tures, and fully exploit the text? The evaluation
demonstrates that reason/conjecture detection on
AAAC02 is a relatively easy task (EXE-PPR, EXE-PPJ).
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systematic metrics (SYS-*) exegetic metrics (EXE-*)

chain PP RP RC US SCH VAL MEQ RSS JSS PPR PPJ TE

straight .95 .97 .96 .96 .33 .73 .80 -.08 -.10 .93 .93 .63
herm. cy. .95 .98 .95 .93 .31 .72 .82 .16 .12 .93 .92 .71
logic. str. .95 .97 .96 .95 .32 .72 .82 .11 .00 .93 .92 .69
pooling 1.0 1.0 1.0 1.0 .73 1.0 1.0 .26 .29 .96 .96 .97
oracle 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .30 .37 1.0 1.0 1.0

Table 1: Performance of ArgumentAnalyst on the AAAC02 data as measured by systematic and exegetic metrics.
Rows display results for three illustrative generative chains (straight, hermeneutic cycle, logical streamlining), for
the item-wise best performing generative chain out of all 16 chains (pooling), and for oracle performance (oracle),
which one obtains by applying the metrics to the target data itself.

ArgAnEB ArgAnAAAC,EB EntWr

steps straight herm.
cycle

straight herm.
cycle

1 .863 .866 .816 .871 .951
2 .798 .815 .813 .826 .886
3 .812 .815 .826 .806 .858
4 .757 .791 .820 .822 .838
≥ 5 .795 .811 .786 .773 .742
any .819 .830 .816 .834 .879

Table 2: Predictive performance of ArgumentAnalyst
(ArgAnEB, ArgAnAAAC,EB) and EntailmentWriter (En-
tWr) for identifying reason statements in an input text
(metric SYS-PPR) on the EntailmentBank task2 dataset.

In contrast, fully exploiting a text (i.e., generating
an argument with implicit final conclusion if and
only if the underlying target argument has an im-
plicit final conclusion, EXE-TE) is seemingly more
challenging (Table 1). Again, hermeneutic cycle
achieves best text exploitation, performing, how-
ever, clearly below oracle baseline – which may
simply reflect the degree of underdetermination in
the AAAC02 corpus.

In a second experiment we train two models
on the imported EntailmentBank (task1 and task2)
dataset (see Section 4), namely: (1.) our base
model (T5), which yields ArgumentAnalystEB; (2.)
the ArgumentAnalyst model pretrained on AAAC02

(resulting in an intermediary pre-training set-up
similar to Phang et al., 2018; Geva et al., 2020),
which yields ArgumentAnalystAAAC,EB.

Since the EntailmentBank data doesn’t contain
formalizations, we can only train on 14 modes,
which are interpreted as sequence-to-sequence
tasks (see Appendix B). We evaluate the models
on task2 of EntailmentBank only, which contains
problems with a relatively large number of distrac-
tors, and proceed in two steps as before: prediction
(with 11 different generative chains) and metrics

application. Dalvi et al. (2021) report the ability of
EntailmentWriter (a fine-tuned T5-11b model) to
correctly distinguish relevant premises of an argu-
ment from distractors in terms of a F1-score, which
corresponds to our metric EXE-PPR. That’s why the
sole focus in this second experiment is on EXE-PPR.

Table 2 describes the ability of ArgumentAna-
lyst models to correctly tell apart relevant premises
from mere distractors in the EntailmentBank task2
dataset for two generative chains (straight, which
directly outputs reason statements, and hermeneu-
tic cycle, which tries to reconstruct the argument
first and uses both source text and argument to
identify reasons), and compares this with the per-
formance of EntailmentWriter (scores from Dalvi
et al., 2021). The results, shown separately for ar-
guments with a specific number of inference steps,
let us draw three conclusions:

First, ArgumentAnalyst outperforms Entailmen-
tWriter on difficult problems with more than 4 in-
ference steps / sub-arguments.

Second, using the sophisticated chain hermeneu-
tic cycle improves predictive performance com-
pared to the simple straight chain.

Third, the chain hermeneutic cycle (unlike
straight) generally benefits from intermediary pre-
training on AAAC – caveat: not so for arguments
with more than 4 steps. This latter observation
might be due to the fact that the AAAC02 corpus, by
construction, doesn’t contain arguments with more
than 4 steps, so that pre-training biases the model
towards shorter arguments.

In a third experiment we explore the following
hypothesis:

Informative higher-order evidence. The degree
to which ArgumentAnalyst struggles in recon-
structing a given argument (presented in the
source text) as logically valid is a reliable in-
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dicator for whether the original argument is
fallacious or not.

To test this hypothesis, we apply ArgumentAnalyst
(trained on AAAC02, see above) to the RuleTaker
data as imported into the DeepA2 framework (see
Section 4): ArgumentAnalyst produces – by means
of 13 generative chains – comprehensive recon-
structions, to which the systematic and exegetic
metrics are applied. RuleTaker contains an equal
share of arguments whose conclusions follow from
(label=valid), contradict (label=contradiction), or
are independent of (label=neutral) the correspond-
ing premises. Now, informative higher-order ev-
idence would allow us to correctly predict these
labels. And this is exactly what we observe: First,
if reconstructions of one and the same source text
which are independently generated with different
chains agree (disagree), then the original argument
tends to be valid (invalid). Second, by training
simple classifiers on our argumentative metrics and
further properties of the reconstructions, we ro-
bustly achieve a predictive accuracy 10% above
the random baseline. While this is far below the
SOTA results of tailor-made RuleTaker (Clark et al.,
2020) and ProofWriter (Tafjord et al., 2020) mod-
els on this data, our findings nonetheless confirm
the above hypothesis.

6 Conclusion

In this paper, we have presented and implemented
a multi-angular, modular framework for deep ar-
gument analysis (DeepA2). It allows for defining
a large variety of generative modes by combining
different dimensions of the data. These modes, in
turn, can be concatenated into complex generative
chains. ArgumentAnalyst – a text-to-text model
set up and trained within the DeepA2 framework –
yields plausible reconstructions of argumentative
texts. Our empirical findings vindicate the overall
framework and highlight the following advantages
of a multi-angular, modular design in general:
First of all, modular chains may emulate estab-
lished, well-proven, typically piece-meal, schol-
arly techniques for text analysis (heuristics), which
hence may provide normative, methodological
guidance in setting up NLP systems. Secondly,
by defining and implementing different modular
chains, and investigating the plurality of gener-
ated solutions, one can systematically explore the
system’s uncertainty as well as the tasks’s un-
derdetermination. Thirdly, monitoring the sys-

tem during modular computation yields diagnosti-
cally useful information (e.g., intermediary results)
which not only describes the model’s performance
on the given problem, but which additionally al-
lows us – as higher-order evidence – to character-
ize (e.g., classify) the original problem in the first
place. Fourthly, breaking down a complex task into
sub-tasks with intermediary results that can be fur-
ther processed and re-combined helps to overcome
input size limitations of neural language models.
Fifthly, modular generation with meaningful modes
allows users to follow the system, comprehend gen-
erated solutions, verify sub-steps and detect errors
– the NLP system becomes a transparent, explain-
able AI (Miller, 2019). Finally, modular NLP sys-
tems as described by DeepA2 may be connected
to a user-interface which promises fine-grained
interactive control of modular generations and
seamless cognitive cooperation of AI and human
experts in analysing texts.
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A Synthetic Argument Data

The AAAC datasets used in this study are pub-
licly available via Huggingface’s Hub – https:

//huggingface.co/datasets/debatelab/aaac

– where the construction of the datasets is
documented meticulously.

A synthetically generated AAAC record, which
nicely illustrates the underdetermination of argu-
ment reconstruction, with two implicit premises,
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one distracting statement and a simple (one-step)
argument (formatted as presented to the model):
source: It is not the case that Tracy
is not an admirer of Fullerton and Tracy
has seen La Habra. Plus, if someone
loves Chico, then they haven’t visited
Monterey, owing to the fact that loving
Laguna Beach is sufficient for not
having visited Monterey.
reasons: loving Laguna Beach is
sufficient for not having visited
Monterey (ref: (2))
conjectures: if someone loves Chico,
then they haven’t visited Monterey (ref:
(4))
argdown:
(1) If someone is an admirer of Chico,
then they are an admirer of Laguna Beach
or a visitor of Stockton.
(2) If someone admires Laguna Beach,
then they haven’t visited Monterey.
(3) If someone has visited Stockton,
then they haven’t visited Monterey.
-
with generalized dilemma (neg variant)
from (1) (2) (3)
-
(4) If someone admires Chico, then they
haven’t visited Monterey.
premises: If someone is an admirer
of Chico, then they are an admirer of
Laguna Beach or a visitor of Stockton.
(ref: (1)) | If someone admires Laguna
Beach, then they haven’t visited
Monterey. (ref: (2)) | If someone
has visited Stockton, then they haven’t
visited Monterey. (ref: (3))
conclusion: If someone admires Chico,
then they haven’t visited Monterey.
(ref: (4))
premises_form: (x): Fx -> (G x v H x)
(ref: (1)) | (x): G x -> not I x (ref:
(2)) | (x): H x -> not I x (ref: (3))
conclusion_form: (x): F x -> not I x
(ref: (4))
keys: F: admirer of Chico | G: admirer
of Laguna Beach | H: visitor of Stockton
| I: visitor of Monterey

B Training Set-up

By interpreting a generative mode as a sequence-
to-sequence task, we may translate a multi-angular
DeepA2 dataset (e.g., AAAC01) into a multi-task
sequence-to-sequence format, on which a sequence-
to-sequence model can be trained. For each record
in the multi-angular DeepA2 dataset, we randomly
sample 14 modes in accordance with the weights
provided in Table 3 and add, for each mode, a corre-
sponding sequence-to-sequence record to the train-
ing data. This results, for AAAC01, in a sequence-to-
sequence training dataset with 14×16.000 records.

Our models (base model T5-large with 770M
parameters, and pretrained ArgumentAnalyst) are

mode w1w2 mode w1w2 mode w1w2

S;A 1. 1. S;R 1. 1. P;F .7 –
SR;A 1. 1. SJ;R 1. 1. PCO;F .7 –
SJ;A 1. 1. SA;R 1. 1. C;O .7 –
SRJ;A 1. 1. S;J 1. 1. CPF;O .7 –
RJ;A 1. 1. SR;J 1. 1. PF;K .7 –
PC;A 1. 1. SA;J 1. 1. CO;K .7 –
A;P .2 .2 A;C .2 .2 PFCO;K .7 –
FK;P .7 – OK;C .7 –

Table 3: 21 generative modes with corresponding
weights in AAAC (w1) and EntailmentBank (w2) train-
ing data.

trained with batch-size 2 and learning rate 0.00001.
For AAAC01, eval loss starts to increase at epoch 8;
with EntailmentBank data, eval loss increases from
epoch 2 onwards.

C Iterative Prediction with Generative
Chains

Generative chains are implemented with a dynamic
dictionary (9 keys, corresp. to the dimensions of
DeepA2 data), which is initialized with the source
text, provides input for the generative modes, and is
updated after each generative step with the mode’s
generated output. Output is generated with beam
search decoding and beam width 2.

Table 4 displays all generative chains we resort
to in this study, all of which are used in the first
experiment. The second experiment makes use of
chains 1–11. The third experiment deploys chains
1–13.

D Additional Results

Table 5 assesses ArgumentAnalyst’s reconstruc-
tions on specific subsets of the AAAC02 dataset (de-
fined in Section 4) for three representative genera-
tive chains.

Table 6 details the performance of Argument-
Analyst on the entire AAAC02 dataset as measured
by tailor-made argumentative metrics. Table 7
shows the corresponding performance on out-of
-sample eval data AAAC01.

Distinguishing four mutually exclusive subsets
of AAAC02, Tables 8–11 detail the the quality of
ArgumentAnalyst’s reconstruction for easy and
difficult problems. Tables 12–15 present the
corresponding out-of-sample performance on the
equally partitioned AAAC01 dataset (eval split).
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# mode sequence len. soph.

1 S;A S;R S;J 3 0

2 S;J S;R SJ;A 3 1

3 S;J S;R SR;A 3 1

4 S;J S;R RJ;A 3 2

5 S;J SJ;R RJ;A 3 3

6 S;J SJ;R SRJ;A 3 3

7 S;R SR;J RJ;A 3 3

8 S;R SR;J SRJ;A 3 3

9 S;A SA;R SA;J RJ;A 4 4

10 S;A SA;R SA;J SRJ;A 4 4

11 S;A SA;R SA;J SRJ;A

SA;R SA;J SRJ;A

7 8

12 S;A A;P A;C P;F

PF;K FK;P PC;A

SA;R SA;J

9 11

13 S;A A;P A;C C;O

CO;K OK;C PC;A

SA;R SA;J

9 11

14 S;A A;P A;C C;O

CO;K OK;C PC;A A;P

A;C P;F PF;K FK;P

PC;A SA;R SA;J

15 20

15 S;A A;P A;C P;F

CPF;O PFCO;K FK;P

OK;C PC;A SA;R

SA;J

11 18

16 S;A A;P A;C P;F

CPF;O PCO;F PFCO;K

FK;P OK;C PC;A

SA;R SA;J

12 21

Table 4: 16 generative chains (without final formal-
ization sub-sequences) evaluated in this study. The
illustrative chains highlighted in the main paper are
#1 (straight), #9 (hermeneutic cycle), and #13 (logical
streamlining).

inference presentation

simple compl. plain mutil. C&M
chain N=1274 N=180 N=330 N=114 N=70

SYS-PP & SYS-RP & SYS-RC & SYS-US
straight .95 .72 .98 .61 .69
herm. c. .94 .68 .96 .67 .61
log. str. .95 .68 .98 .64 .61

SYS-VAL
straight .84 .48 .88 .40 .34
herm. c. .83 .56 .84 .49 .50
log. str. .82 .47 .86 .46 .37

EXE-RSS
straight .03 -.25 .05 -.31 -.30
herm. c. .20 .08 .15 .08 .11
log. str. .17 -.01 .13 .01 -.06

EXE-JSS
straight .06 -.32 .10 -.37 -.37
herm. c. .23 -.06 .21 -.03 -.21
log. str. .13 -.26 .07 -.26 -.40

Table 5: Performance of ArgumentAnalyst on specific
subsets (columns) of the AAAC02 data as measured by
selected systematic and exegetic metrics (sub-tables).
Rows display results for three illustrative generative
chains (straight, hermeneutic cycle, logical streamlin-
ing).
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systematic metrics (SYS-*) exegetic metrics (EXE-*)

chain PP RP RC US SCH VAL MEQ RSS JSS PPR PPJ TE

#1 0.95 0.97 0.96 0.96 0.33 0.73 0.80 -0.08 -0.10 0.93 0.93 0.63
#2 0.95 0.97 0.94 0.94 0.33 0.71 0.80 -0.09 0.04 0.93 0.93 0.67
#3 0.95 0.98 0.95 0.93 0.31 0.70 0.80 0.10 -0.11 0.93 0.93 0.62
#4 0.94 0.97 0.94 0.92 0.30 0.70 0.80 0.12 -0.00 0.93 0.93 0.66
#5 0.94 0.97 0.95 0.91 0.30 0.70 0.83 0.13 0.05 0.94 0.93 0.69
#6 0.94 0.97 0.95 0.93 0.31 0.70 0.83 0.10 0.03 0.94 0.93 0.67
#7 0.93 0.97 0.95 0.92 0.29 0.70 0.83 0.13 0.05 0.93 0.92 0.68
#8 0.94 0.97 0.95 0.93 0.30 0.69 0.83 0.10 0.02 0.93 0.92 0.67
#9 0.95 0.98 0.95 0.93 0.31 0.72 0.82 0.16 0.12 0.93 0.92 0.71
#10 0.96 0.98 0.96 0.94 0.32 0.71 0.82 0.14 0.09 0.93 0.92 0.69
#11 0.96 0.98 0.96 0.93 0.32 0.71 0.82 0.15 0.11 0.93 0.92 0.71
#12 0.93 0.95 0.94 0.94 0.32 0.71 0.81 -0.17 -0.08 0.93 0.92 0.68
#13 0.95 0.97 0.96 0.95 0.32 0.72 0.82 0.11 -0.00 0.93 0.92 0.69
#14 0.93 0.95 0.94 0.94 0.32 0.70 0.81 -0.18 -0.14 0.93 0.92 0.66
#15 0.92 0.96 0.94 0.95 0.33 0.71 0.81 -0.20 -0.19 0.93 0.92 0.65
#16 0.92 0.96 0.94 0.94 0.33 0.72 0.81 -0.20 -0.19 0.93 0.92 0.65

Table 6: Performance of ArgumentAnalyst for systematic and exegetic metrics on the entire OOD eval data
(AAAC02). Rows display mean results for each of the 16 generative chains.

systematic metrics (SYS-*) exegetic metrics (EXE-*)

chain PP RP RC US SCH VAL MEQ RSS JSS PPR PPJ TE

#1 0.97 0.98 0.97 0.98 0.61 0.87 0.78 0.08 0.13 0.95 0.95 0.64
#2 0.97 0.98 0.96 0.97 0.60 0.87 0.78 0.09 0.24 0.95 0.95 0.68
#3 0.96 0.98 0.96 0.97 0.58 0.86 0.78 0.26 0.12 0.95 0.95 0.64
#4 0.95 0.98 0.95 0.96 0.57 0.85 0.78 0.26 0.20 0.95 0.95 0.67
#5 0.96 0.98 0.95 0.96 0.57 0.84 0.80 0.27 0.27 0.96 0.95 0.70
#6 0.97 0.98 0.96 0.96 0.58 0.84 0.80 0.26 0.24 0.96 0.95 0.69
#7 0.95 0.98 0.96 0.96 0.57 0.86 0.79 0.27 0.26 0.95 0.94 0.71
#8 0.96 0.98 0.96 0.96 0.57 0.85 0.79 0.26 0.25 0.95 0.94 0.70
#9 0.97 0.99 0.97 0.97 0.59 0.88 0.79 0.31 0.36 0.96 0.95 0.78
#10 0.97 0.99 0.97 0.97 0.60 0.87 0.79 0.30 0.34 0.96 0.95 0.77
#11 0.97 0.99 0.97 0.97 0.60 0.87 0.79 0.31 0.35 0.96 0.95 0.77
#12 0.95 0.97 0.95 0.96 0.54 0.84 0.79 0.17 0.25 0.96 0.94 0.75
#13 0.97 0.99 0.97 0.97 0.61 0.87 0.79 0.29 0.32 0.96 0.95 0.76
#14 0.95 0.97 0.95 0.96 0.54 0.84 0.79 0.16 0.24 0.96 0.94 0.74
#15 0.94 0.97 0.95 0.96 0.54 0.85 0.79 0.15 0.18 0.96 0.95 0.73
#16 0.94 0.97 0.95 0.95 0.54 0.85 0.79 0.15 0.19 0.96 0.95 0.73

Table 7: Performance of ArgumentAnalyst for systematic and exegetic metrics on the entire OOS eval data (AAAC01).
Rows display mean results for each of the 16 generative chains.
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inference presentation

chain simple complex plain mutilat. C&M

SYS-PP & SYS-RP & SYS-RC & SYS-US
#1 0.95 0.72 0.98 0.61 0.69
#2 0.93 0.66 0.96 0.59 0.60
#3 0.92 0.69 0.96 0.68 0.73
#4 0.92 0.66 0.95 0.69 0.60
#5 0.92 0.68 0.95 0.59 0.61
#6 0.93 0.66 0.97 0.68 0.59
#7 0.92 0.67 0.96 0.62 0.64
#8 0.92 0.66 0.95 0.64 0.66
#9 0.94 0.68 0.96 0.67 0.61
#10 0.94 0.73 0.98 0.68 0.77
#11 0.94 0.69 0.98 0.66 0.73
#12 0.93 0.60 0.95 0.57 0.50
#13 0.95 0.68 0.98 0.64 0.61
#14 0.92 0.57 0.93 0.58 0.49
#15 0.92 0.66 0.95 0.59 0.56
#16 0.92 0.64 0.95 0.56 0.60

Table 8: Performance of ArgumentAnalyst for selected
systematic metric (SYS-PP & SYS-RP & SYS-RC & SYS-US) on
specific subsets (columns) of the OOD eval data.

inference presentation

chain simple complex plain mutilat. C&M

SYS-VAL
#1 0.84 0.48 0.88 0.40 0.34
#2 0.82 0.54 0.84 0.47 0.46
#3 0.82 0.44 0.87 0.39 0.36
#4 0.81 0.48 0.83 0.44 0.43
#5 0.82 0.44 0.85 0.45 0.37
#6 0.81 0.46 0.85 0.42 0.41
#7 0.83 0.44 0.82 0.46 0.49
#8 0.80 0.44 0.83 0.40 0.40
#9 0.83 0.56 0.84 0.49 0.50
#10 0.82 0.50 0.85 0.46 0.43
#11 0.82 0.48 0.84 0.46 0.41
#12 0.81 0.47 0.84 0.42 0.37
#13 0.82 0.47 0.86 0.46 0.37
#14 0.80 0.48 0.82 0.41 0.40
#15 0.82 0.45 0.84 0.50 0.33
#16 0.83 0.52 0.85 0.46 0.43

Table 9: Performance of ArgumentAnalyst for se-
lected systematic metric (SYS-VAL) on specific subsets
(columns) of the OOD eval data.

inference presentation

chain simple complex plain mutilat. C&M

EXE-RSS
#1 0.03 -0.25 0.05 -0.31 -0.30
#2 0.02 -0.27 0.07 -0.33 -0.31
#3 0.15 -0.03 0.12 -0.01 -0.06
#4 0.16 0.01 0.12 -0.01 0.04
#5 0.18 0.04 0.13 0.04 0.06
#6 0.17 -0.04 0.12 -0.02 -0.09
#7 0.18 0.05 0.14 0.03 0.08
#8 0.16 -0.02 0.12 -0.02 -0.07
#9 0.20 0.08 0.15 0.08 0.11
#10 0.19 0.04 0.15 0.05 -0.01
#11 0.21 0.04 0.15 0.07 -0.03
#12 -0.14 -0.20 -0.12 -0.23 -0.25
#13 0.17 -0.01 0.13 0.01 -0.06
#14 -0.17 -0.22 -0.16 -0.23 -0.26
#15 -0.19 -0.23 -0.24 -0.24 -0.23
#16 -0.19 -0.23 -0.24 -0.25 -0.24

Table 10: Performance of ArgumentAnalyst for selected
exegetic metrics (EXE-RSS) on specific subsets (columns)
of the OOD eval data.

inference presentation

chain simple complex plain mutilat. C&M

EXE-JSS
#1 0.06 -0.32 0.10 -0.37 -0.37
#2 0.16 -0.17 0.19 -0.12 -0.26
#3 0.02 -0.32 0.03 -0.42 -0.33
#4 0.12 -0.17 0.13 -0.14 -0.19
#5 0.15 -0.11 0.15 -0.08 -0.18
#6 0.16 -0.14 0.15 -0.22 -0.22
#7 0.16 -0.11 0.16 -0.10 -0.18
#8 0.15 -0.18 0.14 -0.19 -0.27
#9 0.23 -0.06 0.21 -0.03 -0.21
#10 0.23 -0.12 0.21 -0.15 -0.27
#11 0.25 -0.13 0.20 -0.11 -0.27
#12 0.06 -0.36 0.04 -0.28 -0.47
#13 0.13 -0.26 0.07 -0.26 -0.40
#14 -0.02 -0.39 -0.07 -0.31 -0.48
#15 -0.08 -0.41 -0.16 -0.36 -0.49
#16 -0.08 -0.37 -0.15 -0.35 -0.45

Table 11: Performance of ArgumentAnalyst for selected
exegetic metric (EXE-JSS) on specific subsets (columns)
of the OOD eval data.
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inference presentation

chain simple complex plain mutilat. C&M

SYS-PP & SYS-RP & SYS-RC & SYS-US
#1 0.98 0.78 1.00 0.75 0.76
#2 0.97 0.77 0.99 0.70 0.73
#3 0.95 0.79 0.96 0.77 0.74
#4 0.95 0.76 0.96 0.69 0.73
#5 0.97 0.75 0.98 0.66 0.74
#6 0.96 0.77 0.98 0.73 0.78
#7 0.96 0.73 0.96 0.71 0.72
#8 0.97 0.75 0.97 0.73 0.74
#9 0.98 0.80 0.99 0.80 0.70
#10 0.98 0.78 0.99 0.80 0.73
#11 0.98 0.78 0.99 0.80 0.71
#12 0.97 0.71 0.97 0.70 0.67
#13 0.98 0.81 0.99 0.76 0.78
#14 0.96 0.73 0.96 0.70 0.69
#15 0.97 0.72 0.96 0.70 0.68
#16 0.97 0.72 0.96 0.68 0.68

Table 12: Performance of ArgumentAnalyst for selected
systematic metric (SYS-PP & SYS-RP & SYS-RC & SYS-US) on
specific subsets (columns) of the OOS eval data.

inference presentation

chain simple complex plain mutilat. C&M

SYS-VAL
#1 0.97 0.68 0.96 0.74 0.74
#2 0.97 0.68 0.97 0.73 0.71
#3 0.94 0.70 0.94 0.72 0.71
#4 0.95 0.65 0.94 0.68 0.71
#5 0.96 0.59 0.95 0.65 0.62
#6 0.95 0.62 0.96 0.69 0.63
#7 0.94 0.66 0.94 0.66 0.71
#8 0.95 0.67 0.95 0.69 0.69
#9 0.97 0.65 0.97 0.72 0.69
#10 0.97 0.67 0.97 0.68 0.72
#11 0.97 0.70 0.97 0.68 0.74
#12 0.95 0.63 0.95 0.72 0.70
#13 0.97 0.68 0.95 0.73 0.73
#14 0.95 0.63 0.94 0.72 0.69
#15 0.95 0.65 0.94 0.75 0.71
#16 0.95 0.65 0.95 0.73 0.71

Table 13: Performance of ArgumentAnalyst for se-
lected systematic metric (SYS-VAL) on specific subsets
(columns) of the OOS eval data.

inference presentation

chain simple complex plain mutilat. C&M

EXE-RSS
#1 0.19 -0.16 0.11 -0.07 -0.18
#2 0.21 -0.13 0.10 -0.05 -0.15
#3 0.30 0.11 0.17 0.22 0.06
#4 0.29 0.16 0.16 0.24 0.16
#5 0.32 0.18 0.19 0.23 0.18
#6 0.31 0.11 0.18 0.19 0.07
#7 0.30 0.15 0.17 0.25 0.16
#8 0.30 0.12 0.17 0.24 0.08
#9 0.33 0.23 0.19 0.30 0.23
#10 0.33 0.20 0.19 0.27 0.16
#11 0.33 0.21 0.19 0.28 0.16
#12 0.20 0.06 0.11 0.16 0.04
#13 0.33 0.12 0.19 0.26 0.07
#14 0.20 0.06 0.10 0.16 0.03
#15 0.18 0.04 0.07 0.14 0.00
#16 0.18 0.04 0.07 0.11 0.02

Table 14: Performance of ArgumentAnalyst for selected
exegetic metrics (EXE-RSS) on specific subsets (columns)
of the OOS eval data.

inference presentation

chain simple complex plain mutilat. C&M

EXE-JSS
#1 0.35 -0.14 0.36 -0.09 -0.13
#2 0.40 0.02 0.39 0.10 0.02
#3 0.30 -0.15 0.29 -0.08 -0.15
#4 0.36 0.03 0.33 0.08 -0.02
#5 0.41 0.15 0.39 0.17 0.11
#6 0.40 0.04 0.38 0.10 -0.01
#7 0.39 0.12 0.37 0.15 0.06
#8 0.39 0.08 0.38 0.10 -0.02
#9 0.47 0.16 0.42 0.31 0.13
#10 0.47 0.11 0.42 0.26 0.02
#11 0.47 0.11 0.42 0.26 0.02
#12 0.40 -0.01 0.35 0.14 -0.08
#13 0.45 0.03 0.36 0.21 -0.01
#14 0.38 -0.00 0.30 0.15 -0.05
#15 0.30 -0.04 0.22 0.07 -0.07
#16 0.30 -0.03 0.22 0.11 -0.06

Table 15: Performance of ArgumentAnalyst for selected
exegetic metric (EXE-JSS) on specific subsets (columns)
of the OOS eval data.
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Abstract
The integration of syntactic structures into
Transformer machine translation has shown
positive results, but to our knowledge, no work
has attempted to do so with semantic struc-
tures. In this work we propose two novel
parameter-free methods for injecting seman-
tic information into Transformers, both rely on
semantics-aware masking of (some of) the at-
tention heads. One such method operates on the
encoder, through a Scene-Aware Self-Attention
(SASA) head. Another on the decoder, through
a Scene-Aware Cross-Attention (SACrA) head.
We show a consistent improvement over the
vanilla Transformer and syntax-aware models
for four language pairs. We further show an
additional gain when using both semantic and
syntactic structures in some language pairs.

1 Introduction

It has long been argued that semantic representa-
tion can benefit machine translation (Weaver, 1955;
Bar-Hillel, 1960). Moreover, RNN-based neural
machine translation (NMT) has been shown to ben-
efit from the injection of semantic structure (Song
et al., 2019; Marcheggiani et al., 2018). Despite
these gains, to our knowledge, there have been
no attempts to incorporate semantic structure into
NMT Transformers (Vaswani et al., 2017). We ad-
dress this gap, focusing on the main events in the
text, as represented by UCCA (Universal Cogni-
tive Conceptual Annotation; Abend and Rappoport,
2013), namely scenes.

UCCA is a semantic framework originating
from typological and cognitive-linguistic theories
(Dixon, 2009, 2010, 2012). Its principal goal is
to represent some of the main elements of the se-
mantic structure of the sentence while disregarding
its syntax. Formally, a UCCA representation of a
passage is a directed acyclic graph where leaves
correspond to the words of the sentence and nodes
correspond to semantic units. The edges are la-
beled by the role of their endpoint in the relation

corresponding to their starting point (see Fig. 1).
One of the motivations for using UCCA is its capa-
bility to separate the sentence into "Scenes", which
are analogous to events (see Fig. 1). Every such
Scene consists of one main relation, which can be
either a Process (i.e., an action), denoted by P, or a
State (i.e., continuous state), denoted by S. Scenes
also contain at least one Participant (i.e., entity),
denoted by A. For example, the sentence in Fig. 1a
comprises two scenes: the first one has the Process
"saw" and two Participants – "I" and "the dog"; the
second one has the Process "barked" and a single
Participant – "dog".

So far, to the best of our knowledge, the only
structure-aware work that integrated linguistic
knowledge and graph structures into Transform-
ers used syntactic structures (Strubell et al., 2018;
Bugliarello and Okazaki, 2020; Akoury et al., 2019;
Sundararaman et al., 2019; Choshen and Abend,
2021, inter alia). The presented method builds on
the method proposed by Bugliarello and Okazaki
(2020), which utilized a Universal Dependencies
graph (UD; Nivre et al., 2016) of the source sen-
tence to focus the encoder’s attention on each to-
ken’s parent, namely the token’s immediate ances-
tor in the UD graph. Similarly, we use the UCCA
graph of the source sentence to generate a scene-
aware mask for the self-attention heads of the en-
coder. We call this method SASA (see §2.1).

We test our model (§2) on translating English
into four languages. Two that are more syntac-
tically similar to English (Nikolaev et al., 2020;
Dryer and Haspelmath, 2013): German (En-De),
Russian (En-Ru), and two that are much less so:
Turkish (En-Tr) and Finnish (En-Fi). We selected
these language pairs for their varied grammatical
properties and the availability of reliable parallel
datasets for each of them in the WMT benchmark.
We find consistent improvements across multiple
test sets for all four cases.

In addition, we create a syntactic variant of
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(a) I saw the dog that barked.

(b) He said goodbye and left the party.

Figure 1: Examples of UCCA parse graphs of the sentences "I saw the dog that barked" (1a) and "He said goodbye
and left the party" (1b), accompanied by their segmentation into scenes ( + corresponding UCCA sub-graphs) and
equivalent Scene-Aware masks. The dark-green color in the masks represents the value ’1’, and the light-green
color to the value ’0’.

our semantic model for better comparability. We
observe that on average, our semantically aware
model outperforms the syntactic models. Moreover,
for the two languages less similar to English (En-Tr
and En-Fi), combining both the semantic and the
syntactic data results in a further gain. While im-
provements are often small, at times the combined
version outperforms SASA and UDISCAL (our
syntactic variant, see §3) by 0.52 and 0.69 BLEU
points (or 0.46 and 0.43 chrF), respectively.

We also propose a novel method for introducing
the source graph information during the decoding
phase, namely through the cross-attention layer in
the decoder (see §2.2). We find that it improves
over the baseline and syntactic models, although
SASA is generally better. Interestingly, for En-
Fi, this model also outperforms SASA, suggesting
that some language pairs may benefit more from
semantic injection into the decoder.

Overall, through a series of experiments (see §4),
we show the potential of semantics as an aid for
NMT. We experiment with a large set of variants
of our method, to see where and in what incorpora-
tion method they best help. Finally, we show that

semantic models outperform UD baselines and can
be complementary to them in distant languages,
showing improvement when combined.

2 Models

Transformers have been shown to struggle when
translating some types of long-distance dependen-
cies (Choshen and Abend, 2019; Bisazza et al.,
2021a), and when facing atypical word order
(Bisazza et al., 2021b). Sulem et al. (2018a) pro-
posed UCCA based preprocessing at inference
time, splitting sentences into different scenes. They
hypothesized that models need to decompose the
input into scenes implicitly, and provide them with
such a decomposition, as well as with the original
sentence. They show that this may facilitate ma-
chine translation (Sulem et al., 2020) and sentence
simplification (Sulem et al., 2018b) in some cases.

Motivated by these advances, we integrate
UCCA to split the source into scenes. However,
unlike Sulem et al., we do not alter the sentence
length in pre-processing, as this method allows
less flexibility in the way information is passed,
and as preliminary results in reimplementing this
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method yielded inferior results (see §A.5). Instead,
we investigate ways to integrate the split into the
attention architecture.

We follow previous work (Bugliarello and
Okazaki, 2020) in the way we incorporate our se-
mantic information. In their paper, Bugliarello and
Okazaki (2020) introduced syntax in the form of a
parent-aware mask, which was applied before the
softmax layer in the encoder’s self-attention. We
mask in a similar method to introduce semantics.
However, parent in the UCCA framework is an
elusive concept, given that nodes may have mul-
tiple parents. Hence, we use a different way to
express the semantic information in our mask, i.e.,
we make it scene-aware, rather than parent-aware.

Following Sulem et al. (2018b), we divide the
source sentence into scenes, using the sentence’s
UCCA parse. We then define our Scene-Aware
mask:

MC [i, j] =

{
1, if i,j in the same scene
0, otherwise

(1)

Intuitively, an attention head masked this way
is allowed to attend to other tokens, as long as
they share a scene with the current one.1 Figure 1
demonstrates two examples of such masks, accom-
panied by their UCCA parse graphs and the seg-
mentation into Scenes from which these masks
were generated.

Our base model is the Transformer (Vaswani
et al., 2017), which we enhance by making the
attention layers more scene-aware. We force one2

of the heads to attend to words in the same scene
which we assume are more likely to be related than
words from different scenes. As we replace regular
self-attention heads with our scene-aware ones, we
maintain the same number of heads and layers as
in the baseline.

2.1 Scene-Aware Self-Attention (SASA)
Figure 2 presents the model’s architecture. For
a source sentence of length L, we obtain the
keys, queries, and values matrices denoted by
Ki, Qi, V i ∈ RL×d, respectively. Then, to get
the output matrix Oi ∈ RL×d, we perform the fol-
lowing calculations:

1In case a token belongs to more than one scene, as is the
case with the word “dog” in Fig. 1a, we allow it to attend to
tokens of all the scenes it belongs to.

2Initial trials with more than one head did not show further
benefit for UCCA based models.

Figure 2: Scene-aware self-attention head for the input
sentence "I saw the dog that barked", consisting of two
scenes: "I saw the dog" and "dog barked".

Si = Softmax

(
Qi × (Ki)T · 1√

dk

)
(2)

Oi = Si ⊙M i
S × V i (3)

Where 1√
dk

is a scaling factor, the softmax in equa-

tion 2 is performed element-wise, M i
S ∈ 0, 1L×L is

our pre-generated scene-aware mask and the ⊙ in
equation 3 denotes an element-wise multiplication.
The difference between our method and a vanilla
Transformer (Vaswani et al., 2017) lies in equation
3, with the element-wise multiplication between
M i

S and Si, which is absent from the vanilla Trans-
former (the rest is the same).

2.2 Scene-Aware Cross-Attention (SACrA)
Next, we design a model in which we integrate
information about the scene structure through the
cross-attention layer in the decoder (see Fig. 3).
Thus, instead of affecting the overall encoding of
the source, we bring forward the splits to aid in
selecting the next token.

Formally, for a source sentence of length Lsrc

and target sentence of length Ltrg, we compute
for each head the queries and values matrices, de-
noted by Qi ∈ RLtrg×dmodel and V i ∈ RLsrc×d,
accordingly. Regarding key values, denoted by
K̃i ∈ RLsrc×Ltrg , we calculate them as follows:

K̃i =
(
(Xi

enc)
T ×M i

S

)
· 1

Lsrc
(4)

where Xi
enc ∈ RLsrc×dmodel is the encoder’s out-

put and MS ∈ {0, 1}Lsrc×Lsrc is our pre-generated
mask.
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Figure 3: Scene-aware cross-attention head for the
source sentence "I saw the dog that barked."

Finally, we pass V i, Qi and K̃i through a regular
attention layer, as with the standard Transformer
architecture.

Scene-Aware Key Matrix. The rationale behind
the way we compute our scene-aware keys matrix
lies in the role of the keys matrix in an attention
layer. In the cross-attention layer, the queries come
from the decoder. Source-side contextual informa-
tion is encoded in the keys, which come from the
encoder. Therefore, when we assign the same scene
masks to all the words that are included in the same
set of scenes, the key values for these words will
be the same, and they will thus be treated similarly
by the query. As a result, the query will give the
same weight to source tokens that share the same
set of scenes. Therefore, a complete scene (or a
few scenes), rather than specific tokens (as with the
vanilla Transformer), will influence what the next
generated token will be, which will in turn yield a
more scene-aware decoding process.

3 Experimental Setting

Data Preparation. First, we unescaped HTML
characters and tokenized all our parallel corpora
(Koehn et al., 2007). Next, we removed empty
sentences, sentences longer than 100 tokens (ei-
ther on the source or the target side), sentences
with a source-target ratio larger than 1.5, sentences
that do not match the corpus’s language as deter-

mined by langid Lui and Baldwin, 2012, and sen-
tences that fast align (Dyer et al., 2013) considers
unlikely to align (minimum alignment score of -
180). Then, for languages with capitalization, we
trained true-casing models on the train set (Koehn
et al., 2007) and applied them to all inputs to the
network. Finally, we trained a BPE model (Sen-
nrich et al., 2016), jointly for language pairs with
a similar writing system (e.g., Latin, Cyrillic, etc.)
and separately otherwise, and then applied them
accordingly.

We trained our model on the full WMT16 dataset
for the English−→German (En-De) task, using the
WMT newstest2013 as development set. We also
trained our models on a train set consisting of Yan-
dex Corpus, News Commentary v15, and Wikititles
v2 for the English−→Russian (En-Ru) task. In ad-
dition, we trained our models on the full WMT19
dataset (excluding ParaCrawl, in order to avoid
noisiness in the data) for the English−→Finnish (En-
Fi). Finally, we trained on the full WMT18 dataset
for the English−→Turkish (En-Tr) task. For the test
sets, we used all the newstests available for every
language pair since 2012, excluding the one desig-
nated for development.

Models. Hyperparameters shared by all models
are described in §3. We tune the number of heads
that we apply the mask to (#heads) and the layers
of the encoder we apply SASA to (layer), using the
En-De development set. We start with tuning the
layers for SASA, which we find is layer = 4, and
then we tune the #heads (while fixing layer =
4), and get #head = 1. We also use the En-De
development set to tune the #heads and the layers
of the SACrA model in a similar fashion, namely
first the layers and then the #heads (with the tuned
layers fixed). We find the best hyperparameters are
#heads = 1 and layers = 2&3. For both models,
we apply the tuned hyperparameters to all other
language pairs. Interestingly, while it is common
practice to change all the layers of the model, we
find it suboptimal. Moreover, the fact that semantic
information is more beneficial in higher layers, in
contrast to the syntactic information that is most
helpful when introduced in lower layers (see §3)
may suggest that semantics is relevant for more
complex generalization, which is reminiscent of
findings by previous work (Tenney et al., 2019a;
Belinkov, 2018; Tenney et al., 2019b; Peters et al.,
2018; Blevins et al., 2018; Slobodkin et al., 2021).

UCCA parses are extracted using a pretrained

31



BERT-based TUPA model, that was trained on
sentences in English, German and French (Her-
shcovich et al., 2017).

Binary Mask. For the SASA model, we experi-
ment with two types of masks: a binary mask, as
described in §2, and scaled masks, i.e.,

MC [i, j] =

{
1, if i,j in the same scene
C, otherwise

(5)

where C ∈ (0, 1). By doing so, we allow some
out-of-scene information to pass through, while
still emphasizing the in-scene information (by keep-
ing the value of M for same-scene tokens at 1). In
order to tune C, we performed a small grid search
over C ∈ {0.05, 0.1, 0.15, 0.2, 0.3, 0.5}.

Additionally, similarly to Bugliarello and
Okazaki (2020), we test a normally-distributed
mask, according to the following equation:

Mi,j = fnorm(x = C · dist(i, j)) (6)

where fnorm is the density function of the nor-
mal distribution:

fnorm(x) =
1√
2πσ2

e−
x2

2σ2 (7)

We define a scene-graph where nodes are scenes
and edges are drawn between scenes with over-
lapping words. dist(i, j) is the shortest distance
between tokens i and j. σ = 1√

2π
, to ensure

the value of M is 1 for words that share a scene
(dist(i, j)=0), and C is a hyperparameter, which
is determined through a grid search over C ∈
{0.1, 0.2, 0.5,

√
0.5}. For each of those two scaled

versions of the mask, we choose the mask which
has the best performance and compare it to the bi-
nary mask (see 1). We find that neither outperforms
the binary mask. Therefore, we report the rest of
our experiments with the binary mask.

Baselines. We compared our model to a few other
models:

• Transformer. Standard Transformer-based
NMT model, using the standard hyperparame-
ters, as described in §3.

• PASCAL. Following Bugliarello and Okazaki
(2020), we generate a syntactic mask for the
self-attention layer in the encoder. We extract
a UD-graph (Nivre et al., 2016) with udpipe

(Straka and Straková, 2017). The value of the
entries of the masks equal (see equation 7):

Mpt,j = fnorm(x = (j − pt)) (8)

with σ = 1 and pt being the middle position
of the t-th token’s parent in the UD graph of
the sentence.

We use the same general hyperparameters as
in the Transformer baseline. In addition, fol-
lowing the tuning of Bugliarello and Okazaki
(2020), we apply the PASCAL mask to five
heads of the first attention layer of the encoder,
but unlike the original paper, we apply it after
the layer’s softmax, as it yields better results
and also resembles our model’s course of ac-
tion.

• UDISCAL. In an attempt to improve the PAS-
CAL model, we generate a mask that instead
of only being sensitive to the dependency par-
ent, is sensitive to all the UD relations in the
sentences. We denote it UD-Distance-Scaled
mask (UDISCAL). Namely, in order to com-
pute the mask, we use a similar equation to
that of PASCAL, with a minor alteration:

Mi,j = fnorm(x = dist(i, j)) (9)

Where σ = 1, and dist(i, j) is defined to
be the distance between the token i and the
token j in the UD graph of the sentence while
treating the graph as undirectional. As with
the PASCAL layer, we apply the UD-scaled
mask after the softmax layer. But, unlike the
PASCAL head, we tuned the architecture’s
hyperparameters to be just one head of the
first layer, after performing a small grid search,
namely testing with all layers l ∈ [1, 4], and
then with #head ∈ [1, 5].

Training Details. All our models are based
on the standard Transformer-based NMT model
(Vaswani et al., 2017), with 4000 warmup steps.
In addition, we use an internal token representa-
tion of size 256, per-token cross-entropy loss func-
tion, label smoothing with ϵls = 0.1 (Szegedy
et al., 2016), Adam optimizer, Adam coefficients
β1 = 0.9 and β2 = 0.98, and Adam ϵ = e−1. Fur-
thermore, we incorporate 4 layers in the encoder
and 4 in the decoder, and we employ a beam-search
during inference, with beam size 4 and normaliza-
tion coefficient α = 0.6. In addition, we use a
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models 2012 2013 2014 2015 2016 2017 2018 2019 2020 2020B

Transformer 17.60 20.49 20.55 22.17 25.46 19.70 28.01 26.84 17.71 16.94

+ binary mask
(#h=1, l= 4)

17.64 20.37 20.84 22.48 25.32 19.76 28.36 26.80 17.74 16.98

+ scaled mask
(#h=2, l=4, C=0.1)

17.41 20.21 20.53 22.43 24.95 19.81 28.25 27.21 18.03 17.01

+ normally distributed mask
(#h=2, l=4, C=

√
0.5)

17.39 20.52 20.57 22.24 25.44 19.63 28.35 26.6 17.14 16.77

Table 1: BLEU scores for the top versions of our binary mask, scaled mask, and normally-distributed mask
methods across all the WMT En-De newstests. Each column contains the BLEU scores over the WMT newstest
corresponding to the year the column is labeled with (e.g., the scores under column 2015 are for En-De newstest2015).
For newstest2020, there was more than one version on WMT, each translated by a different person. Both versions
were included, with the second version denoted with a "B". The best score for each test set is boldfaced, unless
none is better than the baseline Transformer.

batch size of 128 sentences for the training. We
use chrF++.py with 1 word and beta of 3 to ob-
tain chrF+ (Popovic, 2017) score as in WMT19
(Ma et al., 2019) and detokenized BLEU (Papineni
et al., 2002) as implemented in Moses. We use the
Nematus toolkit (Sennrich et al., 2017), and we
train all our models on 4 NVIDIA GPUs for 150K
steps. The average training time for the vanilla
Transformer is 21.8 hours, and the average training
time for the SASA model is 26.5 hours.

4 Experiments

We hypothesize that NMT models may benefit from
the introduction of semantic structure, and present
a set of experiments that support this hypothesis
using the above-presented methods.

4.1 Scene-Aware Self-Attention
We find that on average, SASA outperforms the
Transformer for all four language pairs (see 3), at
times having gains larger than 1 BLEU point. More-
over, we assess the consistency of SASA’s gains,
using the sign-test, and get a p-value smaller than
0.01, thus exhibiting a statistically significant im-
provement (see §A.4). We see a similar trend when
evaluating the performance using the chrF metric
(see §A.2), which further highlights our model’s
consistent gains.

We also evaluate our model’s performance on
sentences with long dependencies (see A.3), which
were found to pose a challenge for Transformers
(Choshen and Abend, 2019). We assume that such
cases could benefit greatly from the semantic in-
troduction. In contrast to our hypothesis, we find
the gain to be only slightly larger than in the gen-

eral case, which leads us to conclude the improve-
ments we see do not specifically originate from
the syntactic challenge. Nevertheless, we still ob-
serve a consistent improvement, with gains of up
to 1.41 BLEU points, which further underscores
our model’s superiority over the baseline model.

Qualitative Analysis. Table 2 presents a few ex-
amples in which the baseline Transformer errs,
whereas our model translates correctly (see §A.6
for the UCCA parsings of the examples). In the
first example, the Transformer translates the word
“show” as a verb, i.e. to show, rather than as a
noun. In the second example, the baseline model
makes two errors: it misinterprets the word "look
forward to" as "look at", and it also translates it
as a present-tense verb rather than past-tense. The
third example is particularly interesting, as it high-
lights our model’s strength. In this example, the
Transformer makes two mistakes: first, it translates
the part "play with (someone) in the yard" as "play
with the yard". Next, it attributes the descriptive
clause "which never got out" to the yard, rather
than the children. It seems then that introducing in-
formation about the scene structure into the model
facilitates the translation, since it both groups the
word "kids" with the phrase "I used to play with
in the yard", and it also separates "never got out"
from the word "yard". Instead, it clusters the latter
with "kids", thus highlighting the relations between
words in the sentence. In general, all these ex-
amples are cases where the network succeeds in
disambiguating a word in its context.
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Source sentences and Translations Literal Translations into English

SRC I promised a show ?

BASE � obewal pokazat~? I promised to show?

SASA � obewal xou? I promised a show?

SRC Students said they looked forward to his class .

BASE Studenty skazali, qto oni

smotr�t na svo� klass.

Students said, that they
look at one’s classroom.

SASA Studenty skazali, qto oni

s neterpeniem �dali svoego klassa.

Students said, that they
impatiently waited one’s classroom.

SRC I remember those kids I used to play
with in the yard who never got out .

BASE � pomn� teh dete�, kotorye � igral

s dvorom, kotory� nikogda ne vyhodil.

I remember those kids, that I played with yard, that
never got out ("that" and "got out" refer to yard).

SASA � pomn� teh dete�, s kotorymi � igral

na dvore, kotorye nikogda ne vyxli.

I remember those kids, with which I played in yard,
that never got out ("that" and "got out" refer to kids).

Table 2: Examples of correct translations generated by SASA, compared to the baseline Transformer.

4.2 Comparison to Syntactic Masks

Next, we wish to compare our model to other base-
lines. Given that this is the first work to incorporate
semantic information into the Transformer-based
NMT model, we compare our work to syntactically-
infused models (as described in §3): one is the
PASCAL model (Bugliarello and Okazaki, 2020),
and the other is our adaptation of PASCAL, the
UD-Distance-Scaled (UDISCAL) model, which re-
sembles better our SASA mask. We find (Table 3)
that on average, SASA outperforms both PASCAL
and UDISCAL. We also compare SASA with each
of the syntactic models, finding that it is signifi-
cantly (sign-test p < 0.01; see §A.4) better. This
suggests that semantics might be more beneficial
for Transformers than syntax.

4.3 Combining Syntax and Semantics

Naturally, our next question is whether combin-
ing both semantic and syntactic heads will further
improve the model’s performance. Therefore, we
test the combination of SASA with either PASCAL
or UDISCAL, retaining the hyperparameters used
for the separate models. We find that combining
with UDISCAL outperforms the former, and so
we continue with it. Interestingly, En-De and En-
Ru hardly benefit from the combination compared
just to the SASA model. We hypothesize that this
might be due to the fact that the syntax of each
language pair is already quite similar, and there-

fore the model mainly relies on it to separate the
sentence that UCCA gives it as well. On the other
hand, En-Fi and En-Tr do benefit from the combi-
nation, both on average and in most of the test sets.
Evaluating the performance using the chrF metric
(see §A.2) yields a similar behavior, which further
confirms its validity. It leads us to hypothesize
that language pairs that are more typologically dis-
tant from one another can benefit more from both
semantics and syntax; we defer a more complete
discussion of this point to future work. In order
to confirm that the combined version persistently
outperforms each of the separate versions for ty-
pologically distant languages, we compare each of
the pairs using the sign-test (only on the test sets of
En-Fi and En-Tr). We get a p-value of 0.02 for the
comparison with SASA and 0.0008 for the compar-
ison with UDISCAL. This suggests that for these
language pairs, there is indeed a significant benefit,
albeit small, from the infusion of both semantics
and syntax.

4.4 Scene-Aware Cross-Attention

Following the analysis on the scene-aware self -
attention, we wish to examine whether Transform-
ers could also benefit from injecting source-side
semantics into the decoder. For that, we develop
the Scene-Aware Cross-Attention (SACrA) model,
as described in §2.2. Table 3 presents the results of
SACrA, compared to the Transformer baseline and
SASA. We find that in general SASA outperforms
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En-De

models 2012 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 17.6 20.55 22.17 25.46 19.7 28.01 26.84 17.71 16.94 21.66

PASCAL 17.34 20.59 22.62 25.1 19.92 28.09 26.61 17.5 16.81 21.62

UDISCAL 17.42 20.86 22.53 25.23 19.95 27.87 26.8 17.06 16.39 21.57

SASA 17.64↑ 20.84 22.48 25.32 19.76 28.36↑ 26.8 17.74↑ 16.98↑ 21.77↑

SASA + UDISCAL 17.51 20.42 22.1 24.9 19.72 28.35 27.14∗ 17.59 16.68 21.60

SACrA 17.11 20.9↑ 22.59 24.64 19.79 27.88 26.28 16.8 16.25 21.36

SACrA + UDISCAL 17.07 21.09∗ 22.26 24.85 19.56 28.1∗ 26.49 16.66 15.93 21.33

En-Ru

models 2012 2013 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 24.32 18.11 25.35 21.1 19.77 22.34 19 20.14 15.64 22.33 20.81

PASCAL 23.78 18.37 24.87 20.97 19.81 21.83 18.81 19.93 15.42 21.48 20.53

UDISCAL 23.88 18.31 25.23 20.82 20.31 22.15 19.27 20.32 15.7 22.19 20.82

SASA 24.17 18.43↑ 25.53↑ 21.59↑ 20.11 22.69↑ 19.53↑ 20.2 15.76↑ 23.36↑ 21.14↑

SASA + UDISCAL 24.36∗ 18.29 25.43 21.01 19.79 22.49 19.25 20.4∗ 15.97∗ 22.42 20.94

SACrA 24.12 18.24 25.43↑ 21 20.07 22.49↑ 19.3↑ 20.18 15.79↑ 22.15 20.88↑

SACrA + UDISCAL 23.54 17.99 24.91 20.62 19.67 21.55 18.63 19.89 15.64 20.79 20.32

En-Fi

models 2015 2016 2016B 2017 2017B 2018 2019 average

Transformer 11.22 12.76 10.2 13.35 11.37 9.32 12.21 11.49

PASCAL 11.2 12.67 10.13 13.54 11.24 9.62 12.23 11.52

UDISCAL 10.87 12.78 10.23 13.51 11.43 9.2 11.99 11.43

SASA 11.37↑ 12.88↑ 10.52↑ 13.74↑ 11.5↑ 9.56 12.12 11.67↑

SASA + UDISCAL 11.56∗ 12.8 10.28 13.91∗ 11.52∗ 9.75∗ 12.64∗ 11.78∗

SACrA 11.48↑ 12.86↑ 10.41↑ 13.66↑ 11.49↑ 9.62 12.51↑ 11.72↑

SACrA + UDISCAL 11.06 12.6 10.13 13.43 11.26 9.23 12.05 11.39

En-Tr

models 2016 2017 2018 average

Transformer 8.43 8.55 8.1 8.36

PASCAL 8.5 8.76 7.98 8.41

UDISCAL 8.33 8.66 8.03 8.34

SASA 8.59↑ 8.86↑ 8.16↑ 8.54↑

SASA + UDISCAL 8.64∗ 8.87∗ 8.2∗ 8.57∗

SACrA 8.64↑ 8.81↑ 7.96 8.47↑

SACrA + UDISCAL 8.23 8.54 7.95 8.24

Table 3: BLEU scores for the baseline Transformer model, previous work that used syntactically infused models
– PASCAL and UDISCAL, our SASA and SACrA models, and models incorporating UDISCAL with SASA or
SACrA, across all WMT’s newstests. For every language pair, each column contains the BLEU scores over the
WMT newstest corresponding to the year the column is labeled with (e.g., for En-Ru, the scores under column 2015
are for En-Ru newstest2015). For some newstests, there was more than one version on WMT, each translated by a
different person. For those test sets, we included both versions, denoting the second one with a "B". In addition,
for every language pair, the right-most column represents the average BLEU scores over all the pair’s reported
newstests. For every test set (and for the average score), the best score is boldfaced. For each of the semantic models
(i.e., SASA and SACrA), improvements over all the baselines (syntactic and Transformer) are marked with an arrow
facing upwards. For models with both syntactic and semantic masks, improvements over each mask individually are
marked with an asterisk.
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SACrA, suggesting that semantics is more benefi-
cial during encoding. With that said, for three out
of the four language pairs, SACrA does yield gains
over the Transformer, albeit small, and for one
language pair (En-Fi) it even outperforms SASA
on average. Moreover, comparing SACrA to the
Transformer using the sign-test (see §A.4) shows
significant improvement (p = 0.047).

Surprisingly, unlike its self-attention counterpart,
combining the SACrA model with UDISCAL does
not seem to be beneficial at all, and in most cases
is even outperformed by the baseline Transformer.
We hypothesize that this occurs because appoint-
ing too many heads for our linguistic injection is
inefficient when those heads cannot interact with
each other directly, as the information from the UD-
ISCAL head reaches the SACrA head only after
the encoding is done. One possible direction for
future work would be to find ways to syntactically
enrich the decoder, and then to combine it with our
SACrA model.

5 Conclusion

In this work, we suggest two novel methods for
injecting semantic information into an NMT Trans-
former model – one through the encoder (i.e.
SASA) and one through the decoder (i.e. SACrA).
The strength of both methods is that they both do
not introduce more parameters to the model, and
only rely on UCCA-parses of the source sentences,
which are generated in advance using an off-the-
shelf parser, and thus do not increase the complex-
ity of the model. We compare our methods to pre-
viously developed methods of syntax injection, and
to our adaptation to these methods, and find that
semantic information tends to be significantly more
beneficial than syntactic information, mostly when
injected into the encoder (SASA), but at times also
during decoding (SACrA). Moreover, we find that
for sufficiently different languages, such as English
and Finnish or English and Turkish, incorporating
both syntactic and semantic structures further im-
proves the performance of the translation models.
Future work will further investigate the benefits of
semantic structure in Transformers, alone and in
unison with syntactic structure.
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A Appendix

A.1 Layer Hyperparameter-tuning for SASA

In order to optimize the contribution of the SASA
model, we tuned the hyperparameter of the best
layers in the encoder to incorporate our model, us-
ing the En-De newstest2013 as our development
set. Table 4 presents the results.

A.2 ChrF Results

In order to reaffirm our results, we also evaluate
the performance of all the models using the chrF
metric (see 7). Indeed, all the different behaviors
and trends we observed when evaluating using the
Bleu metric (see §4) seem to be preserved when
under the chrF metric. This further validates our
results.

A.3 Challenge Sets

In addition to testing on the full newstests sets, we
also experiment with sentences characterized by
long dependencies, which were shown to present a
challenge for Transformers (Choshen and Abend,
2019). In order to acquire those challenge sets, we
use the methodology described by Choshen and
Abend (2019), which we apply on each of the new-
stest sets. In addition, for the En-Tr task, which
has a limited number of newstests, we generate
additional challenge sets, extracted from corpora
downloaded from the Opus Corpus engine (Tiede-
mann, 2012): the Wikipedia parallel corpus (Wołk
and Marasek, 2014), the Mozilla and EUbookshop
parallel corpora (Tiedemann, 2012), and the bible
parallel corpus (Christodoulopoulos and Steedman,
2015). We observe (see 8) a similar trend to the
general case, which reaffirms our results. In fact,
there seem to be bigger gains over the Transformer,
albeit not drastically, compared to the general case.

A.4 Sign-Test

In order to assess the consistency of the improve-
ments of our models, we perform the Sign-Test on
every two models (see 5). Evidently, SASA per-
sistently outperforms the Transformer baseline and
the syntactic models, as does the combined model
of SASA and UDISCAL.

A.5 SemSplit

Following Sulem et al. (2020), we implement the
SemSplit pipeline. First, we train a Transformer-
based Neural Machine Translation model. Then,
during inference time, we use the Direct Semantic

Layers Bleu

1 20.3

2 20.33

3 20.1

4 20.37

1,2 20.2

2,3 20.17

3,4 20.3

Table 4: Validation Bleu as a function of layers incorpo-
rating SASA (for En-De).

`````````````̀BASELINE
BETTER PASCAL UDISCAL SASA SASA

+ UDISCAL SACrA SACrA
+ UDISCAL

Transformer >0.5 >0.5 <0.01 <0.01 0.047 >0.5
PASCAL 0.17 <0.01 <0.01 0.06 >0.5
UDISCAL <0.01 <0.01 0.06 >0.5
SASA 0.17 >0.5 >0.5
SASA + UDISCAL >0.5 >0.5
SACrA >0.5

Table 5: We perform a significance test over all
test sets across all languages for every cell, where
the null hypothesis is H0 : Bleu(modelrow) ≥
Bleu(modelcolumn)

Splitting algorithm (DSS; Sulem et al., 2018b) to
split the sentences, and then translate each sepa-
rated sentence separately. Finally, we concatenate
the translation, using a period (".") as a delimiter.
Table 6 presents the results, using the Bleu and
chrF metrics. We find that the architecture does not
have gains over the baseline Transformer. These
results can be accounted for by the fact that in their
work, Sulem et al. (2020) assessed the pipeline’s
performance using Human Evaluation and manual
analysis, rather than the Bleu and chrF metrics,
which punish for sentence separation in translation.
In addition, they tested their pipeline in a pseudo-
low resource scenario, and not in normal NMT
settings.

A.6 Qualitative Analysis - UCCA Parsings
figure 4 presents the UCCA parsings of the exam-
ples featured in table 2.
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(a) I promised a show? (b) Students said they looked forward to his class.

(c) I remember those kids I used to play with in the yard who never got out.

Figure 4: UCCA parse graphs of the Qualitative Analysis examples, with the equivalent UCCA sub-graphs
representing the segmentation into scenes.
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En-De

Metric Models 2012 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 17.6 20.55 22.17 25.46 19.7 28.01 26.84 17.71 16.94 21.66
Bleu

SemSplit 12.16 14.25 14.46 17.53 13.18 19.39 18.46 15.12 14.93 15.50

Transformer 47.37 51.85 52.52 55.06 50.87 57.81 55.48 45.19 44.18 51.15
chrF

SemSplit 43.42 47.19 47.05 49.86 45.87 51.50 50.24 47.71 46.93 47.75

En-Ru

Metric Models 2012 2013 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 24.32 18.11 25.35 21.1 19.77 22.34 19 20.14 15.64 22.33 20.81
Bleu

SemSplit 15.29 10.9 16.43 13.28 12.79 14.61 11.95 12.56 9.92 15.25 13.30

Transformer 51.39 45.69 53.31 50.16 48.10 50.54 48.01 45.78 42.51 53.07 48.86
chrF

SemSplit 46.10 40.50 47.66 44.58 43.16 45.34 43.38 40.97 38.93 47.84 43.85

En-Fi

Metric Models 2015 2016 2016B 2017 2017B 2018 2019 average

Transformer 11.22 12.76 10.2 13.35 11.37 9.32 12.21 11.49
Bleu

SemSplit 6.97 7.72 6.55 8.75 7.54 6.18 7.73 7.35

Transformer 43.79 45.48 43.43 46.39 43.96 42.06 43.10 44.03
chrF

SemSplit 40.18 41.42 39.94 42.18 40.20 38.76 40.12 40.40

En-Tr

Metric Models 2016 2017 2018 average

Transformer 8.43 8.55 8.1 8.36
Bleu

SemSplit 6.15 6.07 5.37 5.86

Transformer 40.24 40.37 39.75 40.12
chrF

SemSplit 39.04 39.00 38.85 38.97

Table 6: Bleu and ChrF scores of the baseline Transformer and the SemSplit model.
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En-De

models 2012 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 47.37 51.85 52.52 55.06 50.87 57.81 55.48 45.19 44.18 51.15

PASCAL 47.27 51.87 52.82 54.73 50.83 57.65 55.28 44.80 43.78 51.00

UDISCAL 47.26 51.95 52.45 54.99 50.78 57.40 55.30 44.48 43.43 50.89

SASA 47.48↑ 52.03↑ 52.74 54.99 51.23↑ 57.88↑ 55.69↑ 45.03 43.99 51.23↑

SASA + UDISCAL 47.42 51.94 52.50 55.00∗ 50.86 57.74 55.62 44.72 43.62 51.05

SACrA 47.02 51.66 52.48 54.49 50.55 57.16 55.05 44.08 43.15 50.63

SACrA + UDISCAL 46.71 51.63 52.18 54.37 50.22 57.20 54.96 43.42 42.40 50.34

En-Ru

models 2012 2013 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 51.39 45.69 53.31 50.16 48.10 50.54 48.01 45.78 42.51 53.07 48.86

PASCAL 51.03 45.66 53.04 49.87 48.05 50.32 47.98 45.86 42.35 52.42 48.66

UDISCAL 51.26 45.73 53.45 50.01 48.57 50.50 48.27 46.03 42.60 52.89 48.93

SASA 51.34 45.81↑ 53.49↑ 50.32↑ 48.60↑ 50.67↑ 48.45↑ 45.81 42.76↑ 53.62↑ 49.09↑

SASA + UDISCAL 51.43∗ 45.67 53.56∗ 50.03 48.29 50.67 48.25 46.08∗ 42.81∗ 53.14 48.99

SACrA 51.28 45.57 53.50↑ 49.81 48.42 50.82↑ 48.28↑ 45.92 42.68↑ 52.76 48.90

SACrA + UDISCAL 50.58 45.31 52.90 49.40 47.77 50.03 47.49 45.26 42.33 51.93 48.30

En-Fi

models 2015 2016 2016B 2017 2017B 2018 2019 average

Transformer 43.79 45.48 43.43 46.39 43.96 42.06 43.10 44.03

PASCAL 43.91 44.93 42.99 46.02 43.57 41.88 42.60 43.70

UDISCAL 43.42 45.37 43.42 46.51 44.07 42.03 43.03 43.98

SASA 43.76 45.33 43.38 46.40 43.89 42.10↑ 43.02 43.98

SASA + UDISCAL 43.77∗ 45.20 43.17 46.74∗ 44.15∗ 42.34∗ 43.08∗ 44.07∗

SACrA 43.88 45.20 43.15 46.62↑ 44.02↑ 42.25↑ 43.23↑ 44.05↑

SACrA + UDISCAL 43.80 45.53∗ 43.52∗ 46.71∗ 44.19∗ 42.16 43.28∗ 44.17∗

En-Tr

models 2016 2017 2018 average

Transformer 40.24 40.37 39.75 40.12

PASCAL 40.59 40.64 39.89 40.37

UDISCAL 40.27 40.49 40.01 40.26

SASA 40.27 40.46 39.98 40.24

SASA + UDISCAL 40.61∗ 40.92∗ 40.12∗ 40.55∗

SACrA 40.44 40.68↑ 39.85 40.33

SACrA + UDISCAL 40.23 40.48 39.96 40.22

Table 7: ChrF scores for the baseline Transformer model, the baseline Syntactically infused models PASCAL and
UDISCAL, our SASA and SACrA models, and models incorporating UDISCAL with each of SASA and SACrA,
across all WMT’s newstests. For every language pair, each column contains the Bleu scores over the WMT newstest
equivalent to the column’s year (e.g., for En-Ru, the scores under column 2015 are for En-Ru newstest2015). For
some newstests, there was more than one version on WMT, each translated by a different person. For those test sets,
we included both versions, denoting the second one with a "B". In addition, for every language pair, the right-most
column represents the average Bleu scores over all the pair’s reported newstests. For every test set (and for the
average score), the best score is boldfaced. For each of the semantic models (i.e., SASA and SACrA), improvements
over all the baselines (syntactic and Transformer) are marked by an arrow facing upwards. For models with both
syntactic and semantic masks, improvements over each mask individually are marked by an asterisk.
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En-De

models 2012 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 15.08 16.94 17.36 21.11 14.84 23.43 22.42 16.79 15.75 18.19

PASCAL 14.96 17.45 17.85 20.22 14.66 23.76 21.28 16.9 16.22 18.14

UDISCAL 14.46 17.84 17.7 21.26 15.48 23.75 22.36 16.37 15.37 18.29

SASA 14.67 17.68 18.04↑ 20.89 15.09 24.8↑ 22.86↑ 16.85 15.76 18.52↑

SASA + UDISCAL 15.39∗ 17.07 17.38 20.42 15.35 23.53 22.87∗ 16.79 15.98∗ 18.31

SACrA 14.67 17.03 16.89 19.69 14.45 22.21 22.08 16.64 15.6 17.70

SACrA + UDISCAL 15.07∗ 17.23 16.52 20.82 14.6 22.38 22.61∗ 16.53 15.81∗ 17.95

En-Ru

models 2012 2013 2014 2015 2016 2017 2018 2019 2020 2020B average

Transformer 23.4 14.67 24 16.82 17.52 19.74 17.78 17.12 13.39 19.47 18.39

PASCAL 22.6 15.67 23.56 17.08 17.79 19.46 17.9 16.13 13.7 19.44 18.33

UDISCAL 23.19 14.75 23.46 17.06 18.17 19.67 18.32 15.7 13.44 21.14 18.49

SASA 23.53↑ 15.38 23.9 17.77↑ 18.37↑ 20.12↑ 18.33↑ 16.55 13.37 20.88 18.82↑

SASA + UDISCAL 23.77∗ 14.67 23.65 16.96 18.21 19.8 18.06 17.15∗ 13.57∗ 20.02 18.59

SACrA 23.83↑ 15.15 22.86 18.09↑ 18.13 19.98↑ 18.7↑ 17.1 13.83↑ 19.41 18.71↑

SACrA + UDISCAL 22.98 14.58 23.16 16.76 17.37 18.89 17.4 16.07 13.18 18.53 17.89

En-Fi

models 2015 2016 2016B 2017 2017B 2018 2019 average

Transformer 9.57 11.05 8.8 11.45 9.99 7.78 10.22 9.84

PASCAL 9.75 10.77 8.72 11.43 10.11 8.06 10.24 9.87

UDISCAL 9.04 10.85 8.63 11.46 10.1 7.7 9.85 9.66

SASA 9.65 10.87 9.03↑ 11.62↑ 10.1 7.99 10.53↑ 9.97↑

SASA + UDISCAL 9.45 10.96∗ 8.91 11.88∗ 10.33∗ 8.42∗ 10.62∗ 10.08∗

SACrA 10.26↑ 10.95 8.89↑ 11.57↑ 10.13↑ 8.17↑ 10.76↑ 10.10↑

SACrA + UDISCAL 9.42 10.84 8.83 11.51 9.9 7.71 10.7 9.84

En-Tr

models 2016 2017 2018 wikipedia Eubookshop mozilla bible average

Transformer 7.99 8.15 8.06 7.55 4.87 3.34 0.36 5.76

PASCAL 7.81 7.83 7.69 7.52 5.04 3.41 0.54 5.69

UDISCAL 7.68 7.83 7.4 7.63 4.92 3.34 0.49 5.61

SASA 8.2↑ 8.31↑ 8.12↑ 7.63 5.21↑ 3.09 0.52 5.87↑

SASA + UDISCAL 7.81 7.92 8.1 7.58 5.28∗ 3.36∗ 0.35 5.77

SACrA 7.75 8.33↑ 7.51 7.68↑ 5.11↑ 3.59↑ 0.5 5.78↑

SACrA + UDISCAL 8.23∗ 8.54∗ 7.95∗ 7.51 5.22∗ 3.45 0.52∗ 5.92∗

Table 8: Bleu scores of challenge sentences for the baseline Transformer model, the baseline Syntactically infused
models PASCAL and UDISCAL, our SASA and SACrA models, and models incorporating UDISCAL with each of
SASA and SACrA, across all WMT’s newstests. For every language pair, each column contains the Bleu scores over
the WMT newstest equivalent to the column’s year (e.g., for En-Ru, the scores under column 2015 are for En-Ru
newstest2015). For some newstests, there was more than one version on WMT, each translated by a different person.
For those test sets, we included both versions, denoting the second one with a "B". In addition, for every language
pair, the right-most column represents the average Bleu scores over all the pair’s reported newstests. For every
test set (and for the average score), the best score is boldfaced. For each of the semantic models (i.e., SASA and
SACrA), improvements over all the baselines (syntactic and Transformer) are marked by an arrow facing upwards.
For models with both syntactic and semantic masks, improvements over each mask individually are marked by an
asterisk.
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Abstract

We show how the AM parser, a compositional
semantic parser (Groschwitz et al., 2018),
can solve compositional generalization on the
COGS dataset. It is the first semantic parser
that achieves high accuracy on both naturally
occurring language and the synthetic COGS
dataset. We discuss implications for corpus
and model design for learning human-like gen-
eralization. Our results suggest that compo-
sitional generalization can be best achieved
by building compositionality into semantic
parsers.

1 Introduction

A growing body of recent research investigates
compositional generalization, the ability of a se-
mantic parser to predict the meaning of unseen sen-
tences by recombining training instances in novel
ways. Such generalization is thought to mimic the
Principle of Compositionality (Partee, 1984), es-
sential for human language learning and use. For
example, COGS (Kim and Linzen, 2020), a dataset
based on fragments of English, contains training in-
stances with sentences semantically annotated with
up to two recursive PPs; a semantic parser must
then predict meaning representations for sentences
with three or more recursive PPs (Table 1).

Previous work has shown that compositional
generalization on COGS is a difficult and com-
plex task. Intricate sequence-to-sequence (seq2seq)
models, which achieve very high accuracy on
broad-coverage semantic parsing tasks on natu-
rally occurring language (Bevilacqua et al., 2021),
achieve overall accuracy of 88% or less on COGS
(Akyürek and Andreas, 2021; Csordás et al., 2021;
Zheng and Lapata, 2021). Much of this accuracy
is due to lexical generalization, tasks that test for
generalization to new words in known structures
(Sec. 2); when evaluated only on structural gener-
alization cases that test novel structures such as the

PP example above, the accuracy of most of these
models drops to 10% or less.

In contrast, models that achieve high accuracy
on synthetic compositional generalization datasets
may not be able to generalize to naturally occur-
ring language. For instance, Shaw et al. (2021) de-
scribe a synchronous grammar induction approach
that achieves perfect accuracy on SCAN (Lake and
Baroni, 2018), but has very low accuracy on cor-
pora of naturally occurring text such as GeoQuery
(Zelle and Mooney, 1996) and Spider (Yu et al.,
2018). Similarly, the compositional LeAR parser
(Liu et al., 2021) solves COGS with near-perfect
accuracy and performs very well on other synthetic
datasets, but has not been evaluated on corpora of
naturally occurring text. This points to a funda-
mental tension between broad-coverage semantic
parsing on natural text and the ability to generalize
compositionally from structurally limited synthetic
training sets (see also Shaw et al., 2021). To our
knowledge, the only parser that does well on both
is the CSL-T5 system of Qiu et al. (2022), which
fine-tunes T5 using a complex data augmentation
(DA) method involving synchronous grammars.

In this paper, we show that the AM parser
(Groschwitz et al., 2018), a compositional semantic
parser that achieves high accuracy across a range of
different broad-coverage graphbanks (Lindemann
et al., 2019; Donatelli et al., 2019), can also solve
COGS at near-perfect accuracy. This high perfor-
mance is due in large part to handling cases of struc-
tural generalization much better than the seq2seq
models. The AM parser is thus the first semantic
parser shown to perform accurately both on nat-
urally occurring language and on COGS without
requiring DA. Given that all semantic parsers that
do well on COGS are either compositional (LeAR,
AM parser) or perform compositionality-based DA
(CSL-T5), we conjecture that building a semantic
parser on the Principle of Compositionality is ben-
eficial to solving compositional generalization. We
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discuss the challenge of structural, as opposed to
lexical, generalization for future work on this task.

2 Compositional Generalization in
COGS

Compositional generalization is the ability to de-
termine the meaning of unseen sentences using
compositional principles. Humans can understand
and produce a potentially infinite number of novel
linguistic expressions by dynamically recombin-
ing known elements (Chomsky, 1957; Fodor and
Pylyshyn, 1988; Fodor and Lepore, 2002). For
semantic parsers, compositional generalization re-
quires systems to recombine parts of multiple train-
ing instances to predict the meaning of a single test
instance by learning correct generalizations. Sev-
eral synthetic datasets for evaluating compositional
generalization now exist, notably SCAN (Lake and
Baroni, 2018) and CFQ (Keysers et al., 2020).

COGS (Kim and Linzen, 2020) is a synthetic se-
mantic parsing dataset in which English sentences
must be mapped to logic-based meaning represen-
tations. It distinguishes 21 generalization types,
each of which requires generalizing from training
instances to test instances in a particular systematic
and linguistically-informed way.

Lexical generalization cases (18 types) test how
known grammatical structures are recombined with
words that were not observed in these particular
structures during training. For instance, the com-
mon noun “hedgehog” is only exposed to the model
as subject at training time as part of an ‘exposure ex-
ample’ sentence, but generalization requires object
usage of the same word based on forming analo-
gies to other common nouns seen in both positions.
This is illustrated in Table 1.

Structural generalization cases (3 types) involve
generalizing to linguistic structures that were not
observed in training. The PP recursion example
above is of this type: the COGS training set con-
tains sentences and logic-based semantic represen-
tations with up two nested prepositional phrases.
In-domain development and test sets also consist
of sentences with PP nesting depth up to two, but
the generalization set contains sentences with 3–12
nested PPs. Additional structural generalization
includes CP recursion (predict deeply nested CPs
when trained on shallow examples, similar to PPs)
and “object PP to subject PP”, where PPs modify
only objects in training (e.g. “Noah ate the cake
on the plate.”) and only subjects at test time (“The

cake on the table burned.”).
Kim and Linzen themselves show that seq2seq

models based on LSTMs and Transformers do not
perform well on COGS, achieving exact-match ac-
curacies below 35%. Intensive subsequent work
has tailored a wide range of seq2seq models to
the COGS task (Tay et al., 2021; Akyürek and An-
dreas, 2021; Conklin et al., 2021; Csordás et al.,
2021; Orhan, 2021; Zheng and Lapata, 2021), but
none of these have reached an overall accuracy of
90% on the overall generalization set. On struc-
tural generalization in particular, the accuracy of
all these models is below 10%, with the exception
of Zheng and Lapata (2021), who achieve 39%
on PP recursion. By contrast, the compositional
model of Liu et al. (2021) and the model of Qiu
et al. (2022), which uses compositional data aug-
mentation, achieve accuracies upwards of 98% on
the full generalization set.

3 Parsing COGS with the AM parser

3.1 The AM parser

We adapt the broad-coverage AM parser to COGS.
The AM parser (Groschwitz et al., 2018) is a com-
positional semantic parser that learns to map sen-
tences to graphs. It was the first semantic parser to
perform with high accuracy across all major graph-
banks (Lindemann et al., 2019) and can achieve
very high parsing speeds (Lindemann et al., 2020).

Instead of predicting the graph directly, the AM
parser first predicts a graph fragment for each to-
ken in the sentence and a dependency tree that con-
nects them (Fig. 1a). This dependency tree is then
evaluated deterministically into a graph (Fig. 1b)
using the operations of the AM algebra. The “Ap-
ply” (APP) operation fills an argument slot of a
graph (drawn in red) by inserting the root node
(drawn with a bold outline) of another graph into
this slot; for instance, the APPs operation inserts
the “boy” node into the ARG0 of “want”. The
“Modify” (MOD) operation attaches a modifier to a
node; MODm attaches the “manner-sound” graph
to the “sleep” node. The dependency tree captures
how the meaning of the sentence can be composi-
tionally obtained from the meanings of the words.

AM parsing is done by combining a neural de-
pendency parser with a neural tagger for predicting
the graph fragments. We follow Lindemann et al.
(2019) and rely on the dependency parsing model
of Kiperwasser and Goldberg (2016), which scores
each dependency edge by feeding neural represen-
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Class : Type Training Generalization

Lexical:
Subj→Obj
(common
noun)

A hedgehog ate the cake.
*cake(x4); hedgehog(x1) ∧
eat.agent(x2, x1) ∧ eat.theme(x2, x4)

The baby liked the hedgehog.
*baby(x1); *hedgehog(x4);
like.agent(x2, x1) ∧ like.theme(x2, x4)

Structural:
PP recursion

Ava saw a ball in a bowl on the table.
*table(x9); see.agent(x1,Ava) ∧
see.theme(x1, x3) ∧ ball(x3) ∧
ball.nmod.in(x3, x6) ∧ bowl(x6) ∧
bowl.nmod.on(x6, x9)

Ava saw a ball in a bowl on the table on the floor.
*table(x9); *floor(x12); see.agent(x1,
Ava) ∧ see.theme(x1, x3) ∧
ball(x3) ∧ ball.nmod.in(x3, x6) ∧
bowl(x6) ∧ bowl.nmod.on(x6, x9)
∧ table.nmod.on(x9, x12)

Table 1: One example of a lexical and a structural generalization type from the COGS dataset.
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Figure 1: (a) AM dependency tree with (b) its value.
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Figure 2: Logical form to graph conversion for “Ava
saw a ball in a bowl on the table” (cf. Table 1).

tations for the two tokens to an MLP. We train the
parser using the setup of Groschwitz et al. (2021),
which does not require explicit annotations with
AM dependency trees.

3.2 AM parsing for COGS

We apply the AM parser to COGS by converting
the semantic representations in COGS to graphs.
The conversion is illustrated in Fig. 2.

Given a logical form of COGS, we create a
graph that has one node for each variable xi
and each constant (e.g. Ava). If a variable ap-
pears as the first argument of an atom of the
form pred.arg(x, y), we assign it the node label
pred in the graph. We also add an edge from
x to y with label arg. E.g. see.agent(x1,
Ava) turns into an ‘agent’ edge from ‘see’ to
‘Ava’. Each iota term *noun(xnoun) is treated
as an edge from a node for the preceeding “the”
token to the respective noun node. Preposition
meaning bowl.nmod.on(x6, x9) is represented
as a node (labeled ‘on’) with outgoing edges to
the two arguments/nouns (‘nmod.op1’ to “bowl”,
‘nmod.op2’ to “table”). By encoding the logical

form as a graph, we lose the ordering of the con-
juncts. The ‘correct’ order is restored in postpro-
cessing. More details and graph conversion exam-
ples are in Appendix C.

4 Experiments on COGS

4.1 Experimental setup

We evaluate the AM parser on COGS and compare
its accuracy against a number of strong baselines.
We follow standard COGS practice and evaluate
on both the (in-distribution) test set and the gen-
eralization set. We report exact match accuracies
averaged across 5 training runs with their standard
deviations.

Training regime. In addition to the regular
COGS training set (‘train’) of 24,155 training in-
stances, we also report numbers for models trained
on the extended training set ‘train100’ of 39,500
instances (Kim and Linzen, 2020, Appendix E.2).
These training sets allow to test 1-shot (train) or
100-shot (train100) lexical generalization. For in-
stance, for the “hedgehog” example in Table 1,
train contains exactly one sentence with this noun,
whereas there are 100 different sentences with
“hedgehog” in train100 (all in subject position). As
this change can only be done for lexical general-
ization (tied to specific lexical items), structural
generalization is not directly modulated by a train-
ing set change.

Compositional models. We train the AM parser
on the COGS graph corpus (cf. Section 3.2). Most
hyperparameter values come from Groschwitz et al.
(2021)’s training setup for AMR to make overfitting
to COGS less likely; see Appendix A for details.

The AM parser either receives pretrained word
embeddings from BERT (Devlin et al., 2019)
(‘AM+B’) or learns embeddings from the COGS
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train train100

Test Gen Test Gen

se
q2

se
q Kim and Linzen 2020 96 35 94 63

Csordás et al. 2021 100 81 - 75.4
Akyürek and Andreas 2021 - 83 99 84.5
Zheng and Lapata 2021 † - 89 - -

co
m

po
si

tio
na

l Qiu et al. 2022 - 99.5 - -
Liu et al. 2021: LeAR1 - 98.9±0.9 - -

AM 100 59.9± 2.7 100 91.1±2.3

AM+dist 100 62.6±10.8 100 88.6±4.9

AM+B † 100 79.6± 6.4 100 93.6±1.4

AM+B+dist † 100 78.3±22.9 100 98.4±0.9

Table 2: COGS exact match scores. †) models use pre-
training.

data only (‘AM’). We run the training algorithm
with up to three argument slots to enable the analy-
sis of ditransitive verbs. For evaluation, we reverse
graph conversion to reconstruct the logical forms.

To handle PP recursion, we hypothesize that ex-
plicit distance information between tokens could
help the AM parser: COGS eliminates potential PP
attachment ambiguities and assumes that each PP
modifies the noun immediately to its left. Instead
of passing only the representations of the potential
parent and child node to the edge-scoring model,
we also pass an encoding of their relative distance
in the string (Vaswani et al., 2017), yielding the
AM parser models with the “+dist” suffix. Dis-
tance information is then available as an explicit
feature for any dependency edge decision, and the
neural model learns how to weight this feature for
different edges.

Finally, we report evaluation results for LeAR,
the compositional COGS parser of Liu et al. (2021).
LeAR learns to predict trees of corpus-specific al-
gebraic operations using reinforcement learning
with an intricate training setup.

4.2 Results
The results are summarized in Table 2. Gray num-
bers are taken from original papers; black numbers
we reproduced in separate experiments. Table 3
shows results by structural and lexical generaliza-
tion type. See Appendix B for details.

Compositional models solve COGS. We find
that when trained on ‘train100’, the modified AM
parser solves COGS with near-perfect accuracy.
The evaluation results in Table 2 suggest a clear

1All LeAR numbers are based on our reproduction of their
COGS evaluation; they report an accuracy of 97.7.

split between compositional and seq2seq mod-
els, with both compositional models outperform-
ing all seq2seq models. This split becomes even
clearer when we distinguish different generaliza-
tion types. On the three structural generalization
types, no seq2seq model has an accuracy above
40%, whereas both LeAR and AM+B+dist still
achieve near-perfect accuracy.

PP vs. CP recursion. A closer error analysis on
PP recursion reveals (as hypothesized) that the ac-
curacy of the AM+B parser degrades with increas-
ing PP depth. The AM+B+dist parser maintains a
high accuracy across all embedding depths.

There is an interesting asymmetry between the
behavior of the AM parser on PP recursion and
CP recursion: The accuracy of AM+B is stable
across recursion depths for CP recursion, and the
distance feature is only needed for PPs. This can
be explained by the way in which the AM parser
learns to incorporate PPs and CPs into the depen-
dency tree: it uses APP edges to combine verbs
with CPs, which ensures that only a single CP can
be combined with each sentence-embedding verb.
By contrast, each NP can be modified by an ar-
bitrary number of PPs using MOD edges. Thus a
confusion over attachment is only possible for PPs.

Effect of training regime. Parsers on COGS are
traditionally not allowed any pretraining (Kim and
Linzen, 2020), in order to judge their ability to
generalize from limited observations. We see in the
experiments above that the use of pretrained word
embeddings helps the AM parser achieve accuracy
parity with LeAR, but is not needed to outperform
all seq2seq models on ‘train100’.

Training on ‘train100’ helps the AM parser more
than any other model in Table 2. The difference
between its accuracy on ‘train’ and ‘train100’ is
due to lexical issues: we found that when trained on
‘train’, the AM parser typically predicts the correct
delexicalized formulas and then inserts an incorrect
but related constant or predicate symbol.

For example, when tested on common nouns,
“kennel” may be used instead of “hedgehog”; when
tested on unaccusative to transitive generalization,
the model may choose another verb seen commonly
in that pattern instead of the target verb (e.g. “value”
instead of “shatter”).

We ablate the different model components (pre-
trained BERT embeddings, +dist) and training se-
tups (train100 vs. train) in Table 3. Trained on
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Class STRUCTURAL LEXICAL
Gen. type Obj to Subj PP CP recursion PP recursion mean of 18 other types Overall

co
m

po
si

tio
na

l

AM+B+dist train100 78 100 99 99 98
AM+B train100 49 100 41 99 94
AM+B+dist train 72 100 97 76 78
AM+B train 59 100 36 82 80
AM+dist train 26 100 98 61 63
AM train 38 100 61 59 60
LeAR train 93 100 99 99 99

se
q2

se
q

Kim and Linzen 2020 train 0 0 0 42 35
Akyürek and Andreas 2021 train 0 0 1 96 82
Zheng and Lapata 2021 train 0 12 39 99 89
Kim and Linzen 2020 train100 0 0 0 73 63
Csordás et al. 2021 train100 0 0 0 88 75

Table 3: Exact match accuracies on the individual generalization types.

‘train’, AM+B+dist achieves a mean accuracy on
structural generalization cases of 89.6 (compared to
92.1 for ‘train100’), whereas the mean accuracy on
lexical generalization cases drops to 76. This again
illustrates that the larger training set compensates
for a lexical weakness in the AM parser rather than
a structural one. Even without BERT and trained
on ‘train’, AM+dist gets 74.6 on structural cases,
drastically outperforming the seq2seq models.

5 Conclusion

The AM parser is the first compositional seman-
tic parser to solve COGS and achieve high accu-
racy on naturally occurring language.2 Particu-
larly on complex structural generalization cases,
compositionality-based parsers seem to outperform
seq2seq models systematically. By contrast, lexical
generalization cases are solved easily by most mod-
els and do not require a compositionality bias. We
suggest that future corpus design and evaluation
focus on model accuracy for structural generaliza-
tion types; an extension to COGS that incorporates
a greater variety of these types would allow more
insight on the overall task.

Though synthetic datasets like COGS allow fo-
cused probing parser performance on specific lin-
guistic phenomena, it remains unclear exactly how
accurate performance on such datasets transfers to
naturally occurring language, and vice-versa. An-
other strand of future work is thus extending the
broad-coverage AM parser to more compositional
generalization datasets. While COGS offers a good
starting point to test multiple types of both lexical
and structural generalization similar to what is at-
tested for humans, other datasets offer insight into
generalization less clearly connected to human lin-
guistic abilities (e.g. CFQ; Keysers et al., 2020) but

2Our code is available at https://github.com/
coli-saar/am-parser.

important for generalization abilities more gener-
ally. Additional assessment of models’ generaliza-
tion performance ought to combine broad-coverage
parsing and focused evaluation with hand-crafted
datasets in a systematic way, yet to be defined.
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A Training details of the AM parser

Hyperparameters. For the AM parser, we pri-
marily copy hyperparameter values from the AMR
experiments of Groschwitz et al. (2021). This helps
prevent overfitting on COGS, but we also note that
hyperparameter tuning for compositional general-
ization datasets can be difficult anyways since one
can typically easily achieve perfect scores on an in-
doman dev set. Copied values include for instance
the number of epochs (60 due to supervised loss for
edge existence and lexical labels), the batch size,
the number and dimensionality of neural network
layers and not using early stopping (but selecting
best model based on per epoch evaluation metric
on the dev set). Choosing 3 sources has worked
well on other datasets (Groschwitz et al., 2021) and
we adopt this hyperparameter choice. We note that
with ditransitive verbs (i.e. verbs requiring NPs
filling agent, theme, and recipient roles) present in
COGS we need at least three sources anyway to
account for these.

Deviations from Groschwitz et al. (2021)’s set-
tings. For training on train (but not train100), we
set the vocabulary threshold from 7 down to 1 to
account for the fact that the lexical generalizations
rely on a single occurrence of a word in the training
data; on train100 we keep 7 as a threshold since
trigger words (e.g. “hedgehog”) occur 100 times.
For word embeddings, we either use BERT-Large-
uncased (Devlin et al., 2019) like Groschwitz et al.
(2021) or learn embeddings from the dataset only
(embedding dimension 1024, same as for the BERT
model). We decrease the learning rate from 0.001
to 0.0001: we observed that the learning curves are
still converging very quickly and hypothesize that
COGS training set might also be easier than the
AMR one used in Groschwitz et al. (2021).

We use the projective A* decoder (Lindemann
et al., 2020, §4.2): in pre-experiments this showed
better results. In addition, it makes comparison to
related work (such as LeAR by Liu et al. (2021))
easier which uses only projective latent trees. We
use supervised loss for edge existence and lexical
labels.

Relative distance encoding. For the relative dis-
tance encodings we use sine-cosine interleaved en-
coding function introduced by Vaswani et al. (2017,
§3.5) and as input to it use the relative distance
dist(i, j) = i− j between sentence positions i and
j. We use a dimensionality of 64 for the distance

encodings (dmodel in Vaswani et al. (2017) is 512).
These distance encodings are then concatenated
together with the BiLSTM representations for pos-
sible heads and dependents used in the standard
Kiperwasser and Goldberg (2016) edge scoring
model. This constitutes the input to the MLP emit-
ting a score for each token pair. These models have
the suffix ‘dist’ in the tables.

Runtimes. Training the AM parser took 5 to 7
hours on train with 60 epochs and 6 to 9.5 hours
on train100. In general, training with BERT took
longer than without, same holds for adding relative
distance encodings. Inference with a trained model
on the full 21k generalization samples took about
15 minutes using the Astar decoder with the ‘ignore
aware’ heuristic. All AM parser experiments were
performed using Intel Xeon E5-2687W v3 10-core
processors at 3.10Ghz and 256GB RAM, and MSI
Nvidia Titan-X (2015) GPU cards (12GB).

Number of parameters. For their models, Kim
and Linzen (2020) tried to keep the number of pa-
rameters comparable (9.5 to 11 million) and there-
fore rule out model capacity as a confound. The
number of trainable parameters of the AM parser
model used is 10.7 to 11.5 million (lower one is
with BERT, higher without. Impact of relative dis-
tance encoding is rather minimal: < 17k), so the
improved performance is not just due to a higher
number of parameters.

Dev set performance. For compositional gener-
alization datasets, it is relatively easy to get (near)
perfect results on the (in domain) dev/test sets. We
observe this too: all AM parser models had an ex-
act match score of at least 99.9 on the dev set and
at least 99.8 on the (in distribution) test set.

Evaluation procedure. Kim and Linzen (2020)
do not provide a separate evaluation script but use
(string) exact match accuracy on the logical forms
as the main evaluation metric. This metric requires
models to learn the ‘correct’ order of conjuncts:
even if a logically equivalent form with a different
order of conjuncts would be predicted, string exact
match would count it as a failure. In lack of an
official evaluation script we implemented our own
evaluation script to compute exact match.

B Evaluation details

For descriptions of the generalization types we re-
fer to Kim and Linzen (2020, §3 and Fig. 1).
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AM parser. Full results for the 8 AM parser con-
figurations (two types of embeddings, two train-
ing sets, presence/absence of distance encodings)
are displayed in Table 4. Averages and standard
deviations were computed across 5 runs for each
configuration. For the AM+B+dist configuration
trained on the smaller train set, one outlier run was
observed with 39.9% overall generalization accu-
racy, and the other four runs ranging from 76.4%
to 96.6%. This outlier therefore greatly contributed
to the high variance for this configuration.

LeAR. Due to our reproduction experiment, we
can report a breakdown by generalization type for
Liu et al.’s LeAR model, displayed in Table 5. We
observed that the LeAR model skips 22 sentences
in the generalization set due to out-of-vocabulary
tokens.3 We include these sentences in the accuracy
computation (as failures) for the generalization set.
The published LeAR code does not convert its in-
ternally used representation back to logical forms,
therefore we evaluate on the logical forms like it is
done for other models, but have to rely on accuracy
computation done in the LeAR code for the inter-
nal representation. From inspecting the published
code,4 LeAR makes the preprocessing choice to
ignore the contribution of the definite determiner,
treating indefinite and definite NPs equally, result-
ing in a big conjunction without any iota (‘*’) pre-
fixes.

Model numbers copied from other papers.
Kim and Linzen (2020) provide three baseline mod-
els, among which the Transformer model reached
the best performance on train and train100. Per
generalization type results can be found in their
Appendix F (Table 5 on page 9105) from which we
report the Transformer model numbers.

The strongest model of Akyürek and Andreas
(2021) is ‘Lex:Simple:Soft’ (cf. their Table 5) with
a generalization accuracy of 83% (also reported in
our Table 2), whereas their Lex:Simple model lags
1 point behind. For the latter, the authors provide
per generalization type output: link. Numbers in
Table 3 are for Lex:Simple, not Lex:Simple:Soft.

For Zheng and Lapata (2021), our reported num-
ber was provided directly by the authors after pub-
lication of their paper.

3The words “gardener” and “monastery” occur zero times
in the train set, but in total in 22 sentences of the generalization
set. The majority (15) of these appear in PP recursion samples.

4https://github.com/thousfeet/LEAR

x2 / wantx0 / the

x1 / boy x4 / go

agent
xcomp

agent

iota

* boy(x1) ; want.agent(x2, x1) ∧
want.xcomp(x2, x4) ∧ go.agent(x4, x1)

Figure 3: Logical form to graph conversion for “The
boy wanted to go” (cf. (1)). For illustration only we
use node names (the part before the ‘/’) to outline the
token alignment.

Lexical vs. structural generalization. As said
above, structural generalization is underrepresented
in COGS (3 out of 21 generalization types), and
lexical generalization (the remaining 18 types) is
therefore dominating the evaluation. As a conse-
quence, an overall generalization accuracy above
80% can be achieved without even touching upon
structural generalization. In Table 6 we report the
average accuracy of both classes (by averaging over
all types of the respective class), along with the
overall generalization accuracy. Some models do
not report standard deviations.

C Additional information on COGS to
graph conversions

This is a more detailed explanation of the COGS
logical form to graph conversion described in Sec-
tion 3.2 based on four additional example sen-
tences:

(1) The boy wanted to go.
*boy(x1); want.agent(x2, x1) ∧
want.xcomp(x2, x4)
∧ go.agent(x4, x1)

(2) Ava was lended a cookie in a bottle.
lend.recipient(x2, Ava)
∧ lend.theme(x2, x4)
∧ cookie(x4)
∧ cookie.nmod.in(x4, x7)
∧ bottle(x7)

(3) Ava said that Ben declared that Claire slept.
say.agent(x1, Ava)
∧ say.ccomp(x1, x4)
∧ declare.agent(x4, Ben)
∧ declare.ccomp(x4, x7)
∧ sleep.agent(x7, Claire)

(4) touch
λa.λb.λe. touch.agent(e, b) ∧
touch.theme(e, a)

The first of these is used as the main example for
now. Its graph conversion can be found in Fig. 3.

Basic ideas. Arguments of predicates (variables
like xi or proper names like Ava) are translated
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train train100

Type AM AM+dist AM+B AM+B+dist AM AM+dist AM+B AM+B+dist

Subj to Obj (common noun) 65.8±43.4 88.3±10.9 99.7± 0.1 96.5± 6.8 99.9± 0.1 99.9± 0.1 100.0± 0.1 99.9± 0.2
Subj to Obj (proper noun) 69.9± 9.8 48.1±32.0 66.3±38.8 61.8± 47.3 98.9± 1.7 100.0± 0.0 89.6± 8.1 95.8± 9.3
Obj to Subj (common noun) 53.1±45.0 97.9± 4.4 99.9± 0.2 88.0± 26.7 99.9± 0.1 99.8± 0.2 100.0± 0.1 99.9± 0.1
Obj to Subj (proper noun) 90.0±21.4 88.3±25.9 88.9±11.2 78.8± 42.9 99.8± 0.0 99.8± 0.1 99.9± 0.0 99.9± 0.0

Prim to Subj (common noun) 3.4± 7.6 0.0± 0.0 76.2±42.2 80.3± 42.2 98.0± 4.5 59.9±54.7 100.0± 0.0 100.0± 0.0
Prim to Subj (proper noun) 4.7±10.6 1.0± 2.3 99.9± 0.1 100.0± 0.0 99.8± 0.3 99.9± 0.1 100.0± 0.0 100.0± 0.1
Prim to Obj (common noun) 0.2± 0.4 0.0± 0.0 74.5±32.5 80.1± 40.7 95.9± 8.9 59.9±54.7 100.0± 0.0 100.0± 0.0
Prim to Obj (proper noun) 10.4± 9.1 22.0±15.6 90.5± 9.9 94.9± 3.7 98.8± 2.4 99.8± 0.4 84.9± 9.1 94.4± 9.0
Prim verb to Infin. arg 59.7±54.2 55.2±50.5 100.0± 0.0 82.9± 38.2 17.6±30.8 1.0± 2.2 100.0± 0.0 100.0± 0.0

ObjmodPP to SubjmodPP 38.1±23.1 26.1±15.1 59.0±40.8 71.5± 24.0 48.0±17.3 44.8±23.9 49.1±27.5 77.7± 7.1
CP recursion 100.0± 0.0 100.0± 0.1 100.0± 0.0 100.0± 0.0 99.9± 0.1 100.0± 0.0 100.0± 0.0 100.0± 0.0
PP recursion 60.5± 4.2 97.6± 0.9 36.3± 8.0 97.3± 2.0 57.2± 8.3 97.0± 1.1 41.5±11.2 98.6± 0.5

Active to Passive 69.3±42.2 41.7±52.3 83.0±24.8 78.8± 31.3 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Passive to Active 51.6±45.2 46.6±50.2 45.5±27.2 52.0± 43.6 99.6± 0.7 99.9± 0.1 100.0± 0.0 100.0± 0.0
ObjOTrans. to trans. 79.6±33.6 77.8±28.2 22.3±24.0 35.6± 33.4 99.9± 0.1 100.0± 0.1 100.0± 0.0 100.0± 0.0
Unacc to transitive 33.2±36.1 51.2±47.2 48.2±35.8 48.9± 41.5 99.6± 0.7 100.0± 0.1 100.0± 0.0 100.0± 0.0
Dobj dative to PP dative 99.3± 0.8 98.8± 2.0 99.8± 0.1 95.0± 11.0 99.9± 0.1 99.9± 0.1 100.0± 0.0 100.0± 0.0
PP dative to Dobj dative 90.4±11.9 79.5±44.5 85.6±21.7 89.5± 11.5 99.7± 0.1 99.8± 0.1 100.0± 0.0 100.0± 0.0

Agent NP to Unacc Subj 78.5±43.4 99.7± 0.6 95.3± 6.4 78.2± 43.9 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Theme NP to ObjOTrans. Subj 99.9± 0.1 99.2± 1.7 99.9± 0.1 70.5± 41.9 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0
Theme NP to Unergative Subj 100.0± 0.1 96.6± 7.6 99.9± 0.1 64.4± 49.0 100.0± 0.0 100.0± 0.0 100.0± 0.0 100.0± 0.0

Total 59.9±21.1 62.7±18.7 79.6±15.4 78.3± 27.7 91.1± 3.6 88.6± 6.6 93.6± 2.7 98.4± 1.3

Table 4: Exact match accuracy on the generalization set by generalization type for all AM parser models.

train
Type LeAR

Subj to Obj (common noun) 99.8± 0.0
Subj to Obj (proper noun) 93.1±10.2
Obj to Subj (common noun) 100.0± 0.0
Obj to Subj (proper noun) 99.9± 0.0

Prim to Subj (common noun) 100.0± 0.0
Prim to Subj (proper noun) 100.0± 0.0
Prim to Obj (common noun) 99.8± 0.0
Prim to Obj (proper noun) 93.1±10.2
Prim verb to Infin. arg 100.0± 0.0

ObjmodPP to SubjmodPP 92.5± 9.4
CP recursion 100.0± 0.0
PP recursion 98.5± 0.0

Active to Passive 100.0± 0.0
Passive to Active 100.0± 0.0
ObjOTrans. to trans. 100.0± 0.0
Unacc to transitive 100.0± 0.0
Dobj dative to PP dative 99.9± 0.0
PP dative to Dobj dative 90.9± 0.0

Agent NP to Unacc Subj 100.0± 0.0
Theme NP to ObjOTrans. Subj 100.0± 0.0
Theme NP to Unergative Subj 100.0± 0.0

Total 98.9± 0.9

Table 5: Exact match accuracy on the generalization set
by generalization type for the LeAR reproduction runs
on train.

to nodes. The first part of each predicate name
(e.g. boy, want, go) is the lemma of the token
pointed to by the first argument (e.g. x1, x2, x4), we
strip this lemma (‘delexicalize’) from the predicate
and insert it as the node label of the first argument
(post-processing reverses this).

Binary predicates (i.e. terms with 2 ar-
guments) are translated into edges, pointing
from their first to their second argument,
e.g. want.agent(x2, x1) is converted to an
‘agent’ edge from node x2 (the ‘want’ node) to
node x1.

For unary predicates like boy(x1) the delex-

Model trained on Lexical Structural Overall

AM train 58.8± 2.7 66.2± 8.2 59.9± 2.7
AM+dist train 60.7±12.4 74.5± 5.2 62.7±10.8
AM+B train 82.0± 7.3 65.1±11.6 79.6± 6.4
AM+B+dist train 76.5±25.4 89.6± 8.7 78.3±22.9
AM train100 94.9± 2.1 68.4± 6.7 91.1± 2.3
AM+dist train100 90.0± 6.0 80.6± 8.2 88.6± 4.9
AM+B train100 98.6± 0.9 63.5± 9.2 93.6± 1.4
AM+B+dist train100 99.4± 1.0 92.1± 2.3 98.4± 0.9
LeAR train 99.2± 1.1 97 ± 3.1 98.9± 0.9

Kim and Linzen 2020 train 41.2± 0 ± 35 ±
Akyürek and Andreas 2021 train 75.7± 1.1 0.5± 0.6 82.1± 0.6
Zheng and Lapata 2021 train 99.8± 16.8± 87.9±
Kim and Linzen 2020 train100 73 ± 0 ± 63 ±
Csordás et al. 2021 train100 88 ± 0 ± 75 ±

Table 6: Lexical vs structural generalization for
seq2seq and compositional models

icalization already suffices, so we don’t add any
edge (in lack of a proper target node). We restore
unary predicates during postprocessing for nodes
with no outgoing edges.

For a definite NP covering input token positions
i− 1 and i (i.e. “thei−1 nouni”), COGS includes a
iota term *noun(xi); in the output. This def-
inite NP meaning is treated as if it was a con-
junction of the noun meaning (i.e. noun(xi))
and ‘definite determiner meaning’ binary predicate
the.iota(xi−1, xi).
The AM parser further requires one node to be the
root node. For non-primitives we select it heuristi-
cally as the node with no incoming edges (exclud-
ing preposition and determiner nodes).

Prepositions. We ‘reify’ prepositions so each be-
comes a node of the graph with outgoing ‘nmod’
edges to the modified NP and the argument NP.
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Alignments. For training the AM parser addi-
tionally needs alignments of the nodes to the input
tokens. Luckily all xi nodes naturally provide align-
ments (alignment to ith input token). For proper
names we simply align them to the first occurrence
in the sentence. The determiner node is aligned
to the token preceding the corresponding xnoun.
Edges are implicitly aligned by the blob heuristics,
which are pretty simple here; every edge belongs
to the blob of the node it originates from.

Primitives. For primitive examples (e.g. “touch”
(4)) we mostly follow the same procedure. Unlike
non-primitives, however, their resulting graph
can have open sources beyond the root node,
e.g. “touch” would have sources at the nodes b and
a (incoming ‘agent’ or ‘theme’ edge respectively).
These nodes can receive any source out of the
three available (S0,S1,S2)5, so the tree automaton
build as part of Groschwitz et al. (2021)’s method
would allow any combination of source names for
the unfilled ‘arguments’. Because there is only one
input token, alignment is trivial. Primitives quite
closely resemble the ‘supertags’ of the AM parser.

The graph conversion for (1) was already pre-
sented in Fig. 3. For the other three examples (2)–
(4), we present the graph conversions in Fig. 4.

5With the restriction that different nodes should have dif-
ferent sources to prevent the nodes from being merged. We
don’t consider non-empty type requests for these nodes here.

x2 / lend

x0 / Ava x4 / cookie

x5 / in

x7 / bottle

recipient theme nmod.op1 nmod.op2

(a) See also (2).

x1 / say

x0 / Ava

x4 / declare

x3 / Ben

x7 / sleep

x6 / Claire

agent

ccomp

agent

ccomp

agent

(b) See also (3).

e0 / touch

b0 / S0 a0 / S1

agent theme

(c) See also (4).

Figure 4: Results of the logical form to graph conver-
sion for (2)–(4). Actually for (c) the tree automaton
contained all possible source name combinations for
nodes a and b, not just 〈S0,S1〉.
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Abstract

We investigate the extent to which pre-trained
language models acquire analytical and deduc-
tive logical reasoning capabilities as a side ef-
fect of learning word prediction. We present
AnaLog, a natural language inference task de-
signed to probe models for these capabilities,
controlling for different invalid heuristics the
models may adopt instead of learning the de-
sired generalisations. We test four language
models on AnaLog, finding that they have all
learned, to a different extent, to encode in-
formation that is predictive of entailment be-
yond shallow heuristics such as lexical over-
lap and grammaticality. We closely analyse
the best performing language model and show
that while it performs more consistently than
other language models across logical connec-
tives and reasoning domains, it still is sensitive
to lexical and syntactic variations in the reali-
sation of logical statements.

1 Introduction

Logical reasoning (Lakoff, 1970; MacCartney and
Manning, 2007; Smith, 2020) is at the core of
many downstream NLP tasks, such as dialogue
and story generation (Fan et al., 2018; Welleck
et al., 2019); narrative understanding and summari-
sation (Mostafazadeh et al., 2016; Vashishtha et al.,
2020); question answering (Weber et al., 2019; Shi
et al., 2021); relation extraction (Massey et al.,
2015; Kassner et al., 2020; Yanaka et al., 2021);
and visual comprehension (Suhr et al., 2017, 2019;
Sethuraman et al., 2021). Because most of the cur-
rent approaches to these tasks rely on pre-trained
language models (LMs), it is essential to under-
stand whether LMs can perform logical reasoning.

One way of verifying LMs’ reasoning abilities is
using a natural language inference (NLI) task (Da-
gan et al., 2005; Giampiccolo et al., 2007; Bowman
et al., 2015; Bhagavatula et al., 2020; Rudinger
et al., 2020). In NLI, an LM is given a premise

and a hypothesis, and its task is to predict the
logical relation between the two. Yet, LMs typ-
ically learn to solve NLI by using invalid heuris-
tics, for example by extracting overlapping patterns
between premises and hypotheses (McCoy et al.,
2019), or by using specific lexical items and sen-
tence grammaticality as simplistic predictors of
entailment (Poliak et al., 2018).

In this paper, we examine whether pre-trained
LMs rely solely on shallow heuristics, or whether
they can use relevant reasoning abilities to make
inferences. To do so, we develop a new NLI task,
AnaLog,1 that requires LMs to encode different
logical reasoning patterns and we probe the be-
haviour of four masked and autoregressive LMs
on this new dataset. Using interpretability mea-
sures, we find that, as a side effect of learning word
prediction, all LMs under scrutiny have—to some
extent—learned to encode information that is pre-
dictive of entailment relations.

We analyse the behaviour of the best perform-
ing model, BERT (Devlin et al., 2019), across the
various inference categories present in AnaLog,
finding that its reasoning abilities go beyond shal-
low heuristics and yield relatively consistent per-
formance on deductive and analytical reasoning, as
well as across reasoning domains (spatial and com-
parative) and logical connectives. Nevertheless,
the model’s behaviour within connectives varies,
pointing out its sensitivity to lexical and syntactic
variations in the realisation of logical statements.

2 Related Work

2.1 Learning Logic from Text

Recent work has explored which aspects of logi-
cal reasoning are statistically learnable from text.
Examining how well LMs encode the semantics of

1The dataset is available at https://github.com/
dmg-illc/analog
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logical connectives can give us insight into their
reasoning capabilities, i.e., their ability to reach a
conclusion from one or more statements.

Kim et al. (2019b) showed that BERT (Devlin
et al., 2019) achieves 10% higher accuracy than
humans on tasks that involve conjunctions. How-
ever, it has also been shown that LMs fail to encode
the semantics of logical formulas (Traylor et al.,
2021b) and struggle to differentiate between con-
junction and disjunction (Traylor et al., 2021a),
particularly in instances where the operands are
noun phrases (Talmor et al., 2020), suggesting that
the models find it difficult to understand the scope
of the logical operator. It is also known that neu-
ral LMs have difficulty understanding argument
order (Kassner et al., 2020), which is arguably
a pre-requisite for any logical reasoning. Clark
et al. (2020) and Tian et al. (2021) showed that
RoBERTa (Liu et al., 2019), in contrast to BERT,
performs well at encoding instructional texts that
involve conditionals. Good performance on con-
ditionals in LMs is surprising, since humans typ-
ically find reasoning about conditionals challeng-
ing due to the fact that it requires accommodating
degrees of belief (Politzer, 2007). Finally, regard-
ing universal quantification, which implicitly in-
volves encoding a hidden conditional statement
(e.g. ∀x.P (x)→ Q(x)), BERT’s performance has
been shown to vary substantially (Kim et al., 2019b;
Tian et al., 2021).

Besides different logical connectives, some re-
cent work has studied different types of reasoning
domains. Kassner et al. (2020) showed that models
such as BERT and RoBERTa struggle to encode
the semantics of comparative reasoning phrases.
Yet, Kim et al. (2019b) showed that BERT’s perfor-
mance is only 11% less than human performance
on comparative reasoning tasks, and 10% less than
human performance on spatial reasoning tasks.

Overall, there is a lot of variation in LMs’ abili-
ties to interpret different aspects of logical reason-
ing. We suspect that low performance stems from
the fact that LMs are struggling to encode world
knowledge, which is often required in NLI and
logic datasets (Clark et al., 2007; Wang et al., 2018;
Lauscher et al., 2020; Kassner et al., 2020; Ryb and
Van Schijndel, 2021), while high performance may
be due to extracting overlapping heuristics (Beall
et al., 2019; McCoy et al., 2019), or to attending to
shallow predictors such as the presence of specific
words or sentence grammaticality (Poliak et al.,

2018). We control for these factors in AnaLog.

2.2 Diagnostic Probing

A well established way of investigating what type
of linguistic information is tracked by neural LMs
is diagnostic probing (Ettinger et al., 2016; Adi
et al., 2017; Belinkov et al., 2017; Conneau et al.,
2018; Hupkes et al., 2018). Probing typically con-
sists of extracting model representations, feeding
them as input to a supervised classifier trained to
predict a hypothesised linguistic property (e.g., the
grammatical number agreement of the main verb of
a sentence), and testing the probing classifier on a
set of unseen representations. Good probing perfor-
mance cannot directly be taken to indicate that the
hypothesised linguistic property is tracked by the
LM (Belinkov, 2021). It is thus common practice
to compare the true probing performance of classi-
fiers with performance on control representations
(Zhang and Bowman, 2018; Tenney et al., 2018;
Chrupała et al., 2020), tasks (Hewitt and Liang,
2019a), or datasets (Ravichander et al., 2021).

In this paper, we set up a careful evaluation pro-
cedure to interpret the performance of our prob-
ing classifier, by training it on increasingly small
portions of training data, and comparing its perfor-
mance in relation to two baselines.

3 Dataset Design and Construction

We extend the LAKNLI dataset (Ryb and Van Schi-
jndel, 2021) and present AnaLog, an NLI dataset
that explicitly targets different types of logical rea-
soning. The dataset contains a total of 24,000 items
(see Table 2), where each item consists of a premise,
a hypothesis, and their logical relation: entailment
or non-entailment. Premises and hypotheses are
generated from templates, using a restricted and
carefully selected vocabulary. The templates and
the vocabulary can be found in Appendices A.1
and A.2. The dataset is designed to contain a
balanced distribution of logical connectives and
reasoning categories. Examples are provided in
Table 1.

3.1 Premises

Sentences in AnaLog are constructed from tem-
plates designed for specific logical connectives. For
example:

(1) N1 P1 N2 and N3

A premise is constructed through filling a tem-

56



Premise HypothesisOVERLAP NO-OVERLAP

AND Jennifer is in front of Elizabeth
and Jennifer is to the north of
Linda.

→ Jennifer is in front of Elizabeth.
9 Elizabeth is to the north of
Linda.

→ A person is behind some woman.
9 A person is behind some man.

OR Jennifer is to the north of
Linda or is below Robert. Jen-
nifer is not below Robert.

→ Jennifer is to the north of Linda.
9 Robert is below Jennifer.

→ Some person is to the south of some
woman.
9 Some boy is to the east of a man.

CON If Elizabeth is older than Jen-
nifer then Linda is smaller
than Jennifer. Elizabeth is
older than Jennifer.

→ Linda is smaller than Jennifer.
9 Jennifer is smaller than Linda.

→ A person is larger than some woman.
9 A woman is arriving later than some boy.

UNI Every director is to the west of
Patricia. James is a director.

→ James is to the west of Patricia.
9 Patricia is to the west of James.

→ Some woman is to the east of some man.
9 Some woman is to the right of some man.

Table 1: Examples of premises and hypotheses for each of the logical connectives. Within the premises, connec-
tives are bolded and spatial and comparative reasoning predicates are highlighted in blue and orange, respectively.

plate’s slots with nouns and predicates. For in-
stance, N1 = Patricia, N2 = James, N3 = Mary,
and P1 = is to the left of would result in:

(2) Patricia is to the left of James and Mary

Logical Connectives AnaLog systematically dis-
tinguishes between the following four types of log-
ical connectives in the premise:
• AND: conjunction (and)

• OR: disjunction (or)

• CON: conditionals (unless, if, if then, only if )

• UNI: universal quantification (every, all)
This is in contrast to both SuperGLUE (Wang et al.,
2020) where the logical connectives vary between
being positioned in the premise or hypothesis, and
LogicNLI (Tian et al., 2021), where premises con-
sist of multiple facts and rules and do not isolate
logical connectives. LogicNLI premises may also
feature negation, existential quantification, and
equivalence. Since negation is often used as a
heuristic to predict non-entailment in NLI tasks
(McCoy and Linzen, 2019), we only include it
within premises when absolutely necessary to asses
LMs’ understanding of a specific reasoning schema
(such as disjunction and certain forms of condition-
als). Existential quantification and equivalence are
implicitly present in our hypotheses construction,
as explained in Section 3.2.

Nouns The noun slots in our premise templates
are filled with proper names, as this avoids possible
confounding factors carried over by the semantics
of common nouns. We choose the eight most fre-
quent male and female first names according to the
1990 U.S. Census Bureau’s Population Division.
For the restrictor noun in universal quantification

premises (e.g., director in the UNI premise in Ta-
ble 1), we use the four most common nouns in
COCA (Davies, 2010) which correspond to the cat-
egory NOUN.PERSON in Wordnet (Fellbaum, 1998),
do not begin with a vowel,2 and are semantically
compatible with our predicates. Selecting high fre-
quency nouns ensures that LMs are not thrown off
by infrequent occurrences, nor heavily influenced
by specific lexical material. This enables LMs to
output representations that are as stable as possible.

Predicates The predicates in our templates are
also instantiated with a restricted vocabulary that
limits interference with additional sorts of knowl-
edge. We focus on two reasoning domains: spa-
tial (3) and comparative (4) reasoning. We select
pairs of spatial reasoning predicates from Kim et al.
(2019a), such as left-right and above-below. To
collect comparative reasoning predicates, we select
pairs from the FraCaS project (Cooper et al., 1996),
such as smaller-larger and weaker-stronger. Rea-
soning about these two types of predicates requires
models to encode truth equivalent relationships,
such as:

(3) N1 is above N2 ⇐⇒ N2 is below N1

(4) N1 is stronger than N2 ⇐⇒ N2 is weaker
than N1

3.2 Hypotheses

Assessing whether a given hypothesis is entailed by
a premise may require different kinds of reasoning.
For example, some hypotheses follow purely on the
basis of structural aspects, i.e., they can be derived
by direct deduction on surface form: e.g., ‘A and

2So that they are all compatible with the article a.
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B’ logically entails ‘A’ as well as ‘B’, as in (5-a).3

Such hypotheses require deductive reasoning. In
contrast, other cases of entailment go beyond ma-
nipulations at the level of surface form and instead
rely on additional semantic knowledge, as in (5-c).
Such hypotheses require analytical reasoning.

To test both types of reasoning, we generate en-
tailment and non-entailment hypotheses for each
type. For the example premise in (5), this results in
the following four hypotheses, where→ denotes
an entailment, and 9 a non-entailment relation:

(5) Patricia is to the left of James and Mary
a.→ Patricia is to the left of James
b. 9 Mary is to the left of James
c.→ Some man is to the right of some other

person
d.9 Some man is older than some woman

For AND, we randomly select one of the conjuncts
to construct the entailed direct logical deduction
hypotheses. That is, (5-a) could have also been
Patricia is to the left of Mary. Details of the other
connectives can be found in Appendix A.2 (Ta-
ble 7).

AnaLog clearly distinguishes between deduc-
tive and analytical reasoning, which gives rise to
a systematic distinction between hypotheses that
exhibit lexical overlap and those that do not ex-
hibit any overlap of content words (see examples
in Table 1). Hence, in addition to isolating LMs’
abilities to both deductively and analytically rea-
son, this offers a way to control LMs’ potential
use of overlap-related heuristics, which have been
shown to artificially inflate previous results on the
NLI task (McCoy et al., 2019). We explain this
distinction in more detail next.

Overlapping Hypotheses Overlapping hypothe-
ses only consist of words reiterated from the
premise. Overlapping entailment (O→) hypothe-
ses are a direct logical deduction (5-a), which cor-
responds to the strictest case of premise overlap
considered by McCoy et al. (2019). Overlapping
non-entailment (O9) hypotheses, in contrast, do
not logically follow from the premise (5-b). We
generate two types of O9 hypotheses: grammati-
cal instances O9

G such as (5-b) and ungrammatical
instances O9

UG, which correspond to an ungram-
matical bag-of-words subset of the premise (e.g.

3In this example, ‘B’ is the implicit proposition ‘Patricia
is to the left of Mary’.

‘and to left the of Patricia’).
While it may not be realistic to expect that LMs

have had exposure to ungrammatical sentences dur-
ing training—and hence that they will have learned
to properly reason with them (i.e., to systematically
classify them as non-entailment)—including un-
grammatical instances allows us to test the strength
of possible overlap-based heuristics: if LMs more
frequently incorrectly assign the label entailment
to ungrammatical cases that exhibit lexical overlap,
then we can consider lexical overlap as a stronger
heuristic than grammaticality.

Non-Overlapping Hypotheses Non-
overlapping hypotheses are generated by replacing
proper names with person-related hypernyms and
replacing the predicate with its counterpart (e.g.,
James ; some man, left ; right).4 We generate
both Non-Overlap entailment (NO→) hypotheses
(i.e., proper instances of analytical reasoning, such
as (5-c)) and Non-Overlap non-entailment (NO9)
hypotheses, such as (5-d).

O E G AND OR CON UNI

O→ X X X 1,500 1,500 1,500 1,500
O9

G X 7 X 750 750 750 750
O9

UG X 7 7 750 750 750 750

NO→ 7 X X 1,500 1,500 1,500 1,500
NO9 7 7 X 1,500 1,500 1,500 1,500

6,000 6,000 6,000 6,000

Table 2: AnaLog dataset statistics. The dataset contains
24,000 items in total. Overlap (O), Entailment (E), and
Grammaticality (G) are marked. For each category (nu-
merical cell), half of the items are constructed with spa-
tial, and half with comparative reasoning predicates.

4 Experimental Setup

4.1 Models

We probe four pre-trained Transformer (Vaswani
et al., 2017) language models using AnaLog. To
ensure a fair comparison, we use the large ar-
chitecture size for all models, as available in the
HuggingFace library (Wolf et al., 2020). We com-
pare the following architectures:

BERT (Devlin et al., 2019) A Transformer-based
LM pre-trained on masked language modeling and

4We minimize the risk of the probe memorizing facts in
the dataset by choosing to not have 1-to-1 mappings of proper
names to person-related hypernyms.
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next sentence prediction, known for its high perfor-
mance at sentence and token classification tasks, in-
cluding NLI (Talman and Chatzikyriakidis, 2019).

LUKE (Yamada et al., 2020) A masked LM
with an entity-aware self-attention mechanism, that
builds upon the RoBERTa architecture (Liu et al.,
2019). Using LUKE enables us to investigate the
degree to which entity tracking can assist in solving
logic-based NLI.

StructBERT (Wang et al., 2019) A masked LM
based on BERT with additional word and sentence
order training objectives. We expect StructBERT
to provide insight on whether structural cues are
useful in solving logic-based NLI.

GPT-2 (Radford et al., 2019) An autoregressive
Transformer-based LM which is known for its high
performance across text-generation tasks, yet has
not been frequently tested on NLI datasets. We are
interested in how abstract representations built by
an autoregressive LM compare to those built by
masked LMs.

4.2 Probing Procedure
For each premise-hypothesis pair in AnaLog, we
concatenate the text of the premise with that of
the hypothesis and with the special sentence token
from each LM’s vocabulary.5 We feed this text to
the LM and extract the last layer’s hidden activa-
tions corresponding to the special token; we take
the activations to be the abstract representation of a
premise-hypothesis pair. Repeating this procedure
for all the items in AnaLog, we collect a dataset of
representations, which we split into a training and
a test set (see Section 4.3). We fit a binary logistic
regression classifier6—as more powerful classifiers
have been shown to produce unreliable results (He-
witt and Liang, 2019a)—to the training set, obtain
predictions for the test set, and compute accuracy
and baselined probing scores, as described in the
next section.

4.3 Controlled Evaluation
Diagnostic probes are known for achieving high
accuracy on linguistic tasks despite representations

5For BERT and StructBERT, we prepend the [CLS] to-
ken; for GPT-2, we append the <|endoftext|> token; for
LUKE, we append the </s> token.

6We use the scikit-learn implementation with default hy-
perparameters. We do not tune the hyperparameters to reduce
the risk of overfitting to the collected representations, which
would inflate the probing results. All logistic regression clas-
sifiers are trained until convergence.

not necessarily encoding relevant linguistic infor-
mation (Hewitt and Liang, 2019b; Belinkov, 2021).
To address this issue, following the approach taken
by Zhang and Bowman (2018), we measure prob-
ing performance as the difference between the clas-
sification accuracy of the probing classifier trained
on the original dataset, and the accuracy of a base-
line. We call this baselined probing performance
(BPP), adopting the terminology proposed by He-
witt et al. (2021). To select the strictest baseline
setup, we consider two aspects: 1) the amount
of data, and 2) the type of data—i.e., controlled
baseline representations obtained from the AnaLog
dataset, on which the probe is trained.

Partial Training Sets We split AnaLog into a
main training and testing set using an 80-20 split.
To prevent overfitting of the probing classifier, we
evaluate it by varying the quantity of data it is
exposed to: we create partial training sets by sam-
pling increasingly larger fractions of our main train-
ing set (1%, 2%, 4%, 6%, 8%, 10%, 12.5%, 25%,
50%, 100%), using an approach similar to that
of Zhang and Bowman (2018). The testing set
remains fixed, so that regardless of the split and
baseline probe, we evaluate on a consistent set of
sentences. All the resulting training sets and the
testing set are balanced with respect to the two clas-
sification labels (entailment and non-entailment),
logical connectives, reasoning predicates, and over-
lap vs. non-overlap.

Baselines We train the probing classifier on two
baseline settings. For the Scrambled baseline, we
scramble words in the premises and hypotheses
separately, and train the probing classifier on their
concatenation. Humans should achieve 50% accu-
racy on this version of the dataset because random
word order impedes logical reasoning. For the Ran-
dom baseline, we train the probing classifier on
randomly initialised vector representations.

We consider these baselines as sufficient to en-
sure that entailment relations can only be predicted
by using logical reasoning and not by exploit-
ing dataset artifacts. For example, if the probes
were solely learning associations between proper
names and person-related hypernyms, the scram-
bled probe could suffice to achieve the same per-
formance as the probe optimised on the original
AnaLog testing set.

We train the probing classifier from scratch for
each LM, training split, and baseline. As shown in
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Figure 1: Accuracies of the original (true) vs. baseline (scrambled, random) probes for different training splits.

Figure 1, the Scrambled baseline achieves the high-
est accuracy (around 60%) across all LMs and train-
ing splits. The Random baseline achieves chance-
level accuracy across LMs and training splits, con-
firming that the complexity of our probing clas-
sifier is appropriate for this task.7 We therefore
use Scrambled to compute BPP scores, as it yields
the strictest (or most selective; Hewitt and Liang,
2019a) baseline setup.

5 Results across Models

All four LMs achieve positive average BPP scores:
the average accuracy is above baseline by ca. 20
percentage points (see Figure 2). These overall
results indicate that the LMs encode information
that is predictive of entailment relations above and
beyond simple heuristics which can be captured by
a baseline. We also observe that the highest BPP
scores are obtained at a relatively small training
split size. This suggests training probes on more
data can decrease their ability to extract the targeted
linguistic features, and cause them to overfit on the
dataset instead.

BERT and StructBERT are the best performing
models with BPP scores ranging roughly between
15 and 40 (except for the smallest training split
sizes). Their similar performance across all splits
shows that StructBERT’s explicit modelling of sen-
tence and discourse structure does not produce
more informative representations for our AnaLog
task than BERT’s simpler next word and next sen-
tence prediction training objectives.

GPT-2’s high standard deviation across splits
(on average, 20.82) indicates a severe instability in
its capacity to correctly encode logical reasoning
cues. A closer look at GPT-2’s performance shows

7We would have seen an accuracy greater than 50% for
Random if the complexity of the classifier had been excessive.

that its representations are predictive of entailment
relations when there is lexical overlap between
premises and hypotheses, and of non-entailment
relations when there is no lexical overlap. While
GPT-2 is an autoregressive LM, as opposed to the
other masked LMs, we are not certain that this fac-
tor is what causes this learning pattern. We leave
exploring this further to future work.

Lastly, LUKE’s performance, with an average
score of 15.05, is significantly lower than that of the
other three models (t-tests against BERT, Struct-
BERT and GPT-2 yield p-values approaching zero),
suggesting that its ability to track entities does not
significantly help in solving logical deductions.

For the detailed results presented in the next
sections, we focus on the model that achieves the
highest BPP score with the lowest standard devi-
ation. As can be seen in Figure 2, this model is
BERT, probed with a classifier trained on 12.5% of
the full training split.

Figure 2: BPP scores for different training splits.
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(a) Overlap (all grammatical) (b) Grammaticality (O9) (c) Reasoning domains (d) Logical connectives

Figure 3: BERT probing results across dataset categories. Overall bar height indicates accuracy, broken down by
baseline accuracy (dark blue) and BPP score (light blue with superimposed average score and standard deviation).

6 Detailed Results with BERT

6.1 Solving Inference without Heuristics
We start by analysing the extent to which the per-
formance of the best model, BERT, may be the
result of exploiting heuristics unrelated to logical
reasoning.

Overlap If lexical overlap were used as a heuris-
tic to predict entailment, we would expect lower
performance for overlap-non-entailment O9 and
no-overlap-entailment NO→ instances, where us-
ing the overlap heuristic yields incorrect predic-
tions. This is not the pattern we observe. As shown
in Figure 3a, accuracy is highest in these two cases.
We see that O9 items yield the lowest BPP scores
and NO→ the highest (this difference is statisti-
cally significant and in principle compatible with
the heuristics). However, there is no significant dif-
ference between no-overlap items with entailment
vs. non-entailment labels. This indicates a lexical
overlap heuristic is not prominently at play.

As pointed out in Section 3.2, the overlap vs.
non-overlap distinction also corresponds to the con-
trast between direct deduction and analytical rea-
soning. We do not observe any significant differ-
ences in performance across these two reasoning
types. More generally, the fact that BPP scores are
positive across the board for overlapping and non-
overlapping cases shows that the model is solving
our logic-based NLI task by using information that
goes beyond simple heuristic cues.

Grammaticality If a model were to judge entail-
ment relations purely on the basis of grammatical-
ity, we would expect it to wrongly predict entail-
ment for O9

G (overlap-non-entailment grammati-
cal) instances and correctly predict non-entailment
for O9

UG (overlap-non-entailment ungrammatical).

This is not what we observe: BPP scores are posi-
tive and not significantly different between O9

G and
O9
UG, which indicates grammaticality is not being

used as a heuristic to predict entailment.
Finally, we find that performance on ungram-

matical sentences is more unstable (standard devi-
ation is almost 8 times higher than for O9

G ); this
may be due to BERT producing noisier representa-
tions for out of distribution, partially ungrammati-
cal, strings.

6.2 Consistency across Reasoning Domains
Having established that two plausible heuristics are
not behind our probing results, we now turn to com-
paring reasoning domains. We have already seen
that BERT’s representations seem to be amenable
to both deductive and analytical reasoning. We
next hypothesize that if LMs can indeed reason
logically, their performance should not be signif-
icantly affected by the specific choice of lexical
items. We therefore compare the probes’ perfor-
mance on spatial vs. comparative reasoning pred-
icates in AnaLog (see Figure 3c). We find no sig-
nificant difference (t = 0.442, p = 0.662) in BPP
scores across predicate types. This indicates that
BERT’s encoding of lexical semantic relations (in
particular, antonymy) is stable across reasoning do-
mains. This result is in line with the findings of
Kim et al. (2019b), who show no substantial differ-
ences between spatial and comparative reasoning
for BERT and humans.

6.3 Logical Connectives
Finally, we break down the results per logical con-
nective. As can be seen in Figure 3d, BPP scores
are positive and similar across operators, suggest-
ing that BERT representations encode the seman-
tics of logical connectives in a relatively stable way.

61



We observe the lowest BPP scores with conjunc-
tion and conditionals (in both cases significantly
lower than UNI, p < 0.05). This is somewhat
surprising, particularly for conjunction, given the
previous results by Kim et al. (2019b) mentioned
in Section 2.1. In the next section, we conduct two
case studies to further examine whether there are
specific linguistic phenomena linked to conjunction
and conditionals that may be confusing BERT.

7 Analysis

7.1 Case Study 1: Parsing Conjunction
In AnaLog, the arguments of a conjunction can be
sentences (S), noun phrases (NP), or verb phrases
(VP).8 For example, the AND premise in Table 1
includes sentential conjuncts, while the one in ex-
ample (5) features conjuncts that are NPs. We test
two related hypotheses regarding aspects that may
lead to lower performance in some of these condi-
tions: (i) We conjecture that, when the conjuncts
are NPs or VPs, deducing information to the right
of the conjunct may be more difficult because this
involves parsing long-range dependencies. For ex-
ample, in instances such as David is to the left of
John and Linda→ Some girl is to the right of a boy,
predicting the entailment relation requires encod-
ing syntactic and semantic information to both the
left and right of the logical connective. (ii) Conse-
quently, we hypothesise that identifying the argu-
ments of a conjunction may be easier for the model
when these arguments are sentential rather than
phrasal, since the former does not require parsing
long-range dependencies; this would be compatible
with the results by Talmor et al. (2020), who found
that models struggle at making correct predictions
when the conjunction is positioned between NPs.

Our two hypotheses, however, are not confirmed.
On the one hand, we find no significant difference
between left and right for any conjunct type (S, NP,
and VP). This suggests that BERT’s representations
consistently encode information regardless of its
position relative to the conjunction operator, which
could be due to BERT’s bidirectional training. On
the other hand, as can be seen in Figure 4a, we
observe that when the conjunction is positioned be-
tween sentences, the results are in fact significantly
worse than when it is positioned between NPs or
VPs.9 Why this may be the case remains an open
question that we leave for future work.

8These three types appear with equal frequency.
9All relevant t-tests yielded p > 0.05.

(a) Conjunction (b) Conditionals

Figure 4: BERT results within logical connectives.

7.2 Case Study 2: Types of Conditional

In this second case study, we investigate whether
BERT’s representations struggle to encode some
types of conditionals more than others.10 We ex-
pect to observe the highest performance for if then
sentences, as BERT and RoBERTA reason well
about modus-ponens (Clark et al., 2020). How-
ever, as shown in Figure 4b there is no significant
differences between if then, if, and unless(infix).
The most challenging types are only if and un-
less(prefix). We find that unless(prefix) is signifi-
cantly outperformed by unless(infix). This again
shows that BERT is able to successfully encode
relevant information to both the left and right of a
connective.

8 Conclusions

We present a new NLI dataset, AnaLog, designed
to test LMs’ abilities to deductively and analyti-
cally reason. We choose diagnostic probing as an
interpretability technique, and probe using AnaLog
to inspect whether LMs acquire such logical reason-
ing abilities from text-based pre-training. We find
that masked LMs, in particular BERT and Struct-
BERT, can solve the inference task through encod-
ing properties of both deductive and analytic logic,
rather than solely relying on shallow heuristics such
as lexical overlap and sentence grammaticality.

One main benefit of AnaLog is that it isolates
different reasoning types, domains, and logical con-
nectives, in order to gain a better understanding of
which of these factors makes inference more chal-
lenging for an LM. We choose high frequency lex-
ical items to ensure that the LMs’ representations
are as stable as possible, and not thrown off by sur-
prising low frequency occurrences. We also use a
fine-grained probing setup consisting of different

10The conditionals present in AnaLog are: if, if then, only
if, unless(prefix), unless(infix); see Appendix A.2.
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training splits and multiple baselines to ensure that
probes are using relevant linguistic and logical in-
formation, rather than learning the dataset artifacts,
to solve the task.

We perform an in-depth analysis of BERT’s be-
haviour. Its overall stable performance is promis-
ing, though our case studies show some variance at
the level of different natural language formulations
of the same logical connective or their arguments
as opposed to at higher reasoning levels. Overall,
we think that BERT learns to encode approxima-
tions of the types of logical reasoning information
necessary to solve AnaLog, although its sensitivity
to surface forms can make these approximations in-
consistent. While extending the AnaLog test set to
also include lower frequency items may be helpful
to ensure generalizability over noun and predicate
relations (which we leave for future work), we hope
that as it currently stands, AnaLog can be used as a
benchmark to check whether LMs reason correctly
by using elementary linguistic knowledge and logi-
cal semantics, as opposed to surface heuristics.
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Appendix

A Dataset Construction Details

A.1 Lexical Items

Tables 3 and 6 respectively, show the noun, spatial
and comparative analytic reasoning phrases used
in AnaLog.

Name Gender % Freq. Count
James M 3.318 4,840,833
John M 3.271 4,772,262
Robert M 3.143 4,585,515
Michael M 2.629 3,835,609
William M 2.451 3,575,914
David M 2.363 3,447,525
Richard M 1.703 2,484,611
Charles M 1.523 2,221,998
Mary F 2.629 3,991,060
Patricia F 1.073 1,628,911
Linda F 1.035 1,571,224
Barbara F 0.98 1,487,729
Elizabeth F 0.937 1,422,451
Jennifer F 0.932 1,414,861
Maria F 0.828 1,256,979
Susan F 0.794 1,205,364

Table 3: Noun phrases. Source: 1990 U.S. Census Bu-
reau’s Population Division.

As mentioned in Section 3.1, for the restrictors
of the universal quantification premises (i.e., the
UNIN slot in the Table 7 template), we used the
four most common nouns in COCA (Davies, 2010)
which do not begin with a vowel, and that cor-
respond to the category NOUN.PERSON in Word-
net (Fellbaum, 1998), ensuring grammaticality
when used within our templates (see Table 4).
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Restrictor Noun POS Frequency
model n 191,448
director n 158,028
participant n 81,371
soldier n 78,276

Table 4: UNIN restrictor noun entries. Source: Corpus
of Contemporary American English. POS stands for
Part of Speech.

We replace the nouns from Table 3 with lexical
entries from Table 5 within non-overlapping entail-
ment (NO→) and non-overlapping non-entailment
(NO9) sentences, to ensure that models (and
probes) are not using non-linguistic heuristics when
solving the inference task.

Gender Hypernyms
Female a girl, some girl, some other girl, a

woman, some woman, some person, a
person

Male a boy, some boy, some other boy, a
man, some man, some person, a person

Table 5: Noun hypernyms used within AnaLog.

A.2 Premise Constructions
Premises are constructed according to different tem-
plates (see Table 7). Let N be some noun (e.g.
Patricia, David ...) and P be some spatial or com-
parative reasoning predicate (e.g. is to the right
of, is younger than ... ). We use the ¬ symbol
to denote negation. See Table 8 for information
pertaining to the Specificity.

B Computing Infrastructure and Budget

Our experiments were carried out using a single
GPU on a computer cluster with Debian Linux OS.
The GPU nodes on the cluster are GPU GeForce
1080Ti, 11GB GDDR5X, with NVIDIA driver ver-
sion 418.56 and CUDA version 10.1. The total
computational budget required to perform all our
experiments amounts to 15 hours.
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Spatial Reasoning Comparative Reasoning
N1 is to the left of N2 ⇐⇒ N2 is to the right of N1 N1 is smaller than N2 ⇐⇒ N2 is larger than N1

N1 is on top of N2 ⇐⇒ N2 is below N1 N1 is faster than N2 ⇐⇒ N2 is slower than N1

N1 is to the north of N2 ⇐⇒ N2 is to the south of N1 N1 is arriving earlier than N2 ⇐⇒ N2 is arriving later than N1

N1 is in front of N2 ⇐⇒ N2 is behind N1 N1 is stronger than N2 ⇐⇒ N2 is weaker than N1

N1 is to the east of N2 ⇐⇒ N2 is to the west of N1 N1 is younger than N2 ⇐⇒ N2 is older than N1

Table 6: Predicates and their reasoning categories.

LC Specificity Premise Overlap Entailment
AND S N1 P1 N2 and N3 P2 N4. Random[N1 P1 N2, N3 P2 N4].

AND NP N1 P1 N2 and N3. Random[N1 P1 N2, N1 P1 N3].

AND VP N1 P1 N2 and P2 N3. Random[N1 P1 N2, N1 P2 N3].

OR S N1 P1 N2 or N3 P2 N4. Random[N1 ¬ P1 N2, N3

¬ P2 N4].
The non-negated non-selected random
sentence.

OR NP P: N1 P1 N2 or N3. Random[N1 ¬ P1 N2, N1 ¬ P1

N3].
The non-negated non-selected random
sentence.

OR VP N1 P1 N2 or P2 N3. Random[N1 ¬ P1 N2, N1 ¬
P2 N3].

The non-negated non-selected random
sentence.

CON UNLESS Prefix Unless N1 P1 N2, N3 P2 N4. N1 ¬ P1 N2. N3 P2 N4.

CON UNLESS Infix N1 P1 N2 unless N3 P2 N4. N3 ¬ P2 N4. N1 P1 N2.

CON IF N1 P1 N2 Random[if, when, even though] N3 P2

N4. N3 P2 N4.
N1 P1 N2.

CON IF THEN If N1 P1 N2 then N3 P2 N4. N1 P1 N2. N3 P2 N4.

CON ONLY IF N1 P1 N2 only if N3 P2 N4. N1 P1 N2. N3 P2 N4.

UNI Each Each UNIN P1 N1. N2 is a UNIN . N2 P1 N1.

UNI Every Every UNIN P1 N1. N2 is a UNIN . N2 P1 N1.

Table 7: Syntactic templates for premises and their corresponding overlapping entailment hypotheses. The logi-
cal connectives (LC) are bolded within each premise. Specificity indicates the lexical representation and/or the
position in which the LCs are used within premises.

Specificity Definition
S Conjunction/disjunction is positioned between sentences.
NP Conjunction/disjunction is positioned between between noun phrases.
VP Conjunction/disjunction is positioned between verb phrases.
UNLESS Prefix The logical conditional connective is denoted by the word unless prefixed to the premise.
UNLESS Infix The logical conditional connective is denoted by the word unless within the premise.
IF The logical conditional connective is denoted by the word if.
IF THEN The logical conditional connective is denoted by the phrase if ... then ....
ONLY IF The logical conditional connective is denoted by the phrase only if.
Each The universal quantifier is denoted by the word each.
Every The universal quantifier is denoted by the word every.

Table 8: Specificity definitions.
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Abstract

Natural Language Processing tasks such as re-
solving the coreference of events require under-
standing the relations between two text snip-
pets. These tasks are typically formulated as
(binary) classification problems over indepen-
dently induced representations of the text snip-
pets. In this work, we develop a Pairwise Rep-
resentation Learning (PAIRWISERL) scheme
for the event mention pairs, in which we jointly
encode a pair of text snippets so that the rep-
resentation of each mention in the pair is in-
duced in the context of the other one. Fur-
thermore, our representation supports a finer,
structured representation of the text snippet to
facilitate encoding events and their arguments.
We show that PAIRWISERL, despite its simplic-
ity, outperforms the prior state-of-the-art event
coreference systems on both cross-document
and within-document event coreference bench-
marks. We also conduct in-depth analysis in
terms of the improvement and the limitation
of pairwise representation so as to provide in-
sights for future work. 1

1 Introduction

In this work, we study the event coreference
resolution problem. Event coreference resolution is
commonly modeled as a binary classification prob-
lem over independently induced representations on
the text snippets of each event mention (Lee et al.,
2012; Barhom et al., 2019).2 Understanding the
relations between two text snippets is the essential
part in the tasks. In this work, we argue that the
representations of prior work are not expressive
enough to learn the pairwise relations due to the
following two reasons:
(i) Counterpart Unawareness. The relationship
between two mentions can be different in different

1Our code is available at http://cogcomp.org/
page/publication_view/979

2Some work maps the two mentions into a single matching
score, e.g., (Barhom et al., 2019); this can be treated as a
special case of binary classification.

contexts. To address different scenarios, it is better
for each mention to ensure that its representation
is aware of what its counterpart’s representation.
However, most early work induces mention rep-
resentations independently by extracting features
only from the sentence that contains the mention,
without using the context of the other mention
(Barhom et al., 2019; Huang et al., 2019). Some
more recent work attempts to encode the whole
document to represent each mention (Lee et al.,
2017; Cattan et al., 2020). This is beneficial for
short documents, since the representation of each
mention will also include information from the
context of the other candidate mention. However,
this is not sufficient for cross-document settings,
when the comparison is, for example, between two
event mentions that appear in separate documents.
In this case even encoding large pieces of text leave
the candidate mention representations independent
of each other.
(ii) Unstructured representation learning. An
event mention consists of multiple arguments that
describe the event: who, when, where, etc. When
determining the relationship of two event mentions,
the mismatch of some arguments could be decisive.
Consider the following two sentences s1 and s2
(event trigger is underlined; argument #0 is in
blue, location is in purple)

s1: “Over 69,000 people lost their lives in the quake,
including 68,636 in Sichuan.”
s2: “Up to 6,434 people lost their lives in Kobe earth-
quake and about 4,600 of them were from Kobe.”

These two events “lost” are not the same events
because the earthquake in Sichuan and the earth-
quake in Kobe are two different earthquakes, and
Sichuan and Kobe do not have any geographic over-
lap. The mismatch of the locations “Sichuan” and
“Kobe” may be enough to determine that the two
events are different from each other without even
considering the rest of the sentence. Most prior
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work encodes all of the arguments into a single
distributed representation vector and just compares
the overall vector representations of two mention
triggers. Although contextual representation could
encode all of the arguments’ information, this is
less optimal than explicitly representing all of the
arguments, thus making it easier for the model to
conduct fine-grained reasoning over each of the
argument.

To address the drawbacks of prior representa-
tions, we propose pairwise representation learning
(PAIRWISERL). PAIRWISERL alleviates the afore-
mentioned two limitations with two designs:

Pairwise representation learning. We suggest
treating a mention pair, rather than a single men-
tion, as the object for the representation learning.
We encode the two mentions’ sentences as a whole
sequence so that one sentence’s token representa-
tion is able to interact with the other sentence’s
from the very beginning. This is advantageous over
learning two separate and independent representa-
tions because it allows for learning how compatible
one mention is with the other mention’s context.

Structured representation learning. The ob-
servation that mismatching arguments are critical
to making the coreference decision indicates that
using a single combined representation for all of
the arguments could be less informative for cross-
mention comparison. In this work, we explicitly
represent all the arguments, and compare each ar-
gument separately.

To our knowledge, this is the first work that
applies pairwise representation learning to event
coreference problems. We report our performance
on both within-document and cross-document
event coreference benchmarks. We show that
PAIRWISERL, despite its simplicity, clearly sur-
passes more complex state-of-the-art event coref-
erence systems on two most popular benchmarks
ECB+ (Cybulska and Vossen, 2014) and KBP17
(Getman et al., 2015). We also conduct in-depth
analysis in terms of the improvement and the lim-
itation of pairwise representation so as to provide
insights for future work.

2 Related Work

In this section, we discuss prior representation
learning approaches for event coreference and how
pairwise representation learning has been used in
other NLP problems.

Event Coreference. Earlier work uses hand-
engineered event features to represent events (Chen
et al., 2009; Bejan and Harabagiu, 2010).

Most recent neural models use contextual em-
bedding and character-based embedding of event
triggers with some pairwise features to represent
events (Kenyon-Dean et al., 2018; Huang et al.,
2019; Cattan et al., 2020). These works do not use
argument information, and expect the contextual
embedding includes all the necessary information.

Argument information has been integrated into
event representations either by encoding some
string-level features (Peng et al., 2016; Choubey
and Huang, 2017) or by entity-level coreference
co-training (Lee et al., 2012; Barhom et al., 2019).

In contrast, our representation learning of events
has a unified system to encode the event triggers
and the argument entities, which avoids the costly
co-training while learning more advanced features
that express the arguments on their own and their
interactions with the event triggers.

Pairwise Representation Learning in Other
NLP Tasks. Pairwise representation learning has
been widely adopted to model the relationships of
two pieces of text. The main goal is to learn con-
textualized sentence representations. Earlier sys-
tems commonly implement with attention mecha-
nisms in recurrent (Hermann et al., 2015), convolu-
tional (Yin and Schütze, 2018) or Transformer-style
(Vaswani et al., 2017) neural networks to deal with
text generation, such as neural machine translation
(Bahdanau et al., 2015), document reconstruction
(Li et al., 2015), and document summarization (Nal-
lapati et al., 2016); machine comprehension (Her-
mann et al., 2015), textual entailment (Rocktäschel
et al., 2016; Devlin et al., 2019), etc.

In this work, we develop the pairwise representa-
tion learning for modeling the relationship of two
mentions within two separate sentences rather than
the relationship of the two sentences themselves.
To the best of our knowledge, we are the first to
(i) study pairwise representation for event pairs by
letting two mentions learn from each other’s con-
text from the beginning 3 , and (ii) build structured
representation between events by fine-grained ar-
gument reasoning, without any hand-engineered
features.
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RoBERTa

sum sum

Figure 1: PAIRWISERL learns the trigger-only pair-
wise representation. vit (resp. vjt ) is the contextualized
representation vector for the trigger in event i (resp. j).
The whole trigger-based event pair (i, j) is denoted by
vt(i, j) which is the concatenation: [vit, v

j
t , vit ◦ vjt ].

3 PAIRWISERL for Coreference

PAIRWISERL takes two sentences containing each
mention as the input and outputs a score indicat-
ing how likely the two mentions refer to the same
event. Given the mention pair ei and ej with their
arguments [arg0; arg1; loc; time], as shown in Fig
1, we concatenate the sentences of ei and ej , and
encode the concatenated sentence using RoBERTa
(Liu et al., 2019). After encoding each token of
the sequence to a representation vector, we sum up
the token representations of the mention span as
the representations for event trigger and event argu-
ments respectively: vt for event trigger, varg0/varg1
for argument #0 or #1, vloc for location and vtime

for time.
Next, we conduct fine-grained coreference rea-

soning, as Figure 2 shows. The goal is to let each
role of event arguments learn its contribution to the
final task. For each role, where role ∈ {t, arg0,
arg1, loc, time}, we first build the following role-
wise representation:

vrole(i, j) = [virole, v
j
role, v

i
role ◦ vjrole] (1)

where ◦ is element-wise multiplication. Because
these four arguments may not always exist in the
local context, if one of the role is missing, then the
corresponding virole will be a zero vector.

We keep the vt as the main representation in
PAIRWISERL, and let each of the remaining four ar-
guments contribute a feature value indicating their

3(Zeng et al., 2020) uses a similar method, and is a con-
temporary work with ours.

Figure 2: The full reasoning process in PAIRWISERL.
The final PAIRWISERL representation is the concate-
nation of the trigger’s representation and four feature
values, each coming from a mention argument.

own decisiveness. The feature value is learnt with
a multi-layer perceptron (MLP) as follows:

arole(i, j) = MLP1(vrole(i, j)) (2)

where “role” refers to mention arguments other
than the trigger, MLP1 has four layers and the
output of MLP1 is a single scalar as the argument
feature value. As a result, the final representation
PAIRWISERL for event coreference is:

v(i, j) = [vt(i, j), aarg0, aarg1, aloc, atime] (3)

Since entities do not have arguments, the final rep-
resentation PAIRWISERL for entity coreference is:

v(i, j) = vt(i, j) (4)

Once obtaining the pairwise representation v(i, j),
another four-layer MLP, as shown in Figure 2, will
act as a binary classifier (i.e., is coreferential or not)

p(i, j) = Softmax(MLP2(v(i, j))) (5)

where p(i, j)[0] is the probability that the two men-
tions i and j are coreferential.

4 Experiments

We apply PAIRWISERL to cross-document and
within-document event coreference problems.

4.1 Cross-document Event Coreference
Dataset We use the ECB+ (Cybulska and Vossen,
2014) corpus to train and test our model. ECB+
is the largest and most popular dataset for cross-
document Event Coreference, which is extended
from ECB (Bejan and Harabagiu, 2010). For each
topic in ECB, Cybulska and Vossen (2014) add dif-
ferent but similar events as subtopics. We follow
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Train Dev Test

Topics 25 8 10
Documents 574 196 206
Sentences 1,037 346 457
Event mentions 3,808 1,245 1,780
Event Singletons 1,116 280 623
Event Clusters 1,527 409 805
Entity mentions 4,758 1,476 2055
Entity Singletons 472 125 196
Entity Clusters 1,286 330 608

Table 1: ECB+ statistics. We follow the data split by
Cybulska and Vossen (2015): train: 1, 3, 4, 6-11, 13-17,
19-20, 22, 24-33; dev: 2, 5, 12, 18, 21, 23, 34, 35; test:
36-45. Event/Entity Clusters include singletons.

the same setup as previous work (Cybulska and
Vossen, 2015; Kenyon-Dean et al., 2018; Barhom
et al., 2019). The detailed statistics are shown in
Table 1. For both training and evaluation, we use
gold event mentions. ECB+ also annotates corefer-
ence between entities that are arguments of events.
We also use gold entity mentions to evaluate Entity
Coreference on ECB+.

Preprocessing:
Argument generation. ECB+ annotates argu-

ments of each event in the same sentence, but does
not annotate the role of the arguments and the event
that the arguments belong to. To predict arguments
for each event mention, we use AI2 SRL system ,4

which is a reimplementation of Shi and Lin (2019),
and then we map the predicted arguments to the
gold arguments. If any gold argument span over-
laps with a predicted argument span, we assign the
predicted role to it.

Topic Clustering. Topic clustering is a common
componet of cross-document coreference because
it is computationally inefficient to calculate sim-
ilarity of the mention pairs in all the documents.
People prefer to only collect mention pairs within
documents that are related. Barhom et al. (2019)
implements a strong topic clustering model that
uses the K-Means algorithm on the documents rep-
resented by TF-IDF scores of unigrams, bi-grams,
and trigrams. They choose the K value based
on the Silhouette Coefficient method (Rousseeuw,
1987), and perfectly get the number of gold topics.
Though there still exist wrong documents in each

4https://demo.allennlp.org/
semantic-role-labeling

topic cluster, their nearly perfect clustering allows
very simple baseline models to achieve very good
results (Barhom et al., 2019). Since we focus on
the improvement that the pairwise representation
can bring, we use exactly the same topic clustering
model they implemented. We use gold topics for
training, and predicted topics for inference.

Postprocessing: Mention Clustering. After
training the pairwise coreference scorer, follow-
ing previous work (Choubey and Huang, 2017;
Kenyon-Dean et al., 2018; Barhom et al., 2019; Cat-
tan et al., 2020), we apply agglomerative clustering
to the event pairs by the score from the trained
scorer in Equation 5. Agglomerative clustering
merges event clusters until no cluster pairs have a
similarity score higher than a threshold. We define
the cluster pair similarity score as the average score
of all the event pairs across two clusters, and tune
the threshold on development data.

Results: We compare with two state-of-the-art
cross-document Event Coreference models using
different methods: Barhom et al. (2019), which
jointly trains Entity Coreference and Event Corefer-
ence, and Cattan et al. (2020), which jointly learns
mention detection and coreference. We also com-
pare with the same head lemma baseline imple-
mented by Barhom et al. (2019), which simply
clusters events with same head lemma.

To reveal the true merit of PAIRWISERL, in Ta-
ble 2, we separately show the effectiveness of the
structured and pairwise representations as proposed
in PAIRWISERL. In “Unstructured”, our system
only uses the trigger representation, Equation 4,
to denote the representation of a pair of mention;
in “Structured”, the structured representation de-
picted in Equation 3 is used; in “Unpaired”, the
representations of trigger and arguments are gen-
erated with their own sentence only instead of the
concatenated two sentences; in “Pairwise”, the rep-
resentations are generated by the two concatenated
sentences as described in Sec 3. We see that us-
ing only structured representations improves F1
by 1.6 (from 81.3 to 82.9) from the baseline un-
paired+unstructured setting, and using only pair-
wise representation improves F1 by 2.7 (from 81.3
to 84.0). Both 82.9 and 84.0 already outperform
the state-of-the-art model Cattan et al. (2020) on all
of the evaluation metrics with large margins, par-
ticularly when using pairwise representation, 84.0
vs. 81.0 by CoNLL F1 score. When incorporating
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MUC B3 CEAFe CoNLL
Model R P F1 R P F1 R P F1 F1

same head lemma 76.5 79.9 78.1 71.7 85 77.8 75.5 71.7 73.6 76.5
Barhom et al. (2019) 77.6 84.5 80.9 76.1 85.1 80.3 81 73.8 77.3 79.5
Cattan et al. (2020) 85.1 81.9 83.5 82.1 82.7 82.4 75.2 78.9 77.0 81.0

Unpaired
Unstructured 81.7 84.4 83.1 79.8 86.3 82.9 79.6 76.7 78.1 81.3
Structured 84.6 84.6 84.6 83.6 84.2 83.9 80.2 80.2 80.2 82.9

Pairwise
Unstructured 91.6 83.1 87.2 89.4 81.1 85.1 75.0 85.5 79.9 84.0
Structured 88.1 85.1 86.6 86.1 84.7 85.4 79.6 83.1 81.3 84.4
StructuredBERT 87.4 81.4 84.3 85.7 80.2 82.9 73.7 80.9 77.1 81.4

Table 2: Cross-document event coreference performance on ECB+. All the models use gold mentions and predicted
topics. “Unstructured” means the model only uses the representation of the event trigger. “Structured” means
the model uses the structured representation of arguments. “Unpaired” is the baseline model without pairwise
representation. “Pairwise” is the model using pairwise representation. StructuredBERT means this baseline model
uses BERT (Devlin et al., 2019) as contextual embeddings instead of RoBERTa. Details in Sec 4.1.

MUC B3 CEAFe CoNLL
Model R P F1 R P F1 R P F1 F1

Barhom et al. (2019) 78.6 80.9 79.7 65.5 76.4 70.5 65.4 61.3 63.3 71.2
Cattan et al. (2020) 85.7 81.7 83.6 70.7 74.8 72.7 59.3 67.4 63.1 73.1

PAIRWISERL 92.3 86.8 89.5 82.1 81.0 81.5 68.0 80.2 73.6 81.5

Table 3: Cross-document Entity coreference performance on ECB+. All the models evaluate on gold mentions and
predicted topics.

structured representation into pairwise representa-
tion, the system obtains further improvement (from
82.9 to 84.4 CoNLL F1). Please note that both
Barhom et al. (2019) and Cattan et al. (2020) have
relatively complex systems to learn event features
as well as entity features. Our system only models
the trigger and arguments representations given the
context of two involved mentions. It clearly demon-
strates the superiority of our model in learning the
event-pair representation.

ECB+ also annotates coreference between enti-
ties that are arguments of events. Because entities
do not have arguments, we just use PAIRWISERL to
learn the pairwise representation as Equation 4. We
compare with the same two baselines: Barhom et al.
(2019) and Cattan et al. (2020). Both of these two
baselines train their model on gold mentions, so
the comparison is fair. As shown in Table 3, our
system PAIRWISERL significantly outperforms the
two baselines: 81.5 vs. 73.1.

Train Dev Test

Documents 360 169 167
Event mentions 12,976 4,155 4,375
Event Singletons 5,256 2,709 2,358
Event Clusters 7,460 3,191 2,963

Table 4: KBP statistics. We use KBP2015 for train,
KBP 2016 for dev and KBP 2017 for test. Event Clusters
include singletons.

4.2 Within-document Event Coreference

Within-document event coreference focuses on
event pairs in the same document, so topic cluster-
ing of documents is not needed. We use the same
pairwise scorer and mention clustering algorithm
described in Section 4.1.

We evaluate on the most widely used KBP bench-
mark. Similar to Huang et al. (2019) and Lu et al.
(2020), we use the KBP 2015 dataset (Ellis et al.,
2015) as training data, the KBP 2016 dataset (Ellis
et al., 2016) as dev data, and the KBP 2017 (Get-
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Model MUC B3 CEAFe BLANC AVG-F

Huang et al. (2019)
Predicted Mentions 35.66 43.20 40.02 32.43 36.75

Lu et al. (2020)
Predicted Mentions 39.06 47.77 45.97 30.60 40.85
Gold Mentions - - - - 53.72

Unpaired (Gold Mentions) 60.23 52.34 47.44 45.32 51.33
PAIRWISERL (Gold Mentions) 63.67 58.41 54.66 51.72 57.12
PAIRWISERLBERT (Gold Mentions) 59.11 53.11 50.6 45.81 52.16

Table 5: Within-document event coreference performance on KBP17. Please note that the KBP15 corpus (training
data) only provides trigger annotation, so we only evaluate the performance of trigger representation. “Unpaired” is
the baseline model without pairwise representation. PAIRWISERLBERT means this baseline model uses BERT as
contextual embeddings instead of RoBERTa.

man et al., 2015) as test data. The detailed statistics
are shown in Table 4. Because the training data
KBP 2015 dataset does not have the annotation
of arguments, we evaluate the performance of the
representation with trigger only.

We compare with two state-of-the-art systems
on the KBP benchmark: Huang et al. (2019), which
exploits unlabeled data to learn argument compati-
bility in order to improve coreference performance,
and Lu et al. (2020), which jointly learns event
detection and event coreference. Lu et al. (2020)
claims the state-of-the-art performance when pre-
dicting event coreference given predicted events,
and they also report numbers using gold event men-
tions. Our model does not conduct mention detec-
tion, so we report our performance on gold men-
tions only (this is still fair since the prior SOTA
system Lu et al. (2020) reports on gold mentions
too) and leave our numbers on predicted mentions
as future work. As shown in Table 5, PAIRWISE-
RL outperforms the unpaired baseline model with
a big margin: 57.12 vs. 51.33 (on “AVG-F”). This
further verifies the effectiveness of the pairwise
representation in modeling event coreference re-
gardless of whether it is within-document or cross-
document. We also need to give credit to RoBERTa
that helps our simple model easily outperform the
state-of-the-art model (57.12 vs. 53.72), which is a
much more complicated model than ours.

4.3 Implementation Details

For both ECB+ and KBP models, we use
RoBERTaLarge as the encoder. The sizes of four
layers of MLP1 are: 3076/1024/1024/1. The sizes
of four layers of MLP2 are: 3072/1024/1024/1.

We set the learning rate as 1e-06, the batch size as
32, and we run 10 epochs for training. All hyper-
parameters are tuned based on development data,
including the threshold of agglomerative cluster-
ing.

5 Analysis

To further understand why pairwise representation
performs much better than unpaired representation,
and what limitations pairwise representation still
has, we do a quantitative analysis on the errors
of PAIRWISERL and the errors of the unpaired
baseline model on ECB+. For each model, we
randomly sample 100 errors: 50 false negatives and
50 false positives. False negative means that the
gold label of the event pair is “coref”, but the model
predicts “not coref”. False positives mean that the
gold label of the event pair is “not coref”, but the
model predicts “coref”. We manually classify these
errors into different types, and study the difference
between the error distributions of the two models.

5.1 False Negatives
Given event mention pairs with the two sentences,
as listed on the bottom of Figure 3, we classify
these false negatives into these 7 types: “No di-
rect evidence”, “Different contexts”. “Similar con-
texts”, “Require argument matches”, “Annotation
mistakes”, “Require commonsense knowledge”,
and “Other”.

“No direct evidence” means that, just by
reading the two sentences, there is no evidence in
them to decide that these two mentions must be the
same event. For example:
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Figure 3: False Negative distributions of unpaired model, and pairwise model. False negative refers to gold
coreferential event pairs that the model predicts “not coref”. More details in Sec 5.1

s1: Smith, 26, who played a young political re-
searcher in the show, will become the biggest star
of all after winning the role of the 11th Doctor.
s2: The guy is relatively unknown and the skeptics
wondered if the right person was chosen.

Just by reading these two sentences, we really do
not know whether the event “winning” and the
event “chosen” are same event or not. To make
the correct prediction, more contexts are needed.
Most prior work encoded events within only a
single sentence; in this work, we use a single
sentence as event context for fair comparison. As
shown in Figure 3, the unpaired model has 30%
mistakes belong to “No direct evidence”, while the
pairwise model only has 18.4%. This indicates
that pairwise model may be more capable to learn
the similarity between the context in order to
make a “guess” that is more likely to be correct.
However, 18.4% is also high. This indicates
that sentence-level representation is not enough
to represent an event. Event arguments usually
appear in multiple sentences. Representing events
in a multi-sentence level could be interesting to
future work.

“Different contexts” means that the two sen-
tences are too hard for the model to understand and
there is no obvious textual similarity for the model
to rely on. However, if the model understands the
contexts completely, it should make the correct
prediction. For example:

s1: Scott Peterson has been found guilty of first-
degree murder, a verdict that means he could be
executed if these same jurors vote as the “con-
science of their community” that he deserves to die
for his crimes.
s2: Laci Peterson’s loved ones have “a hole in their
hearts that will never be repaired,” a prosecutor told
jurors today as he asked them to send convicted
double-murderer Scott Peterson to his death for
killing his wife and unborn son.

In this example, sentences are both complicated
and sharing limited vocabulary, but by under-
standing the sentences, we can say that two event
mentions are the same event. We regard this error
type as hard cases, and the pairwise model suffers
from these hard cases. 40.2% mistakes of the
pairwise model belong to hard cases “Different
contexts”. Please note that a higher ratio (40.2%
vs. 36%) doesn’t mean our pairwise model is
worse than the unpaired competitor; this is because
our system has resolved most of the simpler cases
so the hard cases occupied the majority proportion
of remaining errors. Improving the performance
on complicated sentences still acts as the main
challenge.

“Similar contexts” means that the two sentences
are very similar, which should be easy for the
model to make the correct prediction. For example:
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s1: A strong earthquake struck Indonesia’s Aceh
province on Tuesday, killing at least one person and
leaving two others missing.
s2: A powerful 6.1 magnitude earthquake hit
Indonesia’s Aceh province, on the island of Sumatra
.

These two sentences have similar context and
similar structure, which should be easy to predict
two mentions as the same events. We regard this
error type as easy cases. Our pairwise model
reduces the error rate dramatically from 20% to 8%
in this category, which indicates that the pairwise
model is very effective to solve these simple cases.

“Require argument matches” means that to
make the correct prediction, systems need to use
more context or external knowledge to conduct
non-trivial argument matching. For example:

s1: An earthquake with a preliminary magnitude of
4.4 struck in Sonoma County this morning near The
Geysers, according to the U.S. Geological Survey.
s2: The temblor occurred at 9:27 a.m. , 13 miles
east of Cloverdale and 2 miles southeast of The
Geysers , where geothermal forces by more than 20
power plants are harnessed to provide energy for
several North Bay counties.

In order to make the correct prediction of these
two sentences, the model need to realize the match
between “9:27 a.m.” and “this morning”, and
know that “Sonoma County” is “13 miles east of
Cloverdale”, which requires more context or exter-
nal knowledge.

We also sample 50 errors of unpaired model
where the pairwise model could predict correctly.
As shown in Figure 3(c), the improvement of the
pairwise representation mainly comes from better
performance on “No direct evidence”, “Different
contexts” and “Similar contexts”. We find that the
sentences are usually very long for these errors,
which suggests that the pairwise representation is
better at understanding the meaning of long sen-
tences than the unpaired representation is.

5.2 False Positives

For the sampled false positives, we also manually
classify them into 7 types same as the types
of false negatives. The only difference is that,
now “Similar contexts” become hard cases, and
“Different contexts” become easy cases. As shown
in Figure 4, for both the unpaired model and
the pairwise model, most of the precision errors

Figure 4: False positive distributions of unpaired model,
and pairwise model. False positive refers to gold event
pairs that are not coreferential, but the model predicts
“coref”. More details in Sec 5.2

belong to “No direct evidence” and “Annotation
mistakes”. After carefully studying these errors,
we find that it is actually very hard to determine
that two mentions are not the same event. For
example:

s1: Four bombs were dropped within just a few
moments - two landed inside the camp itself, while
the other two bombs were dropped near the airstrip
where a UN helicopter was delivering much needed
food aid.
s2: "Two of the bombs fell within the Yida camp ,
including one close to the school," said UNHCR
spokesman Adrian Edwards .

By understanding these two sentences, we think,
without knowing whether “the camp itself” in the
first sentence is the same camp as “Yida camp”
in the second sentence, it is impossible to make
the correct prediction. The gold label for this pair
is “not coref”, so we can only classify it to “No
direct evidence”. We think that these errors again
emphasize that the representation of events should
be multi-sentences level instead of sentence level.
We only use SRL to find event arguments, which
limits arguments to be in the same sentences. We
think that it may be essential to find events across
sentences in future works.

We also find that there exist some errors that we
think are annotation mistakes. For example:

s1: Smith, 26, who played a young political re-
searcher in the show, will become the biggest star
of all after winning the role of the 11th Doctor .
s2: The BBC says little-known actor Matt Smith
will take over the title role in the long-running
sci-fi series “Doctor Who.”
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We do not see any reasons that these two mentions
are not the same event, but if there are other
contexts indicating that they are not the same
event, this error would be classified to “No direct
evidence”. So in conclusion, to further improve
the performance on false positives, longer-range
context will be needed.

6 Conclusion

In this work, we propose a simple representation
learning scheme, PAIRWISERL, for event corefer-
ence. PAIRWISERL learns a mention-pair represen-
tation by forwarding concatenated sentences into
RoBERTa, where sentences provide the context of
mentions. This representation is applied to both
within-document and cross-document event coref-
erence benchmarks and obtains state-of-the-art per-
formance. In addition, we augment this pairwise
representation with structured argument features to
further improve its performance.
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Abstract

Labeled data for the task of Coreference Res-
olution is a scarce resource, requiring signifi-
cant human effort. While state-of-the-art coref-
erence models rely on such data, we propose
an approach that leverages an end-to-end neu-
ral model in settings where labeled data is
unavailable. Specifically, using weak super-
vision, we transfer the linguistic knowledge
encoded by Stanford’s rule-based coreference
system to the end-to-end model, which jointly
learns rich, contextualized span representa-
tions and coreference chains. Our experiments
on the English OntoNotes corpus demonstrate
that our approach effectively benefits from the
noisy coreference supervision, producing an
improvement over Stanford’s rule-based sys-
tem (+3.7 F1) and outperforming the previous
best unsupervised model (+0.9 F1). Addition-
ally, we validate the efficacy of our method on
two other datasets: PreCo and Litbank (+2.5
and +5 F1 on Stanford’s system, respectively).

1 Introduction

Coreference resolution is an important problem in
language understanding. In the recent years, sig-
nificant progress has been made on this task with
coreference annotated corpora (Hovy et al., 2006)
and deep neural network architectures (Wiseman
et al., 2015; Clark and Manning, 2016a,b; Lee et al.,
2017). Further gains have been obtained by lever-
aging contextualized text encoders like ELMo (Lee
et al., 2018), BERT, SpanBERT, and Longformer
(Kantor and Globerson, 2019; Joshi et al., 2019,
2020; Wu et al., 2020; Kirstain et al., 2021).

The progress in supervised coreference resolu-
tion has not been accompanied by analogous im-
provements in unsupervised methods. The best
performing work in this domain is the unsuper-
vised mention-ranking systems proposed by Ma
et al. (2016). Approaches that do not rely on gold
annotation are highly desirable for this task, as

coreference corpora are expensive to create. Ad-
dressing this issue, weak supervision has been used
for multilingual coreference resolution to automati-
cally obtain labels for languages with no annotated
datasets (Wallin and Nugues, 2017).

In this paper, we introduce a simple yet effec-
tive approach for unsupervised coreference resolu-
tion, which leverages an end-to-end span-ranking
coreference model (Lee et al., 2018) and contextu-
alized span representations. The end-to-end model
is trained with weak supervision from Stanford’s
coreference system (Lee et al., 2011), which, in
turn uses a set of linguistic rules for coreference.
Previous works have used Stanford system’s rules
as feature extractors (Fernandes et al., 2012; Wise-
man et al., 2015; Ma et al., 2016). However, our
approach uses Stanford’s rule-based sieves to pro-
duce noisy labels that are subsequently used to train
the neural end-to-end resolver.

The rationale behind the use of Stanford’s re-
solver for producing noisy labels lies in its ease
of use and its modular structure, which allows us
to interpret the value of the linguistic knowledge
encoded in the system. Linguists building a coref-
erence resolver in a new domain can encode their
prior knowledge via rules and improve the Stan-
ford system. Our approach would further boost the
resolver by incorporating pre-trained representa-
tions. Nevertheless, our framework can be applied
in combination with any method able to produce
informative coreference labels.

We assess our approach on three coreference
corpora: English OntoNotes (Pradhan et al., 2012),
PreCo (Chen et al., 2018), and Litbank (Bamman
et al., 2020). Our experiments show that the imper-
fect information contained in the noisy labels can
be effectively used to train the end-to-end model,
producing an improvement over Stanford’s system.
Experimenting with different pre-trained language
models, we observe that using BERT boosts the
performance of the end-to-end resolver. Results
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further improve by using SpanBERT (Joshi et al.,
2020), which outperforms previous unsupervised
models (Ma et al., 2016) on the English OntoNotes
benchmark. We also evaluate the approach on two
other coreference datasets: PreCo and Litbank, and
show strong gains over the Stanford system. Fi-
nally, we present a set of analyses that examine
the information incorporated by weakly supervised
training.

2 Method

Our approach relies on the c2f-coref end-to-end
architecture proposed by Lee et al. (2018), and on
the classic rule-based Stanford coreference system
(Lee et al., 2011, 2013) for the CoNLL 2011 shared
task (Pradhan et al., 2011).

Overview of c2f-coref The end-to-end corefer-
ence resolution system (Lee et al., 2017) uses a
span-based neural model that learns a distribution
P (·) over antecedents y for each span i. Spans
are represented using fixed-length embeddings ob-
tained via bidirectional LSTMs (Hochreiter and
Schmidhuber, 1997) and taken as input by a pair-
wise scoring function.

Subsequent models revisited this approach: Lee
et al. (2018) proposed the c2f-coref method, intro-
ducing coarse-to-fine antecedent pruning and em-
bedding representations from ELMo (Peters et al.,
2018) at the input to the LSTMs. Later, Joshi et al.
(2019) used BERT to represent spans, demonstrat-
ing the power of pre-trained language models for
coreference resolution. Most recently, Joshi et al.
(2020) introduced SpanBERT and further improved
the state of the art.

Stanford’s Rule-based System Stanford’s sys-
tem is a deterministic coreference resolver consist-
ing of a set of sieves applied in a cascade fashion.
Initially, the Mention Detection considers all noun
phrases, pronouns, and named entity mentions as
candidate mentions, then filters them according to a
set of exclusion rules. Specifically, each identified
mention is considered as a singleton cluster. Then,
akin to agglomerative clustering, the clusters are
sequentially processed by the sieves. Each sieve
embodies a specific linguistic rule and builds on the
result of the previous sieve by merging a mention
into a partially-formed entity cluster, depending on
whether it satisfies a set of constraints. The archi-
tecture guarantees that high-precision constraints
are given high priority (e.g., exact string match,

head match), while rules with lower precision but
higher recall are applied later (e.g., the Pronominal
Coreference Sieve). We provide a description of
the most important sieves in Appendix A.

Weak Supervision using Linguistic Rules Al-
though Stanford’s sieve-based system is unsuper-
vised, it captures rich, task-specific coreference
information in English, and we hypothesize that
it could effectively serve as supervision for train-
ing the neural span-ranking model. By exploiting
contextualized span representations within the end-
to-end learning framework, the neural model can
exhibit stronger generalization capabilities.

Specifically, we employ Stanford’s system to
obtain cluster labels, representing a noisy (i.e., non-
gold) signal for both mention identification and
coreference. As in the supervised case, only clus-
tering information is observed. The training is car-
ried out by optimizing the marginal log-likelihood
of the antecedents ỹ implied by the noisy cluster
assignment:

log
N∏

i=1

∑

ỹ∈C(i)
P (ỹ)

where N is the total number of mentions in the
document and C(i) is the set of antecedents of span
i that are coreferent to i according to the cluster
assignment produced by Stanford’s system.

3 Experiments

We assess the proposed approach on three datasets:
the English OntoNotes v5.0 data from the CoNLL-
2012 shared task (Pradhan et al., 2012), PreCo
(Chen et al., 2018), and Litbank (Bamman et al.,
2020). We evaluate the c2f-coref model combined
with different pre-trained language models (ELMo,
BERT, and SpanBERT). These results are com-
pared to the ones produced by Stanford’s system,
in order to show the efficacy of the noisy super-
vision. Moreover, we examine the performance
of our weakly-supervised approach in contrast to
two previous unsupervised models: Multigraph
(Martschat, 2013) and the EM-based ranking model
by Ma et al. (2016).

3.1 Experimental Setup
We use the original implementations of the ELMo-
based c2f-coref1 (Lee et al., 2018) and of the
BERT/SpanBERT-based models2 (Joshi et al.,

1https://github.com/kentonl/e2e-coref
2https://github.com/mandarjoshi90/

coref
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MUC B3 CEAFφ4 CoNLL

P R F1 P R F1 P R F1 F1

Stanford (Lee et al., 2011) 64.3 65.2 64.7 49.2 56.8 52.7 52.5 46.6 49.4 55.6
Multigraph (Martschat, 2013) - - 65.4 - - 54.4 - - 50.2 56.7
Unsup. Ranking (Ma et al., 2016) - - 67.7 - - 55.9 - - 51.8 58.4

c2f-coref 65.7 68.0 66.9 50.9 59.4 54.8 52.9 49.1 50.9 57.5
BERT-base + c2f-coref 66.8 69.2 68.0 51.5 60.6 55.7 53.1 50.3 51.7 58.5
SpanBERT-base + c2f-coref 67.6 68.5 68.1 53.1 60.1 56.4 54.8 50.4 52.5 59.0
BERT-large + c2f-coref 67.2 69.7 68.5 52.3 61.2 56.4 54.0 51.0 52.5 59.1
SpanBERT-large + c2f-coref 67.4 69.8 68.6 52.4 61.8 56.7 54.1 51.4 52.7 59.3

Table 1: Results on the test set of the English CoNLL-2012 shared task3. The c2f-coref models were trained via
weak supervision. Scores for Multigraph and the Unsupervised Ranking model are reported in Ma et al. (2016).

2019), while using their original, respective hy-
perparameters. We use the implementation of Stan-
ford’s system provided with the Stanford CoreNLP
suite (Manning et al., 2014). Further training de-
tails are provided in Appendix B.

We report precision, recall, and F1 for the stan-
dard MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998), and CEAFφ4 (Luo, 2005) met-
rics. We use the CoNLL F1 score (average F1 of
the three metrics) as the main evaluation measure,
which is common practice in coreference3.

3.2 Results on OntoNotes

Table 1 shows that the c2f-coref model trained
with noisy supervision is able to produce a gain
over Stanford’s system. The incremental improve-
ment produced by the pre-trained language mod-
els highlights the importance of the representation
of spans for this task, and suggests that the end-
to-end model learns how to effectively exploit it
from the noisy supervision. The version of the
c2f-coref model augmented with SpanBERT-large
achieves 59.3 CoNLL F1, improving on the Unsu-
pervised Ranking model (Ma et al., 2016) by 0.9
F1. In contrast with what was observed in the super-
vised realm (Joshi et al., 2019), the score increase
produced by BERT-base over ELMo (+1.0 F1) is
larger than the gain yielded by the large versions of
BERT and SpanBERT over their base counterparts
(+0.6 and +0.3 F1, respectively). This might be ex-
plained as an effect of the weak supervision, which
is likely to reduce the marginal improvement pro-
duced by an increase in model complexity. Table
3 illustrates the mention detection performance of
Staford’s system and the c2f-coref models based

3The metrics are computed using the most recent version
of the official CoNLL scorer (Pradhan et al., 2014)

Dataset MUC B3 CEAFφ4 CoNLL

Stanford PC 59.7 49.7 45.2 51.5
SB-B + c2f PC 62.0 52.3 47.6 54.0

Stanford LB 65.8 41.6 26.8 44.7
SB-B + c2f LB 71.4 46.5 31.2 49.7

Table 2: F1 sccore comparison between Stanford’s sys-
tem and the c2f-coref model based on SpanBERT-base
(SB-B) on PreCo (PC) and Litbank (LB).

on SpanBERT-Base and SpanBERT-Large.

3.3 Results on PreCo and Litbank
An important feature of PreCo and Litbank is that
they contain annotations for singleton mentions, un-
like OntoNotes. However, both Stanford’s system
and the c2f-coref model present a recall-oriented
mention detection strategy, which tends to overes-
timate the number of proposed mentions, as sin-
gletons typically would be filtered out from the
response. Moreover, the training process of the
c2f-coref model does not take singleton mentions
into account. For this reasons, we adapt the eval-
uation on Litbank and PreCo to the OntoNotes
guidelines, which assert that predicted singleton
mentions should be ignored and non-coreferent
spans should be removed from the response. Ta-
ble 2 shows performance gains consistent with the
results on OntoNotes, with the weakly-supervised
c2f-coref model improving by 2.5 and 5 CoNLL
F1 on PreCo and Litbank, respectively.

4 Analysis

Performance on Different Types of Coreference
We investigate the capabilities of the weakly super-

3We observed a small discrepancy between the results
relative to Stanford’s system reported by Ma et al. (2016) and
the ones we obtained (~0.2 F1). Here we report the scores we
produce, which are the higher ones.
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P R F1

Stanford 88.7 40.2 55.4
SpanBERT-base + c2f-coref 76.2 77.1 76.6
SpanBERT-large + c2f-coref 75.3 77.8 76.5

Table 3: Comparison of mention detection precision
(P), recall (R) and F1 score on the development set of
the CoNLL-2012 shared task.

Link Type Stanford SB-L + c2f ∆ (%)

Nominal - Pronominal 35.7 38.9 +9.0
Nominal - Nominal 54.1 58.6 +8.3
Nominal - Proper 15.1 17.1 +13.2
Pronominal - Proper 60.2 60.4 +0.3
Pronominal - Pronominal 70.9 73.1 +3.1
Proper - Proper 80.8 82.8 +3.5

Table 4: Performance (F1 scores) on CoNLL-2012 de-
velopment set in terms of identification of coreference
links between different kinds of mentions.

vised end-to-end model in identifying the different
kinds of coreference links given by the combination
of three mention categories: proper, nominal, and
pronominal. We study the performance of the c2f-
coref model based on SpanBERT-large in compari-
son to Stanford’s system. The results are illustrated
in Table 4. We observe a global improvement in all
the considered types of links, with the most signifi-
cant gains from links involving nominal mentions.
This improvement is coherent with the observations
of Durrett and Klein (2013): coreference decisions
involving nominal mentions usually require richer
semantic inference, which in our setting is provided
by the contextualized span representations

Impact of Document Length We compare the
c2f-coref model to Stanford’s system on docu-
ments of different lengths. As reported in Table 5,
Stanford’s resolver performs better than the span-
ranking system on particularly short documents.
However, for all groups of documents longer than
64 tokens, we observe a consistent improvement
provided by the c2f-coref model. This could be ex-
plained by the contextualized span representations,
which were shown to be more informative when
larger context is available (Beltagy et al., 2020).

Varying the Amount of Training Data We as-
sess the performance of the model on PreCo when
the training is carried out on subsets of different
sizes (Fig. 1). We observe that the c2f-coref model
requires only 100 weakly-annotated documents to
outperform Stanford’s system, indicating that the
noisy signal is quickly incorporated by the model.

Doc Length # of Docs Stanford SB-L + c2f ∆ (%)

0 - 64 17 52.1 49.6 -4.8
64 - 128 39 57.2 58.6 +2.4

128 - 256 74 56.2 60.9 +8.4
256 - 512 76 58.9 62.3 +5.8
512 - 768 73 56.5 59.6 +5.5

768 - 1152 52 53.3 56.3 +5.6
1152+ 12 47.0 50.7 +7.9

Table 5: Average CoNLL F1 on the OntoNotes develop-
ment split for sets of documents with different lengths
(expressed as number of tokens).

101 102 103 104
20

25

30

35

40

45

50

55

60

65

70

# of Docs used for training

C
oN

L
L

F 1
Sc

or
e

SB-B + c2f
Stanford’s System

Figure 1: Performance on a held-out set of 1000 PreCo
documents using the c2f-coref model as the number of
documents used for training varies.

Using more than 1000 documents does not seem
to boost the score further. We suspect that this be-
havior might be caused by the homogeneity and
the small vocabulary size of the documents of the
PreCo dataset.

Using Different Linguistic Priors We study
how the performance of our approach is impacted
as we vary the complexity of the linguistic rules
used for the weak supervision. We do this by train-
ing the c2f-coref model on the noisy labels obtained
using three different implementations of Stanford’s
system: (1) 1-sieve, which considers only the
Exact String Match rule; (2) 3-sieve, which con-
sists of the three most effective sieves: Exact String
Match, Strict Head Match, and the Pronominal
Coreference sieve; and (3) complete, which im-
plements all ten sieves. Results in Table 6 show
that the improvement provided by the end-to-end
model increases as the noisy signal for the train-
ing becomes more accurate, suggesting that bet-
ter supervision helps the model benefit from the
knowledge-rich span representations.
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Rule Implementation Stanford SB-B + c2f ∆ (%)

1-sieve 27.9 27.6 -1.1
3-sieve 53.5 56.2 +5.0
complete 57.0 60.0 +5.3

Table 6: CoNLL F1 scores on the OntoNotes develop-
ment set using different combinations of sieves.

1

Directly facing [him]1 was [the box of old]2 Mrs.
Manson Mingott, whose monstrous obesity had long
since made [it]2 impossible for [her]3 to attend the
Opera...

Directly facing [him]1 was the box of [old Mrs. Man-
son Mingott]2, whose monstrous obesity had long
since made it impossible for [her]2 to attend the
Opera...

2

I persuaded [two]1 young neighbors to stop playing
basketball and to help us get the tree into the house
and set [it]1 correctly in the stand.

I persuaded two young neighbors to stop playing bas-
ketball and to help us get [the tree]1 into the house
and set [it]1 correctly in the stand.

Table 7: Example predictions by Stanford’s system (up-
per sub-row) and c2f-coref (lower sub-row) on Litbank
(sentence 1) and PreCo Dev (sentence 2). [·]x repre-
sents a mention assigned to cluster x.

Qualitative Analysis In order to better illustrate
how the end-to-end system profits from model-
ing choices unavailable to Stanford’s resolver (e.g.,
contextualized representations), in Table 7 we pro-
vide instances of coreference clusters predicted by
the two models. In the first example, the c2f-coref
model, unlike Stanford’s system, correctly identi-
fies the valid mention Mrs. Manson Mingott, links
it to the appropriate pronoun (her), and correctly ne-
glects the expletive pronoun it. This is perhaps be-
cause pre-trained models are known to strongly en-
code syntax (Goldberg, 2019). A similar improve-
ment is observed in the second sentence, where
the response produced by our weakly-supervised
model correctly identifies the noun phrase the tree
and correctly links it to the pronoun it. We present
additional examples of predicted chains in Ap-
pendix C.

5 Conclusion

We presented an approach for coreference reso-
lution that, while being simple, effectively lever-
ages the end-to-end span-ranking model in settings
where labeled data is unavailable. Experimental re-
sults highlight the efficacy of the weak supervision
that the method is based upon, and showed perfor-
mance gains over previous unsupervised systems.

6 Ethical Considerations

Since our approach is unsupervised and based on
the coreference signal produced by Stanford’s de-
terministic coreference system (Lee et al., 2011,
2013), it is prone to echoing biases present in the
linguistic rules embodied by Stanford’s resolver.
Moreover, as most coreference resolvers, the ap-
proach we presented is not designed for a partic-
ular use case, but it is rather expected to be em-
ployed within more complex NLP systems. Spe-
cific domains in which these systems are applied
(e.g., biomedical data, legal documents) might re-
veal potential fairness shortcomings in the underly-
ing Stanford’s sieve-based system. Depending on
the setting of application (e.g., voice assistants or
search engines), these possible defects could pro-
duce undesirable outcomes. For instance, wrongly
classifying two people as the same person is pos-
sible to affect information extraction results (e.g.,
search engines). Further studies on alternative do-
mains are needed to assess these aspects.

Contextual word embedding models such as
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2019), and SpanBERT (Joshi et al., 2020) are pre-
trained with self-supervised procedures on large
portions of unlabeled text. These models are op-
timized to capture statistical dependencies and
might retain and amplify prejudices and stereotypes
present in the training data (Kurita et al., 2019).
Since the method we propose relies on such pre-
trained models, it inevitably inherits possible biases
that might affect its fairness.
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CoNLL F1

Stanford 57.0
c2f-coref 58.3
BERT-base + c2f-coref 59.1
SpanBERT-base + c2f-coref 60.0
BERT-large + c2f-coref 60.1
SpanBERT-large + c2f-coref 60.1

Table 8: CoNLL F1 scores computed on the develop-
ment set of the CoNLL-2012 shared task.

A Stanford’s System

The coreference method proposed by Stanford Uni-
versity at the CoNLL 2011 shared task (Pradhan
et al., 2011) is based on a succession of ten inde-
pendent coreference models (or sieves), applied
from highest to lowest precision. Here we report a
short description of the three most effective sieves,
according to Lee et al. (2013).

Exact String Match: links two mentions only if
they consist of the exact same text string;

Strict Head Match: implements multiple con-
straints that must all be matched in order to
yield a link. First, the mention head word
matches any head word of mentions in the
antecedent cluster. Then, all the non-stop
words4 in the cluster of the current mention to
be solved are included in the set of non-stop
words of the antecedent entity cluster. More-
over, the mention’s modifiers (e.g., possessive
and personal pronouns) must be all included
in the modifiers of the antecedent candidate.
Eventually, the two mentions cannot be in an
i-within-i construct, (i.e., one must not be a
child NP in the other’s NP constituent);

Pronominal Coreference Sieve: links pronouns
to their compatible antecedents enforcing
agreement constraints on a set of attributes,
such as gender, number, and animacy.

B Implementation and Training Details

As in previous unsupervised work (Ma et al., 2016),
we use the version of the OntoNotes corpus in
which the supplementary layers of annotation (e.g.,

4Stop words are, for instance, there, ltd., etc., ’s.

parse trees) were provided automatically using off-
the-shelf tools. Using Stanford’s system, we ob-
tained the noisy labels for the training and devel-
opment sets of the CoNLL-2012 shared task data
(2802 and 343 documents, respectively), for the
PreCo training split (36620 documents), and for
Litbank (100 documents). As common practice
(Toshniwal et al., 2020), on Litbank we perform
10-fold cross-validation, using sets of 80/10/10 doc-
uments for train/development/test.

We trained the models using a batch size of 1
document. On the OntoNotes corpus, the ELMo-
based c2f-coref model is trained for a maximum
of 150 epochs and the BERT and SpanBERT-based
models for 20 epochs. On PreCo and Litbank, the
SpanBERT-based c2f-coref model is trained for a
maximum of 2 and 400 epochs, respectively. Dur-
ing training, BERT and SpanBERT are fine-tuned.
The validation sets used to monitor the training
are the development set of OntoNotes and Litbank
and a held-out portion of 500 documents from the
PreCo corpus. For all datasets, the validation met-
rics were computed with respect to the Stanford’s
system-produced noisy labels (i.e., no gold corefer-
ence information was used in this process).

We keep the hyperparameter configurations as in
Lee et al. (2018) and in Joshi et al. (2020). In par-
ticular, for each version of BERT and SpanBERT,
we use the combination of max_segment_len
and learning rates illustrated in table 9.

Training the c2f-coref model based on ELMo,
BERT-base and SpanBERT-base took ~6 hours on a
24GB Nvidia TITAN RTX, while the training of the
models based on the large versions of BERT and
SpanBERT required ~12 hours on a 32GB Nvidia
Tesla V100.

C Qualitative Examples

Table 10 displays additional examples of corefer-
ence chain predictions. In the first example, the
weakly-supervised c2f-coref model shows an im-
proved response in terms of both mention identifica-
tion and cluster assignment, correctly establishing
the chains relative to Alice and book. In example
2, Stanford’s system incorrectly links the pronoun
her to Mother, while the neural model rightly asso-
ciates it with the speaker (Beth). Similar improve-
ments are illustrated in sentence 3. Finally, we
report an example of an error propagated from the
noisy supervision (sentence 4). Note that singleton
mentions were removed from the response cluster,
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Model max_segment_len bert_learning_rate task_learning_rate

BERT-base + c2f-coref 128 10−5 2 ·10−4
SpanBERT-base + c2f-coref 384 2 ·10−5 10−4

BERT-large + c2f-coref 384 10−5 2 ·10−4
SpanBERT-large + c2f-coref 512 10−5 3 ·10−4

Table 9: Hyperparameters used for the BERT/SpanBERT-based cef-coref models.

1

[CHAPTER I. Down [the Rabbit-Hole Alice]2 ]1 was beginning to get very tired of sitting by
[[her]2 sister ]3 on the bank, and of having nothing to do: once or twice [she]2 had peeped into the
book [[her]2 sister ]3 was reading, but [it]1 had [no pictures or conversations in [it]1 ]4, ‘and what
is the use of a book,’ thought Alice ‘without [pictures or conversations]4?’

CHAPTER [I.]1 Down the Rabbit-Hole [Alice]2 was beginning to get very tired of sitting by [[her]2
sister ]3 on the bank, and of having nothing to do: once or twice [she]2 had peeped into the [book]4
[[her]2 sister ]3 was reading, but [it]4 had no pictures or conversations in [it]4, ‘and what is the use
of a book,’ thought [Alice]2 ‘without pictures or conversations?’

2

"[We]1’ve got [Father]2 and [Mother]3, and each other," said [Beth]4 contentedly from [her]3
corner.

"[We]1’ve got [Father]2 and [Mother]3, and each other," said [Beth]4 contentedly from [her]4
corner.

3

At [most terrestrial men]1 fancied there might be other men upon [Mars]2, perhaps inferior to
[themselves]3 and ready to welcome a missionary enterprise.

At [most terrestrial men]1 fancied there might be other men upon [Mars]2, perhaps inferior to
[themselves]1 and ready to welcome a missionary enterprise.

4
To prevent [this]1, humans on [Mars]2 have to wear special shoes to make [themselves]1 heavier.

To prevent [this]1, humans on [Mars]2 have to wear special shoes to make [themselves]1 heavier.

Table 10: Example predictions by Stanford’s system (upper sub-row) and c2f-coref (lower sub-row) on Litbank
(examples 1-3) and PreCo Dev (example 4). [·]x represents a mention assigned to cluster x.
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and the mentions that appear as singletons in the
reported examples are predicted as coreferent to
mentions present in other portions of the text.

D Results on the OntoNotes
Development Set

We additionally report in Table 8 the results ob-
tained on the development set of the OntoNotes
corpus for the five c2f-models.
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Abstract

Recognizing and categorizing lexical colloca-
tions in context is useful for language learning,
dictionary compilation and downstream NLP.
However, it is a challenging task due to the
varying degrees of frozenness lexical colloca-
tions exhibit. In this paper, we put forward a
sequence tagging BERT-based model enhanced
with a graph-aware transformer architecture,
which we evaluate on the task of collocation
recognition in context. Our results suggest that
explicitly encoding syntactic dependencies in
the model architecture is helpful, and provide
insights on differences in collocation typifica-
tion in English, Spanish and French.1

1 Introduction

Native speech is idiosyncratic. Of special promi-
nence are syntactically-bound restricted binary co-
occurrences of lexical items, in which one of the
items conditions the selection of the other item.
Consider a CNN sports headline from 02/15/2021:

Rafael Nadal eases into Australian Open
quarterfinals, remains on course for
record-breaking grand slam (cnn.com).

In this short headline, we see already three of
such co-occurrences: ease [into] quarterfinals, re-
main [on] course, and record-breaking grand slam.
Quarterfinals conditions the selection of [to] ease
[into], course of remain [on], and grand slam of
record-breaking. The idiosyncrasy of these co-
occurrences becomes obvious when we look at
them from a multilingual angle. Thus, in French,
instead of the literal translation of ease [into], we
would use se qualifier ‘qualify [oneself]’, in Span-
ish, remain [on] will be translated as seguir [en]
‘continue in’, and in Italian record-breaking will be
da record, lit. ‘of record’ – while the translation of

1Data and code are available at
https://github.com/TalnUPF/
graph-aware-collocation-recognition.

quarterfinals, course, and grand slam will be literal.
In lexicology, such binary co-occurrences are re-
ferred to as collocations (Hausmann, 1985; Cowie,
1994; Mel’čuk, 1995; Kilgarriff, 2006), with the
conditioning item called the base and the condi-
tioned item the collocate. Collocations in this sense
are of high relevance to second language learning,
lexicography and NLP alike, and constitute a chal-
lenge for computational models because of their
heterogeneity in terms of idiosyncrasy and degree
of semantic composition (Mel’čuk, 1995).

Research in NLP has already addressed a num-
ber of collocation-related tasks, in particular: (1)
collocation error detection, categorization, and cor-
rection in writings of second language learners
(Ferraro et al., 2011; Wanner et al., 2013; Ferraro
et al., 2014; Rodríguez-Fernández et al., 2015); (2)
creation of collocation-enriched lexical resources
(Espinosa-Anke et al., 2016; Maru et al., 2019;
Di Fabio et al., 2019); (3) use of knowledge on
collocations in downstream NLP tasks, among
them, e.g., machine translation (Seretan, 2014),
word sense disambiguation (Maru et al., 2019), nat-
ural language generation (Wanner and Bateman,
1990), or semantic role labeling (Scozzafava et al.,
2020); (4) probes involving collocations for under-
standing to which extent language models are able
to identify non-compositional meanings (Shwartz
and Dagan, 2019; Garcia et al., 2021); and (5)
detection and categorization of collocations with
respect to their semantics (Wanner et al., 2006;
Espinosa Anke et al., 2019; Levine et al., 2020;
Espinosa-Anke et al., 2021). It is this last task
which is the focus of this paper.

In general, collocation identification and cate-
gorization tend to be treated as two disjoint tasks.
Most of the research deals only with collocation
identification (Smadja, 1993; Lin, 1999; Pecina
and Schlesinger, 2006; Bouma, 2009; Dinu et al.,
2014; Levine et al., 2020). Some works deal with
the categorization of manually precompiled lists
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of collocations, either in isolation (Wanner, 2004;
Wanner et al., 2006; Espinosa Anke et al., 2019) or
with their original sentence-level contextual infor-
mation (Wanner et al., 2017). Only a few works
in the early phase of the neural network era of
NLP address the problem of collocation identifica-
tion and semantic categorization as a joint task in
monolingual settings (Rodríguez-Fernández et al.,
2015; Espinosa-Anke et al., 2016). Accordingly,
the performance of the models put forward in these
works is still rather low. In this paper, we pro-
pose a sequence tagging framework for simultane-
ous collocation identification and categorization,
with respect to the taxonomy of lexical functions
(LFs) (Mel’čuk, 1996). The proposed framework
is based on mono- and multilingual BERT-based
sequence taggers, which are enhanced by a Graph-
aware Transformer (Mohammadshahi and Hender-
son, 2020, 2021a) in order to ensure that the spe-
cific syntactic dependencies between the base and
the collocate are taken into account. The sequence
taggers are executed as part of a multitask learning
setup, which is complemented by a sentence classi-
fication task, which predicts the occurrence of an
instance of a specific LF instance in the sentence un-
der consideration. Our results for English, French
and Spanish show the flexibility of our framework
and shed light on the multilingual idiosyncrasies of
collocations.

2 Background on Collocations

Although widely used in lexicology in the sense de-
fined above, the term collocation is ambiguous in
linguistics. As introduced by Firth (1957), it refers
to common word co-occurrences in discourse in
general. Thus, cast and vote, strong and tea, but
also public and sector, night and porter, supermar-
ket and price form collocations in English in Firth’s
sense. In computational linguistics, Firth’s defini-
tion has been taken up, e.g., by (Church and Hanks,
1989; Lin, 1999; Evert, 2007; Pecina, 2008; Bouma,
2009; Dinu et al., 2014; Levine et al., 2020). To
avoid confusion between the two different senses,
Krenn (2000) proposed to use the narrower term
lexical collocation to refer to restricted binary lexi-
cal item co-occurrences. In what follows, we will
use this term to refer to the definition underlying
our work.

Lexical collocations can be typified with respect
to the meaning of the collocate and the syntac-
tic structure formed by the base and the collocate.

relation example LF label
intense heavyC ∼ smokerB Magn
minor occasionalC ∼ smokerB AntiMagn
genuine legitimateC ∼ demandB Ver
non-genuine illegitimateC ∼ demandB AntiVer
Increase.existence temperatureB ∼ riseC IncepPredPlus
End.existence fireB ∼ go outC FinFunc0
A0.Come.to.effect avalancheB ∼ strikeC Fact0
A0/A1.Cause.existence raiseC ∼ hopeB CausFunc0
A0/A1.Cause.function startC ∼ engineB CausFact0
Cause.decrease relieveC ∼ tensionB CausPredMinus
A0/A1.Cause.involvement raiseC hopeB [in] CausFunc1
Emit.sound elephantB ∼ trumpetC Son
A0/A1.act lendC ∼ supportB Oper1
A0/A1.begin.act gainC ∼ impressionB IncepOper1
A0.end.act withdrawC ∼ supportB FinOper1
A0/A1.Act.acc.expectation proveC ∼ accusationB Real1
A2.Act.acc.expectation enjoyC ∼ supportB Real2
A2.Act.x.expectation betrayC ∼ trustB AntiReal2

Table 1: LF relations used in this paper. ‘Ai’ refer to
AMR argument labels (Banarescu et al., 2013).

Practical collocations dictionaries such as, e.g., the
Oxford Collocations Dictionary2 or the McMillan
Collocations Dictionary3, already offer a coarse-
grained semantic typification. However, their typi-
fication still does not make a distinction between,
e.g., control and cut in co-occurrence with expen-
diture or between cavernous and palatial in co-
occurrence with room — distinctions which are
essential in the context of both second language
learning and NLP. To the best of our knowledge,
lexical Functions (LFs) (Mel’čuk, 1996) are the
most fine-grained taxonomy of lexical collocations.

A lexical function (LF) is defined as a func-
tion f(B) that delivers for a base B a set of
synonymous collocates that express the meaning
of f . LFs are assigned Latin abbreviations as
labels; cf., e.g., “Oper1” (“operare” ‘perform’):
Oper1(condolences) = {convey, express, extend};
“Magn” (“magnum” ‘big’/‘intense’): Magn(grief) =
{deep, inconsolable, great, . . . }. Each LF can also
be considered as a specific lexico-semantic relation
between the base and the collocate of a collocation
in question (Evens, 1988). Table 1 displays the
subset of the relations we experiment with, along
with their corresponding LF names and illustrative
examples.

As seen in Table 1, where pertinent, an LF label
also encodes the subcategorization structure of the
base+collocate combination; cf., e.g., FinFunc0,
Oper1, Real2, etc. Thus, the index ‘1’ in Oper1
encodes the information that the first argument of
the base (A0/A1) is realized as grammatical sub-
ject and the base itself as object; the ‘2’ in Real2

2https://www.freecollocation.com/
3https://www.macmillandictionary.com/collocations
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encodes the realization of the second argument of
the base (A2) as grammatical subject and the base
as object; etc. This generic structure translates into
a number of Universal Dependency (UD) patterns.

3 Related Work

Previous works that consider collocations in a
Firthian sense look at word adjacency in terms
of n-grams (Smadja, 1993), although most often,
statistical measures of co-occurrence are used; cf.
Pearce et al. (2002); Pecina and Schlesinger (2006);
Pecina (2010); Garcia et al. (2019). Some comple-
ment statistical measures by morphological (Krenn
and Evert, 2001; Evert and Krenn, 2001) and/or
syntactic (Heid and Raab, 1989; Lin, 1999; Seretan
and Wehrli, 2006) patterns. In view of the asym-
metrical nature of the relation between the base
and the collocate, e.g., Gries (2013) proposes to
investigate “directional measures” as an addition
to association measures; Carlini et al. (2014) ex-
plicitly encode this asymmetry in terms of NPMI
(Bouma, 2009), which is a normalized version of
PMI; see also (Garcia et al., 2019). In the colloca-
tion classification task, substantial research focused
on the identification of Light Verb Constructions,
which are captured by the Oper- (and partially by
the Real-) families of LFs; cf., e.g., (Dras, 1995;
Vincze et al., 2013; Kettnerová et al., 2013; Chen
et al., 2016; Cordeiro and Candito, 2019; Shwartz
and Dagan, 2019), whereas Huang et al. (2009)
and Wanner et al. (2017) focus on broad seman-
tic collocation categories. Several works also use
LFs as a collocation taxonomy. Thus, Wanner et al.
(2006) leverage a vector-based similarity metric on
a subset of LFs, whereas Gelbukh and Kolesnikova
(2012) explore a suite of classical supervised ML
algorithms.

More recently, word embeddings have been suc-
cessfully applied in unsupervised setups, e.g., Ro-
dríguez Fernández et al. (2016a) use simple vec-
tor arithmetic. In supervised setups, we find, first,
the “collocate retrieval” approach proposed by Ro-
dríguez Fernández et al. (2016b), who train a linear
transformation to go from a “base” to a “collocate”
vector space, exploiting regularities in multilingual
word embeddings (Mikolov et al., 2013), and sec-
ond, Espinosa Anke et al. (2019), who train an
SVM on a dedicated relation vector space for base
and collocate. Embeddings have also been used in
multilingual English/Spanish (Rodríguez Fernán-
dez et al., 2016b) and English/Portuguese/Spanish

He played the piano.

UDPipe Parser

CLS He played the piano

obj

root

nsubj

.

punct

det

... ...

Sentence Classifier BIO sequence tagging

Graph-to-Collocation Transformer

CLS He Played the piano . SEP

1 2 3 4 5 6 7

- PRON VERB DET NOUN PUNCT -

Oper1

He-O played-Oper1-B-collocate the-O piano-Oper1-B-Base

Figure 1: Graph-to-Collocation Transformer, which gen-
erates a BIO-tagged sequence given a sentence with,
optionally, its parsed tree.

(Garcia et al., 2017) LF classification. While suc-
cessful, none of these approaches explicitly lever-
aged in the language model the crucial syntactic
dependency information between base and collo-
cate, or considered how sentence-level information
could benefit the extraction task – as we do.

4 Graph-to-Collocation Transformer

We propose a Graph-to-Collocation Transformer
(G2C-Tr) to: (1) cast collocation identification and
classification as a sequence tagging problem: as
pointed out above, lexical collocations are lexico-
semantic relations, and relation extraction has been
recently successfully addressed as sequence tag-
ging (Ji et al., 2021); (2) boost performance by
enabling multitask learning via joint sentence clas-
sification and LF-instance BIO tagging; and (3)
capture the asymmetric semantic and syntactic
dependency between the base and the collocate by
the use of a modified attention mechanism.

The G2C-Tr is implemented as a suite of BERT-
based models for joint sentence classification and
sequence tagging. The syntactic dependency graph
of the sentence is input to a G2C-Tr model through
its attention mechanism. Figure 1 illustrates the
framework of our model. Given the input sen-
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tence W = (w1,w2, ...,wN ), we first use a pre-
trained dependency parser DP() to build the de-
pendency graph G, and Part-of-Speech (PoS) tags
P = (p1,p2, ...,pN ). Due to the fact that each LF
is characterized by the PoS of its lexical items and
the syntactic dependency between them, this infor-
mation is of significant importance. Then, G2C-Tr
predicts the tagged sequence Y = (y1,y2, ...,yN )
as follows:





P,G = DP(W )

H = Enc(W,P,G)

Y = Dec(H)

(1)

where Enc(), Dec() are the encoder and decoder
parts of our model, described below. H =
[h1, . . . ,hT ] is the contextualised vector represen-
tation, and T is the length of the tokenized se-
quence. The parameters of DP() are frozen for
training.

4.1 Encoder

To compute the contextualised vector embeddings
H , we use a modified version of the Graph-to-
Graph Transformer model proposed by Moham-
madshahi and Henderson (2021a) to encode both
PoS tags (P ) and the dependency graph (G). Let
us first introduce the encoding mechanism.

4.1.1 Input Embeddings
Given an input sentence (W ) with its associated
PoS tags (P ), the G2C-Tr model first computes
the input embeddings (X = (x1,x2, ...,xT )). To
make it compatible with BERT (Devlin et al., 2019),
we append two special tokens, CLS, and SEP to
the start and end of the tokenized sequence, re-
spectively. The input embeddings are calculated as
the summation of pre-trained token embeddings of
BERT, position embeddings, and PoS tag embed-
dings (as shown in the green part of Figure 1).

4.1.2 Self-attention Mechanism
Given the input embeddings (X), and a depen-
dency graph (G), we compute the contextualised
vector representations (H) using a modified ver-
sion of the Transformer architecture. The origi-
nal Transformer model (Vaswani et al., 2017) is
composed of several Transformer layers. Each
Transformer layer includes a self-attention module
and a position-wise feed-forward network. Previ-
ous work (Ying et al., 2021; Mohammadshahi and
Henderson, 2020, 2021a,b) modified the attention

Algorithm 1: Build Relation Matrix R

Input: Graph G = {(i, j, l)}, j = 1, .., T
/* i,j,l are parent node id,

dependent id and label */

/* CLS is the root node */

Output: Relation Matrix R
1 R = zeros(T, T )
2 for (i, j, l) ∈ G do
3 ri,j = kl
4 rj,i = kl + |G|
/* kl is the index of label l */

mechanism by adding scalar biases to the atten-
tion scores (Ying et al., 2021), or multiplying the
query representation with relation vectors (Moham-
madshahi and Henderson, 2021a, 2020) to encode
graph structures.

Since in collocations, base and collocate are syn-
tactically related and LFs are characterized by spe-
cific dependency relations, we modify the attention
mechanism of the base transformer model to in-
ject syntactic information. In each Transformer
layer, given Zn = (z1, z2, ..., zT ) as the output
representations of the previous layer, the attention
weights are calculated as a Softmax over the atten-
tion scores αij , defined as:

αij =
1√
3d

[
ziW

Q(zjW
K)T

+ ziW
Q(rijW

R
A )T + rijW

R
A (zjW

K)T
]

(2)
where WQ,WK ∈ Rdh×d are learned query and
key parameters. WR

A ∈ R2|G|+1×d is the graph
relation embedding matrix, learned during training,
dh is the dimension of hidden vectors, d is the
head dimension of self-attention module, and |G|
is the overal number of dependency labels. rij is
the one-hot vector representing both the relation
and direction of syntactic relation between token
xi and xj , so rijW

R
A selects the embedding vector

for the appropriate syntactic relation. Algorithm 1
shows the procedure of building relation matrix R.
Finally, we also add the graph information to the
value computation of the Transformer as:

vi =
∑

j

exp(αij)∑
j exp(αij)

(zjW
V + rijW

R
V ) (3)

where exp(αij)∑
j exp(αij)

is the Softmax for the attention

weights, W V ∈ Rdh×d is the learned value ma-
trix, WR

V ∈ R2|G|+1×d is the graph embedding
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parameter, and vi is the output representation of the
self-attention mechanism for the token i. To find
the output representations (H), we use the same
mechanism for position-wise feed-forward layer,
and layer normalisation as proposed in Vaswani
et al. (2017).
Intuitively, additional terms in Equation 2 (second
and third multiplications), and Equation 3 (second
addition) add a soft bias toward the syntactic in-
formation. The model can still decide to use the
injected syntactic information, or just rely on the
context information (first terms in both Equation 2
and 3).

4.2 Decoder
BERT-based joint sentence classification and se-
quence tagging has already been used, e.g., for nat-
ural language understanding in the context of ques-
tion answering and goal-oriented dialogue systems,
where it serves for speaker intent identification
and semantic frame slot filling (Chen et al., 2019;
Castellucci et al., 2019). In the context of sentence
classification, we can specify such a model as:

yi = softmax
(
Wih1 + bi

)
, (4)

with i as the index of the sentence that is to be
classified, and h1 as the hidden state of the first
pooled special token (CLS in the case of BERT).
For sequence tagging, this equation is extended
such that the sequence [h2, . . . ,hT ] is fed to word-
level softmax layers:

ysn = softmax
(
Wihn + bn

)
, n ∈ 1 . . . |W | (5)

where hn is the hidden state corresponding to wn.
Finally, the joint model combines both architec-
tures and is trained, end-to-end, by minimizing the
cross-entropy loss for both tasks.

p
(
yi, ys|W

)
= p

(
yi|H

) N∏

n=1

p (ysn|H) (6)

5 Experimental setup

5.1 Dataset Construction
We carry out experiments on English, French, and
Spanish datasets constructed from manually com-
piled instances of LFs. For English and French, we

start from Fisas et al. (2020). For English, Fisas
et al.’s list is enriched by 500 instances of low-
resourced LFs in order to obtain a more balanced
distribution of samples across different LFs; for
French, we work with their original list. To obtain
the LF instances for Spanish, we use the English
list: for each English LF instance, we retrieve from
the web via the multilingual search index Reverso-
Context4 its translation equivalents, which are then
examined and filtered manually.

In all three lists, the bases and collocates are an-
notated with PoS and lemmas. As corpora, we use
the 2019 Wikipedia dumps. First, we preprocess
(removing metadata and markups) and parse the
dumps with the UDPipe2.5 parsers.5 Then, we ex-
tract from the parsed dumps sentences that contain
LF instances from any of our collocation lists, ob-
serving the PoS of the base and collocate and the
dependency relation between them. To further filter
the remaining erroneous samples in which the base
and the collocate items do not form a collocation,
an additional manual check is performed.

The validated sentences and the collocations they
contain are labeled. As sentence label, the sen-
tence’s most frequent LF or the first one in case of
a draw is chosen. In practice, this most often means
that the label of the only LF instance in the sentence
is chosen. For instance, in the case of CausFunc0,
in the French dataset, only in 1.63% of the cases its
instances appear together with instances of other
LFs in a sentence, in the Spanish dataset these are
1.85% and in the English dataset 3.42%. However,
it should be noted that this varies from LF to LF
and for some of the LFs our labeling strategy might
be an oversimplification. The highest percentage of
“cohabitation” with instances of other LFs can be
observed for Oper1: in the French dataset in 7.19%
of the cases, in the Spanish dataset in 14.32% and
in the English dataset in 25.61%. A more detailed
study is necessary to identify potential correlations
between different LFs.6

To annotate collocations, we use the BI la-
bels of the BIO sequence annotation schema (‘B-
<LF>b’ and ‘I-<LF>b’ for the base, ‘B-<LF>c’,
‘I-<LF>c’ for the collocate, and ‘O’ for other to-
kens) (Figure 1). The BIO annotation facilitates a
convenient labeling of multi-word elements, and
the separate annotation of the base and collocate

4https://context.reverso.net/
5https://ufal.mff.cuni.cz/udpipe
6We would like to thank an anonymous reviewer for point-

ing out the relevance of the correlation between LFs.
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allows for flawless annotation of cases where they
are not adjacent.

For the experiments, the annotated datasets are
split into training, development, and test subsets in
proportion 80–10–10 in terms of LF-wise unique
instances, such that all occurrences of a specific
instance, i.e., a specific lexical collocation, appear
only in one of the subsets. Sentences with sev-
eral collocations that belong to different splits are
dropped. The distribution of samples per LF and
language is shown in Figure 2.

Figure 2: Distribution of examples across lexical func-
tions within a language.

5.2 Experiments
In our experiments, we compare the following ar-
chitectures:7

• Baseline BERT (or similar)-based models
(denoted as – in the results tables), specif-
ically BERT-base and large (Devlin et al.,
2019), RoBERTa-base and large (Liu et al.,
2019); CamemBERT (Martin et al., 2019)
and RoBERTa-BNE (Gutiérrez-Fandiño et al.,
2021) as monolingual French and Spanish
models; and XLM-R for cross-lingual experi-
ments (Conneau et al., 2019).

• Enhanced architectures with the G2C archi-
tecture, but without access to the PoS embed-
dings (G2C (wo) PoS).

• The full model, as depicted in Figure 1, which
we refer to as ‘G2C’.

In terms of hyperparameter tuning, we fine-tune
learning rate and warmup independently for the
baseline, G2C(wo)PoS and G2C English models,

7In all cases, we report only results for the joint architec-
ture, as initial experiments showed a consistent improvement
with respect to a sequence tagging-only setup.

and fix these values for both French and Spanish.
We also use early stopping on the validation set
for selecting the best performing models in each
configuration.

6 Results

In what follows, we first present the outcome of
the sentence classification and collocation extrac-
tion and categorization experiments for the three
datasets and then analyze the performance with
respect to the individual LFs.

6.1 Sentence classification and collocation
extraction results

Tables 2–4 show the performance of various joint
models in their original form (marked by ‘–’), as
well as of their G2C(wo)PoS and G2C enhanced
variants. We display results on the development
(‘Dev*’) and test sets (‘Test*’) for the tasks of both
sentence classification (‘*SentClf’) and collocation
extraction (‘*CollExt’). Sentence classification re-
sults are reported in terms of accuracy (there are
18 distinct LF labels), whereas for the collocation
extraction task, we report macro F1 over correctly
predicted spans. For all experiments, we report
average score and standard deviation after three
independent runs.

DevSentClf DevCollExt TestSentClf TestCollExt

BERTb

– 66.86+-5.08 63.21+-1.41 66.04+-1.13 62.95+-3.51
G2C(wo)PoS 61.72+-2.92 59.90+-1.50 65.18+-1.61 63.61+-1.25
G2C 64.23+-1.34 62.48+-0.94 67.25+-0.82 64.44+-1.12

BERTl

– 66.79+-1.89 65.69+-1.66 63.05+-1.23 61.61+-1.15
G2C(wo)PoS 67.58+-1.19 66.13+-1.48 66.24+-3.30 64.38+-3.36
G2C 70.30+-1.89 68.82+-0.86 64.57+-3.60 62.70+-3.74

RoBERTab

– 58.09+-0.49 55.93+-1.52 60.96+-1.72 59.20+-3.31
G2C(wo)PoS 59.89+-1.06 58.05+-0.40 62.51+-0.37 62.17+-0.74
G2C 59.76+-0.78 58.00+-0.35 62.17+-0.67 61.90+-0.97

RoBERTal

– 67.47+-2.77 66.97+-1.14 65.55+-0.83 64.79+-3.12
G2C(wo)PoS 67.40+-3.49 67.97+-4.77 65.95+-2.44 64.84+-1.29
G2C 61.71+-2.57 59.85+-2.95 65.10+-3.24 64.98+-2.85

Table 2: Main results for the English dataset, comparing
BERT and RoBERTa, in their base (b) and large (l)
variants, and in vanilla (–) and G2C versions.

The results let us conclude, firstly, that the pro-
posed model is considerably more competitive
for the task of the compilation of LF-classified
collocation resources than competitive baselines.
Secondly, incorporating the G2C architecture con-
tributes to an improvement in performance across
the board, for all three languages and for most of
the models. Thus, for English we see that BERT
base sees an improvement of 1 and 2 points in the
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sentence classification and sequence labeling re-
sults on both the development and test sets, with
the improvement on BERT large and RoBERTa
base being even more pronounced. RoBERTa large
seems to be the model that benefits least from G2C
architectures in relative terms, although compara-
tively, this model is the best performing one on the
collocation extraction task on the test set.

With respect to the experiments on French,
we can observe that the French camemBERT
model does not profit from an enhancement with
G2C(wo)PoS; just on the contrary, for the collo-
cation extraction task, performance drops signif-
icantly when expanded with either of the G2C
variants. This is not the case for XLM-R with
its different training variants; its performance is
largely maintained in collocation extraction with
G2C regimes. The best performance is achieved
when XLM-R is enhanced with G2C and trained
on both French and English. This also true for the
sentence classification task. It is interesting to ob-
serve that when trained on English, XLM shows on
the development set a higher performance than its
extensions for both tasks.

DevSentClf DevCollExt TestSentClf TestCollExt

camembert
Tr: FR

– 66.69+-2.37 62.18+-3.32 54.52+-3.10 51.96+-2.78
G2C(wo)PoS 64.38+-1.79 38.99+-2.45 50.43+-3.09 30.63+-3.50
G2C 63.60+-1.33 39.36+-6.38 50.16+-0.46 30.62+-5.24

XLM-r
Tr: FR

– 62.22+-2.40 59.30+-5.04 56.38+-3.47 55.23+-3.33
G2C(wo)PoS 67.08+-4.07 64.32+-6.20 58.41+-3.51 56.97+-2.24
G2C 64.63+-5.93 61.05+-5.57 56.99+-1.54 55.92+-1.78

XLM-r
Tr: EN

– 67.18+-1.99 64.54+-5.65 54.60+-0.69 52.84+-0.04
G2C(wo)PoS 65.86+-1.83 64.42+-6.84 54.23+-3.12 50.96+-1.05
G2C 65.46+-1.49 64.09+-1.03 55.20+-3.62 52.43+-3.77

XLM-r
Tr: FR+EN

– 63.07+-2.46 61.59+-1.88 63.35+-2.15 61.32+-1.27
G2C(wo)PoS 64.40+-0.34 63.88+-1.27 64.95+-0.85 63.55+-0.84
G2C 62.02+-1.53 61.03+-3.72 66.48+-1.55 64.96+-2.02

Table 3: Main results for French, comparing the
monolingual model CamemBERT with XLM-R vari-
ants trained on different slices of the dataset, and
G2C(wo)PoS-based extensions.

For Spanish, the performance of the monolingual
RoBERTa is in clear contrast to its performance on
English. Although it somewhat profits from the
G2C enhancement, it seems to underperform com-
pared to XLM-R (which is not the case for English).
The reason might be the corpus on which it has
been pre-trained (the National Library of Spain cor-
pus) or under-tuning of the set of hyperparameters,
which we optimized on the English dataset. We
also experiment with XLM-R, trained also only on
the Spanish monolingual data (Tr: ES), as well as
on the English training set (Tr: EN), and both com-

DevSentClf DevCollExt TestSentClf TestCollExt

RoBERTaes
Tr: ES

– 34.42+-0.65 26.65+-1.20 37.90+-0.67 27.94+-0.16
G2C(wo)PoS 35.62+-1.90 28.42+-2.20 38.60+-1.33 29.73+-2.05
G2C 37.60+-3.14 31.20+-1.63 40.49+-0.84 31.20+-5.47

XLM-r
Tr: ES

– 66.44+-1.02 62.77+-0.01 52.99+-0.29 51.57+-0.12
G2C(wo)PoS 68.69+-1.96 66.08+-1.95 54.96+-0.35 53.74+-0.42
G2C 63.96+-5.06 65.32+-2.20 56.42+-0.84 55.07+-0.71

XLM-r
Tr: EN

– 65.02+-1.61 63.16+-1.93 60.56+-0.52 56.95+-2.48
G2C(wo)PoS 63.00+-0.72 62.21+-0.67 58.82+-1.41 57.90+-0.62
G2C 62.54+-0.45 61.37+-0.48 57.65+-1.81 54.50+-1.57

XLM-r
Tr: ES+EN

– 65.91+-0.13 62.73+-0.59 64.26+-1.97 63.37+-0.72
G2C(wo)PoS 74.18+-1.01 71.20+-0.88 75.42+-0.02 72.89+-0.07
G2C 74.52+-0.18 71.64+-0.01 75.55+-0.18 72.18+-0.92

Table 4: Main results for Spanish, comparing the
monolingual model RoBERTa-bne with XLM-R vari-
ants trained on different slices of the dataset, and
G2C(wo)PoS-based extensions.

bined (Tr: ES+EN). Surprisingly enough, XLM-R
(stand-alone and G2C+POS-enhanced) performs
somewhat better on the test set for both sentence
classification and LF-classification when trained on
English than when trained on Spanish. In general,
the increase in performance provided by the mul-
tilingual setting becomes apparent8, with the G2C
model yielding the best results in 3 out of 4 met-
rics. The best test results of a non-G2C-enhanced
model on the collocation extraction task are almost
10 points below the G2Cs models. Moreover, com-
bining both EN and ES training sets into a multi-
lingual language model results in an increase of
6% F1 score. Finally, the differences in the per-
formance of sentence classification and collocation
extraction for all three datasets suggest that the pre-
dicted sentence label does not always match the
label predicted by the BIO-tagger. However, since
our primary intention was to use the sentence classi-
fier as an auxiliary task that boosts the performance
of the BIO-tagger in a multitask learning setup,
we did not analyze the behavior of the sentence
classifier and these mismatches in detail.

6.2 Lexical Function analysis

To obtain a more detailed picture, we report in Ta-
ble 5 the results of a run for the best performing
models for each language and LF, for both of its
collocation elements, the base (_b) and the collo-
cate (_c). While there is certain consistency across
LFs and languages, there are also notable cases
of discrepancies. For instance, we see that Real2
(as, e.g., enjoy support), Ver (as, e.g., legitimate

8We leave for future work an analysis of whether these
results can be fully attributed to multilingual transfer, to having
access to more training data, or to a combination of the two.
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(a) English. (b) Spanish. (c) French.

(d) English. (e) Spanish. (f) French.

Figure 3: LF analysis visualization. Top row shows confusion matrices for the three languages under study, for all
LFs and their corresponding base and collocate label. Bottom row shows scatter plot where we show frequency in
the x axis, and F1 score in the y axis, again, for each LF.

demand) and Magn (as, e.g., heavy smoker) have
been better captured in Spanish than in English
and French. This can probably be explained by
the number of unique instances of the LFs in our
training / test data. For instance, in the case of
Magn, the ratio between the total number of in-
stances and the number of the unique number of
instances in the English test set is 16.8, while in
the Spanish test set it is 31.8. In other words, our
Spanish dataset contains less variety to express the
meaning of intensification than English and French,
and is thus easier to capture. Conversely, the perfor-
mance on Fact0 (as, e.g., an avalanche strike(s)) is
much better for English, which is likely due to the
limitations of the training dataset: out of the 2,112
occurrences of Fact0 instances in total, [el] avión
vuela ‘the airplane flies’ is counted 602 times.

Note the overall high figures of the recognition
of the Magn and AntiMagn instances, and thus
a clear distinction between these antonymic LFs,
which is a well-known challenge (Rodríguez Fer-
nández et al., 2016b; Wanner et al., 2017). In the
case of AntiVer (as, e.g., illegitimate demand), the
figures are lower in the case of Spanish, which

may again hint at the limitations of the Spanish
dataset. For the prediction of the individual col-
location items, in general, similar results are ob-
tained for the base and collocate. However, some
interesting outliers emerge. For instance, for the
Spanish CausFact0 (as, e.g., start an engine), the
performance for the base elements (in our exam-
ple, engine) is more than twice as high as for the
collocate elements (in our example, start). We hy-
pothesize that this is because most of the CausFact0
base elements in the Spanish dataset denote arte-
facts and the model learns to recognize them well.
Finally, note that only the Spanish model is able to
correctly identify a few FinFunc0 collocations (as,
e.g., fire going out), possibly due to the fact that
Spanish contains less multiword expressions and
certainly less phrasal verbs associated with this LF.

To understand whether there are obvious sources
of confusion across LFs, and whether we can at-
tribute performance to frequency in the datasets,
we plot in Figure 3 confusion matrices, as well
as the relationship between results and frequency.
In English and French, Oper1 and Real1 are great
sources of confusion for Real2, especially when it
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EN ES FR

P R F1 P R F1 P R F1

AntiMagn_b 90.99 93.15 92.06 85.92 89.46 87.65 86.55 81.78 84.10
AntiMagn_c 90.16 94.39 92.23 82.11 91.72 86.65 85.60 83.55 84.56

AntiReal2_b 77.13 83.19 80.05 66.47 86.39 75.14 83.69 65.71 73.62
AntiReal2_c 83.83 93.19 88.26 70.81 92.10 80.07 79.57 68.40 73.62

AntiVer_b 96.05 83.81 89.51 78.53 46.53 58.44 89.57 45.78 60.59
AntiVer_c 93.52 88.88 91.14 78.81 44.95 57.25 86.90 46.12 60.26

CausFact0_b 25.81 08.26 12.51 62.79 16.39 25.99 66.93 19.47 30.17
CausFact0_c 18.33 06.31 09.39 28.36 7.79 12.22 67.20 19.55 30.29

CausFunc0_b 76.94 30.66 43.85 66.27 38.24 48.49 50.02 32.86 39.66
CausFunc0_c 72.05 34.67 46.81 71.04 42.84 53.44 52.19 32.27 39.88

CausFunc1_b 91.15 75.79 82.76 78.37 70.94 72.05 89.00 79.40 83.93
CausFunc1_c 89.40 77.52 83.04 78.37 71.84 74.96 87.63 78.48 82.80

CausPredMinus_b 88.44 68.09 76.94 82.31 91.81 86.80 78.34 62.86 69.75
CausPredMinus_c 86.97 69.70 77.38 82.57 95.26 88.46 86.97 71.05 78.21

Fact0_b 80.10 45.82 58.30 10.28 6.65 8.07 19.40 3.64 6.13
Fact0_c 73.89 49.14 59.02 10.59 7.26 8.61 26.78 4.63 7.90

FinFunc0_b 0.00 0.00 0.00 10.28 6.65 8.07 0.00 0.00 0.00
FinFunc0_c 0.00 0.00 0.00 36.69 12.36 18.50 0.00 0.00 0.00

FinOper1_b 98.44 99.53 98.98 93.83 99.16 96.42 92.20 95.96 94.04
FinOper1_c 97.44 99.69 98.55 64.52 99.46 96.93 92.20 95.96 94.04

IncepOper1_b 78.54 74.91 76.68 60.40 62.15 61.26 96.30 97.25 96.77
IncepOper1_c 82.10 85.59 83.81 58.47 66.09 62.04 71.41 53.95 61.46

IncepPredPlus_b 95.53 99.10 97.28 87.12 90.50 88.78 71.41 53.95 61.46
IncepPredPlus_c 93.75 98.85 96.24 88.21 92.87 90.48 95.42 90.34 92.81

Magn_b 40.35 85.01 54.72 58.21 82.08 68.05 49.24 63.03 55.27
Magn_c 36.94 97.22 51.90 64.44 83.91 70.94 48.63 63.92 55.23

Oper1_b 38.11 79.47 51.90 41.61 59.48 48.97 34.81 68.95 46.26
Oper1_c 37.11 82.24 51.14 39.06 72.75 50.83 32.85 74.13 45.52

Real1_b 41.22 46.48 43.69 29.13 25.30 27.08 37.55 60.57 46.36
Real1_c 37.11 82.24 51.14 29.16 30.07 29.61 39.02 63.45 48.32

Real2_b 50.82 42.43 46.25 59.61 95.56 73.42 54.64 54.53 54.59
Real2_c 50.66 42.53 46.24 59.86 94.65 73.34 55.67 48.91 52.07

Ver_b 80.97 31.99 45.86 84.16 85.30 84.73 89.17 70.31 78.62
Ver_c 78.52 32.74 46.21 84.16 85.30 84.73 88.72 70.17 78.36

Table 5: Results breakdown per language and per LF,
where, for each LF, we list individual results for base
and collocate categorization.

comes to categorizing Real2 collocates. However,
this is not the case for Spanish. In this context, we
need to keep in mind that Real1 and Real2 differ
only with respect to their subcategorization pattern
(in Real1, it is A0/A1, which is realized grammat-
ical subject, and in Real2, it is A2) and that the
semantic difference betweeen Oper and Real is
rather fine. Still, for Spanish this difference is cap-
tured, while for English and French it is not. This
is similar for the distinction between CausFacti /
Operi and Reali. Why the confusions are minor for
Spanish requires a deeper analysis. We can also
see that Magn and Oper bases are often confused
in French, but not in English and Spanish. This
might be due to parsing and PoS tagging errors. Fi-
nally, in the lower part of Figure 3, we see that for
English, there is a clear correlation between results
and LF frequencies (ρ=0.76), followed by French

(ρ=0.46) and, finally, Spanish (ρ=0.38), where we
also find highest dispersion across all F1 bins.

7 Conclusions and Future Work

We have proposed an architecture for joint collo-
cation extraction and lexical function typification
by explicitly encoding syntactic dependencies in
the attention mechanism. Our experiments show
that our proposed architecture drastically improves
over its language model-only counterparts, and that
joint multilingual training is a promising direction
for less resourced languages. For the future, we
would like to extend these experiments to other lan-
guages and explore zero or few-shot prompt-based
methods.
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Igor A. Mel’čuk. 1996. Lexical functions: A tool for the
description of lexical relations in the lexicon. In Leo
Wanner, editor, Lexical Functions in Lexicography
and Natural Language Processing, pages 37–102.
Benjamins Academic Publishers, Amsterdam.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013.
Exploiting similarities among languages for machine
translation. arXiv preprint arXiv:1309.4168.

Alireza Mohammadshahi and James Henderson. 2020.
Graph-to-graph transformer for transition-based de-
pendency parsing. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
3278–3289, Online. Association for Computational
Linguistics.

Alireza Mohammadshahi and James Henderson.
2021a. Recursive Non-Autoregressive Graph-to-
Graph Transformer for Dependency Parsing with It-
erative Refinement. Transactions of the Association
for Computational Linguistics, 9:120–138.

Alireza Mohammadshahi and James Henderson. 2021b.
Syntax-aware graph-to-graph transformer for seman-
tic role labelling.

99



Darren Pearce et al. 2002. A comparative evaluation of
collocation extraction techniques. In LREC.

Pavel Pecina. 2008. A Machine Learning Approach to
Multiword Expression Extraction. In Proceedings of
the LREC 2008 Workshop Towards a Shared Task
for Multiword Expressions), pages 54–57, Marrakech,
Morocco.

Pavel Pecina. 2010. Lexical association measures and
collocation extraction. Language resources and eval-
uation, 44(1):137–158.

Pavel Pecina and Pavel Schlesinger. 2006. Combining
association measures for collocation extraction. In
Proceedings of the COLING/ACL 2006 main confer-
ence poster sessions, pages 651–658.

Sara Rodríguez Fernández, Roberto Carlini, Luis
Espinosa-Anke, and Leo Wanner. 2016a. Example-
based acquisition of fine-grained collocational re-
sources. In Calzolari N, Choukri K, Declerck T,
Goggi S, Grobelnik M, Maegaard B, Mariani J, Mazo
H, Moreno A, Odijk J, Piperidis S, editors. LREC
2016, Tenth International Conference on Language
Resources and Evaluation; 2016 May 23-28; Por-
torož (Slovenia).[Sl]: European Language Resources
Association (ELRA); 2016. Session P28, Multiword
expressions; p. 2317-22. ELRA (European Language
Resources Association).

Sara Rodríguez-Fernández, Roberto Carlini, and Leo
Wanner. 2015. Classification of grammatical collo-
cation errors in the writings of learners of spanish.
Procesamiento del Lenguaje Natural, 55.

Sara Rodríguez Fernández, Luis Espinosa-Anke,
Roberto Carlini, and Leo Wanner. 2016b. Semantics-
driven recognition of collocations using word embed-
dings. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics; 2016
Aug. 7-12; Berlin (Germany).[place unknown]: ACL;
2016. Vol. 2, Short Papers; p. 499-505. ACL (Associ-
ation for Computational Linguistics).

Federico Scozzafava, Marco Maru, Fabrizio Brignone,
Giovanni Torrisi, and Roberto Navigli. 2020. Per-
sonalized pagerank with syntagmatic information for
multilingual word sense disambiguation. In Proceed-
ings of the 58th Annual Meeting of the Association for
Computational Linguistics: System Demonstrations,
pages 37–46.

Violeta Seretan. 2014. On collocations and their in-
teraction with parsing and translation. Informatics,
1(1):11–31.

Violeta Seretan and Eric Wehrli. 2006. Accurate col-
location extraction using a multilingual parser. In
Proceedings of the 21st international conference on
computational linguistics and 44th annual meeting of
the Association for Computational Linguistics, pages
953–960.

Vered Shwartz and Ido Dagan. 2019. Still a pain in
the neck: Evaluating text representations on lexical
composition. Transactions of the Association for
Computational Linguistics, 7:403–419.

Frank Smadja. 1993. Retrieving collocations from text:
Xtract. Computational linguistics, 19(1):143–178.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Veronika Vincze, István Nagy, and János Zsibrita. 2013.
Learning to detect English and Hungarian light verb
constructions. ACM Transactions on Speech and
Language Processeing, 10(2):1–25.

Leo Wanner. 2004. Towards automatic fine-grained se-
mantic classification of verb-noun collocations. Nat-
ural Language Engineering, 10(2):95–143.

Leo Wanner and John A. Bateman. 1990. A colloca-
tional based approach to salience sensitive lexical
selection. In Proceedings of the 5th International
Workshop on Natural Language Generation, Daw-
son, PA.

Leo Wanner, Bernd Bohnet, and Mark Giereth. 2006.
Making sense of collocations. Computer Speech &
Language, 20(4):609–624.

Leo Wanner, Gabriela Ferraro, and Pol Moreno. 2017.
Towards distributional semantics-based classification
of collocations for collocation dictionaries. Interna-
tional Journal of Lexicography, 30(2):167–186.

Leo Wanner, M Alonso Ramos, Orsolya Vincze, Roge-
lio Nazar, Gabriela Ferraro, Estela Mosqueira, and
Sabela Prieto. 2013. Annotation of collocations in a
learner corpus for building a learning environment.
Twenty years of learner corpus research. Looking
back, moving ahead, pages 493–503.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. 2021. Do transformers really perform bad
for graph representation?

100



Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 101 - 122
July 14-15, 2022 ©2022 Association for Computational Linguistics

Dyna-bAbI: unlocking bAbI’s potential with dynamic synthetic
benchmarking

Ronen Tamari†∗ Kyle Richardson⋆ Noam Kahlon† Aviad Sar-Shalom△

Nelson F. Liu⋄ Reut Tsarfaty⋆‡ Dafna Shahaf†
†The Hebrew University of Jerusalem ⋆Allen Institute for AI

‡Bar-Ilan University △Tel-Aviv University ⋄Stanford University
{ronent,dshahaf}@cs.huji.ac.il, {reutt,kyler}@allenai.org

Abstract

While neural language models often perform
surprisingly well on natural language
understanding (NLU) tasks, their strengths
and limitations remain poorly understood.
Controlled synthetic tasks are thus an
increasingly important resource for diagnosing
model behavior. In this work we focus on
story understanding, a core competency
for NLU systems. However, the main
synthetic resource for story understanding,
the bAbI benchmark, lacks such a systematic
mechanism for controllable task generation.
We develop Dyna-bAbI, a dynamic framework
providing fine-grained control over task
generation in bAbI. We demonstrate our ideas
by constructing three new tasks requiring
compositional generalization, an important
evaluation setting absent from the original
benchmark. We tested both special-purpose
models developed for bAbI as well as
state-of-the-art pre-trained methods, and found
that while both approaches solve the original
tasks (>99% accuracy), neither approach
succeeded in the compositional generalization
setting, indicating the limitations of the
original training data. We explored ways to
augment the original data, and found that
though diversifying training data was far
more useful than simply increasing dataset
size, it was still insufficient for driving robust
compositional generalization (with <70%
accuracy for complex compositions). Our
results underscore the importance of highly
controllable task generators for creating robust
NLU systems through a virtuous cycle of
model and data development.1

1 Introduction

Considerable progress has been made recently
in natural language understanding (NLU), driven
largely by advances in model pre-training (Devlin
∗ Work begun during an internship at the Allen Institute.
1 Data and code available at https://
dyna-babi-project.github.io/.

Figure 1: (a) Low task configurability leads to
static datasets, benchmark saturation & unreliable
model development. (b) We propose a dynamic
benchmarking approach; developing models and tasks
in a tight feedback loop using (c) Dyna-bAbI task
generator. Dyna-bAbI provides fine-grained control
over task structure, composition and difficulty, yielding
challenging new test sets exposing limitations of state-
of-the-art models.

et al., 2019; Raffel et al., 2020) and the
development of large-scale NLU benchmarks
across a wide range of tasks (Wang et al., 2018,
2019; Liang et al., 2020). Such successes, however,
have coincided with the discovery of various
shortcomings in existing human curated datasets,
largely related to annotation artifacts (Gururangan
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et al., 2018), or systematic biases that create
shortcuts that can inflate model performance and
harm generalization.

In order to overcome these issues, two
avenues of research have recently gained traction:
1) development of dynamic benchmarks (Potts
et al., 2021; Kiela et al., 2021) where, in contrast
to conventional static benchmarks, evaluation
and data collection are conducted interactively
with humans and models in a rapidly evolving
feedback loop and; 2) renewed interest in synthetic
benchmarks (Lake and Baroni, 2018; Sinha et al.,
2019; Clark et al., 2020; Ruis et al., 2020) that
allow for absolute control over the data creation
process in order to help understand the strengths
and weaknesses of existing models on targeted
tasks and language phenomena.

Story understanding is a particularly important
domain for research on dynamic and synthetic
benchmarks; it is a core competency for NLU
systems (McClelland et al., 2020; Dunietz et al.,
2020), but the scale and annotation detail required
make human data collection prohibitively costly.
However, the main synthetic resource for story
understanding remains the bAbI task suite (Weston
et al., 2016), which is saturated by models
reaching near-perfect performance (Liu et al.,
2021), and further limited by exploitable biases
in the data (Kaushik and Lipton, 2018). Despite
its creators’ initial intentions, bAbI has largely
remained a static benchmark limited to a small
subset of the tasks potentially possible to generate
within the bAbI “micro-world”. Accordingly, two
natural questions arise: (Q1) is near-perfect model
performance on the original bAbI tasks a reliable
indicator of story understanding competence?;
(Q2) are there still interesting challenges to
discover inside the broader bAbI task space that
help identify weaknesses in current models and
drive modelling innovation?

To answer these questions, we employ a
dynamic synthetic benchmarking approach on
bAbI, combining the benefits of the agile approach
of recent dynamic benchmarks with the scale
and control provided by synthetic datasets. As
illustrated in Figure 1, in dynamic synthetic
benchmarks the data generator itself is designed
for agile development, enabling experimentation
with increasingly complex tasks and a wider
range of linguistic phenomena.2 Constructing

2 While our framework does not enable automatic collection

challenging tasks is a challenge in and of itself,
requiring precise control over the reasoning
patterns underlying each question. To meet these
requirements, we developed a new task generator
for bAbI called Dyna-bAbI3.

Using Dyna-bAbI, we first devise new splits that
systematically test compositional generalization
across tasks; as shown in Fig. 1c, we test models
on novel combinations (right side, line 10) of
concepts seen at training, like co-reference and
object tracking (left). We find that training on the
original bAbI tasks (hereafter: bAbI 1.0) is not
sufficient for models to attain good compositional
generalization. Though general purpose pre-trained
models far outperform special-purpose (non-pre-
trained) architectures developed for bAbI, they still
suffer a 20-50% drop in accuracy compared to
the non-pre-trained models which suffer a 50-80%
drop. Both types attain near perfect performance
on the original tasks, suggesting that bAbI 1.0 is
not challenging enough to differentiate between the
two classes of models (Q1).

We next investigate how different enhancements
of training data affect compositional generalization:
(a) injecting more questions into bAbI 1.0, and
(b) generating new, more diverse training samples.
Compared to question injection, we find that
diverse training data better facilitates compositional
generalization, as well as being more data
efficient. However, neither approach drives reliable
compositional generalization; a representative
state-of-the-art (SOTA) model, T5 (Raffel et al.,
2020), demonstrates a lack of robustness to
novel combinations and also exhibits knowledge
inconsistency, for example, by correctly answering
certain types of questions but systematically
failing to answer equivalent paraphrases. These
results suggest that there remain many important
challenges within the broader bAbI task space (Q2)
which can be discovered through more careful
control of task generation.

To sanity-check the quality of our new tests
compared with bAbI 1.0, we employ the notion
of concurrence proposed by Liu et al. (2021);

of new data based on model errors as in other dynamic
benchmarks, we still chose the term “dynamic” to
highlight their important common function: data generation
frameworks that enable easily “moving the goalposts” in
meaningful directions (in our case, for probing models’
systematic generalization capacities).

3 Implemented in Python for improved accessibility compared
with the original Lua implementation (https://github.
com/facebookarchive/bAbI-tasks).
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concurrence is a measure of correlation between
models’ performance on a synthetic task and their
performance on an existing, non-synthetic NLU
benchmark. We find high concurrence between our
new challenge tasks and the widely used SQuAD
dataset (Rajpurkar et al., 2016), in contrast to bAbI
1.0, which achieved low concurrence.

Giving the continued interest in using bAbI 1.0
to evaluate new modelling approaches (Banino
et al., 2020, 2021; Schlag et al., 2021), our new
challenge splits and the Dyna-bAbI task generator
contribute to more reliably guiding future efforts.
While we focused on bAbI, our results apply more
generally, telling a cautionary tale about the limits
of static synthetic datasets, and motivating the
development of controllable task generators for
dynamic synthetic benchmarking.

2 Related Work

Our work brings together two promising areas of
current research: dynamic benchmarking such as
Dynabench (Kiela et al., 2021) that address many
existing issues with static benchmarks (Bowman
and Dahl, 2021), and synthetic benchmarking,
which is widely used for high-precision and data-
intensive problems such as relational and logical
reasoning (Sinha et al., 2019; Clark et al., 2020;
Betz et al., 2021; Richardson and Sabharwal, 2022),
robot planning (Banerjee et al., 2020), instruction
following and language grounding (Long et al.,
2016; Lake and Baroni, 2018) among many others
(Richardson et al., 2020; Khot et al., 2021). Most
approaches to synthetic benchmarking focus on
model development on a static benchmark, and
are not designed to facilitate agile and highly
controlled task space exploration, which is our
focus here.

The recent gSCAN dataset (Ruis et al., 2020) and
later extensions (Qiu et al., 2021; Wu et al., 2021)
can be seen as an example of a synthetic benchmark
“going dynamic”. Our work differs in terms of
target domain (story understanding as opposed to
multi-modal language grounding), and we further
focus attention on a more general research direction
of intentional, a-priori design of NLU benchmarks
for agile development. In this regard, our work
can be seen as part of a trend towards data-centric
research efforts in response to prevailing model-
centric research, which generally focuses heavily
on architectural design and novelty (Kaushik and
Lipton, 2018), at the expense of work on the data

side (Sambasivan et al., 2021; Rogers, 2021).
We address the domain of story understanding

as a particularly core (and data-intensive) capacity
underlying language use (McClelland et al., 2020),
thought to require constructing and manipulating
situation models of entities and their relations as
they unfold throughout discourse (Zwaan, 2016;
Tamari et al., 2020). Procedural text datasets (Dalvi
et al., 2018; Tandon et al., 2020) are closely related
in that they provide detailed annotation of entities
and state changes, and have mostly focused on
relatively small and static benchmarks using human
collected data. Overall, recent works identify a
lack of benchmarks which systematically probe the
situation models constructed by systems processing
discourse-level texts (Sugawara et al., 2021).

The bAbI benchmark (Weston et al., 2016)
is seen as highly relevant in terms of objective
(targeting situation modelling) (Dunietz et al.,
2020), but has been viewed critically due
to its constrained nature and exploitable
artifacts (Kaushik and Lipton, 2018). Our
work focuses on improving the evaluation in bAbI
through compositional generalization, widely
used across NLP to more rigorously probe model
robustness (Finegan-Dollak et al., 2018; Keysers
et al., 2020; Gontier et al., 2020; Yanaka et al.,
2021), but to our knowledge still not applied to
story understanding or bAbI.

3 Synthetic Dynamic Benchmarking on
bAbI

3.1 Dyna-bAbI

What makes a synthetic benchmark dynamic? We
think of a dynamic synthetic benchmark as a
highly controllable task generator, enabling rapid
exploration of interesting areas of a task space.
The original bAbI 1.0 simulator code does not
readily facilitate such exploration; each of the
bAbI 1.0 tasks is generated by a hard-coded script
which does not enable parametric manipulation
of interesting generation aspects such as question
difficulty or compositionality.

Accordingly, we developed Dyna-bAbI, a
Python-based version of the original simulator.
Dyna-bAbI facilitates control of task generation
through a configuration file, effectively abstracting
away much of the underlying implementation
complexity. The configuration file allows users
to specify high-level task parameters such as the
set of target concepts, passage length, and filtering
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conditions to mine for harder/rarer examples. We
also modularized the code to facilitate adding new
questions and other concepts more easily.

In this next sections we describe the underlying
structure of the bAbI 1.0 tasks, and how we
combine them using Dyna-bAbI to create more
complex compositional generalization tasks.

3.2 bAbI task structure
A task in bAbI 1.0 is a set of train, validation
and test splits. Each split is a set of instances,
where an instance is a tuple (p, q, a)=(passage,
question, answer). Passages are generated using
a micro-world simulator by sampling a valid
sequence of world events from an event set E and
generating a linguistic description of them. By
default, linguistic descriptions are generated by a
simple sentence-level mapping from an event to a
natural language sentence. For example, the event
move(john,park) could be translated to “John
moved to the park.”

Some tasks also incorporate more complex
linguistic mappings between events and
sentences, such as co-reference: the
event sequence (move(john,park),
move(john,kitchen)) could be mapped to
“John moved to the park. Then he went to the
kitchen.” We denote the set of possible linguistic
mappings by L.

Finally, a valid question-answer pair (q,a) over p
is sampled from question set Q. In bAbI, each
split is generated using some particular subset
of all possible events, linguistic constructs and
questions (§3.3); for a given split we can then
define its concept set, C = E ∪ L ∪ Q. Instances
also include a set of supporting facts (f ), or the
relevant lines from which a can be derived (see
Fig. 1). The support composition (fc) is the set of
events and linguistic constructs contained in f (see
examples in §4.2.1), and is useful for characterizing
compositionality performance (§3.4).

3.3 Original bAbI 1.0 tasks
Our focus here is on a particular subset of 12 bAbI
1.0 tasks evaluating aspects of story understanding.
Table 1 summarizes them, detailing E ,L,Q for
each task. For L, we list only complex constructs
beyond the default event-sentence mapping (which
is present in every task). See appendix A.1 for
additional details on task construction. Not all
of the story understanding tasks are considered.
For example, tasks 14 and 20 address time

Task Events
(E)

Linguistic
Constructs

(L)

Questions
(Q)

Avg. sents. &
supp. facts
per story

1 MOVE - where-P 6, 1

2 MOVE,
POSS - where-O 15.52, 2

3 MOVE,
POSS - where-was-O 51.9, 3

5
MOVE,
GIVE,
POSS

- give-qs 20.1, 1

6 MOVE - yes-no 6.27, 1

7
MOVE,
GIVE,
POSS

- counting 8.67, 2.33

8 MOVE,
POSS - list 8.75, 1.94

9 MOVE NEGATE yes-no 6, 1
10 MOVE INDEF yes-no 6, 1
11 MOVE CO-REF where-P 6, 2
12 MOVE CONJ. where-P 6, 1

13 MOVE CONJ.,
CO-REF where-P 6, 2

Table 1: Subset of 12 bAbI 1.0 tasks considered
here. Each task is characterized by the possible events,
linguistic constructs and questions that can occur in
instances. POSS (possession) is short for GRAB and
DROP events. Statistics based on training sets. A large
space of task configurations remains unexplored.

reasoning and agent motivations, and we leave their
integration for future work.

3.4 Compositional generalization on bAbI

As can be seen in Table 1, many possible task
configurations are not covered by the original
benchmark; which directions should be explored?
We focus on out-of-distribution (OOD) robustness,
which is increasingly seen as a vital evaluation
criteria across AI/NLP research (Shanahan
et al., 2020; Hendrycks et al., 2020). We target
compositional generalization, a particularly
important class of OOD problems (Lake et al.,
2017; Lake and Baroni, 2018). Compositional
generalization refers to the ability to systematically
generalize to test inputs containing novel
combinations of more basic elements seen at
training time (Partee et al., 1995). For example,
a model that has learned basic object tracking
and co-reference separately (tasks 2 and 11,
see Fig. 1c) could be expected to solve tasks
requiring a mixture of both object tracking and
co-reference (Fig. 1c, line 10 question on right
side). Compositional tasks are absent from bAbI
1.0 which features only IID test sets (independent,
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identically distributed).4

Compositional task generation. To create
compositional generalization tasks in practice, we
create training (and validation) splits composed of
M sub-tasks with concept sets

{
Citrain

}M

i=1
, and a

test set Ctest such that Ctest ̸= Citrain∀i, but Ctest =⋃M
i=1 Citrain. In other words, each training sub-

task can be thought of focusing on a particular
subset of test concepts, so models are exposed to
all test concepts at training time, but not to all
combinations of them (Yanaka et al., 2021).
Task difficulty. We hypothesize that support
composition (fc) and supporting fact set size
(|f |) are main factors underlying a particular
instance’s difficulty, and especially novel
support compositions not seen at training time.
Additionally, the difference between train and test
splits results in potentially harder distractors, as
test-time distractors appear in novel contexts.

Our notions of concepts and support composition
resemble atoms and compounds in DBCA, a
related study on compositionality (Keysers et al.,
2020). While DBCA enables automatic creation
of compositional train and test splits, we opt
here for a more human-interpretable representation
that allows more precise manual control of the
combinations of concepts a model is exposed to
at train and test time.
Quality comparison vs. bAbI 1.0 tasks.
Intuitively, good synthetic datasets help drive the
development of better modelling approaches. Our
new compositional tasks might be harder than
bAbI 1.0, but how do we know whether they are
a more useful target? To provide a preliminary
answer to this question, we adopt the notion of
concurrence as a quality measure (Liu et al., 2021).
Two benchmarks are said to have high concurrence
when they rank a set of modelling approaches
similarly. Concurrence offers a way to formalize
the intuition above, as high concurrence between a
synthetic and natural language benchmark suggests
that the synthetic benchmark could have driven
similar innovations. We follow the setup of Liu
et al. (2021) using SQuAD for the natural language
benchmark.5 Notably, bAbI 1.0 achieved very
low concurrence with SQuAD; for example, pre-

4 Weston et al. (2016) noted that transfer learning was an
important goal out of the original work’s scope.

5 Liu et al. (2021) consider a set of 20 modelling approaches
used on SQuAD, including 10 pre-trained and 10 non-pre-
trained methods.

Split Type Avg.
length Size Avg. supp.

fact set size

concat(T2) Train 10.76 18,000 2
concat(T7) Train 13.5 63,000 1.68
inject(T7) Train 23.25 190,158 1.42
diverse(T7) Train 20 17,000 2.17
concat(T12) Train 10.8 108,000 1.42
inject(T12) Train 15.97 368,831 1.28
diverse(T12) Train 20 24,772 2.45

mix(T2) Test 13.25 1,000 2.05
mix(T7) Test 20 3,000 2.50
mix(T12) Test 20 6,000 3.70

Table 2: Splits used for our experiments. All except the
original data (concat) are created with Dyna-bAbI.

training consistently yields large gains on SQuAD,
but on bAbI 1.0, both pre-trained and non-pre-
trained models achieve perfect performance on
many tasks. The low concurrence thus suggests
that bAbI 1.0 may be an unreliable benchmark for
model development, and highlights the importance
of improving its quality.

4 Experiments

With the controllable task generation afforded by
Dyna-bAbI, we can now create datasets probing
deeper story understanding capabilities of models.

We present two main experiments targeting the
following questions:

• Exp. 1: (q1.a) What role does model
architecture play in the capacity for
compositional generalization? (q1.b) What is
the concurrence of our compositional tasks
with real datasets, compared with bAbI 1.0?

• Exp. 2: (q2) How do training data
quantity and diversity affect compositional
generalization?

Data

For our experiments we created 4 kinds of
splits over three subsets of bAbI 1.0 tasks,
summarized in Table 2. We denote a subset
of tasks T , and consider T2 = {2, 11},
T7 = {1, 2, 3, 5, 11, 12, 13}, and T12 =
{1, 2, 3, 5, ..., 13}.

• concat splits are simply concatenations of the
official data for the tasks T . We considered
the larger version where each task consists of
9,000/1,000 training/development examples;
e.g., concat(T2) consists of 18,000 training
examples and 2,000 development examples.

• inject splits enrich the concat data as follows:

105



for each question in the original data, we
supplement it with all possible additional
questions of the specified types. In this work,
the supplement question types were where-P
and where-O (to provide location information
of objects and agents).

• diverse splits use rejection sampling to
generate more diverse samples, such that
the number of supporting facts per question
is roughly uniform across all sub-task
instances for a given question type. Without
rejection sampling, most generated questions
would be trivial (e.g., 1-2 supporting facts).
Compositionality is retained by holding out
certain combinations. In particular, at training
time, complex linguistic constructs (e.g., co-
reference) are only seen with MOVE events.

• mix are test splits generated using rejection
sampling like diverse, and consist of instances
which may feature elements from any of
the considered tasks. As a result, questions
in mix splits require novel/more complex
reasoning patterns compared to those seen
during training.

See appendix A.1 for examples and extended
details on task generation.

4.1 Exp. 1: Can training on bAbI 1.0
facilitate compositional generalization?

For this experiment, we compared models on T2

and T7, since they allow for a direct conversion to
an extractive QA format,6 enabling us to use the
same concurrence framework of Liu et al. (2021).
Models. We considered 3 classes of models:

• Non-pre-trained specialized architectures for
bAbI 1.0 including EntNet (Henaff et al.,
2017) and STM (Le et al., 2020), the latter
being current SOTA on bAbI 1.07.

• Non-pretrained general-purpose QA methods,
such as BiDAF (Seo et al., 2017).

• General purpose pre-trained approaches
including RoBERTa (Liu et al., 2020) and T5
(base) (Raffel et al., 2020).

The last two categories are comprised of the
20 models evaluated in Liu et al. (2021), with
the addition of T5 to the last group. For
implementation details, see appendix A.2.

6 Tasks 6-10 require generative QA, for answering yes-no,
count and list questions.

7 As of March 10, 2022.

Results & Analysis
Experiment results are summarized in Table 3.
All models perform well in IID settings, but
performance drops considerably in OOD settings
Architecture alone is not a significant
compositionality driver (q1.a). The large
OOD performance gap between pre-trained and
non-pre-trained models indicates that pre-training
plays a much greater role than specialized
architectures for QA performance, adding to
similar findings in other NLP domains (Hendrycks
et al., 2020). These results raise questions about
special purpose relational reasoning architectures
that continue to be developed today: the poor OOD
performance suggests that such models may not
be fulfilling their intended design. Either way,
these results underscore the importance of rigorous
evaluation to verify that modelling motivations are
borne out in practice (Aina et al., 2019).
Compositionality increases concurrence (q1.b).
As can be seen in the Fig. 2 plots8, increasing
compositionality is correlated with increased
concurrence. In contrast to the original bAbI 1.0
tasks which exhibited virtually no correlation with
SQuAD, our compositional task mix(T7) exhibits
high concurrence of r = 0.92, τ = 0.78 (Pearson
and Kendall correlation functions, resp.). These
results are comparable to other natural language as
well as purpose-built synthetic datasets considered
in Liu et al. (2021), which feature r, τ in the
ranges [0.87, 0.99] and [0.77, 0.94], respectively.
Our results thus extend the findings of Liu et al.
(2021); they demonstrated the existence of high
concurrence synthetic benchmarks, we additionally
suggest a guiding principle for how to create them
(incorporate compositionality evaluation).

4.2 Exp. 2: enriching bAbI 1.0 training data
The results above suggest that the bAbI data in
their current form may not be rich enough to drive
compositional generalization.9 In this experiment
we probe this question, enriching the training data
to better understand its impact on compositional
generalization. In particular, we investigate
two approaches to enriching the training data
while maintaining the compositionality evaluation,
corresponding to the inject and diverse splits.
8 See appendix A.4 for full numeric results.
9 An alternate hypothesis is that certain patterns may be too

hard for models to learn; we confirm this is not the case by
using the inoculation methodology of Liu et al. (2019), see
details in Appendix A.3.
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Name Train Test Evaluation accuracy SQuAD Concurrence

EntNet STM BiDAF Roberta T5 ρ τ
2-task IID concat(T2) concat(T2) 98.95 99.85 100 100 99.85 [-0.35,0.08] [-0.35,-0.19]
2-task OOD concat(T2) mix(T2) 72.0 67.6 97.2 98.7 98.1 0.48 0.51
7-task IID concat(T7) concat(T7) 96.8 99.4 99.98 99.98 99.8 [-0.4,0.08] [-0.35,0.03]
7-task OOD concat(T7) mix(T7) 22.2 26.7 30.5 57.7 49.57 0.92 0.78
12-task IID concat(T12) concat(T12) 96.19 99.34 – – 99.54 – –
12-task OOD concat(T12) mix(T12) 31.97 35.65 – – 67.4 – –

Table 3: Experiment 1. OOD evaluation exposes large differences between pre-trained and non-pre-trained models,
and also achieves high concurrence with the SQuAD benchmark. We report [min,max] concurrence for bAbI 1.0.

70 80 90
SQuAD EM

80

85

90

95

100

bA
bI

 ta
sk

 2
 E

M

r = 0.08
 = -0.19

 

70 80 90
SQuAD EM

30

40

50

60

70

80

m
ix

(T
7)

 E
M

r = 0.92
 = 0.78

 
non-pretrained models
pretrained models

Figure 2: SQuAD concurrence plots for bAbI
1.0 task 2 (left; reproduced from Liu et al. (2021)
with permission) and mix(T7) (right). bAbI task
2 has the highest concurrence of all T7 tasks, yet
exhibits virtually no correlation with SQuAD. mix(T7)
exhibits high concurrence, highlighting the relevance of
compositional evaluation.

Notably, Exp. 2 can be seen as a first iteration
of the dynamic benchmarking loop depicted in
Fig. 1: based on the error analysis of Exp. 1,
we leverage Dyna-bAbI for targeted creation of
new tasks, which allow us to systematically test
our hypotheses.

In this experiment we focus on pre-trained
models, as they significantly out-performed non-
pre-trained methods. We use T5 as a representative
since its generative abilities make it straightforward
to apply also to T12 (unlike the extractive methods
which were applicable only to T7).

Injecting supplementary questions. One
hypothesis for the poor performance of models on
the mix splits could be that the original bAbI tasks
do not provide enough supervision for models to
learn the basic event semantics. For example, tasks
5 and 7 are the only bAbI 1.0 tasks featuring the
GIVE event, and neither includes any questions
about the location of participants. However, test-
time compositional questions may require models
to infer that the participants in a GIVE event

Train Test Evaluation accuracy /
# supporting facts

1 2 3+ Total
inject(T7) concat(T7) 99.83 100 93.35 99.05
inject(T7) mix(T7) 89.82 80.55 64.16 71.57
diverse(T7) concat(T7) 99.58 100 78.36 96.94
diverse(T7) mix(T7) 100 98.44 93.84 95.8

inject(T12) concat(T12) 99.94 99.97 91.91 99.35
inject(T12) mix(T12) 92.45 85.29 67.67 72.2
diverse(T12) concat(T12) 99.75 98.73 76.81 97.73
diverse(T12) mix(T12) 99.01 96.29 81.24 84.82

Table 4: Enriching the training data. Injecting
knowledge to the original bAbI tasks doesn’t
substantially improve compositionality. Sampling more
structurally diverse instances yields more significant
improvements, though is still limited, especially for
more complex compositions.

share the same location (e.g., line 10 question in
Fig. 1c). Error analysis shows that such implicit
inferences are indeed challenging for models
trained on the concat splits (see details in appendix
A.5). Perhaps the inject splits supplementing
the original tasks with relevant information will
improve compositionality performance? Table 4
displays the result of this experiment; performance
on mix is improved only marginally, despite a 3-
fold increase in training data (Table 2).

Sampling structurally diverse training data. As
shown in Table 2, though inject splits significantly
increase dataset size, their diversity remains
low: most questions require only one or two
supporting facts. Therefore, we next enrich training
data through sampling more structurally diverse
samples. This method is known to improve data
efficiency for both compositional generalization
as well as IID settings (Oren et al., 2021). As
can be seen in Table 4, training on the diverse
splits yields a more significant improvement;
similar to the findings of Oren et al. (2021),
sampling more diverse training data leads to greater
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Accuracy on where-O
questions over all

instances with f_c=
{GIVE,MOVE}, n<=2

Figure 3: Error analysis on mix(T12) for T5 trained on diverse(T12) data. The sub-plots break down performance
on questions requiring {≤ 2, 3,≥ 4} supporting facts. For each sub-plot, the left side of each row corresponds to
a particular support composition (fc), and the right side displays accuracy over inputs sharing fc, across various
question types. Performance on fc seen at training time (blue frames) is generally high, but overall generalization is
not systematic, as evidenced by high variance across different fc, especially for higher complexity (n = 3, n ≥ 4)
and more novel compositions.

generalization as well as much improved data
efficiency.10 However, as the error analysis of the
next section shows, performance on compositional
generalization is still fundamentally limited.

4.2.1 Discussion and error analysis
Figure 3 breaks down the performance of T5
on mix(T12) after training on diverse(T12). The
heatmaps plot performance across various support
compositions (fc) occurring in the test data, sub-
divided by the number of required supporting
facts n per question. Performance on support
compositions seen at training time (blue frames)
is generally high, indicating the importance of
training pattern diversity for better generalization.
The plots indicate that T5 shows some ability to
generalize to new support compositions, especially
for lower n. Furthermore, certain question types
appear to be more learned more robustly; for
list and count questions, performance remains
relatively high even for larger n and across novel
fc. We hypothesize that such questions may be
easier as simple counting rules suffice to reach
an answer, and these are “close to the surface”;
unlike other events that may implicitly convey

10The relatively low performance of diverse trained models in
the “3+” column for concat splits is predominantly due to
length discrepancies at train and test time: concat contains
some very long stories which are challenging for the model
trained on the uniform length and shorter diverse stories.

Figure 4: Example mix(T12) instance demonstrating
the question phrasing sensitivity failure mode in T5: the
model correctly answers the question in where-P form
(line 22), and incorrectly in yes-no form (line 21).

information, in our stories, changes of possession
are always explicit in the text.

In general however, the plots indicate that T5 is
far from robust compositional generalization:

Performance deteriorates with increased
complexity. Performance is near perfect for simple
compositions (n ≤ 2) but deteriorates significantly
for more complex cases (n ≥ 3).
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Question phrasing sensitivity. The discrepancy
between the relatively high performance on
where-P questions compared with very low
performance on yes-no questions suggests that
models are learning highly question-dependent
story representations. E.g., if a model answers
y correctly to some “Where is p?” question, we
would expect it to answer “yes” correctly for the
same question in yes-no format, “Is p at y?”. Figure
4 shows a characteristic example: T5 answers
correctly in the where-P format, but incorrectly
answers “maybe” for the yes-no format, likely
thrown off by the distractor indefinite phrase in
sentence 3.

We present further empirical support for
question phrasing sensitivity in appendix A.6.
These results suggest models may be learning
shortcuts that work well for the story/question pairs
seen at training time, but not more robust rules
that also generalize to novel test instances. Such
highly question-dependent story representation
stands in contrast to more human-like narrative
comprehension, which is thought to involve the
construction of situation models, or structured
representations of entities and their relations as
depicted by the text. Situation models are less
dependent on a-priori knowledge of a question
(or its phrasing), and are often generated on-line
during the course of comprehension (Graesser et al.,
1994).

Performance below chance for certain question
types. The heatmaps expose a particularly
challenging class of yes-no questions involving
disjunctions over indefinites (center and right plots,
bottom right); accuracy for such questions is close
to zero. See appendix A.7 for an example instance.

5 Future work & conclusions

Our work opens up multiple new directions
for future research. Our new tool, Dyna-bAbI
is readily extendable for systematic probing of
more diverse linguistic phenomena. A beneficial
first step could include integration of additional
bAbI tasks. That said, our experience suggests
that the design of truly scalable synthetic and
dynamic benchmarks poses significant theoretical
and engineering challenges, warranting deeper
research on their own right.

Our results raise new questions about the
viability of learning robust situation models using
standard question-answering training, and our

datasets present new challenges for future efforts.
Additionally, Dyna-bAbI can naturally

complement parallel work probing the the situation
representations constructed by neural language
models (Li et al., 2021) by facilitating tailored data
generation for specific questions, thus broadening
and deepening the scope of possible research.

In conclusion, we introduced Dyna-bAbI, a
new framework for highly controllable bAbI task
generation. We used it to create compositional
generalization datasets providing new modelling
challenges for state-of-the-art neural language
models. More broadly, our results underscore
the importance in development of benchmarks
themselves, beyond only the models solving them.

Broader Impact

While large, neural language models are
increasingly seen as foundations for a wide array
of NLP tasks, we still lack a clear understanding
of their capabilities and failure modes. Our work
joins many recent efforts using carefully controlled
synthetic tasks to more rigorously evaluate models’
language comprehension abilities.

While our choice of a synthetic language
benchmark allows more precise control over
evaluation, the synthetic nature of the data is an
obvious limitation. Similar to the original bAbI
benchmark, our tasks are not a substitute for
real natural language datasets, but should rather
complement them. Even if a method works well
on our data, it should be shown to perform well
on real data as well. Rather, our tasks are better
thought of as comprehension “unit-tests”, where
poor performance on our tasks serves as a warning
sign suggesting the model may exhibit limited
systematicity and robustness on more difficult,
naturalistic inputs.
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A Appendix

A.1 Extended task construction details

This section provides further details of the training
and test splits used for our experiments.

Table 5 enumerates the basic “building blocks”,
or concepts underlying the tasks, as presented in
§3.2.

Tables 6 and 7 detail the concept sets for each of
the sub-tasks comprising the training and test sets,
for the T2, T7 and T12 groups of tasks.

As can be seen from the tables, the main sources
of compositionality are:

• Following the bAbI 1.0 task structure, at
training time, all of the more complex
linguistic constructs are seen only with
MOVE events (and none of the other event
types).

• Similarly, at training time, yes-no questions
are always seen only with MOVE events (and
none of the other event types), and with the
INDEF or NEGATE linguistic constructs (but
not others, such as COREF).

• where-was-O questions are never seen in
stories with GIVE events.

Language templates. For our new generated tasks
we use the same language templates as used in the
original bAbI 1.0 benchmark (e.g., the same entity
names, verb synonyms). The only modification
to the language generation engine was that we
completely omit the use of “there”; in the original
benchmark, “there” could be used in confusing
contexts, as shown in Fig. 5.

A.1.1 Example instances
Figure 6 shows examples from each of the 4
types of splits used in our experiments. The
concat instance is from the original bAbI 1.0 task
5. The inject data contains the same passages
as concat, but adds supplementary questions on
agent and object locations. diverse instances

1 Mary journeyed to the bathroom.
2 Sandra went to the garden.
3 Daniel went back to the garden.
4 Daniel went to the office.
5 Sandra grabbed the milk there.
6 Sandra put down the milk there.
7 Where is the milk? garden 6 2

Figure 5: Example from original bAbI 1.0 benchmark
with confusing usage of “there”. In Dyna-bAbI we do
not include “there”, to avoid this confusion.

contain more diverse support compositions (fc),
but certain combinations are held out. In particular,
diverse instances only feature non-default linguistic
mappings with MOVE events, never with POSS
(GRAB or DROP) or GIVE. In the mix instances,
all combinations of support compositions are
possible, as shown in the example which features
possession (POSS) events along with co-reference.

A.1.2 Long instances in the bAbI 1.0 tasks
For the T5 experiments, we used a slightly
modified version of the bAbI 1.0 tasks, where
we trimmed all training and validation examples
that didn’t fit into the 512-token input window.
This resulted in trimming 1,585 training instances
and 175 validation instances from T7 and T12
(common to both sets). These data points are
not consequential as our analysis focuses on the
effects of compositionality and not story length;
all instances in diverse and mix are substantially
shorter than the 512-token maximum input window
size.

A.2 Implementation details

T5. We use the publicly available HuggingFace
pre-trained T5-base implementation (Wolf et al.,
2020) which has 220M parameters. We similarly
use the HuggingFace tokenization pipeline. We
fine-tune T5 for 12 epochs on our bAbI data, using
the Adam optimizer (Kingma and Ba, 2017), an
initial learning rate of 5 ∗ 10−5 and training batch
size of 8.
STM. We used the official STM implementation11,
with the only change being a batch size of 32
instead of 128, due to technical constraints.
EntNet. We re-implemented the model in PyTorch,
similarly using a batch-size of 32. Following the
official Lua reference implementation12, we used
20 memory units each with dimension 100. We
used the SGD optimizer.

For both the EntNet and STM, we trained models
for 200 epochs, and took the best of 10 tries,
following Henaff et al. (2017).

For the 20-model concurrence benchmark, refer
to Liu et al. (2021) for model details, as we used
the same experimental setup.

11https://github.com/thaihungle/SAM
12https://github.com/facebookarchive/
MemNN/tree/master/EntNet-babi
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Events Template Example Notes

MOVE P {moved} to the L. John traveled to the park.
GRAB P {grabbed} the O. Mary picked up the apple.
DROP P {dropped} the O. Daniel dropped the milk.
GIVE P1 {gave} P2 the O. John handed Mary the apple.

Linguistic
Constructs

COREF
P (MOVE|GRAB|DROP)
Following that, {he}
(MOVE|GRAB|DROP).

John went to the garden.
Following that, he moved to the store Co-reference

CONJ P1 and P2 {moved} to the L1. Jeff and Fred went to the cinema. Conjunction

COMPOUND P1 and P2 {moved} to the L1.
Then they {moved} to the L2.

Jeff and Fred went to the cinema.
Then they traveled to the school. Compound co-reference

NEGATE P is not at the L. Julie is not in the park. Negation
INDEF P is either at the L1 or the L2. John is either in the park or the school. Indefinite expression

Questions

where-P Where is P? Where is John?
where-O Where is the O? Where is the football?
where-was-O Where was the O before the L? Where was the football before the hallway?
yes-no Is P at the L? Is John at the park?
list What is P carrying? What is John carrying?
counting How many objects is P carrying? How many objects is John carrying?

give-qs

Who gave the O to P2?
Who gave the O?
Who received the O?
Who did P1 give the P2 to?
What did P1 give to P2?

Who gave the football to John?
...

Constitutes multiple
question types over
GIVE events.

Table 5: Details of the events, linguistic constructs and questions constituting the bAbI tasks covered in this work.
Words in {brackets} are drawn from a small set of synonyms.

Figure 6: Example instances from each of the 4 types of splits used in our experiments.

115



Events Linguistic Constructs Questions

Sub-task Type M
ov

e
Grab Drop Give Co-r

efe
ren

ce

Con
jun

cti
on

Com
po

un
d co

-re
f.

whe
re-

P

whe
re-

O

whe
re-

was-
O

giv
e

1 Train ! !

2 Train ! ! ! I/D !

3 Train ! ! ! I I !

5 Train ! ! ! ! I/D I/D !

11 Train ! ! !

12 Train ! ! !

13 Train ! ! !

mix(T2) Test ! ! ! ! !

mix(T7) Test ! ! ! ! ! ! ! ! ! !

Table 6: Concept sets for the T2 and T7 sub-set of the original bAbI tasks, and the new tasks generated with
Dyna-bAbI. Train sub-task numbering follows the original bAbI numbering. The inject and diverse tasks inherit the
same concept set from the original tasks, and additionally “I”, “D” denote question types included only in the inject
or diverse tasks, respectively. “I/D” denotes question types included in both.

Events Linguistic Constructs Questions

Task Type M
ov

e
Grab Drop Give Co-r

efe
ren

ce

Con
jun

cti
on

Com
po

un
d co

-re
f.

Neg
ati

on

Ind
efi

nit
e

whe
re-

P

whe
re-

O

whe
re-

was-
O

ye
s-n

o

co
un

tin
g

lis
t

giv
e

1 Train ! !

2 Train ! ! ! I/D !

3 Train ! ! ! I I !

5 Train ! ! ! ! I/D I/D !

6 Train ! I/D !

7 Train ! ! ! ! I I !

8 Train ! ! ! I I !

9 Train ! ! I/D !

10 Train ! ! I/D !

11 Train ! ! !

12 Train ! ! !

13 Train ! ! !

mix(T12) Test ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Table 7: Concept sets for the T12 sub-set of the original bAbI tasks, and the new tasks generated with Dyna-bAbI.
Train sub-task numbering follows the original bAbI numbering. The inject and diverse tasks inherit the same
concept set from the original tasks, and additionally “I”, “D” denote question types included only in the inject or
diverse tasks, respectively. “I/D” denotes question types included in both.
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For the T5 experiments, we used the
PyTorch Lightning (Falcon et al., 2019) trainer
implementation, and Weights & Biases (Biewald,
2020) for experiment tracking and artifacts
management.

We used standard hyper-parameter settings for
all models, with slight changes in the case of
memory issues as described above.
Experimental infrastructure details. Our
experiments were performed using an RTX-8000
GPU, with a total computational budget of roughly
1,000 GPU hours.

A.3 Inoculation experiment results
To rule out the hypothesis that certain patterns may
be too hard for models to learn, we follow the
inoculation methodology presented in Liu et al.
(2019): after training on the original tasks, we fine-
tune the T5 on small amounts of OOD data (disjoint
from the test data), and evaluate performance as a
function of “inoculation dose”. As can be seen in
Fig. 7, we find that performance quickly (with only
500 additional inoculation samples per question
type) reaches over 90% accuracy on both the
mix(T7) and mix(T12) challenge sets. These results
support the hypothesis that the training data is not
rich enough, indicating clearly that the model is
capable of quickly learning to solve the challenge
tasks, given exposure to training samples with
similar enough patterns.

A.4 Concurrence experiments
Table 8 presents the full results for the concurrence
experiments of §4.1. SQuAD and bAbI task 2
results are reproduced from Liu et al. (2021), see
there also for implementation details of the models
used.

A.5 Extended error analysis: GIVE events
We analyze the performance of models on the
mix(T7) split after being trained on concat(T7), and
in particular we focus on GIVE events. As noted in
§4.2, compositions involving GIVE are intuitively
challenging as they entail multiple inferences
which are not explicit in the text: the actors share
the same location, and the possession of the object
being given is transferred from the giver to the
recipient. The only task in concat(T7) featuring
GIVE events is task 5, which never asks about the
locations of actors or objects, but only about the
participant roles in the event (e.g., who was the
giver or recipient; see Fig. 1 example from task 5).

Model Evaluation accuracy

SQuAD mix(T2) mix(T7) babi task 2
rasor 64.86 88.20 35.03 100.00
bidaf 67.39 97.20 30.50 100.00
documentreader 69.66 90.20 40.70 100.00
documentreader
(no_features) 69.21 82.50 37.17 100.00

bidafplusplus 69.49 99.50 44.20 80.70
mnemonicreader 73.02 98.20 39.63 100.00
mnemonicreader
(no_features) 72.67 97.50 38.20 100.00

qanet 72.41 67.70 - 100.00
fusionnet 72.90 99.50 39.73 100.00
fusionnet
(no_features) 72.24 88.10 37.80 100.00

bert 81.46 95.50 47.63 100.00
bert_large 84.17 98.30 59.10 100.00
bert_large_wwm 87.33 98.70 67.63 99.90
albert 81.86 98.20 56.70 100.00
albert_xxlarge 89.07 99.80 80.00 100.00
roberta 83.37 98.70 57.70 100.00
roberta_large 86.96 99.80 64.07 100.00
electra 85.88 98.70 53.47 100.00
spanbert 86.20 98.40 55.70 99.50
spanbert_large 88.74 98.60 62.27 95.40

Table 8: Full results of concurrence experiments
presented in §4.1.

Figure 7: Inoculation experiment results.

Num.
supporting facts

Num.
samples Evaluation accuracy

BiDAF RoBERTa T5
1 334 53.3 93.4 86.8
2 (w/o GIVE) 734 51.50 82.3 71.8
2 (with GIVE) 99 3.03 7.07 5.05
3 (w/o GIVE) 1365 24.6 47.2 44.3
3 (with GIVE) 468 4.27 7.05 15.2

Table 9: Breakdown of model performance on mix(T7)
for questions including (or not) GIVE events in the
supporting fact set. The poor performance on questions
including GIVE indicates that training on the bAbI
1.0 data does not facilitate generalization to novel
compositions of GIVE.

117



where-P (→)
yes-no (↓) correct incorrect

correct 209 4
incorrect 145 88

Table 10: Confusion matrix displaying question
phrasing sensitivities in T5. We pose a question in two
formats: (1) yes-no: “Is X at L? yes” vs (2) where-P:
“Where is X? L”. We find performance is considerably
higher for questions posed in the where-P format,
indicating the model isn’t learning the equivalence of
both forms.

To measure this intuition empirically, we analyze
a subset of 567 questions including GIVE events
in the supporting facts set. As shown in Table 9,
performance for all models on questions including
GIVE is extremely low, far below performance for
questions without it. Qualitative analysis indicates
many failure cases follow the pattern shown in the
right-side example of Fig. 1c, question on line
10: the location of an entity (e.g., Daniel) must be
inferred via the known (co-)location of a second
participant in the GIVE event (e.g., Jeff). These
results strengthen the hypothesis that standard QA
training on the original bAbI data does not drive
strong event comprehension in models.

A.6 Extended error analysis: question
phrasing sensitivity

This section presents further empirical analysis
of the question phrasing sensitivities discussed in
§4.2.1, relating to the performance of the T5 model
trained on the diverse(T12) data and evaluated on
the challenge set mix(T12).

We collected all yes-no questions from mix(T12)
for which the answer was “yes”, yielding 446
questions in total. For each such (question, answer)
pair, of the form (“Is person at the location?”,
“yes”), we created an equivalent pair in the format
of a where-P question, (“Where is person?”,
location). Figure 4 shows a characteristic
example. Ideally, we would expect a model to
be agnostic to equivalent phrasings of a question.
However, as displayed in Table 10, we find that T5
is considerably more accurate for questions posed
in the where-P format, likely due to exposure to a
larger variety of such questions at training time.

1 Bill grabbed the milk.
2 Bill put down the milk.
3 John is either in the bedroom or the kitchen.
4 Fred journeyed to the kitchen.
5 John grabbed the football.
6 Following that he put down the football.
7 Bill picked up the milk.
8 Following that he went to the bedroom.
9 Bill is in the office.
10 Bill is in the cinema.
11 Bill passed the milk to Julie.
12 Julie handed the milk to Bill.
13 Jeff is not in the school.
14 John took the football.
15 Fred and Jeff moved to the school.
16 Afterwards they journeyed to the bathroom.
17 Bill handed the milk to Julie.
18 John dropped the football.
19 Daniel is either in the school or the
bedroom.
20 Daniel took the football.
21 Is John in the bedroom? yes 3 18 19 20

Figure 8: Double disjunction example from mix(T12).

A.7 Extended error analysis: double
disjunctions

As the shown in the §4.2.1 error analysis, a
particularly difficult class of questions are double
disjunctions over indefinite expressions. Figure 8
displays a typical example from mix(T12), where
the locations of two actors are given in indefinite
form (sentences 3 and 19), and are also known to
be co-located, since they share the location of the
object “football”, as inferred from sentences 18 and
20. Hence it is possible to infer their location as the
intersection of the two indefinite expressions (here
“bedroom”). Rather than answering “yes” to the
question “Is John in the bedroom?”, T5 invariably
answers “maybe” for such cases. This pattern
is likely due to the fact that in the training data
“maybe” is a typical answer for yes-no questions
about actors mentioned by indefinite expressions
(task 10 in bAbI 1.0).
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B Datasheet for datasets

Motivation

For what purpose was the dataset created?
Was there a specific task in mind? Was there
a specific gap that needed to be filled? Please
provide a description.

Few synthetic resources for probing NLP
models’ performance on discourse-level narrative
understanding texts. Existing resources lack
customizability (control over data created +
amenable to extension).

Who created this dataset (e.g., which
team, research group) and on behalf of
which entity (e.g., company, institution,
organization)?
Joint team of researchers at Hebrew University

of Jerusalem (Israel) and the Allen Institute for
Artifical Intelligence.

Who funded the creation of the dataset? If
there is an associated grant, please provide
the name of the grantor and the grant name
and number.

Work was supported by the Center for
Interdisciplinary Data-science Research (CIDR)
at HUJI. This work was also supported by the
European Research Council (ERC) under the
European Union’s Horizon 2020 research and
innovation programme (grant no. 852686, SIAM)
and NSF-BSF grant no. 2017741 (Shahaf). Part of
this research is also supported by the European
Research Council, ERC-StG grant no. 677352
(Tsarfaty).

Any other comments?

Composition

What do the instances that comprise the
dataset represent (e.g., documents, photos,
people, countries)? Are there multiple types
of instances (e.g., movies, users, and ratings;
people and interactions between them; nodes
and edges)? Please provide a description.
Instances represent variable length stories.

How many instances are there in total (of
each type, if appropriate)?
Any size dataset can be created (programmatic

generation).

Does the dataset contain all possible
instances or is it a sample (not necessarily

random) of instances from a larger set?
If the dataset is a sample, then what is the
larger set? Is the sample representative of the
larger set (e.g., geographic coverage)? If so,
please describe how this representativeness
was validated/verified. If it is not representative
of the larger set, please describe why not
(e.g., to cover a more diverse range of
instances, because instances were withheld
or unavailable).
Used rejection sampling for some datasets to cover
more diverse instances.

What data does each instance consist
of? “Raw” data (e.g., unprocessed text or
images) or features? In either case, please
provide a description.
Simple textual stories generated using templates

(“John went to the kitchen. He grabbed the apple.”).

Is there a label or target associated with
each instance? If so, please provide a
description.
Each instance is accompanied by a (question,

answer) pair, both in natural language.

Is any information missing from individual
instances? If so, please provide a description,
explaining why this information is missing (e.g.,
because it was unavailable). This does not
include intentionally removed information, but
might include, e.g., redacted text.
N/A

Are there recommended data splits (e.g.,
training, development/validation, testing)?
If so, please provide a description of these
splits, explaining the rationale behind them.
The data is organized in splits, which are explained
in section 4 of the paper.

Are there any errors, sources of noise, or
redundancies in the dataset? If so, please
provide a description.
Template based language generation may result in
somewhat unnatural texts.

Is the dataset self-contained, or does it link
to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? If
it links to or relies on external resources, a)
are there guarantees that they will exist, and
remain constant, over time; b) are there official
archival versions of the complete dataset
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(i.e., including the external resources as they
existed at the time the dataset was created); c)
are there any restrictions (e.g., licenses, fees)
associated with any of the external resources
that might apply to a future user? Please
provide descriptions of all external resources
and any restrictions associated with them,
as well as links or other access points, as
appropriate.
Self contained.

Does the dataset contain data that,
if viewed directly, might be offensive,
insulting, threatening, or might otherwise
cause anxiety? If so, please describe why.
No.

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.
No.

Any other comments?

Collection Process

How was the data associated with each
instance acquired? Was the data directly
observable (e.g., raw text, movie ratings),
reported by subjects (e.g., survey responses),
or indirectly inferred/derived from other
data (e.g., part-of-speech tags, model-
based guesses for age or language)? If
data was reported by subjects or indirectly
inferred/derived from other data, was the data
validated/verified? If so, please describe how.
Programmatically generated using logical rules

and templates.

If the dataset is a sample from a larger
set, what was the sampling strategy (e.g.,
deterministic, probabilistic with specific
sampling probabilities)?

Rejection sampling was used in some cases,
described in Section 4.

Does the dataset relate to people? If not,
you may skip the remaining questions in this
section.
No.

Any other comments?

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling
of the data done (e.g., discretization or
bucketing, tokenization, part-of-speech
tagging, SIFT feature extraction, removal of
instances, processing of missing values)?
If so, please provide a description. If not, you
may skip the remainder of the questions in this
section.
No.

Was the “raw” data saved in addition to the
preprocessed/cleaned/labeled data (e.g., to
support unanticipated future uses)? If so,
please provide a link or other access point to
the “raw” data.
N/A

Is the software used to
preprocess/clean/label the instances
available? If so, please provide a link or other
access point.
N/A

Any other comments?

Uses

Has the dataset been used for any tasks
already? If so, please provide a description.

Benchmark to guide model development for
reading comprehension and textual reasoning tasks.

Is there a repository that links to any or all
papers or systems that use the dataset?
If so, please provide a link or other access
point.

Not currently, we will use the https://
paperswithcode.com/ integration to track
results.

What (other) tasks could the dataset be
used for?
N/A

Is there anything about the composition of
the dataset or the way it was collected and
preprocessed/cleaned/labeled that might
impact future uses? For example, is there
anything that a future user might need to
know to avoid uses that could result in
unfair treatment of individuals or groups (e.g.,
stereotyping, quality of service issues) or
other undesirable harms (e.g., financial harms,
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legal risks) If so, please provide a description.
Is there anything a future user could do to
mitigate these undesirable harms?
N/A

Are there tasks for which the dataset
should not be used? If so, please provide a
description.
Similar to the original bAbI benchmark, our

tasks are not a substitute for real natural language
datasets, but should rather complement them. Even
if a method works well on our data, it should be
shown to perform well on real data as well. Rather,
our tasks are better thought of as comprehension
“unit-tests”, where poor performance on our tasks
serves as a warning sign suggesting the model
may exhibit limited systematicity and robustness
on more difficult, naturalistic inputs.

Any other comments?

Distribution

Will the dataset be distributed to third
parties outside of the entity (e.g., company,
institution, organization) on behalf of which
the dataset was created? If so, please
provide a description.
N/A

How will the dataset will be distributed (e.g.,
tarball on website, API, GitHub) Does the
dataset have a digital object identifier (DOI)?
Github + Weights and Biases. No DOI currently.

When will the dataset be distributed?
Data and code-base for task generation to be

uploaded upon publication.

Will the dataset be distributed under a
copyright or other intellectual property (IP)
license, and/or under applicable terms of
use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access
point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees
associated with these restrictions.
Will be available with standard MIT license.

Have any third parties imposed IP-based or
other restrictions on the data associated
with the instances? If so, please describe
these restrictions, and provide a link or other
access point to, or otherwise reproduce, any

relevant licensing terms, as well as any fees
associated with these restrictions.
N/A

Do any export controls or other regulatory
restrictions apply to the dataset or to
individual instances? If so, please describe
these restrictions, and provide a link or other
access point to, or otherwise reproduce, any
supporting documentation.
N/A

Any other comments?

Maintenance

Who will be
supporting/hosting/maintaining the
dataset?
Corresponding author of paper.

How can the owner/curator/manager of
the dataset be contacted (e.g., email
address)?
Via email with corresponding author, and through
dedicated GitHub repository.

Is there an erratum? If so, please provide a
link or other access point.
N/A

Will the dataset be updated (e.g., to correct
labeling errors, add new instances, delete
instances)? If so, please describe how
often, by whom, and how updates will be
communicated to users (e.g., mailing list,
GitHub)?
Extensions will be maintained via GitHub.

If the dataset relates to people, are there
applicable limits on the retention of the
data associated with the instances (e.g.,
were individuals in question told that their
data would be retained for a fixed period
of time and then deleted)? If so, please
describe these limits and explain how they will
be enforced.
N/A

Will older versions of the dataset continue
to be supported/hosted/maintained? If so,
please describe how. If not, please describe
how its obsolescence will be communicated to
users.
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Data versioning supported natively through
Weights and Biases.

If others want to extend/augment/build
on/contribute to the dataset, is there a
mechanism for them to do so? If so, please
provide a description. Will these contributions
be validated/verified? If so, please describe
how. If not, why not? Is there a process for
communicating/distributing these contributions
to other users? If so, please provide a
description.
The codebase can be freely extended, we will only
be responsible of course for changes to the main
branch.

Any other comments?
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Abstract
Recent work using word embeddings to model
semantic categorization have indicated that
static models outperform the more recent con-
textual class of models (Majewska et al., 2021).
In this paper, we consider polysemy as a possi-
ble confounding factor, comparing sense-level
embeddings with previously studied static em-
beddings on both coarse- and fine-grained cate-
gorization tasks. We find that the effect of pol-
ysemy depends on how one defines semantic
categorization; while sense-level embeddings
dramatically outperform static embeddings in
predicting coarse-grained categories derived
from a word sorting task, they perform ap-
proximately equally in predicting fine-grained
categories derived from context-free similarity
judgments. Our findings highlight the differ-
ent processes underlying human behavior on
different types of semantic tasks.

1 Introduction

A great deal of work has been devoted in recent
years to creating computational models of meaning
(Landauer and Dumais, 1997; Mikolov et al., 2013;
Pennington et al., 2014; Peters et al., 2018; Devlin
et al., 2019). Such models have been evaluated on
a variety of semantic tasks, from word pair simi-
larity judgments to document classification. One
task that has received relatively little attention is
semantic categorization. Besides making pair-wise
judgments about the similarity between two words,
humans can also reason about higher-order struc-
tures; we can tell not only that robin and sparrow
are similar to each other, for example, but also that
they belong in a group with other birds (e.g. ostrich
and pigeon). Based on the impressive performance
of embedding models on other semantic tasks, we
expect such models to excel at identifying semantic
categories as well.

Our particular interest is on the role of polysemy
in semantic categorization. Because words gener-
ally have multiple distinct senses, categorization

decisions will depend on which sense of a word is
being considered. Representing the distinct senses
of polysemous words, then, should be important to
modeling how humans categorize words. For this
reason, we expect contextual embeddings, which
represent each instance of a word in context as a
unique embedding, to model semantic categoriza-
tion better than static models, which conflate every
use of a word into a single representation. But,
in fact, recent work evaluating different word em-
bedding models on verb categorization suggests
just the opposite; Majewska et al. (2021) found
that contextual models perform poorly compared
to older static models.

In the following paper, we challenge this result.
First, we extend the evaluation from Majewska et al.
(2021), who compare word embedding clusters to
coarse-grained semantic categories generated by
humans in a word sorting task, by evaluating sense-
specific embeddings in addition to the static em-
beddings previously reported. We find that retain-
ing sense-level information from contextual BERT
embeddings more than doubles its F1 score, outper-
forming static embeddings by a large margin. This
result suggests that the reported under-performance
of BERT in Majewska et al. (2021) was due not to
the irrelevance of context to categorization or an
inherent weakness of contextual embedding mod-
els, but rather to the fact that information about
polysemy was thrown away in generating static
embeddings from contextual models.

Next, we evaluate the same set of models on
fine-grained categorization, using categories de-
rived from human similarity judgments. Contrary
to the coarse-grained setting, we find that static
and contextual models perform about the same in
predicting fine-grained categories. We surmise that
humans use different cognitive processes to per-
form word sorting vs similarity judgment tasks.
Choosing the best word embeddings thus depends
on the type of behavior one is trying to model.
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2 Background

Since both static and contextual embeddings have
been shown to model pairwise similarity between
words well (Pereira et al., 2016; Chronis and Erk,
2020), and since similarity is a primary criterion for
categorization, it seems intuitive that word embed-
dings should perform well at categorization tasks.
Some previous work supports this intuition; word
embeddings have excelled at word sense disam-
biguation (Giulianelli et al., 2020; Soler and Apid-
ianaki, 2021; Chronis and Erk, 2020) and topic
modeling (Sia et al., 2020; Aharoni and Goldberg,
2020) when cast as categorization problems.

In the present paper, we are interested in se-
mantic category induction. Instead of grouping in-
stances of a word into distinct senses, or documents
into topics, the goal of semantic categorization is to
group unique words into semantically related clus-
ters. This more abstract type of categorization has
received less attention in the word embedding lit-
erature; a few probing studies have tested whether
different models encode a pre-defined set of cat-
egories (Senel et al., 2018; Yaghoobzadeh et al.,
2019; Michael et al., 2020), but in all cases these
categories were stipulated by the researchers and
had not been experimentally validated.

Majewska et al. (2021) recently published a
more empirical categorization dataset, based on
judgments from non-expert native speakers, rather
than stipulated by trained researchers. The dataset,
SpA-Verb1, contains data from two tasks. The first
is a sorting task, where participants grouped a set
of verbs into broad semantic classes. The second
task involves spatial multi-arrangement, which pro-
vides finer-grained judgments about the similarity
between words within a single semantic domain.
SpA-Verb is valuable as an evaluation resource
for modeling categorization because it allows for
a more direct comparison between human catego-
rization behavior and model behavior than previous
datasets. Also, SpA-Verb contains 825 verbs in 17
semantic classes, which is much more comprehen-
sive than other available category datasets.

Most of the verbs in SpA-Verb are polysemous.
While many words belong to more than one class
(corresponding to distinct senses of those words),
the dataset has so far only been used to evaluate
static word embeddings (either from static mod-
els or extracted static representations from contex-
tual models). Our goal with the following study

1https://github.com/om304/SpA-Verb

is to find out when polysemy matters in modeling
natural language semantics, in particular, whether
sense-specific representations are better predictors
of human behavior on some semantic tasks, but not
others.

3 Models

Below we describe the word embedding models we
evaluate on SpA-Verb:

3.1 Word2vec

The first model we evaluate is a word2vec model
trained on part-of-speech-tagged data (Fares et al.,
2017). POS tagging allows the static model to dis-
tinguish between senses which have different parts
of speech (e.g. duck_NOUN and duck_VERB), al-
though senses which have the same POS are still
conflated into a single vector (e.g. get#ACQUIRE
and get#UNDERSTAND). Skip-gram with negative
sampling was used to train the model on Gigaword
5th Edition (Parker et al., 2011), with a context
window size 5 and 300 dimensions.

3.2 BERT

We evaluate three methods of extracting BERT
embeddings: two baseline methods, which cre-
ate one representation per word form, and a multi-
prototype method which generates one representa-
tion per word sense. For all methods we use BERT
Base Uncased from HuggingFace’s transformers
package (Wolf et al., 2020).

Decontextualized (Decont). First and most sim-
ply, we extract embeddings from BERT by feeding
each word to the model in isolation. This creates a
single, static embedding for each word. This strat-
egy has been used previously as a way to easily
extract ‘context-free’ representations from BERT
(Liu et al., 2019; Vulić et al., 2020).

Aggregated (Aggr). Next, we create static em-
beddings from BERT by averaging a word’s embed-
dings across 100 unique contexts. This aggregated
approach still reduces a word to a single representa-
tion, but has been shown to produce higher quality
representations than the decontextualized strategy
(Bommasani et al., 2020).

Multiprototype (MPro). Finally, to test
whether sense-specific information is important
to semantic categorization, we distill token-level
BERT embeddings into multiple prototype embed-
dings. We use the method of Chronis and Erk
(2020) to generate representations which corre-
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Model F1-optimal F1-gold
Random baseline 0.204 0.161

Majewska word2vec 0.355 0.326
Majewska best BERT 0.340 0.322
POS-tagged word2vec 0.442 0.433

Decont. BERT 0.309 0.191
Aggr. BERT 0.398 0.346
MPro BERT 0.743 0.687

Table 1: Average F1 across models on coarse-grained
categories. ‘Gold’ is for k=17, as in the ground truth.
‘Optimal’ is best result for k in the range (5, 50).

spond to different senses of a word, without col-
lapsing every token into a single representation (see
Appendix A).

3.3 Random Baseline
Finally, we generate random vectors and evalu-
ate them in order establish a baseline for random
chance performance.

4 Evaluation

To evaluate the performance of each model on the
ground truth classes, k-means clustering is used
to group verbs into predicted classes. We use the
same metrics as Majewska et al. (2021): modified
purity and weighted class accuracy are combined in
an F1 score, calculated as their balanced harmonic
mean. Modified purity is the mean precision of
predicted clusters, while weighted class accuracy
targets recall (see Appendix B).

Because MPro BERT has multiple representa-
tions for a single word, the same word form may
show up more than once within a single cluster. To
prevent artificially inflating the recall in evaluating
MPro BERT, we eliminate duplicates within each
cluster before evaluation.

5 Coarse-grained Categorization

Next we describe our evaluation of each model on
coarse-grained categorization.

5.1 Dataset
The Phase 1 data of SpA-Verb contains 825 verbs
in 17 broad classes (see Appendix C). 116 verbs
belong to more than one class. No words were
assigned to more than 3 classes.

5.2 Results
Table 1 shows the results of each embedding type,
compared to results reported in Majewska et al.

(2021). The baseline models (Decont. and Aggr.
BERT) perform comparably to previously reported
results. POS-sensitive word2vec model scores
about 10 points higher than reported for a simi-
lar model architecture without POS information.
MPro BERT performs dramatically better than
other embeddings, achieving more than double the
F1 score of the best previously reported BERT re-
sults. This suggests that polysemy does play an
important role in modeling semantic categoriza-
tion.

When we look more closely at MPro BERT, we
find that embeddings from later layers are better
predictors of the ground truth categories than ear-
lier layers (see Appendix D). Interestingly, layer 0
performance is about on par with the static BERT
baselines. Earlier layers of BERT have been shown
to contain less contextual information than later
layers (Ethayarajh, 2019), so this result further sup-
ports the idea that contextual information is impor-
tant to semantic categorization, and that averaging
over all contexts or feeding a word in isolation es-
sentially neutralizes the benefit of contextual mod-
els over static models for this task.

The benefit of sense-specific embeddings for this
task is clear in the example of freeze. In the ground
truth data, freeze belongs to just one class, related
to cooking (along with words like bake, fry, melt,
and thaw). Freeze has another figurative sense,
meaning to stop or suspend. Because the word
is polysemous, static embedding clusters struggle
to categorize it appropriately. In the aggregated
BERT clusters, freeze appears in a cluster predom-
inated by verbs related to violence (whip, shoot,
choke, crush, smash). Decontextualized BERT puts
freeze in a heterogeneous cluster with a few cook-
ing words (melt, stew, fry) but also many seemingly
unrelated words (knit, greet, disturb, wander). It
appears that the different senses of the word skew
its static representation and prevent accurate clas-
sification. MPro BERT, by contrast, puts freeze
in two clusters: one related to cooking (as in the
ground truth) and another cluster with words like
stop, delay, arrest and restrict, which seems to
correspond to the figurative sense of freeze. Thus
factoring out different senses allows MPro BERT to
give a more accurate and reasonable categorization.

MPro BERT tends to capture more distinct
senses per word than human participants did, as
they generally focused on a single sense when cate-
gorizing. On average, each word form appeared in
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3.02 MPro BERT clusters, but only in 1.14 ground
truth classes. For example, the word form jump
occurs in one MPro BERT cluster corresponding
to violence (jump#ATTACK), another cluster corre-
sponding to physical movement (jump#HOP), and
a third one related to change (jump#INCREASE).
In the ground truth data, jump only occurs once,
in a class related to physical movement. Perhaps
this is the most salient sense of the word jump, and
therefore participants were more likely to be think-
ing of this sense during the word sorting task and
ignore its other possible senses. But although the
other two senses of jump counted against MPro
BERT in our evaluation, the fact that embeddings
for jump were assigned three separate clusters is
not necessarily a weakness: the MPro BERT clus-
ters are more thorough as they represent each sense
of the word separately and appropriately assign
them to separate clusters.

This example demonstrates that F1 scores do not
give a full picture of the quality or reasonableness
of the word embedding clusters. Categorization is
a relatively flexible task; there may be many possi-
ble criteria for sorting a group of words, especially
when given such a large set of words to sort (Tver-
sky, 1977; Barsalou, 1982). This might explain the
low inter-annotator agreement between two initial
test participants on Majewska et al. (2021)’s verb
sorting task (0.400 B-Cubed score), suggesting that
humans don’t perform very consistently in creating
broad semantic categories from a large group of
words. As a result, it’s possible for induced cate-
gories from word embeddings to be reasonable, but
still correlate poorly with our ground truth data.

6 Fine-grained Categorization

Next, we examine how word embeddings fare on
finer-grained categories. We speculated that given
a smaller, more focused set of words, there is less
ambiguity about the relevant criteria for categoriz-
ing words, and so evaluating word embeddings on
fine-grained categorization may be a better test of
model quality than coarse-grained categorization.
This section describes how we created a benchmark
for fine-grained categorization from the SpA-Verb
Phase 2 data, and evaluated the same models on
this new benchmark.

6.1 Dataset

In addition to the broad semantic classes created
in Phase 1, SpA-Verb also contains Phase 2: a set

of fine-grained similarity data from a spatial multi-
arrangement task, where participants arranged all
words within a single Phase 1 class on a screen
according to their relative similarity. The result
is a complete matrix of semantic distances for all
words within each Phase 1 class. While the original
authors use this as resource for evaluating models
on standard pair-wise similarity, it can also serve in-
directly as a resource for evaluating category struc-
ture. In order to use this similarity data to evaluate
embedding clusters, we take each row of a class’
distance matrix as the vector representation for that
word. We run k-means clustering on these represen-
tations, and use these clusters as the ground truth
to compare with word embedding clusters.

In the fine-grained categorization setting, we as-
sume that only one sense is relevant for each word;
the other words in the class implicitly disambiguate
between possible senses of a polysemous word,
since they were all assigned to a single semantic
class in Phase 1. For example, when stew occurs
in a class with other words related to cooking, the
sense of stew meaning to worry or fret is not rel-
evant. Since there is only one relevant sense per
word for the fine-grained categorization task, in
order to evaluate our MPro BERT embeddings in
this setting, we need to automatically decide which
of a word’s sense embeddings is the most relevant
given a particular class. To do this, we apply the
MAXSIM method used by Chronis and Erk (2020):
for each pair of words in a given class, we find the
MPro embeddings that yield the highest similar-
ity between the two words. Then, for each word,
the prototype that produced the MAXSIM for the
most other class members is selected as its most
relevant sense, and all other sense embeddings are
discarded.

6.2 Results

Table 2 shows the average F1 scores across all 17
classes for each type of embedding. Unlike in the
coarse-grained setting, there is not a significant dif-
ference between models. Aggregated BERT has a
slight advantage with an average F1 of 0.643. All
three types of static embeddings do significantly
better on fine-grained than coarse-grained catego-
rization. By contrast, F1 for BERT MPro embed-
dings is 15 points lower in the fine-grained com-
pared to the coarse-grained setting. Furthermore,
the opposite pattern appears across BERT layers,
with earlier layers performing better and later lay-
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Model Average F1
Random baseline 0.033

word2vec 0.626
BERT decontext. 0.586
BERT aggregated 0.643

MPro BERT 0.582

Table 2: Average F1 across all classes for each embed-
ding type on fine-grained categorization.

ers performing worse. It seems that accounting for
polysemy makes little difference in the ability of
embeddings to identify fine-grained categories.

The ground truth classes with the highest F1
across models were related to sound (buzz, boom,
chirp, rattle) and physiological processes (sweat,
cough, breathe, yawn). The classes with the lowest
F1 across models were transitive verbs related to
physical movement (drag, fling, tow, throw, lift)
and verbs of communication (announce, discuss,
explain, tell). In general, smaller and more spe-
cific classes were easier to categorize than larger,
broader classes (see Appendix E for detailed break-
down of model performance by category).

This stark difference in the relative performance
of static and contextual embeddings on two dif-
ferent levels of category granularity is surprising.
One possible explanation for this result is that the
ground truth for fine-grained categorization was de-
rived from similarity judgment data, and thus may
reflect a fundamentally different cognitive process
than the coarse-grained ground truth, which came
from a sorting task. Phase 2 data was obtained by
asking participants to make similarity judgments
among a group of words. Our assumption was that
since similarity is the primary criteria for catego-
rizing words, similarity data would yield the same
categories as a sorting task. However, in the ab-
sence of any disambiguating context, participants
may have made decisions about similarity based
on all exemplars of a word, rather than focusing
on one particular sense. By contrast, participants
in the Phase 1 sorting task were asked to make
explicit category judgments. Categorizing words
forces participants to select criteria or features for
membership in a particular category. Because of
this, participants in the sorting task may have sin-
gled out a particular sense of a word in making
their decision. Evidence from psycholinguistics
supports the idea that human performance on differ-
ent semantic tasks may derive from very different
cognitive processes (Kumar, 2021).

If context-free similarity judgments activate all
exemplars of a word, this would explain why static
embeddings (in particular the aggregated BERT
embeddings, which average over many exemplars)
would better fit the Phase 2 data. On the other hand,
if semantic categorization activates specific crite-
ria and forces participants to focus on a particular
sense of words in making a decision, this would
explain why MPro BERT better predicts the Phase
1 data. In order to make a more direct comparison
between coarse- and fine-grained categorization,
we plan to replicate the Phase 1 sorting task for
each individual semantic class.

7 Conclusion

Majewska et al. (2021) found that contextual BERT
embeddings performed more poorly than static
word2vec on the SpA-Verb semantic categoriza-
tion benchmark. In this paper, we challenged their
analysis, testing the effect of sense-specific con-
textual information on model performance on two
different levels of category granularity, and find
that the rich sense-specific information contained
in BERT, if properly exploited, allows BERT to
excel in predicting coarse-grained human seman-
tic categories. Our results suggest that polysemy
affects coarse-grained categorization, and that ac-
counting for polysemy can significantly improve
the predictions of embedding models.

On the other hand, contextual information seems
to be less relevant in modeling finer-grained cate-
gories derived from similarity judgments. It seems
that humans rely on different underlying processes
in making context-free similarity judgments be-
tween words than when making decisions about
category membership. While similarity is judged
based on a summary of all of a word’s exemplars,
categorization requires choosing specific criteria
for membership and thus focuses attention on a
particular sense of a word.

While using sense-specific embeddings seems
best for performing category induction, static repre-
sentations are still desirable for some applications.
For example, in making a cross-linguistic or his-
torical comparison of word meanings, clustering
average representations may be more appropriate
than many sense-specific ones. Ultimately, both
types of behavior are of interest within NLP, but
it’s important to choose an approach carefully, by
considering exactly what type of behavior one is
trying to model.
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A Multi-Prototype BERT embeddings

Multi-prototype embeddings were generated as fol-
lows:

1. For each verb in the dataset, we sampled up
to 100 sentences from the British National
Corpus (BNC Consortium, 2007), excluding
non-verbal uses of the target word. A few
words in the set occurred in BNC fewer than
100 times. Four words (broil, corrupt, exhale,
and misspend) did not occur as verbs at all in
the BNC and were excluded from our analysis.
The average number of occurrences sampled
for a word was 95.6.

2. We extract BERT token embeddings for each
collected occurrence of a word. For words
which BERT tokenizes into multiple word
pieces, we average over all component pieces.

3. We cluster the token embeddings for each
verb. Like Chronis and Erk (2020), we use k-
means clustering to group tokens into ‘sense’

clusters. We use the number of verb senses
listed in WordNet (Miller, 1995) to determine
the appropriate k for each word. Verbs in the
dataset had on average 5.9 senses. (min: 1,
max: 59, for buzz).

4. After identifying clusters, we take the k clus-
ter centroids for each word. These are the em-
beddings we evaluate against the SpA-Verb
categorization data.

B Evaluation metrics

As in Majewska et al. (2021), we evaluate perfor-
mance of word embeddings on semantic catego-
rization using modified purity and weighted class
accuracy, which are combined in an F1 score, cal-
culated as their balanced harmonic mean. Modified
purity is the mean precision of automatically in-
duced verb clusters:

MPUR =

∑
C∈Clust,nprev(C)>1nprev(C)

#test_verbs
(1)

where each cluster C from the set of all KClust

induced clusters Clust is associated with its preva-
lent gold class, and nprev(C) is the number of
verbs in an induced cluster C taking that preva-
lent class, with all other verbs considered errors.
#test_verbs is the total number of verbs in the
dataset. While modified purity is a measure of
precision, weighted class accuracy targets recall:

WACC =

∑
C∈Goldndom(C)

#test_verbs
(2)

where for each class C from the set of gold stan-
dard classes Gold, we identify the dominant cluster
from the set of induced clusters having most verbs
in common with C (ndom(C)).

C Ground truth coarse-grained
categories

The ground truth categories used for evaluating
models on coarse-grained categorization come
from Phase 1 of SpA-Verb. 825 verbs are grouped
into 17 broad semantic classes. Table 3 gives an
overview of the classes.

D MPro BERT Cross Layer Analysis

The MPro BERT embeddings from later layers of
BERT are better predictors of the ground truth cate-
gories than earlier layers. As shown in Figure 1, F1
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Figure 1: Performance of multi-prototype BERT embeddings from each layer. Left: gold case (k=17), right: optimal
case

Cluster label Example verbs
movement wander, fly, glide, roam
communication persuade, command, tell
crime & law beat, abduct, abuse, shoot
negative emotion offend, aggravate, enrage
positive emotion admire, respect, adore, like
cognitive process suppose, assume, realize
cooking cook, slice, stew, boil
possession belong, obtain, acquire

Table 3: A sample of the 17 gold classes in SpA-Verb
dataset (labels are given for descriptive purposes only)

scores increase virtually monotonically from the
first to last layer of BERT. Layer 0 performance is
about on par with the static BERT baselines.

In general, recall (WACC) decreases from earlier
to later layers of BERT, while the precision mea-
sure (MPUR) increases. The increase in precision
is steeper than the decrease in recall, leading the
F1 scores to trend up in later layers. The optimal k
value for the middle layers is very low (5-10) but
much higher for early and later layers (20-30). As
can be seen in Figure 1, there is a spike in recall in
the middle layers, likely due to the lower k values.
Having a few large clusters means that clusters are
more likely to overlap with gold classes, even if
they contain extra irrelevant members.

E Fine-Grained Categorization Results

Table 4 shows a breakdown of the F1 scores for
each model by class. The classes which all mod-
els did best at categorizing were Class 13 (which
contains words describing sounds like boom, buzz,
crunch, rattle, squeak), Class 3 (related to change:
accelerate, diminish, grow) and Class 12 (physi-

ological processes: sweat, cough, breathe, yawn).
The classes which models struggled most with were
Class 15 (physical movement: catch, grab, fling,
jerk), Class 7 (communication: announce, discuss,
explain, tell), and Class 9 (cognitive processes: an-
alyze, describe, ponder, think).
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Class word2vec BERT decontext. BERT aggreg. MPro BERT Average
1 0.624 0.521 0.547 0.541 0.558
2 0.563 0.606 0.619 0.563 0.588
3 0.679 0.660 0.685 0.629 0.663
4 0.535 0.498 0.654 0.545 0.558
5 0.610 0.676 0.673 0.671 0.657
6 0.600 0.589 0.697 0.61 0.625
7 0.498 0.532 0.605 0.556 0.548
8 0.649 0.542 0.649 0.586 0.606
9 0.579 0.521 0.578 0.539 0.554

10 0.504 0.59 0.587 0.598 0.570
11 0.788 0.624 0.60 0.585 0.651
12 0.722 0.581 0.727 0.616 0.661
13 0.742 0.647 0.764 0.573 0.682
14 0.603 0.499 0.653 0.58 0.584
15 0.508 0.572 0.531 0.561 0.543
16 0.740 0.629 0.672 0.545 0.646
17 0.694 0.658 0.682 0.595 0.657

Average 0.626 0.586 0.643 0.582 0.609

Table 4: F1 for each class and embedding type on fine-grained categorization.
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Abstract
Event Detection (ED) aims to identify men-
tions/triggers of real world events in text. In the
literature, this task is modeled as a sequence-
labeling or word-prediction problem. In this
work, we present a novel formulation in which
ED is modeled as a word-label alignment task.
In particular, given the words in a sentence
and possible event types, the objective is to in-
fer an alignment matrix in which event trigger
words are aligned with the most likely event
types. Moreover, we show that this new per-
spective facilitates the incorporation of word-
label alignment biases to improve alignment
matrix for ED. Novel alignment biases and
Optimal Transport are introduced to solve our
alignment problem for ED. We conduct experi-
ments on a benchmark dataset to demonstrate
the effectiveness of the proposed model for ED.

1 Introduction

Event Detection (ED) is one of the critical tasks
in Information Extraction. Its goal is to identify
and classify event triggers, i.e., the words/phrases
that most clearly refer to the occurrence of an event
of some predefined types in text. For example, in
the sentence “Joe Biden was born on November 20,
1942”, an ED system should recognize the word
“born” as a trigger word of an event of type Birth.

A major challenge for ED is to assign an appro-
priate event type label for each word in a given
sentence. In this work, we introduce a new perspec-
tive to solve ED as a word-label alignment problem
that aims to align the set of words in the input sen-
tence with the set of possible event type labels to
represent correct label assignment for words. A key
requirement for ED models in this new perspective
involve inferring an alignment matrix to capture
an alignment likelihood score between each pair
of words and label types. The models can then
be trained by enforcing the similarity between the
predicted alignment matrix and the golden align-
ment matrix (computed from training data). In this

way, previous ED models can be seen as a way to
achieve the alignment matrix between words and
labels where label distributions computed by the
models serve as the alignment likelihood scores
(Nguyen and Grishman, 2015; Chen et al., 2015;
Wang et al., 2019; Cui et al., 2020; Ngo et al.,
2021). However, given the word-label alignment
perspective, previous ED models are suboptimal
in at least two ways. First, the alignment likeli-
hood scores in prior models are only used locally
for each word (i.e., to compute the cross-entropy
loss for each word to train models). The global
uses of alignment matrix (e.g., to compute an over-
all distance between words and labels for training
signals) are thus not yet explored in previous ED
models. Second, current ED models mainly obtain
alignment likelihood scores based on representa-
tion vectors for words and types, thus unable to
exploit assignment biases to improve quality of the
alignment matrix to train ED models. In particu-
lar, we propose two types of alignment biases that
can be helpful for ED: (1) Word Preference: words
with high likelihoods to be event triggers should be
more aligned with event type labels (i.e., not the
Other type for non-trigger words), and (2) Type
Preference: event types that have higher chance
to be appear in the input sentence should be asso-
ciated with greater alignment scores. In all, we
expect that global application and alignment biases
can provide complementary information to boost
current ED models in the new perspective.

To implement this idea, we propose to encode
event trigger likelihoods for words and appearance
likelihoods for event types as two distributions over
words and event type labels (respectively) that will
be induced from a deep learning architecture. Next,
to inject the alignment biases into our ED model,
we propose to feed the two distributions into Op-
timal Transport (OT) (Peyre and Cuturi, 2019) to
induce an alignment matrix between words and
event type labels. OT is an established framework
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to find the optimal alignment between two distribu-
tions, thus providing a decent solution to incorpo-
rate alignment biases to compute alignment matrix
in our ED problem. Finally, the induced alignment
matrix will be leveraged to obtain a distance be-
tween words and event type labels, serving as a
global application of the alignment matrix to in-
troduce new training signals for ED. We conduct
extensive experiments on a benchmark dataset to
deliver state-of-the-art performance for ED. In sum-
mary, our contributions include:

• A new perspective based on word-label align-
ment for event detection.

• Introduction of optimal transport to incorpo-
rate novel alignment biases for event detec-
tion.

• State-of-the-art performance for sequence-
labeling event detection.

2 Model

Given an input sentence S = [w1, w2, . . . , wn],
the goal of ED is to predict the label sequence
L = [l1, l2, . . . , ln] where li ∈ T is the label for
the word wi ∈ S. Here, the label set T involves the
BIO encoding tags for the event types in a given
event ontology (e.g., B_Birth, I_Birth, and Other).
In this work, we propose to model ED as a word-
label alignment problem where an alignment matrix
is formed to capture the assignment likelihood for
every pair of words in S and labels in T . We will
first discuss word/label representations, and align-
ment matrix computation for training afterward.
Word & Label Representation: To represent the
words in S, following prior work (Wang et al.,
2019), we employ the pre-trained BERT model
(Devlin et al., 2019). Concretely, the input sen-
tence [[CLS], w1, w2, . . . , wn] is fed into BERT
to compute the contextualized embedding vectors
E = [ecls, e1, e2, . . . , en]. We employ the average
of vectors in the last layer of BERT to produce E.
For the words with multiple word-pieces, we take
the average of their word-piece representations.

To represent the event type labels li, we employ
a randomly initialized embedding table T in which
every label is represented by a vector ti. The repre-
sentations of the labels are updated during training.
Alignment: To predict the label sequence L with
our alignment idea, for every word wi, an align-
ment likelihood score ai,j between wi and each

label lj is required (i.e., forming an alignment ma-
trix A). Using the scores ai,j , the label l̄i can be
predicted by l̄i = argmaxjai,j . Note that in prior
ED models, the alignment scores ai,j are directly
computed using the final task-specific feed-forward
networks (Wang et al., 2019; Veyseh et al., 2021b).
This approach is equivalent to computing the sim-
ilarity between the representation vectors wi and
tj , e.g., via dot-product. We call this approach
“Vanilla Alignment”. However, as discussed in
the introduction, vanilla alignment scores ai,j are
solely dependent on the learned representations ei
and tj . As such, they cannot incorporate the align-
ment biases into the alignment matrix for ED.

To this end, we introduce two alignment biases
that can be exploited to improve the word-label
alignment for ED. In particular, for an effective
ED model, we expect the words that are more
likely to be event triggers to have higher align-
ment scores with event types. In contrast, the other
words should be better aligned with the special
label Other. i.e., non-trigger. We call this bias
“Word Preference” for ED. In addition, among all
event types, it is expected that the event types that
have higher chance to be mentioned in the input
sentence to be associated with greater scores in
the alignment matrix A. We name this bias as
“Type Preference”. In this work, we aim to mod-
ify the vanilla alignment approach such that the
two aforementioned preferences are observed. The
quantification of Word and Type Preference and
their incorporation into alignment matrix will be
discussed in the following.

Word & Type Preference: To compute the word
preference and type preference in the input sen-
tence S, we consider two simpler versions of the
ED problem. Specifically, for word preference,
we utilize the Trigger Identification (TI) task that
seeks to recognize the event trigger words with-
out classifying them by event types. The event
trigger probability computed for TI can be used to
quantify the event trigger likelihood for each word
wi ∈ S. Concretely, the representation ei of wi

is fed into a feed-forward network with sigmoid
activation function to compute the trigger likeli-
hood pwi for wi: pwi = σ(FFw(ei)), where σ and
FFw are sigmoid and feed-forward layer, respec-
tively. To supervise the trigger likelihood scores,
we include the binary cross-entropy loss function
for TI into the overall loss for training: LTI =
− 1

n

∑n
i=1(y

w
i ∗ log(pwi )+(1−ywi )∗ log(1−pwi )),
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where ywi is a binary number to indicate whether if
wi is a trigger in S. The likelihood scores pwi are
employed to represent the word preference.

Next, for the type preference, we exploit the task
of Type Prediction (TP) for ED. In this task, the
objective is to predict which event types are men-
tioned in the sentence S (i.e., without predicting
the trigger words). For an event type label tj , we
predict the likelihood for tj to be mentioned in S
by concatenating the type representation tj with
the sentence representation ecls and feeding the re-
sult into a separate feed-forward network FFt with
sigmoid activation to obtain the appearance like-
lihood for tj : ptj = σ(FFt([tj , ecls])). To super-
vise the appearance likelihoods, the binary cross-
entropy loss function for TP is employed: LTP =

− 1
|T |

∑|T |
j=1(y

t
j ∗ log(ptj) + (1− ytj) ∗ log(1− ptj),

where ytj is a binary number to indicate the appear-
ance of the event type tj in S. The likelihood scores
ptj are utilized to represent the type preference.
Alignment Computation: Given the word and
type preference scores pwi and ptj , how can we com-
pute an alignment matrix A between the words
in S and the event type labels in T that can in-
corporate both word-label representation similar-
ity (as in vanilla alignment) and designed pref-
erence scores for ED? Note that the preference
scores can be modeled as two distributions over
words and event type labels by applying a soft-
max function over the word and type likelihoods:
DWP = softmax(pw1 , p

w
2 , . . . , p

w
n ) and DTP =

softmax(pt1, p
t
2, . . . , p

t
T ). As such, we propose to

employ Optimal Transport (OT) to elegantly com-
bine the information to produce the alignment ma-
trix A between S and T for ED.

Formally, given the probability distributions p(x)
and q(y) over the domains X and Y , and the
cost/distance function C(x, y) : X × Y → R+ for
mapping X to Y , OT finds the optimal joint align-
ment/distribution π∗(x, y) with marginals p(x) and
q(y) that converts p(x) to q(y) (i.e., the cheapest
plan), by solving the following problem:

π∗(x, y) = min
π∈Π(x,y)

∑

Y

∑

X
π(x, y)C(x, y)

s.t. x ∼ p(x) and y ∼ q(y),

(1)

Here, Π(x, y) involves all joint distributions with
marginals p(x) and q(y). As such, the joint dis-
tribution π∗(x, y) is a matrix whose entry (x, y)
(x ∈ X , y ∈ Y) represents the probability of
transforming x to y in the optimal transport. We
use the Sinkhorn algorithm to approximately solve

OT (Peyre and Cuturi, 2019). Finally, given
π∗(x, y), one approach to employ its global infor-
mation is to compute the cost of optimal conver-
sion Dist(π∗) = Σx∈XΣy∈Yπ∗(x, y)C(x, y) to
measure the distance between X and Y (i.e., the
Wasserstein distance).

To apply OT in our model, the domains X and Y
are defined as the words wi ∈ S and types tj ∈ T ;
the distributions p(x) and q(y) are set to the pref-
erence distributions DWP and DTP ; and the cost
function C(wi, tj) is computed using the Euclidean
distance between the representations ei and tj . As
such, solving the OT equation leads to the opti-
mal alignment π∗(wi, tj), serving as our predicted
alignment matrix (i.e., ai,j = π∗(wi, tj)).

To train the ED model with word-label align-
ment, we propose two training signals obtained
from the predicted alignment π∗(ei, tj). First, by
treating the alignment score π∗(ei, tj) as the proba-
bility for wi to be assigned with label tj , we employ
the negative log-likelihood loss to train our model:
Ltask = − 1

n

∑n
i=1 log(π

∗(wi, li)), where li is the
golden label for wi in S. Second, we propose to
globally enforce the similarity between the pre-
dicted alignment matrix π∗(wi, tj) from OT and
the golden binary alignment matrix πg(wi, tj) (i.e.,
πg(wi, tj) = 1 if only if wi has the golden label tj).
As such, to aggregate the information in the align-
ment matrices, we first compute the Wasserstein
distances Dist(π∗) and Dist(πg) based on the pre-
dicted and golden alignments π∗ and πg. After-
ward, we seek to minimize the difference between
Dist(π∗) and Dist(πg) to achieve alignment ma-
trix similarity to train our ED models, leading to
the loss: LOT = |Dist(π∗)−Dist(πg)|. Finally,
the overall loss function for the entire model is
L = αtaskLtask+αOTLOT +αTILTI+αTPLTP .

3 Experiments

Datasets & Baselines: We evaluate the perfor-
mance of the proposed model (called OTED) on
the ACE 2005 dataset (Walker et al., 2006) that
annotates 599 documents for 33 event types in
English. We use the same data split and prepro-
cessing as prior work (Wang et al., 2019; Veyseh
et al., 2021b) for this dataset. The numbers of doc-
uments for the training/development/test data are
529/30/40 respectively. Following (Wang et al.,
2020a; Veyseh et al., 2021b), we use the sequence-
labeling setting for the ED task in ACE 2005 that
adheres to the original annotation to allow event
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Model ACE
P R F1

BiLSTM 77.20 74.90 75.40
DMBERT 71.49 76.95 74.12
BERT+CRF 71.30 77.10 74.10
ED3C 80.31 76.04 78.12
OTED (ours) 79.28 79.48 79.38

Table 1: Model performance on the test sets. OTED is
significantly better than the baselines with p < 0.05.

triggers to span multiple words.
As the baselines, we compare with the typical se-

quence labeling models for ED, i.e., BiLSTM, DM-
BERT (BERT with dynamic multi-pooling), and
BERT+CRF in (Wang et al., 2020a), and the prior
state-of-the-art (SOTA) model reported for ACE
2005, i.e., ED3C (Veyseh et al., 2021b). For all
the models, we use the same version of pre-trained
BERTbase to achieve a fair comparison. Follow-
ing prior work (Wang et al., 2020b; Veyseh et al.,
2021b), we use span-based precision, recall and
F1 scores for correctly predicting the boundaries
and types of event triggers as the performance met-
rics. Finally, we fine-tune the hyper-parameters for
OTED using the development data of ACE 2005.
In our model we use the BERTbase model to en-
code data; 2 layers for all the feed-forward neural
networks with 200 hidden dimensions in the layers.
The trade-off parameters αtask, αOT , αTI and αTP

are set to 1.0, 0.01, 0.05, and 0.01 respectively. The
learning rate is set to 3e-5 for the Adam optimizer
and the batch size of 8 is employed during training.
Results: The model performance is presented in
Table 1. This table shows that OTED significantly
outperforms the baseline models on ACE 2005. We
attribute the superiority of OTED to its capability
to incorporate alignment biases, i.e., word and type
preference, into alignment-based ED. The better
performance of OTED over ED3C is important as
unlike this baseline OTED does not require addi-
tional document context or supervision from other
related tasks.
Ablation Study: We conduct an ablation study for
the components of OTED over the ACE 2005 de-
velopment set. Table 2 presents the performance
of three groups of ablated models for OTED. In
the first group (lines 2-4), we exclude one or both
alignment biases, i.e., WP and TP, from OTED.
Concretely, to remove a preference, its correspond-
ing distribution in the OT (i.e., DWP and DTP )

Line Model P R F1
1 OTED (full) 79.12 79.94 79.53
2 OTED - WP 75.14 81.39 78.14
3 OTED - TP 77.32 78.55 77.93
4 OTED - WP- TP 76.90 76.92 76.91
5 OTED - Ltask 75.24 77.02 76.12
6 OTED - LOT 75.92 80.28 78.04
7 OTED - LTI 78.91 75.60 77.22
8 OTED - LTP 78.21 76.05 77.12
9 Distance 76.66 78.03 77.34
10 Alignment 77.98 78.93 78.45

Table 2: Model performance on the ACE 2005 dev set.

is replaced with the uniform distribution in the
OT computation for OTED. It is clear from the
table that both alignment biases are beneficial for
OTED as removing any of them would hurt the
performance significantly. Next, the second group
(lines 5-8), we exclude each loss component (i.e.,
Ltask, LOT , LTP , and LTI ) from the overall loss
L to train OTED. As can be seen, all the designed
losses contribute significantly to the performance
of OTED, thus testifying to their effectiveness in
alignment-based ED. Also, in the third group (lines
9-10), we explore two variants of OTED to jus-
tify the design of the loss LOT to incorporate OT
into the model. In one variant (called Distance
in line 9), instead of minimizing the difference
LOT between the Wasserstein distances based on
predicted and golden alignments, we directly mini-
mize the predicted Wasserstein distance Dist(π∗)
between words and labels. Moreover, in the Align-
ment variant in line 10, instead of employing the
Wasserstein distance, we directly minimize the
distance between the predicted and golden align-
ment π∗(wi, tj) and πg(wi, tj) (i.e., evaluated by∑

i,j |π∗(wi, tj)− πg(wi, tj)|/(n|T |)). As can be
seen, both Distance and Alignment lead to inferior
performance for OTED, thereby showing the effec-
tiveness of LOT for ED. As such, we attribute the
poor performance of Distance to the lack of super-
vision from the golden alignment-based distance
πg(wi, tj), and the worse performance of Align-
ment to the missing of contextual similarity (i.e.,
the cost C(wi, tj)) in the distance computation.
Analysis: In this section, we present a qualitative
analysis to shed more light on the superiority of
the proposed model OTED to the prior sequence
labeling methods. Specifically, we compare our
model with the BERT+CRF baseline by analyzing
the examples in which BERT+CRF fails to recog-
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ID Example BERT+CRF
Prediction

OTED
Prediction

Gold Event
Trigger & Type

1
These are the reasons that none of these
mothereffers should ever see the light of day ...
they need to be all lined up and shot.

Trigger: “shot”,
Event Type:
Contact:Meet

Trigger: “shot”,
Event Type:
Justice:Execute

Trigger: “shot”,
Event Type:
Justice:Execute

2
Well , John, given all that you’ve said, we know
that there’s an American retired general
waiting in Kuwait.

Trigger:
“waiting”,
Event Type:
Personnel:End-
Position

Trigger:
“retired”, Event
Type:
Personnel:End-
Position

Trigger:
“retired”, Event
Type:
Personnel:End-
Position

Table 3: Case study on the development set of the ACE 2005 dataset. The golden trigger words are underlined.

nize the event types and triggers, but OTED can
successfully perform the predictions. A major find-
ings in our analysis is that OTED can exploit the
introduced alignment bias (i.e., word and type pref-
erence) to avoid unlikely event triggers and types
(i..e, the ones that should be obviously eliminated
based on overall sentence context). This leads to
correct predictions for examples that BERT+CRF
make mistakes. Table 3 shows two examples from
the development set of the ACE 2005 dataset to
illustrate our findings. In the first example, the
baseline can recognize the event trigger “shot”, but
fails to predict the event type. Given the context of
the sentence, the predicted event type Contact:Meet
by BERT+CRF should be considered as unlikely
to be mentioned in the sentence. As the proposed
model OTED employs type preference knowledge,
it successfully avoids unlikely event types for this
sentence. In addition, in the second example, the
baseline incorrectly predicts a non-trigger word
(i.e., “waiting”) as a trigger. In contrast, since
OTED employs word preference knowledge, it can
effectively avoid unlikely event triggers.

4 Related Work

Early methods for ED employed feature engineer-
ing models (Ahn, 2006; Ji and Grishman, 2008;
Liao and Grishman, 2010; Hong et al., 2011; Li
et al., 2013; Miwa et al., 2014; Yang and Mitchell,
2016). Recently, deep learning was adopted as the
SOTA approach for ED (Chen et al., 2015; Nguyen
et al., 2016; Sha et al., 2018; Nguyen and Grish-
man, 2018; Yang et al., 2019; Wang et al., 2019;
Lai et al., 2020; Cui et al., 2020; Tong et al., 2020;
Nguyen et al., 2021). Unlike such prior work, we
introduce a new word-label alignment perspective
using OT for ED. Finally, some recent work has
utilized OT for character/word/example alignment
problems (Dou and Neubig, 2021; Xu et al., 2021;
Veyseh et al., 2021a, 2022; Guzman-Nateras et al.,

2022). However, none of them explores OT for
word-label alignment in ED.

5 Conclusion

We present a general word-label alignment formula-
tion for ED in which each pair of words and types is
associated with an alignment score for label assign-
ment likelihood. Moreover, we introduce two align-
ment biases based on type and word preference to
improve the word-label alignment matrix computa-
tion with OT. Extensive analysis on a benchmark
dataset demonstrates the benefits of the proposed
technique for ED. In the future, we plan to evaluate
our method on more datasets for ED (Wang et al.,
2020a; Man et al., 2020; Lai et al., 2021) to better
understand its operation.
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Abstract

There have been many successful applications
of sentence embedding methods. However, it
has not been well understood what properties
are captured in the resulting sentence embed-
dings depending on the supervision signals. In
this paper, we focus on two types of sentence
embedding methods with similar architectures
and tasks: one fine-tunes pre-trained language
models on the natural language inference task,
and the other fine-tunes pre-trained language
models on word prediction task from its defini-
tion sentence, and investigate their properties.
Specifically, we compare their performances on
semantic textual similarity (STS) tasks using
STS datasets partitioned from two perspectives:
1) sentence source and 2) superficial similar-
ity of the sentence pairs, and compare their
performances on the downstream and probing
tasks. Furthermore, we attempt to combine
the two methods and demonstrate that combin-
ing the two methods yields substantially better
performance than the respective methods on
unsupervised STS tasks and downstream tasks.

1 Introduction

Sentence embeddings are dense vector representa-
tions of a sentence. A variety of methods have been
proposed to derive sentence embeddings, includ-
ing those based on unsupervised learning (Kiros
et al., 2015; Hill et al., 2016; Logeswaran and Lee,
2018; Cer et al., 2018; Wang et al., 2021) and super-
vised learning (Conneau et al., 2017). Pre-trained
Transformer-based (Vaswani et al., 2017) language
models, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), have been successfully
applied in a wide range of NLP tasks, and sentence
embedding methods that leverage pre-trained lan-
guage models have also performed well on seman-
tic textual similarity (STS) tasks and several down-
stream tasks. These methods refine pre-trained
language models for sophisticated sentence embed-
dings by unsupervised learning (Li et al., 2020;

Definition sentenceSentence BSentence A

w|V|w1 w2 w3 ...

BERTBERT

pooling pooling

ContradictionEntailment Neutral

Label prediction layer

BERT

pooling

Word prediction layer

Figure 1: Overviews of SBERT (left) and DefSent (right).

Wang and Kuo, 2020; Giorgi et al., 2021; Carlsson
et al., 2021; Yan et al., 2021; Gao et al., 2021), or
supervised learning (Reimers and Gurevych, 2019;
Tsukagoshi et al., 2021; Gao et al., 2021).

Among them, Reimers and Gurevych (2019) pro-
posed Sentence-BERT (SBERT), which fine-tunes
pre-trained language models on the natural lan-
guage inference (NLI) task. SBERT performed
well on the STS and downstream tasks. Recently,
Tsukagoshi et al. (2021) proposed DefSent, which
fine-tunes pre-trained language models on the task
of predicting a word from its definition sentence in
a dictionary, and reported that it performed com-
parably to SBERT. Figure 1 shows overviews of
SBERT and DefSent. Although both methods fine-
tune the same pre-trained models and use the same
pooling operations to derive a sentence embedding,
the supervision signals for fine-tuning are different.
That is, SBERT leverages NLI datasets, whereas
DefSent leverages word dictionaries.

It is expected that the properties of the sentence
embeddings depend on their supervision signals.
However, since existing research has mainly fo-
cused on achieving better performance on bench-
mark tasks, it has not been revealed what prop-
erty differences the resulting sentence embeddings
have. Investigating the properties of sentence em-
beddings would give us a better understanding of
existing sentence embedding methods and help de-
velop further methods. In this paper, we empirically
investigate the influence of supervision signals on
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sentence embeddings. We focus on SBERT and
DefSent because they leverage different supervi-
sion signals but have very similar architectures, as
shown in Figure 1; thus, they would be appropri-
ate for analyzing the influence of the supervision
signals on sentence embeddings.

First, we partitioned the STS datasets (Agirre
et al., 2012, 2013, 2014, 2015, 2016; Cer et al.,
2017; Marelli et al., 2014) on the basis of two
different perspectives and examine what type of
meaning each type of sentence embeddings cap-
tures by analyzing the performance of each method
on these partitioned STS datasets. We then ap-
ply each type of embeddings to the downstream
and probing tasks of SentEval (Conneau and Kiela,
2018) and analyze what type of information is cap-
tured. Our results demonstrate that the supervision
signals have a significant impact on performance
on these tasks and that the properties of SBERT and
DefSent would be complementary. Thus, we fur-
ther explore whether combining the two methods
yields better sentence embeddings to confirm their
complementarity, and demonstrate that combining
the two methods yields substantially better perfor-
mance than the respective methods on unsupervised
STS tasks and downstream tasks of SentEval.

2 Preparation

In this section, we present detailed descriptions of
SBERT and DefSent, the two sentence embedding
methods compared in this study, and describe the
tasks and settings for the experiments.

2.1 Sentence-BERT

Sentence-BERT (SBERT) proposed by Reimers
and Gurevych (2019) is a sentence embedding
method that fine-tunes pre-trained language models
in a Siamese network architecture on the NLI task.
An overview of SBERT is given on the left side of
Figure 11. For fine-tuning of SBERT, NLI datasets,
such as the Stanford NLI (SNLI) dataset (Bow-
man et al., 2015) and Multi-Genre NLI (MultiNLI)
dataset (Williams et al., 2018), are used. These
datasets consist of sentence pairs labeled as either
entailment, contradiction, or neutral. The NLI task
is a classification task to predict these labels.

SBERT first inputs each sentence of a pair into
BERT and obtains sentence embeddings from the
output contextualized word embeddings by a pool-

1Actually, it is possible to use RoBERTa and others instead
of BERT, but for simplicity we refer to it as BERT here.

ing operation. SBERT uses three types of pooling
strategies: CLS, which uses the embedding of the
first token of the input sequence (e.g., the [CLS]
token for BERT); Mean, which uses the average
of all word embeddings; and Max, which uses the
max-over-time of all word embeddings. Let u and
v be the sentence embeddings obtained by such
pooling. SBERT composes a vector [u; v; |u− v|]
and inputs it into a three-way softmax classifier to
predict the label of the given sentence pair.

2.2 DefSent
DefSent proposed by Tsukagoshi et al. (2021) is
a sentence embedding method that fine-tunes pre-
trained language models on the task of predicting
a word from its definition sentence in a dictionary.
An overview of DefSent is given on the right side of
Figure 1. As well as SBERT, DefSent first inputs
a definition sentence into BERT and obtains the
sentence embedding by a pooling operation, which
uses CLS, Mean, and Max as the pooling strategies.
The derived sentence embedding is then input to the
word prediction layer and fine-tunes the model to
predict the corresponding word. The word predic-
tion layer is the one that was used for masked lan-
guage modeling during pre-training. Tsukagoshi
et al. (2021) reported that DefSent performed com-
parably to SBERT.

2.3 STS tasks
We use STS tasks to investigate the properties of
sentence embeddings. STS tasks evaluate how the
semantic similarity between two sentences calcu-
lated with a model correlates with a human-labeled
similarity score through Pearson and Spearman
correlations. There are two types of settings: super-
vised and unsupervised. In the supervised setting, a
model learns a regression function that maps a pair
of sentences to a similarity score using some of the
STS datasets. In the unsupervised setting, no train-
ing is performed on STS datasets, and we compute
the similarity between two sentence embeddings,
with a similarity score such as cosine similarity.

For the evaluation of the STS tasks, STS12–
STS16 (Agirre et al., 2012, 2013, 2014, 2015,
2016), STS Benchmark (Cer et al., 2017), and
SICK-R (Marelli et al., 2014) are often used. Each
dataset contains sentence pairs with their seman-
tic similarity scores as gold labels given by real
numbers ranging from 0 to 5. Each of the STS12–
STS16 datasets consists of sentence pairs from mul-
tiple sources. For example, STS12 consists of sen-
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Sources # Origin

STS12

MSRpar 750 newswire
MSRvid 750 videos

SMTeuroparl 459 WMT eval.
OnWN 750 glosses

SMTnews 399 WMT eval.

STS13
FNWN 189 glosses

headlines 750 newswire
OnWN 561 glosses

STS14

deft-forum 450 forum posts
deft-news 300 news summary
headlines 750 newswire headlines
images 750 image descriptions
OnWN 750 glosses

tweet-news 750 tweet-news pairs

STS15

answers-forums 375 Q&A forum answers
answers-students 750 student answers

belief 375 committed belief
headlines 750 newswire headlines
images 750 image descriptions

STS16

answer-answer 254 Q&A forum answers
headlines 249 newswire headlines
plagiarism 230 short-answer plag.
postediting 244 MT postedits

question-question 209 Q&A forum questions

Table 1: Statistics of STS datasets partitioned by source.
“#” denotes number of sentence pairs, and “Origin” de-
notes origin of dataset.

tence pairs from five sources: MSRpar, MSRvid,
SMTeuroparl, OnWN, and SMTnews. Table 1 lists
the sources of each dataset in STS12–STS16.

2.4 SentEval
We also compare SBERT and DefSent on SentEval
(Conneau and Kiela, 2018) tasks. SentEval is a
widely used toolkit to evaluate the quality of sen-
tence embeddings by measuring the performance
on classification tasks. Since SentEval provides var-
ious classification tasks, it is suitable for investigat-
ing the properties of sentence embeddings. SentE-
val consists of two types of tasks: downstream tasks
and probing tasks. Downstream tasks are binary or
multi-class classification tasks, such as sentiment
classification in movie reviews and question-type
classification. Probing tasks are classification tasks
for linguistic information, such as sentence length
and tense classification.

2.5 Experimental settings
In the experiments reported in Sections 3 and
4, we use BERT-base (bert-base-uncased), BERT-
large (bert-large-uncased), RoBERTa-base (roberta-
base), and RoBERTa-large (roberta-large) from
Transformers (Wolf et al., 2020) as the pre-trained
language models and adopt Mean as the pooling
strategy. We use the same settings as Reimers and
Gurevych (2019) and Tsukagoshi et al. (2021) for

fine-tuning. We provide further training details in
Appendix A, and report the fine-tuning time and
computing infrastructure in Appendix B.

3 Comparison of Sentence Embeddings

The supervision signal used for fine-tuning sen-
tence embeddings might affect their properties. For
example, since it is crucial to capture the differ-
ences in meaning even when the given sentence
pair is superficially similar in the NLI task, SBERT
is considered suitable for determining the semantic
similarity between superficially similar sentence
pairs. In this section, we attempt to reveal such
properties of each type of sentence embeddings.
First, we partition the STS datasets on the basis of
the source of the sentence pairs and the superficial
similarity of the sentence pair. We then apply each
type of embeddings to the downstream and probing
tasks of SentEval.

3.1 STS partitioned by source

We assume that each sentence embedding method
might better capture the meaning of sentences sim-
ilar to those in the dataset used for fine-tuning,
i.e., NLI datasets for SBERT and word dictionar-
ies for DefSent. Thus, we partition STS12–STS16
datasets in accordance with the source of the sen-
tences and measure the performance for each sub-
set. We adopt the unsupervised setting. We cal-
culate Spearman’s rank correlation coefficient (ρ)
between semantic similarity scores and each type
of sentence embeddings. For comparison, we con-
duct evaluations on the concatenation of all subsets,
i.e., the STS datasets without partitioning. We fine-
tune and evaluate SBERT and DefSent 10 times
with different seed values and report the average.
We also evaluate the model without fine-tuning (w/o

FT) for comparison.
Figure 2 shows the Spearman’s ρ for the sub-

sets of the STS12–STS16 datasets. It is worth
noting that since we use correlations, the evalua-
tion score on the concatenation of all subsets is
not the average of the other scores, and in extreme
cases it can be smaller than the minimum of the
other scores. We can see that both SBERT and
DefSent achieve higher scores than w/oFT on most
subsets. Although DefSent consistently performs
better than w/oFT in all subsets, SBERT performs
worse than w/oFT in some subsets. Comparing
SBERT and DefSent, when we focus on individ-
ual subsets, we can find that there are cases in
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Figure 2: Spearman’s ρ × 100 for STS12–STS16 datasets partitioned by source. “STS# ALL” denotes the
concatenation of all subsets for each STS dataset.

which SBERT achieves higher scores than Def-
Sent, but we can say that DefSent achieves slightly
higher scores as a whole. DefSent achieves no-
ticeably higher scores than SBERT on OnWN and
FNWN of STS13 and OnWN of STS14. OnWN
and FNWN of STS13 are datasets created using
definition sentences in OntoNotes, FrameNet, and
WordNet. These results, as expected, indicate that
DefSent is capable of adequately representing the
meaning of definition sentences. However, SBERT
achieves higher scores than DefSent on deft-forum
and headlines of STS14 and answer-students of
STS15. Regarding answer-students, since it is built
from a dataset that has a similar format to the NLI
datasets (Agirre et al., 2015), it is considered a
score such as the one observed is as expected for

SBERT, which is trained on the NLI datasets.

3.2 STS partitioned by Dice coefficient

We then explore how the similarity of sentence em-
beddings is affected by the superficial similarity
of the sentences. Generally speaking, it is con-
sidered difficult to correctly order the similarity
of a dataset consisting of pairs with high superfi-
cial similarity. However, since the NLI datasets
contain a relatively large number of superficially
similar sentences, SBERT built on such a dataset
is expected to be relatively robust to sentence pairs
with high superficial similarity. To verify whether
there is such a tendency, we partition STS Bench-
mark datasets in accordance with the superficial
similarity of the sentences and investigate the per-
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sentence 1 sentence 2 Human Dice w/oFT SBERT DefSent
A man is playing a guitar. The man is playing the guitar. 4.909 0.800 0.906 0.985 0.978
A man is playing a guitar. A guy is playing an instrument. 3.800 0.545 0.945 0.646 0.895
A man is playing a guitar. A man is playing a guitar and singing. 3.200 0.833 0.979 0.874 0.977
A man is playing a guitar. The girl is playing the guitar. 2.250 0.600 0.900 0.747 0.831
A man is playing a guitar. A woman is cutting vegetable. 0.000 0.400 0.890 0.290 0.595

Table 2: Example sentence pairs in STS Benchmark datasets and their scores. “Human” denotes human-labeled
similarity scores, “Dice” denotes Dice coefficients, and “w/oFT”, “SBERT”, and “DefSent” denote cosine similarities
between each sentence embedding computed with BERT without fine-tuning, SBERT, and DefSent, respectively.
The average cosine similarity for w/oFT is 0.816, for SBERT is 0.678, and for DefSent is 0.809.

formance of each embedding method on the par-
titioned datasets. Specifically, we use Dice coeffi-
cients between the sets of words in a sentence pair
as the superficial similarity, which is defined as

Dice(S1, S2) =
2|W1 ∩W2|
|W1|+ |W2|

,

where S1 and S2 are the sentence pair, and W1 and
W2 are the sets of words in S1 and S2, respectively.
We sort the sentence pairs in all STS Benchmark
datasets including training, development, and test
sets in accordance with the Dice coefficient, and
partition them into five subsets, that is, grouping
20% of the sentences from bottom to top.

Figure 3 shows the Spearman’s ρ for each sub-
sets. We can confirm that the subsets with larger
Dice coefficients, that is, a higher superficial simi-
larity, tend to be more difficult to rank the semantic
similarities. However, as expected, SBERT is more
robust to the subsets with higher superficial simi-
larity, and consequently, SBERT achieves a higher
score than DefSent for these subsets, whereas Def-
Sent achieved a higher score than SBERT for the
subsets with a lower superficial similarity.

For further investigation, we conduct a qualita-
tive analysis of how superficial similarity affects
the behavior of the methods. Table 2 shows exam-
ple sentence pairs from STS Benchmark datasets
with their human-labeled similarity scores, Dice co-
efficients, and cosine similarities between each sen-
tence embedding with the respective methods. As
shown in the second row from the top, we observe
that each sentence of the pair represents almost
the same thing except for minor details (“guitar”
or “instrument”), but SBERT assigns relatively a
much lower similarity than other examples. As
shown in the third row from the top, the similar-
ity score of DefSent is very high, even though the
human-labeled score is not that high. In summary,
we can say that SBERT is better at capturing the se-
mantic similarity of superficially similar sentences,

Figure 3: Spearman’s ρ × 100 for STS Benchmark
partitioned in accordance with the ratio of shared words.
Sentence pairs are more superficially similar to right.

while DefSent is better at capturing the similarity
of sentences with low superficial similarity.

3.3 SentEval donwstream tasks

We then apply each type of embeddings to the
downstream tasks of SentEval and analyze what
type of information each type of embeddings cap-
tures that is useful for the downstream task. We
train a logistic regression classifier with 10-fold
cross-validation, a batch size of 64, an epoch size
of 4, and Adam (Kingma and Ba, 2015) optimizer,
the same as the default configurations of SentEval.
Specifically, parameters of sentence embedding
models are fixed during training of the classifier.
We fine-tune and evaluate SBERT and DefSent
three times with different seed values and report
the average of accuracy for each downstream task.
We also evaluate w/oFT for comparison.

Figure 4 shows the accuracy for downstream
tasks. As a whole, SBERT and DefSent perform
comparably. SBERT performs best for MR, CR,
SST2, and MRPC. Since MR, CR, and SST2 are
sentiment prediction tasks, it suggests that SBERT
encodes the sentiment of sentences into the em-
bedding. Also, MRPC is a paraphrase-prediction
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Figure 4: Experimental results on each SentEval
downstream task with the accuracy (%).

task, which predicts whether two sentences have
the same meaning on the basis of their embeddings.
Therefore, MRPC is similar to the NLI task, and
thus it is not surprising that SBERT performs better.

DefSent performs best for MPQA and is com-
parable to w/oFT for SUBJ and TREC. MPQA is
a phrase-level opinion polarity classification task,
and it is necessary to compose the meaning of
phrases adequately. We conjecture that the perfor-
mance of DefSent is high because DefSent success-
fully composes the meaning of the corresponding
words from the definition sentences during fine-
tuning. It is worth noting that w/oFT performs best
for SUBJ and TREC, and SBERT performs much
worse for them. SUBJ is a subjectivity classifica-
tion task and TREC is a question-type classification
task. Since information about words in sentences
is particularly important for these tasks, SBERT is
considered to have less information about which
words are included in sentences than DefSent and
w/oFT. Therefore, we can say that SBERT encodes
mainly sentiment information into the sentence em-
bedding, and the sentence embedding is suitable
for determining whether the meaning is the same.
Also, DefSent successfully composes the meaning
of the sentence from its words and encodes infor-
mation about words the sentence has.

3.4 SentEval probing tasks
Finally, we apply each type of embeddings to the
probing tasks of SentEval and analyze what type
of linguistic information each type of embeddings
captures. We use the same setting as in Section 3.3.

Figure 5: Experimental results on each SentEval
probing task with the accuracy (%).

Figure 5 shows the accuracy for probing tasks.
Overall, w/oFT performs best on average, followed
by DefSent, and then SBERT. The overall perfor-
mance of SBERT is relatively low. SBERT encodes
the semantic information of sentences according to
the results of SentEval downstream tasks. These
results also indicate that SBERT encodes semantic
information rather than linguistic information such
as words in a sentence. DefSent is comparable to
w/oFT in WordContent, Tense, and SubjNumber.
This also indicates that the sentence embeddings
from DefSent have information about words the
sentence contains.

4 Combination of Sentence Embeddings

We have shown that SBERT and DefSent have dif-
ferent properties and that they may be complimen-
tary. This suggests that combining the two methods
may yield better sentence embeddings. Thus, we
attempt to combine SBERT and DefSent and evalu-
ate the resulting sentence embeddings on unsuper-
vised STS tasks and SentEval downstream tasks.
Specifically, we use the following five methods of
combining SBERT and DefSent for BERT2.

2The experimental results for RoBERT are given in Ap-
pendix C and D.
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Model Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
BERT-base w/oFT 30.88 59.90 47.74 60.29 63.73 47.29 58.22 52.58
BERT-base SBERT 69.78 72.51 70.42 77.95 73.45 75.96 72.26 73.19
BERT-base DefSent 67.31 81.76 71.83 78.18 76.91 76.98 73.47 75.20
BERT-base S+D 70.71 83.48 76.66 82.00 78.70 80.76 76.83 78.45
BERT-base D+S 68.68 73.65 70.60 76.96 72.54 75.30 72.46 72.89
BERT-base MULTI 63.10 74.34 70.30 77.64 74.08 77.35 73.42 72.89
BERT-base AVERAGE 72.40 81.36 75.80 81.90 77.64 79.74 75.87 77.81
BERT-base CONCAT 71.13 78.54 74.03 79.95 76.01 78.37 74.17 76.03
BERT-large w/oFT 27.69 55.78 44.48 51.67 61.85 47.00 53.85 48.90
BERT-large SBERT 70.76 73.68 72.56 79.00 74.61 77.11 72.47 74.31
BERT-large DefSent 63.30 82.16 72.67 79.06 77.52 77.40 74.02 75.16
BERT-large S+D 69.48 83.90 76.83 82.61 80.14 81.72 78.77 79.06
BERT-large D+S 71.25 75.71 73.39 79.68 75.20 77.67 73.78 75.24
BERT-large MULTI 70.33 81.16 75.84 80.02 76.52 78.65 74.30 76.69
BERT-large AVERAGE 71.85 82.60 77.33 82.52 79.12 80.71 76.30 78.63
BERT-large CONCAT 71.37 80.28 76.08 81.10 77.63 79.57 74.71 77.25

Table 3: Experimental results on unsupervised STS tasks with Spearman’s ρ× 100.

S+D Fine-tuning the pre-trained model with
SBERT then with DefSent sequentially.

D+S Fine-tuning the pre-trained model with Def-
Sent then with SBERT sequentially.

MULTI Multi-task learning with SBERT and Def-
Sent. The ratio of the size of the NLI dataset
to the dictionary dataset is about 19:1, so we
do 19 steps with SBERT and then 1 step with
DefSent for the same model.

AVERAGE Averaging embeddings of separately
fine-tuned models with SBERT and DefSent.

CONCAT Concatenate embeddings of separately
fine-tuned models with SBERT and DefSent.

4.1 Evaluation on unsupervised STS tasks

We first estimate the resulting sentence embed-
dings on unsupervised STS tasks. We use the
same settings described in Section 2.5. We use
STS12–STS16, STS Benchmark test set (STS-B),
and SICK-Relatedness (SICK-R) for the evalua-
tion. We compute sentence similarities by using
the cosine similarity of sentence embeddings de-
rived from the respective combinations and calcu-
late Spearman’s ρ with gold labels. We conduct
fine-tuning and evaluations 10 times with different
seed values and report the average.

Table 3 shows the experimental results. The com-
binations S+D, AVERAGE, and CONCAT always
outperform SBERT and DefSent. Among them,
S+D achieves the best average score for base and
large models. However we cannot confirm much
performance improvement with D+S and MULTI.
We leave an analysis of what affects this difference
in performances as future work.

4.2 Evaluation on the SentEval tasks

We then estimate the resulting sentence embed-
dings on the SentEval tasks. We use the same
settings described in Section 3.3. We conduct fine-
tuning and evaluations three times with different
seed values and report the average.

Table 4 shows the results. We can see that CON-
CAT achieves the highest average score but it should
be noted that since SentEval performed super-
vised learning of a logistic regression classifier, the
high dimensionality of the sentence embeddings
of CONCAT is advantageous. Other than CONCAT,
AVERAGE performs relatively well, which always
outperforms S+D, D+S, and MULTI, unlike in the
STS tasks. This suggests that fine-tuning the same
model with different tasks might degrade the gen-
eralization ability.

5 Related work

Sentence embedding has been studied intensively.
Kiros et al. (2015) proposed SkipThought, which
trains a sentence embedding model by predicting
the previous and next sentence from the embed-
ding of a given sentence. Conneau et al. (2017)
proposed InferSent, which trains a sentence embed-
ding model built on BiLSTM in a Siamese network
architecture on the NLI task. Cer et al. (2018) pro-
posed Universal Sentence Encoder (USE), which
is trained on an NLI dataset, and has also shown
the effectiveness of NLI datasets in obtaining so-
phisticated sentence embeddings.

Recently, methods that leverage pre-trained lan-
guage models to acquire sentence embeddings have
attracted much attention. Pre-trained language
models, such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), acquire linguistic
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Model Method MR CR SUBJ MPQA SST-2 TREC MRPC Avg.
BERT-base w/oFT 81.50 86.94 95.22 87.72 85.94 90.60 73.68 85.94
BERT-base SBERT 82.67 89.43 93.44 89.66 88.12 85.93 76.19 86.49
BERT-base DefSent 81.77 87.97 94.91 89.90 86.27 90.07 75.38 86.61
BERT-base S+D 81.29 89.10 93.99 90.09 86.69 89.33 77.08 86.80
BERT-base D+S 82.43 89.22 93.24 90.16 88.98 83.33 75.27 86.09
BERT-base MULTI 81.73 88.80 93.17 89.27 87.28 87.87 75.54 86.23
BERT-base AVERAGE 83.17 89.50 94.67 90.35 88.50 89.67 76.41 87.47
BERT-base CONCAT 83.24 89.64 95.18 90.51 88.94 90.60 77.37 87.93
BERT-large w/oFT 84.30 89.16 95.60 86.65 89.29 91.40 71.65 86.86
BERT-large SBERT 84.76 90.61 94.08 90.04 90.77 85.47 75.90 87.38
BERT-large DefSent 84.54 89.40 95.55 90.04 89.49 88.73 74.82 87.51
BERT-large S+D 84.01 90.49 95.07 90.50 90.35 90.20 75.61 88.03
BERT-large D+S 84.55 90.68 93.46 90.22 90.21 84.73 75.01 86.98
BERT-large MULTI 84.63 90.56 94.10 89.85 90.23 88.70 76.56 87.80
BERT-large AVERAGE 85.46 90.92 95.20 90.53 91.27 88.27 77.00 88.38
BERT-large CONCAT 85.53 90.83 95.27 90.66 91.95 89.60 75.88 88.53

Table 4: Experimental results on each SentEval task with the accuracy (%).

knowledge by training on large texts and perform
well on downstream tasks. Pre-trained models
are also considered helpful for sentence embed-
ding. There are two types of methods based on
pre-trained models: unsupervised and supervised.

Unsupervised methods do not require labeled
text but exploit the properties of pre-trained lan-
guage models or create training data artificially. Li
et al. (2020) showed that the sentence embedding
space of BERT is anisotropic, and proposed BERT-
flow, which learns a map to an isotropic Gaussian
distribution to obtain sentence embedding. Sev-
eral studies have also been based on contrastive
learning, and are different in the way to make pos-
itive examples: DeCLUTR (Giorgi et al., 2021)
takes into account different spans of the same doc-
ument as positives; ConSERT (Yan et al., 2021)
takes into account a pair of an original sentence
and a collapsed sentence as positives; unsupervised
SimCSE (Gao et al., 2021) takes into account the
corresponding embeddings of the same sentence
with different dropout masks applied as positives.

Supervised methods use labeled text to encode
higher-level semantic information. Supervised
methods generally produce more sophisticated sen-
tence embeddings than unsupervised methods. In
addition to SBERT and DefSent, supervised Sim-
CSE (Gao et al., 2021) is one of the supervised
sentence embedding methods. Supervised SimCSE
fine-tunes BERT by contrastive learning using en-
tailment pairs in the NLI datasets as positives.

6 Conclusion

In this paper, we empirically investigated the in-
fluence of supervision signals used for obtaining
sentence embeddings. We focused on two methods:

SBERT, which uses NLI datasets, and DefSent,
which uses word dictionaries. We showed that there
is a difference in the ability to order the similarity of
sentences depending on their source or superficial
similarity by comparing their performances on sub-
sets of the STS datasets and tasks of SentEval. We
found that SBERT is suitable for superficially simi-
lar sentence pairs because SBERT is based on the
NLI datasets that contain a relatively large number
of superficially similar sentences, whereas DefSent
is suitable for sentence pairs that need to repre-
sent the compositional meaning because DefSent
is based on definition sentences of a dictionary.

We also showed that SBERT performed better in
tasks where sentiment information was important,
while DefSent performed better in tasks where in-
formation about words and the compositionality of
meaning were important by comparing their per-
formances on downstream and probing tasks of
SentEval. Finally, we demonstrated that combining
the two methods yielded substantially better perfor-
mance than the respective methods on unsupervised
STS tasks and downstream tasks of SentEval.

For future work, we will expand the scope of
our analysis to other pre-trained language mod-
els and sentence embedding methods to obtain in-
sights for better sentence embeddings. In addi-
tion, We will investigate how those combination
methods affect the properties of resulting sentence
embeddings and explore how to effectively com-
bine unsupervised sentence embedding methods,
which have recently achieved good performance,
such as DeCLUTR (Giorgi et al., 2021) and unsu-
pervised SimCSE (Gao et al., 2021), with super-
vised sentenece embedding methods. Moreover,
the combination of unsupervised methods, which
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have recently achieved good performance, such as
DeCLUTR (Giorgi et al., 2021) and unsupervised
SimCSE (Gao et al., 2021), and supervised meth-
ods should also be promising.
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A Training Details

For fine-tuning of SBERT and DefSent, we use a
batch size of 16, an epoch size of 1, Adam (Kingma
and Ba, 2015) optimizer with β1 = 0.9, β2 =
0.999, and a linear learning rate warm-up over 10%
of training steps for each, as the same setting as
Reimers and Gurevych (2019) and Tsukagoshi et al.
(2021). We choose the learning rate that achieves
the highest average score on the validation set for
each respective model by fine-tuning three times
with different seed values at each learning rate in
a range of x× 10−6, x ∈ {1, 2, 5, 10, 20, 50}. We
also use smart batching, and the max sequence
length is 128 for training efficiency.

B Average Runtime and Computing
Infrastructure

Fine-tuning of SBERT with BERT-base and
RoBERTa-base took about 120 minutes on a single
NVIDIA GeForce GTX 1080 Ti. Fine-tuning of
DefSent with BERT-base and RoBERTa-base took
about 10 minutes on a single NVIDIA GeForce
GTX 1080 Ti. Fine-tuning of SBERT with BERT-
large and RoBERTa-large took about 130 minutes
on a single Quadro GV100. Fine-tuning of DefSent
with BERT-large and RoBERTa-large took about
15 minutes on a single Quadro GV100.

C The details of evaluation on
unsupervised STS tasks of RoBERTa

Table 5 shows the average of Spearman’s rho for
RoBERTa-base and RoBERTa-large on unsuper-
vised STS tasks.

D The details of evaluation on SentEval
of RoBERTa

Table 6 shows the average of accuracy for
RoBERTa-base and RoBERTa-large on SentEval.
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Model Method STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
RoBERTa-base w/oFT 30.61 55.55 46.78 58.43 61.21 54.36 62.17 52.73
RoBERTa-base SBERT 70.20 74.44 71.86 78.70 74.47 76.92 72.11 74.10
RoBERTa-base DefSent 60.05 76.16 69.06 74.07 77.86 76.58 74.05 72.55
RoBERTa-base S+D 73.19 83.86 77.45 83.32 78.88 80.67 76.97 79.19
RoBERTa-base D+S 70.97 75.07 72.50 79.04 74.56 77.13 72.81 74.58
RoBERTa-base MULTI 69.27 77.34 73.10 80.68 76.08 77.97 73.61 75.44
RoBERTa-base AVERAGE 71.61 78.65 74.65 80.30 76.71 78.56 74.04 76.36
RoBERTa-base CONCAT 70.69 76.03 72.92 79.08 75.34 77.50 72.73 74.90
RoBERTa-large w/oFT 26.00 54.35 44.10 56.35 60.37 47.01 58.11 49.47
RoBERTa-large SBERT 74.04 79.47 75.47 82.77 79.50 80.49 74.19 77.99
RoBERTa-large DefSent 57.79 74.67 69.01 72.98 75.48 77.39 72.55 71.41
RoBERTa-large S+D 66.62 79.60 75.81 77.91 78.45 80.46 77.45 76.61
RoBERTa-large D+S 74.18 79.81 76.38 82.85 78.78 80.38 74.86 78.18
RoBERTa-large MULTI 61.34 57.43 60.17 75.56 73.78 74.92 70.10 67.62
RoBERTa-large AVERAGE 73.43 82.97 77.85 83.82 80.65 82.09 75.91 79.53
RoBERTa-large CONCAT 74.04 80.96 76.60 83.20 80.33 81.24 74.77 78.73

Table 5: Experimental results on unsupervised STS tasks with Spearman’s ρ× 100.

Model Method MR CR SUBJ MPQA SST-2 TREC MRPC Avg.
RoBERTa-base w/oFT 84.35 88.19 95.28 86.49 89.46 93.20 74.20 87.31
RoBERTa-base SBERT 85.35 91.50 93.15 90.95 92.06 87.07 76.62 88.10
RoBERTa-base DefSent 84.70 91.15 94.55 90.56 89.88 92.40 76.43 88.52
RoBERTa-base S+D 85.04 91.40 94.17 90.81 90.63 92.00 77.14 88.74
RoBERTa-base D+S 85.20 91.34 93.45 90.84 92.20 88.20 76.29 88.22
RoBERTa-base MULTI 85.15 91.00 93.25 90.69 91.47 89.67 77.08 88.33
RoBERTa-base AVERAGE 85.57 91.66 94.01 91.14 92.55 89.67 78.12 88.96
RoBERTa-base CONCAT 86.04 91.68 94.70 91.02 92.40 93.93 78.24 89.72
RoBERTa-large w/oFT 85.46 88.72 96.04 88.34 91.27 93.80 73.80 88.20
RoBERTa-large SBERT 87.35 92.56 94.13 90.99 92.77 92.20 76.00 89.43
RoBERTa-large DefSent 86.28 91.14 95.12 90.97 90.74 92.33 73.74 88.62
RoBERTa-large S+D 86.77 92.28 94.68 91.22 91.98 92.60 77.51 89.58
RoBERTa-large D+S 87.02 92.40 93.62 90.80 92.59 90.93 77.35 89.25
RoBERTa-large MULTI 87.52 92.56 94.39 91.09 93.15 91.60 76.69 89.57
RoBERTa-large AVERAGE 87.82 92.81 94.69 91.36 93.24 93.93 77.49 90.19
RoBERTa-large CONCAT 87.87 92.84 95.22 91.64 93.06 94.27 76.23 90.16

Table 6: Experimental results on each SentEval task with the accuracy (%).
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Abstract

In this paper, we analyze zero-shot taxonomy
learning methods which are based on distilling
knowledge from language models via prompt-
ing and sentence scoring. We show that, de-
spite their simplicity, these methods outperform
some supervised strategies and are competitive
with the current state-of-the-art under adequate
conditions. We also show that statistical and
linguistic properties of prompts dictate down-
stream performance1.

1 Introduction

Taxonomy learning (TL) is the task of arranging
domain terminologies into hierarchical structures
where terms are nodes and edges denote is-a (hyper-
nymic) relationships (Hwang et al., 2012). Domain-
specific concept generalization is at the core of hu-
man cognition (Yu et al., 2015), and a key enabler
in NLP tasks where inference and reasoning are
important, e.g.: semantic similarity (Pilehvar et al.,
2013; Yu and Dredze, 2014), WSD (Agirre et al.,
2014) and, more recently, QA (Joshi et al., 2020)
and NLI (Chen et al., 2020).

Earlier approaches to taxonomy learning focused
on mining lexico-syntactic patterns from candidate
(hyponym, hypernym) pairs (Hearst, 1992; Snow
et al., 2004; Kozareva and Hovy, 2010; Boella and
Di Caro, 2013; Espinosa-Anke et al., 2016), cluster-
ing (Yang and Callan, 2009), graph-based methods
(Fountain and Lapata, 2012; Velardi et al., 2013) or
word embeddings (Fu et al., 2014; Yu et al., 2015).
These methods, which largely rely on hand-crafted
features, are still relevant today, and complement
modern approaches exploiting language models
(LMs), either via sequence classification (Chen
et al., 2021), or combining contextual, distributed,
and lexico-syntactic features (Yu et al., 2020). In

∗ Work done during an internship at CardiffNLP.
1Code available at

https://github.com/devanshrj/
zero-shot-taxonomy.

parallel, several works have recently focused on us-
ing LMs as zero-shot tools for solving NLP tasks,
e.g., commonsense, relational and analogical rea-
soning (Petroni et al., 2019; Bouraoui et al., 2020;
Ushio et al., 2021; Paranjape et al., 2021), multi-
word expression (MWE) identification (Espinosa-
Anke et al., 2021; Garcia et al., 2021), QA (Shwartz
et al., 2020; Banerjee and Baral, 2020), domain
labeling (Sainz and Rigau, 2021), or lexical substi-
tution and simplification (Zhou et al., 2019). More-
over, by tuning and manipulating natural language
queries (often referred to as prompts), impressive
results have been recently obtained on tasks such as
semantic textual similarity, entailment, or relation
classification (Shin et al., 2020; Qin and Eisner,
2021).

In this paper, we evaluate LMs on TL bench-
marks using prompt-based and sentence-scoring
techniques, and find not only that they are com-
petitive with common approaches proposed in the
literature (which are typically supervised and/or
reliant on external resources), but that they achieve
state-of-the-art results in certain domains.

2 Methodology

We follow Ushio et al. (2021) and define a prompt
generation function τp(t1, t2) which maps a pair of
terms and a prompt type p to a single sentence. For
instance,

τkind(“physics”, “science”) =

“physics is a kind of science”

Then, given a terminology T , the goal is to, given
an input term t ∈ T , retrieve its top k most likely
hypernyms, (in our experiments, k ∈ {1, 3, 5}), us-
ing either masked language model (MLM) prompt-
ing (§2.1), or sentence-scoring (§2.2).

2.1 MLM Prompting
RestrictMLM Petroni et al. (2019) introduced a
“fill-in-the-blanks” approach based on cloze state-
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ments (or prompts) to extract relational knowledge
from pretrained LMs. The intuition being that
an LM can be considered to “know” a fact (in
the form of a <subject, relation, object> triple)
such as <Madrid, capital-of, Spain> if it can suc-
cessfully predict the correct words when queried
with prompts such as “Madrid is the capital of
[MASK]”. We extend this formulation to define
a hypernym retrieval function fR(·) as follows:

fR(p, t,T) = P ([MASK]|τp(t, [MASK])) ∗ T (1)

where p is a prompt type, and T is a one-hot en-
coding of the terms T in the LM’s vocabulary. We
follow previous works (Petroni et al., 2019; Kass-
ner et al., 2021) and restrict the output probability
distribution since this task requires the construc-
tion of a lexical taxonomy starting from a fixed
vocabulary.

PromptMLM For completeness, we also report
results for an unrestricted variant of RestrictMLM,
where the LM’s entire vocabulary is considered.

2.2 LMScorer
Factual (and true) information such as “Trout is
a type of fish” should be scored higher by a LM
than fictitious information such as “Trout is a type
of mammal”. The method for scoring a sentence
depends on the type of LM used.

Causal Language Models Given a sentence W,
causal LMs (C) predict token wi using only past
tokens W<i. Thus, a likelihood score can be esti-
mated for each token wi from the LM’s next token
prediction. The corresponding scores are then ag-
gregated to yield a score for sentence W.

sC(W) = exp




|W|∑

i=1

logPC(wi|W<i)


 (2)

Masked Language Models Given a sentence W,
masked LMs (M) replace wi by [MASK] and pre-
dict it using past and future tokens. Thus, a pseudo-
likelihood score can be computed for each token
wi by iteratively masking it and using the LM’s
masked token prediction (Wang and Cho, 2019;
Salazar et al., 2020). The corresponding scores are
then aggregated to yield a score for sentence W.

sM(W) = exp




|W|∑

i=1

logPM(wi|W\i)


 (3)

Given the above, we can cast TL as a sentence-
scoring problem by evaluating the natural fluency
of hypernymy-eliciting sentences. Specifically, for
each term t, we score the sentences generated using
τp(·) with every other term t′ in the terminology.
We then select the term-pair with the highest sen-
tence score and assume that the corresponding term
t′ is a hypernym of t. Formally, we define a hyper-
nym selection function fS(·) as follows:

fS(p, t, T ) = argmax
t′∈T \t

[s(τp(t, t
′))] (4)

where s refers to the scoring function determined
by the LM used.

3 Experimental setup

This section covers the datasets and prompts we
use in our experiments2, as well as the different
LMs we consider. Concerning evaluation metrics,
we report standard precision (P ), recall (R) and
F -score at the edge level (Bordea et al., 2016).

Dataset Details We evaluate our proposed ap-
proaches on datasets belonging to two TL Se-
mEval tasks (TExEval-1, Bordea et al. (2015) and
TExEval-2, Bordea et al. (2016)). Following recent
literature, we consider the equipment taxonomy
from TExEval-1 and the English-language environ-
ment, science and food taxonomies from TExEval-
2. For the science taxonomy, our results are based
on an average of the 3 subsets, which is in line
with previous work. Since these datasets do not
come with training data, they are well suited for
unsupervised approaches.

Domain Source V E

environment Eurovoc 261 261

science
Combined 453 465
Eurovoc 125 124
WordNet 429 452

food Combined 1556 1587

equipment Combined 612 615

Table 1: Taxonomies statistics. Vertices (V ) and Edges
(E) are often used as structural measures.

2We use PyTorch and the transformers library (Wolf
et al., 2020), as well as mlm-scoring (Salazar et al., 2020)
(https://github.com/awslabs/mlm-scoring).
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Prompts We use the following prompts:

• gen.: [t2] is more general than [t1].

• spec.: [t1] is more specific than [t2].

• type: [t1] is a type of [t2].

gen. and spec. prompts are hand-crafted templates
to encode, in a general way, the hypernymy re-
lationship. The choice of the type prompt, how-
ever, comes from a set of experiments involving all
LPAQA (Jiang et al., 2020) prompts under the “is
a subclass of ” category. We do not consider au-
tomatic prompt generation techniques (Shin et al.,
2020) due to the absence of training data. Note that
for each prompt, we replace t1 with the input term
so that the task is always to predict its hypernym.

Language Models We interrogate BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019) among
masked LMs, and GPT2 (Radford et al., 2019)
among causal LMs. For each LM, we consider
two variants corresponding to approximately 117M
parameters and 345M parameters.

4 Results

Table 2 shows the results on TExEval-2’s science
and environment. We compare with the current
state of the art (Graph2Taxo) (Shang et al., 2020),
as well as with other strong baselines such as Tax-
oRL (Mao et al., 2018) and TAXI (Panchenko et al.,
2016), the highest ranked system in TExEval-2.
We also compare with CTP (Chen et al., 2021)
to illustrate the advantages of zero-shot methods
vs finetuning. For the environment domain, we
find that RestrictMLM performs similar to CTP
and LMScorer outperforms it. Moreover, all 3
proposed approaches fail to outperform the other
baselines. However, in science, all 3 of our ap-
proaches outperform CTP, while our best model
(RestrictMLM) outperforms TAXI and is compet-
itive with TaxoRL (ours has higher precison, but
lower recall). Note that compared to our zero-shot
approaches, these methods are either supervised,
expensive to train or take advantage of external
taxonomical resources such as WordNet, or lexico-
syntactic patterns mined from the web using differ-
ent hand-crafted heuristics.

We also show results for TExEval-1’s equipment
and TExEval-2’s food (Table 3). Both datasets
are considerably larger than environment and sci-
ence. We compare with the corresponding high-
est ranked system, namely TAXI for food, and IN-
RIASAC (Grefenstette, 2015) for equipment. For

environment science

Model P R F P R F

TAXI 33.8 26.8 29.9 35.2 35.3 35.2
TaxoRL 32.3 32.3 32.3 37.9 37.9 37.9
Graph2Taxo 89.0 24.0 37.0 84.0 30.0 44.0
CTP 23.1 23.0 23.0 29.4 28.8 29.1

PromptMLM 19.2 19.2 19.2 34.4 32.0 33.1
RestrictMLM 23.0 23.0 23.0 39.3 36.7 37.9
LMScorer 26.4 26.4 26.4 33.1 30.7 31.8

Table 2: Comparison of our best performing methods
with previous work (environment and science).

both domains, all 3 of our approaches outperform
the corresponding TExEval best-performing sys-
tems. This suggests that zero-shot TL with LMs
is robust, easily scalable and feasible on large tax-
onomies. However, a clear bottleneck for prompt-
based methods is that only single-token terms can
be predicted (using a single [MASK] token), making
this approach a lower bound for TL.

food equipment

Model P R F P R F

TExEval 13.2 25.1 17.3 51.8 18.8 27.6

PromptMLM 23.2 22.6 22.9 29.4 29.3 29.4
RestrictMLM 25.2 24.6 24.9 38.4 38.2 38.3
LMScorer 25.2 24.6 24.9 37.7 37.6 37.6

Table 3: Comparison of our best configurations with the
best TExEval systems on food and equipment.

5 Analysis

In this section, we provide an in-depth analysis of
our approaches, including comparison of LMs and
statistical and semantic properties of prompts.

LM Comparison Table 4 compares the best con-
figuration for each LM. We can immediately see
that a conservative approach (i.e., k = 1 with
the type prompt) almost always yields the best
F -score. Another important conclusion is that,
among MLMs, BERT-Large performs best across
the board, with BERT generally outperforming
RoBERTa, a finding in line with previous works
(Shin et al., 2020). Concerning causal LMs, GPT-
2 Medium outperforms its smaller counterpart as
well as both MLMs for sentence-scoring.

Sensitivity to Prompts There is interest in un-
derstanding models’ sensitivity to prompts and
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environment science food equipment

Method LM (p, k) P R F (p, k) P R F (p, k) P R F (p, k) P R F

PromptMLM

BERT-Base (t, 1) 18.8 18.8 18.8 (t, 1) 30.2 28.1 29.1 (t, 1) 20.9 20.4 20.6 (t, 1) 29.4 29.3 29.4
BERT-Large (t, 1) 19.2 19.2 19.2 (t, 1) 34.4 32.0 33.1 (t, 1) 23.2 22.6 22.9 (t, 1) 28.4 28.3 28.4
RoBERTa-Base (t, 1) 18.0 18.0 18.0 (t, 1) 24.5 23.0 23.7 (t, 1) 18.5 18.0 18.2 (t, 1) 26.3 26.2 26.3
RoBERTa-Large (t, 1) 18.0 18.0 18.0 (t, 1) 28.1 26.2 27.1 (t, 1) 20.3 19.8 20.0 (t, 1) 28.4 28.3 28.4

RestrictMLM

BERT-Base (t, 1) 23.0 23.0 23.0 (t, 1) 35.8 33.5 34.6 (t, 1) 22.8 22.2 22.5 (t, 1) 38.4 38.2 38.3
BERT-Large (t, 1) 21.8 21.8 21.8 (t, 1) 39.3 36.7 37.9 (t, 1) 25.2 24.6 24.9 (t, 1) 37.9 37.7 37.8
RoBERTa-Base (t, 1) 5.4 5.4 5.4 (t, 1) 11.0 10.6 10.8 (t, 1) 9.3 9.1 9.2 (t, 1) 0.0 0.0 0.0
RoBERTa-Large (t, 1) 8.4 8.4 8.4 (t, 1) 12.3 11.8 12.0 (t, 1) 10.7 10.5 10.6 (t, 1) 0.0 0.0 0.0

LMScorer

BERT-Base (t, 1) 20.3 20.3 20.3 (t, 1) 15.2 14.4 14.8 (t, 3) 6.8 19.7 10.1 (t, 3) 7.5 22.4 11.2
BERT-Large (t, 3) 13.7 41.0 20.5 (t, 1) 13.0 12.4 12.6 (t, 1) 13.9 13.6 13.7 (t, 1) 15.2 15.1 15.1
RoBERTa-Base (g, 3) 7.7 23.0 11.5 (t, 3) 5.5 15.7 8.1 (t, 3) 2.5 7.2 3.7 (t, 5) 4.2 21.0 7.0
RoBERTa-Large (t, 3) 11.1 33.3 16.7 (t, 1) 13.6 12.8 13.2 (t, 3) 3.6 10.6 5.4 (t, 3) 9.2 27.5 13.8
GPT-2 Base (t, 1) 24.9 24.9 24.9 (t, 1) 29.3 27.4 28.3 (t, 1) 21.0 20.5 20.7 (t, 1) 36.8 36.6 36.7
GPT-2 Medium (t, 1) 26.4 26.4 26.4 (t, 1) 33.1 30.7 31.8 (t, 1) 25.2 24.6 24.9 (t, 1) 37.7 37.6 37.7

Table 4: Comparison of best configuration for each LM and proposed approach. (p, k) refers to the prompt and
top-k combination that gives the best results for that setting, where p = g for gen., s for spec. and t for type prompt.

whether frequency can explain downstream per-
formance in lexical semantics tasks (Chiang et al.,
2020). In the context of prompt vs. performance
correlation, we find that prompt-based downstream
performance on TL can be attributed to: (1) syn-
tactic completeness and (2) semantic correctness.
For (1), we find that prompts that are syntactically
more complete (e.g., “[X] is a type of [Y]” vs “[X]
is a type [Y]”, the difference being the preposi-
tional phrase) perform better. For (2), we find that
prompts that unambiguously encode hypernymy
are also better (i.e., the type prompt, as opposed to
other noise-inducing templates such as “is a” or “is
kind of ”). Finally, out of the cleanest prompts, the
most frequent in pretraining corpora are the most
competitive. Table 5 confirms the intuition that
the type prompt is not only unambiguous, but also
highly frequent when compared to similar (noise-
free and syntactically complete) prompts.

Prompt avg F Frequency

is a type of 25.5 14,503
is the type of 24.2 809
is a kind of 23.6 2,934
is a form of 22.1 9,518
is one form of 17.9 124
is a 7.4 9,328,426
is a type 1.0 15,085

Table 5: Domain-wise average F -score of LPAQA
prompts and their frequency in BERT’s pretraining cor-
pora.

Single-Token vs Multi-Token Hypernyms Ta-
ble 6 compares F-score on original terminology
vs filtered terminology, where filtered terminology

contains only the terms that have single-token hy-
pernyms. The results show that % Increase in F-
score is inversely proportional to the % Retained.
This can be explained by the fact that smaller %
of terms retained implies higher % of multi-token
hypernyms in the original dataset that cannot be
predicted using prompting. Thus, the increase in F-
score by removing such hypernyms should increase
as the % Retained decreases.

Domain Total Terms % Retained % Increase

environment 261 29.89 2.32
equipment 612 44.77 1.24
science 452 53.32 0.90
science_ev 125 52.80 0.89
food 1555 59.55 0.57
science_wn 370 69.73 0.51

Table 6: Comparison of F-score on original terminology
vs filtered terminology. % Retained refers to the percent-
age of terms that have single-token hypernyms and are
thus retained for the filtered dataset. % Increase shows
the increase in F-score on filtered dataset compared to
F-score on original dataset.

6 Conclusion and Future Work

We have presented a study of different LMs un-
der different settings for zero-shot taxonomy learn-
ing. Compared with computationally expensive
and highly heuristic methods, our zero-shot alter-
natives prove remarkably competitive. For the fu-
ture, we could explore multilingual signals and the
integration of traditional word embeddings with
contextual representations.
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Abstract
Evaluating the quality of generated text is diffi-
cult, since traditional NLG evaluation metrics,
focusing more on surface form than meaning,
often fail to assign appropriate scores. This is
especially problematic for AMR-to-text evalua-
tion, given the abstract nature of AMR. Our
work aims to support the development and
improvement of NLG evaluation metrics that
focus on meaning, by developing a dynamic
CheckList for NLG metrics that is interpreted
by being organized around meaning-relevant
linguistic phenomena. Each test instance con-
sists of a pair of sentences with their AMR
graphs and a human-produced textual seman-
tic similarity or relatedness score. Our Check-
List facilitates comparative evaluation of met-
rics and reveals strengths and weaknesses of
novel and traditional metrics. We demonstrate
the usefulness of CheckList by designing a
new metric GRACO that computes lexical cohe-
sion graphs over AMR concepts. Our analysis
suggests that GRACO presents an interesting
NLG metric worth future investigation and that
meaning-oriented NLG metrics can profit from
graph-based metric components using AMR.

1 Introduction

Abstract Meaning Representation (AMR, Ba-
narescu et al. (2013)) has become popular in NLP,
one of the reasons being that AMR captures the
essence of a sentence’s meaning, while abstract-
ing away from syntactic idiosyncrasies. Especially
AMR-to-text generation (Konstas et al., 2017; Song
et al., 2018; Wang et al., 2020; Blloshmi et al.,
2021) has received much attention for applications
that require text generation from structured content.
However, the evaluation of text generated from
AMR has been argued to be unsatisfactory (Man-
ning et al., 2020). Also, Opitz and Frank (2021)
show that the syntactic diversity of sentences gener-
ated from AMR is challenging for traditional NLG
metrics, especially when candidates differ from the
reference in surface properties.
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Figure 1: Our CheckList design for evaluating meaning-
oriented NLG metrics against human semantic textual
similarity and relatedness judgements – applicable to
textual, meaning graph based and hybrid metrics.

Several metrics have been proposed that aim
to rate the similarity of the meaning of sentences
or phrases (Zhang et al. (2020); Opitz and Frank
(2021); Zhao et al. (2019)). However, it is difficult
to judge where exactly such a metric fails, mak-
ing it hard for developers to further improve it. To
address similar problems, Ribeiro et al. (2020) re-
cently proposed a "task-agnostic methodology for
testing NLP models" called CheckList. They ar-
gue that such a method should be used for testing
NLP systems instead of solely relying on automatic
metrics, which can overestimate a model’s perfor-
mance. Similar processes have been applied in
early NLP research, e.g. with the TSNLP testsuite
(Lehmann et al., 1996). Inspired by CheckList, in
this work we aim to build a testsuite to enable sys-
tematic study and development of NLG evaluation
metrics, with a focus on meaning.

Given the high variability of surface realizations
that can be mapped into a single AMR graph, build-
ing reliable AMR-to-text NLG evaluation metrics
is hard. Hence, it can be useful to construct a
systematic CheckList, organized around diverse lin-
guistic properties, to measure the performance of
different metrics in an interpretable way. We frame
our proposed CHECKLIST1 and analyses derived

1The term CheckList, coined by Ribeiro et al. (2020), refers
to their proposed methodology as well as concrete instantia-
tions of such testsuites. We thus use the term CheckList (in

157



from it in an AMR-to-Text NLG setting, and focus
especially on a metric’s capability to assess how
well a specific meaning component of an AMR
is reflected in its textual realization. We measure
this using sentence pairs that differ in single lin-
guistic aspects and measure how well various NLG
metrics are able to rate such meaning differences.
We compare the metric scores to human judgments
from semantic textual similarity (STS) and relat-
edness datasets and analyze the metrics using our
interpreted CheckList (an outline is shown in Fig.
1). Our contributions in this work are as follows:

i) We empirically identify properties relevant for
rating the quality of generated sentences based
on their meaning.

ii) We design an extensible, interpreted Check-
List for evaluating NLG metrics, which offers
939 paired sentences with human judgements,
covering 11 core linguistic phenomena.

iii) We propose a new metric GRACO to as-
sess the semantic similarity of sentence pairs
through the lens of AMR graphs.

iv) To showcase the potential of our approach,
we provide an extensive comparative analysis
of different types of NLG metrics, measuring
their capacity of rating sentence similarity and
relatedness according to linguistic differences.

2 Related Work

AMR-to-text evaluation Systems generating
text from AMR graphs are typically evaluated us-
ing NLG metrics that were originally designed for
other NLG tasks. BLEU (Papineni et al., 2002) or
the CHRF(++) (Stanojević et al., 2015; Popović,
2015, 2016; Popov, 2017) metrics, e.g., are exten-
sively used in MT. But May and Priyadarshi (2017)
have shown that BLEU does not correspond well
to human ratings of generations from AMR. Con-
firming this result, Manning et al. (2020) argue that
existing automatic metrics fail to provide nuanced
views on AMR-to-text generation quality. In an
attempt to mitigate such issues, Opitz and Frank
(2021) introduced a metric that combines mean-
ing (M) and form (F) assessment in a weighted
MF score, finding that system performances differ
considerably in these two key quality aspects.

But to date, little is known about how different
metrics measure meaning differences of generated
sentences with regard to specific meaning alter-

italics), to refer to our interpreted NLG testsuite.

ations that may occur between a source and a refer-
ence. Our work provides a method and resources
that can be used for performing such a detailed as-
sessment for AMR-to-text generation metrics, and
NLG evaluation metrics in general.

Checklist The current practice for evaluating
NLP models is to assess their performance on un-
seen test data. Yet, summarizing performance in a
single numerical score makes it difficult to assess
where a model fails and how to fix remaining errors
(Wu et al., 2019). Ribeiro et al. (2020) therefore
proposed CHECKLIST, a methodology and tool
for evaluating NLP systems based on the idea of
behavioural testing, often used in software engi-
neering. It aims at assessing specific capabilities
of a system by testing whether inputs that feature
specific properties will produce the expected out-
put, without requiring knowledge of system’s in-
ner workings. This procedure is well-known in
NLP, where before the rise of large-scale evalua-
tion datasets, systems were tested and evaluated
on so-called testsuites (Lehmann et al., 1996) that
focused on specific linguistic capabilities. Ribeiro
et al. (2020) adopted this approach to make their
methodology applicable to many different NLP
tasks. They evaluate multiple models on Sentiment
Analysis, QA or Machine Reading Comprehension,
showing that their method is beneficial in NLP:
complementary to broad-scale evaluations, it can
reveal specific points of failure, hence giving more
detailed insight into a model’s performance.

Semantic Textual Similarity (STS) Judging the
similarity of texts is essential in tasks such as IR,
text summarization or QA. But capturing seman-
tic ambiguity, syntactic variance and paraphrasing
is difficult. Hence, research started to investigate
Semantic Textual Similarity (STS)2, by tasking sys-
tems to judge the semantic similarity of sentences.
Besides knowledge-based and distributional meth-
ods, neural methods have recently been proposed
for STS estimation (Chandrasekaran and Mago,
2021). For example, S(entence)-BERT (Reimers
and Gurevych, 2019) leverages pre-trained lan-
guage models to predict STS scores, building on
the insight of models that compute general sentence
representations using paired sentence encoders
(Conneau et al., 2017). These models outperform
most traditional STS metrics, but lack interpretabil-

2STS is a main component of SentEval and follow-up
challenges, initiated by Conneau and Kiela (2018).
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Figure 2: Example of a test case in our CheckList con-
sisting of two sentence and AMR pairs. Drawn from the
SICK dataset, with semantic relatedness score 4.4.

ity. In our work we leverage STS and SentEval chal-
lenge datasets with human-rated semantic similar-
ity (STS) and semantic relatedness (SICK) scores,
to construct an interpreted CheckList that can be
used to assess meaning-oriented NLG evaluation
metrics, by evaluating them against human ratings.

3 An Interpreted Testsuite for Meaning-
oriented NLG Evaluation Metrics

3.1 Aims and Method

The challenge of AMR-to-text NLG evaluation lies
in the wide variability of sentences that can ver-
balize an abstract meaning representation. In our
CheckList, we will consider human judgements of
semantic textual similarity as a criterion for eval-
uating the adequacy of different NLG metrics for
the AMR-to-text NLG evaluation task.

Specifically, we employ sentence pairs with hu-
man scores from the SICK and STS benchmarks3

as test instances for our CheckList (cf. Fig. 2). We
select pairs that differ by specific phenomena that
can affect their semantic similarity, such as addi-
tional modifiers of a noun or verb, negation, or
changes in the semantic roles of verb arguments.
We parse such sentence pairs SA,B into pairs of
AMR graphs AMRA,B that we manually validate.

Given such instances, we consider sentences SA

and SB as a reference and candidate generation,
and a pair of AMR and S as a sentence generated
from an input AMR. For AMRA we can take SA

as gold reference and SB as a candidate genera-
tion; conversely, SB can serve as a reference for
AMRB , and SA as a candidate. We then interpret
the human score for SA,B as a gold standard for a
metric score that rates the appropriateness of SB

for AMRA, given SA as a reference, or SA for
AMRB , given SB as reference (see Fig. 1).

3
https://github.com/facebookresearch/SentEval

Pheno-
menon

Reference AMR-to-text Generation

Antonymy Flowers are so inconsistent ! flowers are so consistent .

Negation My Drawing Number One . not my picture number one .

Omission the prince laughed , puzzled . the prince laughed .

Passive The wind blows them away . they were blown away by wind .

Role Switch The planet was inhabited by a
conceited man .

the conceit man is inhabited by
the planet .

more
phenomena

hyponymy, co-hyponymy, partial synonymy,
articles, subordinate clause types

Table 1: (Modified) sentence pairs from AMR-to-text
on the Little Prince AMR corpus.

Following this rationale, our CheckList will of-
fer curated input AMR graphs, their underlying
sentences as references, and paired sentences from
STS or SICK data points as candidate generations.
The human scores serve as an objective to assess
and compare various NLG evaluation metrics for
their suitability in (A)MR-to-text evaluation tasks.

Aims Our CheckList is intended as a tool for re-
searchers to build new or assess existing NLG met-
rics, regarding their ability to assess specific mean-
ing aspects by comparing them to human judge-
ments, thereby helping users to improve metrics,
or better understand differences between metrics in
meaning-oriented NLG evaluation in general and
AMR-to-text generation in particular.

The suite is interpreted in two ways: by structur-
ing the instances according to linguistic phenom-
ena, and by pairing each sentence with its AMR
graph, so that sentences can be compared at the
textual and at the meaning representation level. Fi-
nally, the CheckList is conceived to be dynamic, by
inviting developers to add new linguistic phenom-
ena, test cases, and metrics.

Method To achieve this, we proceed as follows:
i) Empirical investigation We investigated sen-

tences generated from the ’Little Prince Corpus’4

using the AMR-to-text system of Song et al. (2018).
We studied differences between the original and the
generated sentences, to determine core phenomena
that may influence the semantic similarity judge-
ment of sentences generated from AMR towards
their references. We distilled a list of phenomena
shown in Table 1 that we further extended with phe-
nomena observed in the STS and SICK datasets.

ii) Selection from STS and SICK Next, we
select instances from the STS and Semantic Relat-
edness datasets (§5.1) that exhibit the phenomena
identified in i), and establish a suite of sentence

4https://amr.isi.edu/download.html
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pairs with their assigned human scores and respec-
tive AMRs. The data is structured into subsets
exhibiting single phenomena, and is organized as
an extensible CheckList.

iii) NLG metric scores & evaluation We imple-
ment scorers for various NLG metrics, and provide
code to evaluate them via multiple measures to
assess their strengths and weaknesses in view of
phenomena captured in the CheckList. In addi-
tion, we propose a novel metric GRACO (§3.2) that
constructs lexical cohesion graphs over tokens rep-
resented in the sentence’s AMR, and compare it
to existing metrics. The full range of functionali-
ties to investigate NLG metrics is embedded into a
CHECKLIST design (Ribeiro et al., 2020) (cf. A.1).

iv) Analysis and Interpretation We analyze
the results and show how our CheckList enables
systematic assessment of strenghts and weaknesses
of NLG metrics when applied to outputs of AMR-
to-text systems, taking into account the nature of
different metrics in view of different phenomena.

3.2 Textual and AMR-based metrics
With our CheckList we aim at the evaluation of di-
verse metrics used in NLG and in semantic parsing,
which we structure along two dimensions (cf. Ta-
ble 2): metrics that evaluate candidate generations
based on a) their textual (tM) vs. graph (gM) rep-
resentations or both (hybrid, hyM), and b) whether
the metric is based on symbolic as opposed to em-
bedding representations. We don’t include trained
metrics, since their interpretation is difficult and
would go beyond the current scope, but they can be
evaluated on our CheckList, too. Table 6 provides
an overview of characterizing traits of these metric
types, which we will refer to in our analyses in §5.

Word/Char Ngram Matching Metrics Origi-
nally developed for MT evaluation, the BLEU (Pa-
pineni et al., 2002), Meteor (Lavie and Agarwal,
2007) and chrF++ (Popović, 2015) metrics have
been increasingly used for evaluating NLG systems
by comparing generated text to a reference on tex-
tual symbols. BLEU and Meteor compute overlap
in word ngrams, while chrF++ extends the charac-
ter ngram metric chrF by adding word ngrams.

Embedding-based Metrics BERTSCORE, pro-
posed by Zhang et al. (2020), allows for reference-
based evaluation using dense representations. Ref-
erence and candidate sentences are embedded with
BERT to obtain contextualized representations for
each token. A mapping between candidate and

gold information
category metric gldS cndAMR srcAMR

gM S(2)match, W(W)LK n y y
gM cndS S(2)match, W(W)LK n n y
gM cndS

gldS S(2)match, W(W)LK y n n
tM BERTsc, Meteor, BLEU, chrF++ y n n
hyM GRACO (this paper) y y y

Table 2: Categorization of metrics into graph-based
gM, text-based tM and hybrid hyM metrics, and their
dependencies on gold information.

reference tokens is computed by greedy matching,
based on cosine similarity of the encoding vectors.
BERTSCORE shows a high correlation with hu-
man judgements for MT and Image Captioning
tasks (Zhang et al., 2020). But while the metric
is clearly meaning-based, it is focused on lexical
meaning, and is not well equipped to capture word
order and compositional meaning.

AMR Parse Evaluation Metrics While the pre-
vious metrics evaluate candidates against a refer-
ence at the textual level (tM ), in our CheckList,
we complement them by assessing similarity of
meaning structurally, at the level of AMR graphs
constructed from candidate and reference (gM ).

We distinguish three potential setups: i) the met-
ric is computed on manually rectified gold graphs
(gM in Table 2); ii) an integrated parser component
constructs an automatic candidate AMR cndAMR
from the candidate sentence cndSnt to alleviate the
requirement for a golden cndAMR (gM cndS in Ta-
ble 2); iii.) the parser constructs both srcAMR and
candAMR from the reference and candidate sen-
tence, i.e., we trade the dependency on a golden
srcAMR against the dependency on a golden ref-
erence sentence (gM cndS

gldS in Table 2). Variants ii)
and iii) have also been used in theM (‘Meaning’)
component of MF-score (Opitz and Frank, 2021).
For simplicity, in this paper, we assume access to
gold graphs and only consider gM , tM , and hyM
metrics.

As AMR graph metrics, we use the canoni-
cal SMATCH (Cai and Knight, 2013), the recent
S2MATCH metric proposed by Opitz et al. (2020),
and Weisfeiler-Leman based AMR graph similarity
proposed by Opitz et al. (2021) that match contex-
tualized AMR graphs.

SMATCH is a binary triple overlap metric that
assesses the structural similarity of candidate and
reference AMRs, where a triple is a pair of AMR
nodes connected by a labeled edge. S2MATCH, by
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contrast, computes a graded triple overlap score us-
ing the embedding similarity between the concept
nodes of a triple pair, to reflect concept similarity
in the overall AMR similarity score. Given a ref-
erence AMR for ’a kitten meows’, S2MATCH will
assign a relatively high score for a candidate AMR
for ’a cat meows’ that reflects high lexical simi-
larity of kitten and cat in the overall score, while
SMATCH will assign it a much lower score.

The Weisfeiler-Leman AMR metric comes in
two variants: W(eisfeiler)L(eman)K(ernel) (WLK)
compares contextualized AMR graphs structurally,
while W(asserstein)WLK (WWLK) compares the
contextualized AMR graphs in latent space, using
an alignment-based Wasserstein distance. WWLK

extends S2MATCH beyond the lexical level, to
capture compositional meaning similarity at the
phrasal level, as between ’a young cat meows’ vs.

’a kitten meows’.

Hybrid Metrics The above metrics take as input
sentence pairs or AMR pairs. But a meaning-orien-
ted NLG metric may profit from considering both
explicit meaning structure as captured in AMR,
and the textual level, to leverage knowledge from
pretrained language models trained on text. We
thus propose a hybrid similarity metric GRACO,
which is based on Lexical Cohesion Graphs pro-
posed by Sporleder and Li (2009). They construct
an undirected graph from a text sequence where
each node represents a content word, and compute
edge weights between the lexical nodes using Nor-
malized Google Distance (Cilibrasi and Vitanyi,
2007). By averaging the weights they derive a con-
nectivity score for the graph. In their work they
use the lexical cohesion graph of a given token se-
quence to predict whether it has an idiomatic as op-
posed to a literal meaning, depending on whether
the presence of its subgraph in the overall graph
raises or lowers the overall connectivity score.

We adapt Sporleder and Li (2009)’s approach to
define a hybrid metric that measures the similarity
of sentence pairs via their AMR graphs. We do
this by building a lexical cohesion graph from the
concept nodes present in a sentence’s AMR. To do
so, we align words from the sentence with concepts
in the AMR graph using the JAMR (Flanigan et al.,
2014a) alignment tool. The concepts are either rep-
resented using contextualized BERT embeddings or
pretrained GloVe word embeddings. To compute
edge weights, we follow Haagsma et al. (2018) and
compute cosine similarity between nodes. We pur-

Figure 3: Two lexical cohesion graphs: fully connected
(left) and reduced (right) for sentences SA: The woman
is walking the dog down the street – SB : The woman is
walking the cat down the street.

sue two strategies. i) We follow Sporleder and Li
(2009) and compute cosine similarity between all
possible pairs of nodes of a single graph, creating
a fully connected graph. Alternatively, ii) we com-
pute a reduced graph that only takes into account
edges connecting nodes that differ between the two
sentences and their respective graphs (see Fig. 3).
In case graph gA differs from graph gB in a single
concept which is only present in gA, the reduced
graph gB is empty, and we assign a connectivity
score of 1 (consistent with anything).

By applying this method to a pair of sentences
SA and SB , we obtain their connectivity scores csA
and csB , the average of their respective graphs’
edge weights. From these we compute the GRACO

Score (1) that rates the similarity of SA and SB

by taking the difference between csA and csB to
model their semantic difference – which we convert
to a similarity score by subtracting it from 1.

GRACOScore = 1− |csA − csB| (1)

The resulting metric is hybrid by relying on the
sentence’s AMR to select text tokens for the con-
nectivity graph – and represents nodes with contex-
tualized embeddings in the BERT variant.

4 Semantic Phenomena

We consider structural and lexical phenomena that
are likely to affect a sentence’s meaning. Details
and example AMRs are given in Appendix A.4.5

4.1 Structural Phenomena

Aspect Given its abstract nature, AMR does not
represent aspect, hence present perfect and simple
present are not distinguished in an AMR graph6.

5AMR specifications follow Banarescu et al. (2019).
6This phenomenon was only found in the STS data.
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Negation AMR represents negation with the fea-
ture :polarity -. Fig. 10 (A.4.1) shows sen-
tence negation, with polarity attached to the
matrix verb. Fig. 11 (A.4.1) shows an AMR that
negates a constituent in a sentence. Both verb- and
constituent negation are represented in the testsuite.

Omission or Hallucination of words or phrases
is a recurring problem in NLG (Xiao and
Wang, 2021) especially for AMR-to-text (Man-
ning et al., 2020). We sampled three types in-
volving adjectives, adverbs, PPs. In AMR, omis-
sion/hallucination is captured by (non-)existence
of the corresponding structure (see Fig. 13, A.4.2).

Passive AMR does not distinguish active from
passive voice: AMR graphs for active vs. passive
sentences do not differ and do not reflect voice.

Semantic Role Switch describes cases where
two verb arguments switch semantic roles. Fig. 15
(A.4.4) shows that the switch changes the :ARG
roles of both arguments, involving two triples.

Subordinate Clauses In AMR, relative clauses
can involve inverse roles if the relativizer is depen-
dent on a verb. The AMR for A boy who believes,
e.g., contains an inverse ARG0 role. Other types of
relative clauses, Noun Compound Expansions, re-
veal a semantic relation between compound nouns.
Such expansions can be expressed in various ways:

(1) a. A man is playing a flute made of bamboo
b. A man is playing a bamboo flute

(2) a. A child is running in and out of the
waves of the ocean

b. A child is running in and out of the ocean waves

While the expansions in (1a, 2a) differ (made
of vs. of ), the two compound nouns in (1b)
and (2b) are connected with same AMR relation
:part-of, which reveals their semantic relation.
The expansion in (1a), by contrast, emphasizes the
process of the flute being made, which is reflected
in its AMR (see Fig. 12, A.4.5). Hence, whenever
we compare sentences that make use of a noun
compound or an expansion of it, they may differ in
their textual and their AMR representations, which
can have implications for different types of metrics.

4.2 Lexical Phenomena

Articles AMR does not specify articles, so the sen-
tence variants {A|The} child is playing. yield iden-
tical AMRs. I.e., it cannot distinguish sentences
differing in definiteness of an article. Our Check-
List includes pairs exhibiting such differences.

Antonymy denotes a relation of contrast that can
apply to adjectives, adverbs, nouns, prepositions
or verbs. In AMR, antonymy is either implicit for
concept pairs or represented by negating a concept
with :polarity - (Fig. 17 in A.4.7).

Note that human ratings in STS and SICK dif-
fer for antonymy and negation. While in STS,
antonymy and negation are penalized with low sim-
ilarity scores, this is different for SICK, which rates
semantic relatedness of sentences. Pairs including
a single opposing concept may yield higher scores
than comparison to a random sentence. This must
be observed when interpreting CheckList results.

Hypernymy and Hyponymy, and the derived
Co-Hyponymy relation, while known from Word-
Net, are not explicitly expressed between AMR
concepts. They form the basis for inferential re-
lations between sentences and play an important
role in judging NLG quality from a semantic view.
Often, a candidate may differ from its reference
sentence by resorting to a superordinate, less spe-
cific concept, but may combine it with a differ-
entiating modifier, yielding an equivalent mean-
ing. Equivalence of compositional meaning is dif-
ficult to capture for word-based and lexical NLG
metrics, and is even more challenging for metrics
based on structured meaning representations. Co-
Hyponymy, however, involves contrast and inter-
feres with Antonymy and Negation.

(Partial) Synonymy We distinguish total and
partial synonymy. In the former, linguistic ex-
pressions are interchangeable without restriction,
while in the latter this may hold in a context given
their denotative meaning, may not hold when con-
sidering their connotative meaning (Edmonds and
Hirst, 2002). Examples are lie – untruth, or task
– job. While the former type is unproblematic for
meaning-oriented, lexical NLG metrics, the latter
is not, as it requires judging contextual conditions.
Since AMR specifies abstract concepts, choosing
contextually adequate synonyms is a challenge, and
contextualized metrics may have an advantage.

5 Interpreted Evaluation of NLG Metrics

5.1 Datasets and Statistics
We sampled 939 sentence pairs, each differing in
a single phenomenon from SICK (877) and STS
(62)7, parsed them into AMRs using the parser of
Raffel et al. (2019) and manually corrected them.8

7Distributions of phenomena and human scores in A.3.2.
8Manual correction was performed by two of the authors.
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STS (Semantic Textual Similarity). Since the
first SemEval STS task (Agirre et al., 2012), a total
of 15,459 sentence pairs were created in follow-
up challenges. Each sentence pair is annotated
for semantic similarity on a Likert scale from 5:
"completely equivalent" to 0: “on different topics”.

SICK: Sentences Involving Compositional
Knowledge by Marelli et al. (2014) contains
10,000 English sentence pairs, annotated for se-
mantic relatedness and entailment. Pairs were nor-
malized, expanded using specific linguistic phe-
nomena, and finally paired with one another. Due
to this process, pairs often differ by single linguis-
tic phenomena, making them well suited for our
aims. The sentence pairs were rated for seman-
tic relatedness on a five-point Likert scale, from 1:
“completely unrelated” to 5: “very related”.

Since the annotations on SICK and STS are not
equivalent, they will be analyzed separately.

5.2 Experimental Setup

Metrics All metrics except GraCo use existing im-
plementations. To enhance comparability between
metrics, we standardize and normalize the scores
of every metric and the annotated human scores
(see A.3.3 for details on both).

Evaluation metrics for metric performance
We compute i) Correlations of the metric scores
with the human scores using Spearman’s rho. ii)
Pairwise Ranking scores for all metrics, where for
each phenomenon we consider all possible com-
binations of pairs (x, y) and (x′, y′). A metric m
scores one point if the relation between the pre-
dicted scores m(x, y) and m(x′, y′) for the given
pairs corresponds to the relation between their hu-
man scores h(x, y) and h(x′, y′). If for instance
h(x, y) < h(x′, y′), metric m earns one point if

m(x, y) < m(x′, y′) ∧
|m(x, y)−m(x′, y′)| > τ

where τ is a threshold we define as the fifth per-
centile of all scores. We define m(x, y) = m(x′, y′)
if |m(x, y) −m(x′, y′)| ≤ τ . iii) Mean Average
score and its Mean Absolute Deviation (MAD)
from the human score over test cases.

5.3 Hypotheses

We state hypotheses on how various metrics are
expected to perform for selected phenomena.9

9Due to space restrictions, we only discuss a selection,
which we mark with ✓Hx vs. ✗Hx if (un)supported by results.

H1: gM vs. tM AMR metrics are less sensitive
to surface variation than textual metrics. This can
be beneficial when variations have a mild impact on
human judgements of similarity (Passive, Articles),
but may have adverse effects when the impact is
high. This may happen with Antonymy, if the met-
ric cannot capture relevant differences in lexical
meaning, as in SMATCH.

We expect BERTScore to compete with gM
metrics, due to its contextualized representations.
In general we expect all AMR metrics to have
an advantage over textual metrics, except for
BERTSCORE, in detecting Switched Roles, since
they explicitly represent argument roles.

H2: Impact of small substrings or subgraphs
Irrespective of differences in human judgement for
Antonymy, Co-hyponymy and Negation between
SICK vs. STS (cf. §4), metrics can differ in how
strongly a contrast at token or concept level affects
a pair’s overall rating. In such cases only few triples
may differ between sentence pairs, so we don’t
expect S(2)MATCH to reflect strong drops in human
score. W(W)LK may fare better, as its kernel can
capture a wider context of a given node. BERTScore
faces similar problems when small text portions
cause a strong contrast, but its contextualization
may reflect the impact of neighboring words, an
effect that could be shared with W(W)LK.

While all prior metrics compute scores over the
entire sentences, GRACOred only considers local
subgraphs restricted to differing nodes. We expect
this to be beneficial for phenomena like Negation.

H3: Capturing (dis)similarity We expect
S2MATCH and W(W)LK to perform closer to hu-
man judgement than SMATCH for sentences that
differ by semantically similar or closely related
words, e.g., with Partial Synonymy or Hyponymy.
The same should hold true for Meteor as opposed
to BLEU and chrF++, since it accounts for syn-
onyms and paraphrases. W(W)LK is expected to
capture compositional similarity (young cat – kit-
ten) better than S2MATCH, which is purely lexical.
But S2MATCH and WWLK could perform worse
for Antonymy, since antonyms tend to be close to
each other in latent space (Samenko et al., 2020).

5.4 Results and Analyses

Results are displayed in Tables 3 and 4 for SICK.10

Fig. 4 displays an aggregated view of correlations
between the metric scores and human scores for

10STS results are seen in Tables 7, 8 and Fig. 5, in A.2.

163



Antonymy Article Co-Hyp. Hyponymy Negation Omission Part. Syn.ymy Passive Sem. Roles Sub. Clauses Overall
Ann. Score 0.614 0.977 0.628 0.863 0.597 0.86 0.941 0.976 0.6 0.963 0.789
BLEU 0.672 ± 0.19 0.772 ± 0.21 0.775 ± 0.22 0.72 ± 0.18 0.582 ± 0.2 0.645 ± 0.23 0.734 ± 0.22 0.108 ± 0.87 0.298 ± 0.3 0.579 ± 0.38 0.611 ± 0.28
chrF++ 0.796 ± 0.2 0.865 ± 0.11 0.794 ± 0.2 0.779 ± 0.12 0.846 ± 0.25 0.728 ± 0.14 0.798 ± 0.15 0.339 ± 0.64 0.669 ± 0.12 0.733 ± 0.23 0.75 ± 0.22
Meteor 0.421 ± 0.24 0.605 ± 0.37 0.444 ± 0.22 0.669 ± 0.26 0.46 ± 0.16 0.466 ± 0.39 0.808 ± 0.18 0.258 ± 0.72 0.415 ± 0.19 0.408 ± 0.56 0.482 ± 0.33
BERTSCORE 0.868 ± 0.26 0.953 ± 0.04 0.854 ± 0.24 0.86 ± 0.08 0.749 ± 0.17 0.813 ± 0.08 0.925 ± 0.04 0.512 ± 0.46 0.726 ± 0.16 0.783 ± 0.18 0.805 ± 0.17
SMATCH 0.793 ± 0.22 0.998 ± 0.02 0.833 ± 0.22 0.83 ± 0.07 0.921 ± 0.32 0.844 ± 0.06 0.829 ± 0.12 0.995 ± 0.03 0.647 ± 0.11 0.917 ± 0.09 0.877 ± 0.14
S2MATCH 0.793 ± 0.22 0.998 ± 0.02 0.838 ± 0.23 0.831 ± 0.07 0.921 ± 0.32 0.844 ± 0.06 0.829 ± 0.12 0.995 ± 0.03 0.647 ± 0.11 0.917 ± 0.09 0.877 ± 0.14
WLK 0.575 ± 0.16 0.989 ± 0.03 0.586 ± 0.16 0.539 ± 0.32 0.791 ± 0.2 0.782 ± 0.1 0.614 ± 0.33 0.993 ± 0.03 0.525 ± 0.1 0.896 ± 0.11 0.745 ± 0.16
WWLK 0.76 ± 0.21 0.996 ± 0.03 0.736 ± 0.19 0.721 ± 0.16 0.644 ± 0.15 0.685 ± 0.18 0.734 ± 0.21 0.994 ± 0.03 0.936 ± 0.34 0.907 ± 0.1 0.774 ± 0.14
GRACOgl 0.952 ± 0.36 1.0 ± 0.02 0.97 ± 0.34 0.963 ± 0.11 0.974 ± 0.38 0.926 ± 0.13 0.975 ± 0.05 0.936 ± 0.06 0.998 ± 0.4 0.992 ± 0.03 0.961 ± 0.2
GRACOred

gl 0.883 ± 0.35 1.0 ± 0.02 0.942 ± 0.32 0.933 ± 0.09 0.381 ± 0.23 0.277 ± 0.59 0.951 ± 0.05 0.93 ± 0.06 1.0 ± 0.4 0.853 ± 0.16 0.711 ± 0.26
GRACO 0.952 ± 0.34 0.969 ± 0.04 0.959 ± 0.33 0.949 ± 0.11 0.942 ± 0.35 0.935 ± 0.11 0.965 ± 0.05 0.938 ± 0.05 0.985 ± 0.38 0.946 ± 0.04 0.948 ± 0.19
GRACOred 0.875 ± 0.32 1.0 ± 0.02 0.91 ± 0.29 0.915 ± 0.11 0.497 ± 0.24 0.447 ± 0.43 0.937 ± 0.06 0.92 ± 0.07 0.92 ± 0.39 0.865 ± 0.14 0.755 ± 0.23

Table 3: Avg. normalized score & mean abs. deviation (most indicative, lower is better) from human score for SICK.

Ant.my Art. CoHyp Hyp Neg Omiss P.Syn Pass SRL Sb.Cl Ovll
BLEU 0.492 0.34 0.54 0.419 0.433 0.459 0.391 0.335 0.469 0.321 0.424
chrF++ 0.5 0.342 0.523 0.437 0.441 0.489 0.435 0.303 0.562 0.336 0.367
Meteor 0.538 0.35 0.564 0.494 0.441 0.435 0.524 0.322 0.438 0.365 0.463
BERTSC 0.483 0.36 0.505 0.469 0.473 0.523 0.435 0.31 0.406 0.355 0.47
SMATCH 0.485 0.357 0.486 0.402 0.408 0.456 0.399 0.349 0.406 0.364 0.579
S2MATCH 0.484 0.357 0.474 0.395 0.408 0.456 0.399 0.349 0.406 0.364 0.578
WLK 0.516 0.375 0.509 0.413 0.429 0.471 0.349 0.349 0.469 0.363 0.628
WWLK 0.485 0.357 0.456 0.439 0.449 0.47 0.396 0.349 0.469 0.357 0.636
GRACOglo 0.489 0.385 0.469 0.436 0.458 0.415 0.296 0.302 0.219 0.368 0.511
GraCoredglo 0.437 0.367 0.509 0.406 0.496 0.405 0.402 0.305 0.188 0.378 0.553
GRACO 0.473 0.292 0.497 0.411 0.428 0.46 0.485 0.321 0.625 0.46 0.449
GraCored 0.433 0.367 0.481 0.416 0.505 0.418 0.444 0.327 0.219 0.384 0.565

Table 4: Pairwise ranking scores for the SICK test cases.

individual phenomena. Finally, Table 5 presents a
summary for all metrics and the phenomena they
perform best or 2nd best on, according to our three
evaluation metrics: ranking score, MAD and corre-
lation to human judgement scores.

The gM metrics W(W)LK show best overall per-
formance, sharing 1st place with S(2)MATCH in
SICK and obtaining first place in pairwise ranking,
and we see top places being achieved for 4-5 phe-
nomena (✓ H1, ✓ H3). But S(2)MATCH produce
very similar scores across the board (✗ H3).

Among symbolic tM metrics, Meteor performs
best in ranking score, and chrF++ for MAD.
BERTSCORE performs better than symbolic tM
metrics overall, except for ranking score for STS,
where it only fails on Aspect (✓H1). But it falls
behind gM and most hyM metrics in overall scores.
GRACO performance varies across phenomena and
its variants. It occupies 1st and 2nd places in rank-
ing score for Neg in SICK in the reduced variant,
where the drop in avg score and MAD is striking
(✓H2). For other phenomena, the performance
aligns with the other gM metrics. This suggests
that the connectivity score captures most lexical
phenomena well – while for SRL this is evidently
not sufficient (✓H1).

Beyond tendencies in overall results, we now
focus on observations for single phenomena.

While gM generally outperform tM metrics, this
doesn’t necessarily hold for Meteor: it outperforms
gM for phenomena reflecting lexical-semantic re-

Figure 4: Spearman’s rho correlation between metric
and human scores for SICK. Broken lines indicate phe-
nomena where no correlation coefficient could be com-
puted due to identical metric scores for all instances.

lations for SICK (Table 4, Fig. 4). The spike in
correlation for Part. Syn. is expected, as Meteor
accounts for synonyms and paraphrases (✓H3).
This may also explain its superior performance
for (Co-)Hyponymy. But its high performance for
Antonymy is surprising (✗H3).

S2MATCH performing very similar to SMATCH

is most likely due to a high threshold for allow-
ing a soft match. GRACO was designed to better
represent semantic contrast between sentences and
their AMR graphs. We can see this reflected in
a large drop of MAD for GRACOred in Negation.
In comparison, for Antonymy we only see a rel-
atively small drop in MAD. This is because, for
Negation, GRACOred produces a bigger contrast
between the connectivity scores as one of them is
1 for the empty graph. For Antonymy the scores
are closer, since both graphs have neighbors. An-
other factor could be the proximity of antonyms in
embedding space, which suggests that a threshold,
similar to S2MATCH, could be beneficial.

We also observe that GRACO using BERT outper-
forms GRACOglo in Part.Syn, SRL, SubCl (Table 4,
Fig. 4). This is unexpected since neither of them
uses AMR relations. This could be explained by the
contextualized node embeddings that see context
at textual level–combined with connectivity graphs
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Best & 2nd Best Ranking Scores Best & 2nd Best MAD Highest & 2nd Highest Correlation w/ Human

BLEU Passive, Co-Hyp. Antonymy Co-Hyp., SRL
chrF++ Omission, SRL Omission
Meteor Co-Hyp., Antonymy, Part. Synonymy, Hyp. Negation Part. Synonymy, Antonymy, Co-Hyp., Hyp.
BERTSC Omission, Hyp. Part. Synonymy, Omission, Hyp. Omission, Hyp.

SMATCH Passive Article, Passive, Omission, Hyp., SRL Passive
S2MATCH Passive Article, Passive, Omission, Hyp., SRL Passive
WLK Passive, Article, Antonymy Passive, SRL, Antonymy, Co-Hyp., Article Passive, Antonymy
WWLK Passive Passive, Negation, Article, Co-Hyp. Passive

GRACOglo Article Article, Sub. Clauses, Part. Synonymy Article
GraCoredglo Negation Article, Part. Synonymy Negation
GRACO SRL, Sub. Clause, Part. Synonymy Sub. Clauses, Part. Synonymy, Passive SRL, Sub. Clauses, Part. Synonymy
GraCored Negation, Sub. Clause Article Negation, Sub. Clauses

Table 5: Best & 2nd Best Metric Performances in Ranking Score, MAD, Corr. with Human Scores for SICK dataset.

textual level graph level
Type Metric words chars/pieces lexicon dense contextual concepts sem. edges sim. edges dense contextual

BLEU + - - - +
tM chrF++ + + - - +

Meteor + - + - -
BERTScore - + - + +

SMATCH + + - - -
gM S2MATCH + + - + -

WLK + + - - +
WWLK + + - + +

GRACOglo + - - - - + - + + -
hyM GRACOred

glo + - - - - + - + + -
GRACO + - - - - + - + + +
GRACOred + - - - - + - + + +

Table 6: Characterization of the used textual (tM), graph-based (gM) and hybrid (hyM) metrics in terms of textual
and graph-level properties. textual level: word/char/lexicon-based; graph-level: semantic vs. similarity edges;
both levels: dense = embedding-based representation; contextual = contextualized representation.

that look at the sentence only via AMR nodes.
Overall we see surprising effects with GRACO:

i) by restricting connectivity to local subgraphs
for contrasting elements, it yields strong perfor-
mance for Negation; ii) it only focuses on AMR
nodes, but the contrast with GRACOglo suggests
that the contextualization helps to assess surface
differences underlying SRL and SubCl. The in-
sights from GRACO could trigger ideas for improv-
ing a tM metric like BERTSCORE, by computing it
under a similar AMR lens, and handling Negation
in similar ways. It also suggests studying the use of
BERT embeddings in WWLK, and seeking ways of
integrating a comparable mechanism for Negation.
As for tM metrics, it came as a surprise to find Me-
teor keep 1st rank for lexical relations ((Co-)Hyp;
(Partial)Syn, Antonymy), beyond BERTSCORE.

6 Conclusion

We introduced an extensible CheckList for mea-
ning-oriented NLG metrics that allows for com-
parison of a wide range of NLG metrics. It is
interpreted by way of offering test cases grouped
by linguistic phenomena. Our analyses showcase
how CheckList can be used to compare metrics,
to reveal their strengths and weaknesses. They

align with a number of hypotheses, but also show
surprising effects, opening avenues to further im-
prove NLG evaluation metrics. We propose a novel,
hybrid similarity metric GRACO that builds co-
hesion graphs over contextualized AMR concept
nodes. The metric can focus on contrastive sub-
graphs, which yields strong correlation with human
judgements for negation. With regard to current
practice in AMR-to-text evaluation, we find evi-
dence that meaning-oriented graph-based metrics
present advantages over typical text-based metrics,
confirming the findings of Opitz and Frank (2021);
Manning et al. (2020). Therefore we recommend
to include graph metrics or hybrid graph- and tex-
tual metrics into AMR-to-text evaluation protocols.
Our data and code will be publicly available.11 We
welcome contributions to grow it.
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A Appendix

A.1 CheckList’s functionalities and resources
As described in §3.1, CheckList contains the se-
lected sentence pairs as well as the corresponding
AMR structures and their human score grouped by
linguistic phenomena in json format. It further
includes the assigned scores for the test instances
as well as code to run the implementation for the
following metrics:

• BLEU
• Meteor
• chrF++
• BERTSCORE

• SMATCH

• S2MATCH

• WLK
• WWLK

Output. The CheckList can be run from the
command line, printing an overview of the data
used, accompanied by statistics concerning human
judgement for each phenomenon. These statistics
include the mean, median, standard deviation and
standard error of the human scores. Finally, it will
output tables displaying the overall results of the
CheckList (hereby, we use the evaluation measures
that were also applied in the paper). If a metric
were to be tested, it would furthermore print the
correlation of that metric with the others in decreas-
ing order.
The results for the phenomena are summarized in
individual text files. These files once more list the
statistics about the human score and then display
the average scores of all metrics for that very phe-
nomenon. Finally, each test case is listed, including
the sentences as well as their AMR structures and
the scores assigned to it by the metrics and the
annotator.

A.2 STS Results

Table 7 and 8 and Fig. 5 demonstrate the results on
the test cases selected from the STS data set. Table
9 shows a summary of metrics yielding Best and
2nd Best Results.

Article Aspect Co-Hyponymy Hyponymy Omission Overall
Ann. Score 0.967 1.0 0.282 0.647 0.77 0.647
BLEU 0.358 ± 0.61 0.155 ± 0.84 0.674 ± 0.48 0.58 ± 0.2 0.508 ± 0.27 0.503 ± 0.45
chrF++ 0.661 ± 0.31 0.521 ± 0.48 0.661 ± 0.39 0.683 ± 0.12 0.707 ± 0.14 0.654 ± 0.29
Meteor 0.385 ± 0.58 0.557 ± 0.44 0.313 ± 0.2 0.462 ± 0.3 0.407 ± 0.36 0.408 ± 0.33
BERTSCORE 0.863 ± 0.1 0.824 ± 0.18 0.838 ± 0.56 0.761 ± 0.12 0.801 ± 0.07 0.816 ± 0.26
S2MATCH 1.0 ± 0.03 1.0 ± 0.0 0.779 ± 0.5 0.737 ± 0.13 0.785 ± 0.09 0.83 ± 0.21
SMATCH 1.0 ± 0.03 1.0 ± 0.0 0.779 ± 0.5 0.737 ± 0.13 0.785 ± 0.09 0.83 ± 0.21
WLK 1.0 ± 0.03 1.0 ± 0.0 0.459 ± 0.25 0.426 ± 0.23 0.733 ± 0.11 0.659 ± 0.15
WWLK 1.0 ± 0.03 1.0 ± 0.0 0.689 ± 0.41 0.587 ± 0.1 0.612 ± 0.19 0.732 ± 0.2
GRACOgl 1.0 ± 0.03 0.859 ± 0.14 0.936 ± 0.65 0.963 ± 0.32 0.957 ± 0.19 0.94 ± 0.34
GRACOreduced

gl 1.0 ± 0.03 0.875 ± 0.12 0.924 ± 0.64 0.949 ± 0.3 0.322 ± 0.45 0.782 ± 0.39
GRACO 0.978 ± 0.05 0.876 ± 0.12 0.969 ± 0.69 0.949 ± 0.3 0.961 ± 0.19 0.949 ± 0.35
GRACOreduced 1.0 ± 0.03 0.904 ± 0.1 0.957 ± 0.67 0.939 ± 0.29 0.51 ± 0.26 0.841 ± 0.35

Table 7: Avg. normalized score & mean abs. deviation
(most indicative, lower is better) from human score for
STS

Article Aspect Co-Hyponymy Hyponym Omission Overall
BLEU 0.389 0.52 0.17 0.504 0.573 0.218
chrF++ 0.611 0.1 0.68 0.653 0.511 0.403
Meteor 0.556 0.22 0.35 0.636 0.52 0.625
BERTSCORE 0.722 0.1 0.75 0.785 0.689 0.537
SMATCH 0.333 1 0.305 0.603 0.591 0.682
S2MATCH 0.333 1 0.305 0.603 0.591 0.682
WLK 0.333 1 0.32 0.603 0.582 0.748
WWLK 0.333 1 0.67 0.769 0.582 0.712
GRACOgl 0.333 0.1 0.655 0.62 0.316 0.579
GRACOreduced

gl 0.333 0.1 0.665 0.587 0.538 0.52
GRACO 0.278 0.1 0.36 0.554 0.493 0.417
GRACOreduced 0.333 0.1 0.36 0.669 0.689 0.443

Table 8: Pairwise ranking scores for the STS test cases
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Best & 2nd Best Ranking Scores Best & 2nd Best MAD Highest & 2nd Highest Correlation w/ Human

BLEU Aspect
chrF++ Co-Hyponymy, Article Hyponymy Article
Meteor Co-Hyponymy
BERTSC Hyponymy, Co-Hyponymy, Article, Omission Omission, Hyponymy Hyponymy, Article, Co-Hyponymy, Omission

SMATCH Aspect, Omission Aspect, Article, Omission Omission
S2MATCH Aspect, Omission Aspect, Article, Omission Omission
WLK Aspect Aspect, Article, Co-Hyponymy
WWLK Aspect, Hyponymy Aspect, Article, Hyponymy Hyponymy, Co-Hyponymy

GRACOglo Article
GraCoredglo Article
GRACO Article
GraCored Omission Article, Aspect

Table 9: Overview over Best and 2nd Best Metric Performances in Ranking Score, MAD and Corr. to Human
Scores for the STS dataset.

Figure 5: Spearman’s rho correlation between metric
and human scores for STS. Aspect is not included since
all annotated scores are 1.

A.3 Experimental Settings
A.3.1 Generating sentences from the Little

Prince AMR corpus.
We investigated sentences generated from AMRs
from the ’Little Prince Corpus’12 using the AMR-
to-text system of Song et al. (2018). We used their
pretrained G2S_silver_2m model and validated it
on test data from Song et al. (2018), with a differ-
ence of -0.35 points BLEU score. For the ’Little
Prince’, consisting of 1,562 sentences, we obtained
a BLEU score of 13.5.

constructional lexical SICK STS SICK STS

Negation 156 -
Omission 155 15
Passive 78 -
Aspect - 10
Semantic Roles 8 -
Subordinate Clauses 69 -

Antonymy 157 -
Article 77 6
Hyponymy 116 11
Co-Hyponymy 35 20
Partial Synonymy 26 -

466 25 411 37
Overall 877 62

Table 10: Number of SICK and STS test cases grouped
by linguistic phenomena

12https://amr.isi.edu/download.html

A.3.2 Data Statistics
The following figures show the distribution of the
human human scores in the CheckList for the indi-
vidual linguistic phenomena. SICK and STS are
displayed separately.
Fig. 7 further displays the sentence length distribu-
tion for SICK and STS.

A.3.3 Implementation details of metrics
Here, we list the hyperparameters and libraries em-
ployed for the metrics used in the CheckList.

For the text-based metrics, we employ NLTK’s
implementation for BLEU, where we add the
method4 smoothing function (Bird et al., 2009)13;
for chrF++ use the sentence-level implementation
by Popović (2015), and for Meteor the Version 1.5
implementation by Denkowski and Lavie (2014).

For Zhang et al. (2020)’s embedding-based met-
ric BERTSCORE, we employ the implementation
provided by Huggingface14.

As for graph-based metrics, we made use of
the implementations of SMATCH and the refined
S2MATCH provided by Opitz et al. (2020). For
S2MATCH we defined a cut-off threshold of 0.9, so
that only concepts with a cosine similarity above
that threshold would be granted a soft match. Fur-
ther, the coefficient by which the similarity of dif-
fering senses is multiplied was set to 0.95.

For WLK and WWLK we employ the implemen-
tation by Opitz et al. (2021) without any additional
hyperparameters.

For the implementation of the GRACO, we
used the AMR Alignment tool from JAMR
(Flanigan et al., 2014b) to align words from
the sentence with concepts in the AMR struc-
ture. For concepts that have been successfully

13https://www.nltk.org/_modules/nltk/
translate/bleu_score.html

14https://huggingface.co/metrics/
bertscore
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Figure 6: Score distribution for the test cases in the CheckList (green) grouped by SICK (left) and STS (right) test
cases alongside the distribution of the whole datasets (grey)

Figure 7: Sentence length distribution for the test cases in the CheckList grouped by SICK (left) and STS (right) test
cases

Figure 8: Score distributions for SICK per phenomenon: top: a.) Negation, b. Omission, c. Passive, d. Sem. Roles,
e. subord. Clauses; bottom: f. Antonymy, g. Article, h. Hymonymy, i. Co-Hyponymy, j. Partial Synonymy.

Figure 9: Score distributions for STS per phenomenon: b. Omission, g. Article, h. Hymonymy, i. Co-Hyponymy.
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aligned, we experimented with contextualized
BERT word embeddings, for which we use the
bert-large-uncased model with a dimen-
sionality of 1024 (Devlin et al., 2019), and 300
dimensional pretrained GloVe word embeddings
(Pennington et al., 2014). In case GloVe may not
have seen some inflected word, the embedding
of its lemma will be used instead (the lemmata
are obtained using the spacy lemmatizer and the
en_core_web_sm model). If neither the token
nor its lemma is contained in the vocabulary, we
generate a zero vector representing an unknown
token.

For standardization, given a metric predicts
s = {s1, ...sn}, where n is the size of the data,
we define the standardized score for an example
i as s′i = si−mean(s)

std(s) . Given s as above, the
normalized score for an example i is defined as
s′i =

si−min(s)
max(s)−min(s) .

A.4 Phenomena

A.4.1 Negation
We display two types of negation. In Fig. 10 the
whole sentence is negated since polarity is at-
tached to the matrix verb. Fig. 11 shows an AMR
where only one constituent in a coordinated sen-
tence is negated.

(xv0 / exercise-01
:ARG0 (xv1 / man)
:polarity - )

Figure 10: AMR for the sentence The man is not doing
excercises. Semantic relatedness score: 3.8

(xv0 / and
:op1 (xv1 / walk-01

:ARG0 (xv3 / child))
:op2 (xv2 / pull-up-07

:ARG1 (xv5 / jeep-01)
:polarity - )

Figure 11: AMR for the sentence A child is walking and
a jeep is not pulling up. Semantic relatedness score: 3.5

A.4.2 Omission and Hallucination
Fig. 13 demonstrates the AMR of the sentence The
man is cautiously operating a stenograph. The ad-
verb is realized by the use of the role :manner.
The sentence The man is operating a stenograph

would look the same, except that the red-colored
branch would not exist. Since concepts can be de-
scribed in various ways, some words may be repre-
sented by more than one branch which would lead
to more than two triples that don’t have a counter-
part. The omission of a prepositional phrase often
resembles the omission of adjectives or adverbs,
especially for phrases that can be realized by so-
called “none-core-roles” such as destination,
location or medium, hence, within one branch.
As described in section A.3, prepositions, however,
can be realized in various ways. The omission of a
prepositional expression might therefore concern
only one branch, but can also concern multiple
branches like in Fig. 14.

A.4.3 Passive
Since AMR aims to capture the events of a sen-
tence and not necessarily its point of view, AMR
structures of an active-passive sentence pair do not
differ at all.

A.4.4 Semantic and Syntactic Role Switch
The AMRs in Fig. 15 show that semantic and syn-
tactic role switch is expressed by switching the
:ARG roles. This results in the pair of AMRs dif-
fering in two triples.

A.4.5 Subordinate Clauses
In §4.1 we already discussed inverse roles for rela-
tive clauses when the relativizer is dependet on a
verb. For attributive adjectives on the other hand,
AMR structures should look the same. This is
demonstrated by the AMR representations for A
black bird is sitting on a dead tree and A bird,
which is black, is sitting on a dead tree in Fig.
16. Fig. 12 displays a sentence pair featuring a
noun compound expansion.

A.4.6 Article
Banarescu et al. (2013) specifically state that “AMR
does not represent inflectional morphology for
tense and number, and [...] omits articles”.

A.4.7 Antonomy
In Fig. 17, we see two AMR graphs for a sentence
pair exhibiting an antonymous relation between
young and old. The antonymy is realized by map-
ping the differing concepts to the variable xv3
respectively.

Another way of realizing antonymy between ad-
jectives in an AMR graph is adding the feature
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(xv0 / play-11 (xv0 / play-11
:ARG0 (xv2 / man) :ARG0 (xv2 / man)
:ARG1 (xv1 / flute :ARG1 (xv1 / flute

:consist-of (xv3 / bamboo) )) :ARG1-of (xv3 / make-01

:ARG2 (xv4 / bamboo)) ))

Figure 12: AMR structures for the sentence pair A man is playing a bamboo flute – A man is playing a flute made of
bamboo Semantic relatedness score: 4.9

(xv0 / operate-01
:ARG0 (xv2 / man)
:ARG1 (xv1 / stenograph)

:manner (xv3 / cautious-02) )

Figure 13: Gold AMR for the sentence A man is
cautiously operating a stenograph. Semantic
relatedness score: 4.5

(xv0 / attack-01
:ARG0 (xv2 / dog

:mod (xv3 / brown))
:ARG1 (xv1 / animal)
:location (xv4 / in-front-of

:op1 (xv5 / man)) )

Figure 14: Gold AMR for the sentence The brown
dog is attacking an animal in front of the man.

:polarity - to the branch of the adjective’s
concepts which inverts its meaning.

A.4.8 Hyperonymy, Hyponymy and
Co-Hyponymy

An AMR structure of two sentences displaying a
sub- or superset relation would differ merely in
the concepts mapped to the corresponding variable
as demonstrated in Fig. 18. This is also true for
co-hyponymy.

(xv0 / follow-02 (xv0 / follow-02

:ARG0 (xv1 / turtle) :ARG0 (xv2 / fish)

:ARG1 (xv2 / fish) ) :ARG1 (xv1 / turtle) )

Figure 15: AMR structures of the sentence pair The
turtle is following the fish. – The fish is following the
turtle. Semantic relatedness score: 3.8

(xv0 / sit-01
:ARG1 (xv1 / bird

:ARG1-of (xv3 / black-04) )
:ARG2 (xv2 / tree

:ARG1-of (xv4 / die-01)))

Figure 16: AMR structure for the sentence pair A black
bird is sitting on a dead tree. – A bird, which is black, is
sitting on a dead tree. Semantic relatedness score: 5.0

(xv0 / talk-01 (xv0 / talk-01
:ARG0 (xv1 / man :ARG0 (xv1 / man

:mod (xv3 / young) ) :mod (xv3 / old) )

:ARG2 (xv2 / leaf)) :ARG2 (xv2 / leaf))

Figure 17: AMR structures for the sentence pair A
young man is talking to a leaf. – An old man is

talking to the leaf. Semantic relatedness score: 3.915

(xv0 / run-02 (xv0 / run-02

:ARG0 (xv2 / squirrel) :ARG0 (xv2 / animal)

:ARG1 (xv1 / circle)) :ARG1 (xv1 / circle))

Figure 18: AMR structures for the sentence pair A squir-
rel is running in circles. – An animal is running in
circles. Semantic relatedness score: 4.4
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Abstract
The increase in performance in NLP due to the
prevalence of distributional models and deep
learning has brought with it a reciprocal de-
crease in interpretability. This has spurred a
focus on what neural networks learn about natu-
ral language with less of a focus on how. Some
work has focused on the data used to develop
data-driven models, but typically this line of
work aims to highlight issues with the data,
e.g. highlighting and offsetting harmful biases.
This work contributes to the relatively untrod-
den path of what is required in data for mod-
els to capture meaningful representations of
natural language. This entails evaluating how
well English and Spanish semantic spaces cap-
ture a particular type of relational knowledge,
namely the traits associated with concepts (e.g.
bananas-yellow), and exploring the role of co-
occurrences in this context.

1 Introduction

Vector space models have been the main driving
force behind progress in NLP. Most work in this
area, either in the form of static or contextualised
embeddings, has been based on co-occurrence
statistics and largely driven by the distributional hy-
pothesis (Harris, 1954; Firth, 1957). This has also
resulted in these representations seemingly cap-
turing certain relational knowledge, such as word
analogies (Mikolov et al., 2013b; Gittens et al.,
2017). In this context, Chiang et al. (2020) found
that the ability of word embeddings to evaluate
analogies was not greatly impaired by removing
co-occurrences related to relational pairs. This sug-
gests there are limits to how the distributional hy-
pothesis impacts the encoding of relational knowl-
edge. We extend this line of work by focusing on
the relational knowledge of concepts and traits. We
also creep beyond English by translating concept
and traits used in one of our datasets into Spanish.
Contributions: (1) We show that there is no im-
pact on the ability of semantic spaces to predict

whether a pair of embeddings corresponds to a
trait-concept pair or to predict what traits a given
concept has when removing co-occurrences of con-
cepts and traits. (2) We developed a freely available
dataset that can be used for further trait-based re-
lational knowledge analyses for English and Span-
ish.1

2 Related work

What models learn Evaluation of neural semantic
spaces has focused on what knowledge they cap-
ture with a slew of work showing that some knowl-
edge of analogies can be seen by applying simple
transformations (Mikolov et al., 2013b; Levy and
Goldberg, 2014; Arora et al., 2016; Paperno and
Baroni, 2016; Gittens et al., 2017; Ethayarajh et al.,
2019). Others have investigated what syntactic in-
formation neural semantic spaces seem to capture
with most showing that they do capture something
deeper than surface patters (Linzen et al., 2016;
Gulordava et al., 2018; Giulianelli et al., 2018).
However, they fail to exhaustively capture syntac-
tic phenomena and specifically have been shown to
struggle with polarity (Futrell et al., 2018; Jumelet
and Hupkes, 2018) and certain filler-gap dependen-
cies (Wilcox et al., 2018; Chowdhury and Zampar-
elli, 2018). Pretrained language models (PLMs)
have been found to capture varying degrees of syn-
tactic information (Peters et al., 2018; Tenney et al.,
2019; Goldberg, 2019; Clark et al., 2019), however,
they have also been shown to struggle to predict the
grammaticality of sentences (Marvin and Linzen,
2018; Warstadt et al., 2019) and seem to depend
on fragile heuristics rather than anything deeper
(McCoy et al., 2019).

Relational knowledge More specifically with re-
spect to relational knowledge and semantic spaces,
for some time now work has shown that semantic

1https://github.com/cardiffnlp/
trait-concept-datasets
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spaces could encode certain relational knowledge,
e.g. knowledge of the relative positioning of geo-
graphical locations (Louwerse and Zwaan, 2009).
Similarly, Gupta et al. (2015) found that embed-
dings capture something of relational knowledge
associated with countries and cities, e.g. how coun-
tries related to one another with respect to GDP.
Rubinstein et al. (2015) found that word embed-
dings captured some taxonomic relational knowl-
edge but fared less well with respect to trait-based
relational knowledge. Often analogy completion
tasks are used to investigate what sort of relational
knowledge a semantic space has captured with
early work showing that simple linear transforma-
tions were enough to highlight analogies (Mikolov
et al., 2013a; Vylomova et al., 2016). This method
has drawn some criticism and has been challenged
as a robust means of evaluating what relational
knowledge models capture (Drozd et al., 2016;
Gladkova et al., 2016; Schluter, 2018; Bouraoui
et al., 2018). Attempts to evaluate what PLMs cap-
ture of relational knowledge have also been made,
highlighting that these larger, more data-hungry
models capture some but not all relational knowl-
edge (Forbes et al., 2019; Bouraoui et al., 2020).

Patterns in data However, all the work cited
above focuses work focuses on what models learn
about relational knowledge and not how, or rather
what are the salient signals in the data used in these
techniques that manifest in relational knowledge.
Some work has been done in this direction, with
Pardos and Nam (2020) showing co-occurrences
are not necessary in their distributional model of
courses to predict similar or related courses. Chi-
ang et al. (2020) evaluated this finding in neural
semantic spaces, finding that the ability of a se-
mantic space to complete analogies isn’t impacted
when removing co-occurrences

It is important to understand what aspects of the
data result in what models learn because without
this semblance of interpretability, problematic bi-
ases can creep in, e.g. gender biases in Word2Vec
(Bolukbasi et al., 2016) or in BERT (Bhardwaj
et al., 2021). Attempts have been made to mitigate
certain biases in contexualised word embeddings
(Kaneko and Bollegala, 2021), but in order to do
so, the biases have to be known. Also, Shwartz and
Choi (2020) discuss the issue of reporting bias in
the data typically used in NLP, where rarer occur-
rences are more likely to be explicitly mentioned
than common ones which results in models that can

generalise about under-reported phenomena but not
temper the over-reported information. Therefore
it is necessary to understand the nature of the data
and how it impacts what models capture and how.

In this work, we aim to expand on the work
of Chiang et al. (2020) in two main ways. First,
we do not use analogies and analogy completion
to evaluate the impact co-occurrences of concept-
traits has on relational knowledge developed in
neural semantic spaces, but instead use a dataset of
different trait-based relations (e.g. is-colour,
has-component) derived from the MCRAE and
NORMS feature datasets. This allows us to more
directly evaluate the ability of models to predict
relational knowledge by casting the evaluation as
a simple classification task (both in a multi class
and binary class setting). And second, we extend
the analysis by looking at Spanish data as well to
evaluate whether the results extend beyond English.

3 Methodology

The methodology follows five sequential steps: the
development of datasets that include concepts and
their traits (Section 3.1); the selection and process-
ing of large general-domain corpora (Section 3.2);
the transformation of the selected corpora based
on the concept-trait datasets to test our hypothesis
(Section 3.3); training of word embeddings on the
original and adapted corpora (Section 3.4); and fi-
nally the evaluation of the embeddings based on
the trait-based datasets (Section 3.5).

3.1 Datasets

The datasets were based on the MCRAE features
dataset (McRae et al., 2005). This is a collection
of semantics features associated with a large set
of concepts (541) generated from features given
by human participants. A secondary trait-based
dataset was also collated for English based on the
NORMS dataset (Devereux et al., 2014). This is
developed in the same way as MCRAE and is par-
tially an extension of that dataset with 638 con-
cepts. We wanted to avoid value judgements (such
as is-feminine) and to collate more trait-based
relations, that is pairs of words related by an inher-
ent attribute of a concept.
MCRAE-EN The first step in developing the
datasets used in this work was to collate certain fea-
tures into subsets of similar traits. This was done
in a partially manual way by splitting data into 5
subsets. Each feature in MCRAE has the number
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trait type NC NT Traits

M
C

R
A

E
-E

N colour 148 7 green (32), brown (32), black (24), white (21), red (16), yellow (13), orange (10)
components 110 6 handle (39), legs (19), wheels (14), leaves (14), seeds (13), doors (11)
materials 144 4 metal (79), wood (43), cotton (11), leather (11)
size & shape 234 4 small (83), large (70), long (44), round (37)
tactile 117 7 heavy (21), soft (19), furry (18), sharp (17), hard (16), juicy (16), slimy (10)

N
O

R
M

S

colour 133 (78) 5 green (35), brown (32), white (30), black (22), yellow (14)
components 35 (26) 2 handle (25), sugar (10)
materials 94 (62) 5 metal (46), wood (16), water (11), paper (11), bones (10)
size & shape 242 (138) 4 small (109), large (73), long (31), round (29)
tactile 106 (70) 6 heavy (28), sharp (26), liquid (14), light (13), juicy (13), soft (12)

M
C

R
A

E
-E

S colour 140 7 verde (31), marrón (31), blanco (21), negro (20), rojo (16), amarillo (12), naranja (9)
components 100 6 mango (33), piernas (18), ruedas (14), hojas (14), semillas (11), puertas (10)
materials 131 4 métal (72), madera (38), algodón (11), cuero (10)
size & shape 216 4 pequeño (75), grande (66), largo (41), redondo (34)
tactile 101 6 pesado (19), suave (19), peludo (17), duro (16), afilado (16), jugoso (14)

Table 1: Dataset statistics: NC is the number of concepts, NT is the number of unique features, NORMS NC includes
unique count in parenthesis, and the number in parenthesis for traits is the number of concepts with that trait.

of participants who specified that feature for that
concept, so initially a frequency cut of 10 was ap-
plied to the features. From this set, we observed
a number of similar traits that broadly fit into trait
categories. A series of simple heuristics were then
applied to extract all potential concept-feature pairs
for each subset. For some trait types this was triv-
ial with the MCRAE dataset, e.g. colour relations
could be found using the feature classification in
MCRAE of visual-colour. The full details of
the heuristics can be seen in Appendix A.

This process resulted in 5 trait-based subsets:
colours, components, materials, size & shape,
and tactile. From each subset, we removed dupli-
cates (e.g. ambulance has the features is-white,
is-red, and is-orange in the colour subset).2

And from the remaining concept-feature pairs, we
cut on 10+ concepts per trait to ensure a suitable
number of instances per target in our evaluation.
The resulting statistics associated with this dataset
can be seen in the top section of Table 1.

MCRAE-ES The set of concepts and trait words
that occur across all 5 subsets were manually trans-
lated. The translators consisted of one native En-
glish speaker with some knowledge of Spanish and
one native Spanish speaker who is fluent in English.

As might be expected, issues occurred when un-
dertaking the translation that required judgements
to be made. When there was a one to many trans-
lation, we used the translation that was Iberian if

2A multi-label version of these subsets are in-
cluded at https://github.com/cardiffnlp/
trait-concept-datasets for MCRAE-EN and
NORMS-EN.

multiple translations were due to regional variants.
Otherwise we chose the most common or most
canonical. However, we also chose single word
alternatives to avoid multiword concepts when this
wouldn’t have resulted in using an obscure word.
We also made some choices to avoid having du-
plicate/competing concepts, i.e. boat was trans-
lated as barca and ship as barco. Further, we tried
to match the intended use in English, i.e. trans-
lated sledgehammer to almádena rather than more
generic term in Spanish mazo as heavy metal ver-
sion is more standard in English. Otherwise we
tried to use more generic options. A variety of re-
sources were used to aid this including bilingual
dictionaries, Wikipedia, and RAE (Real Academia
Española). Despite our best efforts to maintain as
many concept-trait pairs as possible, certain con-
cepts just don’t work in Spanish, typically many
to one translations, e.g. dove translates to paloma
which also means normal mangy pigeons. A more
common issue was the tendency to use multi-word
expressions in Spanish for certain concepts, such
as goldfish (pez dorado) and escalator (escalera
mecánica) with no single-word alternatives. The
statistics resulting to the trait subsets for MCRAE-
ES are shown in the bottom section of Table 1.

NORMS-EN To make our experiments more ro-
bust, we also used the NORMS dataset. In order to
use this dataset, we manually classified features in
this dataset based on the subset from our MCRAE

trait dataset. First, we cut the features in NORMS

that occurred less than 10 times and then took the
set of remaining features and classified them as one
of the five subsets and then automatically cast each
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Corpus Sentences Tokens

E
ng

lis
h UMBC 135M 3.4B

Wiki 114M 2.5B
Wee-Wiki 71M 1.6B

Sp
an

is
h ES1B 62M 1.4B

Wiki 28M 0.6B
Wee-Wiki 19M 0.4B

Table 2: Basic statistics of corpora used.

concept-trait pair into their respective subset. We
manually checked to see if any features not used
had been erroneously omitted due to annotation
issues and folded those features into the relative
subsets. This entailed adding is-liquid and
is-furry to the tactile subset after some con-
sideration (with is-furry subsequently being
removed due to the minimum frequency cut after
removing duplicates). The resulting subsets had
duplicate concepts removed and then a minimum
frequency cut on the remaining features of 10. The
statistics of the resulting subsets can be seen in
the middle section of Table 1 with the number of
new unique concepts added to each subset shown
in parenthesis in the concept count (NC) column.

3.2 Corpora

For the statistics of the corpora used see Table 2.
UMBC The University of Maryland, Baltimore
County (UMBC) webbase corpus is the resulting
collection of paragraphs from a webcrawl in 2007
over millions of webpages (Han et al., 2013).
ES1B The Spanish Billion Words Corpus (ES1B)
is a collection of unannotated sentences takens
from the web which span difference sources from
Europarl to books. It also include data from a
Wikipedia dump from 2015, so has some crossover
with the Spanish Wikipedia corpus (Cardellino,
2019).
Wiki We used English Wikipedia dump from 1st
October 2021 and Spanish Wikipedia dump from
1st January 2022. They were extracted and cleaned
using the WikiExtractor tool from Attardi (2015).
This left document ID HTML tags in the data which
we removed with a simple heuristic.
Wee-Wiki Similar to the standard pre-processing
of the Wikipedia data, but we also cut articles with
very little views as these tend to be stub articles
and automatically generated articles. The idea be-
hind this is to cultivate a cleaner and more natural
version of the data. We used Wikipedia’s official

Cerró la puerta de el granero

DET

OBJ CASE

DET

NMODROOT

Original text: Cerró la puerta del granero
English: She/he closed the barn door

Figure 1: granero (highlighted in red) is a concept in
MCRAE-ES with a component trait of puerta (high-
lighted in blue). In the example here they are linked by
an nmod edge (highlighted in blue). For the syntactic
removal method this sentence would be removed.

viewing statistics for 1st December 2021.3 Articles
with less than 10 views were removed.

3.3 Removing co-occurrences

We used 3 methods to remove co-occurrences
with different levels of granularity to find co-
occurrences. The first step in the process was to
segment the corpora by sentence and to lemma-
tise the tokens. This was done using the spaCy
library and the corresponding pre-trained models
for English and Spanish (Montani et al., 2022). We
used lemmas to handle gender of adjectives and
nouns in Spanish and for plural forms in both lan-
guages. The segmented version of each corpus
was then split into two separate corpora with 80%
of the sentences in the first, which were used as
the standard corpora in our experiments, and with
20%, which were used as reserves for replacing
sentence with co-occurrences when creating input
data without co-occurrences. When an instance
was removed based on the criteria specified below,
a random sentence was selected from the reserves,
so as to balance the total number of sentences in
each set.4 The resulting number of instances re-
moved is shown in Table 3 (English) and in Table
4 (Spanish).
Sentence The simplest method used was to merely
remove any sentence where a concept and its cor-
responding trait was observed. The lemmatised
version of the data was used to search for co-
occurrences to be more thorough, especially with
respect to the Spanish data. This entails using the
lemmatised version of the concepts and traits to

3https://dumps.wikimedia.org/other/
pageviews/2021/2021-12/

4Chiang et al. (2020) observed only a small difference
when using this methodology and when using one where in-
stances were replaced with sentences containing the relative
concepts (and as is shown in §4 this holds for our work).
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UMBC
instances removed

trait type sentence window syntactic

M
C

R
A

E

colour 76,800 70,159 8,974
components 33,284 23,347 9,745
material 28,061 19,171 6,030
size & shape 104,478 68,697 18,213
tactile 18,881 13,845 4,632

N
O

R
M

S

colour 25,106 18,737 7,422
components 5,270 3,793 1,291
material 51,898 34,484 12,150
size & shape 105,895 68,162 18,372
tactile 17,965 13,040 4,264

Wiki
instances removed

sentence window syntactic

105,614 97,728 13,397
22,307 15,500 5,915
29,695 20,477 5,771

131,165 88,453 26,612
14,437 10,658 3,657

26,378 19,824 8,360
4,463 3,110 1,005

30,916 20441 7338
117,210 79,041 22,812

13,683 10,156 3,533

Wee-Wiki
instances removed

sentence window syntactic

70,194 64,594 9,083
15,553 10,987 4,544
21,239 14,669 4,431
90,280 60,516 17,452
11,413 8,529 2,981

19,561 14,777 6,581
3,637 2,483 766

21,051 13,823 4,694
83,329 55,933 15,814
11,048 8,307 2,929

Table 3: Total instances removed and replaced for English Corpora (UMBC, Wiki, Wee-Wiki) for each dataset
(MCRAE and NORMS) by trait type and removal method (sentence, window, and syntactic as described in §3.3).

ES1B
instances removed

trait type sentence window syntactic

M
C

R
A

E

colour 31,267 25,121 208
components 11,855 7,680 1,551
material 8,473 6,087 1,344
size & shape 34,416 19,276 248
tactile 3,508 2,404 185

Wiki
instances removed

sentence window syntactic

19,424 15,804 2,729
6,628 4,048 1,873
6,704 4,698 2,200

23,224 13,513 4,001
2,459 1,743 782

Wee-Wiki
instances removed

sentence window syntactic

12,473 10,129 1,836
4,318 2,716 1,317
4,353 3,091 1,501

15,584 9,157 2,798
1,787 1,291 584

Table 4: Total instances removed and replaced for each Spanish Corpora (ES1B, Wiki, Wee-Wiki) for the MCRAE
dataset broken down by trait type and removal method (sentence, window, and syntactic as described in §3.3).

match them in the lemmatised instances in the data.
This was done independently for each trait type.

Window The second method used removed in-
stances when the concept and its relative trait oc-
curred within a given window, again using lemma-
tised forms. The window size used was 10 to match
the size used during the training of the embeddings.

Syntactic Finally, used the Stanza library and the
corresponding pre-trained models available for En-
glish and Spanish to parse the instances where a
concept and its relative trait occurred (Qi et al.,
2020). If an edge between the concept and the
trait was predicted after finding a co-occurrence
using the lemmas, this was removed, otherwise
the instance was left. This method tests whether
co-occurrences which are syntactically related are
more impactful than haphazard co-occurrences. An
example is shown in Figure 1.

3.4 Word embeddings

The models used to evaluate the impact of co-
occurrences were trained using the Gensim library
(Řehůřek and Sojka, 2010). We used CBOW
Word2Vec embedding models (Mikolov et al.,
2013a) as they are quicker to train than skip-gram
models which was paramount considering the num-

ber of models that were required. Further, Chi-
ang et al. (2020) found no significant differences
between CBOW and Skip-gram models with re-
spect to the differences observed in analogy com-
pletion between models trained with and without
co-occurrences. We used the default hyperparam-
eters in Gensim except for embedding size which
was set to 300 and window size which was set to
10, i.e. the same settings from Chiang et al. (2020).
For each trait-type and for each corpus a model
was trained on the data containing co-occurrences
(with or w/ in tables) and the data not containing
co-occurrences (without or w/o in tables). We
trained multiple models for the data including co-
occurrences — once per trait type — giving us a
robust measurement of those models’ performance.
This means that results for each with for each trait
type across the extraction methods are trained on
the same data and are reported to show the variation
seen training models on the same data.5

3.5 Classifiers

Trait-based relational knowledge was evaluated by
casting it as a classification problem.

5Variation could also be due to slightly different datasets
if without data doesn’t contain any occurrences of a concept.
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UMBC

sentence window syntactic
trait type w/ w/o w/ w/o w/ w/o

M
C

R
A

E

colour 0.35 0.35 0.34 0.34 0.36 0.35
components 0.82 0.81 0.81 0.80 0.82 0.81
materials 0.65 0.69 0.67 0.65 0.67 0.68
size & shape 0.57 0.53 0.55 0.58 0.54 0.58
tactile 0.61 0.62 0.64 0.60 0.65 0.64

N
O

R
M

S

colour 0.40 0.38 0.41 0.41 0.38 0.40
components 0.89 0.89 0.89 0.89 0.89 0.89
materials 0.88 0.87 0.87 0.85 0.87 0.88
size & shape 0.59 0.57 0.58 0.60 0.61 0.58
tactile 0.69 0.72 0.68 0.66 0.70 0.66

Wiki

sentence window syntactic
w/ w/o w/ w/o w/ w/o

0.38 0.36 0.38 0.30 0.41 0.36
0.78 0.80 0.75 0.77 0.79 0.76
0.68 0.67 0.65 0.69 0.65 0.67
0.60 0.58 0.58 0.56 0.56 0.61
0.54 0.55 0.56 0.59 0.58 0.55

0.39 0.39 0.41 0.39 0.44 0.40
0.91 0.91 0.89 0.91 0.91 0.91
0.86 0.84 0.85 0.85 0.86 0.86
0.59 0.59 0.62 0.57 0.59 0.61
0.61 0.65 0.63 0.63 0.65 0.67

Wee-Wiki

sentence window syntactic
w/ w/o w/ w/o w/ w/o

0.39 0.38 0.39 0.38 0.41 0.35
0.75 0.74 0.75 0.79 0.77 0.77
0.71 0.65 0.67 0.66 0.67 0.68
0.58 0.56 0.59 0.56 0.57 0.56
0.50 0.51 0.50 0.54 0.51 0.55

0.43 0.39 0.37 0.39 0.37 0.41
0.89 0.91 0.89 0.91 0.94 0.94
0.84 0.84 0.83 0.82 0.86 0.82
0.62 0.59 0.58 0.55 0.62 0.57
0.60 0.61 0.61 0.61 0.63 0.63

Table 5: Multi-class SVM results for English corpora and datasets by trait type and extraction method for models
trained on data with (w/) and without (w/o) co-occurrences. Average accuracy across 3-fold cross validation is
reported with best performing model between paired w/ and w/o models highlighted in bold.

ES1B
sentence window syntactic

trait type w/ w/o w/ w/o w/ w/o

M
C

R
A

E

colour 0.29 0.30 0.33 0.31 0.33 0.30
components 0.77 0.71 0.81 0.77 0.74 0.73
materials 0.63 0.67 0.67 0.65 0.66 0.67
size & shape 0.50 0.52 0.48 0.53 0.46 0.45
tactile 0.54 0.58 0.55 0.53 0.55 0.53

Wiki
sentence window syntactic
w/ w/o w/ w/o w/ w/o

0.32 0.29 0.34 0.32 0.35 0.33
0.71 0.75 0.70 0.75 0.72 0.74
0.63 0.64 0.70 0.63 0.61 0.66
0.52 0.49 0.49 0.49 0.49 0.50
0.60 0.58 0.60 0.62 0.60 0.59

Wee-Wiki
sentence window syntactic
w/ w/o w/ w/o w/ w/o

0.31 0.32 0.30 0.31 0.31 0.29
0.73 0.72 0.71 0.66 0.71 0.71
0.59 0.59 0.59 0.61 0.63 0.59
0.47 0.48 0.49 0.48 0.46 0.53
0.51 0.50 0.52 0.51 0.49 0.48

Table 6: Multi-class SVM results for Spanish corpora and datasets by trait type and extraction method for models
trained on data with (w/) and without (w/o) co-occurrences. Average accuracy across 3-fold cross validation is
reported with best performing model between paired w/ and w/o models highlighted in bold.

Multi-class First we used a multi-class evaluation.
Using the datasets described in Section 3.1, given a
concept (e.g. banana), the task consisted of select-
ing the most appropriate trait for a given trait type
(e.g. yellow in the colour dataset). We used a sup-
port vector machine (SVM) as our classifier from
the Scikit-learn library (Pedregosa et al., 2011) with
the word embeddings learned in the previous step
as the only input. For each model we used 3-fold
cross-validation and report the mean score across
the splits.6 For each pair of models (i.e. with and
without co-occurrences for a given trait-type and
for a given corpus), we checked to see if concepts
appeared in both semantic spaces. When a con-
cept was missing in one or both, it was removed
from the dataset for both, such that the compari-
son of results is robust between the two models we
are interested in comparing, however, this was not
common. It brought up an issue with orange and

6The full results for each model can be found
at https://github.com/cardiffnlp/
trait-relations-and-co-occurrences, in-
cluding the number of concepts and features used for each
model’s evaluation and the standard deviations which are all
very small.

naranja, namely that it occurs as a concept and as
trait, so that in our extraction method for sentence
and window occurrences of these are always re-
moved from the corpora and so were removed from
the evaluation datasets.

Binary We also use binary classification by ex-
ploiting the earlier findings suggesting that dif-
ferences between embeddings can be used as a
proxy to capture semantic relations (Mikolov et al.,
2013b; Vylomova et al., 2016). Again, we used
SVM models, but this time the input features were
the differences between concepts and their respec-
tive traits (i.e. ec − et, where ec is the concept
embedding and et is the trait embedding) and the
model predicted whether a pair was related or not.
This required developing negative samples. This
was done by randomly selecting words from the vo-
cab space of the union of vocabs between each pair
of model (i.e. with and without co-occurrences for
a given trait type and a given corpus). These words
then underwent a modicum of a control check by
using lexical databases: WordNet (Fellbaum, 2000)
for English and the Multilingual Central Reposi-
tory version 3.0 for Spanish (Gonzalez-Agirre et al.,
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2012) via the Natural Language Toolkit (Bird et al.,
2009). Once a word was randomly selected from
the vocab space (excluding the concepts in the
given dataset), the respective lexical database was
checked to see if it contained the word and if so
whether the synonyms associated with it were at
least sometimes nouns (that is the synonym set
of nouns contained at least one item). This was so
that the selected word could in theory be something
akin to a concept and not just gobbledygook. This
procedure was done so the number of concepts in
the negative sample set matched the number in the
positive sample set (which had instances removed
that didn’t appear in one or both of the paired mod-
els similar to the multi-class setup). Then each ran-
domly extracted negative concept was ascribed a
trait from the given trait space. Similar to the multi-
class SVM setup, 3-fold cross-validation was used
and the mean score across the splits is reported.7

4 Results

Multi-class results The results for the multi-class
experiments can be seen in Table 5 for the English
corpora and in Table 6 for the Spanish corpora. The
highest performing model for each pair of models,
i.e. with (w/) and without (w/o) co-occurrences is
highlighted in bold for clarity. Across the board,
it is clear that there is no consistent pattern as to
whether a model trained with co-occurrences out-
performs a model trained without them or vice
versa. This holds for all three co-occurrence extrac-
tion techniques, for all trait types, for all datasets,
and for all corpora across both languages. This
is similar to the findings of Chiang et al. (2020)
where little effect was observed on analogy com-
pletion whether co-occurrences were included or
not, however, a systemic decrease was observed in
that context despite it being small. While there are
some differences between some models, the differ-
ences that would be required to make claims of one
model being superior to another are much larger
than what are observed here as the experimental
setup isn’t robust enough to verify that a difference
of 0.01-0.02 is significant or not. A visualisation of
the differences between each corresponding with
and without model for MCRAE-EN by trait type
can be seen in Figure 2 (equivalent visualisations

7Full results for the binary classifier can be
found at https://github.com/cardiffnlp/
trait-relations-and-co-occurrences, includ-
ing the number of instances for each model and the standard
deviations.

Figure 2: Distributions of delta accuracy (∆Acc) for
corresponding pairs for each trait type in MCRAE-EN.

for NORMS-EN and MCRAE-ES are shown in Fig-
ure 4 and 5, respectively, in Appendix B). Figure
2 does highlight a slight difference with respect
to colour traits, where a modest increase in perfor-
mance is seen on average when training the models
with co-occurrences, however, this isn’t consisted
across corpora and datasets as this increase is not
observed in Figures 4 and 5 in Appendix B.

Binary results The results from the binary clas-
sification experiments substantiate these findings.
They can be seen in Table 7 for English and in
Table 8 for Spanish. Again, no pattern emerges
across the different experimental dimensions that
would suggest the removal of co-occurrences has
impacted a model’s ability to predict whether a pair
is related or not. The overall high performance on
the binary classification experiment for both En-
glish and Spanish suggests these models manage
to encode meaningful information about these trait
relations. But how this emerges is not clear. The
simplest explanation is that suitably accurate rep-
resentations are learnt due to the amount of data,
but it could be for any number of other reasons not
investigated here.

Figure 3: Distributions of delta accuracy (∆Acc) for
pairs for each extraction method in MCRAE-EN.
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UMBC

sentence window syntactic
trait type w/ w/o w/ w/o w/ w/o

M
C

R
A

E

colour 0.90 0.88 0.88 0.86 0.86 0.86
components 0.90 0.88 0.90 0.90 0.90 0.90
materials 0.93 0.92 0.92 0.92 0.90 0.90
size & shape 0.88 0.88 0.85 0.85 0.85 0.85
tactile 0.89 0.90 0.88 0.88 0.86 0.88

N
O

R
M

S

colour 0.86 0.86 0.84 0.83 0.83 0.83
components 0.80 0.82 0.87 0.77 0.80 0.80
materials 0.84 0.85 0.88 0.86 0.88 0.91
size & shape 0.84 0.87 0.88 0.89 0.87 0.86
tactile 0.87 0.84 0.86 0.84 0.84 0.86

Wiki

sentence window syntactic
w/ w/o w/ w/o w/ w/o

0.84 0.85 0.88 0.86 0.88 0.88
0.88 0.87 0.87 0.88 0.89 0.90
0.90 0.88 0.88 0.89 0.89 0.89
0.86 0.86 0.83 0.83 0.84 0.84
0.88 0.88 0.82 0.82 0.87 0.88

0.86 0.86 0.85 0.83 0.84 0.83
0.90 0.90 0.87 0.78 0.86 0.84
0.89 0.87 0.86 0.89 0.85 0.87
0.88 0.86 0.84 0.84 0.85 0.85
0.83 0.82 0.82 0.84 0.86 0.84

Wee-Wiki

sentence window syntactic
w/ w/o w/ w/o w/ w/o

0.89 0.90 0.87 0.87 0.87 0.87
0.86 0.86 0.92 0.92 0.89 0.89
0.86 0.85 0.88 0.89 0.90 0.89
0.88 0.87 0.87 0.88 0.86 0.86
0.84 0.82 0.84 0.81 0.82 0.81

0.84 0.84 0.87 0.86 0.86 0.85
0.86 0.87 0.93 0.90 0.84 0.83
0.85 0.88 0.85 0.88 0.90 0.91
0.88 0.88 0.88 0.87 0.87 0.85
0.78 0.77 0.80 0.81 0.86 0.86

Table 7: Binary SVM results for English corpora and datasets by trait type and extraction method for models trained
on data with (w/) and without (w/o) co-occurrences. Average accuracy across 3-fold cross validation is reported
with best performing model between paired w/ and w/o models highlighted in bold.

ES1B
sentence window syntactic

trait type w/ w/o w/ w/o w/ w/o

M
C

R
A

E

colour 0.81 0.82 0.85 0.83 0.81 0.80
components 0.88 0.87 0.83 0.80 0.81 0.80
materials 0.81 0.82 0.86 0.86 0.84 0.84
size & shape 0.82 0.81 0.75 0.73 0.76 0.74
tactile 0.72 0.71 0.75 0.79 0.81 0.78

Wiki
sentence window syntactic
w/ w/o w/ w/o w/ w/o

0.84 0.81 0.81 0.78 0.87 0.84
0.86 0.89 0.78 0.78 0.79 0.82
0.78 0.76 0.75 0.75 0.70 0.67
0.79 0.80 0.76 0.75 0.79 0.78
0.74 0.73 0.71 0.72 0.74 0.75

Wee-Wiki
sentence window syntactic
w/ w/o w/ w/o w/ w/o

0.83 0.81 0.83 0.80 0.79 0.82
0.77 0.78 0.82 0.84 0.76 0.74
0.75 0.80 0.75 0.74 0.74 0.74
0.79 0.79 0.75 0.78 0.82 0.83
0.78 0.72 0.77 0.75 0.78 0.80

Table 8: Binary SVM results for Spanish corpora and datasets by trait type and extraction method for models trained
on data with (w/) and without (w/o) co-occurrences. Average accuracy across 3-fold cross validation is reported
with best performing model between paired w/ and w/o models highlighted in bold.

5 Discussion

The results highlight some tentatively interesting
patterns with respect to trait types. In both English
and Spanish, models perform consistently well on
component traits, although for NORMS this turned
out to be only over 2 traits, effectively casting it
as a binary classification. Materials is the next
consistently highest performing trait type across
corpora and language with size & shape and tactile
not far behind for English, but with a bigger gap
in Spanish. The performance on colour traits is
low across all settings and languages. This doesn’t
appear to be based on the size of the trait subset,
e.g. the component subset is one of the smaller sets,
yet has high performance and the performance of
the other trait types don’t vary with respect to the
number of instance and unique features.

The number of removed sentences, as shown
in Tables 3 and 4, gives a vague indication of the
occurrences of the concepts in the dataset and the
occurrence of their traits with colour sentence re-
movals being the second highest for MCRAE-EN
across all three English corpora, the third highest
for NORMS-EN, and the highest for MCRAE-ES

across all Spanish corpora. These rankings are con-
sistent across extraction methods. Therefore, it is
unlikely that the embeddings for the colours and
the corresponding concepts (often concepts that oc-
cur in the other datasets) are somehow low quality
due to low occurrences of these words. More likely
is that the colour relation is more difficult than the
other trait types as the other types are more tangible
and more specific. Although this doesn’t necessar-
ily hold for size & shape traits, specifically sizes
which tend to be relative, e.g. in MCRAE a plane
can be large (which it is, relative to most things)
but so too can a bathtub (which it is, relative to
a mouse or other such timorous beasties, but not
relative to a house). However, size & shape is con-
sistently one of the traits that models perform worst
on especially with NORMS-EN and MCRAE-ES.

As a final note, the different extraction meth-
ods yield no differences when compared to one
another. This can be observed clearly in Figure 3
in the main text and Figure 6 in Appendix B. While
the number of extracted instances using the syntac-
tically related co-occurrences is very low and so
difficult to draw any major conclusions, the num-
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ber of sentence-based and window-based instances
removed are quite high and are similar in magni-
tude. From this, we can deduce that the proximity
of the words also doesn’t have a major impact on
the ability of a semantic space to encode relational
knowledge. It could still be the case that if the
data used to train models contained more syntac-
tically related concept-trait pairs, they would en-
code more relational knowledge, but it is clear that
their absence doesn’t result in the models losing
what relational knowledge they can capture. Many
questions remain on how these distributional mod-
els encode relational knowledge. We have merely
presented results which do not support the hypoth-
esis that direct co-occurrence are the major signal
for this process as related to trait-based relational
knowledge.

Language models and wider impact of findings.
Whether the results observed here for static embed-
dings would hold for PLMS isn’t a given. While
they are still based on the same distributional hy-
pothesis and adopt statistical methods to encode
salient features of language, they could potentially
be more sensitive to the loss of co-occurrences in
the training data. But this is an open research ques-
tion that requires specific experimentation which
has its own difficulties, i.e. prompting language
models often includes lexical clues which cloud
our ability to say with any great certainty if they
have captured some phenomenon or not, see Kass-
ner and Schütze (2020) for sensitivity of PLMs to
mispriming).

The results do suggest that merely increasing the
amount of data used likely won’t result in any ma-
jor improvements in the ability of models to encode
relational knowledge or commonsense knowledge
more generally, which is attested to by recent work
in Li et al. (2021). Potentially, we need to look to
more complex methods to augment NLP systems
with commonsense knowledge potentially using
multimodal systems, e.g. language models trained
with visual cues as was done in Paik et al. (2021) to
offset reporting bias with respect to colours. Alter-
natively, we can focus on the linguistic input and
consider how to add stronger signals in the data
used to train NLP systems.

6 Conclusion

We have contributed to the emerging interest in
how neural semantic models encode linguistic in-
formation, focusing on trait-based relational knowl-

edge. We have extended findings which showed
that co-occurrences of relational pairs didn’t have a
major impact on a model’s ability to encode knowl-
edge of analogies by complementing this analysis
with an evaluation of trait-based relational knowl-
edge. We extended the analysis to include differ-
ent extraction methods to evaluate whether a more
fine-grained approach would highlight any differ-
ences in performance and found that this is not
the case. The work presented here also expands
beyond English and includes results in Spanish
which follow the same trend. Finally, we have cul-
tivated a set of datasets for different trait types in
both English and Spanish (based on MCRAE and
NORMS) which are available at https://github.
com/cardiffnlp/trait-concept-datasets.
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A MCRAE-EN trait subset extraction
heuristics

Here we describe the full heuristics used to develop
the trait-based subsets from MCRAE used in our
experiments

Some traits were trivial to extract. Colour re-
lations were the simplest as they could be found
using the feature classification in MCRAE of visual-
colour. Component relations were shortlisted
cutting on the WB feature classification (this is
simply a classification of trait types where W
and B refer to the practitioners who classified
the concept-features pairs in unpublished work)
in MCRAE using external_component and
internal_component and then by extract-
ing features beginning with has_. Similarly
for material relations, the WB classification of
made_of was used. Some manual correc-
tions were applied to the components to extend
the number of instances in the dataset and to
make certain traits fit our experimental setup
better. This involved casting features such as
has-4-legs and has-4-wheels as simply
has-legs and has-wheels, respectively. The
feature made-of-material was cut from the
material subset, the feature has-an-inside
from the components subset, and the features
is-colourful and different-colours
were removed from the colour subset.

We then looked at the WB label
external_surface_property (excluding
features that fit into the colour, concept, or material
subset) as this fit our desired trait-based feature
space. The majority of concepts in this subset

tended to have features relating to their shape or
to their size, so we opted to use this pair (size &
shape) as another subset. This required manually
removing features that didn’t fit this trait-type,
e.g. is-smelly, is-shiny, and so on. In this
process, a final possible subset of tactile-based
traits became apparent which was cut using the BR
feature classification (this is simply a classification
of trait types from different practitioners than WB)
tactile and then manually removing certain
features which were more value judgements than
traits, such as is-comfortable or is-warm.

B Visualisations of NORMS-EN and
MCRAE-ES results

Figure 4: Distributions of delta accuracy (∆Acc) for
corresponding pairs for each trait type in NORMS-EN.

Figure 5: Distributions of delta accuracy (∆Acc) for
corresponding pairs for each trait type in MCRAE-ES.
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Figure 6: Distributions of delta accuracy (∆Acc) for
corresponding pairs for extraction method in NORMS-
EN.

Figure 7: Distributions of delta accuracy (∆Acc) for cor-
responding pairs for each extraction method in MCRAE-
ES.
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Abstract

Many natural language inference (NLI)
datasets contain biases that allow models to per-
form well by only using a biased subset of the
input, without considering the remainder fea-
tures. For instance, models are able to classify
samples by only using the hypothesis, without
learning the true relationship between it and the
premise. These structural biases lead discrim-
inative models to learn unintended superficial
features and generalize poorly out of the train-
ing distribution. In this work, we reformulate
NLI as a generative task, where a model is con-
ditioned on the biased subset of the input and
the label and generates the remaining subset of
the input. We show that by imposing a uniform
prior, we obtain a provably unbiased model.
Through synthetic experiments, we find this ap-
proach to be highly robust to large amounts of
bias. We then demonstrate empirically on two
types of natural bias that this approach leads
to fully unbiased models in practice. However,
we find that generative models are difficult to
train and generally perform worse than discrim-
inative baselines. We highlight the difficulty
of the generative modeling task in the context
of NLI as a cause for this worse performance.
Finally, by fine-tuning the generative model
with a discriminative objective, we reduce the
performance gap between the generative model
and the discriminative baseline, while allowing
for a small amount of bias.1

1 Introduction
Natural language processing (NLP) datasets are
plagued with artifacts and biases, which allow mod-
els to perform tasks without learning the desired
underlying language capabilities. For instance, in
natural language inference (NLI) datasets, models
can predict an entailment relationship y from the
hypothesis text H alone, without considering the

∗Supported by the Viterbi Fellowship in the Center for
Computer Engineering at the Technion.

1Our code is available at https://github.com/
technion-cs-nlp/Generative-NLI.

premise P at all (Gururangan et al., 2018; Poliak
et al., 2018). Another identified source of bias is
lexical overlap between P and H , which is associ-
ated with an entailment prediction (McCoy et al.,
2019). We refer to such biases as structural biases,
cases where an undesired subset of the input alone
incorrectly identifies the label. Relying on such bi-
ases results in poor out-of-distribution (o.o.d) gen-
eralization when models are applied to data without
bias. Furthermore, models that contain such biases
may make surprising predictions when the bias is
present, causing problems in critical systems.

A line of work has attempted to improve the
performance on o.o.d datasets by proposing differ-
ent objective functions (e.g., Utama et al., 2020a;
Karimi Mahabadi et al., 2020). However, these
methods typically still result in a significant gap
between the performance in and out of distribution,
which indicates that the models are still biased.
Table 1 shows this gap, which we term the o.o.d
generalization gap (∆).

In this work, we reformulate classification as a
generative task, where the model’s task is to gen-
erate the remainder features R conditioned on the
biased features B and the label y. Using Bayes’
Rule, we decompose the posterior p(y | B,R) into
the likelihood p(R | y,B) and the prior p(y | B).
This reformulation lets us control the amount of
bias present in the final model. By setting a uniform
prior we can obtain a provably unbiased model. We
denote this generative model as GEN..

To assess the extent to which a given model is
biased w.r.t a specific structural bias, we consider
two metrics: the o.o.d generalization gap and the
correlation between a model and a biased model
p(y | B), such as a hypothesis-only or overlap-only
model. We first experiment with injecting synthetic
bias into a fraction of the training set and evalu-
ating on test sets with and without that bias. We
find that the discriminative model’s performance
decreases as the amount of bias increases, while
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SNLI MNLI

Test Hard test ∆ Test Hard test ∆

Utama et al. (2020a) – – – 82.8 79.8 +3.00
Karimi Mahabadi et al. (2020) 89.57 83.01 +6.56 83.47 76.83 +6.64
Sanh et al. (2021) – – – 83.32 77.63 +5.69
Gururangan et al. (2018) 86.5 72.7 +13.8 76.5 64.4 +11.1
Stacey et al. (2020) 79.39 69.92 +9.47 – – –
GEN. (BERT) 65.53 66.18 −0.65 58.55 57.33 +1.22
GEN. (BART) 70.58 72.19 −1.61 64.09 65.74 −1.65

Table 1: Results on regular and hard (o.o.d) test sets of SNLI and MNLI. Prior work exhibits large o.o.d generalization
gaps (∆), while our generative approach reduces the gap significantly. The “Hard test” set refers to a subset of the
regular test set that a hypothesis-only model fails on.

GEN maintains similar performance at all bias lev-
els. Moreover, the biased-ness of the discriminative
model increases, while GEN remains unbiased.

Next, we experiment with two kinds of natural
bias: hypothesis-only and overlap. We demonstrate
that GEN is unbiased compared to the discrimina-
tive baseline as measured by its low ∆ and low
absolute correlation with a biased model (ρ).

However, while our approach leads to unbiased
models, it performs worse than the discriminative
baseline even on o.o.d data. We then identify and
quantify several causes for the poor performance of
GEN. We show that generative modeling is a more
challenging task than discriminative modeling, and
that it requires learning a large amount of spurious
signal compared to the discriminative model.

Finally, to mitigate the difficulty of the genera-
tive modeling task, we fine-tune GEN with a dis-
criminative objective (Lewis and Fan, 2019). While
this leaks some bias into the model, the final model
(denoted as GEN-FT) matches or surpasses the dis-
criminative baseline while maintaining a relatively
small o.o.d generalization gap.

To conclude, our contributions are as follows:

• We develop a generative modeling approach,
which provably eliminates structural biases in
natural language understanding tasks.

• We demonstrate experimentally on two bias
types and different NLI datasets that this ap-
proach leads to unbiased models.

• We analyze the strengths and weaknesses of
the generative model.

• We show how discriminative fine-tuning im-
proves the generative model, while allowing
some bias to leak into the model.

2 Related Work

2.1 Biases and Artifacts

Many natural language understanding (NLU)
datasets contain biases or artifacts, superficial fea-
tures that are associated with a certain label. Ex-
amples include hypothesis-only biases in NLI such
as negation words in the hypothesis being corre-
lated with a contradiction label (Poliak et al., 2018;
Gururangan et al., 2018). Similar one-sided biases
have been found in other tasks, including visual
question answering (VQA) (Agrawal et al., 2018;
Manjunatha et al., 2019; Das et al., 2019), reading
comprehension (Kaushik and Lipton, 2018), and
fact verification (Schuster et al., 2019). Another
kind of bias identified in NLI is lexical overlap,
which is correlated with an entailment decision in
NLI datasets (McCoy et al., 2019). We view all
these cases as structural biases, cases where the in-
put can be split into two disjoint sets, of the biased
features and the remainder features.

The existence of structural biases in datasets al-
lows models to perform unreasonably well when
given access only to the biased features, such as
a hypothesis-only model being able to predict en-
tailment without access to the premise. The bias
learned by the model manifests in poor o.o.d gen-
eralization when evaluated on a test set where the
training set correlation between the biased features
and a certain label does not hold.

2.2 Mitigation Strategies

Common approaches for improving o.o.d general-
ization combine the main model with a bias model,
such as a hypothesis-only model. For instance, a
bias model may be trained adversarially, making
the main model perform worse when the bias model
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performs well (Belinkov et al., 2019b; Stacey et al.,
2020). Others use a bias model to modulate the
main model’s predictions in various ways (He et al.,
2019; Karimi Mahabadi et al., 2020; Utama et al.,
2020b; Sanh et al., 2021; Mendelson and Belinkov,
2021). All these approaches use discriminative
models to estimate p(y | P,H). Moreover, they
typically still result in a gap between in- and out-
of-distribution performance.

In contrast, we propose a novel generative for-
mulation of the NLI task, which leads to an unbi-
ased model, in theory, and in practice. Belinkov
et al. (2019a) also proposed to solve a generative
problem, modeling p(P | y,H), in order to en-
courage the model to consider the premise in its
predictions. However, they ended up not using a
generative model; rather, they approximated it with
discriminative models. Lewis and Fan (2019) used
a generative model for a different task, VQA, and
found it improves generalization from biased train-
ing data. While our basic approach is similar, we
analyze the generative model more rigorously, in-
vestigate the effect of different modeling options,
and focus on quantifying the model’s bias.

3 Structural Bias
Consider the general case of a classification task,
for which we wish to build a model pθ(y|X) where
y is a low-dimensional label and X is an arbitrarily
large set of features. The model is trained on an
empirical training set D = {(Xi, yi)}Ni=1. The
dataset is constructed by humans, and inadvertently
contains structural biases. We define a structural
bias as a case where, if the input X is split into two
disjoint sets X=(B,R = X −B), the label y can
be learned to be reliably predicted given only B.
For most choices of B this is not a problem, but
in some cases, the subset represents an externally
imposed constraint that needs to be maintained or
an externally imposed understanding of how the
model should operate.

This formulation comprises a broad set of com-
monly considered biases. For example, in the NLI
task, X = (P,H) where P and H are the premise
and hypothesis. If we choose the split B = H , we
arrive at the hypothesis-only bias. This is an unde-
sirable bias because as humans we know that NLI
is impossible if one is only given the hypothesis.

Taking different splits corresponds to different
biases. For instance, we can model the lexical
overlap bias under the structural bias framework
with the subset B = P ∩H . NLI models should

perform no better than chance when given only the
overlapping tokens between P and H .

Finally, this formulation extends beyond NLI
and NLP to broader biases. For example, if X is
a vector of information about individuals and one
of the features in X is a protected characteristic s
(e.g., gender or race), B = s.2 Then, depending on
the task, an undesirable structural bias may exist if
a model can learn to predict y given s.

We denote these biases as structural biases be-
cause they are defined through the structure B ⊂
X , rather than specific known patterns in the data.
For example, in the hypothesis-only case, this for-
mulation does not require knowledge about what
aspects of the hypothesis allow a hypothesis-only
model to predict the label (e.g., negation words),
only that somehow the hypothesis alone incorrectly
gives a signal about the label. Thus, this type of
bias is broader than specific known biases such as
the presence of negation words, but narrower than
unknown biases because it requires some knowl-
edge of where the bias might be found.

3.1 Generative Classifiers Eliminate
Structural Bias

Generative classifiers are models that make predic-
tions according to Bayes’ Rule. The generative
classifier framework provides a principled way of
handling structural bias:

pθ(y | X) = pθ(y | B,R) (1)

=
pθ(R | y,B)pθ(y | B)

pθ(R | B)

=
pθ(R | y,B)pθ(y | B)∑
y′ pθ(R | y′, B)pθ(y′ | B)

.

We emphasize that under this framework, one
may separately model pθ(R | y,B) and pθ(y | B),
but the marginal likelihood must be constructed
by marginalizing over the product of those compo-
nents rather than estimated separately.

Separating the bias component gives explicit con-
trol over a given structural bias in the model. For-
mally, consider the ability of any model to predict
the label given the bias subset, p(y | B), defined
by marginalizing out the remainder features:

p(y | B) =

∫
pθ(y | R,B)pθ(R | B)dR. (2)

2A non-trivial factorization of gender/race information
from other features may be required in the NLP case.
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For a discriminative model this may take any
value, but for a generative classifier this becomes:

p(y | B) =

∫
pθ(y | R,B)pθ(R | B)dR (3)

=

∫
pθ(R | y,B)pθ(y | B)dR

= pθ(y | B)

∫
pθ(R | y,B)dR = pθ(y | B).

Therefore, for any given structural bias, the abil-
ity of the model to rely on the bias alone, p(y | B),
can be eliminated in a principled way by training a
generative model to learn pθ(R | y,B) and setting
pθ(y | B) = Uniform(Y). R and B are collections
of tokens, so the actual training process amounts
to training a standard encoder–decoder model. Pre-
dictions are made using Equation 1 at inference
time. Unlike other methods, this approach does
not require a specific model for pθ(y | B); it sim-
ply requires the desired pθ(y | B), which is often
uniform.

3.2 Measuring Structural Bias

Typically, debiasing methods are evaluated by mea-
suring the accuracy of the resulting model on a
“hard” test set, a subset of the test set for which
a bias-only model p(y | B) predicts the incorrect
label. While this captures overall quality, it alone
does not assess the extent to which bias remains.
For example, a model that scores well on the “hard”
set but much better on the original test set must
retain a portion of the bias, whereas a model that
scores less well on the “hard” set but identically
on the original test set likely does not retain any of
the target bias. Thus, while the score on the “hard”
test set is related to the biased-ness of a model, it
alone does not tell the whole story. For some ap-
plications, the overall quality on non-biased data is
a reasonable final objective, but for other applica-
tions complete removal of bias is critical.

To quantify the remaining biased-ness of a given
model, we consider two metrics: the difference
between the accuracy of the model on the standard
test set and its accuracy on a “hard” set created with
respect to the bias in question, which we term the
o.o.d generalization gap (∆), and the correlation
(ρ) between the predictions of a given model and a
fully biased model, i.e., p(y | B).

A truly unbiased model will give a similar perfor-
mance on the original test set and the hard test set,
because it cannot rely on the predictive power of B

in the original test set even when it is present. Thus
low values of ∆ indicate the model is unbiased.

Similarly, a model that consistently makes simi-
lar decisions to the fully biased model p(y | B) in
the original test set is likely using only the biased
features B as the fully biased model. Therefore,
a larger ρ gives additional evidence that a specific
structural bias remains in a given model.

4 Experiments

In all experiments, we estimate p(R | y,B) with
an encoder-decoder model, with inputs (y,B) and
output R. To condition on y, we prefix a label-
specific token to B. We then train the model as a
conditional generative model, by fine-tuning BERT
(Devlin et al., 2019) or BART (Lewis et al., 2020)
with the standard auto-regressive cross-entropy
loss. To use BERT as an autoregressive decoder,
the bidirectional self-attention mechanism of BERT
is masked, and a language modeling layer, which
starts generating from the “CLS” token, is added.
A generative BERT model is comprised of a regular
BERT model as an encoder and a BERT decoder
(Rothe et al., 2020). All models are taken from the
Transformers library (Wolf et al., 2019), and are
fine-tuned with either the baseline discriminative
objective or our proposed generative formulation.
At test time, we attach all possible label tokens to
each B and pick ŷ = argmaxy∈Y pθ(R|y,B).

4.1 Synthetic Experiment

To empirically verify the analysis in Section 3, we
construct a synthetic experiment by artificially in-
jecting a hypothesis-only bias into an NLI dataset,
similarly to He et al. (2019). We use MNLI
(Williams et al., 2018), an English NLI dataset,
as the base dataset. For each example, we add one
of three tokens to the beginning of the hypothesis,
each token corresponding to a label. With prob-
ability p the token corresponds to the true label
and with probability 1 − p the token is randomly
selected from the three labels. The result is that
p directly controls the amount of hypothesis-only
bias present in the data3. We then train discrimina-
tive and generative BERT models on the resulting
data.

3A reviewer pointed out that the generative model may
rely on artifacts introduced by annotators when generating
the hypothesis. However, the synthetic bias token is arguably
more dominant than any such artifacts.
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Figure 1: Results for models trained with synthetic bias
and evaluated on MNLI dev hard without bias.

4.2 Hypothesis-only Bias

We train our models on the (English) Stanford Nat-
ural Language Inference dataset (SNLI; Bowman
et al. 2015) and on the MNLI dataset, two NLI
datasets that are known to contain hypothesis-only
biases (Poliak et al., 2018; Gururangan et al., 2018;
Tsuchiya, 2018). We evaluate models on the avail-
able in-distribution test sets and on o.o.d test sets
that have fewer or no hypothesis-only biases. For
SNLI, we use the hard set provided by Gururangan
et al. (2018). For MNLI, we use the blind evalua-
tion test and hard test sets for MNLI matched.

4.3 Overlap Bias

Another type of bias that has been demonstrated
in the MNLI dataset is lexical overlap bias. Mc-
Coy et al. (2019) demonstrate that, while somewhat
uncommon, lexical overlap, subsequence overlap,
and constituent overlap between the premise and
hypothesis give a strong signal for entailment. Like
hypothesis-only bias, this signal comes from pe-
culiarities of the dataset creation process. For a
model performing actual NLI, the overlap of words
between the hypothesis and the premise should not
give any indication of the label. This is emphasized
by McCoy et al. (2019), as they create a separate
label-balanced evaluation set where each example
has a high overlap.

To treat overlap bias in the generative formula-
tion, we set B = P ∩ H . Specifically, we con-
catenate the premise and hypothesis and mask out
any tokens that do not appear in both of them. The
input to the encoder of GEN is then the label y
followed by this partially masked concatenation.
For simplicity, the output of GEN is the unmasked
concatenation of P and H . In principle, we do not
need to output the unmasked tokens, but this sim-
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Figure 2: The o.o.d generalization gap (∆) and the
correlation to a bias model (ρ) of generative and dis-
criminative models. ρ is calculated on an unbiased test
set. Appendix A.1 shows correlations on a biased set.

plifies training and remains probabilistically valid.4

Because this setup is closely connected to the
way the BART model is pretrained, we experiment
solely with the BART model for this configuration.

While not traditionally studied in the overlap
bias case, we perform the same analysis as in the
hypothesis-only bias by constructing a hard set for
overlap bias. We train a discriminative model that
predicts the label from the masked concatenated
premise–hypothesis input, and filter the MNLI dev
set for examples where this model is incorrect.5

5 Results

5.1 Synthetic Experiment Results

Figure 1 shows the results when training with syn-
thetic bias in MNLI, for different values of p, and
evaluating on MNLI dev hard (without synthetic
bias), a subset that a hypothesis-only model pre-
dicts incorrectly. The discriminative model’s per-
formance degrades gradually as p increases, while
GEN maintains similar performance. At high lev-
els of p, the discriminative model falls below the
generative one, indicating that the presence of large
amounts of bias precludes the discriminative model
from learning the task effectively.

Figure 2 shows the two biased-ness metrics, cal-
culated for the generative and discriminative mod-
els across a range of p values. For each p, ∆ is
calculated from the difference in accuracy for a
given model between a version of the dev set with
the synthetic bias included as in training, and a
version of the dev set with the synthetic bias token

4An example for the data preparation is in Appendix A.3.
5As we cannot use the hidden test to filter based on labels,

we use dev matched/mismatched for val./eval. respectively.
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SNLI MNLI

Model Test Hard test ∆ Test Hard test ∆

B
E

R
T

Bias-only 70.82±0.6 32.09±1.7 38.73±1.2 59.77±0.4 34.41±2.3 25.36±2.1

Discriminative 90.49±0.2 80.55±0.3 9.94±0.1 84.08±0.4 76.27±0.3 7.81±0.2

GEN, hyp-only 81.42±0.5 61.39±1.4 20.02±0.9 68.5±0.3 52.24±1.4 16.21±1.5

GEN, uniform 65.86±0.3 66.74±0.5 −0.88±0.3 56.98±0.7 54.73±0.2 2.26±0.5

B
A

R
T

Hypothesis-only 70.37±0.3 31.61±0.3 38.76±0.1 57.89±2.3 37.83±1.6 20.05±3.9

Discriminative 90.78±0.3 81.04±0.6 9.74±0.3 85.67±0.1 78.84±0.4 6.83±0.4

GEN, hyp-only 84.36±0.1 67.22±0.8 17.14±0.7 73.85±0.6 60.79±0.6 13.06±0.2

GEN, uniform 70.80±0.2 73.16±0.9 −2.36±0.7 64.22±0.4 64.11±1.0 0.11±0.8

Table 2: Comparison between discriminative baselines and generative models, with Hyp-only or uniform prior, in
the hypothesis-only bias case.

Model Dev Hard dev ∆

Bias-
only

56.32±0.3 9.37±8.3 46.95±8.5

Disc. 86.44±0.5 79.72±0.8 6.73±0.2

GEN 63.67±1.1 65.56±0.6 −1.88±0.4

Table 3: Comparison of discriminative and generative
models (fine-tuned from BART) in the lexical overlap
bias case. GEN was trained with a uniform prior.

randomly chosen for each example. The fully bi-
ased model - p(y | H) used as the reference when
calculating ρ is a model that always selects the la-
bel that corresponds with the synthetic bias token
prefixed to the hypothesis. According to both met-
rics, as the bias ratio p increases, the discriminative
model quickly becomes significantly biased while
GEN remains entirely unbiased.

5.2 GEN Reduces the Generalization Gap

Hypothesis-only bias Table 2 shows the results
of the proposed generative model and the discrimi-
native baseline in the case of hypothesis-only bias.
For GEN, we show results with either a hypothesis-
only prior for p(y | H) or a uniform prior. The
generative approach with the uniform prior leads to
nearly identical accuracy on the i.i.d and o.o.d test
sets, that is, unbiased models as measured by low
o.o.d generalization gap (∆ between −2 and 3). In
contrast, the discriminative model has much larger
gaps (∆ of at least 9 on SNLI and 7 on MNLI),
meaning that it is a more biased model. GEN with
a hypothesis-only prior also exhibits large gener-
alization gaps, demonstrating the bias leak in this
model. Obviously, a hypothesis-only model is the
most biased, with the largest gaps.

Model Lex. Subseq. Const.

Hypothesis-only 48.2 48.7 50.4
Discriminative 80.7 55.5 66.3

Learned-mixin 77.5 54.1 63.2
PoE 72.9 65.3 69.6
Conf. reg. 73.3 66.5 67.2

Generative 50.7 57.7 53.2

Table 4: Discriminative and generative models evaluated
on the three HANS evaluation sets.

These results also show the advantage of using
a pre-trained encoder-decoder (BART) compared
to plugging a pre-trained encoder (BERT) and fine-
tuning it as an encoder-decoder. While both genera-
tive models are unbiased, BART is more amenable
to the generative fine-tuning than BERT, with over-
all better results. For this reason, we only report
results with BART henceforth.

Overlap bias Table 3 shows similar results in
the case of overlap bias on a hard set w.r.t this
bias. GEN exhibits a lower generalization gap (∆)
than the discriminative baseline. As expected, the
overlap bias model shows the greatest gap.

While the generative approach leads to unbiased
models for both bias types, it also performs sig-
nificantly worse than the discriminative model, on
both in-distribution and o.o.d test sets. We return
to this issue in Sections 6 and 7.

Finally, Table 4 shows the accuracies of the gen-
erative classifier and previous results from the lit-
erature, reported by Utama et al. (2020a) on the
three HANS evaluation sets (McCoy et al., 2019).
In general, the accuracies for the generative clas-
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Label Hypothesis Generated premise

contradiction a woman in a black shirt is sitting on a bench with a bag in her lap
entailment the woman has been shot a woman is being shot by a man in a blue shirt

neutral a woman in a blue shirt is sitting on a bench with a bag in her lap
contradiction a woman in a black shirt is smiling
entailment the woman is very happy a woman in a white shirt is smiling

neutral a woman in a white shirt is smiling
contradiction an elderly woman is sitting on a bench with her legs crossed and [...]

entailment the woman is young a young woman in a black shirt and jeans is walking down the street
neutral a woman in a red shirt is sitting on a bench with a bag in her lap

Table 5: Generated premises by GEN from <y,H> pairs. The original premise for the hypothesis was“A woman
with a green headscarf, blue shirt and a very big grin” and the gold label was “neutral”.

Model Hyp-SNLI Hyp-MNLI Overlap

Disc. 0.271 0.223 0.171
GEN −0.025 −0.009 −0.043
Majority 0.005 0.055 0.016
Uniform −0.018 −0.006 0.007

Table 6: Correlations of discriminative, generative, ma-
jority, and uniform models with bias models, on hyp-
only (on SNLI/MNLI) and overlap bias (on MNLI).

sifier are low. We hypothesize that this is due to
the fact that the examples in the HANS evaluation
set are significantly out of distribution compared
to the training set, w.r.t the amount of overlap be-
tween premise and hypothesis. In the training set,
sentences often have 20 or 30 tokens with only 1
or 2 token overlaps. In the HANS set, sentences
are shorter and all but 1 or 2 tokens overlap. This
makes the input significantly more out of domain
for the generative classifier only, which is used to
seeing many mask tokens in the input and in the
HANS set sees almost no mask tokens.

5.3 GEN is Uncorrelated with a Bias Model

Table 6 shows correlations ρ of GEN and the dis-
criminative baseline with a bias-only model. In the
hypothesis-only case, the models were trained on
SNLI or MNLI and correlations were measured on
predictions on SNLI test or MNLI dev mismatched,
respectively. In the overlap case, the models were
trained on MNLI and correlations were measured
on MNLI dev mismatched.

In both bias types, the discriminative model pre-
dictions are much more correlated with the bias
models than the predictions of the generative mod-
els. In fact, the correlations of the generative mod-
els are as low as those of a majority model or a
uniform model, which is unbiased by construction.

6 Evaluating Generated Premises

So far, we have only used GEN to score existing ex-
amples (with teacher forcing), conditioned on the
label and the biased features. In this section, we
evaluate the quality of its generations when decod-
ing without constraints. For the experiments here,
we consider the hypothesis-only bias and evaluate
the quality of GEN in generating premises. We
use a BART model trained on SNLI and generate
premises for all hypotheses in the test set.

To evaluate how well our model can generate
premises, we used two metrics: BLEU (Papineni
et al., 2002) of the generated premises w.r.t gold
premises, to measure the generation quality (higher
is better), and self-BLEU (Zhu et al., 2018) to mea-
sure the diversity of the generations (lower is more
diverse). We report a BLEU value of 0.1078, in-
dicating that the model is not very good at gener-
ating premises. We report self-BLEU of 0.8032
for the generated premises compared to 0.5875 for
the original premises, suggesting that the generated
premises are less diverse. Table 5 also shows exam-
ples where, given different hypotheses, the model
generates very similar premises.

A possible explanation for the difficulty of the
generative task may be found in the nature of NLI
examples in common datasets. In many cases, the
relationship is determined by a small number of
words in the premise and hypothesis pair. To quan-
tify this, we measured the number of words high-
lighted as explanations in the e-SNLI dataset (Cam-
buru et al., 2018) and found that less than 21% of
words in the premise are highlighted on average.6

This pattern is reflected also in decisions made by

6Of the premises that were highlighted at all.
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SNLI MNLI

Model Test Hard test ∆ ρ Test Hard test ∆ ρ

Disc. 90.78±0.3 81.04±0.6 9.74±0.3 0.27 85.67±0.1 78.84±0.4 6.83±0.4 0.22
GEN-FT 86.30±0.4 82.20±0.3 4.09±0.1 0.09 79.66±1.5 76.45±0.7 3.21±1.3 0.07

Table 7: Fine-tuned model results for hypothesis-only bias. Disc. is the discriminative baseline.

NLI models. By applying gradient attributions,7

we found that more than 70% of the premise words
have low attributions values (between −0.1 to 0.1),
with fewer than 6% of the words having absolute
values greater than 0.3. This shows that only a
small number of words had any significant effect
on the model predictions. Table 12 in the appendix
shows a qualitative example of this behavior. Fi-
nally, this pattern is also reflected in the generations
produced by GEN, as demonstrated in Table 5.

7 Discriminative Fine-tuning
The analysis in Section 6 suggests that the central
limitation of GEN is that the purely generative task
for which it is trained is challenging in its own
right, but unaligned with the downstream classifi-
cation task. The model is rewarded at training time
for devoting significant capacity to modeling the
full high-dimensional distribution of R, even when
large parts of that distribution are unimportant for
making downstream predictions.

To help GEN in such cases, we experiment with
an additional fine-tuning step in which we directly
optimize for predictive performance. Specifically,
for the fine-tuning step we construct the discrimi-
native distribution using Bayes’ Rule in Equation 1
and use it at training time by minimizing the label
cross-entropy loss:

Lft = −
N∑

i=1

log pθ(yi | Bi, Ri) (4)

= −
N∑

i=1

log
pθ(Ri | yi, Bi)pθ(yi | Bi)∑
y′ pθ(Ri | y′, Bi)pθ(y′ | Bi)

.

Using this objective requires a choice of
pθ(y | B). We explore the impact of different
choices for this distribution in Appendix A.2, but
found that using a pretrained and frozen pθ(y | B)
during the fine-tuning step works best. We hypoth-
esize that this setup allows the generative compo-

7We computed attributions for a discriminative BERT
model trained on SNLI, using Integrated Gradients (Sundarara-
jan et al., 2017) with Captum (Kokhlikyan et al., 2020).

Model Dev Hard dev ∆ ρ

Disc. 86.44 79.72 6.73 0.171
GEN-FT 79.87 74.98 4.89 0.106

Table 8: Fine-tuned model results for overlap bias on
MNLI mismatched dev set.

nent pθ(R | y,B) to ignore as much bias as possi-
ble. At inference, as we would like to ignore the
bias, we take the fine-tuned generative component
pθ(R | y,B) and perform inference the same way
as before, using Bayes’ Rule with a uniform prior.

The adjusted training procedure is composed of
the following steps: 1) Train a discriminative prior
model, pθ(y | B), freeze the weights. 2) Train
a generative model, pθ(R | y,B), as in Section
4. 3) Fine-tune the model using Equation 4, using
the pretrained pθ(y | B). 4) Test the model using
Equation 1 with a uniform prior.

7.1 Results

Tables 7 and 8 show the results of the fine-tuning
pipeline. The fine-tuned generative models (de-
noted as GEN-FT) achieve smaller o.o.d generaliza-
tion gaps (∆) and correlations to the biased models
(ρ) than the discriminative baselines. GEN-FT is
also significantly better than GEN in terms of o.o.d
performance, at the expense of slight bias leakage
(higher ρ compared to GEN in Table 6). In the case
of hypothesis-only bias, GEN-FT match or surpass
the results of the discriminative baselines on the
o.o.d sets. In the overlap bias case, GEN-FT does
not match the discriminative model on the o.o.d set,
but it narrows the gap.

The above results were obtained using a bias
model prior in the fine-tuning step and a uniform
prior at inference time. This was the strategy that
achieved the lowest generalization gap (∆) on the
dev set while outperforming the discriminative
baseline. See Appendix A.2 for an ablation study
of additional options.
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Figure 3: SNLI Hard results with different T5 models.

8 Scalability

Given that the generative approach consumes more
compute than the discriminative baseline, it is natu-
ral to ask whether it can scale to larger models. To
answer this, we experimented with the T5 model
(Raffel et al., 2020), an encoder-decoder available
in five sizes, from 60M to 11B parameters. We fo-
cus on the hypothesis-only bias case in SNLI. We
train the generative and discriminative models us-
ing regular fine-tuning (also called model-tuning),
and also experiment with prompt-tuning (Lester
et al., 2021), a faster and cheaper approach, which
adds a small number of learnable tokens to the
start of the input, and trains them end-to-end, while
the model’s original weights stay frozen. (Mem-
ory and training statistics are found in Table 14,
Appendix A.5.)

Figure 3 shows that both the generative and
discriminative approaches scale with model size.
Prompt-tuning is effective, matching model-tuning
performance at larger sizes. In larger models, the
generative approach narrows the gap from the dis-
criminative one, but cannot close it. Table 9 shows
that with the largest 11B model, the generative ap-
proach leads to unbiased models. The table also
shows that discriminative fine-tuning is possible
at this scale and obtains a similar performance to
the discriminative model on the hard set. Prompt-
tuning also allows us to hold only one model for
the discriminative fine-tuning phase (compared to
two models in model-tuning). We conclude that
the generative approach is scalable and can be used
with very large models to mitigate structural biases.

Method Model Test Hard test ∆

Model- Disc. 92.80 85.00 7.8
tuning GEN 76.76 78.53 −1.77

Prompt- Disc. 92.88 85.46 7.42

tuning GEN 79.91 79.70 0.21
GEN-FT 89.68 85.22 4.46

Table 9: Results on SNLI with T5-XXL (11B) model.

9 Conclusion

Structural biases are common in various NLI
datasets and are a major obstacle when trying to
create robust systems for this task. We proposed a
generative approach for NLI, which leads to unbi-
ased models. We demonstrated that our generative
models are robust to large amounts of bias and per-
form equally well in and out of distribution. This
comes, however, with a trade-off, where the gen-
erative models perform worse than discriminative
baselines. We investigated reasons for the difficulty
of training generative NLI models, highlighting the
large output space of generating sentences, as op-
posed to identifying a small subset of words that
are often sufficient for solving the task. We showed
how to mitigate this problem by fine-tuning GEN

with a discriminative objective. Finally, we demon-
strated that the method scales efficiently to large
language models.

Our work lays down a novel formulation for the
NLI task, which may be applied to many other
natural language understanding tasks. Future work
can examine other kinds of bias and different tasks.
For instance, if the bias variables are constructed
according to protected attributes like race or gender,
our approach leads to unbiased models w.r.t the
protected attributes.
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A Appendix

A.1 Correlations

Figure 4 shows the correlations of generative and
discriminative models to a bias model under dif-
ferent bias ratios in the synthetic bias case. Here
the correlations are calculated on a biased test set,
while in Section 5.3 they were calculated on an
unbiased test set. The pattern is the same: the dis-
criminative model is become more biased (higher
ρ) as the bias ratio increases, while GEN remains
unbiased (small ρ).

0.1 0.3 0.5 0.7 0.9

0.0

0.25

0.5

0.75

1.0

Bias Ratio

ρ

Generative
Discriminative

Figure 4: The correlation to a bias model (ρ) of gen-
erative and discriminative models under different bias
ratios. ρ is calculated on a biased test set, so that each
model used the same bias ratio at training and inference
time.

A.2 Ablation study of fine-tuning pipeline

Our fine-tuning pipeline allows different ways to
combine the steps, such as choosing a prior or
whether to use another step of fine-tuning. Ta-
ble 10 presents an ablation study of the different
possible combinations, using BART on SNLI with
hypothesis-only bias. (The table shows means and
standard deviations of 3 runs with different random
seeds.) Row 1 shows the results of GEN, without
any fine-tuning; the same model from Section 3.
Fine-tuning with a hypothesis-only prior leads to a
smaller gap than fine-tuning with a uniform prior
(compare rows 3 and 5). We can explain these ap-
parently surprising results by the hypothesis-only
prior capturing some of the bias, such that remov-
ing it during inference allows the predictions to
be less biased. Fine-tuning with a uniform prior
does not allow such a decomposition, resulting in a

large gap (row 3). In contrast, using a hypothesis-
only prior at inference leads to biased predictions
(large generalization gaps; rows 2, 4 and 6). These
models perform well on the test set (relative to us-
ing uniform prior at inference; rows 3, 5, 7), but
relatively poorly on the o.o.d set. In fact, maintain-
ing the same kind of prior throughout the pipeline
(rows 3 and 6) leads to results similar to the dis-
criminative baseline (row 11).

The fine-tuning step allows a balancing of bias
and performance. Fine-tuning with a hypothesis-
only prior and using a uniform prior at test time
results in good o.o.d performance and relatively
small generalization gaps (row 5). This setting
achieve the smallest generalization gap that still
beats the discriminative baseline (row 11).

Another consideration is the additional training
time incurred by two phases of training. If we
skip the generative training phase and directly train
with the discriminative objective, we lose a bit in
terms of test performance but maintain a good o.o.d
performance, resulting in a medium-size general-
ization gap (row 9).

The model on row 9 shows comparable perfor-
mance to the one in row 5, with a slight perfor-
mance drop and a larger standard derivation. In
practice, that model demonstrated slight instability
and performed worse on the test and hard test sets
than the model on row 6, showing that the initial
generative training phase may allow the model to
generalize better.

A.3 Data preparation for overlap bias

Table 11 shows an example for how a P,H pair is
transformed to R,B which are used as an input to
the model in Section 4.3.

A.4 Gradient Attributions Example

Table 12 gives qualitative examples for the phe-
nomenon in Section 6.

A.5 Hyperparameters and Training Details

Table 13 shows the hyperparameters for the models
used throughout the paper. We experimented with
word dropout values of: 0.01, 0.1, 0.3, 0.5, weight
decay values of: 0.001, 0.01, 0.1, 1, learning rate
values in the range: [10−6, 10−4], and maximum
number of 5, 10, 20 and 100 epochs. The values
that achieved the best accuracy on the validation set
appear in the table. All other hyperparameters are
the default ones in Wolf et al. (2019). Where mean
and standard deviation is specified, we calculate
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Prior

Training Fine-tuning Inference Dev Hard Dev ∆

1

GEN

– Uniform 71.14±0.4 72.68±0.2 −1.54±0.3

2 – Hypothesis-only 84.99±0.3 64.29±0.7 20.69±0.9

3 Uniform Uniform 90.32±0.1 77.17±0.8 13.15±0.7

4 Uniform Hypothesis-only 89.31±0.5 70.33±1.9 18.98±1.4

5 Hypothesis-only Uniform 87.12±0.5 80.55±0.1 6.57±0.5*
6 Hypothesis-only Hypothesis-only 90.06±0.0 75.53±0.8 14.53±0.8

7

–

Uniform Uniform 90.05±0.1 76.54±0.4 13.51±0.3

8 Uniform Hypothesis-only 89.66±0.4 71.71±1.5 17.95±1.2

9 Hypothesis-only Uniform 87.11±0.9 80.53±1.2 6.58±0.6

10 Hypothesis-only Hypothesis-only 90.04±0.2 76.13±0.6 13.91±0.4

11 Discriminative baseline 91.49±0.0 79.59±0.5 11.90±0.5

Table 10: Ablations on SNLI validation set (Dev) with BART-base. Hard Dev was created similarly to SNLI hard
(Gururangan et al., 2018). Fine-tuning is done with a discriminative objective, while inference is always using the
generative objective. Uniform/Hypothesis-only refers to the kind of prior that was used during this phase. “*” marks
the model with the smallest o.o.d generalization gap (∆) that is better than the discriminative baseline.

Premise Hypothesis

A smiling costumed woman is holding an um-
brella

A happy woman in a fairy costume holds an
umbrella

Remainder Bias

A smiling costumed woman is holding an um-
brella <SEP> A happy woman in a fairy costume
holds an umbrella

A <mask> <mask> woman <mask> <mask> an
umbrella <SEP> A <mask> woman <mask> a
<mask> <mask> <mask> an umbrella

Table 11: Example for the data preparation for the overlap bias case.

those values over 3 runs, each with a different seed.
Otherwise, those are the results of only one run.

Each experiment was performed on one or two
NVIDIA RTX 2080 Ti GPUs. Training takes about
6–7 hours for discriminative models, 7–8 hours
for generative models, and 15–20 hours for the
discriminative fine-tuning step. Discriminative
BERT/BART models have 109M/140M parame-
ters, while generative BERT/BART models have
247M/139M parameters.

The experiment in Section 8 were preformed us-
ing NVIDIA A100s cards. The statistics for those
experiments are presented in Table 14. All experi-
ments used a batch size of 32, except for the model-
tuned T5-XL and T5-XXL, which were trained
with batch sizes of 16 and 8 respectively . For a fair
comparison, we used T5.1.1 “LM Adapted” check-
points, which are compatible with both model-

tuning and prompt-tuning.8 For prompt-tuning, we
used 20 additional tokens, resulting in <100K train-
able parameters even for the largest 11B model.

8https://github.com/google-research/
text-to-text-transfer-transformer/
blob/main/released_checkpoints.md#
lm-adapted-t511lm100k
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Premise Hypothesis Label

a woman in a black shirt looking at a bicycle .
a woman dressed in black

shops for a bicycle .
entailment

a black man in a white uniform makes a spectacular

reverse slam dunk to the crowd ’ s amazement.
the man is asian contradiction

Table 12: Gradient attributions example. Green/red show positive/negative attributions.

Model Learning rate No. of epochs Word dropout Weight decay

Discriminative /
Hypothesis-only

10−5 20 – –

Generative 10−5 20 – –
Fine-tuning 5 · 10−6 5 0.1 0.1

Table 13: Hyperparameters for models. All of the models used early stooping of 3 epochs without improvement.

Model
Number of
Parameters
(approx. )

Training Time
(hours)

Number of
GPUs For
Training

M
od

el
-T

un
in

g Small 60M 2 1
Base 220M 5 2
Large 770M 10 2
XL 2.8B 24 4
XXL 11B 48 8

Pr
om

pt
-T

un
in

g Small 60M + 10K 2 1
Base 220M + 15K 4 1
Large 770M + 20K 6 1
XL 2.8B + 40K 15 2
XXL 11B + 80K 20 4

Table 14: T5 model statistics. For the number of parameters for prompt-tuning, X + Y means that the model has X
frozen parameters, and additional Y learnable parameters are used for prompt-tuning.
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Abstract

Prior to deep learning the semantic pars-
ing community has been interested in under-
standing and modeling the range of possi-
ble word alignments between natural language
sentences and their corresponding meaning
representations. Sequence-to-sequence mod-
els changed the research landscape suggesting
that we no longer need to worry about align-
ments since they can be learned automatically
by means of an attention mechanism. More
recently, researchers have started to question
such premise. In this work we investigate
whether seq2seq models can handle both sim-
ple and complex alignments. To answer this
question we augment the popular GEO seman-
tic parsing dataset with alignment annotations
and create GEO-ALIGNED. We then study the
performance of standard seq2seq models on
the examples that can be aligned monotoni-
cally versus examples that require more com-
plex alignments. Our empirical study shows
that performance is significantly better over
monotonic alignments. 1

1 Introduction

In semantic parsing, the goal is to map natural
language (NL) sentences into machine-readable
meaning representations (MR) which allow for
automated reasoning. For example, consider the
following pair:

NL : What is the population of Georgia ?
MR : answer (population (state (georgia) ) )

Prior to deep learning models, a popular ap-
proach was to learn a grammar-based parser that
explicitly models alignments between the NL and
MR sequences (Wong and Mooney, 2006; Zettle-
moyer and Collins, 2005, 2007; Lu et al., 2008;

1The code and data is publicly available at https://
github.com/interact-erc/geo-aligned

Kwiatkowksi et al., 2010; Kwiatkowski et al.,
2011). The emergence of sequence-to-sequence
(seq2seq) semantic parsers with attention mecha-
nisms changed the research landscape: one of the
initial premises of seq2seq models is that align-
ments no longer need to be explicitly modeled
because the attention mechanisms will automat-
ically learn them (Bahdanau et al., 2015). More re-
cently, researchers started to question such premise,
having observed that seq2seq models fail to make
proper generalizations on out-of-distribution test
sets on which traditional grammar-based models
excel (Liu et al., 2020, 2021; Wang et al., 2021).

In this paper we follow this line of research and
ask the questions: Can standard seq2seq models
handle arbitrary alignments? And if not, what kind
of alignment bias do they have? To answer these
questions, we augment the GEO semantic parsing
benchmark (Zelle and Mooney, 1996) with align-
ment annotations and create GEO-ALIGNED. We
then compare the performance of seq2seq models
on examples that can be easily aligned with simple
monotonic alignments to the performance of these
models on examples that require word reordering.
Our empirical study shows that seq2seq parsers
perform significantly better over examples that can
be monotonically aligned. In other words, the flex-
ibility of not having to explicitly model alignments
comes at a cost: seq2seq models have difficulties
in learning complex alignments.

The main contributions of this paper are:

1. We introduce a new dataset: GEO-ALIGNED

that augments the GEO semantic benchmark
with alignment annotations. We used the En-
glish and German versions of the original
dataset, and we additionally introduce a new
Italian version.

2. Using GEO-ALIGNED we define new evalua-
tion splits to distinguish parsing performance
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over easier and harder examples.

3. Our empirical study shows that seq2seq
parsers are significantly better in handling
monotonic alignments, and quantifies the im-
pact of using attention.

4. As a side contribution we offer a measure of
the complexity of the GEO dataset, showing
that more than half of the examples involve
monotonic alignments.

2 The GEO-ALIGNED Benchmark

In this section we describe the GEO-ALIGNED

dataset, an augmentation of the popular GEO se-
mantic parsing benchmark first introduced by Zelle
and Mooney (1996). We start by providing a
brief formal definition of word alignments follow-
ing standard notation from the statistical machine
translation literature, and we define monotonic and
non-monotonic alignments (Wu, 2010). We then
detail how we augment the GEO dataset and pro-
vide statistics that measure the complexity of the
dataset.

2.1 Bi-text alignments

Given an input sequence of N words x =
x1, . . . , xN , and a target sequence of M words
y = y1, . . . , yM , a bi-text is defined as the tuple
(x,y). A bi-text word alignment is a set of bi-
symbols A, where each bi-symbol (xi, yj) couples
a word xi in the input sequence at position i to a
word yj in the target sequence at position j.

If a word xi from the input sequence does not
need an alignment to a word in the target, we in-
troduce an ε in y at position i. This bi-symbol
(xi, εi) amounts to a deletion, i.e. mapping from
input to target involves deleting a word from the
input. Conversely, if a word yj from the target does
not require an alignment to a word in the input, we
introduce an ε in x at position j. This bi-symbol
(εj , yj) amounts to an insertion, i.e. mapping from
input to target involves inserting an extra word in
the target. We refer to the number of insertions
and deletions in an alignment as the gap length.
Figure 1 shows examples of alignments from the
GEO-ALIGNED dataset.

2.2 Monotonic and non-monotonic
alignments

Monotonic alignments are bi-text alignments where
A contains bi-symbols of the forms (xi, yj),

Figure 1: Examples alignments from the GEO-
ALIGNED benchmark. Each bi-symbol is represented
as a vertical line coupling words in the NL with words
in the corresponding MR. The monotonic alignment
(a) does not involve crossings of bi-symbols, while the
non-monotonic alignment (b) involves considerable re-
ordering.

(xi, εj) or (εi, yj) where i = j. In other words,
a monotonic alignment does not involve any re-
ordering of the words. Conversely, non-monotonic
alignments also include bi-symbols of the form
(xi, yj) where i 6= j. Figure 1 shows an example
of a monotonic alignment versus a non-monotonic
one.

2.3 Alignment annotation

The original GEO dataset contains 880 English
questions about US geography, paired with a mean-
ing representation. Several MR formalisms have
been introduced for this dataset, including a first-
order logic as in Zelle and Mooney (1996), a
variable-free functional language introduced by
Kate et al. (2005) and SQL (Popescu et al., 2003;
Giordani and Moschitti, 2013; Iyer et al., 2017).
In GEO-ALIGNED, we use the variable-free func-
tional language formalism. Similarly to Wang et al.
(2021), we further simplify the MR by removing
the brackets. This is done to avoid introducing nu-
merous ε in the alignments, and also to better reveal
the structural similarity between the NL and MR
sequences. Similarly to Dong and Lapata (2016),
we remove constants used to identify states, rivers,
cities, places and countries by substituting them
with their type.

Alignments were provided by four expert an-
notators. For each pair, the annotators were first
asked to decide whether there was a monotonic or
non-monotonic alignment. Secondly, annotators
were asked to provide the actual alignment from
NL to MR words. More specifically, two annotators
aligned the entire dataset, while the other two each
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annotated fifty disjoint examples. Inter-annotation
agreement was calculated by comparing the align-
ments provided. A first agreement metric is Co-
hen’s Kappa statistic (Cohen, 1960) to measure the
agreement of monotonic versus non-monotonic la-
bels: the average score obtained is 0.803, which
corresponds to substantial agreement. We then cal-
culated the average percentage of exact matches
between the alignments of the two main annotators
and each of the other three, which resulted in a
90% average match. Disagreements were resolved
by keeping the annotation that best matched the
alignment strategy taken by the majority.

Bi-text word alignments vary depending on the
order in which the words appear both in the natural
language and the meaning representation (Steed-
man, 2020). If we keep the MR fixed, a sentence
in one language might be monotonically aligned,
while the same sentence in another language might
not be. To better understand the range of align-
ments between natural language utterances and
meaning representations one should ideally con-
sider multiple languages. With this objective in
mind, we additionally annotated the German ver-
sion (Jones et al., 2012) of GEO, and a new Italian
version that we introduce, obtained by translations
of the English sentences provided by an Italian
native speaker.

The resulting dataset contains the NL and MR
data pairs, augmented with

• a label indicating whether there is a monotonic
alignment;

• the alignment that maps NL and MR words.

Table 1 reports annotation statistics for GEO-
ALIGNED. In general, it can be observed that
across all languages the majority of the alignments
are monotonic and the average gap length is less
than three. For non-monotonic alignments the av-
erage number of reordered words is below three.

With respect to differences between the three
languages, Figure 2 shows a histogram of the
gap lengths of monotonic alignments. As we can
see the distributions are quite similar, but slightly
shifted towards longer gaps for German and Italian.
In particular, there are significantly more align-
ments with no gap in English. The proportion of
monotonic alignments reflects the structural simi-
larity between the variable-free MRs and the NL
sequences. It is highest in the case of English, after
which the MR formalism was modeled. German

Lang Len MP MG M0 NMR
EN 7.67 0.75 2.52 8.2 2.14
DE 7.72 0.65 2.91 0.55 2.52
IT 7.92 0.52 2.54 1.5 2.23

Table 1: Alignment annotation statistics for different
languages. Len is the mean length of input NL sen-
tences, MP is the percentage of monotonic alignments,
MG is the average gap in monotonic alignments, M0
is the percentage of monotonic alignments with no gap,
and NMR is the average number of words reordered in
the non-monotonic alignments.
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Figure 2: Distribution of gap lengths for the monotonic
alignments.

is syntactically more similar to English than Ital-
ian and as a result it can be more easily aligned
with the MR sequences. An exemplary syntactic
difference is adjective placement: in English and
German adjectives come before nouns, whilst in
Italian they are usually placed after. When a su-
perlative is used in the NL sentence, the MR, being
modeled after English, places it before the noun.
This creates a monotonic alignment with English
and German sentences and a non-monotonic one
with Italian ones. For example, if the question is
What is the largest state ? the corresponding MR
will be answer(largest(state(all))). Because largest
comes before state in both English and German
as well as in the MR, the alignment will be mono-
tonic. In Italian, largest comes after state and the
alignment will require reordering.

3 Measuring Alignment Bias

3.1 Models and Experiments

The goal of our study is to compare the perfor-
mance of neural seq2seq models over monotonic
and non-monotonic alignments. Our hypothesis is
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that seq2seq models can implicitly learn monotonic
alignments more easily than non-monotonic align-
ments. To evaluate this hypothesis we compared
the performance of two seq2seq architectures on
GEO-ALIGNED.

LSTM SEQ2SEQ A standard seq2seq model
based on a bidirectional-LSTM encoder (Hochre-
iter and Schmidhuber, 1997; Schuster and Paliwal,
1997), and a unidirectional LSTM decoder that
uses attention (Bahdanau et al., 2015). We
then ablate the decoder of the attention layer to
investigate its impact on the performance for the
different alignments.

BART A pre-trained seq2seq model based on a
bidirectional encoder and a left-to-right decoder
(Lewis et al., 2020). Since it was pre-trained on
English corpora, we only used this model on the
English version of the dataset.

For our experiment we use exact-match accuracy
as the evaluation metric, i.e. the percentage of exact
matches between the predicted and ground-truth
MRs. The alignment labels in GEO-ALIGNED al-
low us to break down the accuracy score for the
two classes of alignments and observe whether the
seq2seq framework has an implicit bias towards
monotonic alignments. Further implementation
and experimental setup details can be found in Ap-
pendix A.

3.2 Results

Table 2 shows the performance for the different
models and languages. As we can observe ac-
curacy for all models is significantly lower over
non-monotonic alignments and this is true for all
languages. The difference in performance between
monotonic and non-monotonic alignments is more
pronounced for models with no attention, but it
holds true for all of them.

The performance follows the same pattern across
languages and models: accuracies are higher for
monotonic sequences than for non-monotonic ones.
For English and Italian the differences are quite
similar: models with attention score 0.13 point
higher for monotonic sequences; without attention
the difference is 0.19 for English and 0.17 for Ital-
ian. German has a lower accuracy overall. One
possible explanation (as shown in Figure 2) is that
the monotonic gap distribution for these two lan-

Lang Model Acc MAcc NMAcc

EN

LSTM 0.83 0.87 0.74
LSTM-attn 0.75 0.80 0.61
BART 0.85 0.87 0.80

DE
LSTM 0.63 0.73 0.54
LSTM-attn 0.57 0.69 0.46

IT
LSTM 0.77 0.84 0.71
LSTM-attn 0.71 0.80 0.63

Table 2: Summary of results for the different models
and languages: LSTM is the seq2seq model based on
a bidirectional LSTM encoder and an LSTM decoder
with attention. LSTM-attn ablates the attention layer
in the decoder. Acc reports the overall accuracy for
each model, MAcc and NMAcc are the accuracy over
sequences with monotonic and non-monotonic align-
ments respectively.
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Figure 3: Accuracy for monotonic examples as a func-
tion of gap length.

guages has a slight shift towards shorter gaps and
in particular the sequences with no gap could help
the models to implicitly induce better alignments.
Moreover, the difference between monotonic and
non-monotonic performance is starker: the model
scored 0.19 and 0.23 better on monotonic examples
with and without attention respectively. This might
be due to the fact that more words are reordered
on average for German than for the other two lan-
guages (see Table 1). Figure 3 shows accuracy for
monotonic sequences binned by gap length. We
observe that for all languages there is a negative
correlation between accuracy and gap length.

We performed a qualitative analysis of the
predictions by categorizing errors based on how
many steps are needed to correct the mistake.
Simpler errors are those where the correct MR can
be recovered by inserting, deleting or changing at
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Lang Align Model 1T 2T Other

EN

M LSTM 0.46 0.19 0.32
NM LSTM 0.24 0.15 0.61
M BART 0.67 0.25 0.08
NM BART 0.29 0.17 0.54

DE
M LSTM 0.72 0.08 0.20
NM LSTM 0.32 0.27 0.41

IT
M LSTM 0.72 0.05 0.23
NM LSTM 0.43 0.18 0.39

Table 3: Statistics of qualitative analysis on prediction
errors. Align indicates the type of alignment: M stands
for monotonic, NM for non-monotonic. 1T is the pro-
portion of examples requiring a one-token correction
without reordering. Similarly, 2T is for two-token cor-
rections without reordering. Other is the proportion of
examples requiring more complex corrections of three
or more tokens, occasionally with reordering.

most two tokens, without reordering. An example
is:

MR: answer river loc 2 stateid state name
prediction: answer loc 2 stateid state name

where the gold MR can be recovered by insert-
ing river in the second position. More complex
errors require correcting three or more tokens, and
can also require reordering of the output. Table 3
reports statistics of our analysis. In general, we
found that errors on monotonic examples are of
the simpler category in much higher proportion
than for non-monotonic: across languages, non-
monotonic sequences require much more complex
corrections involving three or more tokens as well
as considerable reordering.

Another interesting finding is that, despite BART
and our LSTM-based seq2seq model achieve sim-
ilar results in English (see Table 2), the LSTM-
based model makes more complex mistakes, par-
ticularly in the monotonic case. For these exam-
ples, the vast majority of the errors for BART were
one-token, and we found that most of these were
minor mistakes such as predicting the token loc 2
instead of loc 1. The predictions of the LSTM-
based model are more dissimilar to the gold MR.

4 Related Work

Several grammar formalisms have been proposed
for semantic parsing, including categorical gram-
mars (Steedman, 1996, 2000; Zettlemoyer and
Collins, 2005; Clark and Curran, 2003; Zettle-

moyer and Collins, 2007; Kwiatkowksi et al., 2010;
Kwiatkowski et al., 2011) and synchronous context
free grammars (Wong and Mooney, 2006). Both ap-
proaches model alignments explicitly and they are
induced from data. There have also been attempts
to derive a more general formalism to unify the
different grammar based approaches to semantic
parsing (Jones et al., 2011).

More recently, neural seq2seq models were pro-
posed for semantic parsing in Dong and Lapata
(2016); Jia and Liang (2016); Iyer et al. (2017).
The seq2seq approach aims to relax the reliance
upon high-quality lexicons, i.e. domain-specific
word alignments. Most seq2seq systems implement
an attention mechanism such as those proposed by
Bahdanau et al. (2015); Luong et al. (2015); Xu
et al. (2015), which can be seen as a strategy to
learn soft alignments (Dong and Lapata, 2016).

Recently there has been an interest in testing the
generalization abilities of neural semantic parsers,
which resulted in the creation of several new bench-
marks (Bastings et al., 2018; Lake and Baroni,
2018; Loula et al., 2018; Ruis et al., 2020; Keysers
et al., 2020; Kim and Linzen, 2020) on which re-
cent work has shown improved performance by in-
troducing more alignment bias in the models either
explicitly (Liu et al., 2021), or implicitly (Wang
et al., 2021).

5 Conclusion

In this paper we introduced the GEO-ALIGNED

dataset that offers an evaluation framework for test-
ing the performance of semantic parsers over exam-
ples of varying alignment complexity. Our experi-
ments have shown that seq2seq neural parsers per-
form significantly better over simpler monotonic
alignments, suggesting that they have an implicit
bias. We hope that GEO-ALIGNED can be used by
other researchers to further test alignment biases.
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A Implementation and training details

We based our LSTM-based seq2seq model on Bah-
danau et al. (2015). We use a one-layer bidirec-
tional LSTM for our encoder and a one-layer uni-
directional LSTM for our decoder. At training we
minimize the cross entropy loss between the predic-
tions and the ground-truth MR sequences. We use a
batch size of 32, Adam optimizer and learning rate
of 0.001. We manually tune the hyperparameters,
and train for 100 epochs on one NVIDIA TESLA
V100 16GB GPU.
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For BART, we used the pre-trained BART-base
model provided by the HuggingFace transform-
ers library (Wolf et al., 2020). We fine-tune for
100 epochs with a learning rate of 0.00001 on one
NVIDIA TESLA V100 16GB GPU. Fine-tuning
took approximately 1h30mins.
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Abstract
The standard approach for inducing narrative
chains considers statistics gathered per individ-
ual document. We consider whether statistics
gathered using cross-document relations can
lead to improved chain induction. Our study is
motivated by legal narratives, where cases typ-
ically cite thematically similar cases. We con-
sider four novel variations on pointwise mutual
information (PMI), each accounting for cross-
document relations in a different way. One
proposed PMI variation performs 58% better
relative to standard PMI on recall@50 and in-
duces qualitatively better narrative chains.

1 Introduction

Narrative chains are sets of events centered around
a common protagonist. They can be induced from
corpora using various unsupervised methods, many
using pointwise mutual information (PMI) between
events. To our knowledge, no prior work has used
the information available in relations between doc-
uments in a corpus when inducing narrative chains.

To illustrate the potential for improved narrative
chain induction based on document relations, we
develop four novel variants of pointwise mutual
information (PMI) that assume a directed graph
structure between documents (i.e. relations that
are edges). We test these1 on a corpus of all U.S.
federal court cases, which has a readily accessible
relation between documents: citation. One case
will cite prior cases as precedent in explaining its
decision. We find that one of our four variants
of PMI performs particularly well in the standard
event cloze evaluation (Chambers and Jurafsky,
2008) and in inducing meaningful narrative chains.

2 Background

Unsupervised narrative chain induction from a
corpus was introduced by Chambers and Jurafsky

1Code is at https://github.com/BlairStanek/
cross-doc

(2008), inspired by the notion of scripts owing to
Schank and Abelson (1977). Coreference chains
were extracted over the Gigaword corpus (Graff,
2002) to extract event chains with the same pro-
tagonist. A syntactic parser identified each event
in which the protagonist was involved, defined as
the combination of a verb and dependency relation,
such as (convict, obj). They then calculated the
pointwise mutual information (PMI) (Church and
Hanks, 1989, 1990) for each combination of two
events and used this PMI to do agglomerative clus-
tering to induce narrative chains. We follow the
basic approach of Chambers and Jurafsky (2008),
with the major extension that we take relations be-
tween the documents into account for the first time.

There have been numerous improvements on
the Chambers and Jurafsky (2008) approach,
including using language modeling approaches
(Rudinger et al., 2015), neural networks (Pichotta
and Mooney, 2016; Weber et al., 2018), and graphs
where events are the vertices (Li et al., 2018, 2021).
None of these improvements has considered rela-
tions between documents in the corpus.

3 Alternative Measures

Much of the narrative chain induction literature,
following Chambers and Jurafsky (2008), has used
PMI. Specifically, for any given coreference chain
C anywhere in the corpus, the standard PMI of two
events e1 and e2 is defined by,

pmistandard(e1, e2) = log
P (e1 ∈ C ∧ e2 ∈ C)

P (e1 ∈ C)P (e2 ∈ C)

PMI provides a measure of how often e1 and e2
actually occur together, as compared to what we
would expect if they were independent. If they
were independent, then:

P (e1 ∈ C ∧ e2 ∈ C) = P (e1 ∈ C)P (e2 ∈ C)

Note that the definition of pmistandard has the
equation above’s left hand side in the numerator
and right hand side in the denominator.
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Case A

CA:  e1  …  e2

dual cross atom

doc standard

Case B

CB:  e1  …  e2

Case A

CA:  e1  …  e2

Case B

CB:  e1  …  e2

Case A

CA:  e1  …  e2

Case B

CB:  e1  …  e2

Case A

Any chain:  e1  …  e2

Case B

Any chain:  e1  …  e2

Any case

Any chain:  e1  …  e2

Figure 1: Illustration of events considered in the denominator of each PMI variant. Case A cites case B.

Given some relation between the documents
making up the corpus, e.g. case citations, we con-
sider four different ways to define an extension of
PMI. One is document-by-document, and three are
chain-by-chain.

To develop the three chain-by-chain measures,
we define A and B to be documents with a relation
(e.g. case A cites case B), and define CA to be
a chain of events in document A, and CB to be a
chain of events in document B. Thus, assuming
independence between all occurrences of e1 and
e2, we can derive four equivalent expressions:

P (e1 ∈ CA ∧ e2 ∈ CA ∧ e1 ∈ CB ∧ e2 ∈ CB)

=P (e1 ∈ CA ∧ e2 ∈ CA)P (e1 ∈ CB ∧ e2 ∈ CB)

=P (e1 ∈ CA ∧ e1 ∈ CB)P (e2 ∈ CA ∧ e2 ∈ CB)

=P (e1 ∈ CA)P (e2 ∈ CA)·
P (e1 ∈ CB)P (e2 ∈ CB)

These are the probabilities that, if you randomly
select a chain CA and a chain CB where case A
cites case B, that these chains have these events.
For example, if you’ve randomly selected CA and
CB , then P (e1 ∈ CA) is the probability that the
event e1 appears in CA.

By taking the first expression above as the nu-
merator and using the last three expressions above
as the denominators, we get three different exten-
sions of PMI:

pmidual(e1, e2) =

log
P (e1, e2 ∈ CA ∧ e1, e2 ∈ CB)

P (e1, e2 ∈ CA)P (e1, e2 ∈ CB)

pmicross(e1, e2) =

log
P (e1, e2 ∈ CA ∧ e1, e2 ∈ CB)

P (e1 ∈ CA, CB)P (e2 ∈ CA, CB)

pmiatom(e1, e2) =

log
P (e1, e2 ∈ CA ∧ e1, e2 ∈ CB)

P (e1∈CA)P (e2∈CA)P (e1∈CB)P (e2∈CB)

A fourth approach can come from considering
an analogous measure that works document-by-
document, rather than chain-by-chain. Given re-
lated documents A and B (e.g. case A cites case
B), if we assume that occurrences of e1 and e2 are
independent, then the following must be true:

P (∃CA : e1, e2 ∈ CA ∧ ∃CB : e1, e2 ∈ CB)

=P (∃CA : e1, e2 ∈ CA)P (∃CB : e1, e2 ∈ CB)

This expression, unlike the chain-by-chain ex-
pression, cannot be further factored into two other
alternatives. Why? There can be (and typically
are) multiple chains in each document. Within a
document, there may exist no chains with both e1
and e2, even though there exists a chain with e1
and another chain with e2.

We can get the fourth extension of PMI by divid-
ing the two sides of the equation directly above:

pmidoc(e1, e2) =

log
P (∃CA: e1,e2∈CA∧∃CB : e1,e2∈CB)

P (∃CA: e1,e2∈CA)P (∃CB : e1,e2∈CB)

4 Experimental Setup

4.1 Dataset
We used all U.S. federal court cases since 1970
that have at least 800 total characters and that ei-
ther cite to or are cited by another U.S. federal
court case. All text came from the Caselaw Access
Project (CAP). Cases with under 800 characters
and cases neither cited to or by other federal were
summary dispositions or procedural rulings that
lacked meaningful description of the underlying
facts of the case. The resulting corpus had 965,467
cases. (Each case is exactly one document.)
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4.2 Coreference

Following Chambers and Jurafsky (2008) and sub-
sequent literature, we extract all coreference chains
from each document in the corpus. Since court de-
cisions may be quite long (often exceeding 100,000
characters), we use the efficient long-coreference
methodology of Xia et al. (2020). We hand-
annotated coreference on 35 randomly selected
cases (with average length of 3,518 words per case)
aiming to fine-tune that model.2 We only hand-
annotated 35 cases since annotating a long docu-
ment for coreference takes substantial human effort.
We found that Xia et al. (2020)’s original model
achieved 0.931 F1 on those 35 cases. Unfortu-
nately, fine-tuning on splits of these 35 cases, with
a variety of hyperparameters, uniformly reduced
performance below this baseline.

So, we proceeded with (Xia et al., 2020)’s origi-
nal model on all 965,467 cases, which took approxi-
mately 4100 hours of Quadro RTX GPU processing
time. The coreference spans are available to down-
load,3 and we will share the spans plus tokens with
those with researcher approval from the Caselaw
Access Project.

4.3 Parsing and Chain Extraction

We use Stanford CoreNLP (Manning et al., 2020)
for syntactic parsing, including POS tagging,
lemmatization, and dependency parsing. We then
use PredPatt (White et al., 2016) to extract predi-
cates and arguments from the dependency parse. If
an argument matches one of the entities identified
during coreference, we consider the event as a 2-
tuple of the predicate’s lemma and the dependency
type (e.g. (convict, obj)). Although the predicate
is often a verb, it need not be, unlike in Chambers
and Jurafsky (2008), which restricted predicates to
being verbs. We retained all chains of length 2 or
more; most cases had multiple chains. We do not
follow Chambers and Jurafsky (2008) in attempt-
ing partial temporal ordering of events. Thus, each
chain is an unordered set of events that shares the
same co-referring entity.

Using these chains, we calculated all four of our
proposed PMI variations that rely on the relations
between documents (i.e., citations between cases).
We also calculated pmistandard, which does not
rely on the relations. All these training calculations

2The full 35 annotations are at https://doi.org/10.
7281/T1/QVAHMD

3https://doi.org/10.7281/T1/QVAHMD

Measure R@1 R@5 R@50 MRR
pmistandard 1.7% 4.9% 15.9% 0.037
pmidual 0.4% 1.2% 6.1% 0.011
pmicross 2.1% 6.6% 25.2% 0.050
pmiatom 1.4% 4.5% 19.0% 0.036
pmidoc 0.4% 1.2% 6.3% 0.012

Table 1: Cloze Performance on test set of 27,324 held-
out chains, measured by Recall@1, Recall@5, Re-
call@50, and Mean Reciprocal Rank.

were by CPU and ran on the entire corpus, except
for some cases held out for testing. So, the calcu-
lations were run on 955,810 cases, between which
there were 10,606,964 citation relations, containing
a total of 27,166,457 chains and 24,364,877,760
combinations of chain CA from case A and chain
CB from case B, where case A cites case B. The
complete set of event chains from each case are
available for download.4

5 Results and Discussion

5.1 Quantitative evaluation

We measure the effectiveness of the different mea-
sures of PMI using the event cloze task, following
Chambers and Jurafsky (2008), where we randomly
remove an event from each test chain and use the
PMI measures to predict what event should fill that.
For test, we used 0.3 percent of the corpus (2783
cases) that had been held back and not used to cal-
culate any of the PMI measures, either as a citing
case or cited case. We used all chains with 3 or
more events, which resulted in 27,324 chains used
for the cloze test, each with one event randomly
removed. (We used chains with 3 or more events
because, when removing one event for cloze, that
leaves chains with 2 or more events.) Each possible
event that might complete the cloze is evaluated as
the sum of the PMIs with the other events in the
chain (i.e. other than the one removed). We mea-
sure performance in several ways: the percentage
of chains where the correct event is the top predic-
tion (recall@1); within the top 5 predictions (re-
call@5); within the top 50 predictions (recall@50);
and, finally, mean reciprocal rank (MRR).

Looking at Table 1, we see that two of our four
PMI variants substantially underperform standard
PMI: pmidoc and pmidual. It is worth noting that
the former is just a document-by-document version

4https://doi.org/10.7281/T1/QVAHMD
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Figure 2: Performance of the five types of PMI, measured by mean reciprocal rank, by length of the test chain. For
example, a test chain of length 2 originally had 3 events, one of which is removed for cloze prediction, and the
reported performance is how well that PMI measure predicts the actual removed event.

of the latter. Both compare the frequency of both
events e1 and e2 in both a cited and citing case to
the frequency of both events in cases by themselves.
We hypothesize that the decision of a court to cite
a previous decision is noisy and unpredictable, so
that even when both an earlier case and a later case
have a chain with both e1 and e2, the decision of
the judge authoring the later case to cite the earlier
case is noisy.

By contrast, pmicross normalizes out the noisi-
ness of the decision of whether to cite or not. Its
denominator uses the probability that e1 is in both
CA and CB multiplied by the probability that e2 is
in both CA and CB . By definition, these probabil-
ities already take into account the decision of the
author of the later case A to cite the earlier case
B. We observe that pmicross substantially outper-
forms the standard pmistandard that has been the
foundation for most narrative chain induction work,
achieving a recall@50 of 25.2% (versus 15.9%, a
58% relative improvement) and a mean reciprocal
rank (MRR) of 0.050 (versus 0.037).

Note that the cloze test used for this evaluation
runs entirely on chains within a single case, not
relying in any way on citation relations between
cases. Yet our newly introduced pmicross, which is
calculated using the citation relations, outperforms
pmistandard, which is calculated solely on chains
within single cases and does not use the relations.

To determine whether these trends in perfor-
mance are attributable to chains of a particular
length, in Figure 2 we graph all five variations
of PMI by chain length. We see that pmicross out-

performs all other measures, including pmistandard
for all chain lengths.

5.2 Qualitative evaluation

High-quality narrative chains should correspond to
sensible groupings of events actually encountered.
A U.S.-trained lawyer reviewed a sample of chains
from both and found that the narrative chains in-
duced using pmicross and agglomerative clustering
are qualitatively better than those induced in the
same way but using pmistandard. To do agglom-
erative clustering, we build a cluster around every
set of two events that appears in any chain, and
we repeatedly add the event with the highest sum
of PMIs with the existing events, until we reach
a desired maximum set size (we used 6). These
sets are the narrative chains. We use dynamic pro-
gramming to avoid duplication, and we rank the
final clusters by the total sum of PMIs between all
elements. Here are two 6-event-long example nar-
rative chains induced using pmicross that were not
induced using pmistandard. One relates to a crimi-
nal defendant and the other relates to a trademark
being found generic and thus invalid (as happened
to Kleenex’s trademark):

(have, nsubj) (trademark, nsubj)
(commit, nsubj) (mark, nsubj)
(perpetrate, nsubj) (term, nsubj)
(plead, nsubj) (use, nsubj:pass)
(sentence, obj) (descriptive, nsubj)
(serve, nsubj) (generic, nsubj)
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6 Conclusion

We have explored four new measures of PMI that
can take advantage of relationships between doc-
uments in corpora. Applying them to the corpus
of federal cases, we find that one such measure,
pmicross shows substantial improvement over stan-
dard PMI. Future work may consider the use of
these new PMI measures on other corpora where
the documents may have relationships that can be
characterized as directed edges, including hyper-
links and references.5

We focused on a PMI-based approach to induc-
ing narrative chains owing to its familiarity within
the community. Based on these results demonstrat-
ing the benefits of utilizing document-to-document
relations, future work can consider extensions such
as using temporal relations, causality, and neural
modeling.
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Abstract

We present the first fully trainable semantic
parser for English, German, Italian, and Dutch
discourse representation structures (DRSs)
that is competitive in accuracy with recent
sequence-to-sequence models and at the same
time compositional in the sense that the out-
put maps each token to one of a finite set of
meaning fragments, and the meaning of the ut-
terance is a function of the meanings of its parts.
We argue that this property makes the system
more transparent and more useful for human-
in-the-loop annotation. We achieve this simply
by casting DRS parsing as a sequence label-
ing task, where tokens are labeled with both
fragments (lists of abstracted clauses with rela-
tive referent indices indicating unification) and
symbols like word senses or names. We give
a comprehensive error analysis that highlights
areas for future work.1

1 Introduction

Semantic parsing is the task of mapping natural-
language sentences to symbolic representations
of their meaning. Although most current natural
language understanding (NLU) applications are
handled by end-to-end systems that solve specific
tasks (such as machine translation, conversation, or
sentiment analysis) without intermediate symbolic
meaning representations, semantic parsing contin-
ues to attract research interest for good reasons:
first, next-generation NLU systems may become
more accurate and certainly more easily explain-
able and debuggable by combining symbolic rep-
resentations with end-to-end techniques. Second,
symbolic meaning representations are amenable to
symbolic reasoning, which may be instrumental
in enabling, e.g., digital assistants to solve more
complex tasks. Third, better and more transparent
computational models of text-meaning mapping

1Our system is available at https://github.com/
ShenMinX/DRS-parser

can be a useful tool for semantics, i.e., to under-
stand how natural-language semantics works.

In recent years, most work on annotating natural-
language text with comprehensive, broad-coverage
meaning representations has been performed in
three frameworks: Abstract Meaning Represen-
tations (Banarescu et al., 2013), Universal Cogni-
tive Conceptual Annotation (Abend and Rappoport,
2013), and Discourse Representation Structures
(Abzianidze et al., 2017). Accurate parsers exist
for all three (e.g., Lindemann et al., 2020; Oepen
et al., 2020; van Noord et al., 2020). Each for-
malism has its specific strength: AMRs go very
far in abstracting away from surface variation in
how a certain meaning is expressed, UCCA has
a clear mapping between form and meaning and
a modular architecture, and DRSs ground natural
language meaning in first-order logic, by explicitly
representing the scopes of negation, quantification,
disjunction, etc. In this paper, we focus on parsing
to DRSs.

State-of-the-art DRS parsers follow the encoder-
decoder paradigm pioneered for machine transla-
tion by Sutskever et al. (2014): the input sequence
is encoded by a neural network into a vector, then
another network predicts the output sequence (or
in this case: output DRS) from that vector. Rather
than improve upon the accuracy of such parsers on
standard benchmarks, our aim in this paper is to
achieve some of their benefits (ability to learn from
examples, high accuracy, low computational com-
plexity, robustness to atypical input, utilization of
off-the-shelf language models, conceptual simplic-
ity) while also having a degree of compositionality,
traditionally a property of grammar-based systems.
Specifically, our system learns to assign each to-
ken of an utterance one of a finite set of abstract
meaning fragments that are deterministically com-
bined to give the meaning of the whole utterance.
While our system may not fulfill all criteria of com-
positionality according to some definitions, it can
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t1 e1 b2

time.n.08(t1)
t1 ≺ now

trick.v.01(e1)
Patient(e1, x1)
Time(e1, t1)

x1 b1

Name(x1, “tom”)
male.n.02(x1)

Figure 1: DRS for the sentence “Tom was tricked” in
box notation

arguably reap some of compositionality’s benefits,
which make it suitable for use in semi-automatic
annotation workflows. We discuss this further in
Section 5.

Previous work has introduced trainable composi-
tional semantic parsers for AMR (Lindemann et al.,
2020) and DRS (Evang, 2019; Bladier et al., 2021).
In this paper, we improve upon the latter parser
using a novel way to encode anchored DRSs as
sequences, and thereby cast DRS parsing simply
as a sequence labeling task (§2). We use a stan-
dard transformer-based model to learn this task,
followed by post-processing to ensure well-formed
DRSs (§3). We use training data from the Parallel
Meaning Bank (§4). The accuracy of our model
approaches the state of the art with the additional
benefit of being, to a degree, compositional (§5).
We give an error analysis in §6 and conclude in §7.

2 Encoding Anchored DRSs as Sequences

Gómez-Rodríguez and Vilares (2018); Strzyz et al.
(2019); Vilares et al. (2020) encode syntax trees as
token labels to cast syntactic parsing as a sequence
labeling task. We apply a similar method to DRS
parsing. We will use a simplified example from the
Parallel Meaning Bank (PMB; Abzianidze et al.,
2017) for exposition.

Figure 1 shows the DRS for the sentence “Tom
was tricked” in box notation. It consists of two
sub-DRSs or boxes, b1 and b2. b1 introduces an
entity named “Tom” x1. b2 introduces a “tricking”
event e1 (an event of type trick.v.01 in the
WordNet ontology, Fellbaum (2000)) whose Patient
role is filled by x1. Because “Tom” is a definite NP,
it introduces a presupposition: b2 presupposes b1.
The event is in the past, i.e., its Time role is filled
by a time entity (an entity of type time.n.08 in
WordNet) t1 which precedes the time "now".

Figure 2 shows the same DRS in clause nota-
tion. Here, a DRS is a set of clauses. A clause
consists of a box label indicating which box the
clause is part of, a predicate such as a word sense,

b1 REF x1 % Tom [0...3]
b1 Name x1 "tom" % Tom [0...3]
b1 PRESUPPOSITION b2 % Tom [0..3]
b1 male "n.02" x1 % Tom [0..3]
b2 REF t1 % was [4...7]
b2 TPR t1 "now" % was [4...7]
b2 Time e1 t1 % was [4...7]
b2 time "n.08" t1 % was [4...7]
b2 REF e1 % tricked [8...15]
b2 Patient e1 x1 % tricked [8...15]
b1 trick "v.01" e1 % tricked [8...15]

% . [15...16]

Figure 2: DRS for the sentence “Tom was tricked” in
clause notation

a semantic role, or a discourse relation, and one or
two arguments, which may be referents such as e1
or x1, or constants such as "hearer", "now",
or "+".

Our sequence-labeling method assumes training
DRSs to be anchored, that is, each clause must
be aligned to one (or more) input token. Thanks
to the grammar-based annotation method of the
PMB, this is approximately the case, as can be seen
in the clause representation. We thus encode the
DRS as a sequence of labels, one for each token,
where each label consists of zero or more clauses,
as row (1) of Figure 3 shows. We call these labels
fragments. Although labels are complex because
they can consist of multiple clauses, our sequence
labeling model treats them as atomic.

In prediction tasks, it is important that label pre-
dictions generalize to unseen data. In contrast to
this, the numeric part of referent labels in clauses
are not meaningful and depend on the number of
referents that were introduced before in the same
sentence, so they would generalize poorly. Thus,
in row (2), we change the referents to be relative,
inspired by Bos (2021): referents that have not
occurred before get the index 0 and referents that
have occurred get a negative index, indicating how
long ago the same referent last occurred (count-
ing back among all occurrences of referents of the
same type).

To further reduce proliferation of different frag-
ments, we also experiment with factorizing frag-
ments into fragments proper and integration labels.
In this factorization, the first backreference of ev-
ery type in a fragment always has index -1, and a
separately predicted integration label specifies how
much to subtract from that to get to the actual index.
This can be seen in row (3), where the first b label
for the word was has index -1 instead of -2, and
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(0) Tom was tricked

(1)
b1 REF x1
b1 Name x1 "tom"
b1 PRESUPPOSITION b2
b1 male "n.02" x1

b2 REF t1
b2 TPR t1 "now"
b2 Time e1 t1
b2 time "n.08" t1

b2 REF e1
b2 Patient e1 x1
b2 trick "v.01" e1

(2)
b0 REF x0
b-1 Name x-1 "tom"
b-1 PRESUPPOSITION b0
b-2 male "n.02" x-1

b-2 REF t0
b-1 TPR t-1 "now"
b-1 Time e-1 t-1
b-1 time "n.08" t-1

b-1 REF e-1
b-1 Patient e-1 x-1
b-1 trick "v.01" e-1

(3)
b0 REF x0
b-1 Name x-1 "DUMMY"
b-1 PRESUPPOSITION b0
b-2 male "n.02" x-1

b-1 REF t0
b-1 TPR t-1 "now"
b-1 Time e-1 t-1
b-1 time "n.08" t-1

b-1 REF e-1
b-1 Patient e-1 x-1
b-1 DUMMY "v.00" e-1

[b0 e0 n0 p0 s0 t0 x0] [b-1 e0 n0 p0 s0 t0 x0] [b0 e0 n0 p0 s0 t0 x0]

tom - trick "v.01"

Figure 3: Sequence encoding of anchored DRSs. From top to bottom: (0) the sentence, (1) basic sequence encoding,
(2) relative sequence encoding, (3) factored sequence encoding with separate integration and symbol labels.

the integration label [b-1 e0 n0 p0 s0 t0
x0] indicates that 1 should be subtracted from that
to get to the actual relative index. This allows was
in our example to have the same fragment as in
Someone was tricked, where the subject does not
introduce a presupposition and the actual index is
thus -1 rather than -2 because there is one less
box intervening.2

Another important factorization concerns large-
class and open-class symbols, viz. (content-word)
word senses, names, numbers, and time expres-
sions. We follow Evang (2019) in replacing these
with dummy expressions in the fragments and pre-
dicting them separately, as explained below in
Section 3. We also follow them in heuristically
changing the representation of first and second per-
son pronouns, which introduce "speaker" and
"hearer" constants instead of discourse refer-
ents in the PMB, for more consistent representation
of predicates.

3 Parsing Model

Our parsing model consists of a standard trans-
former sequence labeling model, followed by post-
processing to assemble the predicted labels into a
DRS.

2As pointed out by a reviewer, an even better factorization
of fragments could potentially be achieved by indexing not
with respect to linear position but with respect to the syntactic
head word. This would require introducing a dependency
parsing component. We leave this for future work.

Figure 4: Neural model
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Sequence Labeling Transformer Model Our
model is schematically depicted in Figure 4. It
takes an input sequence of tokens X = w1 . . . wn

and produces aligned output sequences Ys, Yf , Yi,
which are word senses, fragments, and integration
labels. Our model simply consists of a pre-trained
BERT model (Devlin et al., 2019) and three lin-
ear classifiers. Each classifier can be seen as a
sub-system of the semantic parser that produces
one of the three labels (word sense, fragment, and
integration label).

Each input token must further be tokenized into
wordpieces before they can be fed into the BERT
model. To obtain a single representation for a token
that consists of N wordpieces and thus produces
N embedding vectors, we experiment with two
commonly used strategies: taking only the first
wordpiece, or averaging the embeddings of all N
wordpieces.

Post-processing After the neural model predicts
a fragment and a word sense for each token, we as-
semble these predictions into a complete clause list
by choosing unique new names for discourse refer-
ents with index 0 and unifying other discourse ref-
erents with them according to their relative indices.
We also replace DUMMY strings in clauses by the
predicted word senses and by symbols for names,
cardinalities, and date/time expressions, which are
predicted from the tokens by a rule-based system
similar to that of Evang (2019). For example, for
the proper name Tom it predicts the symbol "tom",
for the numeral two it predicts "2", and for the
time expression five o’clock, it predicts "17:00".
Special clauses like b1 "speaker" x1 and b1
"hearer" x1 are removed and the correspond-
ing referent (x1 in the example) replaced by the
symbols "speaker" and "hearer". Finally,
we use a set of postprocessing rules similar to that
of van Noord et al. (2020) to ensure the validity of
the resulting DRS: if there is a loop in the subor-
dination relation among boxes, an arbitrary box in
the loop is chosen, and all its clauses are removed
to break the loop (cf. Figure 9 in the Appendix).
Furthermore, a REF clause is introduced for each
referent that is now used but not introduced by a
REF clause, in the box where it first occurs. Finally,
connectedness of all boxes is ensured by introduc-
ing CONTINUATION relations between top-level
unconnected boxes.

gold silver bronze total

English 8 403 97 958 146 371 252 372
German 1 979 5 250 121 111 128 340
Italian 1 062 2 772 64 305 68 139
Dutch 1 012 1 301 21 550 23 863

Table 1: Numbers of DRSs in the PMB 3.0.0

4 Experimental Setup

Data and Splits We train and evaluate our mod-
els on the Parallel Meaning Bank (PMB; Abzian-
idze et al., 2017), version 3.0.0. This sembank
contains sentences annotated with anchored DRSs
in four languages (English, German, Italian, Dutch)
and three annotation statuses: gold DRSs have been
fully corrected by human annotators, silver ones
have been partially corrected, and bronze ones are
the unchecked outputs of rule-based pre-annotation.
Table 1 gives an overview. We use the standard split
into training, development, and test data suggested
in the PMB release. Note that for Italian and Dutch,
the number of gold DRSs is very small and they
are only used for development and testing, leaving
only bronze and silver data for training.

PLMs and Hyperparameters The backbone of
our PyTorch (Paszke et al., 2019) implementation
is the Transformer and WordpieceTokenizer classes
offered by Hugging Face (Wolf et al., 2019).
We use pre-trained BERT models provided on
huggingface.co: bert-base-cased,
dbmz/bert-base-german-cased,
dbmz/bert-base-italian-cased,
and Geotrend/BERT-base-nl-cased
(Abdaoui et al., 2020), keeping their default
configuration. The only hyperparameters we
choose ourselves are the batch size (24), the
learning rate, and the number of epochs. We used
the Adam optimizer to train all the parameters
in our model including the pretrained BERT. To
ensure stability and avoid overfitting, we used a
linear scheduler with no warm-up step, which
gradually reduces the learning rate from 0.0015 to
0 for each training iteration. During preliminary
experiments on the development set, we found that
training loss barely changed after five epochs.

BERT has 12 layers, each of which has a
768-dimensional output embedding per wordpiece.
There is some mixed information in the literature as
to which layer’s output is most suitable for seman-
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Parameters 114 M
Training time 12 mins
Word senses 5 864
Fragments w/ integration labels 1 864
Fragments w/o integration labels 2 694
Integration labels 100

Table 2: Initial model statistics for English

tic parsing tasks. According to Chronis and Erk
(2020), the middle layer is most transferable for
downstream semantic tasks, while van Noord et al.
(2020) claim that the last layer provides the best
results for their DRS parser, so we experimented
with both.

Evaluation We evaluate the performance of our
parser using Counter (van Noord et al., 2018a), an
extension of the Smatch evaluation metric (Cai and
Knight, 2013). Counter approximates an optimal
mapping between the referents in the gold DRS and
the predicted DRS using hill-climbing, then out-
puts recall, precision, and f-score for the predicted
clauses compared to the gold clauses.

5 Results and Discussion

Integration Labels We trained an initial model
on the English gold training data, for which we
give some statistics in Table 2. As can be seen,
factoring fragments leads to 100 distinct integra-
tion labels and reduces the number of distinct frag-
ments from 2 694 to 1 864. We found however
that the factorization does not necessarily help the
model, as the integration labels are extremely un-
balanced. In fact, 80.1% of tokens in the training
data have the “empty” integration label [b0 e0
n0 p0 s0 t0 x0]. In a direct comparison, we
found that factoring out integration labels improves
the prediction accuracy on the fragments by 3%.
However, since prediction of integration labels is
not perfect, the overall Counter f-score is not im-
proved significantly (the difference in f-score is
smaller than 0.01%). We nevertheless conduct all
further experiments with integration labels enabled.

Word Senses The next label we take a closer
look at is the word senses. Table 3 shows the f-
score of our model’s sense predictions, as reported
by Counter, overall and broken down into nominal,
verbal, adjectival, and adverbial word senses. The
accuracy is much higher for nouns than for verbs,

all concepts 0.7584
nominal 0.8217
verbal 0.6173
adjectival 0.5861
adverbs 0.5977

Table 3: Word sense f-scores in the initial model for
English

Layer 7 7 12
Wordpiece initial mean mean

sense acc. 0.8663 0.8670 0.8648
fragment acc. 0.8630 0.8659 0.8651
integration acc. 0.9461 0.9475 0.9436
Counter f1 0.7873 0.7882 0.7836

Table 4: Choice of BERT output layer and wordpiece
embeddings

which reflects the fact that the former are less poly-
semous than the latter according to WordNet statis-
tics.3 Another possible reason is that many nominal
senses do not stem from predictions of the word
sense layer but from “function” senses that appear
in many fragments, such as time "n.08" in the
fragment for was in Figure 3. The lower scores
for adjectival and adverbial can be explained with
data sparsity, for there only 1 593 adjectives and
210 adverbs in the gold data. For comparison, the
number of nouns and verbs are 20 192 and 6 108.

Choice of BERT Output Layer and Wordpiece
Embeddings We were interested in how the
choice of BERT output layers and word piece
embeddings impacts performance of our model.
Hence, we did the following experiments with
our base model, shown in Table 4. First, we use
BERT’s middle (7th) output layer, using the em-
bedding of the initial word piece for each word
as input to the classifiers. Second, we used the
middle layer, but with the mean vector of all word
pieces (this is the method we used in all previous
experiments). Third, we used the mean value of
the final (12th) BERT output layer, which helped
van Noord et al. (2020) build their best model, yet
according to Chronis and Erk (2020) contains too
much “information residual”, hence is more suit-
able for syntactical tasks. To minimize the effect of

3https://wordnet.princeton.edu/
documentation/wnstats7wn, retrieved 2022-03-
11
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g g+s g+s+b

# senses 5 864 42 147 60 740
# fragments 1 864 20 170 27 949
# integrations 100 2 901 4 121
Counter f1 0.7896 0.8554 0.8640

Table 5: Training on silver and bronze data

Model dev test

Bladier et al. (2021) 81.4 81.4
van Noord et al. (2018b) 84.3 84.9
van Noord et al. (2019) 86.8 87.7
van Noord et al. (2020) (base) 87.6 88.5
van Noord et al. (2020) (best) 88.4 89.3
Pro Boxer 88.2 88.9
this work 86.4 88.4

Table 6: Comparison of our English parser with prior
art (Counter f-scores on PMB 3.0.0)

random errors, we did five trials on each of these
embedding approaches and averaged the results.
Although the differences are rather small, the mean
vector of the middle layer seems to provide the best
scores across the board. Therefore, we stuck to this
setting for subsequent experiments.

Bronze and Silver Training Apart from the
small gold set whose quality is guaranteed by hu-
man annotators, PMB 3.0.0 also contains silver
and bronze data with partial or no manual checking
of the annotations. Their lower quality is compen-
sated for by quantity. Liu et al. (2019) report a large
improvement for their DRS parser when first train-
ing on the bronze and silver data, then “fine-tuning”
on gold data. Since we are using a Transformer
model like them, we expected this technique could
also boost our parser’s performance. Thus, we
tested our model with 5 epochs training on silver
and bronze followed by 5 epochs on gold. The
results are shown in Table 5. They confirm that
more data means better results even when the data
is not perfect. Although the bigger training set also
increases the number of classes for all three labels
more than 10-fold, the model seems to handle it
just fine. The only downside is the longer train-
ing time: as the silver and bronze sets for English
are, respectively, 21 and 25 times larger than the
gold one, the time consumption jumps from a few
minutes to more than 10 hours.

Final Model for English We compare our final
best model for English to previous work, shown in
Table 6. Note that Bladier et al. (2021) is an im-
proved version of Evang (2019)’s transition-based
DRS parser. The models presented by van Noord
et al. (2018b, 2019, 2020) are all character-wise
sequence-to-sequence models. No results on the
same data are available for the encoder-decoder
model of Liu et al. (2019); however, on PMB 2.2.0
its difference in Counter f-score with van Noord
et al. (2019) was less than 1% on the dev and test
set. The “base” model of van Noord et al. (2020) is
the character-wise sequence-to-sequence parser of
van Noord et al. (2019) with the addition of BERT
embeddings, and their “best” model encodes the
character embedding and the BERT embedding
separately before feeding their concatenated vector
into the decoder, which achieved state-of-the-art
results. Worth noting is their claim that it’s best to
keep BERT parameters “frozen”, which we did not
find to be the case for our model: in preliminary
experimentation, finetuning BERT parameters with
our model outperformed a corresponding frozen
model by 20% in Counter f-score.

We also compare with the semi-rule-based sys-
tem used for pre-annotating the Parallel Meaning
Bank (Abzianidze et al., 2017). Van Noord et al.
(2020) call this system “Pro Boxer”. In a sense,
Pro Boxer is closest in approach to ours because it
makes use of neural taggers for making token-level
tagging predictions. It differs from ours and all
other systems however in that it is not fully train-
able from examples; the translation from tags to
DRSs is done via hand-crafted rules. Moreover, it
relies on a CCG parser that creates explicit syntac-
tic representation which is perhaps more complex-
ity than needed. As van Noord et al. also point
out, the comparison with Pro Boxer is not quite
fair because it is the system that produced the PMB
pre-annotations and thus profits from anchoring
bias.

The results in Table 6 show that our best model
beats all available previous scores on the English
PMB 3.0.0 test set except for Pro Boxer and van
Noord et al. (2020) and is also very competitive
on the dev set. Its difference with the state-of-the-
art model on the test set is within 1%. Compared
with the best previous fully trainable compositional
model in Bladier et al. (2021), our model improves
performance by a large margin.
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en-dev en-test de-dev de-test it-dev it-test nl-dev nl-test

van Noord et al. (2020) 88.4 89.3 82.4 82.0 80.0 80.5 71.8 71.2
our system 86.4 88.4 79.2 78.3 79.5 80.4 72.5 72.1

Table 7: Comparison of our German, Dutch, and Italian models with prior art (Counter f-scores on PMB 3.0.0)

Results for German, Italian, and Dutch Al-
though most DRS parsers to date have only been
evaluated on English, the PMB also contains data
in German, Italian, and Dutch. We trained our best
model on the German (gold, silver, bronze), Italian
(silver, bronze), and Dutch (silver, bronze) data and
compared the results with the current state of the
art in van Noord et al. (2020), shown in Table 7.
The performance of both models is aligned with
the amount of data available for each language, and
also the proportion of manually corrected (gold)
data. Another source of variation (and possible
reason for the large gap in accuracy between the
two parsers for German) is the choice of pretrained
BERT model. For consistency, we only used the
cased models that are available in the Hugging Face
library, and if possible from the same source.

Compositionality and Its Benefits Is our seman-
tic parser compositional? Bender et al. (2015)
provide a definition of compositionality in mean-
ing systems, which we summarize as follows: (1)
there is a finite set of atomic word-meaning pair-
ings, (2) there is a finite number of rules com-
bining constituent-meaning pairings into larger
constituent-meaning pairings, and any non-atomic
constituent-meaning pairing is a function of the
constituent-meaning pairings from which it is cre-
ated and of the rule that creates it, (3) mean-
ing representations are not changed destructively.
They argue that compositional aspects of mean-
ing such as predicate-argument structure should be
processed by compositional systems, whereas non-
compositional aspects such as anaphora or word
senses should be handled by different mechanisms.
Our parser largely follows these recommendations:
ad (1), the fragments that represent abstract word
meanings are drawn from a finite set, learned from
the training data, while non-compositional word
senses, names, etc. are handled by separate mecha-
nisms. Ad (2), our system does away with the no-
tion of constituent by not using syntactic structure,
but it is trivial to express the mechanism that com-
bines the word meanings into an utterance mean-
ing in terms of a single rule that iteratively com-

bines adjacent words into larger structures, fulfill-
ing this criterion as well. Ad (3), our combining
rule amounts to unifying discourse referents which
is perhaps not strictly non-destructive, as it involves
renaming them. However, unification can also be
expressed in terms of adding variable bindings or
combining graphs, so this criterion should be con-
sidered fulfilled too. Of course, the post-processing
heuristics that are occasionally needed to obtain
valid DRSs do not fit into a compositional frame-
work. Furthermore, we do not currently have any
dedicated mechanisms to handle partially composi-
tional or non-compositional layers of meaning such
as scope or anaphora.

Why care about compositionality in semantic
parsing? If the goal of semantic parsing is not
merely to automatically obtain a representation of
the meaning of an utterance but also to understand
why the parser produced that answer, i.e., an ex-
plainable and transparent system, compositionality
can help. In particular, in the output of our parser,
every token is mapped to one of a finite number of
meaning fragments (unlike a sequence-to-sequence
system where a single token can in principle give
rise to an unbounded number of output symbols),
every clause belongs to one of these fragments (un-
like a sequence-to-sequence system where the out-
put is not usually anchored), and there is a straight-
forward rule that combines fragments into utter-
ance meanings (unlike sequence-to-sequence sys-
tems where the interactions between tokens are
opaque). This type of transparency is especially
important in human-in-the-loop annotation, where
parsers produce an initial annotation and annotators
correct them. To do this efficiently and consistenly,
annotators need to pinpoint where an error arises,
and word-meaning pairings with a finite number
of meanings seem a good handle on that. Ben-
der et al. (2015) make a similar argument about
grammar-based sembanking, pointing out the con-
sistency, comprehensiveness, and scalability that
compositionality afford.

The fact that the accuracy of our compositional
DRS parser now almost reaches that of the best
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Phenomenon with without

NP coordination (2 conjuncts) 85.6 86.1
NP coordination (3 conjuncts) 54.1 87.5
Temporal expression 82.5 86.6
Cardinality 83.9 86.7
Named entity 86.1 86.7
Universal quantification 77.6 86.8
Presupposition 87.5 82.4
Rhetorical relation 84.1 86.5

Table 8: DRS clauses anchored to the conjunction and in
the phrase Lungs, heart, veins, arteries, and capillaries

Table 9: Average f-scores for DRSs with and without
certain phenomena

...
b1 Sub x1 x2 % and [30...33]
b1 Sub x1 x3 % and [30...33]
b1 Sub x1 x4 % and [30...33]
b1 Sub x1 x5 % and [30...33]
b1 Sub x1 x6 % and [30...33]
...

Figure 5: DRS clauses anchored to the conjunction
and in the phrase Lungs, heart, veins, arteries, and
capillaries

sequence-to-sequence ones is a big step ahead to-
wards transparent DRS parsing. It is also worth not-
ing that our sequence encoding scheme is equally
applicable to incremental parsers, which potentailly
afford a greater degree of psycholinguistic plausi-
bility. In addition, the multi-task architecture of our
approach is modular and allows for arbitrary addi-
tional sequence labeling tasks and factorizations.

6 Error Analysis

We were interested in which semantic phenomena
present particular challenges to our parser and thus
performed an error analysis of the output of our best
model on the English development data, shown in
Table 9. Each of the listed phenomena is identified
by the presence of a particular type of clause in the
gold DRS, such as a Sub relation for coordination,
a Quantity relation for quantities, etc. For each
phenomenon, we give the f-score for sentences
with it vs. sentences without it.

While NP coordination with two conjuncts
seems to be handled well, with three conjuncts,
accuracy drops dramatically. This can partially be
explained by poor generalization of conjunction
fragments across different numbers of conjuncts,

see, e.g., Figure 5. A realignment step similar to
the one we use for first and second person pronouns
could help here. Temporal expressions, cardinali-
ties, and named entities all involve the prediction
of open-class strings independently of the neural
model. Considering that these strings typically only
affect a single clause, the underperformance of our
parser on sentences involving them is not small,
thus improving the predictions—perhaps replacing
rules with specialized neural transcoders—could be
a worthwhile area for future work. Universal quan-
tification (expressed using the CONSEQUENCE re-
lation in DRSs) also correlates with significant dif-
ficulties, perhaps due to the diversity of lexical
triggers (one, everybody, both, everything, all, al-
ways...) and associated fragments. Rhetorical rela-
tions present a difficulty because they are often not
aligned to a token, therefore not seen in training
by our parser. Presupposition on the other hand is
correlated with higher scores, presumably because
the vast majority of sentences contains at least one
definite expression.

To gain a better understanding of common error
types, we did an exploratory manual analysis, ran-
domly sampling 100 DRSs produced by our best
model on the English development set. Thanks to
the compositional model structure, we could easily
replicate the PMB-style word-clause alignment in
the output, which makes these analyses much eas-
ier. The examples we refer to can be found in the
Appendix.

In the sample, the most common errors we found
were incorrect word senses, for which 36% of the
sample DRSs had at least one instance. The second
is semantic roles and discourse relations (30%). De-
spite our intention to separate them into two differ-
ent sub-tasks, in our sample, these two error types
often co-occur (cf. Appendix, Figure 6). In fact, in
our sample, we could not find a single case where
the predicted word sense of a verb and the predicted
semantic roles are not compatible with each other.
We hypothesize that correlations between both are
learned well by the underlying BERT model, which
informs both the fragment classifier and the word
sense classifier. In a sense, word sense errors could
be expected to be much more frequent than se-
mantic role errors, because word senses form a
larger class than verbal fragments. It could be that
our model tends to produce internally “consistent”
meanings (with matching senses and roles) even at
the price of predicting incorrect roles, for which it
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is penalized, since Counter does not reward con-
sistency but only correctness. We leave a closer
investigation of this hypothesis to future work.

Compared to verbs, noun fragments have less
variation, thus we generally observe fewer errors
with them. However, there is a noun-related error
that consistently occurs in our sample, viz. failure
to recognize demonyms as such and assign them
the corresponding analysis, which involves a pre-
supposed country (cf. Appendix, Figure 7).

Our parser also consistently fails to recognize
generic you as opposed to deictic you (cf. Ap-
pendix, Figure 8), which points to the importance
of discourse context for understanding the (speaker)
meaning of even a single word, and perhaps to
something that all current DRS parsers lack: an
explicit distinction between sentence meaning and
speaker meaning (cf. Bender et al., 2015).

Besides the very large class of word senses, there
is also the completely open classes of symbols:
names, cardinalities, and times. Our parser predicts
them from the corresponding tokens using rule-
based heuristics, which we have only implemented
for English for now. Simply copying the token of-
ten gives the correct symbol, which is partly why
we only saw a 1% difference for them in the previ-
ous evaluation and why other languages still have
acceptable f-scores (the other reason being that
Counter arguably underpenalizes incorrect sym-
bols). Of course, things can also go wrong (cf.
Appendix, Figure 7).

Finally, we look at fragment predictions with
incorrect discourse referent indices, which lead to
incorrectly unified discourse referents in the output.
The tendency in our sample seems to be that things
here go right most of the time, but when they go
wrong, they go very wrong, leading to DRSs that
are not just incorrect but invalid and can thus not
be scored by Counter. One way for a DRS to be in-
valid is to have a loop in its subordination relation,
e.g., when two boxes presuppose each other. The
way our repair heuristics fix this is to completely
delete one of the boxes, and then fix unintroduced
referents by introducing new REF clauses, and fix
a nonconnected subordination relation by introduc-
ing CONTINUATION relations between boxes (cf.
Appendix, Figure 9). Although a bit crude and
drastic, these fixing heuristics seem to hurt f-score
less than one might expect, for they mainly affect
DRSs that were quite wrong to begin with.

7 Conclusions

We have presented the first fully trainable DRS
parser that is both competitive with the state of
the art and compositional. Unlike sequence-to-
sequence models it provides an explicit mapping
between tokens and clauses, and fixed fragments
ensure consistent analyses. Unlike traditional
pipelines, it does not make use of explicit syntactic
representations or λ-expressions but uses a simple
sequence factorization, and wraps up much of the
complexity in a general-purpose BERT model. We
argue that these characteristics make our model
especially suitable for interactive annotation with
humans in the loop, but is also good enough for
other applications. Beyond producing more and
better data, our error analysis suggests that the next
frontier in DRS parsing will involve better model-
ing of discourse context, and perhaps an explicit
separation of sentence meaning and speaker mean-
ing.
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Figure 6: Gold and predicted DRS for the sentence “Look out!” Both the word sense and the semantic role were
predicted incorrectly.

Figure 7: Gold and predicted DRS for the sentence “He’s Argentinian”. Our parser failed to choose the correct
fragment and symbol for the demonym “Argentinian”.

Figure 8: Gold and predicted DRS for the sentence “You can buy stamps at any post office”. Our parser did not
recognize “you” as generic as opposed to deictic.
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Figure 9: Gold, predicted, and fixed DRSs for the sentence “Tom is Mary’s stepson”. The initial prediction is
invalid because boxes b3 and b4 presuppose each other. This is fixed by completely deleting b4, which leaves an
unintroduced referent x2 and two unconnected boxes b2 and b3 behind. These errors are fixed, respectively, by
introducing a REF clause for x2 where it first occurs (in b2) and introducing a CONTINUATION relation between
x2 and x3.
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Abstract

A central question in natural language under-
standing (NLU) research is whether high perfor-
mance demonstrates the models’ strong reason-
ing capabilities. We present an extensive series
of controlled experiments where pre-trained
language models are exposed to data that have
undergone specific corruption transformations.
These involve removing instances of specific
word classes and often lead to non-sensical sen-
tences. Our results show that performance re-
mains high on most GLUE tasks when the mod-
els are fine-tuned or tested on corrupted data,
suggesting that they leverage other cues for
prediction even in non-sensical contexts. Our
proposed data transformations can be used to
assess the extent to which a specific dataset con-
stitutes a proper testbed for evaluating models’
language understanding capabilities.

1 Introduction

The super-human performance of recent
Transformer-based pre-trained language models
(Devlin et al., 2019; Liu et al., 2019) on natural
language understanding (NLU) tasks has raised
scepticism regarding the quality of the benchmarks
used for evaluation (Wang et al., 2018, 2019).
There is increasing evidence that these datasets
contain annotation artefacts and other statistical
irregularities that can be leveraged by machine
learning models to perform the tasks (Gururangan
et al., 2018; Poliak et al., 2018b; Tsuchiya, 2018;
Glockner et al., 2018; Talman and Chatzikyriakidis,
2019; Pham et al., 2020; Talman et al., 2021).
These studies have so far largely focused on the
natural language inference (NLI) and textual
entailment tasks. The scope of our work is wider,
in the sense that we address all but one NLU tasks

Sentence 1 Sentence 2

pa
ra

ph
ra

se

Easynews Inc. was
subpoenaed late last
week by the FBI, which
was seeking account
information related
to the uploading of
the virus to the ISP’s
Usenet news group
server.

Easynews Inc. said
Monday that it was co-
operating with the FBI
in trying to locate the
person who uploaded
the virus to a Usenet
news group hosted by
the ISP.

no
n-

pa
ra

ph
ra

se Arison said Mann may
have been one of the
pioneers of the world
music movement and
he had a deep love of
Brazilian music.

Arison said Mann was
a pioneer of the world
music movement – well
before the term was
coined – and he had a
deep love of Brazilian
music.

Table 1: Example sentence pairs from the corrupted
MRPC training dataset where all instances of nouns
have been removed.

comprised in the GLUE benchmark, specifically:
linguistic acceptability (COLA), paraphrasing
(MRPC and QQP), sentiment prediction (SST-2),
and semantic textual similarity (STS-B).

We present a series of experiments where the
datasets used for model training and evaluation
undergo a number of corruption transformations,
which involve removing specific word classes from
the data. We remove words pertaining to a specific
class (e.g., nouns, verbs), instead of random words,
to see the relative importance of word classes for
the NLU tasks. For instance, verbs arguably play
a significant role in sentence level semantics and
removing them is expected to have a bigger impact
on the GLUE scores, compared to say determiners.

The transformations seriously affect the qual-
ity of the sentences found in the datasets, making
them in many cases unintelligible (cf. examples
in Table 1); a decrease in performance for mod-
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Task Baseline Metric
COLA The Corpus of Linguistic Acceptability (Warstadt et al., 2018) 64.05 Matthew’s correlation
MNLI-M Multi-Genre Natural Language Inference (Williams et al., 2018) 87.89 accuracy
MRPC Microsoft Research Paraphrase Corpus (Dolan and Brockett, 2005) 88.73 accuracy
QNLI Question Natural Language Inference (Rajpurkar et al., 2016) 92.64 accuracy
QQP Quora Question Pairs 91.32 accuracy
RTE Recognizing Textual Entailment (Dagan et al., 2006) 70.04 accuracy
SST-2 The Stanford Sentiment Treebank (Socher et al., 2013) 94.61 accuracy
STS-B Semantic Textual Similarity Benchmark (Cer et al., 2017) 90.08 Pearson correlation

Table 2: Baseline results obtained for different GLUE tasks with RoBERTa-base and the relevant metric.

els fine-tuned on these corrupted datasets would,
thus, be expected. High performance would, in-
stead, indicate that the models rely on lexical cues
that remain after corruption, and possibly on other
dataset artefacts, to perform a task without neces-
sarily understanding the meaning of the processed
utterances.

Our results show that performance after the cor-
ruptions remains high for most GLUE tasks, sug-
gesting that the models leverage other cues for pre-
diction even in non-sensical contexts.

2 Related Work

Annotation artefacts and statistical biases in NLI
datasets are easily leveraged by the models and
can guide prediction (Lai and Hockenmaier, 2014;
Marelli et al., 2014; Poliak et al., 2018a; Gururan-
gan et al., 2018). Examples include explicit nega-
tion being indicative of contradiction, and generic
nouns suggesting entailment. Artefacts are also
present in other types of datasets, for example in
the ROC Story dataset where models can provide
story endings without looking at the actual stories
(Schwartz et al., 2017; Cai et al., 2017). Several
works have proposed more challenging and cleaner
NLI datasets where artefacts have been removed
(McCoy et al., 2019). An efficient way to do this is
using adversarial filtering (Nie et al., 2020; Zellers
et al., 2018). The superior quality of the resulting
NLI datasets is confirmed by Talman et al. (2021)
in a series of experiments where it is shown that
data corruption affects these higher quality datasets
to a greater extent than previous datasets.

This work follows the same experimental direc-
tion where text perturbations serve to explore the
sensitivity of language models to specific phenom-
ena (Futrell et al., 2019; Ettinger, 2020; Takta-
sheva et al., 2021; Dankers et al., 2021). It has
been shown, for example, that shuffling word or-
der causes significant performance drops on a wide
range of QA tasks (Si et al., 2019; Sugawara et al.,

2019), but that state-of-the-art NLU models are not
sensitive to word order (Pham et al., 2020; Sinha
et al., 2021). Syntax-based perturbations have also
been studied in relation to robustness and faithful-
ness of machine translation models (Parthasarathi
et al., 2021).

We add to this line of research by applying data
corruption transformations that involve removing
entire word classes (Talman et al., 2021) to all but
one GLUE tasks.1 We interpret high performance
of models fine-tuned and/or tested on corrupted
datasets as an indication of the presence of lexical
cues, and possibly artefacts, guiding prediction,
since the meaning of the corrupted utterances is
often hard to recover.

3 Datasets and Corruptions

In our experiments, we address eight tasks included
in the General Language Understanding Evalua-
tion (GLUE) benchmark for the English language
(Wang et al., 2018): CoLa, MNLI, MRPC, QNLI,
QQP, RTE, SST-2, STS-B. Following Talman et al.
(2021), we corrupt the training and development
sets available for these tasks by removing words
of specific word classes.2 We use the develop-
ment sets for evaluation, since annotated test data
have not been made publicly available.3 We create
three configurations for each task: (a) CORRUPT-
TRAIN: fine-tuning on the corrupted training set,
evaluation on the original development set; (b)
CORRUPT-TEST: fine-tuning on the original train-
ing set, evaluation on the corrupted test set; (c)
CORRUPT-TRAIN AND TEST: training and evalua-
tion on corrupted data. The corruption procedure

1We exclude WNLI as its development dataset was de-
signed to be adversarial (Wang et al., 2018) and hence the
corruptions do not have any impact on this dataset when eval-
uating with the development set.

2We annotate the original texts with universal part of
speech (POS) tags using the NLTK library (https://www.
nltk.org/) and the averaged perceptron tagger.

3For MNLI, we use the matched development set
(Williams et al., 2018).
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Data CORRUPT-TRAIN ∆ CORRUPT-TEST ∆ CORRUPT-TRAIN AND TEST ∆
COLA-NOUN 39.72 -24.34 17.75 -46.30 34.33 -29.73
MNLI-M-NOUN 85.64 -2.24 72.85 -15.04 77.46 -10.42
MRPC-NOUN 86.27 -2.45 82.35 -6.37 80.15 -8.58
QNLI-NOUN 89.13 -3.51 71.02 -21.62 82.02 -10.62
QQP-NOUN 86.69 -4.63 72.57 -18.75 84.17 -7.16
RTE-NOUN 47.29 -22.74 53.79 -16.25 47.29 -22.74
SST-2-NOUN 94.04 -0.57 87.27 -7.34 88.76 -5.85
STS-B-NOUN 81.67 -8.41 56.12 -33.96 63.52 -26.56
COLA-VERB 23.26 -40.79 4.30 -59.75 20.22 -43.83
MNLI-M-VERB 86.95 -0.94 77.61 -10.28 80.32 -7.57
MRPC-VERB 85.54 -3.19 85.54 -3.19 85.05 -3.68
QNLI-VERB 92.00 -0.64 87.41 -5.24 90.15 -2.49
QQP-VERB 89.49 -1.84 86.01 -5.31 89.05 -2.27
RTE-VERB 65.34 -4.69 65.70 -4.33 65.34 -4.69
SST-2-VERB 93.69 -0.92 89.33 -5.28 89.56 -5.05
STS-B-VERB 87.63 -2.46 85.54 -4.54 86.22 -3.86

Table 3: Example results for the RoBERTa-base model fine-tuned on CORRUPT-TRAIN and tested on the original
evaluation set (columns 2 and 3); fine-tuned on the original data and tested on CORRUPT-TEST; fine-tuned on
CORRUPT-TRAIN and tested on CORRUPT-TEST (columns 6 and 7). ∆ is the difference to the baseline scores
obtained by RoBERTa-base on the original dataset, given in Table 2.

involves removing all instances of a specific word
class from the corresponding dataset (ADJ, ADV,
CONJ, DET, NOUN, NUM, PRON, VERB). We label
the corrupted datasets by indicating the class of the
words that have been removed (e.g., COLA-NOUN,
QNLI-VERB). Given the possible combinations of
tasks, datasets and corruptions, we end up with 192
setups for our experiments.

Note that the resulting sentence fragments do not
constitute propositions. Although not ideal, this is
not necessarily problematic for tasks such as senti-
ment analysis. For inference, the assumption that
the task can only be performed at the propositional
level is a strong claim, especially given that ex-
amples which are not propositions are abundant in
existing benchmarks such as MNLI (e.g., examples
extracted from dialogue).

4 Models

We fine-tune the pre-trained RoBERTa-base
model (Liu et al., 2019) from the Huggingface
Transformers library (Wolf et al., 2020a) in each
of our 192 configurations. We use the same fine-
tuning and evaluation set up for all the experiments.
We retrieve the GLUE datasets using the Hugging-
face Datasets library (Wolf et al., 2020b). We fine-
tune the models for 3 epochs, using a batch size of
32 and a learning rate of 0.00002.

5 Results

The baseline results using the original (non-
corrupted) datasets are shown in Table 2. Given
the large number of configurations, we only re-
port the exact evaluation results for the -NOUN and
-VERB settings in Table 3, as these content word

Figure 1: Impact of specific data corruptions in the
CORRUPT-TRAIN setting. The columns correspond to
the removed word class and the rows to the GLUE tasks.

classes arguably contribute a lot to the meaning of
utterances. For the remaining configurations, we vi-
sualise the effect of the corruptions using heatmaps
that show the difference in performance compared
to the baseline results (Figures 1 to 3).

Figure 2: Impact of specific data corruptions in the
CORRUPT-TEST setting for each task.

Our results for the -NOUN and -VERB corrup-
tions in CORRUPT-TRAIN (Table 3), and for all
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Original Sentences CORRUPT-TEST-NOUN CORRUPT-TEST-ADJ Labels Gold label
An unclassifiably awful study in
self - and audience-abuse.

an unclassifiably awful in
- and.

an unclassifiably study in
self - and audience-abuse.

positive negative

It proves quite compelling as an
intense, brooding character study.

it proves quite compelling
as an intense, brooding.

it proves quite as an,
brooding character study.

positive positive

Table 4: Labels assigned by NRCLex to sentences from the SST-2 CORRUPT-TEST-NOUN/-ADJ datasets.

Figure 3: Impact of specific data corruptions in the
CORRUPT-TRAIN AND TEST setting for each task.

configurations in Figure 1, show a notable decrease
in performance on COLA and RTE, especially when
nouns are removed. The impact on MNLI-M and
QNLI datasets is small, confirming previous find-
ings regarding the presence of annotation artefacts
and lexical cues that can guide model prediction.
Our results suggest that this is the case also in other
GLUE datasets, such as MRPC and SST-2, where
the models still manage to perform fairly well com-
pared to the baseline when fine-tuned on corrupted
data.

Our CORRUPT-TEST results in Table 3 and in
Figure 2 show that removing nouns from the data
used for evaluation has a much larger impact across
tasks, compared to CORRUPT-TRAIN. The biggest
drop in performance is observed on COLA, MNLI-M

and STS-B. However, accuracy on MRPC and SST-2
is still very high, suggesting that good performance
does not require sentence-level understanding but
can be achieved by relying on lexical cues present
in the data. In the CORRUPT-TRAIN AND TEST set-
ting (Table 3 and Figure 3), we observe the biggest
drop in performance on COLA, MNLI-M and STS-B,
and a lower impact on QNLI, QQP and SST-2.

6 Discussion and Analysis

6.1 Lexical Cues

Our results show that model performance in many
tasks is marginally affected by the imposed corrup-
tions which, however, in many cases alter the mean-

Word class Dataset Accuracy
NOUN CORRUPT-TEST 14.7%
NOUN original 34.1%
VERB CORRUPT-TEST 31.1%
VERB original 66.4%

Table 5: Accuracy of RoBERTa-BASE in predicting a
masked word in the MRPC development set.

ing of utterances. We conduct additional analyses
aimed at identifying the lexical cues that remain af-
ter corruption and can guide model prediction. We
focus on MRPC (Microsoft Research Paraphrase
Corpus) and SST-2 (Stanford Sentiment Treebank),
where the impact of CORRUPT-TEST transforma-
tions was the smallest.

MRPC addresses the paraphrase relationship be-
tween sentence pairs. We explore the semantic
similarity of the information that remains after cor-
ruption. Our assumption is that if a sentence pair
(from which nouns or verbs have been removed)
still contains synonyms or longer paraphrases, this
can guide the model towards detecting a similarity
or entailment relationship. For this analysis, we use
the unigram paraphrases in the L (large) package of
PPDB 2.0 (Pavlick et al., 2015). We find that in the
CORRUPT-TEST-NOUN MRPC dataset, 76% of the
sentence pairs for which the model made correct
predictions still include a lexical paraphrase.

SST-2 involves detecting the sentiment expressed
in individual sentences. We use the NRCLex tool4

to measure the sentiment expressed by lexical cues
in the CORRUPT-TEST sentences for which model
predictions are correct. Given that sentiment can
be expressed in a text by words pertaining to dif-
ferent grammatical categories, we explore whether
lexical cues indicating the polarity of the text still
remain after removing instances of a specific word
class. In Table 4, we show the labels predicted by
NRCLex for corrupted test sentences, where the
nouns and adjectives have been dropped. We ob-
serve that even if sentences become non-sensical

4NRCLex is based on the expanded version of the NRC
Word-Emotion Association Lexicon (Mohammad and Turney,
2010, 2013). We only use the ‘positive’ and ‘negative’ keys.
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after corruption, it is still possible to detect the (pos-
itive or negative) polarity of the sentences from the
remaining words. Relying on these lexical cues,
RoBERTa often manages to predict the correct sen-
timent. Specifically, according to the NRCLex pre-
dictions, the correct sentiment is still present in 383
out of 761 corrupted sentences where RoBERTa
made correct predictions in the CORRUPT-TEST-
NOUN setting. If both nouns and adjectives are
removed (CORRUPT-TEST-NOUN-ADJ), NRCLex
detects that the correct sentiment is still present in
125 out of the 672 examples that were correctly
predicted by RoBERTa.

6.2 Can RoBERTa Guess the Missing Tokens?

As RoBERTa has been pre-trained using a Masked
Word Prediction task, it is reasonable to ask if high
model performance with our corrupted datasets
could be due to the model’s ability to “fill in the
gaps” and predict the missing words. To test this,
in each sentence of the MRCP development set,
we replace the first token that is aimed by a spe-
cific corruption procedure (-NOUN/VERB) with the
[MASK] token. We do this in the original sen-
tence (by removing only the first noun/verb in-
stance) and in the corrupted sentence (where all
other nouns/verbs are missing). For example, from
the first sentence in Table 4, we generate two cloze-
task queries in the -NOUN setting:

(a) An unclassifiably awful [MASK] in self - and
audience-abuse.

(b) An unclassifiably awful [MASK] in - and.

We use these queries to test RoBERTa’s token
prediction capability. As shown in Table 5, it is
easier to predict the masked token in the original
sentences, but the model is still able to make correct
predictions in the corrupted sentences. This could
partly explain the high performance observed for
MRPC in the corrupted setting (cf. Section 5).

7 Conclusion

We apply a set of controllable corruption transfor-
mations to the datasets of NLU tasks in the GLUE
benchmark, and study their impact on model perfor-
mance. The proposed transformations are generic
enough to be applicable to other NLU tasks, and
can enrich the available artillery for dataset quality
assessment in terms of how efficiently they trigger
and test the language understanding capabilities of
the models. Our results indicate that understanding

the meaning of utterances is not required for high
performance in most GLUE tasks. This finding
suggests caution in interpreting leaderboard results
and in the conclusions that can be drawn regard-
ing the language understanding capabilities of the
models. We make our code available5 in order
to promote the application of these tests to other
NLU datasets, and to favour the development of
benchmarks addressing the actual capability of the
models to reason about language.
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Abstract

Many linguistic expressions have idiomatic and
literal interpretations, and the automatic dis-
tinction of these two interpretations has been
studied for decades. Recent research has shown
that contextualized word embeddings derived
from masked language models (MLMs) can
give promising results for idiom token classifi-
cation. This indicates that contextualized word
embedding alone contains information about
whether the word is being used in a literal sense
or not. However, we believe that more types
of information can be derived from MLMs
and that leveraging such information can im-
prove idiom token classification. In this paper,
we leverage three types of embeddings from
MLMs; uncontextualized token embeddings
and masked token embeddings in addition to
the standard contextualized word embeddings
and show that the newly added embeddings sig-
nificantly improve idiom token classification
for both English and Japanese datasets.

1 Introduction

Potentially idiomatic phrases are often used both
in the idiomatic and literal sense. For example,
“blew whistle” in (1) is used in the literal sense,
whereas that in (2) is used in the idiomatic sense,
that is, the meaning of the phrase has shifted and in
this case it means accuse. Deciding whether each
occurrence of a potentially idiomatic phrase is a
literal or idiomatic usage is an essential process for
text understanding. We call this processing idiom
token classification following Salton et al. (2016).

(1) The referee blew the whistle to end the match.

(2) I blew the whistle on government corruption.

Recently, contextualized word embeddings have
been shown to be useful for word sense disam-
biguation (Hadiwinoto et al., 2019). Furthermore,

*Ryosuke Takahashi is currently at SB Technology Corp.

Shwartz and Dagan (2019) showed that the contex-
tualized embeddings including BERT (Devlin et al.,
2019) are useful for recognizing meaning shift of
words in idioms. However, they only used contex-
tualized embeddings, even though comparing them
with the standard embeddings of the target word
can be beneficial for precise detection of meaning
shifts. Thus, in this paper, we propose a method to
improved a BERT-based idiom token classifier by
leveraging uncontextualized word embeddings.

Specifically, we use the token embedding of
BERT, which is the uncontextualized embedding
that is input to BERT and the same vector as is used
for the prediction in the task of masked language
model. Our assumption can be explained using (1)
and (2) as follows: since “whistle” in (2) is used
as a part of an idiomatic phrase, its contextualized
embedding differs more from the uncontextualized
embedding of “whistle” than in the case of (1).

Furthermore, we also leverage the masked token
embedding of the target word in BERT, which is
generated when the target phrase constituents are
masked. This embedding can be considered to rep-
resent the meaning inferred from its context, and
we assume that if the target phrase is used in the
literal sense, as in (1), the output embedding will
not significantly differ from the original embedding
and thus the differences between the BERT embed-
dings without masking and those with masking are
expected to be small.

2 Task and Baseline

2.1 Datasets and Settings
We focus on the idiom token classification of
phrases consisting of verb-noun pairs in English
and Japanese. As the English dataset, we use the
VNC-Tokens dataset1 (Cook et al., 2008). This
dataset consists of 2,984 sentences containing 53
different potentially idiomatic verb-noun pairs in

1
https://people.eng.unimelb.edu.au/paulcook/

English_VNC_Cook.zip
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Figure 1: The Embed-Encode-Predict model.

English, where each sentence is labeled with “I”
(idiomatic), “L” (literal), or “Q” (unknown). We
use 28 out of the 53 idioms that have similar num-
bers of idiomatic and literal occurrences and only
those sentences labeled as “I” or “L” following
Salton et al. (2016).

As the Japanese dataset, we use the OpenMWE
Corpus2 (Hashimoto and Kawahara, 2008). This
dataset consists of 102,846 sentences containing
146 different potentially idiomatic verb-noun pairs
in Japanese, where each sentence is labeled with
“I” (idiomatic) or “L” (literal). We use 90 out of
the 146 idioms for which more than 50 examples
for both idiomatic and literal usages are available
following Hashimoto and Kawahara (2008).

In this study, we adopt the zero-shot setting be-
cause we are interested in detecting meaning shifts
of words that are not included in the training data.
Specifically, we employ the one-versus-rest scheme
with the fully zero-shot setting. That is, we build a
classifier for each phrase, which is trained on the
phrases that contain neither the verb nor the noun
that makes up the target phrase. For example, when
building a classifier for blew whistle, we exclude
phrases whose verb is blew or whose noun is whis-
tle from the training data. We take one fifth of each
training dataset as development data.

2.2 Baseline Systems

As the baseline system, we adopted a minimal
Embed-Encode-Predict model (Shwartz and Da-
gan, 2019) that uses only contextualized embed-
dings of the constituent words of the target phrase
as input. The reason for adopting a relatively sim-
ple model as a baseline is that the purpose of this
study is to confirm the effectiveness of the newly

2
http://openmwe.sourceforge.jp/Idiom/corpus/

OpenMWE-Corpus-0.02.tar.bz2

Models English Japanese
Majority Baseline 0.672 0.629
Salton et al. (2016) 0.780 -
Hashimoto and Kawahara (2008) - 0.740
BERT[vV] 0.829 0.816
BERT[vN] 0.836 0.821
BERT[vV;vN] 0.840 0.823

Table 1: Macro-averaged accuracy for baseline systems.

added embeddings. Figure 1 shows the outline of
the model, which consists of an input layer, a hid-
den layer, and an output layer. The output layer
predicts whether the input phrase is idiomatic or
literal. The size of the hidden layer is half of the
input embedding size in all models in the paper.
We applied dropout on the input embeddings and
hidden layer. The dropout rates are both 50%.

As the input, we used [vV;vN], a concatenation
of the contextualized embeddings of the verb and
noun that comprise the target phrase. We used
the pre-trained models BERT-Base, Uncased3

for English and BERT-Base, WWE4 for Japanese.
Both models have 12 layers and 768 hidden di-
mensions per token. Japanese sentences were to-
kenized by Juman++5 in advance. We used the
development data to determine the number of train-
ing epochs and to determine which BERT hidden
layer to use as the input embeddings of the Embed-
Encode-Predict model. We refer to this model as
BERT[vV;vN]. In addition, we developed models
that only leverages one of the contextualized em-
beddings vV and vN to confirm the importance of
each embedding. We refer to them as BERT[vV]
and BERT[vN], respectively.

For reference, we also implemented support vec-
tor machine (SVM) based models with the features
used in previous work. For English, we employed
Salton et al. (2016)’s model that leveraged Skip-
Thought Vectors (Kiros et al., 2015) as features.
For Japanese, we implemented the features used
by Hashimoto and Kawahara (2008), consisting of
POS, lemma, token n-gram, hypernym, domain,
voice, negativity, modality, adjacency, and adnomi-
nal information.

Table 1 lists the macro-averaged accuracy for
each baseline model with the accuracy of the ma-
jority baseline. Each accuracy is the average of 5
runs with different random seeds. For both English

3
https://storage.googleapis.com/bert_models/2018_

10_18/uncased_L-12_H-768_A-12.zip
4
http://nlp.ist.i.kyoto-u.ac.jp/nl-resource/

JapaneseBertPretrainedModel/Japanese_L-12_H-768_
A-12_E-30_BPE_WWM.zip

5
https://github.com/ku-nlp/jumanpp
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and Japanese dataset, BERT[vV;vN] achieved the
highest accuracy, which demonstrates that BERT
embeddings are useful for idiom token classifica-
tion even in a zero-shot setting and supposedly
capture the general characteristic of idiomaticity.
We measured the statistical significance between
BERT[vV;vN] and the other models with an ap-
proximate randomization test (Chinchor, 1992)
with 99,999 iterations and significance level α =
0.05 after Bonferroni correction. We found sig-
nificant differences against the Majority Baseline
and Salton et al. (2016) with respect to English
and against Majority Baseline and Hashimoto and
Kawahara (2008) with respect to Japanese.

3 Leveraging Additional Embeddings

The relatively high performance of BERT[vV;vN]
in a zero-shot setting indicates that the standard
BERT embeddings contain information about how
much the meaning differs from the standard mean-
ing of the words that comprise the phrase. How-
ever, the performance of idiom token classification
can be improved by explicitly incorporating the
standard meaning of the constituent words and the
meaning inferred from its context.

3.1 Additional embeddings

We add two types of embeddings to BERT[vV;vN]:
uncontextualized token embeddings and masked
token embeddings of the phrase constituents.

Uncontextualized token embeddings We use
the token embedding of BERT, which is the un-
contextualized embedding that is input to BERT
and the same vector as is used for the prediction
in the task of masked language model in BERT.
This embedding can be considered to represent the
standard meaning of the word and thus if the tar-
get phrase is used in the literal sense, the BERT
embeddings, which are contextualized, should be
similar to the token embeddings. We refer to the
uncontextualized token embeddings of a verb and
a noun as vV_t and vN_t, respectively.

Masked token embeddings We use the hidden
layer of BERT when the target token is replaced
with a special token [MASK]. This embedding can
be considered to represent the meaning inferred
from its context. If the target phrase is used in the
literal sense, the differences between the BERT em-
beddings without masking and those with masking
are expected to be small. We refer to the masked

𝒗𝑽_𝒕 ; 

BERT

Embed-Encode-Predictmodel

𝒗𝑽 ; 𝒗𝑵 ; 𝒗𝑽_𝒎 ; 𝒗𝑵_𝒎𝒗𝑵_𝒕 ;

matchwhistletheblewreferee theto endThe
match[MASK]the[MASK]referee theto endThe

Figure 2: Overview of the proposed model.

Embeddings English Japanese
vV;vN 0.840 0.823
vV;vV_t;vN;vN_t 0.859 0.842
vV;vV_m;vN;vN_m 0.852 0.829
vV;vV_t;vV_m;vN;vN_t;vN_m 0.865 0.847

Table 2: Macro-averaged accuracy for different combi-
nations of input embeddings.

token embeddings of a verb and a noun as vV_m
and vN_m, respectively.

Figure 2 shows the overview of the proposed
model. When a sentence containing the target
phrase is given, a masked sentence, in which the
verb and noun that comprise the phrase are masked,
is generated and input to the BERT in addition to
the original sentence. Then, vV, vV_t, vV_m, vN,
vN_t, and vN_m are extracted and their concatena-
tion is input to the Embed-Encode-Predict model.

3.2 Experiments and analysis

We performed the idiom token classification ex-
periments with the additional embeddings. Table
2 lists the macro-averaged accuracy for different
combinations of input embeddings. We can con-
firm that leveraging uncontextualized token embed-
dings and masked token embeddings in addition
to the standard BERT embeddings is beneficial for
idiom token classification. The statistical signifi-
cance test shows that the difference between the ac-
curacy of BERT[vV;vV_t;vV_m;vN;vN_t;vN_m]
and that of BERT[vV;vN] are significant for both
English and Japanese datasets. The accuracy of
BERT[vV;vV_t;vN;vN_t] was slightly better than
that of BERT[vV;vV_m;vN; vN_m]. We can say
that the difference between the standard BERT em-
beddings and the uncontextualized token embed-
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English Japanese
Usage v vs. vt v vs. vm v vs. vt v vs. vm

Literal 0.157 0.593 0.197 0.545
Idiomatic 0.122 0.517 0.166 0.428

Table 3: Means of the cosine similarities of standard
BERT embeddings (v) against uncontextualized token
embeddings (vt) and masked token embeddings (vm)
for literal and idiomatic cases, respectively.

dings should be a good indicator of idiomaticity.
We assumed that when the target phrase is used

in the literal sense, the uncontextualized token em-
beddings and the masked token embeddings tend
to be similar to the standard BERT embeddings.
To verify this assumption, we calculated the means
of their cosine similarities for the literal and id-
iomatic cases, respectively. Table 3 lists the means
of the cosine similarities. For English dataset, the
mean of the cosine similarities between the uncon-
textualized token embeddings and standard BERT
embeddings for the literal cases was 0.157, which
was larger than that for the idiomatic cases, 0.122.
Similarly, the mean of the cosine similarities be-
tween the masked token embeddings and standard
BERT embeddings for the literal cases was 0.593,
which was larger than that for the idiomatic cases,
0.517. The same trend can be observed for the
Japanese dataset. It has been confirmed that all
the differences are statistically significant. These
results support our assumption.

4 Related Work

Several researchers have tackled the task of id-
iom token classification. Hashimoto and Kawahara
(2008) is one of the earliest works. They created
a Japanese annotated data for idiom token classifi-
cation and proposed an SVM-based model with a
set of features that commonly used for WSD. Fa-
zly et al. (2009) proposed statistical measures that
quantify the degree of lexical, syntactic, and overall
fixedness of a verb noun combination. Sporleder
and Li (2009) proposed a model for unsupervised
idiom token classification based on the observation
that literally used expressions typically exhibit co-
hesive ties with the surrounding discourse, while
idiomatic expressions do not.

Li and Sporleder (2010) explored various fea-
tures, such as global lexical context, discourse co-
hesion, syntactic structure, and local lexical fea-
tures. They reported that global lexical context and
discourse cohesion were most effective for idiom
token classification. Peng et al. (2014) treated id-

iom token identification as a problem of outlier
detection. They extracted topics from paragraphs
containing idioms and from paragraphs containing
literals by using Latent Dirichlet Allocation (LDA).

A broad range of neural network-based models
have been proposed in recent years. Gharbieh et al.
(2016) obtained phrase representations by averag-
ing skip-gram (Mikolov et al., 2013) vectors of
words that appear around the target phrase and ap-
plied them to idiom token classification. Salton
et al. (2016) constructed an SVM-based classifier
using the distributed representation of sentences
generated by the Skip-Thought model (Kiros et al.,
2015). King and Cook (2018) improved the per-
formance of word embedding-based methods by
incorporating syntactic and lexical patterns of id-
iomatic expressions.

More recently, methods using contextualized
word embeddings such as ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019) have been
proposed. Shwartz and Dagan (2019) showed
that the contextualized embeddings of constituent
words were useful for recognizing meaning shifts
of phrases. Hashempour and Villavicencio (2020)
and Kurfalı and Östling (2020) worked on the id-
iom token classification task using BERT embed-
dings and reported that the BERT-based model
achieved high accuracy in a phrase-specific setting.
Garcia et al. (2021) proposed probing measures
to examine how accurately idiomaticity in noun
compounds is captured in vector space models and
concluded that idiomaticity is not yet accurately
represented by contextualized word embeddings.

Studies that used multiple types of embeddings
in BERT, similar to our method, include the work
by Zhang et al. (2020) and Yamada et al. (2021).
Zhang et al. used the weighted sum of the input
embedding and the mask embedding for spelling
error correction whereas Yamada et al. used the
weighted sum of the input embedding and the mask
embedding for semantic frame induction.

5 Conclusion

We demonstrate that leveraging uncontextualized
token embeddings and masked token embeddings
in addition to the standard contextualized word em-
beddings significantly improve idiom token classi-
fication in a zero-shot setting. We also show that
the results of investigating the similarities of these
embeddings for each of the literal and idiomatic
cases support our assumption that the uncontextu-
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alized token embeddings and the masked token em-
beddings tend to be similar to the standard BERT
embeddings when the target phrase is used in the
literal meaning. One of the advantages of the pro-
posed method is that it does not require training a
new model because it extracts and uses embeddings
with different properties from the same language
model. We believe that the three types of embed-
ding introduced in this study can be applied to other
natural language tasks.
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Abstract

We propose a type-controlled framework for
inquisitive question generation. We annotate
an inquisitive question dataset with question
types, train question type classifiers, and fine-
tune models for type-controlled question gen-
eration. Empirical results demonstrate that we
can generate a variety of questions that ad-
here to specific types while drawing from the
source texts. We also investigate strategies for
selecting a single question from a generated
set, considering both an informative vs. inquis-
itive question classifier and a pairwise ranker
trained from a small set of expert annotations.
Question selection using the pairwise ranker
yields strong results in automatic and manual
evaluation. Our human evaluation assesses mul-
tiple aspects of the generated questions, finding
that the ranker chooses questions with the best
syntax (4.59), semantics (4.37), and inquisitive-
ness (3.92) on a scale of 1-5, even rivaling the
performance of human-written questions.

1 Introduction

Recently, interest has grown in the task of auto-
matic question generation (AQG) from text (Sun
et al., 2018; Kumar and Black, 2020). AQG is use-
ful in building conversational AI systems (Bordes
et al., 2017; Gao et al., 2019), generating synthetic
examples for QA (Alberti et al., 2019; Dong et al.,
2019; Sultan et al., 2020), and educational applica-
tions, such as intelligent tutoring and instructional
games (Chen et al., 2018; Flor and Riordan, 2018).
In the majority of such studies, AQG focuses on
generating factual questions that tend to ask about
specific information in the text (i.e., “who did what
to whom”) (Du et al., 2017).

Instead of asking factual questions with answers
already present in the text, Ko et al. (2020) argued
that human readers instinctively ask questions that
are curiosity-driven, answer-agnostic, and seek a

∗ Partially done as part of an internship at Educational
Testing Service.

Context . . . The plan places an indicated value on the
real estate operation, Santa Fe Pacific Realty
Corp., of $ 2 billion.

Source
sentence

Santa Fe Pacific directors are expected to re-
view the plan at a meeting today, according to
people familiar with the transaction.

BASE What kind of meeting?
SPAN How will the directors review the plan?

Explanation Why are they reviewing the plan?
Background Is it expected to review the plan today?
Elaboration What will the review entail?
Instantiation Which directors are expected to review the

plan?
Definition what is that?
Forward What are the directors expected to review?

Informative Who are Santa Fe Pacific directors expected to
review?

Table 1: Examples of generated questions given the
article context and source sentence (with span in bold).

high-level understanding of the document being
read. They released a dataset of such curiosity-
driven questions (henceforth INQUISITIVE; for de-
tails, see Section 2). The objective of our work is
to generate deeper, inquisitive questions based on
the INQUISITIVE dataset.

Our motivations for generating inquisitive ques-
tions are two-fold. Educators can obtain diverse
questions for a specific source text when design-
ing quizzes or choosing questions to test students’
reading comprehension ability. They can focus into
different aspects of the context (e.g., questioning
the background information or asking to elaborate
a fact) for diverse question generation (Cho et al.,
2019; Wang et al., 2020; Sultan et al., 2020). Like-
wise, students can also be assisted in knowledge
acquisition and building reasoning skills by practis-
ing over a large number of diverse questions (Cao
and Wang, 2021).

Though our initial efforts are similar to Ko et al.
(2020), we found this to be insufficient as it does
not leverage the inherent diversity of question types
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in the dataset. Ko et al. (2020) concatenated the
context, source sentence, and the question to learn
a language model for question generation using
GPT-2 (Radford et al., 2019). On the contrary, we
first annotated 1550 questions from the training
partition of the INQUISITIVE dataset to identify the
question types, such as questions requesting back-
ground information, asking about the cause of an
event, asking for details on underspecified facts,
etc. (see Section 2.2 for details). We finetune a
RoBERTa-large model (Liu et al., 2019) to predict
the question types on the rest of the dataset. We
then use the question types in a controlled genera-
tion framework based on BART (Lewis et al., 2020)
to generate type-specific inquisitive questions.

Consider the example in Table 1. The BASE

model is BART finetuned on INQUISITIVE to gen-
erate questions from the context and source sen-
tence. The SPAN model additionally uses the span,
a part of the source sentence the annotators are cu-
rious about. We then show six questions of specific
types (e.g., Explanation, . . . , Forward) generated
by our type-controlled finetuned BART model. In
comparison, the informative question is generated
by finetuning on SQuAD (Rajpurkar et al., 2016),
a popular dataset for generating factual questions.
The informative question asks for surface-level in-
formation (“who are Santa Fe Pacific directors ex-
pected to review?”) whereas the inquisitive ques-
tions ask for deeper information (e.g., “why are
they reviewing the plan?”), such as the reason for
the directors’ actions.

As mentioned earlier, our motivations for gen-
erating diverse inquisitive questions are to provide
educational tools and resources. However, there are
also cases where an educator or student may prefer
only a single high-quality question for a span or a
ranked list of questions. We investigate two strate-
gies for automatic question selection/ranking for
this latter scenario. The first strategy ranks ques-
tions using an inquisitive vs. informative question
classifier, where questions from SQuAD are used
as informative questions. In the second strategy,
we collect expert annotations of partial rankings
for a subset of generated questions, and then train a
pairwise ranker to select the best question (denoted
as TYPEr). In automatic evaluation, we find that
TYPEr yields questions that have reasonably strong
match to references while also being novel rela-
tive to the training set (Section 4.1). We report a
large-scale human evaluation via Mechanical Turk

and demonstrate that questions generated from the
same TYPEr model have the best syntax (4.59),
semantics (4.37), and inquisitiveness (3.92) on a
scale of 1-5 (Section 4.2). We make the annota-
tions, code, and the MTurk judgements from our
research publicly available.1

2 Data

We will now describe the annotation of questions
with question types, which is one of the main con-
tributions of our work. We describe the annotation
process in detail in Section 2.2. But first, we briefly
introduce the INQUISITIVE dataset.

Human annotators created the inquisitive ques-
tions while reading the initial part (i.e., five sen-
tences) of news articles from the WSJ portion of
the Penn Treebank (Marcus et al., 1993) or As-
sociated Press articles from the TIPSTER corpus
(Harman and Liberman, 1993).2 Annotators first
highlighted a span within the sentence that they
were curious about and then wrote a maximum of
three questions. Next, a separate set of annotators
validated the questions and excluded unqualified
questions (around 5%).

An instance in INQUISITIVE has the following
components: a source sentence, the sentence the
annotator read when asking the question, context
that includes all the sentences before the source sen-
tence in the same article, a span within the source
sentence the annotators were most curious about,
and finally, the question the annotator wrote. IN-
QUISITIVE is split into training (15,897 instances),
test (1,885 instances), and dev (1,984 instances).

2.1 Question Type Annotation

In the USA, K-12 standards describe what students
should understand and be able to do by the end
of each grade.3 The guidelines state that even in
very early grades students should understand how
individuals and events evolve and interact in a text.
The hows and whys of the text (i.e., inquisitive
questions) come naturally to us (Ko et al., 2020).

Ko et al. (2020) evaluated the question types over
a small set of 120 questions and identified a few
question types that appear frequently and address
various how and why questions.4 Although they

1
https://github.com/EducationalTestingService/

inquisitive-questions
2They also use Newsela (Xu et al., 2015) but it was not

publicly released.
3
http://www.corestandards.org

4The evaluation is not available in the released dataset.
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Question Type
(# samples)

Example

[context] [source sentence with span in bold] Question

Explanation (443) [. . . unraveling of the on-again, off-again UAL buy-out slammed the
stock market.][Now, stock prices seem to be in a general retreat.]

Why are the stock prices retreat-
ing?

Elaboration (364) [. . . Beth Capper has gone without food . . . ][It’s not drugs or alcohol
or even baby formula that has put her in such a bind.]

What has put her in this bind?

Background (407) [. . . John R. Stevens, . . . , was named senior executive vice presi-
dent. . . ][He will continue to report to Donald Pardus, . . . ]

How long has he been reporting
to Donald Pardus?

Definition (114) [Oh, that terrible Mr. Ortega.][Just when American liberalism had
pulled the arms plug on the Contras . . . ]

What is the arms plug?

Instantiation (159) [. . . in their office, Rajiv Maheswaran and Yu-Han Chang can catch
a glimpse of Staples Center . . . ][Whiteboards inside their office are
filled with algorithms in shades of red, blue and green.]

what kind of algorithms?

Forward-looking (31) [The federal government would not actually shut down. Agents
would still patrol . . . ][Mail carriers would still deliver mail.]

Would it arrive on time?

Other (32) [. . . the entire neighborhood can fall victim.] [At this stage some
people just “walk away” from homes. . . ]

Why is it quoted?

Table 2: Annotated question type distributions and salient examples of each question type. Context and source
sentences are presented where the spans in source sentences are bold. More examples are in the Appendix.

presented a fully data-driven approach without any
theoretical underpinnings we notice such curiosity
driven questions – such as asking for background
information, elaborating details, and why one ac-
tion led to another – are linked to Rhetorical Struc-
ture Theory (RST) (Mann and Thompson, 1988).
In RST, relations such as background, elaboration,
and cause provide a systematic way to analyze the
text and understand the discourse relations among
segments of the text. Likewise, the questions gen-
erated in this work inquire about the background
or causal information and those are close to the
rhetorical relations in the text. For our annotation,
we use the same set of question types as Ko et al.
(2020), which are described below:

• Explanation: Questions signaled by the inter-
rogative “why” as well as its paraphrases such
as “what is the reason”. These questions are of-
ten asked to explain why something happened or
identify its cause (“why did he choose to speak
to the press?”).

• Elaboration: Questions that seek more details
about concepts, entities, relations, or events ex-
pressed in the text, e.g., “what are some details
about this performance?”

• Background: Questions that seek more infor-
mation about the context of the story or seek
clarification about something described in the
text (“how much loan was guaranteed?”).

• Definition: Questions that ask for the meaning
of a specific term (“what does hubris mean?").

• Instantiation: Questions that ask about a spe-
cific instance (e.g., “what is the name of the
newspaper?”) or a set of instances (e.g., “who
are these other cable partners?”).

• Forward-looking: Questions that ask about fu-
ture events, e.g., “would it arrive on time?”

• Other: Other types of questions, e.g., inference
questions (“how many women were found?”)
that ask to deduce information from the source,
or that ask something irrelevant (“Does seaweed
look like cotton candy?”)

Three expert annotators who are experienced at
annotation tasks initially annotated 50 questions
with the types above. Pairwise κ’s between anno-
tators were 0.570, 0.572, and 0.872 (moderate and
substantial agreement). The annotators exchanged
notes and decided on final annotation guidelines.
In the next round, each annotator independently
annotated 500 random questions from the training
partition of INQUISITIVE, thus producing a total
set of 1,550 annotated questions. We used majority
vote for the first 50 questions. Table 2 presents the
question type distribution with salient examples.

Table 3 shows the most common leading un-
igrams for each question type in our annotated
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Explanation Elaboration Background Definition Instantiation Forward-looking Other

why (396) what (164) what (108) what (95) what (62) what (9) why (5)
what (28) how (135) how (91) does (5) which (50) how (8) does (5)
is (5) is (11) is (40) how (3) who (36) will (3) is (4)
how (4) where (6) who (34) who (2) in (3) would (2) what (3)
if (3) in (5) where (18) definition (2) at (2) did (2) of (2)

Table 3: Most common leading unigrams in annotated questions (lowercased) for each type (counts in parentheses).

data.5 Although WH question words such as
“why”, “when”, “who”, etc. have been used to gen-
erate a variety of question types before (Zhou et al.,
2019), they cannot fully express the semantic con-
tent of questions (Cao and Wang, 2021). Likewise,
we observe there is no one-to-one relationship be-
tween WH words and question types. Each type
encompasses multiple question words. Some types,
like Explanation and Definition, have a single dom-
inant leading unigram, while others have two or
three. The word “what” is the most common lead-
ing unigram for five question types.

2.2 Question Type Prediction

We aim to generate a question that follows a par-
ticular question type as control code. However, to
do so, we must first determine the question types
in the entire INQUISITIVE dataset. To this end, we
finetune RoBERTa-large as a multi-class classifier
on the annotated set of 1,550 questions and use
the classifier to predict the question types of the
remaining questions in INQUISITIVE. As input,
we concatenate the context, source sentence, span,
and question, using the “[SEP]” token as delim-
iter.6 We use 1,400 examples for training and the
remaining 150 as the validation set (also used for
early stopping)7, on which we reach an accuracy
of 73.3%.

3 Methods

In this section, we present our computational ap-
proaches for question generation. The input x is
a sequence of tokens x = ⟨x1, ..., xn⟩, which may
consist of one or more sentences. The output is a
question q that consists of sequence of tokens, i.e.,
q = ⟨q1, ..., qm⟩. Using the standard autoregressive
sequence-to-sequence architecture (Sutskever et al.,

5See appendix for bigrams.
6We use a special token “NO_CONTEXT” if the source

sentence is the first sentence in the article.
7We keep the distribution of question types in train and

dev set roughly the same, and the majority question type
(Explanation) is about 29% of the total data.

2014) we model Pθ(q | x) as follows:

Pθ(q | x) =
∏

i

Pθ(qi | q1, . . . , qi−1, x) (1)

We use the pretrained BART model (Lewis et al.,
2020), a transformer (Vaswani et al., 2017) com-
posed of a bidirectional encoder and an autoregres-
sive decoder. In our simplest setup (called BASE),
we concatenate the source sentence and the context.
The next setting also concatenates the span; we re-
fer to it as SPAN. Each element (e.g., context, span)
is separated with the special token “[SEP]”.

3.1 Controlled Generation
Our next set of models use the question types as
control codes to guide question generation. Con-
trolled generation models (Kikuchi et al., 2016; Hu
et al., 2017; Ficler and Goldberg, 2017; Tsai et al.,
2021) condition on a control code c in addition to
the input x to model the distribution of Pθ(q | x, c).
Similar to Eq. (1), we can write,

Pθ(q | x, c) =
∏

i

Pθ(qi | q1, . . . , qi−1, x, c) (2)

Text generation conditioned on such control codes,
such as sentiment control of movie reviews, style
for chatbots, diverse story continuations, etc., have
been used effectively in recent research (Tu et al.,
2019; Krause et al., 2021; Roller et al., 2021). We
use the same idea for question generation by con-
ditioning on the question type c as identified in
Section 2.2. We simply concatenate the question
type as an additional token and finetune BART. Us-
ing the example from Table 1, the input to BART
with the question type Explanation would be:
The plan places . . . 2 billion [SEP] Santa Fe
. . . transaction [SEP] review [SEP] Explanation

Inference. We specify the question type to gener-
ate specific questions. Top-k sampling with k = 5
is used to generate questions, where the questions
are constrained to be from 5 to 30 tokens, with a
length penalty 2.0 (Ott et al., 2019). The length
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penalty is an exponential penalty on the length,
where a penalty > 1 favors longer generations.

For each test instance, we generate a question for
all question types except “Other”.8 Table 1 shows
examples of generated questions.

3.2 Automatic Question Type Selection

As stated in the Introduction section, besides being
able to generate a variety of questions based on a
single span, another motivation of this work is to
identify a single high-quality question or to rank
the list of the questions. In case of controlled gen-
eration, one challenge is determining what control
code to use at inference time when a single output
is desired. We explore two ways to choose a single
question from the six generated for each input.

Informative vs. inquisitive question classifier.
We consider using a binary question classifier
(RoBERTa-large with default parameters) to clas-
sify whether a question is from INQUISITIVE or
SQuAD. We view SQuAD questions as more “in-
formative” than inquisitive so we hope for this clas-
sifier to capture what it means for a question to be
inquisitive. We train on the training questions in
INQUISITIVE and an equal number of questions
drawn from SQuAD.9 At inference time, given one
generated question for each type, we choose the
one that maximizes the classifier’s probability of
being inquisitive. Our hypothesis is that an inquis-
itive/informative classifier can serve as a scoring
function for selecting the best candidate from a set
of inquisitive questions. For the example in Table 1
the classifier chose the Definition question “what is
that?” with the highest inquisitiveness probability.
Below we refer to this method as TYPEs, where the
“s” indicates that the SQuAD dataset is used.

Pairwise ranking classifier with expert anno-
tations. In this setup, we collect a small set of
question ranking annotations and train a pairwise
ranking classifier (Liu et al., 2009) to select the best
question. First, we randomly select 300 instances
from the 1,885-instance test set from INQUISITIVE.
Next, two expert annotators (each with extensive
annotation experience) independently ranked each

8We made this choice because “Other” includes many
subtypes, e.g., inference questions and comparisons, giving us
only a few examples per type. We leave this to future work.

9We also attempted to include the source sentences. How-
ever, given the differences between the two datasets (WSJ/AP
for INQUISITIVE vs. Wikipedia for SQuAD), this caused the
classifier to focus more on the source sentences than the ques-
tions.

of the six generated questions per instance. The an-
notators’ task was to rank the questions according
to their inquisitiveness and relevance to the context,
source, and span. The annotators judged all six
questions for each instance and identified at least
three questions (rank 1-3) as the best where the rest
of the questions were deemed to be of lower quality.
In some cases, the annotators even ranked top-five
questions (rank 1-5). Precision@1, 2, 3 ranks are
0.70, 0.88, and 0.95 respectively (i.e., in 70% cases
one annotator’s top-1 selection was found in the
other annotator’s top-3 selection).10

We then approximate the learning-to-rank prob-
lem (Joachims et al., 2007; Liu et al., 2009) with
a classification problem, i.e., by training a binary
classifier to determine whether one question is bet-
ter than another. For a single input, let Q, qrel , and
qnrel represent the total set of generated questions,
relevant questions, and irrelevant questions, respec-
tively. In our pairwise ranking setup, the training
instances are the combination of (a) a question qi
from qrel and a question qj from qnrel , and (b) two
questions qi and qj from qrel if and only if the two
questions are separated by ≥2 ranks. Algorithm 1
in the appendix details the procedure.

In addition to the two questions qi and qj , we
also use the source sentence as another input. Dur-
ing training, for each instance from (a) and (b)
above, we create two training examples of the form
source + “[SEP]” + qi + “[SEP]” + qj and source +
“[SEP]” + qj + “[SEP]” + qi . If the first question in
the sequence has a better rank we label the instance
as positive, otherwise negative. This way we have
2,867 examples; we use 2,581 for training and the
rest for validation. We finetune a RoBERTa-large
model as a binary classifier with default hyperpa-
rameters, attaining a validation accuracy of 76.2%.

For each test instance, similar to the training
setup, for each generated question pair qi , qj we
form a pair of examples. Given that we have six
question types, we create altogether thirty exam-
ples and classify them using the RoBERTa-large
classifier. We return the question that is preferred
the largest number of times.11 Given the exam-
ple in Table 1 this model selects the Explanation
question, i.e., “Why are they reviewing the plan?”
Below we refer to this method as TYPEr, where the
“r” represents the use of the ranker described above.

10Please refer to Table 9 in the Appendix section for exam-
ples.

11In case of ties, we use the classifier scores as the tie
breaker.
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4 Experiments

For all models, we use BART-large with the same
settings. For training, we use the Adam optimizer
(Kingma and Ba, 2015) with learning rate 3e-5,
weight decay 0.01, clip norm 0.1, dropout 0.1, 15
epochs in total, warm-up updates 500, use cross
entropy loss with label smoothing (α = 0.1), and
set the maximum number of tokens per batch to
1024. More details of the experimental setup are
given in the Appendix (Section A.1).

We evaluate the following five settings:

• BASE: uncontrolled generation using the context
and source sentence as input

• SPAN: uncontrolled generation using the context,
source sentence, and span as input

• TYPEs: type-controlled generation with type se-
lection via informative vs. inquisitive classifier

• TYPEr: type-controlled generation with type se-
lection via pairwise ranking classifier

• TYPEo: type-controlled generation with question
type of reference question

Since the TYPE methods use question types, in or-
der to compare those methods to others, we need
a way to automatically select a single generated
question. For TYPEo, we run our question type
classifier on a human-written reference question
and use the predicted type. Thus, TYPEo is an ora-
cle method (hence the mnemonic “o” in its name)
since it assumes access to a reference question. For
TYPEs and TYPEr we use the classifiers described
in Section 3.2. All TYPE methods use the context,
source sentence, and span as input, like SPAN.

4.1 Automatic Evaluation
Since inquisitive question generation is an open-
ended task, a high-quality generated question may
not overlap with the gold question. However, au-
tomatic metrics that measure the overlap between
generations and gold questions could still be useful
diagnostics for characterizing models.

Table 4 presents several automatic met-
rics: BLEU (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2014), ROUGE-L (Lin,
2004), BERTScore (Zhang et al., 2020), perplexity
under GPT2-XL (Radford et al., 2019), and the
entropy (averaged over questions) of the RoBERTa-
large question type classifier applied to the gener-
ated question.12 Although INQUISITIVE contains

12We reported the average scores of 5 runs with different
random seeds.

a test set of 1,885 instances (see Section 2), we
used only 1,585 instances as our test set because
we chose the remaining (random) 300 instances to
build our pairwise ranking classifier (Section 3.2).

For BLEU, METEOR, ROUGE-L, and
BERTScore, the oracle model TYPEo achieves the
highest scores, presumably because this model
generates questions that are similar to the reference
types. We notice, TYPEr, and SPAN have similar
scores, with TYPEr being slightly ahead for BLEU
and METEOR. In the case of TYPEs, the low
scores across metrics can be attributed to the fact
that the inquisitive vs. informative classifier prefers
question types that are unique to the INQUISITIVE

dataset, such as Definition and Instantiation
questions. These types are not appropriate for all
spans and in many cases are quite different from
the reference questions.

We also find that TYPEr has the lowest GPT2 per-
plexity, indicating that the ranker is favoring highly
probable questions according to a general-purpose
language model. A lower perplexity is likely in-
dicative of greater fluency, a point we will return
to in our human evaluations. Likewise, the low-
est entropy of TYPEr implies that its questions can
be classified with high confidence by our question
type classifier. In contrast, TYPEs shows higher
entropy, i.e., its questions are more difficult to clas-
sify. The entropy of the human-generated questions
is higher than nearly all of our models, indicating
that the human questions are also harder to classify
than model outputs.

The last three columns of Table 4 show the met-
rics designed by Ko et al. (2020), namely Train-
n, Article-n, and Span. These metrics measure
the extent of copying from the source materials
into the generated questions, i.e., % of n-grams in
the generated questions that appear in the training
questions (Train-n) and the context/source sentence
(Article-n). For brevity, we only report Train-2 and
Article-2. Span measures the % of words in the
annotated span present in the generated questions.

Among our models, TYPEr attains the lowest
value of the Train-2 metric, which is also closest
to the HUMAN value. Aside from TYPEs, the other
models have higher Article-2 than HUMAN, mean-
ing that the generated questions have a higher % of
n-grams that appear in the source sentence or the
context. TYPEr has the highest value for the Span
metric, indicating that the ranker prefers questions
that use words from the span. SPAN is second high-
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Model %BLEU %METEOR %ROUGE-L %FBERT GPT2 ppl Entropy Train-2 Article-2 Span

HUMAN - - - - 272 0.777 0.467 0.126 0.354

BASE 4.3 11.8 27.4 39.6 119 0.699 0.518 0.186 0.184
SPAN 8.5 17.5 36.1 47.6 148 0.726 0.505 0.182 0.452

TYPEs 5.7 13.6 30.9 41.6 219 0.823 0.530 0.090 0.346
TYPEr 8.6 18.3 35.3 47.4 89 0.612 0.473 0.195 0.542
TYPEo 9.7 19.5 39.1 50.1 154 0.751 0.488 0.149 0.475

Table 4: Automatic metrics on our test set for our models as well as the reference questions (HUMAN).

Model Syntax Semantics Relevancy Inquisitive

BASE 4.30 4.11 4.16 3.71
SPAN 4.30 4.17 4.32 3.75
TYPEs 4.02 3.50 3.51 3.14
TYPEr 4.59 4.37 4.27 3.92
TYPEo 4.33 4.10 4.09 3.78

HUMAN 4.36 4.41 4.33 3.98

Table 5: Results of human evaluation. The HUMAN
row shows judgments for reference questions from the
INQUISITIVE dataset.

est and BASE, which does not use the annotated
span, has the lowest value.

In the Appendix, we also report an automatic
evaluation of controllability, finding that certain
question types (Explanation, Definition, and Instan-
tiation) can be generated with high precision, while
others (Elaboration, Background, and Forward-
looking) are more easily confused.

4.2 Human Evaluation
In this section, we report the results from a human
evaluation we have conducted to assess a variety
of subjective aspects of the generated questions,
namely the syntax, semantics, relevancy, and the
degree of inquisitiveness.

We collected annotations using the crowdsourc-
ing platform Amazon Mechanical Turk (MTurk).
We randomly selected 500 test instances. For each,
we asked three annotators the following four ques-
tions to measure quality along four aspects:

1. Does the question seem syntactically correct?

2. Does the question make sense (semantically)?

3. Does the question seem relevant to the source?

4. Does the question show inquisitiveness to learn
more about the topic?

The annotators were given the following three op-
tions to choose from: yes, somewhat, and no. Each
human intelligence task (HIT) contained five in-
stances to judge and we paid $2 per HIT.

1 is it the aha?
2 how much has inflation?
3 nativity happens for buddha?
4 When he decide?
5 how much has inflation?

Table 6: Examples of gold questions from INQUISITIVE
dataset that are judged as ungrammatical by the Turkers.

Table 5 presents the average of the human judg-
ments, where the answers yes, somewhat, and no
are converted to scores 5, 3, and 1, respectively.
In all four aspects, we notice several scores are
over 4. For the inquisitiveness aspect, the TYPEr

model achieves the highest score among all models.
This score is higher than the oracle model (TYPEo)
showing the usefulness of the ranker to generate in-
quisitive questions. Likewise, TYPEr achieves the
highest average score for semantics, showing that
its questions are semantically meaningful almost all
the time. We also note that both TYPEr and SPAN

are competitive in relevancy. Finally, for syntax,
each model (aside from TYPEs) was rated close to
4.5. Although transformers usually produce fluent
output (Yates et al., 2021), TYPEr scored higher
than the human generated gold questions on syntax,
which warrants further investigation.

We manually analyzed all the questions from
TYPEr and HUMAN where the majority of anno-
tators rated 1 for syntax, and we found out there
are 14 and 33 such questions, respectively, explain-
ing why TYPEr scored higher. This also explains
why the perplexity of HUMAN is high in Table 4.
In Table 6 we provide a few examples from the
HUMAN set that were deemed grammatically incor-
rect. Table 14 in the Appendix contains examples
of grammatical errors from all models.

If we compute a simple average over all the as-
pects for each model, TYPEr scores the highest,
slightly better than HUMAN, and the SPAN model
is second. The SPAN model is trained on the IN-
QUISITIVE dataset so it has the freedom of generat-
ing inquisitive questions. However, what separates
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Source Model Question Syn. Sem. Rel. Inq.

. . . The State Security court
said it was ordering the
seizure of Kemal’s book,
. . . , because it provokes
“hatred and enmity” on the
basis of differences . . .

BASE What is the reason for the seizure? 4.3 3.7 4.3 4.3
SPAN How does the author’s book provoke hatred and enmity? 5.0 5.0 5.0 5.0

TYPEs what is hatred? 4.3 4.3 2.3 1.7
TYPEr How can a book provoke hatred and enmity? 5.0 5.0 5.0 3.0
TYPEo How did it provocate the book and what did the author write

in the book?
5.0 2.3 3.0 2.3

HUMAN How does the book provoke “hatred and enmity”? 4.3 5.0 4.3 3.7

Olin Corp. said
third-quarter net income
rose 26 % on the strength of
its chemical business.

BASE Why were they on the strength of their chemical business? 1.0 1.0 3.0 3.0
SPAN what happened to the second quarter? 3.7 3.7 4.3 3.0

TYPEs What was the quarter? 4.3 4.3 4.3 4.3
TYPEr Why was third-quarter net income up 26 %? 5.0 5.0 4.3 4.3
TYPEo What year did the third-quarter consist of? 5.0 5.0 4.3 5.0

HUMAN What happened to the net income in the first and second
quarter?

3.7 5.0 5.0 5.0

. . . most significant change
in surgical training since
the early 1900s, they are
working with local medical
device companies to
develop new generations of
software . . .

BASE How are medical device companies working with the Uni-
versity of Minnesota??

5.0 5.0 5.0 4.3

SPAN Which local medical device companies? 2.3 3.0 4.3 3.0
TYPEs who are the local medical device companies? 4.3 3.7 2.3 2.3
TYPEr Why are they working with local medical device companies? 5.0 5.0 5.0 5.0
TYPEo Who are the local medical device companies? 5.0 3.7 4.3 5.0

HUMAN Which medical device companies are being worked with? 2.3 3.7 5.0 5.0

Table 7: Examples of generated questions from different models. Syn., Sem., Rel., Inq. represent Syntax, Semantics,
Relevancy and Inquisitiveness, respectively. For brevity the context is not shown. Spans are bold.

SPAN from TYPEr is, for the latter, we have the
ability to control the generation with specific ques-
tion types and also select the best question for the
same source sentence. We also notice that the gen-
erations from TYPEs scored lowest across all four
aspects. The TYPEs model often selects Defini-
tion/Instantiation question types that are unsuitable
for the source sentence and the span, which is why
the annotations score low for this type of question.

Table 7 shows several examples from our models
along with average human ratings for all four as-
pects. We highlight three salient observations here.
First, in general, TYPEr has high scores across all
aspects for all examples. Second, the Turkers have
treated the aspects independently as we have re-
quested. Even if they rated the HUMAN annota-
tions 2.3 and 3.7 for syntax and semantics for the
last example, they have given high ratings for the
other two aspects. Third, interestingly, “what is
hatred?”, a very generic question, scored high on
syntax and semantics (TYPEs model for the first
example) but low on the other two aspects due to
its lack of relevancy and inquisitiveness.

Finally, we note that for the first example in
Table 7, the SPAN and HUMAN questions are ex-
tremely similar, but their ratings differ for three out
of the four attributes. This example illustrates the
variability of human judgments for this task, which
suggests that more annotations may be needed to

increase confidence in our results.

5 Related Work

In recent years, automatic question generation has
attracted many NLP researchers, perhaps due to
its versatility, e.g., question generation for con-
versational AI (Bordes et al., 2017; Gao et al.,
2019), synthetic examples for QA tasks (Alberti
et al., 2019; Olney et al., 2012; Sultan et al., 2020),
clarifications on information-seeking conversation
(Aliannejadi et al., 2019), and knowledge evalua-
tion and educational application areas (Mitkov and
Ha, 2003; Brown et al., 2005; Chen et al., 2009;
Stasaski et al., 2021), which is specifically related
to our use cases.

In earlier work, methods such as transform-
ing declarative sentences into questions (Heil-
man and Smith, 2010) or using semantic roles
(Flor and Riordan, 2018) were popular. However,
recently sequence-to-sequence architectures (Du
et al., 2017; FitzGerald et al., 2018) and pretrained
models (Cao and Wang, 2021) are more often used.
Similar to Ko et al. (2020), our work is related to
answer-agnostic question generation. We focus on
exploiting question type information for generat-
ing deeper questions. Although related work in
the answer-unaware setting exists (Nakanishi et al.,
2019), they mostly focus on identifying question-
worthy text for generation (Scialom and Staiano,
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2020; Wang et al., 2019) from factual (Rajpurkar
et al., 2016), conversational (Choi et al., 2018), or
social media platforms (Fan et al., 2019), different
from the WSJ/AP news dataset used in our work.

We are building on past work on controllable
generation, generating text that reflects specific
characteristics of control variables. In some earlier
work, embedding vectors of the control variables
were fed into the model for controlling the output
(Kikuchi et al., 2016; Fan et al., 2018; Tu et al.,
2019). However, our approach resembles recent ef-
forts where the control variable is concatenated to
the main input using some separator (Keskar et al.,
2019; Schiller et al., 2021). Methods such as PPLM
are useful for similar guided controllable genera-
tions (Dathathri et al., 2020); however, PPLM re-
quires gradient descent at inference time, while our
question type selection approach is highly scalable
and efficient.

We consider controllable question generation
based on specific question types, noting that dif-
ferent question templates or ontologies have been
studied for question generation. For example, a
Wikipedia-driven ontology is used for generation
(Labutov et al., 2015), or contextualized questions
are generated for any semantic role (Pyatkin et al.,
2021). Likewise, Pascual et al. (2021) proposed
guided generation focusing on including specific
keywords (e.g., “wh” words for questions), while
we showed in Table 3 that “wh” words do not have
a 1-to-1 relationship with question types.

Our work is closer to that of Cao and Wang
(2021), who proposed a question type ontology
(based on cognitive science) inspired by manually
constructed templates (Olney et al., 2012). On
the contrary, we chose a dataset that focuses on
inquisitive questions only and chose our question
types accordingly, while they used a dataset with
a broader set of questions. In addition, instead of
predicting the text span (“focus” in (Cao and Wang,
2021)) we directly use the annotated span in our
research. Finally, we focused on post-processing
the generations to identify the best question (or
rank them) related to the source content.

6 Conclusions and Future Work

We proposed a type-controlled framework that gen-
erates inquisitive questions given a source sentence,
annotated span, and a longer context. We annotated
a set of question types related to curiosity driven
questions and demonstrated that our framework can

generate a variety of questions from a single input.
We also developed an effective method (TYPEr)
to select a single question using a pairwise ranker
trained on a small set of ranking annotations. Our
generations, especially from TYPEr, show high nov-
elty. The human evaluation demonstrates that ques-
tions generated from TYPEr rival human-written
questions on all four aspects of quality.

Future work could include annotating a larger
partition of the INQUISITIVE dataset while explor-
ing finer-grained analysis of question types (e.g.,
sub-categories of elaboration questions). We are
also interested in employing a framework to gener-
ate questions and identify the span jointly.
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A Appendix

A.1 Experimental Setup

For BASE, SPAN, TYPEs, TYPEr, and TYPEo, we
use BART-large with the same settings. We train
15 epochs in total, using cross entropy loss (label
smoothing with α = 0.1), and set the maximum
number of tokens per batch as 1024. There’s a
normalization layer after the embedding layer, and
the embedding matrices for encoder input, decoder
input, and decoder output are tied. For training, we
use the Adam optimizer (Kingma and Ba, 2015)
with learning rate 3e-5, weight decay 0.01, clip
norm 0.1, dropout 0.1, and warm-up updates 500.

For the question type classifier, we finetune
RoBERTa-large for 15 epochs with batch size 8.
We use Adam with learning rate 1e-5, weight de-
cay 0.1, dropout 0.1, and warm-up updates 157.
We use the same settings for the inquisitive vs. in-
formative classifier and pairwise ranking classifier
except some hyperparameters. For the inquisitive
vs. informative classifier, we train for 10 epochs
with batch size 32 and warm-up updates set to 300.
For the pairwise ranking classifier, we train for 20
epochs with warm-up updates set to 387. Under
this setting, we compute all warm-up updates with
6%NtrNepo/Nbsz , where Ntr is the training set
size, Nepo is the number of training epochs, and
Nbsz is the batch size.

A.2 Leading Bigrams for Question Types

Table 8 shows the most common leading bigrams
for each question type in our annotated data. We ob-
serve that for Background questions that start with
“what”, the bigrams are more scattered with mul-
tiple combinations, and “how is/are/was/were/do”
etc. appear more often in Elaboration than in Back-
ground questions.

A.3 Data Selection for Pairwise Ranking
Classifier

Annotators may make the same or completely dif-
ferent choices, and two examples of annotator’s
ranking choices are shown in Table 9.

Algorithm 1 shows how training data is produced
for the pairwise ranking classifier. The training
instances are the combination of (a) a question qi
from qrel and a question qj from qnrel and (line 2-6
in Algorithm 1) (b) two questions qi and qj from
qrel if and only if the two questions are separated
by ≥2 ranks (line 8-16 in Algorithm 1).

Algorithm 1 Data selection for pairwise ranker
Input: Q = {qrel , qnrel}, where Q is the total
set of generated questions for an instance, qrel
is the set of relevant questions where qrel =
{(r1, q1), · · · , (rn, qn)}, qnrel is the set of non-
relevant questions, and rj is the rank for question
qj .

▷ Find relevant vs. non-relevant
1: for qj ∈ qrel do
2: for qk ∈ qnrel do
3: yield (qj , qk)
4: end for
5: end for
6:

▷ Find questions with rank difference ≥ 2
7: for j = 1, · · · , n do
8: k ← j + 2
9: while k ≤ n do

10: if rk − rj ≥ 2 then
11: yield (qj , qk)
12: end if
13: k ← k + 1
14: end while
15: end for

A.4 Controllability Evaluation

We generate test set questions with six question
types except “Other”, and then classify the gener-
ations with our question type classifier. The test
accuracy is shown in Table 10, with confusion ma-
trix shown in Figure 1. As the largest number
in each row/column is along the diagonal (aside
from forward-looking questions, which the classi-
fier never predicts in this set), the model and clas-
sifier are in alignment a significant fraction of the
time. We also observe that Explanation is doing
well in both precision and recall, Elaboration and
Background are tricky to discriminate from each
other, and Definition and Instantiation are being
classified with high precision though not with very
high recall. When the model is asked to generate a
forward-looking question, the classifier labels it as
Elaboration or Background in most cases. This is
likely because there are very few forward-looking
questions in the training data.

A.5 Additional Results

All results in Table 11 and Table 12 are averaged
over 5 different runs with standard deviations.

Table 11 reports BLEU scores for 1/2/3/4-grams.
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Explanation Elaboration Background Definition Instantiation Forward-looking Other

why is(87) what is(39) who is(20) what is(53) what are(24) how will(5) why is(4)
why did(75) what are(31) how long(19) what are(17) who are(16) what will(2) does this(3)
why was(51) how did(27) what was(17) what does(15) who is(8) when will(2) is it(2)
why are(50) what does(17) how did(16) what do(6) what other(5) will the(2) of which(2)
why were(24) how is(12) what is(14) how is(2) what kind(5) what would(2) yes what(1)
why would(21) how do(12) is that(10) definition of(2) what types(4) what is(2) what year(1)
why do(19) how would(9) how much(10) is that(1) which other(4) what are(1) does seaweed(1)
why does(18) how are(9) what are(9) what ’s(1) what were(3) how is(1) does taxing(1)
why has(9) how does(9) is this(9) does n’t(1) what sort(3) were they(1) what was(1)
what caused(7) how many(8) how many(8) does note(1) which companies(3) is the(1) this sounds(1)
what is(7) what was(7) is it(7) does opportunities(1) which year(3) did they(1) they must(1)
why will(7) what kind(7) are they(7) i would(1) what is(3) how does(1) there is(1)
is there(4) how was(7) where is(7) does this(1) which monday(2) was their(1) who is(1)
what makes(4) what would(6) how was(6) what was(1) what type(2) did it(1) what brass(1)
why have(3) how much(6) what did(6) it means(1) which officials(2) so that(1) should they(1)
what was(3) how will(5) how does(5) who were(1) in which(2) how would(1) which year(1)
why should(3) how long(5) where did(5) what comprises(1) who were(2) what happened(1) how many(1)
what were(2) what makes(5) what do(5) thrift industry(1) which countries(2) would there(1) is this(1)
why only(2) how were(4) why did(5) how do(1) which scientists(2) would it(1) is he(1)
why could(2) in what(4) when did(5) who are(1) which states(2) will it(1) which dollar(1)

Table 8: Most common leading bigrams in annotated questions (lowercased) for each type (counts shown in
parentheses).

[context][source
with span in
bold]

[NO_CONTEXT][MILWAUKEE-The electric bar-
rier on the Chicago Sanitary and Ship Canal that
is considered the last line of defense to stop an Asian
carp invasion of Lake Michigan has a problem : Fish
can swim through it.]

[LOS ANGELES-Little-known fact : When it comes
to extracting oxygen from the air we breathe, we hu-
mans are just OK. Birds are more efficient breathers
than we are. So are alligators and, according to a
new study, monitor lizards, and probably most di-
nosaurs were as well.][Humans are what are called
tidal breathers.]

Definition What is Chicago Sanitary and Ship Canal? what is a tidal breather?
Background where is that? Are they considered \"tidal breathers\"?
Instantiation Which section of the canal? Who are these people?
Explanation Why is this a problem? Why are humans tidal breathers?
Forward where is this? How did they come up with this term?
Elaboration What is the name of the canal? Are they not?

Annotator A 1. Forward 2. Explanation 3. Background 1. Definition 2. Explanation 3. Forward
Annotator B 1. Definition 2. Instantiation 3. Elaboration 1. Definition 2. Explanation 3. Forward

Table 9: Examples of different ranking choices of expert annotators.

Question Type % Acc

Explanation 97.82
Elaboration 65.84
Background 48.91
Definition 54.85
Instantiation 50.23
Forward-looking 0.

Table 10: Test accuracy for question type prediction for
model generation of different question types.

While BASE always scores lowest and TYPEo is
always highest, SPAN is second-highest for BLEU-
1, BLUE-2 and BLEU-313, and beat by TYPEr for
BLEU-4.

Table 12 reports all the metric scores that are
specifically implemented by Ko et al. (2020). We

13The difference between SPAN and TYPEr is too small in
BLEU-3 to be shown in the table.

see that TYPEr has lowest scores for Train-n. For
Article-n, the model order is changed when n is
varied, e.g., BASE is higher than TYPEr on Article-1
but lower on Article-2 and Article-3. Nevertheless,
TYPEs is always lower than HUMAN on Article-n,
and other models are always higher than scores of
HUMAN.

A.6 Additional Examples
Table 13 lists more annotated examples for each
question type, and Table 14 includes examples
(gold and generated questions by our models) that
are judged ungrammatical by annotators.
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Model %BLEU-1 %BLEU-2 %BLEU-3 %BLEU-4 %METEOR %ROUGE-L %FBERT GPT2 ppl Entropy

BASE 26.9±0.2 12.0±0.3 6.8±0.2 4.3±0.2 11.8±0.3 27.4±0.3 39.6±0.5 119±25 0.699±0.015

SPAN 35.1±0.9 19.4±0.5 12.4±0.4 8.5±0.4 17.5±0.7 36.1±0.5 47.6±0.4 148±10 0.726±0.062

TYPEs 28.9±1.1 14.6±0.7 8.7±0.6 5.7±0.5 13.6±0.5 30.9±0.3 41.6±0.5 219±18 0.823±0.024

TYPEr 33.4±1.4 18.9±1.0 12.4±0.8 8.6±0.6 18.3±0.4 35.3±0.7 47.4±0.8 89±7 0.612±0.025

TYPEo 37.7±1.0 21.6±0.8 14.0±0.8 9.7±0.8 19.5±0.4 39.1±0.4 50.1±0.5 154±18 0.751±0.008

Table 11: Automatic metrics on our test set for our models.

Train-2 Train-3 Train-4 Article-1 Article-2 Article-3 Span

Human 0.467 0.203 0.059 0.386 0.126 0.064 0.354

BASE 0.518±0.018 0.267±0.019 0.097±0.009 0.469±0.020 0.186±0.020 0.104±0.018 0.184±0.007

SPAN 0.505±0.015 0.246±0.020 0.079±0.012 0.455±0.025 0.182±0.022 0.101±0.019 0.452±0.029

TYPEs 0.530±0.006 0.288±0.012 0.102±0.012 0.315±0.015 0.090±0.010 0.041±0.006 0.346±0.023

TYPEr 0.473±0.013 0.218±0.015 0.068±0.010 0.445±0.018 0.195±0.016 0.112±0.013 0.542±0.030

TYPEo 0.488±0.011 0.233±0.012 0.073±0.004 0.401±0.020 0.149±0.016 0.078±0.012 0.475±0.024

Table 12: Metric scores from Ko et al. (2020) that measure the extent of copying content from the training partition,
articles, and spans in the source sentences to the generated questions. All scores are reported on our test set.

Figure 1: Heatmap showing confusion matrix for type
controllability evaluation. The “Actual” type is the de-
sired type passed as control code to the model, and the
“Predicted” type is the output of running the question
type classifier on the generated question. C: Explanation
(causal), E: Elaboration, B: Background, D: Definition,
I: Instantiation, F: Forward-looking.
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Question Type
(# samples)

Example

[context] [source with span in bold] Question

Explanation (443) [. . . Osip Nikiforov is recording Chopin’s Etude Op. 10, No. 1,
without capturing any of its sound.] [Instead, a sensor-equipped
piano is recording the “data” of his performance . . . .]

Why is there a sensor-equipped
piano recording data of his per-
formance?

Elaboration (364) [NO_CONTEXT][Miami Shores, Fla., tech consultant Rudo
Boothe, age 33, attributes his professional success . . . .]

For what company?

[NO_CONTEXT][The Agriculture Department says Americans
seem to be eating a bit more each year but are choosier about
what’s on the menu.]

what are they choosing?

[One of Ronald Reagan’s attributes as President was that he rarely
gave his blessing to the claptrap . . . .] [In fact, he liberated the U.S.
from one of the world’s most corrupt organizations – UNESCO.]

How is UNESCO corrupt?

Background (407) [NO_CONTEXT][. . . a young man and his mentor practice bull-
fighting techniques under the light of an atrium.]

Are they practicing at night?

Definition (114) [NO_CONTEXT][LOS ANGELES - The booming illegal interna-
tional wildlife trade forced conservationists to do the unthinkable
Tuesday . . . .]

Who were the conservationists?

[People start their own businesses for many reasons. But a chance
to fill out sales - tax records is rarely one of them.] [Red tape is the
bugaboo of small business.]

what is a bugaboo?

Instantiation (159) [The Bush administration’s nomination of Clarence Thomas to a
seat on the federal appeals court here received a blow this week
. . . ] [People familiar with the Senate Judiciary Committee, . . . , said
some liberal members of the panel are likely to question the ABA
rating in hearings on the matter.]

Which liberal members are
likely to question the ABA rat-
ings?

Forward-looking (31) [Bethlehem Steel Corp. has agreed in principle to form a joint
venture with the world’s second-largest steelmaker . . . .] [The entire
division employs about 850 workers.]

How will they need to increase
or decrease staff?

Other (32) [. . . there’s one easy way to make a July beach vacation even better
than expected: Add seaweed . . . ] [. . . his back covered in what
looked like strands of chartreuse cotton candy, the 7-year-old
Beijing boy was having the time of his life Sunday . . . ]

Does seaweed look like cotton
candy?

Table 13: Annotated question type distributions and salient examples of each question type. Context and source
sentences are presented where the spans in source sentences are bold.
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HUMAN

why would it do that?
is it the aha?
in which year?
WHAT COUTRIES RECIEVED LOANS?
What specifically are the unhappy about with the direction?

BASE

What goal does everyone have?
What happened that they didn’t agree?
What kind of violence?
what are these signs?
What was Andrew Coltart doing at 69?

SPAN

Why weren’t the details unavailable?
Why is there a hard time posting an upset over Germany?
What is their goal in common?
Which lawmakers and others arguing?
How did they inflating the stock price?

TYPEs

which meetings? What meetings?
What are the details about this other than that? What details?
What goal? What goal?
what were they?
what prefecture?

TYPEr

Who are the Serbs from Croatia and Bosnian Muslims opposed to the Bosnian government?
Why would NATO take in Poland, Hungary and others asMembers?
How does Dominican authorities know the whereabouts of the banker and two Dominicans?
How does a report about AIDS come to a conclusion?
Why is this symbol of America?

TYPEo

How many peacekeepers?
How was anreement to conceal the agreement made?
Did these talks involve a lot of talks?
How long has the explosion been taking place?
What are terms and syndicate manager?

Table 14: Examples of gold questions from INQUISITIVE and questions generated by models that are judged as
ungrammatical by annotators.
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Abstract
Lexical semantics and cognitive science point
to affordances (i.e. the actions that objects
support) as critical for understanding and rep-
resenting nouns and verbs. However, study
of these semantic features has not yet been
integrated with the “foundation” models that
currently dominate language representation re-
search. We hypothesize that predictive model-
ing of object state over time will result in rep-
resentations that encode object affordance in-
formation “for free”. We train a neural network
to predict objects’ trajectories in a simulated
interaction and show that our network’s latent
representations differentiate between both ob-
served and unobserved affordances. We find
that models trained using 3D simulations from
our SPATIAL dataset outperform conventional
2D computer vision models trained on a similar
task, and, on initial inspection, that differences
between concepts correspond to expected fea-
tures (e.g., roll entails rotation). Our results
suggest a way in which modern deep learning
approaches to grounded language learning can
be integrated with traditional formal semantic
notions of lexical representations.

1 Introduction

Much of natural language semantics concerns
events and their participants–i.e., verbs and the
nouns with which they compose. Evidence from
cognitive science (Borghi and Riggio, 2009; Maz-
zuca et al., 2021) and neuroscience (Sakreida et al.,
2013) suggests that grounding such words in per-
ception is an essential part of linguistic process-
ing, in particular suggesting that humans repre-
sent nouns in terms of their affordances (Gib-
son, 1977), i.e., the interactions which they sup-
port. Affordance-based representations have been
argued to form the basis of formal accounts of
compositional syntax and semantics (Steedman,
2002). As such, prior work in formal semantics has
sought to build grounded lexical semantic repre-
sentations in terms of objects and their interactions

Play with 

these objects!

Seen Unseen

Now play 

with this one!

Can it roll?


Can it contain 


other objects?

Figure 1: We investigate whether observing interactions
with an object in a 3D environment encodes information
about their affordances and whether this generalizes in
the zero shot setting to unseen object types

in 3D space. For example, Pustejovsky and Kr-
ishnaswamy (2014) and Siskind (2001) represent
verbs like roll as a set of entailed positional and
rotational changes specified in formal logic, and
Pustejovsky and Krishnaswamy (2018) argue that
nouns imply (latent) events–e.g., that cups gener-
ally hold things–which should be encoded as TELIC

values within the noun’s formal structure.
Such work provides a compelling story of

grounded semantics, but has not yet been connected
to the types of large scale neural network models
that currently dominate NLP. Thus, in this work, we
ask whether such semantic representations emerge
naturally as a consequence of self-supervised pre-
dictive modeling. Our motivation stems from the
success of predictive language modeling at encod-
ing syntactic structure. That is, if neural language
models trained to predict text sequences learn to
encode desirable grammatical structures (Kim and
Smolensky, 2021; Tenney et al., 2018), perhaps
similar models trained to predict event sequences
will learn to encode desirable semantic structures.
To test this intuition, we investigate whether a trans-
former (Vaswani et al., 2017) trained to predict the
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Figure 2: Objects uses for train (light gray) and test (dark gray). Colored dots indicate which affordances each
object has.

future state of an object given perceptual infor-
mation about its appearance and interactions will
latently encode affordance information of the type
thought to be central to lexical semantic represen-
tations. In sum:

• We present a first proof-of-concept neural
model that learns to encode the concept of
affordance without any explicit supervision.

• We demonstrate empirically that 3D spa-
tial representations (simulations) substantially
outperform 2D pixel representations in learn-
ing the desired semantic features.

• We release the SPATIAL dataset of 9.5K sim-
ulated object interactions and accompanying
videos, and an additional 200K simulations
without videos to support further research in
this area.1

Overall, our findings suggest a process by which
grounded lexical representations–of the type dis-
cussed by Pustejovsky and Krishnaswamy (2014)
and Siskind (2001)–could potentially arise organi-
cally. That is, grounded interactions and observa-
tions, without explicit language supervision, can
give rise to the types of conceptual representations
to which nouns and verbs are assumed to ground.
We interpret this as corroborative of traditional
feature-based lexical semantic analyses and as a
promising mechanism of which modern “founda-
tion” model (Bommasani et al., 2021) approaches
to language and concept learning can take advan-
tage.

1https://github.com/jmerullo/
affordances

2 Experimental Setup

2.1 Objects and Affordances in SPATIAL

To collect a set of affordances to use in our study,
we begin with lists of affordances and associ-
ated objects that have been compiled by previ-
ous work on affordance learning: Aroca-Ouellette
et al. (2021) provides on a small list of concrete
actions for evaluating physical reasoning in large
language models; Myers et al. (2015) provides a
small list for training computer vision models to
recognize which parts of objects afford certain ac-
tions; Chao et al. (2015) use crowdworkers2 to
judge noun-verb pairs and includes over 900 verbs
that are both abstract and concrete in nature. We
then filter this list down to only a subset of con-
crete actions that include objects which exist in
the Unity asset store, since we use Unity simu-
lated environments to build our training and evalu-
ation data (§2.4). This results in a list of six affor-
dances (roll, slide, stack, contain,
wrap-grasp, bounce) which are used to as-
sign binary labels to each of 39 objects from 11
object categories (Figure 2; see also Appendix A).

2.2 Representation Learning

We hypothesize that predictive modeling of object
state will result in implicit representations of af-
fordance and event concepts, similarly to how pre-
dictive language modeling results in implicit rep-
resentations of syntactic and semantic types. Thus,
for representation learning, we use a sequence-
modeling task defined in the visual and/or spatial
world. Specifically, given a sequence of frames

2In the case of Chao et al. (2015), we use a score ≥ 4 as
positive label, as they do in their paper.
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depicting an object’s trajectory, our models’ objec-
tive is to predict the next several timesteps of the
object’s trajectory as closely as possible. We con-
sider several variants of this objective, primarily
differing in how the represent they frames (e.g., as
2D visual vs. 3D spatial features). These models
are described in detail in Section 3.

2.3 Evaluation Task

We are interested in evaluating which variants of
the above representation learning objective result
in readily-accessible representations of affordance
and event concepts. To do this, we train probing
classifiers (Belinkov and Glass, 2019) on top of
the latent representations that result from the rep-
resentation learning phase. That is, we freeze the
weights of our pretrained models and feed the inter-
mediate representation for a given input from the
encoder into a single linear-layer trained to classify
whether the observed object has the affordance. We
train a separate classifier probe for each affordance.

We construct train and test splits by holding out
a fraction of the objects from each category. In
some cases, the held-out objects are very similar
to what has been seen in training (e.g., slightly
different dimensions of boxes) and in other cases,
the objects are visually very distinct (e.g., a wine
bottle vs. a gas tank as instances of objects which
afford both roll and contain). Figure 2 shows
our objects, affordances, and train-test splits.

2.4 SPATIAL Environment and Data
Collection

The SPATIAL dataset consists of simulations of
interactions with a variety of 3D objects in the
Unity game engine3. Our data is collected in a flat
empty room using the Unity physics engine on the
above-described 39 objects. For each sequence,
an object is instantiated at rest on the ground. A
random impulse force–either a ‘push’ flat along the
ground, or a ‘throw’ into the air–is exerted on the
object. We only exert a single impulse on an object
per sequence. The sequence ends when the object
stops moving or after 4 seconds elapse.

We record the coordinates of the object in 3D
space at a rate of 60 frames per second. Specif-
ically, each sequence is defined by the coordi-
nates describing the object’s 3D position in space
P = {p1, ..., pt} for t timesteps. Since we care
about capturing the manner in which the object

3https://unity.com/

travels and rotates through space, pi contains 9 dis-
tinct 3D points around the object: 8 corners around
an imaginary bounding box and the center point
of that bounding box (see Appendix A for a visual
aid). Simultaneously we collect videos of each
interaction from a camera looking down at a 60
degree angle towards the object that we will use to
train our 2D vision based model. Each image in
the videos is collected at a resolution of 384x216
pixels. We filter videos where the object leaves
the frame. Overall, this process results in 2,376
training sequences and 9,283 evaluation sequences.
Due to computational constraints, we decided to
focus on collecting as many evaluation examples
as possible to make comparison to spatial mod-
els easier and more accurate. It may be the case
that adding more data creates stronger representa-
tions, but even with this smaller training set, we see
high test time performance on the visual dynamics
task. All our data are publicly available at https:
//github.com/jmerullo/affordances.

2.5 Assumptions and Limitations

This work serves as initial investigation of our hy-
pothesis about representation learning for affor-
dances (§2.2). We use simple simulations which
involve only a single object. Thus, we expect
that our setup makes some affordances (roll,
slide, bounce) more readily available than
others (contain, stack, w-grasp). For
example, our models likely will observe objects
rolling during pretraining, but will never observe
objects being stacked on top of one another. How-
ever, during evaluation, we will assess how well the
model’s internal representations encode both types
of affordances. This is intended. Our hypothesis
is that, to a large extent, these affordances are a
function of the relationship between the shape4 of
the objects and the physics of how those objects
behave in our simulation. For example, we expect
that long, thin grasp-able objects will display dif-
ferent trajectories than will wide, round objects

4In fact, Gibson (1977)’s original theory of affordances
defined them to be purely-perceptual, without even depending
on internal processing and representation. We do not endorse
this view in general; we are enthusiastic about future work
which involves richer internal processing (e.g., interaction and
planning) during pretraining. See Şahin et al. (2007) for a
review of the various definitions and interpretations of the
term that have been used in different fields and Mota (2021)
for an argument that affordances are not solely perceptual.
That said, this basic-perception approach is helpful starting
point for understanding the relationship between pretraining
and affordance representations.
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Figure 3: Model architectures. The model receives either images, 3D coordinates or both to make predictions. For
the 3D models, the transformer encoder encodes the input sequence (and multiview images, if applicable) and the
decoder predicts the rest of the sequence. For the 2D model (RPIN), a convolutional network extracts object-centric
features (hi) and interaction reasoning is performed over each to predict the next time steps.

that cannot be grasped. Thus, we expect that a
model trained to predict object trajectories can en-
code differences that map onto affordances such
as grasp or contain, even without observing
those actions per se. Given initial promising results
(§4), we are excited about future work which ex-
tends the simulation to include richer multi-object
and agent-object interactions, which likely would
enable learning of more complex semantic con-
cepts.

3 Models

We consider two primary variants of the represen-
tation learning task described in Section 2.2 which
differ in how they represent the world state–i.e.,
using 2D visual data (§3.1) vs. using 3D visual-
spatial data (§3.2). To provide additional insights
into performance differences, we also consider two
ablations in the 3D model (§3.2.2), one that re-
moves visual information and one that further re-
moves pretraining altogether. These models are
summarized in Figure 3.

3.1 2D Visual Model

We first consider a standard computer-vision (CV)
approach for our defined representation learning
objective. For this, we use a Region Proposal In-
teraction Network (RPIN) proposed in Qi et al.
(2021). We choose to use RPIN because it was
designed to solve a task very similar to ours–i.e.,

object tracking over time–and has access to object
representations via bounding boxes provided as
supervision during training. Using a model with ac-
cess to explicit object representations ensures that
we are not unfairly handicapping the CV approach
(by requiring it to learn the concept of objects from
scratch) but rather are analyzing the relative ben-
efits of a 2D CV approach vs. a 3D spatial data
approach for latently encoding semantic event and
affordance concepts.

We train the model with similar settings to those
Qi et al. (2021) used to train on the Simulated Bil-
liards dataset, but with some small differences. For
example, we subsample our frames to be coarser-
grained to encourage learning of longer-range de-
pendencies. Exact details and explanations of other
parameter differences can be found in Appendix B.

To probe object representations for affordance
properties, we take the average of the hidden
representations–i.e., the model’s representations
just prior to predicting explicit bounding box coor-
dinates on the screen.

3.2 3D Visual-spatial Model

3.2.1 Full Model

Recent work has argued that models based di-
rectly on 3D game engine data are more cognitively
plausible for modeling verb semantics (Ebert and
Pavlick, 2020). In this spirit, we consider a model
that learns to encode the objects visual appearance
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jointly with predicting the objects’ behavior in 3D
space. Specifically, our model is trained with both
an object loss and a trajectory loss as follows.

To model the 3D trajectory, the model encodes
a sequence P containing positions {p1, p2, ..., pt}.
As described in Section 2, each position pi con-
tains 9 distinct points corresponding to the object
center and the 8 corners of the rectangular bound-
ing box encapsulating the object. We use a single
linear layer to project the 27D (9 3D points) input
coordinate vectors to the embedding dimension of
a transformer (Vaswani et al., 2017). The trans-
former is then fed the first t − k timesteps where
k ≥ 1. We treat k as a hyperparameter, and find
that a value of k = 8 or k = 16 tends to work the
best. Our model is trained to minimize the Mean
Squared Error (MSE) computed against the true
future location of the object, summed over all of
the predicted points.

To model the object appearance, we give the
model access to a static view of the object at rest.
We use ResNet-34 (He et al., 2016) to encode the
object’s multiview–i.e., images of the object’s six
faces, one from each side of the object–denoted as
I , and pass these as additional inputs to the model,
separated by a SEP token. The transformer en-
coder encodes the sequence P and I together, and
the transformer decoder predicts the object’s next
several positions in space. To encourage the model
to connect the sequence and image representations,
we randomly (50% of the time) replace the object
in I with an object with different affordances and
add an auxiliary loss in which the model must clas-
sify whether the object was perturbed. We add a
linear binary classification layer on top of a CLS
token to perform this task, and add the cross en-
tropy loss of this objective to our MSE loss for the
trajectory objective.

The hidden representation we use for probing
experiments is the average pooled transformer en-
coder output of the multiview tokens only.

3.2.2 Ablation Models
To better understand which aspects of the above
model matter most, we also train and evaluate two
ablated variants.

Without Visual Information (3D Blind). Our
3D Blind model is like the above, but contains no
multiview tokens or associated loss. That is, the
model is trained only on the 3D positional data,
using an MSE loss to predict the future location of

the object. For probing, we average the transformer
encoder outputs across all timesteps and feed the
single averaged emebedding into the probing clas-
sifier. This model provides insight into how well
the physical behavior alone, with no visual inputs,
encodes key features for determining affordances,
such as shape and material.

Without Pretraining (No-Training). Gibson be-
lieved that understanding affordances only required
raw perception, without need for mental processing.
Given how saliently actions like rolling and sliding
are encoded in 3D coordinates (Figure 6), it is rea-
sonable to ask how much benefit our pretraining
objective provides for encoding affordance infor-
mation. To test this, we evaluate a model that is
identical to the 3D Blind model, but contains only
randomly initialized encoder weights (i.e., which
are never set via pretraining). If the pretraining task
encodes affordance structure the way we hypoth-
esize, the randomly initialized model should per-
form much worse than the trained 3D Blind variant.
We refer to this model simply as the No-Training
model.

4 Results

Figure 4 shows our primary results. Overall, the
3D Visual-spatial model substantially outperforms
the 2D Vision-only model across all affordances,
often by a large margin (4–11 percentage points).
We also see, perhaps unexpectedly, that the 3D pre-
trained representations encode information about
affordances even when the associated actions are
not explicitly observed. For example, the model dif-
ferentiates objects that can stack and objects that
can contain other objects from those that cannot,
even though the model has not directly observed
objects being stacked or serving as containers dur-
ing training. This result points to the richness of
the physical information that is required to perform
the pretraining task of next-state prediction.5

Looking more closely at the ablated variants
of the 3D model, we see that most of the gains
are from the 3D input representation itself. That

5We note that, unintuitively, stack and contain probes
generally outperform slide probes. One reason may be
because our data are labeled by object rather than by individual
interaction. For example, although an object typically slides,
it’s not hard to imagine scenarios where a cardboard box might
roll over. This is not the case for affordances like stack and
contain. In the rolling cardboard box example, the sharp
edges of the box and the distinct way it rolls is still indicative
of the object being stackable.
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Figure 4: Results for predicting affordances of objects given frozen hidden states of 2D and 3D sequence prediction
models. Test sets are balance so that random guess achieves 50%. 3D models (even ablated variants) outperform the
2D computer vision models across the board.

(a) 3D Blind model (b) 3D Visual-spatial model

(c) 3D No-Training (d) 2D Computer-Vision
model (RPIN).

Figure 5: t-SNE projections of model representations of
sliding (red) vs. rolling (blue) objects.

is, the 3D No-Training model–which does not in-
clude visual information and does not even include
pretraining–outperforms the CV baseline in all
cases, and often substantially. Pretraining on top of
the 3D inputs often (but not always) yields perfor-
mance gains. Pretraining with visual information
does not provide a clear benefit over pretraining on
the spatial data alone–i.e., visual information leads
to performance gains on three affordances (slide,
roll, and stack) and losses on the other three
(contain, w-grasp, and bounce).

Figure 6: Visualization showing how 3D coordinate
data clearly distinguishes a rolling object from a sliding
one, making it easier for a model to learn the difference
between the two.

5 Qualitative Analysis

In order to better understand the nature of the
affordance-learning problem, we run a series of
qualitative analyses on the trained models. We fo-
cus our analysis on the pair of affordances roll vs.
slide. These are verbs have received significant
attention in prior literature (Pustejovsky and Krish-
naswamy, 2014; Levin, 1993) since they exemplify
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the types of manner distinctions that we would like
lexical semantic representations to encode.

We first compare the 2D video vs. 3D simula-
tion variants of our pretraining objective. Figure 5
shows a t-SNE projection of the sequence represen-
tations from all four models, labeled based on if the
object affords rolling or sliding. We find that object
representations from the 3D Blind model cluster
strongly according to the distinction between these
two concepts. The trend is notably not apparent in
the No-Training model. Figure 6 demonstrates why
spatial data pretraining may encourage this split.
In the example shown, we take two thrown objects
from our dataset–one round and one not round–and
track the height of the center point of the object
and one of the corners of the object bounding box.
When they hit the ground the center point stays rel-
atively constant as it moves across the floor in both,
but in the rolling action, the corner point moves
up and down as it rotates around the center point.
Since this is so distinguishable given the input rep-
resentation, the model is better able to differentiate
these concepts.

It may be that the next state prediction task fa-
cilitates learning the slide vs. roll distinction in the
3D Blind setting. However, the same pattern is
not present in the 3D Visual-spatial model (which
also predicts next state). One possibility is that the
presence of visual information competes with the
3D information, and as a result the joint space does
not encode this distinction as well as the 3D space
alone. Designing more sophisticated models that
incorporate visual and spatial information and pre-
serve the desirable features of both is an interesting
area for future work.

5.1 Counterfactual Perturbations

An important aspect of lexical semantics is deter-
mining the entailments of a word–e.g., what about
an observation allows it to be described truthfully
as roll? Thus, in asking whether affordances
are learned from next-state-prediction pretraining,
it is important to understand not just whether the
model can differentiate the concepts, but whether
it differentiates them for the “right” reasons.

We investigate this using counterfactual
perturbations of the inputs as a way of doing
feature attribution, similar in spirit to prior work
in NLP (Huang et al., 2020) and CV (Goyal
et al., 2019). Specifically, we create a controlled
dataset in which, for each of 10 interactions, we

generate 20 minimal-pairs which differ from their
originals by a single parameter of the underlying
physics simulation. The parameters we perturb
are {mass, force velocity, starting
x position, starting z position,
shape, angular rotation}. For example,
given an instance of a lamp rolling across the floor,
we would generate one minimally-paired example
in which we only change the mass of the lamp, and
another the same as the original except it does not
exhibit any angular rotation, and so forth for each
of the parameters of interest. More implementation
details are given in Appendix C.

We use our pretrained slide probe to classify
the representations from each sequence as either
rolling or sliding, and compare the effect of each
perturbation on the model’s belief about the affor-
dance label. Figure 7 shows the resulting belief
changes for several of the perturbed parameters.
We see that changing the angular rotation of an oth-
erwise identical sequence has the greatest effect on
whether an instance is deemed to afford rolling.
This is an encouraging result, as it aligns well with
standard lexical semantic analyses: i.e., generally,
roll is assumed to entail rotation in the direction
of the translation.

Figure 7: Change in predicted probability of the encod-
ing of a round object affording slide after generating
the interaction again with one feature changed (See Ap-
pendix C for a visualization)

However, our analysis also reveals that the mod-
els rely on some spurious features which, ideally,
would not be part of the lexical semantic represen-
tation. For example, the 3D blind model is affected
by the travel distance the object. If we increased
the mass or decreased the force applied to a rolling
object, such that it only moved a small distance or
rotated a small number of times, the model was
less inclined to label the instance as rolling; though
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this was usually not by enough to have the unde-
sirable effect of flipping the prediction. Intuitively
this makes sense given the model’s training data:
rolling objects tend to travel a greater distance than
sliding objects. An interesting direction for future
work is to investigate how changes in pretraining
or data distribution influence which features are
encoded as “entailments”, i.e., key distinguishing
features of a concept’s representation.

6 Related Work

6.1 Lexical Semantics and Cognitive Science

In formal semantics, there has been significant sup-
port for the idea that motor trajectories and affor-
dances should form the basis of lexical semantic
representations (Pustejovsky and Krishnaswamy,
2014; Siskind, 2001; Steedman, 2002). Such work
builds on the idea in cognitive science that simu-
lation lies at the heart of cognitive and linguistic
processing (Feldman, 2008; Bergen et al., 2007;
Bergen, 2012). For example, Borghi and Riggio
(2009) argue that language comprehension involves
mental simulation resulting in a "motor prototype"
which encodes stable affordances and affects pro-
cessing speed for identifying objects. Cosentino
et al. (2017) point to such simulation as a factor
in determining surprisal of affordances depending
on linguistic context. Similar arguments have been
made based on evidence from fMRI data (Sakreida
et al., 2013) as well as processing in patients with
brain lesions (Taylor et al., 2017). It is worth not-
ing that there is debate on the general nature of
affordances in humans. For instance, Mota (2021)
argues that affordances are not solely perceptual.
We view our work as being compatible with this
more general view of affordances, in which direct
perception plays a role, but not the only role, in
concept formation.

6.2 Affordances in Language Technology

The idea of affordances has been incorporated into
work on robotics (Şahin et al., 2007; Zech et al.,
2017). Kalkan et al. (2014); Ugur et al. (2009)
build a model of affordances based on (object, ac-
tion, effect) tuples, but focus only on start and end
state, and do not encode anything about manner.
Relatedly, Nguyen et al. (2020) connects images of
objects to language queries describing their uses.

Affordances are also well studied for text under-
standing tasks. McGregor and Jezek (2019) dis-
cuss the importance of affordances in disambiguat-

ing meaning of sentences such as “we finished the
wine". Other neural net based approaches for affor-
dance learning have relied on curated datasets with
explicit affordance labels for each object (Chao
et al., 2015; Do et al., 2018). Sometimes, affor-
dance datasets leverage multimodal settings such
as images (Myers et al., 2015), or 3D models and
environments (Suglia et al., 2021; Mandikal and
Grauman, 2021; Nagarajan and Grauman, 2020),
but require annotations for every object. In contrast,
our model learns affordances in an unsupervised
manner, and unlike Fulda et al. (2017), Loureiro
and Jorge (2018), McGregor and Lim (2018), and
Persiani and Hellström (2019) which extract affor-
dance structure automatically from word embed-
dings alone, our model learns from interacting with
objects in a 3D space, grounding its representa-
tions to cause-and-effect pairs of physical forces
and object motion.

6.3 Physical Commonsense Reasoning

There has been success in building deep learn-
ing networks that reason about object physics by
learning to predict their trajectories. These can
be broken up into either predicting points in 3D
space given object locations (like our approach, e.g.
Mrowca et al. (2018), Byravan and Fox (2017),
Battaglia et al. (2016), Fragkiadaki et al. (2016),
Ye et al. (2018), Rempe et al. (2020)) or inferring
future bounding box locations of objects in videos
(Weng et al., 2006; Do et al., 2018; Qi et al., 2021;
Ding et al., 2021). Both approaches have been suc-
cessful in encoding complex visual and physical
features of objects. We focus on training with 3D
simulations, but also test a visual dynamics model
(Qi et al., 2021) to compare the affordance infor-
mation that is encoded from spatial vs. visual data.

More broadly, we contribute to a line of work on
building non-linguistic representations of lexical
concepts (Bisk et al., 2019). Explicit attempts at
grounding to the physical world ground language
in 2D images or videos (i.e., pixels) (Hahn et al.,
2019; Groth et al., 2018), despite the fact that recent
work suggests that text and video pretraining offers
no boost to lexical semantic understanding (Yun
et al., 2021). Such efforts motivate the creation of
large datasets such as Krishna et al. (2016), Yatskar
et al. (2016), and Gupta and Malik (2015), which
require in-depth human provided annotations that
provide a limited list of semantic roles of objects.

Our approach is most directly related to prior
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work that learns in interactive, 3D settings (Thoma-
son et al., 2016; Ebert and Pavlick, 2020). Espe-
cially related are Nagarajan and Grauman (2020)
and Zellers et al. (2021). However, their models
do not directly ground to the physical phenomena
(e.g., entailed positional changes). Instead, they
use a symbolic vocabulary of object state changes,
whereas our model learns from unlabeled interac-
tions.

7 Conclusion

We propose an unsupervised pretraining method
for learning representations of object affordances
from observations of interactions in a 3D environ-
ment. We show that 3D trajectory data is a strong
signal for grounding such concepts and performs
better than a standard computer vision approach for
learning the desired concepts. Moreover, we show
through counterfactual analyses that the learned
representations can encode the desired entailments–
e.g., that roll entails axial rotation.

Our work contributes to an existing line of work
that seeks to develop lexical semantic represen-
tations of nouns and verbs that are grounded in
physical simulations. We advance this agenda by
offering a way in which modern “foundation model”
approaches to visual and linguistic processing can
in fact be corroborative of traditional feature-based
approaches to formal lexical semantics. Our results
suggest a promising direction for future work, in
which pretraining objectives can be augmented to
include richer notions of embodiment (e.g., plan-
ning, agent-agent interaction) and consequently en-
coder richer lexical semantic structure (e.g., pre-
suppositions, transitivity).

Acknowledgments

This research is supported in part by DARPA
via the GAILA program (HR00111990064). The
views and conclusions contained herein are those
of the authors and should not be interpreted as
necessarily representing the official policies, either
expressed or implied, of DARPA or the U.S. Gov-
ernment. Thanks to Chen Sun, Roman Feiman,
members of the Language Understanding and Rep-
resentation (LUNAR) Lab and AI Lab at Brown,
and the reviewers for their help and feedback on
this work.

References

Stéphane Aroca-Ouellette, Cory Paik, Alessandro Ron-
cone, and Katharina Kann. 2021. PROST: Physi-
cal reasoning about objects through space and time.
In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pages 4597–4608,
Online. Association for Computational Linguistics.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo
Jimenez Rezende, and koray kavukcuoglu. 2016. In-
teraction networks for learning about objects, rela-
tions and physics. In Advances in Neural Information
Processing Systems, volume 29. Curran Associates,
Inc.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Benjamin K Bergen. 2012. Louder than words: The
new science of how the mind makes meaning. Basic
Books.

Benjamin K Bergen, Shane Lindsay, Teenie Matlock,
and Srini Narayanan. 2007. Spatial and linguistic
aspects of visual imagery in sentence comprehension.
Cognitive science, 31(5):733–764.

Yonatan Bisk, Jan Buys, Karl Pichotta, and Yejin Choi.
2019. Benchmarking hierarchical script knowledge.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4077–4085,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ
Altman, Simran Arora, Sydney von Arx, Michael S.
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dal-
las Card, Rodrigo Castellon, Niladri S. Chatterji,
Annie S. Chen, Kathleen Creel, Jared Quincy
Davis, Dorottya Demszky, Chris Donahue, Moussa
Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea
Finn, Trevor Gale, Lauren Gillespie, Karan Goel,
Noah D. Goodman, Shelby Grossman, Neel Guha,
Tatsunori Hashimoto, Peter Henderson, John He-
witt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing
Huang, Thomas Icard, Saahil Jain, Dan Jurafsky,
Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh,
Mark S. Krass, Ranjay Krishna, Rohith Kuditipudi,
and et al. 2021. On the opportunities and risks of
foundation models. CoRR, abs/2108.07258.

Anna M Borghi and Lucia Riggio. 2009. Sentence
comprehension and simulation of object temporary,
canonical and stable affordances. Brain Research,
1253:117–128.

266



Arunkumar Byravan and Dieter Fox. 2017. SE3-nets:
Learning rigid body motion using deep neural net-
works. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 173–180.

Yu-Wei Chao, Zhan Wang, Rada Mihalcea, and Jia
Deng. 2015. Mining semantic affordances of visual
object categories. In 2015 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
4259–4267.

Erica Cosentino, Giosuè Baggio, Jarmo Kontinen, and
Markus Werning. 2017. The time-course of sentence
meaning composition. n400 effects of the interaction
between context-induced and lexically stored affor-
dances. Frontiers in Psychology, 8.

David Ding, Felix Hill, Adam Santoro, Malcolm
Reynolds, and Matt Botvinick. 2021. Attention over
learned object embeddings enables complex visual
reasoning. In Advances in Neural Information Pro-
cessing Systems, volume 34, pages 9112–9124. Cur-
ran Associates, Inc.

Thanh-Toan Do, Anh Nguyen, and Ian Reid. 2018. Af-
fordancenet: An end-to-end deep learning approach
for object affordance detection. In 2018 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 5882–5889.

Dylan Ebert and Ellie Pavlick. 2020. A visuospatial
dataset for naturalistic verb learning. In Proceed-
ings of the Ninth Joint Conference on Lexical and
Computational Semantics, pages 143–153.

Jerome Feldman. 2008. From molecule to metaphor: A
neural theory of language. MIT press.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine,
and Jitendra Malik. 2016. Learning Visual Pre-
dictive Models of Physics for Playing Billiards.
arXiv:1511.07404 [cs]. ArXiv: 1511.07404.

Nancy Fulda, Daniel Ricks, Ben Murdoch, and David
Wingate. 2017. What can you do with a rock? af-
fordance extraction via word embeddings. In Pro-
ceedings of the Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, IJCAI-17, pages
1039–1045.

James J Gibson. 1977. The theory of affordances. Hill-
dale, USA, 1(2):67–82.

Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi
Parikh, and Stefan Lee. 2019. Counterfactual visual
explanations. In International Conference on Ma-
chine Learning, pages 2376–2384. PMLR.

Oliver Groth, Fabian B. Fuchs, Ingmar Posner, and
Andrea Vedaldi. 2018. Shapestacks: Learning vision-
based physical intuition for generalised object stack-
ing. In The European Conference on Computer Vi-
sion (ECCV).

Saurabh Gupta and Jitendra Malik. 2015. Visual seman-
tic role labeling. arXiv preprint arXiv:1505.04474.

Meera Hahn, Andrew Silva, and James M. Rehg. 2019.
Action2Vec: A Crossmodal Embedding Approach
to Action Learning. arXiv:1901.00484 [cs]. ArXiv:
1901.00484 version: 1.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recogni-
tion. In 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770–778.

Po-Sen Huang, Huan Zhang, Ray Jiang, Robert Stan-
forth, Johannes Welbl, Jack Rae, Vishal Maini, Dani
Yogatama, and Pushmeet Kohli. 2020. Reducing sen-
timent bias in language models via counterfactual
evaluation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 65–83,
Online. Association for Computational Linguistics.

Sinan Kalkan, Nilgün Dag, Onur Yürüten, Anna M
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A Appendix A

Figure 8: Example of an interaction from SPATIAL.
The model predicts the position of the soccer ball at fu-
ture timesteps. To do that, it must encode some knowl-
edge that soccer balls bounce and roll. As input,
our model takes 9 3D points: the eight corners of the
box surrounding the ball, plus the center point.

A.1 Spatial Model Training Details

For both of the 3D spatial data models, we train
with an encoder-decoder transformer with one en-
coder and one decoder layer with one attention
head. We found that changing the number of atten-
tion heads did not affect performance noticeably
in either direction. We use a batch size of 64 and
a transformer embedding dimension of 100. We
use a feed-forward dimension of 200. We initial-
ize with a learning rate of 1e-4. The models were
trained to predict the next k = 8− 16 frames and
we did not see a large benefit in training to predict
longer sequences. We trained the models for 400
epochs although we notcied the ablated 3D Blind
model tended to converge at or before 100 epochs
across our experiments.

The beginning of the sequence, which was up to
four seconds minus the k prediction frames, was
fed into the transformer encoder which encoded
representations of dimension e. We averaged these
output embeddings as input in our probing experi-
ments. The e embeddings were fed into the decoder
network, which then predicts the next k frames.
We believe that training with longer sequences
would be more beneficial for training a decoder-
only model, which we would like to explore in
future work. In preliminary experiments, we tested
whether masking a proportion of frames in the en-
coder would be beneficial for the representation
learning task. We saw a slight decrease in perfor-
mance, and so did not perform a thorough analysis
on the effect of masking.

A.2 t-SNE Configuration

We report a t-SNE of representations derived from
our 3D Blind model and the 2D Visual model. The
parameters for creating each t-SNE was similar but
varied in a few ways: Common Hyperparame-
ters: learning rate: 200, iterations: 1000, stopping
threshold of gradient norm: 1e-7 3D Blind t-SNE
specifics: perplexity: 30, initialized randomly 2D
Visual specifics: perplexity: 5, initialized with
PCA. We found that random initialization was in-
consistent in that it would sometimes cause small
clouds of dense points to appear as their own clus-
ters.

B Appendix B

B.1 RPIN Training details

We use a learning rate of 1e-3 with a batch size
of 50 and train for a maximum of 20M iterations
with 40,000 warmup iterations. Training data is
augmented with random horizontal flips. Unlike in
Qi et al. (2021) we don’t use vertical flips because
our videos contain objects falling due to gravity.
One important difference is that at training time
the model predicts 10 frames in the future, and
at test time predicts 20 (as opposed to 20 and 40
respectively in Simulated Billiards). Within one
video, our interactions seem more complex than
one sequence in the Simulated Billiards dataset,
so we introduced this difference to create more
training examples.

C Appendix C

C.1 Counterfactual Perturbations Setup

We start with a base set of 10 sequences: 5
with a sliding object (cardboardBox_03)
and 5 with a rolling object (BuckyBall).
We then create 20 minimal-edit perturbations
to create a final set of 200 sequences. We
perturb the following features one at a time:
{mass, force velocity, starting
x position, starting z position,
shape, angular rotation}. For most
features, we generate 4 perturbations. For example,
the x and z positions are altered by {-2m, -1m,
+1m, +2m} where ‘m’ is the Unity meter. All
objects start with 1.14 units of mass and similar
to the starting position variable, is altered by
1.14 + (i × .1) where i is in the set {-2, -1, 1,
2}. For the shape parameter, we only change the
3D model used to generate the base sequence.
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For the sliding videos, we use plate02 and
book_0001c. For the rolling videos we use
BombBall and modified Soccer Ball.
Note that we modify the Soccer Ball model
that is in the train set, but modify the mass (1.14)
and size of the model so that it is technically an
unseen object. We chose to do this because we
wanted to use a more plain spherical object, which
was not an option for the remaining test objects.
Angular rotation either perturbs the sequence by
freezing the rotation along all axes (in the case of
objects that normally roll) or replacing the physics
collider with a sphere (causing the object to roll
– in the case of objects that tend to slide instead
of roll). Figure 11 shows additional perturbations
and a sliding object example of the counterfactual
analysis.
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Object Test set? Slide Roll Stack Contain W-Grasp Bounce
BombBall
EyeBall

SpikeBall
Vase_Amphora
Vase_Hydria

Vase_VoluteKrater
book_0001a
book_0001b
book_0001c

bowl01
cardboardBox_01
cardboardBox_02
cardboardBox_03

Cola Can
Pen black
Gas Bottle
Soccer Ball
can small

can
meat can box

spam can
AtomBall

Bottle2
plate02

plate02_flat
Bottle1

WheelBall
wine bottle 04

coin
BuckyBall

SplitMetalBall
bowl02
bowl03
mug02
mug03

Old_USSR_Lamp_01
lamp
Ladle
Apple

Table 1: All objects in the dataset and their associated affordances
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Binary Classification Accuracy of Affordance Probes (Random=50%)
N examples 3D Blind | 3D Visual-Spatial | 2D Visual | No-Training

Affordance Acc. (%) F1 Acc. (%) F1 Acc. (%) F1 Acc. (%) F1
Slide 1715 59.2 62 63.7 67 59.6 62 61.2 64
Roll 1258 66.5 66 69.0 70 56.0 58 66.3 66
Stack 1307 64.7 65 65.7 63 58.0 58 63.4 63

Contain 1510 66.5 68 65.2 67 58.2 63 59.3 64
W-Grasp 1652 67.2 68 66.3 0.68 62.9 61 63.4 64
Bounce 276 82.6 83 79.7 79 73.9 76. 76.0 75

Table 2: Results from probing experiments on RPIN compared to the unity models trained on the same amount
of data. Because data was limited, we partition the data so that there is an even number of positive and negative
examples in the test set for each affordance. Interaction based pretraining outperforms visual dynamics in all
categories

Affordance Number of Objects Percentage of objects (%)
Slide 22 56.41
Roll 23 58.97
Stack 17 43.59

Contain 8 20.51
Wrap-grasp 13 33.33

Bounce 7 17.95

Table 3: Each affordance we are interested in learning and the number and percentage of objects out of the 39 have
a positive label for that affordance.

RPIN Model validation loss in the t ∈ [Ttrain, 2× Ttrain] setting
Model Loss (MSE)

SimB (Qi et al., 2021) 25.77
SimB (our results) 15.53

Unity Videos 20.98

Table 4: Each affordance we are interested in learning and the number and percentage of objects out of the 39 have
a positive label for that affordance.
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Balls

Boxes

Bowls

Dish-  

like

Cans &  

Mugs

Vases

Bottles

Books

Ladle

Lamps

Pen

Train Test

Apple

Vase_VoluteKrater Gas Bottle

SplitMetalBall

AtomBall

Old_USSR_Lamp_01

cardboardBox_02 cardboardBox_03cardboardBox_01

meat can boxcan small

plate02coinplate02_flat

bowl01 bowl03bowl02

Soccer Ball WheelBall SpikeBall

BuckyBallBombBallEyeBall

book_0001cbook_0001bbook_0001a

wine bottle 04Bottle2Bottle1

Vase_AmphoraVase_Hydria

Cola Canmug02

mug03canspam can

Pen black

lamp

Ladle

Figure 9: All objects that were used in training and testing. Some objects in the test set are visually similar to their
training analogues, but differ in size and mass.
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Figure 10: Results from the training of the RPIN visual dynamics model on videos of our Unity dataset interactions.
Red circles show the predictions of the following center points of the bounding boxes of the object given the start of
the interaction
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Figure 11: Two examples from the counterfactual analysis that show robustness to changing spurious features. The
table in the top example displays the changes in probability in predicting the object as sliding. Conversely, the
bottom example table shows the change in probability of predicting the object as rolling. Arrows in the left table
indicate where the perturbation does affect the label of the action (either by making the object able or unable to roll).
In both cases, the probe correctly flips its prediction on the encoding. The sequence prediction model appears to be
sensitive to certain features such as distance traveled. For example, changing the object from the "bucky ball" to
the "bomb ball" decreases the model’s confidence that the object rolling (though, the probe still correctly assigns a
majority of the probability to roll). However, in this perturbation, the bomb ball gets stuck on its ‘cap’ (Figure 9)
and only completes one rotation.
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Figure 12: Left: a sequence generated with normal physics. Right: rotation locked, with all other physical properties
of the interaction the same. Freezing the rotation such that the object slides causes the model to encode the action as
a slide rather than a roll
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Abstract

This paper describes the evolution of the Prop-
Bank approach to semantic role labeling over
the last two decades. During this time the Prop-
Bank frame files have been expanded to include
non-verbal predicates such as adjectives, prepo-
sitions and multi-word expressions. The num-
ber of domains, genres and languages that have
been PropBanked has also expanded greatly,
creating an opportunity for much more chal-
lenging and robust testing of the generalization
capabilities of PropBank semantic role labeling
systems. We also describe the substantial ef-
fort that has gone into ensuring the consistency
and reliability of the various annotated datasets
and resources, to better support the training and
evaluation of such systems.

1 Introduction

Twenty years ago traditional statistical machine
learning techniques were holding sway and suc-
cessful stochastic syntactic parsing was on the rise.
The availability of accurate syntactic parses opened
the door to richer, deeper representations. The
second Human Language Technology conference
included a presentation on Adding Predicate Ar-
gument Structure to the Penn Treebank and the
Proposition Bank (PropBank) was born (Kingsbury
and Palmer, 2002). Over the next few years, with
the able guidance of a steering committee consist-
ing of Ralph Weischedel, Mitch Marcus, Doug
Appelt, Mark Villain and Ralph Grishman, the an-
notation guidelines and the annotation continued to
grow, with the end result of over 110,000 predicate
argument structures pointing directly to syntactic
nodes in the phrase structure syntax trees of the
roughly 50,000 sentences of the Penn Treebank.
The annotation of these structures was guided by
a set of approximately 3300 Frame Files that pro-
vided a verb specific set of semantic roles as the
arguments for each verb. The substantial size of
the data set and the consistency of the annotation
gave rise to a flurry of popular semantic role la-

beling systems and semantic role labeling shared
tasks (Carreras and Màrquez, 2005; Surdeanu et al.,
2008) that continue to this day. The Penn Treebank
is entirely composed of Wall Street Journal articles,
and annotation of additional data taken from the
more diverse English genres of the Brown corpus
allowed for out of domain testing, with predictable
dismal results. Since that time, DARPA and NSF

have funded substantial additional PropBank anno-
tation, focusing on additional domains and genres
for English, as well as additional languages such as
Chinese, Arabic, Hindi and Urdu. The deep learn-
ing revolution has not abated the interest in seman-
tic role labeling performance, and the incorporation
of PropBank Frame files into the Abstract Mean-
ing Representation (AMR) Editor (Banarescu et al.,
2013), to guide the labeling of the AMR nested
predicate argument structures, ensures its longevity.
This paper details the new genres, domains and
datasets that are now available, as well as the expan-
sion of the original PropBank verb Frame Files to
adjectival and nominal forms. Today PropBank has
a prominent web presence1 and plans to evolve and
cater to the growing, global, distributed, diverse
community by means of a GitHub organization2.
Github supports the infrastructure for streamlining
contributions and resolving issues that are bound
to arise in the future. Multiple versions of stable
annotations are made available to the community
for promoting open, reproducible research3. Dif-
ferent versions of the frame lexicon can be viewed
and searched online in a human friendly format4.

We start by reviewing the framework and as-
sumptions for the original PropBank and detail

1
http://propbank.org

2
http://github.com/propbank

3Many diverse sources and subcorpora are covered by the
sum total of all annotations. Access to various data slices is
governed by the data and privacy restrictions on the underlying
source. A bulk of the data is accessible free of charge for
research use upon completion of relevant data use paperwork.
The details can be found on the main website.

4
http://propbank.org/v3.4.0/frames
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the changes that have been made as it matured in
Section 2. Section 3 describes the additional new
domains and genres that are covered in subsequent
annotation efforts. In Section 4 we provide novel
baseline results on these new corpora to stimulate
additional research in the robustness and portability
of semantic role labeling. Finally we summarize
our contributions in Section 5.

2 The Proposition Bank, Then and Now

PropBank (Kingsbury and Palmer, 2002; Palmer
et al., 2005a) is a paradigm for the development of
corpora annotated with predicate argument struc-
tures. In its original form, these predicate ar-
guments structures were applied to the syntac-
tic scaffolding provided by the Penn Treebank.
While creating a global inventory of semantic roles
was traditionally viewed as too difficult, Prop-
Bank sidestepped the issue by using an “individ-
ual thematic roles” approach (Dowty, 1991) in
which roles are custom-defined within each (coarse-
grained) sense of a predicate. The decision as to
what constitutes a semantic role and the use of Penn
Treebank as the syntactic scaffolding for the annota-
tion contributed to high inter-annotator agreement,
which led to higher performing machine learning
models and fueled interest in the task. PropBank
has been instrumental in creating a subfield of NLP

called Semantic Role Labeling (SRL). The fol-
lowing three subsections describe the evolution of
PropBank in terms of the kind of predicates that
were annotated, the changes seen in the data struc-
tures as paradigm matured, and the genre of data
annotated over the past two decades.

2.1 Frames—Predicate Rolesets and
Arguments

The core of the PropBank paradigm consists of an
annotation schema and a lexical inventory collec-
tively referred to as the Frames. Frames are a set
of files that house “rolesets”, which are predicate
argument structures associated with coarse-grained
senses for eventualities. Within a roleset, roles
that are considered semantically and/or syntacti-
cally core are bundled together as predicate-specific
numbered arguments5. In annotation, all rolesets
across all predicates share a larger pool of “ad-
junct” arguments such as ARGM-LOC for location,

5We use the term “argument” when referring to the general
notion of arguments of a predicate; and the terms “role” and
“rolesets” when we are referring to the vocabulary of roles
assigned to each argument of a predicate in the lexicon of
(mostly lemma specific) frames.

ARGM-TMP for temporal, ARGM-GOL for goals
and beneficiaries, etc. These three-letter ARGM

tags cover generalized thematic role information
that is more specific than argument numbers but
more categorical than custom role definitions, and
so the pool of ARGMs has become the basis for a set
of function tags that are now applied to roles. The
list of function tags includes PAG (proto-agent) and
PPT (proto-patient), taken from Dowty (1991); the
list of function tags continues to grow along with
PropBank’s expansion into more domain-specific
corpora. Each role in every roleset comes with
an argument number, a custom definition, and a
function tag as described in Figure 1.

Wilder has put the onus on Cole.

Change loca+on

Agent Thing put Des+na+on

put.01ARG0-PAG ARG1-PPT ARG2-GOL

Figure 1: In this example, the verb predicate put in-
vokes the change of location roleset put.01 in which
the proto-agent (PAG) is the numbered argument ARG0
getting assigned a value ARG0-PAG; Thing put, is the
proto-patient (PPT), getting value ARG1-PPT; and the
destination being a goal (GOL) getting the value ARG2-
GOL.

The Frames are not in themselves organized ac-
cording to any kind of semantic hierarchy; role-
sets are grouped inside frame files according to
polysemy and etymological closeness and nothing
more (e.g. the leave frame file includes rolesets
for multiple leave and left predicates). How-
ever, each roleset potentially includes links with
other lexical resources such as VerbNet (Schuler,
2005), FrameNet (Baker et al., 1998), etc., as well
as to word senses in WordNet (Fellbaum, 2010)
and therefore to those in OntoNotes (Weischedel
et al., 2011; Pradhan et al., 2013). This collec-
tively forms a rich, interconnected, high coverage,
semantic network.

Over time, the significance of the lexicon of pred-
icate frames has risen to the level where it is not
just an artifact of PropBank, but has become a re-
source in its own right, forming the backbone of
various meaning representations such as AMR, Uni-
form Meaning Representation (UMR) (Gysel et al.,
2021), etc.
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2.2 Coverage—Genres and Languages

The original PropBank comprised a single news
genre, as represented by the WSJ. Over time more
genres and languages were PropBanked. At first
a small subset of the Brown corpus was annotated
to test the generalizability of machine learning
models. Subsequently, as part of the OntoNotes
project, it covered more genres and was adapted
to two other languages—Chinese (Palmer et al.,
2005b) and Arabic. The OntoNotes genres include
broadcast news, broadcast conversations, web text
(blogs, newsgroups), telephone conversations (God-
frey et al., 1992; Taylor, 1996), and a pivot corpus
of New and Old Testament text.

The methodology has been adapted to Ko-
rean (Palmer et al., 2006), Hindi/Urdu (Bhatt et al.,
2009), Finnish (Haverinen et al., 2013), Turk-
ish (Sahin, 2016), Persian (Mirzaei and Moloodi,
2016), Russian (Moeller et al., 2020), and Brazilian
Portuguese (Duran and Aluísio, 2011).

PropBank was further extended to additional lan-
guages by the Universal PropBanks (Akbik et al.,
2015; Jindal et al., 2022). Some of these were au-
tomatically generated by projecting English SRL

annotation onto parallel text in seven languages and
further refining them through filtering and boot-
strapping.

2.3 Evolution of the Data Structure

The first version of the PropBank was annotated on
top of constituent trees of the Penn Treebank. As a
result, with a few exceptions, the PropBank seman-
tic role labels represent nodes in a constituent parse
tree. As PropBank grew, it uncovered areas in the
Treebank guidelines that conflicted with the Prop-
Bank semantic interpretation choices. This led to
an effort to synchronize the two resources, creating
an improved version of each (Babko-Malaya et al.,
2006). Initial machine learning approaches con-
verted the annotation into a series of text spans (Car-
reras and Màrquez, 2005) and relied heavily on a
syntactic parser for good performance (Pradhan
et al., 2005). The period starting around 2007
saw a significant rise in the use of dependency
representation of parses. International evaluations
of dependency parse based semantic role labeling
were originally organized by automatically map-
ping the constituent tree semantic roles to depen-
dency trees (Surdeanu et al., 2008). In the last
decade, thanks in part to a combination of the ad-
vent of deep learning and the maturity of the guide-
lines and existing models, PropBank annotations

have been freed from the syntactic scaffolding pro-
vided by the Treebank. The more recent PropBank
annotations are performed on flat text6. The core
lexicon for PropBank which are the frame files
follow an XML specification which has evolved
through several iterations over the years. All an-
notations have been updated to match the latest
version of the specification.

2.3.1 Why XML and not JSON?
Contrary to popular notion, JSON is NOT uni-
versally better than XML7. In fact, as this three
part series of articles8,9,10 highlights, as of now,
XML schema11 is still the most versatile form of
defining and validating declarative data specifica-
tions and constraints when compared to its JSON
counterpart—JSON Schema. We are currently in
the process of moving away from a somewhat re-
strictive DTD specification to a full-fledged XML
schema. We could consider migrating to the JSD(x)
which uses a JSON schema definition language
(JSD) modeled closely with XML Schema lan-
guage and guarantees a one-to-one mapping be-
tween the two12

2.4 Frames—Updated Specification

2.4.1 Synchronizing with AMR
The first release of PropBank only covered ver-
bal predicates. Nominal forms in the Penn Tree-
bank were handled by the NomBank project at
NYU (Meyers et al., 2004). During the OntoNotes
project, the PropBank Frame Files were expanded
to include eventive nominals such as NomBank
nominalizations, which had already been based
on the original verb frame files, as well as light
verb constructions (Hwang et al., 2010). By 2012,
in support of the Abstract Meaning Representa-
tion (AMR) project, PropBank introduced other
non-verbal predicates including additional noun

6More details regarding the evolution of annotation file
formats can be found in the documentation available on the
PropBank website.

7This subsection added to address a reviewer concern.
8
https://www.toptal.com/web/json-vs-xml-part-1

9
https://www.toptal.com/web/json-vs-xml-part-2

10
https://www.toptal.com/web/json-vs-xml-part-3

11Two expressive XML schema languages are in
widespread use—XML Schema (with a capital S) and
RELAX NG.

12The combination JSD and JSDx—shortened as JSD(x)—
is a self-describing schema where the language JSD(x) is
expressed in JSD(x) itself and allows declarative specification
of structural and functional constraints equivalent to XML
schema. Moving from XML schema to JSONx should be quite
straight-forward when the supporting infrastructure reaches a
reasonable level of maturity.
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forms, adjectives, and certain multi-word expres-
sions. AMR’s aim was to abstract away from syn-
tactic specificity and annotate semantic argument
structures for eventualities regardless of their part
of speech. Initially, new predicate types were
added as distinct rolesets–for example, fear-n.01
(noun) and afraid-j.01 (adjective) were mod-
eled after fear-v.01 (verb), sharing its seman-
tics and argument structure but operating indepen-
dently (Bonial et al., 2014, 2012, 2017). While
the new additions more than tripled the range of
what was annotatable, they also introduced a cer-
tain amount of redundancy into the lexical inven-
tory, and so the entire lexicon was put through an
extensive overhaul to unify etymologically-related
rolesets, increasing the similarity to FrameNet
frames. The 2017 post-unification release in-
troduced a new roleset structure in which mul-
tiple predicates (aliases) could be included in
a single roleset (e.g. fear.01, with aliases
fear-v, fear-n, and afraid-j) (O’Gorman et al.,
2018). It also introduced new varieties of complex
multi-word predicates including multi-word expres-
sions (MWEs)—fully noncompositional idioms like
jump_the_shark as well as semi-decompositional
expressions like have_in_mind—and predicating
prepositional phrases like in_love.

In the five years since the post-unification re-
lease, PropBank’s lexical inventory has been re-
cruited for an increasingly broad range of domain-
specific annotation projects across PropBank and
AMR. With each of these projects comes a unique
set of annotation needs that have broadened the
scope of the lexical inventory. For example, the
Spatial AMR annotation project expands the Prop-
Bank lexicon and AMR annotation schema to al-
low for grounded annotation of multimodal spatial
corpora (Bonn et al., 2020; Narayan-Chen et al.,
2019). The particular needs of the project meant ex-
panding the rolesets to allow non-eventuality pred-
icate types, like prepositional relations and their
etymologically-related adverbial counterparts (e.g.
spatial direction terms like back, left. While not
eventualities, such expressions still benefit from
the sense disambiguation and essential role clus-
tering that come with roleset treatment. Because
grounded annotation of directed spatial expressions
requires tracking the linguistic frame of reference
of each instance, these spatial rolesets are also the
first in the PropBank lexicon to introduce numbered
arguments for roles that are essential yet almost
never explicitly realized.

(o / order-02 
  :ARG0 (w / we) 
  :ARG1 (e / electrocardiogram-01 
            :ARG1-of (p / pre-01 
               :ARG2 (o2 / operate-02 
                  :ARG1 h))) 
            :ARG2 (h / he)) 

We will order him a pre-op ECG.

Chronologically 
before

Thing 
before

Thing 
a1er

pre.01 ARG1ARG2

AMR

PB

Figure 2: This example shows how the frame lexicon is
shared between two representations—Abstract Meaning
Representation (AMR) and PropBank (PB) in the clinical
domain. The predicate pre invokes the Chronologically
before roleset pre.01, where, the Thing before is as-
signed the role ARG1 and the Thing after is assigned the
role ARG2. Note that the AMR shows the arguments
of three additional predicate rolesets: i) order-02;
ii) electrocardiogram-01; and iii) operate-02,
which correspond to what PropBank would annotate
as predicates for the tokens having the surface forms
“order”, “ECG,” and “op” respectively.

The THYME project is another domain-specific
AMR annotation project that has required signifi-
cant, specialized expansion of the lexical inventory.
The THYME colon cancer corpus consists of cancer-
related clinical-narrative documents that have been
annotated in such a way as to provide temporal-
relation extraction of clinical events (Albright et al.,
2013; Styler et al., 2014; Wright-Bettner et al.,
2019). The corpus contains highly specialized med-
ical terminology rarely seen in the general domain:
surgical procedures, anatomical parts, diseases, dis-
orders, symptomatology, etc. One of the great
challenges of this project has been to determine
which of these types to treat as unnamed (decom-
posable) entities, which to treat as named entities,
and which to treat with rolesets. The emphasis on
temporal relations in THYME reveals that concepts
that would not formerly have been considered even-
tive enough to qualify for roleset treatment do in
fact function as eventulaties in medical corpora,
with complex argument structures that need to be
tracked even when implicit. THYME is also respon-
sible for adding PropBank’s first affix rolesets for
temporally-indicative prefixes like pre- and post-,
which, for temporal relation purposes, need to be
annotated separately from their stem events. An
example13 of this is shown in Figure 2.

13There is a slight notational difference between AMR us-
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With the needs of domain-specific annotation
projects pulling further and further from the cen-
ter of the original framing guidelines, PropBank
has been overdue for an update that emphasizes
flexibility for domain-of-use. While the inventory
continues to exist as a single cohesive whole, we
have added structures into the files that allow users
to extract rolesets that are associated with domain-
specific projects. For general domain rolesets, we
have also made it easier to identify ways in which
the roleset may be applied differently from one
project to another, including usage tags as well as
expanded examples that showcase differences in an-
notation strategies for different projects. Rolesets
may now include aliases from any of the following
parts of speech as required by a project: verb (v),
noun (n), adjective (j), LVC14 (l), MWE (m), prepo-
sition (p), adverb (r), and affix (f). There may
now also be aliases (argaliases) associated with
numbered arguments (e.g., ARG0 of teach.01 may
have an argalias of teacher). The next section
describes how these changes are manifest in the
Frames’ xml files..

2.4.2 Enriched Contents
This latest PropBank 3.4.0 release15 uses an en-
riched xml specification which provides some addi-
tional features and allows for better validation and
disambiguation.

Lexlink Tags We aim to provide mappings
between PropBank and other lexical resources
within the frame files themselves, when available.
The <lexlinks> tag provides correspondences be-
tween a given roleset and equivalents in VerbNet,
FrameNet, or OntoNotes senses. The <rolelinks>
tag additionally provides mappings between spe-
cific roles and these external resources.

For example, sing.01 includes <lexlink> tags
linking the roleset to both manner_speaking-37.3

and sound_emission-43.2 in VerbNet 3.4. The
<rolelink> tags on the ARG1 specify that it is
the equivalent of topic and theme for those two
VerbNet classes, respectively.

Usage Tags The updated version also now in-
cludes <usage> tags to specify whether they were
included during the development of a particular
version of a resource. Many rolesets were con-

ing a hyphen instead of a period separating the lemma and the
roleset.

14Light Verb Construction
15Henceforth we are going to follow the SemVer (semantic

versioning) scheme: https://semver.org/

structed only for use with AMRs (*-91), and some
only for a particular project, such as Spatial AMRs.
Table 1 lists the various values and the corpora they
correspond with. Within the repository, we pro-
vide a utility script that can reduce the XML files
down to only the rolesets included in a specified
resource/version.

Example Tags The <example> tags within the
frame files have had a major overhaul. In or-
der to accommodate AMRs, these tags now use
<propbank> to contain the PropBank annotations
for an example sentence and <amr> to contain the
AMR graph. Additionally, the <amr> tag may spec-
ify the version of AMR, as AMR projects may anno-
tate the same text in different ways.

Example sentence text now comes with the ex-
pectation of being tokenized. The <arg> and <rel>

tags previously only required specification of the
text that should be annotated, but this allowed for
ambiguous interpretations. If an argument was a
word that showed up multiple times in the sentence,
there was no way to clarify which instance was the
correct argument. The improved format requires
the specification of start/end indices for annotated
spans. Not only does this prevent ambiguity, it also
allows for machine reading/validation of the exam-
ples created by human annotators, such as ensuring
that arguments do not overlap.

Additionally, <arg> tags within the examples
now use a single type attribute to specify the role,
such as ARG0 or ARGM-MNR. This primarily
serves to improve readability of the XML compared
to the previous f and n attributes used to specify
the same information.

One of the most significant changes to the exam-
ples is transforming them to a syntax-agnostic for-
mat. Previously, examples in the frame files used a
variety of syntactic notation to aid annotators using
the constituent-parse-based Jubilee tool with the
expectation of a regimen of post-processing. Ar-
guments were frequently noted to be a syntactic
trace, such as *trace*. We have eliminated these
by either resolving them to their true text span or
removing the argument entirely if it is only implied
but not present in the text. Converting the exam-
ples to this more generalized format greatly im-
proves readability and adaptability for new projects
or annotation schemes that don’t depend on phrase
structure parses.

MWE tags Multi-word expressions that receive
mappings between literal and figurative meanings
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Resource Version Description
PropBank 3.4.0 Latest release
PropBank Flickr 1.0 Flickr captions dataset
PropBank 3.1 Unification release (ON, BOLT, LORELEI )

English Web Treebank (EWT)
PropBank 2.1.5 OntoNotes v5.0 (ON)
PropBank 1.0 Proposition Bank I
AMR 2019 General-purpose AMR rolesets
AMR THYME 1.0 THYME colon cancer corpus
AMR Spatial 1.0 Minecraft Dialogue Corpus

Table 1: Resource/version combinations present in the <usage> tags.

have changed format as well. In the previous
release, an <mwe> tag inside the <aliases> tag
housed elements describing the <tokens> involved
in the expression, and a <mappings> tag that was
sister to <aliases> housed the source to target se-
mantic mappings. The new version renames <mwe>
as <mwp-descriptions>, places the <tokens> in-
side a new element called <syntaxdesc>, and pulls
the <mappings> in so that all MWE-related infor-
mation is contained in one place in the file.

2.4.3 Quality control
The format overhaul required significant examina-
tion of the current data. Through a combination
of conservative automated processes and extensive
manual correction, the new release offers consis-
tency that previously was unavailable and imprac-
tical. Subsequent releases will benefit from both
these corrections and a format more compatible
with future machine validation. We are in the pro-
cess of updating the way the proposition layer is
serialized. The original version was a file with a
prop extension which contained one predicate ar-
gument structure per line, and where the predicate
and arguments were identified using pointers to
node(s) in the Treebank parse of the sentence con-
taining the predicate. The new serialization will no
longer be so tightly coupled with the nodes in the
parse tree16.

The new release updates examples to current
PropBank guidelines. Outdated SLC and RCL roles
have been updated to use the current R- argument
convention. In the sentence “The acre of ground
that adjoins our property.”, the relativizer that used
to be annotated with ARGM-SLC, which was linked
to the span the acre of ground (tagged as ARG1
of predicate adjoins). This was an artifact of the

16Although it is very likely that the span will align with a
node in the parse tree of a given sentence.

strong alignment of PropBank role (spans) to nodes
in the syntactic parse tree and required an addi-
tional processing step. The annotation for the rel-
ativizer is now tagged as R-ARG1. Examples that
used ARGA were too sparse and infrequent and
have been updated and that role has been elimi-
nated.

As part of validating the frame examples, we’ve
corrected numerous cases caused by human error,
such as examples missing a <rel> tag, the specified
argument text not corresponding with the sentence
text, or multiples of the same numbered argument.

Within the repository, we provide a script to per-
form a validation check on a directory of frame
files. This includes not only checking the XML for-
mat according to the DTD, but other common sense
checks, such as that example arguments’ indices
correspond correctly with the example text, that
arguments don’t overlap, and ensuring the same
numbered argument isn’t present multiple times.

2.4.4 Available Tools

We previously named two scripts to help users work
with the frame files: one that provides validation
checks and another that can pare the XML files
down to only rolesets included in a particular re-
source. These scripts are available on the git repos-
itory.

Additionally, we provide a script that can be used
to generate a user-friendly website based on this
new format of XML files. The website provides
searchability based on roleset ID or alias, allowing
annotators to navigate the frames faster and more
easily than before. Visible rolesets can be filtered
according to the projects specified in the <usage>

tags.
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3 Fresh Corpora—New Domains and
Genres

Several diverse corpora have been PropBanked and
are now available on our GitHub site.

OntoNotes The first major expansion to the orig-
inal WSJ PropBank was OntoNotes17, described
above.

BOLT The BOLT corpus (Garland et al., 2012;
Song et al., 2014) was treebanked and PropBanked
as part of the DARPA BOLT project. It is composed
of 628,000 tokens of informal text, divided into
SMS and text chat data (SMS), online discussion
forums(DF), and translations of informal Arabic
and Chinese data in English (CTS).

English Web Text The third corpus, the English
Web Treebank (Bies et al., 2012), is 250k tokens
of web text covering weblogs, newsgroups, emails,
reviews and online question-answer pairs, and was
funded by Google.

These three corpora not only provide three dif-
ferent genres, but each contains a wide range of
subcorpora. One simple illustration of this within-
corpus variety can be witnessed in the fact that the
conversational speech in OntoNotes and in BOLT

range from 7-10 words per sentence, whereas the
OntoNotes weblog and BOLT discussion forums
have an average sentence length of 20 words. One
can see that each corpus contains very reduced, con-
versational examples such as the SMS, Emails, or
the OntoNotes telephone conversation data. Sim-
ilarly, each contains long, syntactically complex
data—with data such as the BOLT Discussion Fo-
rum data differing from traditional newswire, not in
complexity, but in editing and syntactic coherence.

3.1 Additional Diversification
Brown The original CONLL-2005 task evalu-
ated upon a small set of less than a thousand anno-
tations. This corpus was augmented with additional
annotation of some 15,000 verb predicates since
the original CONLL-2005 shared task. This larger
dataset had preliminary analyses in (Pradhan et al.,
2008), but was not released publicly. The updated
version of this new corpus will be part of this collec-
tion. As one can see from Table 2, this annotation
is entirely upon verbs, and therefore only measures
verbal out-of-domain ability of models. Moreover,
it should be noted that the Brown corpus—well-
edited fiction texts released before 1961—depicts a

17
https://ontonotes.org

very specific kind of out-of-domain test, and should
likely be viewed as reflecting only one kind of out-
of-domain performance.

LORELEI The English Reflex Core from
DARPA LORELEI (Strassel and Tracey, 2016) con-
sists of newswire text, a phrasebook, and an elicita-
tion corpus. Approximately 100k English tokens
(24k predicates) were manually treebanked and an-
notated with SRL. These sentences were also trans-
lated into twenty-four other languages to provide a
parallel corpus for multi-lingual research.

Flickr-8k consists of image captions of the
Flickr-8k corpus (Hodosh et al., 2013). The first
large-scale PropBank project mapped to depen-
dency trees involved the addition of SRL labels
to Flickr image captions. 5147 image captions
were double annotated and adjudicated. A first
pass of annotation was completed on flat, unparsed
sentences, followed by mappings to dependency
parses.

ClearEarth The ClearEarth (Duerr et al., 2015,
2016) project aimed to port NLP tools to the earth
sciences. This project produced annotated SRL

corpora in several domains: sea ice blogs/news, sea
ice academic journal articles, educational wiki on
ecology (77k tokens), and earthquake (40k tokens).
Both of these corpora will be released in the near
future. Portions of the THYME corpus featured
as data for TempEval shared tasks (Bethard et al.,
2017). THYME corpus will be available soon on
hNLP18

4 New Benchmarks

4.1 Evaluation Setup

The current, most common benchmarks for SRL

comprise the OntoNotes v5.0 corpus (Pradhan
et al., 2013; Weischedel et al., 2011) and a much
smaller subset of the Brown corpus (and also the
original WSJ subset with verb specific, and legacy
annotations based on the first release of PropBank
1.0). These additional subcorpora, updated to
match the revised, unified annotation guidelines
and with a more generalized view of the concept of
a predicate (i.e., including nouns and adjectives),
can now supplant the common benchmarks for eval-
uations and provide a better view of the generaliza-
tion capabilities of the latest SRL models.

18
https://healthnlp.hms.harvard.edu/center
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Corpora Genre Predicate Type
Verbs (V) Nouns (N) (Light V) Adj.

OntoNotes (ON) NW, BN, BC, WB, TC, PT 349,352 40,163 (2,215) 750
English Web TB (EWT) WB, QS 44,736 9,453 (732) 3,305
BOLT CTS, SMS, DF 132,642 18,839 (1,973) 10,957

BROWN FICTION, LETTERS, ETC. 15,646 0 (0) 0
LORELEI WB 18,871 4,089 (196) 780
Flickr-8k IMAGE CAPTIONS 5,897 551 (91) 51
ClearEarth EARTH SCIENCES 10,070 5713 (8) 468
SHARP (hNLP) CLINICAL NOTES 27,667 15,807 (22) 0
THYME (hNLP) CLINICAL NOTES 49,649 17,906 (89) 756

Table 2: Core Corpora Annotated with PropBank rolesets for general English. Light verbs are annotated using
nominal frames (Hwang et al., 2010) and therefore a subset of the nominal predicates.
Legends: NW: Newswire; BN: Broadcast News; BC: Broadcast Conversation; TC, CTS: Telephone Conversations;
SMS: Text Messages; DF: Discussion forums; WB: Miscellaneous webdata; TB: Treebank

4.2 Choice of Tagger

We provide preliminary results on the performance
of a state of the art, deep learning based tagger (Li
et al., 2020) trained on the OntoNotes training
data (Pradhan et al., 2013) which does not rely
on an explicit syntactic structure. For the purposes
of generating a baseline, neither did we retrain the
model nor updated the constraints—rolesets, and
other constraints—it uses during its structural tun-
ing process.

4.3 Experiment Partitions

We reused all experimental partitions that were pre-
viously identified and used by other researchers.
The two main examples of these are the CoNLL-
2012 partitions19 for the OntoNotes corpus and
the Universal Dependencies (UD) partitions of the
EWT and the Brown partitions that conform to the
CoNLL-2005 evaluation and the experiments re-
ported by Pradhan et al. (2008). We created new
partitions for the BOLT data with an aim at stratifi-
cation of the various sources and genres. All these
partitions are explicitly available with the data and
we plan to further ease their use by creating sub-
directories within the git repository similar to the
CoNLL-2012 partitions.

4.4 Recreating the Setup

As mentioned earlier, all the annotations will be
available for download on the PropBank GitHub
organization. All the annotations, except for the
clinical notes and the earth sciences data will be

19
https://github.com/ontonotes/

conll-formatted-ontonotes-5.0

made available as skeleton files exactly as in the
case of the CoNLL-2012 release. Most of the un-
derlying source text cannot be re-distributed owing
to various copyright restrictions and needs to be ob-
tained from LDC. The source text is present as part
of the relevant corpora releases from LDC. The final
evaluation data files can be created using the scripts
provided on the git repository to populate the skele-
ton files with the words from the corpora releases
by specifying the location of the downloaded cor-
pora in the appropriate configuration files. Further
details will be available in the documentation with
the released corpora.

This mode of corpus distribution, though some-
what complex, has the advantage of making up-
dated annotations available to the research com-
munity without having to make a separate release
through LDC, which is not an instantaneous pro-
cess. The underlying source text is not expected to
change. It is well known that manually annotated
data can never be perfect. There are always some
errors that are found when the corpus is used by
many researchers. Updating corpora too frequently
to fix data errors has a negative effect of somewhat
destabilizing the benchmarks and potentially ob-
fuscating the interpretation of results. As a rule of
thumb, releasing a new version of a corpus after a
reasonable period of time (at least several years)
allows the data to be cleaned of the inconsisten-
cies20. This approach also allows a better workflow
for incorporating corrections into the annotations
when identified by the community via established

20This trend could be changing as better tools and evalua-
tion infrastcutures become widely available.
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software engineering best practices such as pull
requests.

4.5 Regarding Conversational Data

One aspect of conversational data is the presence
of noise in the form of restarts, repairs, disfluen-
cies, non-speech words (laugh, cough, etc.). The
Treebank annotations label conversational disflu-
encies and repairs with a specific EDITED phrase
label, “He went (EDITED to) , to the store”. The re-
lease in CoNLL-2012 removed those phrases from
the surface strings for two main reasons: i) so that
one could train upon the cleaned “He went to the
store” instead; and ii) the coreference annotation
ignored such cases anyway. The unified PropBank
release follows the same approach for consistency.
Though, given the reduced or eliminated reliance
on parse structure for tagging semantic roles, it
would be interesting to see if these artifacts can be
learned and ignored by the deep learning models.

4.6 Experimental Results

The baseline results on the test partitions of four
corpora are shown in Table 3 below. We use the
CoNLL-2012 test set which is derived from the
OntoNotes v5.0 corpus for evaluation and on which
the semantic role labeling system has been trained.
Note that there are two versions of the OntoNotes
data. The second one uses the version of PropBank
frame files that is consistent with the AMR frames.
Notice that the inclusion of additional predicative
parts of speech and more diverse genres increases
the difficulty of the task significantly.

Trained on
OntoNotes v5.0
CONLL-2012)

Test Set F1

ON (v5.0/CONLL-2012) 86.7
ON (PB v3.4.0) 83.2
BOLT 80.1
EWT 80.5
BROWN 77.3

Table 3: Baseline performance on four main corpora an-
notated with PropBank v3.4.0 rolesets for English. The
results include performance across all parts of speech.
Follow latest updates and analysis at
https://leaderboard.propbank.org

5 Summary and Discussion

This paper summarized the last twenty years of
development and evolution of an approach to se-
mantic role labeling called PropBanking. We’ve
outlined the methods for converting PropBank to a
unified form, and the advantages provided by that
unified form and by the larger size of the Prop-
Bank corpora now available. The result is a set of
consistently annotated corpora representing diverse
genres and domains, all relying on a general set of
English Frame Files. Where domain specific frame
files are used, they are clearly marked. Tools are
now available to view the frame files as a whole or
as domain-specific subsets on an easily accessible
web site. Similarly annotated corpora in several
other languages are also available.

These new datasets offer opportunities for addi-
tional testing and evaluation that can advance the
ability of SRL systems to generalize to new appli-
cation areas and to new languages. We suggest that
testing against the combination of OntoNotes, En-
glish Web Treebank, and BOLT corpora presented
here can provide a more challenging SRL evalu-
ation, requiring systems to better handle diverse
domains and genres and non-verbal predicates.

In the coming year we look forward to toasting
both PropBank on its 21st birthday and the winning
systems of new SRL evaluation tasks.
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Abstract
Recognizing speech acts (SA) is crucial for
capturing meaning beyond what is said, mak-
ing communicative intentions particularly rel-
evant to identify urgent messages. This paper
attempts to measure for the first time the im-
pact of SA on urgency detection during crises,
in tweets. We propose a new dataset annotated
for both urgency and SA, and develop several
deep learning architectures to inject SA into
urgency detection while ensuring models gener-
alisability. Our results show that taking speech
acts into account in tweet analysis improves
information type detection in an out-of-type
configuration where models are evaluated in
unseen event types during training. These re-
sults are encouraging and constitute a first step
towards SA-aware disaster management in so-
cial media.

1 Introduction

Discovered by (Austin, 1962) and extensively pro-
moted by (Searle, 1975), speech acts (henceforth
SA) have been the object of extensive discussion
in the philosophical and the linguistic literature
(Sadock, 2004; Portner, 2018). According to the
Austinian initial view, SA are to achieve action
rather than conveying information. When uttering
I now pronounce you man and wife, the priest ac-
complishes the action of marrying rather than just
stating a proposition. Beyond these prototypical
cases, the literature has quickly broaden the under-
standing of the notion of SA as a special type of
linguistic object that encompasses questions, or-
ders and assertions and transcends propositional
content revealing communicative intentions on the
part of the speaker (Bach and Harnish, 1979; Port-
ner, 2018; Giannakidou and Mari, 2021).

Because recognizing speakers’ intentions is cru-
cial for capturing meaning beyond what is said
(Noveck, 2018), SA have given rise to an extensive
body of work in the computational linguistics litera-
ture where various approaches have been proposed

to detect them in both synchronous (e.g., meeting,
phone) (Stolcke et al., 2000; Keizer et al., 2002)
as well as asynchronous dialogues (e.g., emails,
tweet threads) (Carvalho and Cohen, 2005; Joty
and Mohiuddin, 2018; Bracewell et al., 2012). SA
have shown to be an important step in many down
stream NLP applications such as strategic action
prediction (Cadilhac et al., 2013), dialogue summa-
rization (Goo and Chen, 2018) and conversational
systems (Higashinaka et al., 2014). In this paper,
we attempt to measure for the first time the role
of SA on urgency detection in tweets, focusing on
natural disasters (hurricanes, storms, floods, etc.).

SA are particularly relevant to identify urgent
messages, i.e. those that raise situational awareness
over a crisis (including human/material damages,
security instructions, etc.), providing therefore ac-
tionable information that will help to set priorities
for the human teams and decide appropriate rescue
actions. By tweeting, speakers seek to achieve im-
pact via enhancing a chain of reactions. They do
not necessarily seek to merely express themselves.
The greater the number of re-tweets and replies
the greater the impact. Therefore, tweets are not
only public, but they are also interactive. They
mostly aim to make interlocutors react (perlocu-
tionary level) by different linguistic means (illocu-
tionary level), in view of achieving a purpose (on
perlocutionary / illocutionary, see (Austin, 1962;
Searle, 1975)). We illustrate this in the following
examples1 where speaking subjects perform quali-
tatively very different language acts depending on
the situation they find themselves in. In the tweet
(1a), the writer publicly expresses an explicit com-
mitment to provide help after the Irma hurricane
tragedy, using an explicit action verb (“to help”)
which is under the scope of an explicit attitude verb
(“want”), thus aiming to obtain a reply on what
to do to provide help. (1b) on the other hand ex-

1These are examples taken from our French corpus trans-
lated into English.
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presses an intention to complain about the absence
of assistance without using any explicit intent key-
words and thus raise awareness and attention on
the part of the people in charge of assistance.

(1) #Irma Hurricane: “I want to go there to
help.”

(2) Irma hurricane: where is disaster assis-
tance one month later?

When annotating tweets posted during a crisis
(like earthquakes, bombing, attacks) according to
different taxonomies of SA, state of the art corpus-
based studies observe a majority of statements, es-
sentially supplemented by suggestions and com-
ments – in contrast, the topics dealing with e.g.
celebrities are essentially made up of comments
(Zhang et al., 2011; Vosoughi, 2015; Elmadany
et al., 2018a; Saha et al., 2020). These results have
however been obtained after manual annotations,
the focus being rather on SA classification of topic
oriented tweets. The next step now is to show to
what extent these observations are still valid from
a computational point of view. Our contribution is
threefold and consists in:

1. A new dataset of 6,669 tweets in French
annotated for both urgency and SA for dis-
aster events of various types that occurred in
France;2

2. A set of deep learning experiments to inject
SA information into urgency detection us-
ing monotask and multitask architectures. We
investigate the role of communicative inten-
tions in three classification settings: related-
ness (i.e., useful vs. non useful for emergency
responders), urgency detection (i.e., non use-
ful vs. urgent vs. non urgent), and information
type following a predefined taxonomy of six
actionable categories;

3. An evaluation of the proposed classifiers
while measuring their ability to generalize
over new events. Our results show that SA are
helpful for filtering out urgent from non ur-
gent messages. This is particularly salient for
information type detection in an out-of-type
configuration where models are evaluated in
unseen event types during training. These
results are encouraging and constitute a first

2The dataset will be made available to the research com-
munity.

step towards SA-aware disaster management
in social media.

beating several SA agnostic state of the art
baselines.

This paper is organized as follows. We first pro-
vide related work on NLP-based approaches to cri-
sis management as well as SA in social media. We
then describe our data, the annotation procedure
and the results of the annotation campaign. We
detail the experiments we carried out on injecting
SA in urgency detection in Section 4 and discuss
our results in Section 5. We end the paper by some
perspectives for future work.

2 Related Work

2.1 Crisis Datasets

The literature on emergencies detection has been
growing fast in the recent years and several datasets
(mainly tweets) have been proposed to account for
crisis related phenomena.3 Messages are annotated
according to relevant categories that are deemed
to fit the information needs of various stakehold-
ers like humanitarian organizations, local police
and firefighters. Well-known dimensions include
relatedness (also known as usefulness or informa-
tiveness) to identify whether the message content
is useful (Jensen, 2012), situation awareness (also
known as urgency, criticality or priority) to filter
out on-topic relevant (e.g., immediate post-impact
help) vs. on-topic irrelevant information (e.g. sup-
ports and solicitations for donations) (Imran et al.,
2013; McCreadie et al., 2019; Sarioglu Kayi et al.,
2020; Kozlowski et al., 2020), and eyewitness types
to identify direct and indirect eyewitnesses (Zahra
et al., 2020). For most of the existing datasets,
annotations usually apply at the text level. Some
studies propose to additionally annotate images
within the tweets (see for example (Alam et al.,
2018)).

The question of how speakers convey emergency
at the sentence level has nonetheless been only
tangentially addressed in a literature that has con-
sidered the correlation between specific speech acts
and specific topics, without overtly addressing what
the speech act shape of urgent messages is (see be-
low).

3See https://crisisnlp.qcri.org/ for an
overview.
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2.2 Speech Acts in Social Media

Some amount of attention has been indeed devoted
to understanding how speech acts (as used on Twit-
ter) vary qualitatively according to the topic dis-
cussed. In this line of questioning, SA have been
studied as filters for new topics.

Zhang et al. (2011) in particular, resort to a Sear-
lian typology of SA that distinguishes between as-
sertive statements (description of the world), ex-
pressive comments (expression of a mental state of
the speaker), interrogative questions and impera-
tive suggestions. Concerning the question of emer-
gency, Zhang et al. (2011) showed that the SA’s dis-
tribution on Twitter in the context of a natural dis-
aster (e.g. earthquake in Japan) is distinctive: it is
essentially composed by statements, associated to
comments and suggestions / orders. In this context
new information or ideas on how to (re)act are in-
deed expected and assertions are the most suitable
to this aim. By contrast, discussion over a celebrity
will mostly generate comments and almost no order
or suggestion. Indeed, in this context, subjectivity
matters more than immediate action. The same
conclusions have been drawn by Vosoughi (2015);
Vosoughi and Roy (2016) when distinguishing the
topic discussed in the tweets, from the type of topic
(Entity-oriented–celebrities, Event-oriented topics–
bombing events, or Long-standing topics–cooking).
Their corpus study shows that there is a greater sim-
ilarity of distribution of SA between entity-oriented
and event-oriented, with a majority of assertions
and expressions.

In this same perspective of topic identification,
Elmadany et al. (2018b) classify 21,000 tweets in
Arabic according to their topic type and distinguish
events (for example, in our case, natural disasters),
entities (especially people) and various issues such
as travel or cooking. Each tweet is associated to a
pair of speech act/sentiment according to the fol-
lowing classification: Assertions, Recommenda-
tions, Expressions and Requests, and among Sen-
timents, the standard Positive, Negative, Mixed
and Neutral categories. Their study makes emerge
a salient association between assertions and peo-
ple/events and neutrality on the one hand and an
association between expressivity long-standing top-
ics and negativity on the other.

Our classification of speech acts relies on the
fourfold distinction between asserting, ordering,
asking and expressing a subjective view (cf. infra,
section 3.2 for the definitions and specifications

of these categories). The novelty of our work lies
in exploring communicative intentions in the con-
text of urgency detection, an enterprise which, to
our best knowledge, has never been undertaken.
This paper fills this gap by crossing the urgency
classification and the SA classification in order to
elucidate the interactions between speaker’s atti-
tudes and urgency categories (and their associated
actions).

3 Dataset

Since our focus is on crises that occur in metropoli-
tan France and its overseas departments, we rely
on the only available corpus of French tweets by
(Kozlowski et al., 2020)4 composed of about 12k
tweets collected using dedicated keywords about
ecological crises that occurred in France from 2016
to 2019 and posted 24h before, during (48h) and
72h after the crisis: 2 floods that occurred in Aude
and Corsica regions, 10 storms–Béryl, Berguitta,
Fionn, Eleanor, Bruno, Egon, Ulrika, Susanna,
Fakir and Ana, and 2 hurricanes–Irma and Harvey,
and 1 sudden crisis (Marseille building collapse). It
is important to note that in this dataset, some crises
occurred in the same time period which implies that
some messages that were scraped for some crises
actually belonged to other (they were annotated as
NOT USEFUL in this case, as they are not related to
the targeted crisis, see below).

3.1 Urgency Annotation Layer

In this dataset, each tweet is annotated according
to its relatedness, urgency and six information type
categories, namely HUMAN DAMAGES and MATE-
RIAL DAMAGES which concern missing, injured,
displaced and dead people or any damaged infras-
tructure that was caused by a crisis, WARNING-
ADVICE that gives security instructions, tips to limit
the damage or weather reports, SUPPORT messages
to the victims, CRITICS messages that denounce
the lack of effectiveness of rescue services, and
OTHER messages that do not have an immediate
impact on actionability but contribute to raising sit-
uational awareness. The first three types are subcat-
egories of urgent messages while the last three are
subcategories of non urgent messages. The dataset
comes with additional metadata including: number
of likes and retweets of the tweet, and number of
likes, followers, following of the user.

4https://github.com/DiegoKoz/french_
ecological_crisis
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The collection is extremely imbalanced with
11.24% useful but NOT URGENT, 16.74% URGENT

and 72.02% NOT USEFUL messages, which is in
line with the proportions reported in other crisis cor-
pora. A subset of this dataset composed of 6, 669
tweets have been selected for SA annotations, so
that almost all URGENT (2,080) and NON URGENT

(1,401) messages have been annotated. Only 3,188
NOT USEFUL tweets have been selected in order to
reduce the size of this class but keep it majoritary.
Note that pre-existing urgency tags and metadata
information have been removed to prevent anno-
tators from getting biased by specific urgency-SA
pairs.

3.2 Speech Act Annotation Layer

Our classification of SA elaborates on the funda-
tional Austinian and later Searlian distinction by (i)
relying on propositional content and lexical clues
such as modals (should, must, can, ...), evalua-
tive adjectives, attitude verbs (think, believe, want,
hope ...); (ii) introducing the category ‘subjectives’,
which reshuffles some of the earlier classifications
(‘wishes’, for instance are ‘subjectives’ rather than
‘jussives’ in our classification (e.g. (Condoravdi
and Lauer, 2012)); (iii) considering presupposi-
tional content as well (see (Mari, 2016) on French).

We distinguish four categories which are mu-
tually exclusive and define tweets as wholes, at a
holistic level, as follows:

(1) JUSSIVES, as defined by (Zanuttini et al.,
2012), enhance commitment to take action, as in
(3). In our classification we distinguish: commis-
sives (i.e. the speaker commits himself or herself),
exhortatives (i.e. the speaker commits some rele-
vant individuals), orders (i.e. the speaker commits
the addressee, in the case of authority relations),
and open-options (i.e. the speaker describes the
existence of a possibility).

(3) #Inondation Si vous êtes en zone inond-
able, découvrez comment préparer un kit
de survie
(#Flooding If you are in an area at risk of
flooding, discover how to prepare a sur-
vival kit).

(2) ASSERTIVES. Assertions are considered
to convey objective truth (as opposed to subjec-
tive truth (Giannakidou and Mari, 2021)). With
assertives, the speaker is committed toward the
truthfulness of the proposition that is being uttered

((Portner, 2018) a.o.) and require their interlocutor
to update the common ground (Ginzburg, 2012).

(4) Inondations dans l’Aude : la région
débloque 25MC, le président Macron sur
place lundi
(Flooding in Aude: the region unlocks
25MC, the president Macron on the spot
on Monday).

(3) INTERROGATIVES. This category is dedi-
cated to a variety of questions including both those
that require an informative answer and those that,
besides triggering an answer, reveal bias and ex-
pectations on the part of the speaker (see (Ladd,
1981)).

(5) Salut Chelsea, comment ça va, la tempête,
par chez vous?
(Hi Chelsea, how is the storm at your
place?).

(4) SUBJECTIVES. Finally, with subjectives,
the speaker shares a mental state that can be either
a personal evaluation or preference (see among
many others (Lasersohn, 2005)) or an expressive
state (an emotion or a feeling). The interlocutor is
asked to update the common ground not just with
the content of the evaluation but with the evaluation
itself (see (Simons, 2007), and for recent discus-
sion on French (Mari and Portner, 2021)). In our
classification, ‘wishes’, for instance are ‘subjec-
tives’ rather than ‘jussives’ as they do not trigger
any committment to act so to make the content of
the wish true.

(6) Grosse pensée à ma Laure qui est en Mar-
tinique avec l’ouragan
(My thoughts are with my Laure, who is
in Martinique with the hurricane.)

Finally, OTHERS is added to the classification,
for uncertain or unclassifiable cases, as in (7).

(7) Simulation #3D d’une #inondation à
Issy-les-Moulineaux merci à @Ubick3D
pour le prêt #ortho3D #InterAtlas
(3D simulation of a flood in Issy-les-
Moulineaux thanks to @Ubick3D for the
loan #ortho3D #InterAtlas).

The final dataset is therefore composed of
6,669 tweets. Here is a representative example
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of a tweet in our dataset, along with its corre-
sponding annotation: Relatedness=USEFUL, Ur-
gency=URGENT, Information type=HUMAN DAM-
AGE, SA=ASSERTIVE:

(8) #irma st martin: nouveau bilan provisoire
avec 8 morts et 21 blessés à St. Martin
(#irma st martin: new provisional death
toll of 8 dead and 21 injured in St. Martin)

3.3 Results of the Annotation Campaign
We hired two native French speaking annotators,
both master’s degree students in Linguistics in or-
der to annotate tweets. We performed a two-step
annotation where an intermediate analysis of agree-
ment and disagreement between the annotators was
carried out. 448 tweets have been annotated in
the first step by both annotators so that the inter-
annotator agreement could be computed (Cohen’s
Kappa=0.62). Most cases of disagreement come
from the difficulty of disentangling SUBJECTIVES

from ASSERTIVES, in particular when attitudes
and modal expressions are used such as believe,
think that, etc. Indeed, both the subjective expres-
sions (think, believe, or even more complex modal-
tense-aspect combinations such as fallait, which
translates as ‘should have been’ with an additional
implicature of preference in (9)) or their content
can be targeted, according to their contextual rele-
vance. This delicate distinction is often resolved in
different manners by annotators.

(9) Et maintenant il n’y a presque plus de
fumée... Il fallait arrêter le trafic ce matin
et pas au milieu de la journée.
(And now there is almost no more smoke...
Traffic should have been stopped this
morning and not in the middle of the day).

Table 1 details the frequency of SA tags when
paired with the original urgency annotations. The
final distribution of annotated tweets is 59.8%,
22.3%, 10%, 4.5% and 3.3% for ASSERTIVE, SUB-
JECTIVE, JUSSIVE, OTHER and INTERROGATIVE

respectively. Concerning the two most frequent
SA (ASSERTIVE and SUBJECTIVE), two observa-
tions emerge: (1) Among URGENT messages (resp.
NON URGENT), 86.6% (resp. 48.7%) are AS-
SERTIVE; and (2) Only 5% of URGENT messages
are SUBJECTIVE while 29% of NON URGENT mes-
sages are. Similarly, we observe that 7% of JUS-
SIVE are URGENT vs. 14% NON URGENT. All

these frequencies are statistically significant using
the χ2 test (χ2 = 1, 1011.62, df = 8, p < 0.01).
When measuring the dependency strength between
urgency and SA categories using the Cramer’s V,
we get (V = .28, df = 2) which confirms the
statistical correlation between these two classifica-
tions.

URG NON URG NON USEF TOTAL
ASSERT. 1,802 682 1,506 3,990
JUSS. 145 203 321 669
SUBJ. 106 406 976 1,488
INTERR. 20 58 145 223
OTHER 7 52 240 299
Total 2,080 1,401 3,188 6,669

Table 1: Urgency- SA annotation pairs statistics.

Table 2 further details the SA distribution for
each crisis. We can see that ASSERTIVE messages
are the most frequent ones regardless of the crisis.
Another interesting finding concerns the distribu-
tion of SA in sudden crisis. Indeed, SA frequen-
cies are relatively similar in natural disaster crisis
(flood, storms and hurricane) with about 60% of
ASSERTIVE and 20% of SUBJECTIVE. However
in the Marseille building collapse, we observe a
higher proportion of SUBJECTIVE (35% vs. 49%
for ASSERTIVE) showing that people tend to ex-
press fewer messages of warning-advice but many
critics denouncing the lack of effectiveness of gov-
ernment social action.

4 Speech Acts for Urgency Detection

We propose several models to automatically clas-
sify a tweet according to its relatedness (binary
classification–REL), urgency (three classes–URG)
and information type categories (multiclass–INF)
while injecting SA information into the learning
process. Our models have been compared to SA-
agnostic baselines while analyzing the impact of
SA on generalization to new disaster events which
is important for this application, since disasters
can vary widely with respect to both their specific
properties as well as their types. Although SA
detection is an important preliminary step, this is
however out of the scope of this paper. Note that a
baseline CamemBERT model (Martin et al., 2019)
fine-tuned to predict the five SA tags achieves a
macro F-score of 0.686 with a precision of 0.690
and recall of 0.701. Improvement of these results
is left for future work.
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ASSERTIVE SUBJECTIVE JUSSIVE INTERROGATIVE

Flood

Aude 718 (71.37%) 184 (18.29%) 84 (8.35%) 20 (1.99%)
Corse 248 (63.75%) 73 (18.77%) 45 (11.57%) 23 (5.91%)
Other Flood 631 (64.65%) 180 (18.44%) 137 (14.04%) 28 (2.87%)
Total 1,597 (67.36%) 437 (18.43%) 266 (11.22%) 71 (2.99%)

Storms

Beryl 174 (59.18%) 87 (19.59%) 22 (7.48%) 11 (3.74%)
Bruno 201 (61.47%) 94 (28.75%) 17 (5.20%) 15 (4.59%)
Susanna 230 (61.66%) 92 (24.66%) 45 (12.06%) 6 (1.61%)
Ulrika 170 (60.71%) 60 (21.43%) 43 (15.36%) 7 (2.5%)
Berguitta 189 (60.77%) 73 (23.47%) 35 (11.25%) 14 (4.5%)
Fionn Corse 238 (69.79%) 69 (20.23%) 28 (8.21%) 6 (1.76%)
Egon 185 (58.92%) 95 (30.25%) 24 (7.64%) 10 (3.18%)
Eleanor 208 (67.10%) 69 (22.26%) 26 (8.39%) 7 (2.26%)
Total 1,595 (62.55%) 639 (25.06%) 240 (9.41%) 76 (2.98%)

Hurricane

Harvey 168 (58.74%) 59 (20.63%) 36 (12.59%) 23 (8.04%)
Irma 487 (55.72%) 251 (28.78%) 100 (11.44%) 36 (4.12%)
Total 655 (56.47%) 310 (26.72%) 136 (11.72%) 59 (5.09%)

Collapse Marseille 143 (49.48%) 102 (35.39%) 27 (9.34%) 17 (5.88%)

Table 2: SA distribution for each crisis.

4.1 SA-agnostic Models

SA-aware models have been compared to Ko-
zlowski et al. (2020), the only existing work in
French that has shown to outperform state of the
art on urgency detection. Kozlowski et al. (2020)
models rely on a language adaptation version of
FlauBERT base cased model (Le et al., 2020), ini-
tially trained on a general domain, and fine-tuned
for the crisis domain using a set of French unla-
beled dataset of 358,834 tweets. Our baselines are:

– FlauBERTtuned. This is the original tuned ver-
sion of FlauBert trained on our dataset with a cross-
entropy loss. We newly add FlauBERTtuned

wl, a
variant that uses the weighted loss instead to handle
class imbalance.5 The results obtained with this
variant model being more productive, the weighted
loss has been used in all the following models.

–ML3. FlauBERTtuned
wl is trained in a multi-

task fashion by learning simultaneously the three
urgency tasks, namely relatedness, urgency classifi-
cation, and information type. The classifiers share
and update the same low layers of FlauBERTtuned

wl

except the final task-specific classification layer.

These baselines have been boosted by adding
tweet meta data, as given by the dataset, as they
have been shown to be quite informative in ur-
gency detection (Truong et al., 2014; Kozlowski
et al., 2020; Neppalli et al., 2018). This leads to
two extra-models: FlauBERTtuned

wl+Meta and
ML3+Meta.

5We also experimented with focal loss (Lin et al., 2017)
but the results were lower.

4.2 SA-aware Models

SA are incorporated into FlauBERT models in two
ways. First, rely on SA gold annotations as addi-
tional extra-features. We experimented with several
ways to inject SA among which representing SA
as numerical values (0 for ASSERTIVE, 1 for SUB-
JECTIVE, etc.), inserting SA tags at the end of the
tweet using a specific marker (e.g., < Assertif >
for ASSERTIVE tweets), representing SA as one
hot vector, and finally consider each SA tag as a
unique binary feature to model its presence or ab-
sence. The last option was the most productive
and is used in four models: FlauBERTtuned

wl+SA,
FlauBERTtuned

wl+SA+Meta, ML3+SA, and
ML3+SA+Meta.

The previous configuration is an ideal case where
urgency detection benefits from gold SA which
may not be available for unseen/new disaster events.
We therefore designed a more realistic scenario
where SA detection is considered as an auxiliary
task. This is a multitask learning approach that
jointly learns urgency detection with SA classifi-
cation as a secondary task. Two models are newly
proposed:

–ML2: It corresponds to FlauBERTtuned
wl

trained to perform SA together with one urgency
task (i.e., two tasks among REL+SA, URG+SA or
INF+SA). This configuration aims to investigate
what are the tasks that may benefit the most from
injecting SA information among relatedness, ur-
gency and information type.

–ML4: FlauBERTtuned
wl learns SA together

with the three urgency tasks. This is a four task con-
figuration that corresponds to SA+REL+URG+INF.
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These two models are further augmented with
tweet meta features, resulting in two other models:
ML2+Meta and ML4+Meta.

4.3 Experimental Settings
Following the general trends in evaluating urgency
detection during disaster events, we designed two
evaluation protocols:

• [OE] out-of-event by testing on unseen events
for which no manually annotated data is avail-
able during training. To ensure a fair compar-
ison with (Kozlowski et al., 2020), we used
the same test sets composed of crises Eleanor
and Bruno. This choice is also motivated by
the fact that these two crises did not show the
mentioned overlap with other crises and hence
there was no information leak from one event
to another (cf. Section 3);

• [OT] out-of-type by training on a pool of
events related to different types of crises and
testing on a particular different type. We used
the building collapse as a test set. While the
hurricanes and floods are known with antici-
pation, a building collapse is a sudden event
with pretty different distributions in terms of
urgency categories, making the [OT] configu-
ration more challenging.

During the experiments, all the five SA tags have
been taken into account for urgency detection. 6

5 Results

5.1 Out-of-event and Out-of-type Detection
The results of [OE] and [OT] configurations in
terms of macro-F1 scores are given in Table 3.
It shows that SA-enhanced models beat SA ag-
nostic ones for urgency and information type de-
tection in both the [OE] and [OT] evaluation set-
tings. In [OE], ML3+SA+Meta improves over the
FlauBERTtuned

wl and FlauBERTtuned
wl+Meta base-

lines and this is more salient for information type
classification. The same observations hold for [OT]
where SA boost the scores when injected both as
extra-features and as an auxiliary task. Another
interesting finding is that joint learning of SA and

6We tried several groupings of SA tags among which AS-
SERTIVE vs. not ASSERTIVE, (ASSERTIVE+SUBJECTIVE)
vs. (INTERROGATIVE+JUSSIVE+OTHER) to measure what
are the SA combinations that contribute the most to the task at
hand. Our results show that all SA are relevant.

urgency tags (i.e., ML2) achieves results compara-
ble to those obtained in the ideal case, i.e. when
incorporating gold SA annotations as extra-features.
Also, when coupling SA with tweet meta features,
the results improve in most experiments, confirm-
ing the importance of extra-linguistic information
for urgency detection. On the other hand, when
compared to the best baseline, SA injection into
relatedness detection achieves similar scores in
[OE] while they decrease in [OT]. This was how-
ever expected as the relatedness baseline classi-
fiers perform relatively well (F-score=0.849 and F-
score=0.856 for [OE] and [OT] respectively). This
can be explained by the same proportions of SA we
observed in each of the USEFUL and NOT USEFUL

class where ASSERTIVE messages are a majority
followed by SUBJECTIVE ones (see Table 2).

When looking into the scores per class for ur-
gency detection in [OE] (see Table 4), we observe
that SA are the most helpful for predicting UR-
GENT messages with an important boost up to
(+3%) for NON URGENT tweets. A boost is ob-
served in [OT] where SA injection improves by
+1.2% over the SA-agnostic best model. Regard-
ing the ability of the models to filter-out irrelevant
messages, we observe that the results with SA are
stable in [OE] (with an F-score=0.887) while they
increased in [OT]. It is interesting to note that the
results obtained in real scenario via multitask learn-
ing models (i.e., ML2 and ML4) achieve good re-
sults compared to the models that rely on SA gold
annotations. More importantly, multitask models
outperform SA-agnostic baselines which show the
importance of SA for fine-grained urgency detec-
tion in social media.

Concerning information type classification, Ta-
ble 57 shows that the SA-aware model in the [OE]
setting is able to predict MATERIAL DAMAGES,
NOT USEFUL as well as OTHER non urgent mes-
sages (related to animals, messages that aim to pro-
vide additional information via external links via
URLs, photos or videos, and prevention messages
that provide general-purpose safety instructions up-
stream of crisis). When testing on a particular dif-
ferent event (i.e., a sudden event like the build-
ing collapse in Marseille), the [OT] configuration
shows an improvement on MATERIAL DAMAGES

and WARNING ADVICE. Finally, it is also interest-
ing to note that major improvements concern the

7The two events used for testing do not have any CRITICS
messages.
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OUT-OF-EVENT OUT-OF-TYPE
REL URG INF REL URG INF

SA-agnostic‡

FlauBERTtuned 0.846 0.681 0.537 0.838 0.709 0.459
FlauBERTtuned

wl 0.847 0.688 0.646 0.842 0.714 0.476
FlauBERTtuned

wl+Meta 0.837 0.698 0.545 0.856 0.707 0.512
ML3 0.842 0.654 0.604 0.838 0.704 0.487
ML3+Meta 0.849 0.679 0.635 0.844 0.689 0.441

SA-aware as extra-features
FlauBERTtuned

wl+SA 0.849 0.680 0.550 0.844 0.725 0.515
ML3+SA 0.849 0.693 0.612 0.839 0.720 0.521
ML3+SA+Meta 0.844 0.708 0.660 0.848 0.704 0.503

SA-aware as an auxiliary task ML2 0.841 0.703 0.651 0.845 0.708 0.533
ML2+Meta 0.841 0.693 0.654 0.834 0.688 0.531
ML4 0.847 0.697 0.660 0.835 0.684 0.521
ML4+Meta 0.842 0.689 0.640 0.816 0.703 0.433

Table 3: Urgency detection results in terms of Macro F1-score. ‡: SA agnostic strong baselines. Bold font:
Outperforming models over the baselines.

NOT USF. URG NOT URG.
OUT-OF-EVENT SA-agnostic

FlauBERTtuned
wl+Meta 0.877 0.847 0.370

ML3+Meta 0.877 0.851 0.308
OUT-OF-EVENT SA-aware

ML2 0.877 0.839 0.392
ML3+SA+Meta 0.873 0.851 0.400

ML4 0.876 0.856 0.357
OUT-OF-TYPE SA-agnostic

FlauBERTtuned
wl 0.891 0.722 0.531

OUT-OF-TYPE SA-aware
FlauBerttuned

wl+SA 0.918 0.714 0.543
ML2 0.900 0.713 0.513

Table 4: Impact of SA injection for urgency
classification per class in terms of macro F1-scores.

classes with the less number of instances in the test
set.

To test whether these improvements are type-of-
event dependent, we split the dataset into 4 main
groups of events: floods (F), storms (S), hurricanes
(H) and collapse (C). We then evaluate our [OT]
models by calculating the mean of the F1-scores
for the following experiments : (1) train on (F, S,
H) and test on (C); and (2) train on (F, S, C) and test
on (H).8 We obtain average F1-scores of 0.587 and
0.601 for information type multiclass classification
for FlauBERTwl+SA and ML2 models respectively
which represents an improvement up to 2.3% and
3.7% over FlauBERTwl+Meta, our best performing
baseline.

5.2 Error Analysis

A manual error analysis for ML2, the best model
in a real scenario, shows that misclassifications
for urgency are not due to SA error prediction: in-

8Training on (S, H, C) (resp. (F, H, C)) and testing on (F)
(resp. (S)) is not possible since the training sets are too small.

deed, 82% of urgent misclassified instances have
a correct SA prediction for [OE] (resp. 84% for
[OT]). Errors for [OE] are mainly non-useful tweets
(71%), such as Be careful, a storm is a bad omen
for next year classified as urgent probably because
of the phrase be careful. Among misclassified ur-
gent instances, 38.4% are tweets conveying sev-
eral information type categories, for example LIVE
- Two apartment buildings collapse in downtown
Marseille - A third one threatens to collapse - At
least two light injuries which contains both infor-
mation about HUMAN DAMAGES (prediction) and
a MATERIAL DAMAGES (annotation).

6 Conclusion

This paper newly addresses the role of speech acts
in urgency detection in tweets. In particular, we
propose a dataset of French tweets about urgent
situations and create models that utilize speech acts
to classify the tweets. We also analyze the general-
ization of the models over new urgent events. Our
results are encouraging and demonstrate that SA
improve urgency detection. This is more salient for
out-of-type evaluation setting, where the SA-aware
approach has shown to have a good generalisation
power in fine-grained classification.

This work could be very useful to government
workers who need to respond to natural disasters
and to decide how to deploy possibly limited re-
sources. As future work, we plan to explore a
finer-grained SA taxonomy on urgency detection.
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Abstract

Given a specific discourse, which discourse
properties trigger the use of metaphorical lan-
guage, rather than using literal alternatives?
For example, what drives people to say grasp
the meaning rather than understand the mean-
ing within a specific context? Many NLP ap-
proaches to metaphorical language rely on cog-
nitive and (psycho-)linguistic insights and have
successfully defined models of discourse coher-
ence, abstractness and affect. In this work, we
build five simple models relying on established
cognitive and linguistic properties – frequency,
abstractness, affect, discourse coherence and
contextualized word representations – to pre-
dict the use of a metaphorical vs. synonymous
literal expression in context. By comparing the
models’ outputs to human judgments, our study
indicates that our selected properties are not suf-
ficient to systematically explain metaphorical
vs. literal language choices.

1 Introduction

Metaphors are "not just nice", but represent a "nec-
essary" element of everyday thought and commu-
nication (Ortony, 1975; Lakoff and Johnson, 1980;
van den Broek, 1981; Schäffner, 2004, i.a.), and are
ubiquitous in natural language text corpora (Gedi-
gian et al., 2006; Shutova and Teufel, 2010; Steen
et al., 2010, i.a.). From the perspective of natural
language processing (NLP), automatic approaches
to metaphor processing are therefore important for
any task that requires natural language understand-
ing, and NLP has been concerned with the detection
(Köper and Schulte im Walde, 2016; Alnafesah
et al., 2020; Ehren et al., 2020; Dankers et al., 2020,
i.a.), the interpretation (Shutova, 2010; Bizzoni and
Lappin, 2018; Mao et al., 2018, i.a.) and, the gen-
eration (Stowe et al., 2021; Zhou et al., 2021) of
metaphors.1

1See Tong et al. (2021) for a systematic, comprehensive
review and discussion of the most recent metaphor processing
systems and datasets.

As to our knowledge, however, no study so far
has raised the question of WHY a metaphorical ex-
pression is used within a specific discourse, rather
than an equally plausible literal alternative. For ex-
ample, consider the discourse in table 1, where both
the metaphorical expression grasp the meaning and
its synonymous literal alternative understand the
meaning seem equally acceptable (Piccirilli and
Schulte im Walde, 2021, 2022). What are the fac-
tors priming for one use or the other? Are there
cues within the discourse which influence the se-
lection of one usage over the other? To which
extent can computational approaches based on dis-
course properties model human behavior regarding
the choice between synonymous metaphorical vs.
literal language usage?

According to psycholinguistics and computa-
tional linguistics research, the processing of words
is a function of their frequency of occurrence
in the language (van Jaarsveld and Rattink, 1988;
Wittmann et al., 2017, i.a.). Is the choice between
a metaphorical and a literal expression therefore
just an effect of frequency? In contrast, concep-
tual metaphor theory establishes metaphorical lan-
guage as a figurative device for transferring knowl-
edge from a concrete domain to a more abstract
domain (Lakoff and Johnson, 1980), and the hy-
pothesis that metaphorical usages correlate with the
abstractness of the context has been supported
in numerous NLP studies on automatic metaphor
identification (Turney et al., 2011; Tsvetkov et al.,
2013; Köper and Schulte im Walde, 2016; Alnafe-
sah et al., 2020; Hall Maudslay et al., 2020). Affect
has also been explored with regard to metaphoric-
ity. Not only has metaphorical language been found
to carry a stronger emotional load than literal lan-
guage (Blanchette and Dunbar, 2001; Crawford,
2009), but metaphorical words and sentences are
also judged to be "more emotionally engaging"
than their synonymous literal paraphrases (Citron
and Goldberg, 2014; Mohammad et al., 2016), and
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This wasn’t just a play on words, rather it was a demand that they should ’maintain a consistency between their words and
their actions’. But I agree, that still does not absolve them from the need to speak truth to power. In our times when people
spend so much time with TV and the internet, do they have the interest and time to read poetry? Many people believe that it
is difficult to read poetry. Can everyone [grasp / understand the meaning] of a good poem, or is a skill necessary?

Table 1: Example of a discourse from the dataset introduced by Piccirilli and Schulte im Walde (2021). Both the literal expression
understand meaning and its metaphorical counterpart grasp meaning seem equally acceptable in the discourse.

informing NLP models with emotion features has
proven useful for metaphor detection (Gargett and
Barnden, 2015; Köper and Schulte im Walde, 2018;
Dankers et al., 2019). When analyzing metaphor-
ical discourse features (Glucksberg, 1989; Steen,
2004) and the interactions of discourse coherence
with the contextual salience of metaphorical vs. lit-
eral expressions (Inhoff et al., 1984; Gibbs, 1989;
Giora, 1997; Giora and Fein, 1999; Gibbs, 2002;
Kövecses, 2009), findings are directly connected
with the theory of discourse cohesion, i.e., the prin-
ciple that discourse should be a "group of collo-
cated, structured, and coherent sentences" (Halli-
day and Hasan, 1976; Jurafsky and Martin, 2019).
Models relying on the coherence of lexical seman-
tic discourse structures have therefore been suc-
cessful in identifying metaphors (Sporleder and Li,
2009; Bogdanova, 2010; Mesgar and Strube, 2016;
Dankers et al., 2020). From a yet different per-
spective, Transformer-based pretrained language
models (T-PLMs) (Vaswani et al., 2017), pre-trained
on the language modeling task, are able to predict
masked items in context and produce contextual
embeddings accounting for both left and right con-
texts, and resulting in word representations that are
dynamically informed by the surrounding words.

The rich previous interdisciplinary research on
figurative language seems to agree on tight in-
teractions between metaphorical language detec-
tion and properties of the respective discourses,
i.e., cognitive aspects (abstractness and affect),
discourse coherence and contextual properties.
Do these discourse properties indeed trigger the
use of a metaphorical vs. its synonymous coun-
terpart? We address this question by exploring
five simple discourse-based models inspired by
the above-mentioned properties, namely frequency,
abstractness, affect, discourse coherence and con-
textualized word representations. We approach
the question within two studies. First, we explore
discourse features of metaphorical usages occur-
ring in natural language by applying the cognitive
and linguistically-inspired models to existing dis-
courses from the English corpus ukWaC (Baroni

et al., 2009). Then, we zoom into the models’ pre-
dictions and evaluate them against human prefer-
ences (i.e., annotations) for metaphorical vs. literal
language within the same discourses. By modeling
the prediction for synonymous metaphorical vs. lit-
eral expressions motivated by the above discourse
perspectives, we gain insight into human behavior
for metaphorical vs. literal languages choices.

2 Dataset

Research on figurative language has produced im-
pressive resources on the metaphoricity of lexi-
cal items. However, these resources have limita-
tions regarding the specific task we are addressing
in this work: (i) the context in which words are
metaphorically used is not large enough, providing
human judgments only on the word-level (Steen
et al., 2010) or on the sentence-level (Stefanow-
itsch, 2008; Shutova and Teufel, 2010; Moham-
mad et al., 2016), (ii) the target words or expres-
sions are ambiguous, i.e., they may have both a
metaphorical and a literal sense (Tsvetkov et al.,
2013; Mohler et al., 2016), (iii) they are extended
metaphors (Gibbs, 2006; Martin, 2008), (iv) the
paraphrases to metaphorically-used words are au-
tomatically generated and no manual annotations
were provided to evaluate the outputs (Bollegala
and Shutova, 2013; Bizzoni and Lappin, 2018, i.a.).

We therefore use our recently released dataset
specifically designed to investigate the choice of
metaphorical vs. literal expressions in context (Pic-
cirilli and Schulte im Walde, 2021, 2022). It con-
tains a total of 1,000 discourses of five to six sen-
tences (98 words on average), in which the final sen-
tence of each discourse contains either a metaphor-
ical expression or its literal alternative from a pair
of synonymous subject–verb (SV) or verb–object
(VO) expressions. Table 1 presents an example for
the VO pair grasp/understand meaning. The overall
50 pairs of English expressions were selected from
Shutova (2010) and Mohammad et al. (2016), and
for each of the pairs, we extracted 20 discourses
from the ukWaC (Baroni et al., 2009), 10 of which
containing the metaphorical usage (e.g., grasp) and
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10 of which containing the literal paraphrase (e.g.,
understand). To gain insight into human prefer-
ences between the selected pairs of metaphorical vs.
literal expressions, we also collected crowdsourced
human judgments for these 1,000 discourses, ask-
ing annotators to choose which expression they
favored given the preceding discourse. This dataset
is therefore optimal for the task at hand, as it pro-
vides (i) synonymous metaphorical vs. literal ex-
pressions, (ii) at the discourse-level, (iii) manually
annotated. In the present work, we make use of
the 1,000 discourses containing the original expres-
sions in the ukWaC and the annotators’ choices
for metaphorical vs. literal usages within a subset
of 287 discourses, where 70% or more annotators
agreed on the preference (metaphorical or literal).

3 Models and Experimental Setup

3.1 Prediction models
We approach the task of predicting the use of
metaphorical vs. literal expressions as a prompting
task: given an input prompt2, the models predict
whether the missing span should be the metaphori-
cal or the literal expression. We apply five models
relying on discourse properties, where each model
approaches the task from a different perspective, to
give us insight on which discourse features influ-
ence the metaphorical vs. literal selection.

Frequency approach When given the choice be-
tween a metaphorical expression and its synony-
mous counterpart, do we tend to favor the most
frequent usage? Baseline (Freq.): Our baseline re-
lies on the occurrences of the SV and OV tuples in
the original ukWaC corpus: the model receives the
prefix prompt as input, and always outputs the most
frequent expression of the pair.

Cognitively-inspired approaches The cogni-
tive interaction between abstractness/affect and
metaphorical language raises the question: to
which extent (i) a more abstract discourse and
(ii) a more emotionally-loaded discourse favor a
metaphorical usage? Abstractness (Abstr.): We
measure the abstractness of a discourse preceding
the target expression within four settings, based
on the norms from Brysbaert et al. (2014). We
assign abstractness scores to all words (Abstr.all),
only nouns (Abstr.n), only verbs (Abstr.v) or only
adjectives (Abstr.adj). We then obtain an overall

2The input prompt is a prefix prompt for all models except
for BERT, whose input is a cloze prompt.

rating of abstractness for each discourse by com-
puting the median of the respective lexical items’
abstractness scores. For each setting, we use as
threshold the abstractness median of the respective
part-of-speech class, and the model predicts the
metaphorical expression if the overall abstractness
score of the discourse is below that threshold (i.e.,
more abstract/less concrete), and the literal coun-
terpart if above (i.e., less abstract/more concrete).
Emotionality (Emo.): We build a model predicting
the target expression based on the emotionality of
the preceding discourse, which we represent using
the English emotion lexicon from Buechel et al.
(2020). Each lexical item from the preceding dis-
course is assigned an emotionality score, and the
median represents the overall emotionality score of
the discourse. Appendix A.1 provides details on
the emotionality score.

Discourse coherence approach Is the choice
of an expression from a synonymous pair driven
by the semantic relatedness between the compo-
nents of that expression and the lexical items in the
surrounding context? We adapt the Lexical Co-
herence Graph (LCG) introduced by Mesgar and
Strube (2016) to measure the semantic relatedness
between the words in the preceding context and the
target expression contained in the final discourse
sentence: we compute the cosine scores for the
two components in the SV/VO expressions (i.e., the
verb and its argument) and each word in the pre-
ceding discourse, relying on contextualized BERT

embeddings (Devlin et al., 2019). The output is a
graph connecting the preceding context to both the
metaphorical expression and its synonymous alter-
native; edge weights are represented by the average
of the respecting cosine values. The expression –
metaphorical or literal – with the maximum weight
(i.e., the largest average cosine score) is selected.
Appendix A.2 provides details on the LCG score.

Contextualized discourse properties How do
contextualized word representations prime for the
use of a metaphorical vs. literal preference? Our
question triggers a cloze-task style (Taylor, 1953)
and applies the Pre-trained Language Model
BERT (Devlin et al., 2019) in a zero-shot manner.
We give a cloze prompt as input to the model, as
in table 1: we mask the target expression, and the
model selects the most probable answer amongst
the two candidates (metaphorical or literal). We
experiment with both BERTbase and BERTlarge.
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3.2 Experimental Setup
We compare our models’ predictions against two
gold standards. We first evaluate the models’ out-
puts against the 1,000 discourses collected from
ukWaC, containing the balanced originally-used
metaphorical or literal expressions (Orig. Data)
to investigate which discourse aspects (abstract-
ness, emotionality, coherence, word representa-
tions) might have primed the metaphorical vs. lit-
eral selection. We expect the model predictions
to provide insight into the features that influenced
the original speakers’ preferences. We then zoom
into the annotated version of the same data (Anno.
Data), for which participants were asked which
expression, metaphorical or literal, they favored
in the given 287 discourses (cf. Section 2). We
analyze whether (dis-)agreements between humans
are also reflected in the models’ predictions.

4 Results and Analyses

We first analyze the models’ predictions with re-
gard to metaphorical vs. literal usages in the orig-
inally-extracted data (Orig. Data), to address the
question: do cognitive and linguistically-inspired
models reflect metaphorical language usage en-
countered in natural language corpora? The first
column of figure 1 presents the accuracy score of
each model with regard to Orig. Data. All mod-
els reach around 50% of accuracy; however, they
behave very differently regarding their individual
predictions.3 Figure 1 presents the percentages of
overlapping output decisions between our five mod-
els, revealing interesting insights: we observe 77%
overlapping predictions between the PLMs with the
frequency baseline, suggesting that the majority of
PLM predictions is frequency-driven, which is not
the case for most abstractness settings and emotion-
ality. Emotionality itself correlates with abstract-
ness in all settings but the one where we consider
only adjectives, which is surprising as adjectives
tend to carry a lot of emotions (Mohammad and
Turney, 2010; Bostan and Klinger, 2019). The over-
lap between LCG and BERT reaches 62%, whereas
its correlations with abstractness and emotional-
ity are rather low, suggesting that decisions based
on abstractness and emotionality are different to
those based on word representations and semantic
relatedness. At first sight, our different perspec-
tives seem rather complementary, which is yet to
be verified in future studies.

3Appendix B.1 presents further prediction differences.

Figure 1: Accuracy scores of each model with regard to the
original data (1st column in red) and percentages of overlap-
ping output decisions between models.

Overall, none of our models seems to reliably
predict what is observed in natural language data.
We thus cannot derive what might have triggered
the original speakers to favor a metaphorical or
literal expression over the other.

We then compare our models’ predictions to hu-
man behavior: are the proportions of metaphorical
vs. literal predictions from our models similar to hu-
man perceptions (Anno. Data)? Figure 2 presents
the proportions of the metaphorical expressions
predicted by four of the models in relation to the
proportions of metaphorical usages favored by the
human judges.4 If humans and models were mak-
ing similar decisions, all data points, each repre-
senting the proportion of metaphorical uses for a
pair of expressions, would be on the regression
line. We make different observations depending on
the model in question. As far as frequency is con-
cerned, the model predicts either the metaphorical
or the literal expression (100% or 0% respectively,
in the graph). Many literal expressions that are
favored by participants (low x-axis %) seem to
correlate with their higher occurrences in natural
language corpora, e.g., make vs. throw remark (VO).
However, humans also favor many metaphorical ex-
pressions which are less frequently used, e.g., stir
vs. cause excitement (VO) and inversely, a few
metaphorical expressions which are more frequent
than their literal counterparts are not necessarily
favored by people, e.g., poison vs. corrupt mind
(VO). Thus, frequency does not seem to be a system-
atic factor for metaphorical/literal choices. Regard-

4Appendix B.2 shows the graphs for all models.
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Figure 2: Proportions of predicted metaphorical expressions for each model, with regard to the proportions of these
metaphorical expressions favored by annotators. Appendix B.2 shows the graphs for all models.

ing abstractness, many expressions fall perfectly
on the regression line, e.g., twist vs. misinterpret
word (VO), story grab vs. intrigue (SV), suggesting
at first some interactions between the expression
preferences and the abstractness of the respective
discourses. However, the numerous metaphorical
expressions that are predicted by the model (80%+)
but not by humans, e.g., taste vs. experience free-
dom (VO), factor shape vs. determine (SV) do not
confirm that hypothesis. Concerning the LCG, the
picture is less clear. Many literal expressions are
favored by both the model and humans, e.g., color
vs. affect judgement (VO), but many metaphorical
usages are preferred by humans when the model
predicts the literal ones, e.g., breathe vs. instill life
(VO). Therefore, metaphorical vs. literal coherence
does not seem either to be a determining factor
for metaphorical vs. literal preference, respectively,
which does not support the context-salience hy-
pothesis, where one would expect a metaphorical
expression to be favored following a metaphorical
discourse, and ditto for a literal expression/literal
discourse (Kövecses, 2009). Finally, the overall
low metaphorical predictions by the PLM are expres-
sions for which humans provide high metaphorical
proportions, such as abuse vs. drink alcohol (VO).
This suggests a potential lack of metaphorical lan-
guage representation, in line with our observation
concerning abstractness and emotionality.

5 Discussion and Future Work

Previous research has provided evidence for inter-
actions between metaphorical language and dis-
course properties, namely frequency, abstractness,
affect, discourse coherence and contextualized
word representations, on the word- and sentence-

level. In this work, we took a step further: we
looked at the task of predicting the use of a
metaphorical vs. synonymous literal expression
and built models based on the above-mentioned
features on the discourse-level. Our findings show
that these discourse properties do not seem to be
indicative of metaphorical usage.

We propose several directions for future work.
First of all, we considered discourses of around five
sentences, but the decision on the context window
might have an impact on the findings. Further work
exploring the optimal size of preceding context
would be interesting. Another promising direction
might analyze PLMs’ attention mechanisms (Ten-
ney et al., 2019; Clark et al., 2019) on the presented
task, and also explore the extent to which modify-
ing the attention of such models, i.e., fine-tuning
(Peters et al., 2019; Zhao and Bethard, 2020), im-
proves their performance to mimic human prefer-
ences for metaphorical vs. literal usages. Finally,
we have looked at five features; needless to say that
exploring further discourse properties is necessary,
such as co-reference, complexity, aptness, creativ-
ity, prototypicality, and the influence of genre and
specific domains (e.g., religious/scientific texts).

6 Conclusion

We suggested five simple models to investigate
WHY humans choose to use a metaphorical expres-
sion in a specific discourse. Regardless of the per-
spectives, our work demonstrates that a range of
previously suggested salient discourse properties
do not seem to influence preferences on the choice
between synonymous metaphorical vs. literal ex-
pressions. Our findings thus ask for a more nuanced
approach to metaphorical language choices in NLP.
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A Models

A.1 Emotionality
Buechel et al. (2020) presented a new methodol-
ogy to automatically generate lexicons for 91 lan-
guages comprising eight emotional variables: Va-
lence, Arousal, Dominance (VAD) as well as the five
basic emotions Joy, Anger, Surprise, Fear, Surprise
(BE5) (Ekman, 1992). As a source dataset, they
used the English emotion lexicon from Warriner
et al. (2013), comprising about 14K entries in VAD

format collected via crowdsourcing. They applied
the BE5 ratings from Buechel and Hahn (2018a)
to convert the VAD ratings. Via their monolingual
state-of-the-art multi-task feed-forward network
(Buechel and Hahn, 2018b), they projected ratings
on these eight variables, resulting in an English
lexicon containing 2M word type entries with very
high correlation with human judgments (around
90% for each variable).

We are interested in the emotionality of lexical
items, i.e., the emotional load that a term conveys,
rather than the actual emotion a term refers to. We
therefore use the BE5 ratings of the English lexicon
for our study. Out of the five scores that a term
receives – one for each emotion, we assume that its
highest score is reflective of the "emotional load"
of that term, i.e., how much emotion it conveys.
For example, the lexical item "truth" obtained the
scores 2.24, 1.46, 1.4, 1.49, 1.46 for Joy, Anger,
Sadness, Fear and Surprise, respectively. In our
experiments, the term "truth" is therefore attributed
the score of 2.24 as its emotional load.

A.2 Lexical Coherence Graph
Following Mesgar and Strube (2016), we mea-
sure the semantic relatedness between words repre-
sented by their word embeddings, computing the
cosine score between the two words of the expres-
sion (SV or VO) with each word of the preceding
discourse. Consider va, vb, vc, the word vectors for
word a in the preceding discourse A, word b in the
metaphorical expression Bm contained in the last
sentence B and word c in the literal expression Cl

contained in the last sentence C, respectively. The
cosine scores cos(va, vb) and cos(va, vc) between
the two word vectors is a measure of semantic con-
nectivity of the two words. The range of cos(va, vb)
and cos(va, vc) is between [−1,+1], showing how
well the two words are semantically correlated. Fig-
ure 4 shows how relatedness is measured, and fig-
ure 5 shows the output of the graph.

B Results

B.1 Evaluation: Predictions vs. Original Data
Figure 3 presents the percentages of metaphorical
expressions predicted by each model. As men-
tioned in section 4, the accuracy scores of all mod-
els reach around 50%, but they actually behave
very differently with regard to performances for
metaphorical vs. literal predictions. Remember that
the originally-collected discourses are perfectly bal-
anced (cf. Section 2), where half of the discourses
contains metaphorical expressions and the other
half contains literal expressions from synonymous
pairs. As expected, the frequency baseline there-
fore reaches 50% of accuracy. We note however
that the literal usage of the pairs is the most fre-
quent in the ukWaC corpus (37/50 pairs), which
leads the model to predict the literal counterpart
in 74% of the cases. The abstractness and emo-
tionality models mostly select for the metaphor-
ical usages (up to 100% for Emo.), as the dis-
courses are considered more abstract and more
emotionally-loaded based on the respective norms.
This suggests that original speakers did not per-
ceive the degree of abstractness and emotionality
of the discourse as triggers to favor one usage over
the other. This aligns with the findings in Piccir-
illi and Schulte im Walde (2022), who analyzed
the relationship between the abstractness and emo-
tionality of the preceding discourses with human
preferences for metaphorical vs. literal expressions.
The LCG model favors the literal expressions as
well (62%), while both BERTbase and BERTlarge pre-
dominantly predict the literal expressions (81.80%
and 80.10%, respectively.).

Figure 3: Percentages of metaphorical expressions pre-
dicted by each model.
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Figure 4: Discourse A with three words {w1, w2, w3} and sentences B and C with four words, where {w5, w6}
are the two words composing the metaphorical expression, and {w9, w10} are composing the literal paraphrase.
Depending on the expression input (SV or VO), the respective subject or object is identical in {w5, w6} and
{w9, w10}, as only the verb is used either as a metaphorical or a literal variant. The semantic relatedness between
each word in {w5, w6} and in {w9, w10} is computed with each word in A.

Figure 5: The word relation with the maximum weight (here Bm as indicated by the plain line) represents a stronger
connection with the preceding discourse A.
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B.2 Evaluation: Predictions vs. Annotated Data
Figure 6 presents an overview of the proportion of expressions that are predicted metaphorically by the
models with regard to the preferences of the same expressions by human annotators.

Figure 6: Proportions of the metaphorical expressions predicted by the models with regard to the proportions of
these usages to be favored by the participants.
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Abstract

Class-imbalance naturally exists when train
and test models in different domains. Unsu-
pervised domain adaptation (UDA) augment
model performance with only accessible anno-
tations from the source domain and unlabeled
data from the target domain. However, exist-
ing state-of-the-art UDA models learn domain-
invariant representations and evaluate primar-
ily on class-balanced data across domains. In
this work, we propose an unsupervised domain
adaptation approach via reinforcement learning
that jointly leverages feature variants and imbal-
anced labels across domains. We experiment
with the text classification task for its easily
accessible datasets and compare the proposed
method with five baselines. Experiments on
three datasets prove that our proposed method
can effectively learn robust domain-invariant
representations and successfully adapt text clas-
sifiers on imbalanced classes over domains.
The code is available at https://github.
com/woqingdoua/ImbalanceClass

1 Introduction

Unsupervised domain adaptation (UDA) is to find a
shared feature space that is predictive across target
and source domains (Ramponi and Plank, 2020).
The shared space, domain-independent feature set,
allows transferring of trained text classifiers from
the source domain to the target domain. Methods
to find the space have two major directions, pivot
feature (Blitzer et al., 2006; Daumé III, 2007; Ziser
and Reichart, 2018; Ben-David et al., 2020a) and
adversarial learning (Ganin and Lempitsky, 2015;
Chen et al., 2020b; Du et al., 2020). The pivot-
based method selects a subset of shared features,
called pivots, which learn important cross-domain
information to represent shared feature space. Ad-
versarial learning approaches the shared feature
space by reducing document features’ capability to
distinguish source and target domains. The com-
mon method to achieve this is Gradient Reversal

Layer (GRL) (Ganin and Lempitsky, 2015) aiming
to reduce domain-specific patterns. However, the
UDA approaches primarily focus on feature shifts
(𝑝(𝑋𝑠𝑜𝑢𝑟𝑐𝑒)! = 𝑃(𝑋𝑡𝑎𝑟𝑔𝑒𝑡 )) while ignore possible
class shifts (𝑝(𝑌𝑠𝑜𝑢𝑟𝑐𝑒)! = 𝑝(𝑌𝑡𝑎𝑟𝑔𝑒𝑡 )) across do-
mains.

Class-imbalance naturally exists in data when
label distributions across domains (Cui et al., 2017;
Cheng et al., 2020) are different. Under the class-
imbalanced scenario, the label distribution is imbal-
anced across domains, and the label distributions in
source and target domains are not the same. Given
the widely used Amazon data (Ni et al., 2019) as an
example, the Book reviews may have more positive
reviews than negative reviews, and the Kitchen may
have a lower ratio of negative reviews. However,
evaluating unsupervised domain adaptation under
the class-imbalanced scenario is under-examined
than the ideal scenario of the class-balanced bench-
mark. A wide evaluation benchmark of UDA for
text classifiers is extracted from the Amazon re-
view (Blitzer et al., 2006). The data has the same
balanced-class distributions for both source and tar-
get domains. Such a well-balanced label distribu-
tion may make existing UDA models inapplicable
to the real-world scenario, where class distributions
can shift across domains.

In this study, we proposed an unsupervised re-
inforcement adaptation model (URAM) for text
classifiers under the UDA setting that only labeled
source data and unlabeled target data are available.
Specifically, we propose a neural mask mechanism
to generate domain-dependent and -independent
feature representations and a reward policy using a
critic value network (Konda and Tsitsiklis, 2000)
(CRN) to learn optimal domain-independent repre-
sentations. The reward policy optimizes the URAM
via three joint reward factors, label, domain, and
domain distance. While the label reward aims to
encourage text classification models on domain-
independent features to predict correct document
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classes, the domain and domain distance rewards
reduce domain variations of domain-dependent fea-
ture representations between source and target do-
mains. We compare our reinforcement adapta-
tion model with five baselines and experiment on
four class-imbalanced data with both binary and
non-binary labels. The results using the F1-score
demonstrate the effectiveness of our reinforcement
learning model that outperforms the baselines by
3.13 on average. The main contributions of this
paper are as follows:

• We propose a reinforcement learning model
for unsupervised domain adaptation that
jointly leverages cross-domain variations and
classification performance.

• We experiment UDA approaches on the class-
imbalanced scenario that label distributions
are different across domains. The class-
imbalanced scenario is under-explored among
the UDA models .

• We conduct an extensive ablation analysis that
demonstrates how the reinforcement model
can coherently combines both pivot and ad-
versarial directions of unsupervised domain
adaptation.

2 Background

This section briefly recaps the concepts of unsuper-
vised domain adaptation (UDA) and reinforcement
learning.

2.1 UDA for Class-Imbalanced Data

UDA assumes a labeled dataset with D𝑆 ={(
𝑥𝑖𝑠, 𝑦

𝑖
𝑠

)}𝑛𝑠
𝑖=1 from source domain and a unlabeled

data D𝑇 =
{
𝑥
𝑗
𝑡

}𝑛𝑡
𝑗=1

from target domain, data distri-

butions of the two domains are different, 𝑝(𝑥𝑠) ≠
𝑝(𝑥𝑡 ), and the two domains share the same number
of unique annotations. UDA is to find a common
feature space aligning source and target domains so
that 𝑓 (𝑝(𝑥𝑠)) ≈ 𝑝(𝑥𝑡 ) However, class-imbalanced
data naturally exist in UDA tasks that may cause
inefficient knowledge transfer (Ramponi and Plank,
2020). We assume both data and labels are not
equally distributed in this work.

2.2 Reinforcement Learning

Actor-Critic (Konda and Tsitsiklis, 2000) is an rein-
forcement learning algorithm that combines Actor

and Critic networks. Critic, a value network (de-
note as 𝑉𝜃𝑐 ), estimates rewards at state 𝑠𝑡 and is
optimized by state difference error as follows

L(𝜃𝑐) =
𝑉𝜃𝑐 (𝑠𝑡 ) − 𝑟 (s𝑡 , 𝑎𝑡 ) −𝑉𝜃𝑐 (s𝑡+1)

2 (1)

where 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is a target reward and tells us the
reward for taking action 𝑎 in state 𝑠. The actor is
a policy function that gives us the probability of
taking action 𝑎 in the state 𝑠. The actor decides
which action should be taken, and the critic eval-
uates how good the action is and how it should
adjust. The learning of the actor (𝜃𝑎) is based on
policy gradient approach as the following

L𝐴(𝜃𝑎) =
∑︁
𝑡

log 𝜋𝜃𝑎 (𝑎𝑡 , 𝑠𝑡 ) 𝐴 (𝑠𝑡 , 𝑎𝑡 ) (2)

, where 𝐴 (𝑠𝑡 , 𝑎𝑡 ) = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡 ).
𝛾 is a decay factor that discounts rewards backward
over steps. To encourage the actor to explore more
actions, the algorithm adds an entropy penalty,

L𝑆 (𝜃𝑎) = −
∑︁
𝑎

𝜋𝜃 (𝑎 | 𝑠) log 𝜋𝜃𝑎 (𝑎 | 𝑠) (3)

The overall objective is as following,

L = min{L(𝜃𝑐) − (L𝐴(𝜃𝑎) + L𝑠 (𝜃𝑎))} (4)

3 Unsupervised Reinforcement
Adaptation Model

In this section, we present details of the Unsuper-
vised Reinforcement Adaptation Model (URAM)
in Figure 1. The URAM trains classifiers on the
labeled data from the source domain and unlabeled
data from the target domain. The model contains
three major modules: 1) a base model; 2) adversar-
ial learning; 3) reinforcement learning.

3.1 Based Model
Our based model consists of an encoder and a clas-
sifier. The encoder extracts features from input
documents, and the classifier predicts document
labels. The based model takes a regular in-domain
training method with 𝑛𝑠 labeled samples from the
source domain

min
𝜃𝑒 , 𝜃𝑐𝑙𝑎

𝑛𝑠∑︁
𝑖

(L(𝐶 (𝐸 (𝑥𝑖𝑠, 𝜃𝑒), 𝜃𝑐𝑙𝑎), 𝑦𝑖𝑠) (5)

, where 𝜃𝑒, 𝜃𝑐𝑙𝑎 are the parameters of the en-
coder and classifier respectively. L(·) is the cross-
entropy loss.
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Figure 1: Illustration of URAM learning process. The yellow route is the 𝑅𝑑 prediction progress, measuring by
the confusion of the discriminator for 𝑥𝑚 and 𝐸 (𝑋). The blue route calculates the 𝑅𝑑 by the consistency of the
classifier for 𝑥𝑚 and 𝐸 (𝑋). The overall reward is made by 𝑅𝑑 and 𝑅𝑐. The critic updates parameters by minimizing
the mean square between the ground truth reward (𝑅𝑑 + 𝑅𝑐) and the predictive reward (𝑅𝑐). The mask model learns
from the policy gradient.

3.2 Adversarial Learning
We propose an adversarial learning using a mask
strategy to learn domain-independent representa-
tions, which are transferable across domains. Do-
main adversarial learning (Ganin and Lempitsky,
2015) learns domain-independent features by re-
duce domain predictability of text classifiers, which
is a common adversarial strategy in the UDA (Ram-
poni and Plank, 2020). The domain adversarial
learning deploys a discriminator (𝜃𝑑) to predict
domains by minimizing the classification error:

min
𝜃𝑑

(L(𝐷 (𝐸 (𝑋𝑠), 𝜃𝑑), 𝟙) +L(𝐷 (𝐸 (𝑋𝑡 ), 𝜃𝑑), 𝟘)).
(6)

However, the uncertainty is a major issue that can
lead to uncontrollable learning process (Long et al.,
2018; Ramponi and Plank, 2020) and easily fail to
yield domain-independent representations.

Therefore, we propose a mask model to extract
domain-independent features. Intuitively, if the
discriminator uses the generated features from the
mask model and fails to recognize domains of input
data, then this indicates the features generated by
the mask model are domain-independent. There-
fore, our first goal is to maximize the loss of the
discriminator as the following formulation:

𝑅𝑑 = max
𝜃𝑚

(L(𝐷 (𝑥𝑠𝑚, 𝜃𝑚), 𝜃𝑑), 𝟙)+
L(𝐷 (𝑥𝑡𝑚, 𝜃𝑚), 𝜃𝑑), 𝟘))

(7)

where 𝑥𝑠𝑚 = 𝑀 (𝐸 (𝑋𝑠)) ∗ 𝐸 (𝑋𝑠) and 𝑥𝑡𝑚 =
𝑀 (𝐸 (𝑋𝑡 )) ∗ 𝐸 (𝑋𝑡 ). The mask model generates
domain-independent representations by learning

how to transform domain-dependent features and
capture common knowledge cross domains.

The second objective of the mask model is for
class-imbalanced distributions between source and
target domains. Misclassifications occur when
there is a class distribution discrepancy between
training and test domains. The optimal domain
adaptation is in the second stage of Fig. 2, how-
ever the class-imbalance may lead to misalignment
in the third stage. As shown in the Fig. 2, while
UDA models align feature spaces between source
and target domains, misalignment may happen in
label spaces especially when majority classes are
different across domains. To reduce label distri-
bution discrepancy, we propose an invariable pre-
diction reward to jointly incorporate feature and
label variants. Intuitively, we expect the classifier
can make similar predictions by the original and
masked features while reducing its dependence on
domain-dependent patterns. Therefore, our goal is
to make a consistent prediction between 𝐶 (𝐸 (𝑋))
and𝐶 (𝑀 (𝐸 (𝑋))). We follow the work (Saito et al.,
2018b) and employ L1-distance to measure the rep-
resentation discrepancy loss between 𝐶 (𝐸 (𝑋)) and
𝐶 (𝑀 (𝐸 (𝑋))) as the following:

𝑅𝑐 = 𝑚𝑖𝑛(L𝑑𝑖𝑠 ( |𝐶 (𝑀 (𝐸 (𝑋))) − 𝐶 (𝐸 (𝑋)) |))
(8)

, where 𝑅𝑐 measures cross-domain variations.

3.3 Actor-Critic Learning

To reduce the uncertainty of extracting domain-
independent representations by the mask model,
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Classifier            Target domain         Source domain
Figure 2: Illustration of alignment process for the class-imbalanced data.

we adopt the policy gradient via the actor-critic
algorithm (Konda and Tsitsiklis, 2000) to explore
the optimal solution.

First, we introduce a value estimation network,
critic. The critic helps to estimate an action’s re-
ward by giving a state. Our critic is a 2-layer feed-
forward network 𝑓 with the input of 𝑀 (𝐸 (𝑋)) and
𝐸 (𝑋), the predictive reward 𝑅𝑝 is formulated as
follow:

𝑅𝑝 = 𝑓 (𝑀 (𝐸 (𝑋)) ∗ 𝐸 (𝑋)). (9)

The loss function is the difference between of re-
alistic reward (𝑅𝑑 + 𝑅𝑐) and the predictive reward
(𝑅𝑝) from the critic as the following,

L(𝜃𝑐) =
(
𝑅𝑑 + 𝑅𝑐 − 𝑅𝑝

)2 (10)

The critic is trained with Adam on a mean squared
error L(𝜃𝑐).

The mask model generates a mask matrix M𝑎

and is an actor model by a fully connected neural
network and a sigmoid unit. It accepts inputs from
the encoder and calculates a masked probability
of each features M𝑝. Then we adopt Bernoulli
sampling and obtain a logical matrix M𝑎. The
elements in M𝑎 belongs to {0, 1}. We denote the
output of the mask model as 𝑥𝑚 = M𝑎 ∗𝐸 (𝑥). The
mask model’s training objective is to maximum the
total reward 𝑅𝑑 and 𝑅𝑐 defined in e.q. 7 and e.q. 8

𝐽 (M𝑎 | 𝐸 (𝑋)) =
EM𝑎∼𝜋 (M𝑝 |𝐸 (𝑋)) {𝑅𝑑 − 𝑅𝑐 + 𝑅𝑟𝑒𝑔},

(11)

, where 𝜋 is a policy function and 𝑅𝑟𝑒𝑔 is a regu-
larization term, controlling the number of masked
features. We set 𝑅𝑟𝑒𝑔 = (∑M𝑎). Since the mask
model only make one action to transfer the state
𝑀 (𝐸 (𝑋)) from 𝐸 (𝑋), we do not need to consider
the future reward and the decay factor 𝛾 in e.q. 2
is zero. Thus, we can obtain the following opti-
mization by combining with the e.q. 2 and e.q. 3,

L(𝜃𝑚) = − log 𝜋𝜃𝑚 (𝑎, 𝑠) 𝐴 (𝑠, 𝑎) +
𝜋𝜃𝑚 (𝑎 | 𝑠) log 𝜋𝜃𝑚 (𝑎 | 𝑠) (12)

, where 𝐴(𝑠, 𝑎) = 𝑅𝑑 + 𝑅𝑐 − 𝑅𝑝. We update 𝜃𝑚 by
minimizing L(𝜃𝑚).

Algorithm 1 Optimization Process of Our Model.

Input: The source data 𝐷𝑠 = (𝑋𝑠, 𝑌𝑠) and target
data 𝐷𝑡 = (𝑋𝑡 ), maximum iteration 𝐼;

Output: The network parameter 𝜃𝑒, 𝜃𝑐𝑙𝑎, 𝜃𝑑 , 𝜃𝑚,
𝜃𝑐;

1: for 𝑖 = 1; 𝑖 < 𝐼; 𝑖 + + do
2: Samples a batch from 𝐷𝑠 and 𝐷𝑡 ;
3: Update 𝜃𝑒, 𝜃𝑐𝑙𝑎 via e.q.(5);
4: Update 𝜃𝑑 via e.q.(6)
5: Update 𝜃𝑚, 𝜃𝑐 via section (3.3)
6: end for
7: return 𝜃𝑒, 𝜃𝑐𝑙𝑎, 𝜃𝑑 , 𝜃𝑚, 𝜃𝑐;

3.4 Training Procedure
Our training procedure includes three steps: 1) step
A trains the encoder and classifier as e.q. 5; 2)
step B trains the discriminator by e.q. 6; 3) step
C training the mask model by the reinforcement
learning. We summarize the optimization process
in Algorithm 1.

4 Experiment

4.1 Datasets
We assembled four datasets, three online reviews
and one Twitter data. The reviews are binary labels,
and the Twitter data has 11 unique labels. We
summarize data statistics in Table 2.

Amazon, Yelp, and IMDB Review are standard
data sources for evaluating UDA models (Ramponi
and Plank, 2020). We retrieved the Yelp and IMDB
reviews1 from torchtext and top four product gen-

1https://pytorch.org/text/stable/
datasets.html
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Method MeToo - Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
LSTM

DANN 45.00 23.17 83.33 93.55 45.16 61.79
MCD 40.25 23.61 83.85 94.17 48.27 61.54

JUMBOT 46.94 23.26 81.79 93.66 42.57 56.78
ALDA 38.20 23.31 84.14 93.88 42.30 52.46
URAM 47.06 24.00 85.09 94.49 50.58 62.50

BERT
DANN 78.20 23.50 73.23 69.64 54.36 43.44
MCD 79.51 23.39 74.33 69.54 43.67 42.37

JUMBOT 73.74 23.23 80.57 75.00 53.37 43.08
ALDA 77.26 24.42 77.21 70.54 47.01 39.84
URAM 81.93 27.09 86.24 76.97 57.70 45.16

Table 1: Cross-domain performance of UDA models using F1 score. Each UDA model testifies over two popular
neural feature extractor, LSTM and BERT. We list extensive evaluations in the Appendix.

Docs Tokens pos/neg
M-MeToo 4480 13.86 -

M-Davidson 4480 19.13 -
A-Book 2000 25.65 0.65

A-Kitchen 2000 29.73 4.78
Yelp 2000 231.57 0.26

IMDB 2000 146.01 0.67

Table 2: Data statistics summary of Morality and three
review data, Amazon, Yelp and IMDB. We include
multi-label distributions of the Morality data in ap-
pendix, Table 7.

res of Amazon reviews (Ni et al., 2019), including
Books (B), DVDs (D), Electronics (E) and Kitchen
(K). We treat the four Amazon genres, Yelp, and
IMDB as domains. Following the standard bench-
mark (Blitzer et al., 2006) for the UDA evaluations,
we randomly select 2000 samples from each do-
main, while label distributions are not the same
cross domains. We name cross-domain evaluations
by the source-target format. For example, Books-
Kitchen means that Books is the source data and
Kitchen is the target data.

MFTC (Hoover et al., 2020) is a multi-label clas-
sification Twitter data with 35,108 tweets. These
tweets are drawn from seven different discourse
domains with moral sentiment across seven so-
cial movements, including MeToo, Black Lives
Matter (BLM), Sandy, Davidson, Baltimore, All
Lives Matter (ALM), and US Presidential Election
(Election). We treat social movements as domains.
These domains share the same set of 11 moral senti-
ment types: Subversion, Authority, Cheating, Fair-
ness, Harm, Care, Betrayal, Loyalty, Purity, Degra-
dation, Non-moral. The rates of each of the virtues

and vices vary substantially across the domain. For
example, only approximately 2% of the ALM data
were labeled as degradation while approximately
14% of the Sandy data were labeled as degradation.

We conduct an exploratory analysis of domain
shifts in data and labels. The analysis follows
the name format as source-target. We use KL-
divergence of the class distribution to measure
the category-wise distribution and Euclidean dis-
tance to measure the domain-wise distribution. The
domain-wise discrepancy refers to the euclidean
distance of the encoder’s output between the train-
ing and test sets. The category-wise is the KL-
divergence of labels’ distribution between the train-
ing and test sets. We extract feature vectors using
LSTMs trained over the domains. We show cross-
domain discrepancy in Table 3. We can find that
the multi-label Twitter data has more variations in
both domain and label distributions.

4.2 Baselines

We compare our models with four recent methods.

• DANN (Ganin and Lempitsky, 2015) maps
source and target domains to a common sub-
space through shared parameters. This ap-
proach introduces a gradient reversal layer to
confuse domain prediction to improve classi-
fication robustness across domains with the
adversarial train.

• MCD (Saito et al., 2018a) proposes to maxi-
mize the discrepancy between two classifiers’
outputs to detect target samples that are far
from the support of the source. Then, A fea-
ture generator learns to generate target fea-
tures near the support to minimize the discrep-
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Table 3: Summary of domain shifts in data (domain-wise) and label (category-wise) distributions.

discrepancy MeToo-Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
domain-wise 10889 661 15986 11680 1.523 1.692
category-wise 0.1197 0.1933 2.0 × 10−4 1.0 × 10−4 0.044 0.050

ancy.

• JUMBOT (Fatras et al., 2021) proposes a new
formulation of the mini-batch optimal trans-
port strategy coupled with an unbalanced op-
timal transport program to calculate optimal
transport distance.

• ALDA (Chen et al., 2020b) constructs a new
loss function by introducing a confusion ma-
trix. The confusion matrix reduces the gap
and aligns the feature distributions in an ad-
versarial manner.

4.3 Implementation Details

In this study, we evaluate the UDA methods us-
ing two standard neural models as feature extrac-
tors, LSTM (Hochreiter and Schmidhuber, 1997)
and BERT (Devlin et al., 2019). For the LSTM-
based encoder, we use pre-trained word vectors
GloVe (Pennington et al., 2014) by torchtext 2 to
train word embedding. The learning rate is set
to 1 × 10−3 and batch size set to 64. We utilize
a Bidirectional LSTM as our encoder and set the
LSTM hidden number as 256. For the BERT-based
encoder, we load the pre-trained BERT model
(bert-base-uncased) from the transformer
toolkit (Wolf et al., 2020). We set the learning rate
as 1 × 10−5 and batch size as 16.

In all the above experiments, we used Adam
(Kingma and Ba, 2015) to optimize our model and
maximum iteration set to 50 in all experiments. We
run each experiment five times and average F1 as
the final performance.

4.4 Result

Table 4: The domain-wise discrepancy based on domain
adaptation methods.

DANN MCD JUMBOT ALDA URAM
MeToo - Davidson 3.937 5.806 0.072 7.902 0.401
Davidson-MeToo 0.016 10.862 0.121 0.016 0.044
Book-Kitchen 0.950 1.651 0.046 3.922 0.233
Kitchen-Book 0.649 1.749 0.073 2.984 0.196
Yelp-IMDB 3.376 3.029 0.492 8.106 0.586
IMDB-Yelp 2.951 6.184 0.733 31.469 0.665

2https://pytorch.org/text/stable/index.html

In this section, we present model performance
on the cross-domain adaptation task and conduct an
ablation analysis to examine the effects of the two
reward factors, 𝑅𝑑 and 𝑅𝑐. We include extensive
evaluation results in the appendix (Section B).

Overall Performance. The table 1 reports the
overall performance. Our method achieves the best
result in the datasets with a significant discrepancy
both in domain and category. We obtain a sig-
nificant improvement on Amazon datasets, Book-
Kitchen (1.12%-17.7%) and Kitchen-Book (2.62%-
10.68%), respectively. Amazon datasets follow the
traditional assumption that different domains have
significant feature discrepancies but have similar
label distributions. Our improvement on Amazon
datasets verifies our model effectiveness of learn-
ing transferable knowledge. On the other hand, our
method also can release the category discrepancy
problem. As shown in the table 1, our method
outperforms existing methods remarkably on the
MFTC dataset (Metoo-Davidson) with the signif-
icant discrepancy in domain and category since
we can align the distribution both in-text features
and labels. We notice some latest methods fail to
compete with DANN. We infer the reasons behind
this are that some methods do not consider cate-
gory discrepancy. For example, the performance of
ALDA is lower than DANN on Metoo-Davidson
since ALDA tries to align category discrepancy by
narrowing domain discrepancy, which causes nega-
tive knowledge transfer. The other reason is due to
poor robustness. Some methods may ascribe sam-
ples’ feature discrepancy to domain discrepancy,
and aligning these sample’s specific features lead
to a lower distinguished ability among different
samples (e.g., ALDA on Yelp-IMDB). All meth-
ods have similar performance on Davidson-Metoo
since Davidson datasets have an extreme label dis-
tribution. Most samples focus on the same category,
which causes models not to access enough samples
to learn the features in other classes.

Convergence Investigation The convergence
curves of our model and baselines are respectively
depicted in Fig. (3). We conduct a convergence
experiment on Book-Kitchen datasets based on
LSTM to verify the training stability during knowl-
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Figure 3: The convergence comparison between our
model and baselines on Book-Kitchen.

edge transfer. This task focuses on evaluating the
ability to align domain-wise discrepancy since the
feature’s center of Book and Kitchen have a remark-
able difference (up to 15986), but their categories
are similar. Specifically, we observe that our model
significantly outperforms DANN and MCD dur-
ing training. DANN has relatively low stability
since it only aligns different domain features with-
out considering task-specific features. Compared
with ALDA, our model achieves similar stability.
Our model can achieve efficient convergence af-
ter iterating 15 epochs, which proves our model’s
robustness.

Knowledge Transfer. We measure the fea-
ture center distance between the training set in
the source data and the test set in the target data
to evaluate models’ ability to transfer knowledge.
Generally, the domain-wise discrepancy is signifi-
cantly narrowed after applying domain adaptation
methods. Our model achieves relatively signifi-
cant improvements, but there are some exceptions.
For example, ALDA has a lower domain-wise dis-
crepancy on Davidson-MeToo than ours. However,
ALDA’s performance is unsatisfactory, especially
when the datasets have similar domains (e.g., Yelp-
IMDB and IMDB-Yelp). A similar situation also
happens on DANN and MCD. These methods en-
large domain-wise discrepancy when the domains
have similar feature distribution. Compared with
JUMBOT, our model has a slightly large domain-
wise discrepancy. However, our model is more effi-
cient on knowledge transfer when the domain has
huge category-wise discrepancies. For example,
the distance of our model is .0438 on Davidson-
MeToo, while the corresponding figure is .1207 on
JUMBOT.

4.5 Ablation Analysis

In this subsection, we investigate the importance
of different rewards in reinforcement learning by
conducting variant experiments, as shown in the

Table 5.
−𝑅𝑐 means we delete reward 𝑅𝑐 in our 𝑅𝑎𝑑𝑣.

𝑅𝑐 is a unsupervised reward. Instead of aligning
features, 𝑅𝑐 aims to search subspace features, en-
suing the consistent prediction between completed
features 𝐸 (𝑋) and sub-spaced features 𝑀 (𝐸 (𝑋)).
This method is efficient since removing 𝑅𝑐 is signif-
icantly detrimental to cross-domain performance.
Especially, we find that 𝑅𝑐 plays a more critical
role Book-Kitchen and Kitchen-Book tasks by com-
paring the 𝑅𝑑 since removing 𝑅𝑐 lower the perfor-
mance than 𝑅𝑑 .

𝑅𝑑 is proposed to align domain features by fool-
ing the discriminator. −𝑅𝑑 means we do not need
to train the discriminator and 𝑅𝑎𝑑𝑣 only combines
with 𝑅𝑐 and 𝑅𝑟𝑒𝑔. −𝑅𝑑 achieves a better perfor-
mance than our completed model on Book-Kitchen.
We infer the reason behind this is because 𝑅𝑑 only
focuses on feature shift rather than considering the
discrepancy among different classes, which causes
class-specific features to be weakened, and the
model fails to distinguish the boundaries of other
classes. However, removing 𝑅𝑑 decreases the per-
formance in most of the situations, which proves
feature shift is efficient in domain adaptation.

Generally, 𝑅𝑑 and 𝑅𝑐 work together to guide
critical knowledge transfer and removing any one
of them significantly degrades the performance.
Which reward dominates an improvement depends
on the datasets’ property. When the domains have
significant discrepancy both in features and label
distribution, 𝑅𝑑 and 𝑅𝑐 work in an adversarial way
to ensure shifting features as well as keeping class-
specific features.

5 Related work

Unsupervised Domain Adaptation for text clas-
sification has several major types of approaches,
pivot features (Blitzer et al., 2006; Daumé III, 2007;
Ziser and Reichart, 2018; Ben-David et al., 2020b),
instance weighting (Jiang and Zhai, 2007; Wang
et al., 2019; Gong et al., 2020), and domain ad-
versaries (Ganin and Lempitsky, 2015; Qu et al.,
2019; Du et al., 2020). A recent survey (Ramponi
and Plank, 2020) shows that the most widespread
methods for neural UDA are based on the use of
domain adversaries, which reduces the discrepancy
between the source and target distributions by re-
versing gradient updates for domain prediction net-
works. Our study follows the same track to obtain
domain-invariant representations, however, there
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Table 5: Ablation studies of our model on LSTM

Method MeToo - Davidson Davidson-MeToo Book-Kitchen Kitchen-Book Yelp-IMDB IMDB-Yelp
−𝑅𝑑 31.97 23.14 86.09 84.15 43.28 61.40
−𝑅𝑐 35.84 23.19 84.51 80.87 43.71 60.87

URAM 47.06 24.00 85.09 94.49 50.58 62.50

are two major differences than the existing UDA for
text classifiers: 1) a mask model to distill domain-
invariant features, 2) and a reinforcement learn-
ing approach to optimize the adversarial network.
While existing UDA models have not explicitly in-
corporate domain shifts in label distributions, our
proposed URAM jointly models domain variants
in both data and label shifts.

Reinforcement Learning With the robustness
in learning sophisticated policies, recent works in-
troduce Reinforcement learning (RL) into the un-
supervised domain adaptation task (Chen et al.,
2020a; Dong et al., 2020; Zhang et al., 2021).
DARL (Chen et al., 2020a) employs deep Q-
learning in partial domain adaptation. The DARL
framework designs a reward for the agent-based on
how relevant the selected source instances are to
the target domain. With the action-value function
optimizer, DARL can automatically select source
instances in the shared classes for circumventing
negative transfer as well as to simultaneously learn
transferable features between domains by reducing
the domain shift. However, DARL does not gener-
alize to unsupervised domain adaptation. Highly
relying on the rich labels in the source domain will
cause failure when insufficient labels are in the tar-
get domain. To address this problem, Zhang et al.
develop a new reward across both source and target
domains. This reward can guide the agent to learn
the best policy and select the closest feature pair for
both domains. However, rarely study has deployed
the reinforcement UDA into the class-imbalanced
text classification. To our best knowledge, we are
the first work introducing RL for the UDA under
the class-imbalanced text classification.

Imbalanced-class Increasing works study the
class-imbalanced domain adaptation (Tan et al.,
2020; Lee et al., 2020; Bose et al., 2021; Li et al.,
2020). COAL (Tan et al., 2020) deals with fea-
ture shift and label shift in a unified way. With
the idea of prototype-based conditional distribution
alignment and class-balanced self-training, COAL
tackles feature shift in the context of label shift.

However, present works only focus on computer
vision, and the imbalanced class domain adaptation
in NLP is unexplored. The other similar works is
category-level feature alignment (Qu et al., 2019;
Luo et al., 2019; Li et al., 2021, 2019; Yang et al.,
2020). These works usually focus on domain shifts
and propose domain-level aligned strategies while
ignoring the local category-level distributions, re-
ducing cross-domain text classifiers’ effectiveness.
A popular strategy for category-level alignment
is aligning the same class features among differ-
ent domains respectively by resorting to pseudo
labels (Dong et al., 2020; Yang et al., 2020).

6 Conclusion

In this study, we have proposed an unsupervised
reinforcement adaptation model (URAM) for the
novel cross-domain adaptation challenge where the
source and target domains are class-imbalanced.
We demonstrate the effectiveness of our reinforce-
ment approach with the other four state-of-art
baselines on the task of text classification. The
URAM learns domain-independent representations
by leveraging three reward factors, label, domain,
and domain distance, which coherently combines
pivot and adversarial approaches in UDA. Exten-
sive experiments and ablation analysis show that
the URAM can obtain robust domain-invariant rep-
resentations and effectively adapt text classifiers
over both domains and imbalanced data.

6.1 Limitation and Future Work

Our work opens several future directions on the
limitations of this study. First, class-imbalanced
data naturally exist in NLP tasks, such as dis-
course inference (Spangher et al., 2021), text gen-
eration (Nishino et al., 2020), and question answer-
ing (Li et al., 2020). Our next step will examine
the effectiveness of our model over the NLP tasks.
Second, we only validate the URAM on English
datasets, and additional multilingual settings will
be verified in future work, such as multilingual text
classification (Schwenk and Li, 2018).
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A Additional Data Statistics

In this section, we summarize additional data and
label statistics in Table 6 and 7.

Docs Tokens pos/neg
D-DVD 2000 30.51 2.52

E-Electronic 2000 27.65 2.26

Table 6: Stats of the Amazon review data. We present
the average number of tokens and the imbalanced-class
ratio.

B Cross-domain Evaluations
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dataset Non-moral Degradation Harm Fairness Subversion Care Cheating Purity Betrayal Authority Loyalty
MeToo 21.40 15,30 6.86 6.30 14.70 3.40 11.00 2.98 5.83 6.93 5.29
BLM 23.59 4.23 19.36 8.58 5.74 5.93 13.84 2.76 2.71 5.40 7.83
Sandy 13.68 1.94 1.69 3.82 9.63 21.30 9.80 1.45 3.12 9.46 8.86

Davidson 92.13 1.34 2.76 0.08 0.14 0.18 1.24 0.10 0.82 0.40 0.82
Baltimore 54.93 0.55 4.86 2.60 5.34 3.26 9.38 0.69 11.18 0.40 6.83

ALM 20.98 3.18 19.15 13.42 2.37 11.88 13.16 2.11 1.04 6.36 6.36
Election 47.70 2.13 9.09 8.66 2.55 6.15 9.59 6.32 1.98 2.61 3.20

Table 7: Label distributions of the multi-class morality dataset (Hoover et al., 2020)

No-adapt MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 47.16 18.09 6.28 35.61 29.58 14.61 16.95
BLM 16.23 76.32 17.22 26.27 25.28 16.16 26.40
Sandy 8.81 14.46 58.50 19.27 7.49 15.68 9.04

Davidson 23.12 31.98 8.09 99.17 66.96 24.93 58.49
Baltimore 23.32 32.42 10.07 99.17 66.54 25.00 59.09

ALM 12.11 17.60 14.27 24.88 25.12 43.71 20.33
Election 23.18 32.59 15.24 99.11 66.57 24.95 58.87

MCD MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 48.14 25.86 13.77 40.25 38.86 22.81 32.41
BLM 16.48 78.42 17.27 29.17 55.27 23.40 34.51
Sandy 24.37 16.68 60.17 15.74 32.50 16.52 12.58

Davidson 23.62 31.99 13.94 99.17 66.96 25.73 58.49
Baltimore 23.12 32.44 14.80 99.17 66.21 24.93 59.09

ALM 16.88 23.37 15.48 37.11 34.33 63.18 25.22
Election 23.12 32.53 14.10 99.17 66.54 24.93 63.91

DANN MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 40.03 17.98 9.74 45.00 20.65 13.69 24.30
BLM 16.33 75.40 15.48 35.68 22.94 17.82 24.39
Sandy 8.37 14.55 56.84 6.78 6.47 14.65 9.34

Davidson 23.17 31.98 8.17 99.17 66.96 24.93 58.49
Baltimore 23.17 32.42 9.82 99.17 66.24 24.95 59.03

ALM 12.63 16.78 14.93 19.18 20.87 60.88 17.26
Election 23.14 32.57 14.23 99.17 66.57 24.93 64.01

JUMBOT MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 43.12 28.32 10.47 46.94 42.33 21.08 36.11
BLM 24.37 72.57 16.02 52.20 48.92 32.18 48.91
Sandy 19.34 33.17 57.60 10.86 41.23 30.86 39.59

Davidson 23.26 32.99 8.35 99.17 66.96 26.64 58.49
Baltimore 23.48 32.66 12.16 99.17 66.18 25.03 59.09

ALM 23.30 39.82 17.04 66.60 61.70 42.01 46.50
Election 23.12 32.49 15.20 99.17 66.42 24.93 60.41

ALDA MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 21.50 25.89 14.17 38.21 1.12 9.84 58.75
BLM 14.82 56.82 13.97 51.90 39.98 16.53 23.39
Sandy 23.36 14.23 34.84 33.81 6.01 22.06 28.03

Davidson 23.31 31.99 26.59 99.17 66.96 32.31 58.49
Baltimore 23.03 31.63 8.77 42.12 65.33 25.50 28.77

ALM 22.43 14.83 5.94 31.16 58.96 38.50 37.35
Election 25.44 39.70 19.16 98.32 66.54 23.17 58.87

URAM MeToo BLM Sandy Davidson Baltimore ALM Election
MeToo 45.54 19.34 10.48 47.07 38.14 16.97 34.80
BLM 16.03 79.12 15.86 50.31 30.57 18.56 26.74
Sandy 9.28 14.65 60.44 10.50 10.28 15.28 8.86

Davidson 24.00 32.53 11.59 99.17 66.96 25.02 58.49
Baltimore 23.10 28.57 12.09 98.96 63.52 24.93 53.43

ALM 12.58 16.51 15.70 34.43 27.88 63.11 17.29
Election 22.54 31.92 12.38 99.06 58.10 24.88 65.23

Table 8: Cross-domain performance evaluation over the Morality dataset (Hoover et al., 2020) using F1. Each
subtable presents results of one UDA model.

book-dvd dvd-book book-eletronic eletronic-book kitchen-eletronic eletronic-kitchen dvd-kitchen kitchen-dvd dvd-eletroic eletronic-dvd
DANN 83.16 94.00 86.87 92.15 95.24 91.21 94.24 94.29 94.63 92.57
MCD 84.39 94.34 85.06 93.36 94.08 91.61 94.14 94.99 94.22 92.54

JUMBOT 82.27 91.51 77.34 84.83 92.91 85.58 92.49 94.01 91.64 92.23
ALDA 84.49 93.52 84.14 94.49 93.93 92.39 92.70 94.21 94.00 90.91
URAM 86.56 94.58 87.90 93.51 94.96 92.87 94.81 95.15 95.03 93.02

Table 9: Cross-domain performance evaluation over the Amazon review dataset (Blitzer et al., 2006).
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Abstract

An important problem of Information Extrac-
tion involves Event Causality Identification
(ECI) that seeks to identify causal relation be-
tween pairs of event mentions. Prior mod-
els for ECI have mainly solved the problem
using the classification framework that does
not explore prediction/generation of important
context words from input sentences for causal
recognition. In this work, we consider the
words along the dependency path between the
two event mentions in the dependency tree as
the important context words for ECI. We in-
troduce dependency path generation as a com-
plementary task for ECI, which can be solved
jointly with causal label prediction to improve
the performance. To facilitate the multi-task
learning, we cast ECI into a generation prob-
lem that aims to generate both causal relation
and dependency path words from input sen-
tence. In addition, we propose to use the REIN-
FORCE algorithm to train our generative model
where novel reward functions are designed to
capture both causal prediction accuracy and
generation quality. The experiments on two
benchmark datasets demonstrate state-of-the-
art performance of the proposed model for ECI.

1 Introduction

In Information Extraction (IE), Event Causality
Identification (ECI) aims to predict causal relation
between a pair of events mentioned in text. For in-
stance, in the sentence “Massive fires cause major
damages in the downtown area.”, an ECI system
needs to realize the causal relation between the two
events triggered by “fires” and “damages” (called
event mentions), i.e., “fires” cause−−−→ “damages”. ECI
is an important problem with many applications in
NLP (Hashimoto, 2019; Berant et al., 2014).

Compared to the feature-based methods (Do
et al., 2011; Ning et al., 2018), recent deep learn-
ing models have demonstrated their state-of-the-art
performance for ECI (Kadowaki et al., 2019; Liu

et al., 2020; Zuo et al., 2021). As such, prior work
has mainly treated ECI as a classification problem
where the only output from the models is a label
to indicate causal or non-causal relation between
input events. A major issue with this classification
formulation is that current ECI models do not out-
put important contexts for causal prediction of two
event mentions. In this work, important contexts
refer to the words in the input sentence that are
critical to reveal the causal relation between two
given event mentions (e.g., the words “caused” and
“by” in our example). This limitation of current ECI
models is undesirable as we expect that including
important context words as a part of the outputs
for ECI models can improve the training signals
for the models. In particular, motivated by rela-
tion exaction models in IE (Zhang et al., 2018), we
use the words along the dependency path between
the two event mentions in the dependency tree to
represent important context words for ECI. Our
intuition is that dependency path generation is a
related/complementary task for causal label predic-
tion in ECI, and training a model to jointly gener-
ate causal labels and dependency path words (i.e.,
multi-task learning) can boost the performance.

A potential challenge with this idea involves the
varying number of dependency path words where
the generation of a context word or causal label
might need to condition on previously generated
ones (e.g., dependencies at the output level). As
the result, such dependencies make it difficult to
extend existing classification-based ECI models to
perform multi-task learning with important context
prediction. To address this issue, we propose to
solve ECI via a new generative formulation: given
a pair of event mentions in an input sentence, our
ECI model aims to simultaneously generate causal
label and the dependency path words between the
two event mentions. In our model, causal label
and dependency path words are combined into a
single output sequence that will be generated by a
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generative model from the input sentences in an au-
toregressive fashion, thus facilitating the encoding
of dependencies between output words in our multi-
task learning idea. Finally, to solve the resulting
sequence-to-sequence problem for ECI, we lever-
age the generative pre-trained language model T5
(Raffel et al., 2020). To our knowledge, this is the
first work to use generative models to solve ECI.
The generation of dependency paths for relation
extraction problems is also novel in IE.

Following prior work that reformulates NLP
tasks into generative problems (Paolini et al., 2021;
Zhang et al., 2021), we can train the generative
model for ECI by maximizing the likelihood of
the golden output sequences. However, this ap-
proach suffers from a potential mismatch between
the used optimization objective (i.e., the likelihood)
and the targeted performance measure (e.g., the ac-
curacy for event causal prediction). In addition,
as the words along the dependency paths might
outnumber the causal label in the output sequence,
likelihood maximization training will downgrade
the importance of causal labels as a training signal
in our multi-task learning framework for ECI. To
this end, we propose to train our generative model
for ECI using the policy-gradient method REIN-
FORCE (Williams, 1992) that allows us to directly
treat the targeted performance measure as the re-
ward to train the generative model. Our training
reward will contain separate terms for the accuracy
of the predicted causal labels and the similarity of
the generated and golden output sequences to al-
low an emphasis on the ECI performance for train-
ing. We also present a new auxiliary reward that
encourages the similarity between predicted and in-
put sentences with respect to the causal prediction
ability to enrich the training signals. Finally, we
conduct experiments on two benchmark datasets,
demonstrating advantages of the proposed model
with state-of-the-art performance for ECI.

2 Model

Given a sentence W and two event mentions es and
et in W , ECI aims to predict whether es and et are
involved in a causal relation in W . In this work,
we depart from the traditional classification formu-
lation (Tran and Nguyen, 2021) to a generative ap-
proach for ECI. Our generative model follows the
sequence-to-sequence setting where the input se-
quence should capture the input sentence W along
with the two event mentions es and et. In contrast,

the output sentence will include the causal label
and the dependency path between es and et in the
dependency tree of W to achieve multi-task learn-
ing with important context word generation. To this
end, the input I for our generative ECI model is ob-
tained by combining W and a prompt P (es, et) to
specify the two input event mentions and the goal
of ECI, i.e., I = W : P (es, et). In this work, we
use a simple template for P (es, et) in the form of
“Is there a causal relation between es and et?”. As
such, the output sequence O is then formed using
the concatenation: O = l,D(es, et) (called golden
output). Here, l is either “Yes” or “No” to indicate
the existence of a causal relation between es and
et (i.e., causal label) while D(es, et) represents the
dependency path between es and et in W . In our
example, the input and output sequences are:

I: Massive fires cause major damages in the downtown

area: Is there a causal relation between fires and damages?

O: Yes, fires cause damages

Given the transformed input-output pair (I,O)
for every example in the training data of ECI, we
adopt the pre-trained tranformer-based language
model T5 (Raffel et al., 2020) to solve the result-
ing sequence-to-sequence problem. In particular,
we train T5 on the transformed input-output pairs
(I,O) from ECI training data. At inference time,
given an input sentence and two event mentions,
we use the trained T5 model to generate the output
sequence (with greedy decoding) from which the
causal label can be extracted from the first token
(i.e., l in O) to serve as the prediction.
Training: As presented in the introduction, to em-
ploy label accuracy as the direct training signal, we
propose to leverage the REINFORCE algorithm
(Williams, 1992) to train our T5 model for ECI
where label accuracy will be used to form the re-
ward function. In addition, the flexibility of REIN-
FORCE allows us to include the similarity between
the predicted output sequence, denoted by C, from
T5 and the golden output O and input I as terms in
the reward function to train our generative model.
As such, we propose the following information for
the reward function R(C) for REINFORCE:
• Performance-based Reward Rper(C): We

compute this reward based on the accuracy of the
causal label p in the generated sequence C (i.e., the
first token of either “Yes” or “No”). In particular,
Rper(C) = 1 if p is consistent with the provided
relation between es and et in W , and 0 otherwise.
• Output-based Reward Rout(C): This re-
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ward aims to encourage the similarity between the
generated sequence C and the golden output se-
quence O to train the generative model T5. As
such, we employ the ROUGE-2 measure (Lin,
2004) between C and O for this reward term:
Rgold(C) = ROGUE-2(C,O)1.
• Input-based Reward Rin(C): Our goal is

to generate the dependency path between es and
et for multi-task learning for ECI. Given that the
dependency path is expected to contain important
contexts in W to reveal the causal relation and the
input I is customized for the causal prediction pur-
pose, we argue that the input and output sequences
I and O should have similar meanings. Based on
that intuition, we introduce a novel reward term
Rin(C) to promote the similarity between the gen-
erated sequence C from T5 and the input sequence
I . In particular, we first send C and I (prepended
with the special tokens </s>) to the encoder of T5.
The vectors for </s> in the last transformer layer
for C and I are then used for their representation
vectors V (C) and V (I) respectively. Finally, the
reward Rin(C) is computed via the representation
similarity, i.e., Rin(C) = cosine(V (C), V (I)).

Consequently, the overall reward function R(C)
to train our T5 model for ECI is: R(C) =
αperR

per(C) + αoutR
out(C) + αinR

in(C) (αper,
αout, and αin are trade-off parameters). In this way,
we can explicitly make sure that label accuracy (i.e.,
our main performance goal) is well represented
and not dominated by the generation rewards in
the training. Let P (C|I) be the distribution over
generated sequences that T5 induces. In our model,
REINFORCE trains T5 by minimizing the negative
expected reward R(C) over the possible choices of
C from T5: L = −EC′∼P (C′|I)[R(C ′)]. Using pol-
icy gradient and one roll-out sample with the gener-
ated sequence C, the gradient ofL can be estimated
for training via: ∇L = −(R(C)−b)∇ logP (C|I)
where b is a baseline to reduce variance. Here, we
obtain the baseline b via: b = 1

|B|
∑|B|

q=1R(Cq),
where |B| is the mini-batch size and Cq is the gen-
erated sequence for the q-th sample.

Finally, before REINFORCE training, we first
bootstrap T5 by training it over the transformed
pairs (I,O) with maximum likelihood objective.
This helps constrain the large action space with
text generation to improve the learning for REIN-
FORCE (Ranzato et al., 2016; Paulus et al., 2018).

1We have tried BLUE, METEROR, and other variants of
ROUGE; however, ROUGE-2 leads to the best performance.

3 Experiments

Datasets and Hyperparameters: We evaluate
our proposed generative model, called GenECI,
on two benchmark English datasets for ECI, i.e.,
EventStoryLine and Causal-TimeBank. Proposed
by (Caselli and Vossen, 2017), EventStoryLine (i.e.,
version 0.9) involves 258 documents, 22 topics,
4316 sentences, 5334 event mentions, and 1770 of
7805 event mention pairs with causal relation in a
sentence. Following the same data split in previous
work (Tran and Nguyen, 2021; Zuo et al., 2021),
we utilize the last two topics in EventStoryLine
for the development data while the remaining 20
topics are used for 5-fold cross-validation evalua-
tion. For Causal-TimeBank (Mirza, 2014a), there
are 184 documents, 6813 event mentions, and 318
of 7608 event mention pairs annotated with causal
relation. Using the same setting and data split as
previous work (Liu et al., 2020; Zuo et al., 2021),
we perform 10-fold cross-validation evaluation.

We tune the hyperparameters for GenECI on the
development data of EventStoryLine; the chosen
parameters are employed to train the models for
both EventStoryLine and Causal-TimeBank. The
selected hyperparameters from our tuning process
involve: 5e-5 for the learning rate with the Adam
optimizer; 32 for the mini-batch size; and 1.0, 0.5
and 0.1 for the trade-off-parameters αper, αout and
αin (respectively) in the overall reward function
R(C). Finally, we use the base version of T5 (Raf-
fel et al., 2020) for the generative model in this
work.
Comparison: We compare our model with
the state-of-the-art (SOTA) models for ECI. For
EventStoryLine, we consider the following base-
lines: (1) LSTM (Gao et al., 2019) adopted from
(Cheng and Miyao, 2017); (2) Seq (Gao et al.,
2019) adopted from (Choubey and Huang, 2017)
for ECI; and (3) LR+ and LIP (Gao et al., 2019):
document structure-based models for ECI. For
Causal-TimeBank, we evaluate RB: a rule-based
system in (Mirza, 2014b), and ML: a feature-based
model for ECI in (Mirza, 2014a). For both datasets,
we also compare with the following BERT-based
models for ECI: (i) BERT: a BERT-based base-
line in (Zuo et al., 2021); (ii) KnowDis (Zuo et al.,
2020): a model with distant supervision; (iii) Know
(Liu et al., 2020): a model with ConceptNet; (iv)
RichGCN (Tran and Nguyen, 2021): a graph con-
volutional network with rich information, and (v)
LearnDA (Zuo et al., 2021): a data augmentation
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method. RichGCN has the best reported perfor-
mance on EventStoryLine while LearnDA is the
current SOTA model for Causal-TimeBank. Fi-
nally, we also report the performance of T5 Clas-
sify that is similar to the classification-based model
BERT (Zuo et al., 2021), but replaces the BERT
encoder with the encoder from T5.

Model EventStoryLine Causal-TimeBank
P R F1 P R F1

LSTM 34.0 41.5 37.4 - - -
Seq 32.7 44.9 37.8 - - -
LR+ 37.0 45.2 40.7 - - -
LIP 37.4 55.8 44.7 - - -
RB - - - 36.8 12.3 18.4
ML - - - 67.3 22.6 33.9
BERT 36.1 56.0 43.9 38.5 43.9 41.0
KnowDis 39.7 66.5 49.7 42.3 60.5 49.8
Know 41.9 62.5 50.1 36.6 55.6 44.1
RichGCN 49.2 63.0 55.2 39.7 56.5 46.7
LearnDA 42.2 69.8 52.6 41.9 68.0 51.9
T5 Classify 39.1 69.5 47.7 39.1 67.7 48.3
GenECI (ours) 59.5 57.1 58.8 60.1 53.3 56.5

Table 1: Model performance on two datasets.

Table 1 presents the performance of the mod-
els on two datasets. The most important obser-
vation is that GenECI significantly outperforms
(p < 0.01) the baseline models with substantial
gaps on both datasets (e.g., 3.6% better than the
second best model RichGCN on EventStoryLine
using F1 score). Compared to “T5 Classify” that
uses the same encoder as GenECI, it is clear that
the generation-based approach with T5 is more ben-
eficial for ECI than the classification-based method.
In addition, we note that the baseline models for
ECI often need external knowledge resources (e.g.,
ConceptNet) or additional training data (e.g., via
data augmentation) to improve the performance.
Our generative model does not require such re-
sources to achieve the best performance.

Line Model P R F1
1 GenECI (full) 59.5 57.1 58.8
2 GenECI - Rper(C) 59.8 49.3 53.4
3 GenECI - Rout(C) 50.3 59.8 56.9
4 GenECI - Rin(C) 49.5 60.9 56.1
5 GenECI - ML pre-training 49.1 62.4 57.3
6 GenECI - dep path 57.0 53.9 55.4
7 Only ML training 60.0 53.5 55.7
8 Only ML training with no dep path 56.5 45.6 50.1

Table 2: Ablation study.

Ablation Study: This section studies the contri-
bution of each designed component for GenECI.
In particular, the major components in GenECI

Input Sentence GenECI ML
Train

Iranian rescue workers handed
out blankets, food and water
Monday to survivors of a power-
ful earthquake on a Gulf island
that killed 10 people and forced
villagers to spend the night in
tents.

Yes,
earth-
quake
killed
forced
spend

No, earth-
quake
survivors
handed
forced
spend

Power was restored to the af-
flicted villages on the Gulf is-
land of Qeshm after a black-
out caused by the quake, which
struck on Sunday with a force of
about 6.0 on the Richter scale.

No, re-
stored
blackout
caused
quake

Yes,
restored
caused
quake

Table 3: Examples with successful generation of causal
labels from GenECI and incorrect generation of causal
labels from ML Training. Event mentions are high-
lighted. ML Training generates incorrect dependency
paths that include irrelevant/noisy words (e.g., “sur-
vivors” and “handed” in the first example) or miss im-
portant context words (e.g., “blackout” in the second
example). Such missing or irrelevant information sug-
gests inability to encode important context for success-
ful causal label prediction.

involve the dependency path generation, the REIN-
FORCE training with different reward terms, and
the maximum likelihood (ML) pre-training. Table
2 shows the performance of the ablated models
on the test set of EventStoryLine when the com-
ponents are eliminated from GenECI. As can be
seen from lines 2, 3, 4, and 5, the proposed reward
functions Rper(C), Rout(C), Rin(C) and the ML
pre-training are all important to produce best per-
formance for GenECI. In line 6, we exclude the
dependency paths from the output sequences O
(i.e., O only contains the causal label), which es-
sentially amounts to not using multi-task learning
with dependency path generation for GenECI. This
also leads to the exclusion of the reward terms
Rout(C) and Rin(C) from R(C). It is clear from
the table that the performance of GenECI suffers
significantly due to the dependency path removal,
verifying the effectiveness of multi-task learning
with dependency paths for ECI. Next, in lines 7 and
8, we present the performance of T5 when it is only
trained with the ML objective. As the performance
of ML training is substantially worse, it suggests
that REINFORCE training with the designed re-
wards is more effective for generative ECI.
Analysis: To better understand the operation of
GenECI, we analyze the examples in EventStory-
Line that are successfully predicted by GenECI,
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but cannot be recognized correctly by the ML train-
ing model (i.e., only training T5 with maximum
likelihood objective). Our main finding from the
analysis is that GenECI can generate correct depen-
dency paths between two given event mentions that
demonstrates the ability to learn necessary context
for successful prediction. In contrast, ML training
tends to produce incorrect dependency paths (i.e.,
including irrelevant words or missing important
words), thus showing limited representation learn-
ing ability and leading to causal prediction failure.
Table 3 presents two examples to demonstrate the
effectiveness of GenECI and reveal issues for ML
Training.

4 Related Work

In the early methods, ECI has been mostly ap-
proached by feature-based models (Beamer and
Girju, 2009; Do et al., 2011; Riaz and Girju, 2014;
Hidey and McKeown, 2016; Ning et al., 2018;
Hashimoto, 2019; Gao et al., 2019). Recently, ECI
has been further solved by deep learning models
(Gao et al., 2019) where external knowledge and
additional training data are leveraged to improve
the performance (Liu et al., 2020; Zuo et al., 2020,
2021; Tran and Nguyen, 2021). We are different
from such prior work as we are the first to model
ECI via a generative model.

Using generative models for traditional
classification-based problems has also been ex-
plored recently, e.g., for named entity recognition
(Athiwaratkun et al., 2020; Yan et al., 2021),
sentiment analysis (Zhang et al., 2021), and event
extraction (Lu et al., 2021). However, none of
such prior work considers generative models
for ECI. Finally, we also note related work on
extracting other types of relations between event
triggers, including temporal relation (Ning et al.,
2017; Leeuwenberg and Moens, 2017; Ning et al.,
2018b; Tran Phu et al., 2021), subevent relation
(Glavaš et al., 2014; Araki et al., 2014; Aldawsari
and Finlayson, 2019; Man et al., 2022), and
coreference relation (Nguyen et al., 2016; Choubey
and Huang, 2018; Huang et al., 2019; Choubey
et al., 2020; Phung et al., 2021; Minh Tran et al.,
2021).

5 Conclusion

We introduce a novel model for ECI that solves the
problem via a generation framework with the T5
model. Our model explores multi-task learning that

jointly generates the dependency paths between
two event mentions for ECI. We also introduce
a training procedure based on REINFORCE and
novel reward functions, which leads to the SOTA
performance for ECI. In the future, we plan to
extend the model to other relation extraction tasks.

Acknowledgement

This research has been supported by the Army Re-
search Office (ARO) grant W911NF-21-1-0112
and the NSF grant CNS-1747798 to the IU-
CRC Center for Big Learning. This research is
also based upon work supported by the Office
of the Director of National Intelligence (ODNI),
Intelligence Advanced Research Projects Activ-
ity (IARPA), via IARPA Contract No. 2019-
19051600006 under the Better Extraction from Text
Towards Enhanced Retrieval (BETTER) Program.
The views and conclusions contained herein are
those of the authors and should not be interpreted
as necessarily representing the official policies, ei-
ther expressed or implied, of ARO, ODNI, IARPA,
the Department of Defense, or the U.S. Govern-
ment. The U.S. Government is authorized to re-
produce and distribute reprints for governmental
purposes notwithstanding any copyright annotation
therein. This document does not contain technol-
ogy or technical data controlled under either the
U.S. International Traffic in Arms Regulations or
the U.S. Export Administration Regulations.

References
Mohammed Aldawsari and Mark Finlayson. 2019. De-

tecting subevents using discourse and narrative fea-
tures. In Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics (ACL).

Jun Araki, Zhengzhong Liu, Eduard Hovy, and Teruko
Mitamura. 2014. Detecting subevent structure for
event coreference resolution. In Proceedings of the
Ninth International Conference on Language Re-
sources and Evaluation (LREC).

Ben Athiwaratkun, Cicero Nogueira dos Santos, Jason
Krone, and Bing Xiang. 2020. Augmented natu-
ral language for generative sequence labeling. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Brandon Beamer and Roxana Girju. 2009. Using a
bigram event model to predict causal potential. In
CICLing.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen, Abby
Vander Linden, Brittany Harding, Brad Huang, Peter

327



Clark, and Christopher D. Manning. 2014. Modeling
biological processes for reading comprehension. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 1499–1510, Doha, Qatar. Association for Com-
putational Linguistics.

Tommaso Caselli and Piek Vossen. 2017. The event
StoryLine corpus: A new benchmark for causal and
temporal relation extraction. In Proceedings of the
Events and Stories in the News Workshop, pages 77–
86, Vancouver, Canada. Association for Computa-
tional Linguistics.

Fei Cheng and Yusuke Miyao. 2017. Classifying tempo-
ral relations by bidirectional LSTM over dependency
paths. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 1–6, Vancouver, Canada.
Association for Computational Linguistics.

Prafulla Kumar Choubey and Ruihong Huang. 2017. A
sequential model for classifying temporal relations
between intra-sentence events. In Proceedings of
the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1796–1802, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Prafulla Kumar Choubey and Ruihong Huang. 2018.
Improving event coreference resolution by modeling
correlations between event coreference chains and
document topic structures. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics (ACL).

Prafulla Kumar Choubey, Aaron Lee, Ruihong Huang,
and Lu Wang. 2020. Discourse as a function of event:
Profiling discourse structure in news articles around
the main event. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5374–5386, Online. Association for
Computational Linguistics.

Quang Do, Yee Seng Chan, and Dan Roth. 2011. Min-
imally supervised event causality identification. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages 294–
303, Edinburgh, Scotland, UK. Association for Com-
putational Linguistics.

Lei Gao, Prafulla Kumar Choubey, and Ruihong Huang.
2019. Modeling document-level causal structures for
event causal relation identification. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 1808–1817, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Goran Glavaš, Jan Šnajder, Marie-Francine Moens, and
Parisa Kordjamshidi. 2014. HiEve: A corpus for
extracting event hierarchies from news stories. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC).

Chikara Hashimoto. 2019. Weakly supervised mul-
tilingual causality extraction from Wikipedia. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2988–
2999, Hong Kong, China. Association for Computa-
tional Linguistics.

Christopher Hidey and Kathy McKeown. 2016. Identi-
fying causal relations using parallel Wikipedia arti-
cles. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1424–1433, Berlin, Ger-
many. Association for Computational Linguistics.

Yin Jou Huang, Jing Lu, Sadao Kurohashi, and Vincent
Ng. 2019. Improving event coreference resolution by
learning argument compatibility from unlabeled data.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT).

Kazuma Kadowaki, Ryu Iida, Kentaro Torisawa, Jong-
Hoon Oh, and Julien Kloetzer. 2019. Event causal-
ity recognition exploiting multiple annotators’ judg-
ments and background knowledge. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5816–5822, Hong Kong,
China. Association for Computational Linguistics.

Artuur Leeuwenberg and Marie-Francine Moens. 2017.
Structured learning for temporal relation extraction
from clinical records. In Proceedings of the Confer-
ence of the European Chapter of the Association for
Computational Linguistics (EACL).

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out.

Jian Liu, Yubo Chen, and Jun Zhao. 2020. Knowl-
edge enhanced event causality identification with
mention masking generalizations. In Proceedings of
the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, pages 3608–3614.
International Joint Conferences on Artificial Intelli-
gence Organization.

Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong
Tang, Annan Li, Le Sun, Meng Liao, and Shaoyi
Chen. 2021. Text2Event: Controllable sequence-to-
structure generation for end-to-end event extraction.
In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (ACL).

Hieu Man, Nghia Trung Ngo, Linh Van Ngo, and
Thien Huu Nguyen. 2022. Selecting optimal con-
text sentences for event-event relation extraction. In
Proceedings of the Conference on the Advancement
of Artificial Intelligence (AAAI).

328



Hieu Minh Tran, Duy Phung, and Thien Huu Nguyen.
2021. Exploiting document structures and cluster
consistencies for event coreference resolution. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4840–
4850, Online. Association for Computational Lin-
guistics.

Paramita Mirza. 2014a. Extracting temporal and causal
relations between events. In Proceedings of the ACL
2014 Student Research Workshop, pages 10–17, Bal-
timore, Maryland, USA. Association for Computa-
tional Linguistics.

Paramita Mirza. 2014b. Fbk-hlt-time: a complete italian
temporal processing system for eventi-evalita 2014.
In EVALITA.

Thien Huu Nguyen, , Adam Meyers, and Ralph Grish-
man. 2016. New york university 2016 system for
kbp event nugget: A deep learning approach. In
Proceedings of the Text Analysis Conference (TAC).

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc-
tured learning approach to temporal relation extrac-
tion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth. 2018.
Joint reasoning for temporal and causal relations. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2278–2288, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng, and
Dan Roth. 2018b. CogCompTime: A tool for under-
standing time in natural language. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations
(EMNLP).

Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie
Ma, Alessandro Achille, Rishita Anubhai, Cicero
dos Santos Nogueira, Bing Xiang, and Stefano Soatto.
2021. Structured prediction as translation between
augmented natural languages. In Proceedings of the
9th International Conference on Learning Represen-
tations (ICLR).

Romain Paulus, Caiming Xiong, and Richard Socher.
2018. A deep reinforced model for abstractive sum-
marization. In Proceedings of the International Con-
ference on Learning Representations (ICLR).

Duy Phung, Tuan Ngo Nguyen, and Thien Huu Nguyen.
2021. Hierarchical graph convolutional networks
for jointly resolving cross-document coreference of
entity and event mentions. In Proceedings of the Fif-
teenth Workshop on Graph-Based Methods for Nat-
ural Language Processing (TextGraphs-15), pages
32–41, Mexico City, Mexico. Association for Com-
putational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the Lim-
its of Transfer Learning with a Unified Text-to-Text
Transformer. In Journal of Machine Learning Re-
search.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In Proceedings
of the International Conference on Learning Repre-
sentations (ICLR).

Mehwish Riaz and Roxana Girju. 2014. In-depth ex-
ploitation of noun and verb semantics to identify
causation in verb-noun pairs. In SIGDIAL.

Minh Phu Tran and Thien Huu Nguyen. 2021. Graph
convolutional networks for event causality identifi-
cation with rich document-level structures. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
3480–3490, Online. Association for Computational
Linguistics.

Minh Tran Phu, Minh Van Nguyen, and Thien Huu
Nguyen. 2021. Fine-grained temporal relation extrac-
tion with ordered-neuron LSTM and graph convolu-
tional networks. In Proceedings of the Seventh Work-
shop on Noisy User-generated Text (W-NUT 2021),
pages 35–45, Online. Association for Computational
Linguistics.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. In Kluwer Academic.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified generative
framework for various NER subtasks. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(ACL).

Wenxuan Zhang, Xin Li, Yang Deng, Lidong Bing, and
Wai Lam. 2021. Towards generative aspect-based
sentiment analysis. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (ACL).

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205–2215, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Xinyu Zuo, Pengfei Cao, Yubo Chen, Kang Liu, Jun
Zhao, Weihua Peng, and Yuguang Chen. 2021.
LearnDA: Learnable knowledge-guided data augmen-
tation for event causality identification. In Proceed-
ings of the 59th Annual Meeting of the Association for

329



Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3558–3571, Online.
Association for Computational Linguistics.

Xinyu Zuo, Yubo Chen, Kang Liu, and Jun Zhao. 2020.
KnowDis: Knowledge enhanced data augmentation
for event causality detection via distant supervision.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 1544–1550,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

330



Proceedings of the 11th Joint Conference on Lexical and Computational Semantics, pages 331 - 340
July 14-15, 2022 ©2022 Association for Computational Linguistics

Capturing the Content of a Document through
Complex Event Identification

Zheng Qi, Elior Sulem, Haoyu Wang, Xiaodong Yu, Dan Roth
Department of Computer and Information Science, University of Pennsylvania

{issacqzh, eliors, why16gzl, xdyu, danroth}@seas.upenn.edu

Abstract

Granular events, instantiated in a document by
predicates, can usually be grouped into more
general events, called complex events. Together,
they capture the major content of the document.
Recent work grouped granular events by defin-
ing event regions, filtering out sentences that
are irrelevant to the main content. However,
this approach assumes that a given complex
event is always described in consecutive sen-
tences, which does not always hold in practice.
In this paper, we introduce the task of complex
event identification. We address this task as
a pipeline, first predicting whether two granu-
lar events mentioned in the text belong to the
same complex event, independently of their po-
sition in the text, and then using this to cluster
them into complex events. Due to the difficulty
of predicting whether two granular events be-
long to the same complex event in isolation,
we propose a context-augmented representa-
tion learning approach CONTEXTRL that adds
additional context to better model the pairwise
relation between granular events. We show that
our approach outperforms strong baselines on
the complex event identification task and fur-
ther present a promising case study exploring
the effectiveness of using complex events as in-
put for document-level argument extraction.1.

1 Introduction

Event extraction aims to identify event predicates
and arguments from text and then identify their
types and roles respectively, helping humans to
easily understand the events. It has attracted con-
siderable interest in the last few years (Chen et al.,
2015; Nguyen et al., 2016; Sha et al., 2018; Lin
et al., 2020; Ebner et al., 2020; Chen et al., 2020b;
Li et al., 2021) due to the vast amounts of unstruc-
tured text available in domains like e-commerce,
healthcare and industry. However, considering each

1The data and code are available at http://cogcomp.
org/page/publication_view/978

Five protesters were (e2:killed) when they were (e3:attacked)
by an armed group. The armed group (e5:attacked) the
demonstrators who have for days been staging their
(e7:protest) against the military government. Many protesters
are supporters of an ultraconservative Islamist candidate in
(e8:elections) who was expelled from the election (e10:race)
when it was (e11:discovered) that his mother held dual
Egyptian-U.S citizenship. The (e13:attack) on Wednesday
(e14:wounded) at least 50 protesters, and the attackers
(e15:used) stones, sticks and Molotov cocktails.

e2: killed

e3: attacked e5: attacked

e7: protest

e13: attack

e14: wounded e15: used

ce1

e8: elections e10: race

e11: discovered

ce2

Figure 1: An example of complex events (ce1 and ce2)
described in the document. For clarity, not all event
mentions are shown in the figure.

granular event instantiated in the document by a
predicate in isolation is not sufficient for under-
standing the entire context of the document. Since
granular events can be grouped into more general
events, called complex events, we suggest using
them to capture the major content of the document.

A document could contain any number of com-
plex events where each complex event contains
more than one granular event. For example, Figure
1 represents 10 granular events appearing in a doc-
ument. One can group the granular events into two
complex events as follows: (i) ce1 (in green) that
includes the granular events related to a protest, (ii)
ce2 (in red) that includes granular events that, taken
together, describe elections. These two complex
events represent the major two events that the text
describes.

Recently, Chen et al. (2020a) used the notion
of event regions, a byproduct of document-level
argument extraction, by filtering out sentences that
are irrelevant to the main content and then parti-
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tioning the text into several parts. Therefore, event
regions are defined as consecutive sentences that
include relevant arguments. However, compared
to the complex event that groups related granular
events together, the event region fails to capture
the following two scenarios: (i) sentences that in-
clude granular events in the same complex event
(e.g. the first and the last sentences in Figure 1) are
separated by sentences that include granular events
in another complex event; (ii) two granular events
belonging to different complex events may appear
in the same sentence.

Therefore, in this paper, we introduce the task of
complex event identification which aims to group
granular events instantiated by predicates into com-
plex events, independently from the position of the
predicates in the text. For example, in Figure 1, e2
and e13 belong to the same complex event (ce1)
while e8 belongs to ce2.

To perform complex event identification, we first
(i) predict whether two granular events belong to
the same complex event, independently of their
positions in the document, and then (ii) cluster
them into complex events based on the pairwise
relation predicted from step (i).

However, only considering the joint represen-
tations of two granular events is not sufficient to
model the pairwise relation. For example, in Fig-
ure 1, it is difficult to infer that “demonstrators
have for days been staging their protest against the
government” (e7) and “the attackers used stones,
sticks and Molotov cocktails" (e15) belong to the
same complex event until we know that “The armed
group attacked the demonstrators" (e5). Moreover,
since both “demonstrators have for days been stag-
ing their protest against the government” (e7) and
“Many protesters are supporters of a candidate in
elections" (e8) mention some information about the
protest, they might be considered to be in the same
complex event. However, after reading more parts
of the document, we know that e8 belong to the
election complex event (ce2), which occurs before
the protest complex event (ce1) containing e7.

Hence, we propose a context-augmented rep-
resentation learning approach CONTEXTRL that
adds additional context to model the pairwise com-
plex event relation. Specifically, we compute the
attention distribution of other granular events in the
document based on the joint representation of two
granular events and select the one with the highest
score as the context event. Regarding two granular

events as a single entity, if they belong to the same
complex event, the system would add a granular
event in the same complex event, to improve the ex-
pressiveness of their relatedness; if they are not in
the same complex event, then the system would add
an additional granular event to make them more
distinguishable, relative to this context event.

Since there is not a dataset tailored to the task
of complex event identification, we derive the
complex event annotation from the HiEve dataset
(Glavaš et al., 2014) that focuses on event-event
relations. We show that our proposed approach
outperforms strong baselines.

Moreover, since related granular events are
grouped into the same complex event, the scope
of the complex event is supposed to include all the
information required for the prediction of the argu-
ments of its granular events. Hence, we conduct a
case study on the WIKIEVENTS dataset (Li et al.,
2021) to explore the effectiveness of using complex
events as the input for the document-level argument
extraction task. We show that, when enough granu-
lar events are annotated, using complex events as
input filters out noisy and irrelevant information,
motivating the model to only focus on the related
granular events.

The major contributions of this paper can be
summarized as follows:

1. We introduce the complex event identification
task that allows one to group related granular
events, independently from the position of the
predicates in the text, into complex events
that, together, capture the major content of the
document.

2. We present a context-augmented representa-
tion learning approach CONTEXTRL tailored
to this task, showing that this approach outper-
forms strong baselines on the complex event
annotation derived from the HiEve dataset.
We also analyze the effect of the context event.

3. We conduct an exploratory case study on
the WIKIEVENTS dataset, showing that us-
ing complex events as the input for document-
level argument extraction allows the system
to only consider relevant sentences and is a
promising approach for this task.

2 Related Work

Event Extraction In the last few years, most of
the work on event extraction focuses on the sen-
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tence level (Chen et al., 2015; Nguyen et al., 2016;
Sha et al., 2018; Lin et al., 2020). Experiments
are usually performed on the ACE dataset (Walker
et al., 2006). In that setting, events correspond
to predicates and event extraction consists in (i)
identifying the predicates in the sentence (Trig-
ger Identification); (ii) classifying them according
to a predefined ontology (Trigger Classification);
(iii) identifying the arguments (Argument Identi-
fication); (iv) identifying the role of the argument
relative to the predicate (Argument Classification).

However, since arguments are usually scattered
across sentences, recent works (Ebner et al., 2020;
Chen et al., 2020b; Li et al., 2021) extended the
argument extraction components (iii) and (iv) to
the document level, trying to capture arguments
that are not in the same sentence as the predi-
cate. Li et al. (2021) introduced the WIKIEVENTS

dataset, going beyond the RAMS dataset (Ebner
et al., 2020) by annotating several granular events
per document. However, this approach does not
address complex events and focuses on argument
roles relative to granular events. In Section 4.6, we
explore the effectiveness of using complex event
as input for document-level argument extraction,
experimenting on the WIKIEVENTS dataset.

Event Regions Chen et al. (2020a) addressed
document-level argument extraction as well but
they also obtain as byproducts event regions, de-
fined as adjacent sentences that include relevant
arguments. Complex events differ conceptually
from event regions in two main points: (i) sen-
tences that contain predicates of granular events
in the same complex event can be separated in the
text by sentences that include predicates of granu-
lar events in other complex events. (ii) the context
of complex events may be overlapping as granular
events in different complex events may share the
same sentence.

Event-Event Relations Event-event relations in-
clude coreference and subevent relations. Event
coreference (Lee et al., 2017; Barhom et al., 2019;
Yu et al., 2022) allows one to group granular
events referring to the same granular event while a
subevent relation (Aldawsari and Finlayson, 2019;
Wang et al., 2020) indicates that one granular event
is a parent or child of another granular event. How-
ever, the notion of complex events is broader than
both of them: (i) granular events in the same com-
plex event also have other relations than subevent

relations, such as temporal and causal relations;
(ii) granular events in the same complex event can
have different content. For example, e3: “attacked”
and e14: “wounded” in Figure 1 are in the same
complex event although they are not coreferred.

...

granular
events  
in the

document

argmax

Figure 2: CONTEXTRL framework. gi,gj are contextu-
alized representations of predicate i and j respectively.
g(i, j) denotes the concatenation of two granular event
representations and go denotes the context event repre-
sentation. gc(i, j) denotes the concatenation of g(i, j)
and go. p(i, j) denotes the probability of belonging to
the same complex event.

3 Method

In this section, we present our context-augmented
learning approach CONTEXTRL. We address the
complex event identification task as a pipeline, first
predicting whether two granular events belong to
the same complex event, independently of their
position in the text, and then grouping them into
complex events based on pairwise predictions. We
first introduce our pairwise complex event relation
extraction model in Section 3.1 and then introduce
the granular event clustering step in Section 3.2.

3.1 Context-Augmented Pairwise Complex
Event Relation Extraction

Our context-augmented model takes two sentences
that contain predicates and the representations of
other granular events (context event candidates) in
the document as input, outputting a score indicating
how likely two granular events belong to the same
complex event. Since it is time-consuming and
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computationally expensive to encode all other gran-
ular events every time, we propose an efficient and
effective way to obtain the representations of some
granular events except the two granular events with-
out further computation and regard them as context
event candidates. During training and evaluation,
with a batch size of n, we obtain representations
of 2n granular events and use 2(n − 1) granular
events except the two granular events as context
event candidates. To make sure these 2(n−1) gran-
ular events are in the same document as the two
granular events, we only shuffle pairs within each
document instead of shuffling across documents.
We show its effectiveness in Section 4.5.

Given two granular events i and j, as shown in
Figure 2, we first concatenate the sentences where
their predicates appear using [CLS] and [SEP] and
then encode the sequence using RoBERTa (Liu
et al., 2019) to learn a contextualized representation
for each token in the sequence. The concatenation
of two sentences allows each token to learn the con-
text from both sentences. Since granular events are
instantiated by predicates, which are consecutive
spans within the sentence, we sum up representa-
tions of tokens in the predicates element-wisely to
obtain the predicate representations gi and gj .

Next, to select the context event, we first use the
concatenation of two granular event representations
g(i, j) and the representations of other granular
events in the document s to compute the attention
distribution α(i, j) as follows:

ek(i, j) = v⊺tanh(Wgg(i, j) +Wssk + be)
α(i, j) = Softmax(e(i, j))

where v, Wg, Ws are learnable matrix, be is a bias
vector, sk is the representation of kth granular event
and e(i, j) is attention scores.

Then we select the granular event with the high-
est attention score as the context event and con-
catenate its representation go with the representa-
tions of two granular events to obtain the context-
augmented representation gc(i, j) as follows:

o = argmax(α(i, j))
gc(i, j) = [gi; gj ; go]

We also manually set an attention distribution
threshold to guarantee that there is a granular event
highly related to the two granular events. If the
highest attention score is lower than the threshold,
we mask the context event with 0.

Finally, we forward the context-augmented rep-
resentation gc(i, j) into a linear layer to output the

probability of belonging to the same complex event
as follows:

p(i, j) = Softmax(Wcgc(i, j) + bc)

where Wc and bc are a learnable weight matrix and
a bias vector respectively.

3.2 Granular Event Clustering
After obtaining the pairwise complex event relation
for each pair of granular events in the document,
similar to the clustering step of previous work on
the event coreference task (Choubey and Huang,
2017; Kenyon-Dean et al., 2018; Barhom et al.,
2019; Cattan et al., 2020), we cluster them into
complex events using agglomerative clustering. We
define the distance between two granular events as
the likelihood of not belonging to the same com-
plex event. Agglomerative clustering merges event
clusters until no cluster pairs have a linkage dis-
tance lower than the threshold, where the linkage
distance is defined as the average distance of all the
event pairs across two clusters.

In addition, we assume the scope of the complex
event is the set of sentences that contain granular
event predicates. Since a sentence may contain mul-
tiple predicates, the overlapping of scope between
complex events is allowed by nature, which also
contrasts with the event region definition shown in
Section 2.

4 Experiments and Results

We conduct experiments on the complex event iden-
tification task, using our context-augmented repre-
sentation learning approach CONTEXTRL to first
extract pairwise relations and then group granular
events into complex events through agglomerative
clustering. We further present a promising case
study on the WIKIEVENTS dataset (Li et al., 2021),
showing the effectiveness of using only complex
events as input for document-level argument extrac-
tion in Section 4.6.

# Doc. # Pairs # CE # Events/ CE

Train 60 38124 121 7.01
Dev 20 13810 44 6.93
Test 20 16227 54 7.07

Table 1: Statistics for the HiEve dataset and the complex
event annotation derived from the HiEve dataset. CE
denotes complex event.

334



4.1 Dataset

Since there is not a dataset tailored to the complex
event identification task, we derive the complex
event annotation from HiEve dataset (Glavaš et al.,
2014) that annotates subevent and coreference re-
lations. For each document, we first build an undi-
rected acyclic graph where vertices are granular
events connected by subevent relations (i.e., two
events have either Parent-Child or Child-Parent re-
lation) as edges, and then regard granular events in
the same graph as belonging to the same complex
event. We summarize the data statistics in Table
1. Note that the replication of this work on other
texts requires the annotation of subevent relations
with the constraint of not having two parents for
the same subevent, unless they are co-referred, as
in HiEve. Then, complex events can be derived
from the annotation, as described here. We plan
to explore the direct annotation of complex events
in future work, which requires the compilation of
fine-grained guidelines.

4.2 Baselines and Evaluation Metrics

We compare our model with three baselines. The
first baseline is a Sequence Classification model
(SC) plus the clustering step, where the Sequence
Classification model encodes concatenated sen-
tences using RoBERTa (Liu et al., 2019) and for-
wards the contextualized [CLS] token to a linear
layer to compute the probability of belonging to
the same complex event.

The second baseline is a strong predicate repre-
sentation learning model (PRL) plus the clustering
step, which replaces the contextualized [CLS] to-
ken with the concatenation of two predicate rep-
resentations. The difference from our proposed
model is that it does not use the context event.

Furthermore, since our complex event annotation
is derived from the HiEve dataset that annotates
subevent and coreference relations, we also com-
pare our model with Wang et al. (2020), a SOTA
joint constrained learning framework for extract-
ing subevent, coreference and temporal relations,
plus the clustering step. Since the HiEve dataset
does not have temporal annotation, we only use
its constraints related to subevent and coreference
relations.

In terms of the clustering step, we use agglom-
erative clustering for the first two baselines that
directly identify complex events. However, for
the third baseline that extracts subevent relations to

build complex events, since not all pairs of granular
events in the same complex event have a subevent
relation, using the probability of having subevent
relations as distance would hinder such pairs from
being grouped together. Thus, we follow the same
graph-based clustering method as in Section 4.1.

In addition, we note that the method of Chen
et al. (2020a) for event regions is not comparable
with our method for complex event identification
for the following reasons:

• The complex event and event region defini-
tions are conceptually different, as the latter
does not group granular events instantiated by
predicates but rather partitions the document
into segments, based on arguments.

• In the complex event annotation derived from
the HiEve dataset, the proportion of com-
plex events with consecutive sentences is
only 91/219 = 41.6%, hindering Chen et al.
(2020a)’s method from achieving competitive
performance.

• Current datasets do not include gold data al-
lowing such a comparison. Specifically, the
HiEve dataset does not include argument an-
notation while the datasets CFEED and MUC-
4 used in Chen et al. (2020a) do not annotate
granular events.

Since both complex event identification and
coreference resolution build clusters of granular
events, we use coreference evaluation metrics 2 for
evaluation, including MUC (Vilain et al., 1995), B3

(Bagga and Baldwin, 1998), CEAFe (Luo, 2005)
and BLANC (Recasens and Hovy, 2011), and re-
port the results in Table 2. We also report CoNLL
F1 which is the average of MUC, B3 and CEAFe.

In addition, we report intermediary perfor-
mances. For the pairwise complex event relation
extraction task, the precision, recall and F1 scores
are reported in Table 3. For the subevent relation
extraction task, we use the same evaluation setting
as Wang et al. (2020), testing the model using 20%
of the documents. The macro average precision, re-
call and F1 scores of Parent-Child and Child-Parent
relations are also reported in Table 3. Note that
Wang et al. (2020) only kept 40% negative NoRel
examples of the test set during evaluation while we
evaluate on the entire test set.

2https://github.com/conll/reference-coreference-scorers
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Model MUC B3 CEAFe BLANC CoNLL F1

Using Subevent Relations for Complex Event Identification

Wang et al. (Baseline) 72.68 60.38 55.39 47.22 62.82

Direct Complex Event Identification

SC (Baseline) 51.69 59.94 43.34 48.9 51.66
PRL (Strong Baseline) 76.97 80.51 80.57 74.06 79.35
CONTEXTRL (Ours) 77.21 81.99 81.72 77.08 80.31

Table 2: Complex event identification performance on the complex event annotation derived from the HiEve. The
columns correspond to different evaluation metrics. CoNLL F1 is the average of MUC, B3 and CEAFe. We present
our approach with 3 baselines. Wang et al. extracts subevent relations and then builds complex events by grouping
granular events in the same acyclic graph to the same complex event. The last three models directly identify pairwise
complex event relations and then cluster granular events into complex events through agglomerative clustering.

4.3 Experimental Setup
We encode the concatenated sequence using
RoBERTa-large (Liu et al., 2019) to obtain 1024
dimensional token representations. Since the clus-
tering step requires the pairwise prediction prob-
ability for each pair of granular events within the
document, we set the max sequence length to 140
so that all pairs in the development set could fit
in. The model contains 358.5M parameters in total.
We use AdamW (Loshchilov and Hutter, 2017) to
optimize the parameters, with a learning rate of 1e-
6. For each setting, we train 12 epochs with a batch
size of 16, and each epoch takes about 25 minutes.
The attention distribution threshold of 0.047 is set
based on the performance of the development set.
The agglomerative clustering threshold for each
setting is finetuned on the development set. We run
all experiments on TITAN Xp GPU of size 12 GB.

Model Precision Recall F1

Subevent Relation Extraction

Wang et al. 15.88 60.81 25.03

Pairwise Complex Event Relation Extraction

SC 44.65 13.70 20.96
PRL 56.39 62.19 59.15

CONTEXTRL 55.75 64.85 59.96

Table 3: Subevent relation extraction performance on
HiEve and Pairwise complex event relation extraction
performance on the complex event annotation derived
from the HiEve dataset. For Wang et al., we report
the macro average scores of Precision, Recall and F1.
SC denotes the Sequence Classification model. PRL
denotes the predicate representation learning model.

4.4 Complex Event Identification Results

In Table 2, we report evaluation metric scores
for our approach and baselines. Our context-
augmented representation learning approach CON-
TEXTRL outperforms all baselines, with a CoNLL
F1 score of 80.31. Besides, since it outperforms
the SOTA subevent relation extraction model by
a large margin, it motivates the study of complex
event identification as an independent task.

We also show an example of complex events in
the document predicted by CONTEXTRL in Figure
3. Granular events in green belong to a complex
event describing the recent filing while granular
events in red belong to another complex event de-
scribing the crime. These two complex events are
interleaved in the document.

4.5 Context Event Analysis

As shown in Table 3, CONTEXTRL outperforms
both baselines on the pairwise complex event rela-
tion extraction task. It achieves a F1 score of 59.96,
which is 0.81 higher than the strong baseline PRL.
Compared with PRL, CONTEXTRL has a much
higher recall which indicates it has fewer false neg-
atives and more true positives. However, more true
positives but a slightly lower precision indicates
it contains more false positives. We discuss the
reasons in the following paragraphs.

Effectiveness of Using Other Granular Events
in the Batch as Context Event Candidates As
shown in Table 4, in the test set, there are 2256 pairs
of granular events belonging to the same complex
event (positive pairs) and 13971 pairs of granular
events not belonging to the same complex event
(negative pairs). Of all positive pairs, 2238 (99.2%)
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A new lawyer for OJ Simpson has filed a new attempt to
gain his release from prison, alleging he was so badly
(e4: represented) by lawyers in his (e6: trial) that he
deserves a retrial. A 94-page document (e7: filed) in
Court faults the (e8: trial) performance of attorneys
Galanter and Grasso. It says he wanted to recover from
sports memorabilia dealers family photos and personal
mementoes (e10: stolen) from him. Simpson was
convicted of charges including (e14: kidnapping) and
armed (e15: robbery) in a hotel room crammed with
two memorabilia dealers and a middle man, Simpson
later (e16: convicted) of (e17: felonies). Simpson, 64,
was (e18: sentenced) to nine to 33 years behind bars.
The (e19: filing) is a common next-step appeals
strategy to blame trial and initial appeals attorneys for a
defendant's conviction. Almost all grounds that lawyer
(e21: cited) in the document fault Mr Galanter and Mr
Grasso. Mr Grasso said "I'm behind OJ and I hope this
(e25: petition) helps him get out of prison".

Complex Event Prediction

Figure 3: An example showing the prediction of com-
plex events described in a document from the HiEve
development set. Granular events in green belong to
one complex event while granular events in red belong
to another complex event. For clarity, not all event men-
tions are shown in the figure.

have at least one context event candidate that be-
longs to the same complex event as the pair of
granular events, providing the opportunity of using
an additional context event in the same complex
event to improve the expressiveness of their relat-
edness. Of all negative pairs, 9440 (67.57%) have
at least one context event candidate that belongs
to the same complex event as one of the granular
events in the pair. Of the rest of 4531 negative pairs,
4038 (89.12%) have both granular events that are
not in any complex event. Such statistics indicate
that negative pairs could select an additional con-
text event from diversified candidates to make the
pair of granular events distinguishable, relative to
this context event.

Use Context Event in Positive Examples As
we can see in Table 4, of all 2238 positive pairs
that contain at least one context event candidate
belonging to the same complex event as the pair
of granular events, 655 mask the context event and
the prediction accuracy is 64.12%. Of the rest of
1583 positive pairs, 942 use an additional context
event that belongs to the same complex event as the
pair of granular events, achieving an accuracy of
66.03%, while 641 pairs use other context events,
having an accuracy of 64.12%. Therefore, adding
an additional context event that belongs to the same

complex improves the accuracy, which is equiva-
lent to the number of true positives, and adding a
context event not in the same complex event for
positive pairs does no harm to the prediction.

Positive Pairs

Same CE Real Context Mask Total

Yes 1583 (1033) 655 (420) 2238
No 12 (6) 6 (3) 18

Total 1595 661 2256

Negative Pairs

Same CE Real Context Mask Total

Yes 5989 (5261) 3451 (3063) 9440
No 2700 (2670) 1831 (1816) 4531

Total 8689 5282 13971

Table 4: Analysis of the Pairwise complex event rela-
tion extraction performance of CONTEXTRL on com-
plex event annotation. Real Context and Mask denote
whether the pair uses a non-masked context event or
not. Same CE (Yes or No) denotes whether the batch
contains a context event candidate that belongs to the
same Complex Event as one (for negative pairs) or two
(for positive pairs) of the granular events in the pair.
Number in parenthesis denotes the number of pairs pre-
dicted correctly.

Use Context Event in Negative Examples As
shown in Table 4, of all 13971 negative pairs, 5282
mask the context event and the prediction accu-
racy is 92.37%. Of the rest of 8689 pairs, 2559
use a context event that belongs to the same com-
plex event as one of the granular events in the pair,
achieving an accuracy of 84.16%, while 6130 pairs
use other context events, having an accuracy of
94.27%. Therefore, adding a context event in the
same complex event as one of the granular events
in a negative pair motivates the model to identify
them to belong to the same complex event, increas-
ing the number of false positives. Besides, since
the model regards two granular events that describe
different things as a single entity when computing
the attention distribution, it is likely to select a con-
text event not related to any of them in isolation,
thus predicting the pair as negative with a great
chance.

4.6 Complex Event as the Input of
Document-level Argument Extraction

Since arguments are usually scattered across
sentences, recent works on Argument Extrac-
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Train Dev Test

# Event types 49 35 34
# Arg types 57 32 44

# Docs 206 20 20
# Sentences 5262 378 492

# Events 3241 345 365

Table 5: Statistics for WIKIEVENTS dataset.

tion (Ebner et al., 2020; Chen et al., 2020b; Li
et al., 2021) move from the sentence-level to the
document-level (i.e., extracting the arguments from
the whole document rather than a single sentence).
However, the document not only has many noisy
and irrelevant entities that prevent the model from
extracting the arguments correctly, but also is too
long to fit into a transformer-based model which
limits the max sequence length.

Since granular events in the same complex event
usually describe the same general content and they
are unrelated to the granular events in other com-
plex events, we assume the complex event should
contain all the information required for the predic-
tion of the arguments of its granular events.

Therefore, we conduct a case study on the
WIKIEVENTS dataset to investigate the effective-
ness of using complex events as input for document-
level argument extraction. If the granular event
belongs to a complex event, we use the sentences
that contain granular event predicates in the same
complex event as input; If the granular event does
not belong to any complex event, we still use the
entire document as input. We summarize the data
statistics in Table 5.

Since WIKIEVENTS dataset does not have com-
plex event annotation, we directly use our model
CONTEXTRL trained on the complex event anno-
tation derived from the HiEve dataset to group
granular events in each document into complex
events. Since the average number of annotated
events per sentence in the test set is only 0.74, only
using annotated granular events is not sufficient
to build complex events. Therefore, we leverage
an off-the-shelf verbal and nominal SRL system3

to extract more granular events from documents.
Consequently, 260/365 granular events belong to
a complex event and using complex events as in-
put reduces the average word count from 787.90 to
539.25.

3https://github.com/CogComp/SRL-English

After training the argument extraction model
proposed in Li et al. (2021), we evaluate it on the
test set with complex events as input and compare
the performance with using the whole document as
input. When using the whole document as input,
the argument identification and classification head
word F1 scores are 71.21 and 66.55 respectively
while using the complex event as input results in F1

scores of 71.07 and 66.25 respectively. We could
see that the model still achieves fairly close perfor-
mance with much shorter inputs. Moreover, note
that the complex event identification system is not
trained on the WIKIEVENTS dataset, thus directly
using the pre-trained model to identify complex
events may also result in low performance.

We further show an “attack" granular event from
the document, which has the largest improvement
on the argument identification, in Figure 4. Using
the complex event as input motivates the model to
focus on the “attack" granular event, whereas using
the whole document as input adds much irrelevant
information (i.e. what is included in the interviews),
distracting the model from the “attack" event and
thus extracting incorrect arguments. Such differ-
ence in input and performance demonstrates the
effectiveness of using complex events as the input
for document-level argument extraction.

Complex Event as the Context

Osama bin Laden is charged to have had a role in the
October 2000 attack on the USS Cole in the Yemeni
port of Aden. This report features reporting by a
Pulitzer-Prize-nominated team of New York Times
reporters.

Whole Document as the Context

photo © 2001 corbis images all rights reserved web site
copyright 1995-2014 WGBH educational foundation
Hunting Bin Laden Osama bin Laden is charged to
have had a role in the October 2000 attack on the USS
Cole in the Yemeni port of Aden. This report features
reporting by a Pulitzer-Prize-nominated team of New
York Times reporters. Tracing the trail of evidence
linking bin Laden to terrorist attacks, this report includes
interviews with Times reporters. They discuss the
terrorist attacks linked to bin Laden's complex network
of terrorists, outline the elements of his international
organization and details of its alliances and tactics.

Figure 4: An example showing the difference between
using the complex event as the input and using the whole
document as the input of document-level argument ex-
traction. The predicate “attack" is in blue. Arguments
in green are correctly extracted; arguments in red are
missed; arguments in orange are extracted incorrectly.
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5 Conclusion

In this work, we introduce the task of com-
plex event identification and present a context-
augmented approach CONTEXTRL tailored to this
task. We show that our approach outperforms
strong baselines on the annotation derived from
the HiEve dataset and analyze positive effects of
the context event. We further show the potential
usefulness of using complex events as input for
document-level argument extraction. For future
work, we plan to directly annotate complex events
from scratch with fine-grained guidelines. We also
seek to extend our approach towards an end-to-end
system with granular event extraction.
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Abstract

This paper suggests a direction of corefer-
ence resolution for online decoding on actively
generated input such as dialogue, where the
model accepts an utterance and its past con-
text, then finds mentions in the current utter-
ance as well as their referents, upon each dia-
logue turn. A baseline and four incremental-
updated models adapted from the mention-
linking paradigm are proposed for this new set-
ting, which address different aspects includ-
ing the singletons, speaker-grounded encod-
ing and cross-turn mention contextualization.
Our approach is assessed on three datasets:
Friends, OntoNotes, and BOLT. Results show
that each aspect brings out steady improve-
ment, and our best models outperform the
baseline by over 10%, presenting an effective
system for this setting. Further analysis high-
lights the task characteristics, such as the sig-
nificance of addressing the mention recall.

1 Introduction

It has been made practical recently to apply coref-
erence resolution to assist a broad scope of NLP
tasks (Peng et al., 2017; Sahu et al., 2019; Gao
et al., 2019), especially with the advent of neural
end-to-end decoding and contextualized encoding
(Lee et al., 2017, 2018; Joshi et al., 2019, 2020;
Wu et al., 2020). However, it is quite limited to use
existing coreference models in real-time dialogue
processing systems, as most of them are not trained
to handle an online decoding environment. In the
dialogue domain, recent efforts have focused on
ellipsis recovery and query rewriting (Quan et al.,
2019; Tseng et al., 2021); in this work, we target
to address a new perspective specifically for the
online decoding, where the model sequentially ac-
cepts utterances in a dialogue and spits out valid
mentions as well as their referent links for each
latest utterance turn upon arrival, to be consumed
by the downstream dialogue processing (Figure 1).

John: I visited my mom in her house yesterday.

Ella: Nice! Did you also take her to any restaurant?

John: Yes! The BBQ place nearby!

[I], [my mom], [her house]

[I, you], [my mom, her], [her house], [restaurant]

[I, you], [my mom, her], [her house], [restaurant, BBQ place]

Dialogue 
Processing 

e.g. 
Entity Linking

u1 u2 u3
Online Coreference Resolution

Figure 1: Illustration of the online setting. Predictions
upon each turn are made immediately and ready for
consumption by downstream applications. New men-
tions at each turn are marked by boldface in orange.

More formally, let ui be the current (i’th) utter-
ance in a dialogue (u1, .., ui, ..); Mi be the men-
tions in ui;Mi−1 be the mentions from previously
predicted clusters till ui−1. The objective upon i’th
turn is to: (1) identifyMi (2) identify conference
links amongMi, as well as fromMi toMi−1. We
do not allow updates onMi later, since that would
be equivalent to general coreference resolution; in
this work, we specifically target this underexplored
online scenario under this setting, which requires
accurate predictions upon each turn that could be
directly consumed by downstream applications.

Several quasi-online coreference models have
been proposed that maintain and update referents
sequentially (Clark and Manning, 2015, 2016; Liu
et al., 2019; Toshniwal et al., 2020; Xia et al., 2020).
However, these models differ from our real online
setting in two ways. First, only the latest utter-
ance and its past sequence are visible in our set-
ting, so that decisions need to be made without
knowing the unseen future. Second, the decision
of whether a span should be extracted or linked to
others needs to be made immediately at each utter-
ance turn, while quasi-online models can maintain
an internal pool of candidates and make one final
prediction after the entire document is processed.

For this task, we first introduce our baseline
adapted from the classic mention-linking (ML) ap-

341



proach (Wiseman et al., 2015; Lee et al., 2017),
and then propose four models where each one does
an incremental update upon the previous model
and addresses a specific perspective of this task,
including the online inference, singletons, speaker-
grounded encoding, and mention contextualization
across utterance turns. For our approach, we do
not use models that maintain explicit entities, be-
cause: (1) it has been shown that higher-order fea-
tures from entity representation provide negative
to marginal positive impact over ML counterparts
despite their complexities (Xu and Choi, 2020; Xia
et al., 2020; Toshniwal et al., 2020); (2) ML models
are “stateless” so that they do not need to maintain
decision states for previous mentions, which makes
it more adaptable to applications in practice.

All models are evaluated on three datasets to
test the generalizability of our approach, and the
best model obtains over 10% improvement over
the baseline on all datasets. Results and further
analysis suggest that each aforementioned aspect
can bring out steady improvement under the online
setting, and highlight the singleton recovery to be
the most critical component.

2 Approach

End-to-End Resolution Our model backbone is
based on the end-to-end coreference resolution
(Lee et al., 2018) with a Transformers encoder
(Joshi et al., 2020). It scores every span for being a
mention, and extracts top spans as mention candi-
dates. Pairwise scoring is then performed among
all candidates to determine the coreference links.
Details of the model architecture can be referred
by the paper from Lee et al. (2018), and we denote
the original coreference loss as Lc.
Baseline (BL) We first present our baseline that
takes the end-to-end model and trains in the exact
same non-online way as prior work, but adapts the
decoding to fit in our online inference setting.

Let ui be the i’th utterance in the dialogue, and
|ui| be its length (number of tokens). During online
decoding upon ui, this model takes an utterance
sequence with past context as input, denoted by
U ik = (uk, .., ui); k ∈ [1, i) is dynamically de-
termined by

∑i
j=k |uj | ≤ Υ where Υ is the max

number of tokens that the encoder accepts. Differ-
ent from Lee et al. (2018), the mention candidates
now consist of two parts: (1) the extracted top can-
didates solely from ui, denoted as Xi; (2) mentions
from previously predicted clusters from U i−1k , de-

noted as Mi−1
k . Thereby the final candidate set

X can be denoted as Xi ∪Mi−1
k . The same pair-

wise scoring as prior work is then performed on all
candidates X . Since we do not modify previous
decisions in our setting, we keep coreference links
among Xi, or from Xi to Mi−1

k , but not among
Mi−1

k . The predicted clusters after ui will be up-
dated in the same way by picking the referent an-
tecedents according to coreference links.

Singleton Recovery (SR) SR is built upon BL to
address the singleton problem. In BL, after pro-
cessing each utterance sequence U ik, the model fil-
ters out mention candidates from Xi that are not
referent to any other candidates, according to the
mention-linking paradigm. However, it results on
losing non-anaphoric mentions that do not have
referents in ui, and yields a critical issue for online
inference because mentions in ui that are currently
singletons but potentially will find referents in later
utterances can get discarded too early.

To address this issue, we adopt a simple strat-
egy similar to (Xu and Choi, 2021) that preserves
any candidates whose mention scores are larger
than a threshold of 0, denoted as sm > 0, and cre-
ates a singleton cluster for each of which have not
yet found any referent (intermediate singletons).
However, as many annotation schemes do not re-
quire annotating singletons, e.g. CoNLL 2012,
we may not have “true” gold labels covering every
valid mentions, similar to the “misguidance of unla-
beled entities” problem in named entity recognition
(NER) (Li et al., 2021). Let Ψ+

m be the set of sm
of gold candidates according to the annotation, and
Ψ−m be the set of sm of other candidates that may
also contain certain valid mentions (singletons).
We mitigate the false negative issue of unlabeled
mentions by applying dynamic negative sampling
on Ψ−m, denoted as Φ−m, where |Ψ+

m| ≈ |Φ−m|. Bi-
nary cross-entropy (BCE) loss is then used for this
optimization to aid the threshold requirement:

Lm = BCE(Ψ+
m,Φ

−
m) (1)

L = αc · Lc + αm · Lm (2)

The final lossL is estimated by the weighted sum of
Lm and Lc using the hyperparameters αc and αm.

Online Resolution (OR) OR is designed specif-
ically for online inference on dialogues. Distin-
guished from BL that takes the whole document
as input in training, OR takes U ik as input for both
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training and decoding, closing the gap. To cap-
ture subtle nuances from different speakers in the
dialogue, we collect speaker names within each
dialogue and assign a special token of position-
based ID to each speaker (e.g. S1, S2) based on
speaking orders, which is then prepended to its cor-
responding utterance (Wu et al., 2020). We also
add [SEP] before ui to signal the latest utterance.
The following sequence is used as input for OR:

{Sk}_u_k · · ·_ {[SEP]}_{Si}_ui (3)

During training upon the i’th turn, gold mentions
in U i−1k are used asMi−1

k ; the losses Lm and Lc
are estimated only on candidates from ui. Gradient
accumulation is applied across multiple utterance
turns, and we warm-start OR by initializing from
the parameters of SR, followed by the online train-
ing described above. The decoding step for OR is
kept the same as BL and SR.

Speaker-Grounding (SG) SG adds a speaker-
grounding subtask upon OR, which is to facilitate
the encoding of multi-speaker interaction which is
an important aspect in dialogues. In OR, although
each input token is conditioned on speaker tokens
as in Eq (3), it is not obvious to the model that
each token is from which speaker, which can be
a barrier to learn the speaker interaction. To ex-
plicitly regularize the speaker encoding, we add
a subtask to predict whether two candidates are
from the same speaker based on their embeddings:
the model gives a same-speaker score ss such that
pairs from the same speaker have ss > 0 and others
ss ≤ 0, forcing the semantic representation to fuse
the speaker interaction. Let Ψ+

s be the set of ss of
pairs from the same speaker; Ψ−s be the set of ss
of other pairs. We optimize ss by BCE, adding the
loss in addition to Lc and Lm:

ss(x, y) = ws · [gx ⊕ gy ⊕ (gx ◦ gy)⊕ (gx − gy)]
Ls = BCE(Ψ+

s ,Ψ
−
s ) (4)

L = αc · Lc + αm · Lm + αs · Ls (5)

gx/gy denotes the representation of a candidate and
ws is the scoring parameter. ⊕ denotes concatena-
tion and ◦ is the element-wise multiplication. We
also apply negative sampling to keep |Ψ+

s | ≈ |Ψ−s |.

Span-Level Self-Attention (SA) SA is also
added upon OR to achieve candidate contextual-
ization. For each input U ik, the representation of

all candidates X is contextualized on the token-
level because of Transformers’ encoding. How-
ever,Mi−1

k is not used until the pairwise scoring.
Therefore, Xi is not explicitly conditioned on the
previously extracted mentions (Mi−1

k ) on the span-
level. To capture the dependency among all men-
tion candidates across utterances, we pass X to
a scaled dot-product self-attention layer (Vaswani
et al., 2017) before the pairwise scoring:

G′ = softmax
((GWq)(GWk)

T

√
d

)
(GWv), (6)

where G ∈ R|X |×d is the embedding matrix of all
candidates, d is the embedding size, Wq,Wk,Wv

are the parameters. G′ is the new candidate-aware
embedding matrix, which provides enhanced can-
didate representation for the pairwise scoring.

3 Experiments

Datasets All models are experimented on the fol-
lowing three datasets. Friends contains transcripts
from the TV show in which personal mentions are
annotated for entity linking. Each scene is consid-
ered an independent dialogue where utterances and
speaker IDs are provided. We adapt the data split
suggested by Zhou and Choi (2018). Onto-Conv
consists of documents in three genres selected from
OntoNotes 5.0: broadcasting and telephone conver-
sations, and web text including discussion forums.
We adapt the data split provided by Pradhan et al.
(2012) and treat each document as a dialogue and
every sentence as an utterance. BOLT follows the
same annotation guideline as OntoNotes although
documents are from discussion forums, SNS chats,
and telephone conversations (Li et al., 2016). Since
this is the first work using BOLT for this task, we
create a new data split for future replicability (see
A.1). Out of these three datasets, only Friends
provides annotation of singletons.

The numbers of documents in the training, devel-
opment, and test set of Friends, Onto-Conv, BOLT
are provided in Table 2, along with the averaged
numbers of speakers, entity clusters and utterances
per document of each dataset. More details regard-
ing the datasets are provided in Appendix A.1.

Settings Our implementation are based on the
PyTorch coreference models from Xu and Choi
(2020), and SpanBERTBASE is adopted as the en-
coder. The implementation and trained models
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Friends Onto-Conv BOLT

MUC B3 CEAFφ4 Avg F1 MUC B3 CEAFφ4 Avg F1 MUC B3 CEAFφ4 Avg F1

BL 81.9 62.2 54.5 66.2 (± 0.7) 70.5 54.8 43.9 56.4 (± 0.2) 73.3 61.2 51.1 61.9 (± 0.3)
SR 85.5 68.3 61.7 71.8 (± 0.5) 77.5 63.2 55.2 65.2 (± 0.6) 79.6 71.8 61.7 71.0 (± 0.4)
OR 85.8 71.9 65.7 74.5 (± 0.5) 78.0 63.6 55.6 65.7 (± 0.3) 79.5 72.0 63.2 71.5 (± 0.3)
+SG 85.7 73.6 67.0 75.3 (± 0.4) 78.1 64.3 56.5 66.3 (± 0.3) 79.9 72.3 63.4 71.8 (± 0.3)
+SG+SA 86.4 73.7 68.2 76.1 (± 0.1) 78.9 64.3 56.9 66.8 (± 0.1) 79.9 72.7 64.1 72.3 (± 0.2)

Table 1: Results of all models in Section 2 on the evaluation sets of Friends, Onto-Conv, and BOLT datasets. MUC,
B3, and CEAFφ4

show the F1 scores of the corresponding metrics, and their macro-average score (Avg F1) is
used as the main evaluation metric. All scores presented here are the averaged scores over 3 repeated experiments;
the standard deviations of Avg F1 scores are provided in the parentheses.

TRN DEV TST NS NC NU

F 987 122 192 3.7 4.6 18.7
O 566 100 95 2.4 16.2 49.5
B 943 117 117 2.9 9.2 18.1

Table 2: Statistics of the dataset Friends (F), Onto-
Conv (O), BOLT (B). TRN, DEV, TST are the numbers
of documents in the training, development, and test set
of each dataset. NS, NC, NU are the averaged numbers
of speakers, entity clusters, utterances per document of
each dataset.

have been partially integrated with the open source
project ELIT1 (He et al., 2021).

During inference, all predicted clusters are col-
lected and merged accordingly across utterances,
and get evaluated by comparing them to the ground
truth (all gold non-singleton clusters) at the end of
each dialogue, in the same way as the CoNLL’12
shared task protocol. Detailed experimental set-
tings are provided in Appendix A.2.

Results Table 1 describes the performance of all
models on the test sets in the three datasets. These
results are averaged across 3 repeated experiments;
Avg-F1 is used as the main evaluation metric. Each
proposed model gives steady improvement, and the
best result is achieved by the OR+SG+SA model,
surpassing the BL model on all datasets by sig-
nificant margins of ≈10%. Among these models,
singleton recovery contributes the most upon BL,
demonstrating that albeit simple and intuitive, the
training and inference of intermediate singletons is
essential in online coreference resolution.

3.1 Analysis on Online Inference

To identify how model predictions are affected by
online inference, all mentions in the predicted clus-
ters are examined against the gold clusters. Table 3

1https://github.com/emorynlp/elit

shows the results of mention precision and recall
from the four experimental settings.

Friends Onto-Conv BOLT

P R P R P R

N:BL 92.0 92.5 88.1 83.6 85.2 82.8
O:BL 92.5 85.3 92.1 60.6 89.0 64.8
O:SR 92.5 93.2 89.4 78.8 87.4 78.3
O:SR- 92.5 92.5 90.4 74.8 88.4 76.7

Table 3: The Precision and Recall of all mentions in the
predicted clusters on the test sets in the three datasets.
N is Non-online inference as in CoNLL’12 shared task,
O is Online inference as in this work. SR- is the
Singleton Recovery (SR) model without applying neg-
ative sampling on the mention loss in training.

Following observations are drawn by this analysis:
(1) Comparing N:BL and O:BL, online inference
indeed leads to a large drop on the mention recall
as expected, without as much increase on precision,
due to the omission of intermediate singletons.
(2) Comparing O:BL and O:SR, singleton recov-
ery (SR) significantly improves the mention recall
(8% for Friends and 13+% for others) without sac-
rificing much precision. However, notice that the
recall of O:SR for Friends is even higher than that
of non-online inference (N:BL), but the recall for
Onto-Conv and BOLT is still 4+% lower than that
of N:BL. This is due to the fact that Friends does
have singletons annotated while the other two do
not. Thus, O:SR for Friends does not suffer from
the “misguidance of unlabeled entities” problem.
(3) Comparing O:SR and O:SR-, it illustrates the
positive impact of applying negative sampling on
mentions to alleviate the false-negative issue of
unlabeled mentions, which improves recall while
maintaining similar precision for online inference.

3.2 Analysis on Utterance Interaction
As we aim to build a robust online resolution model
in the dialogue domain, understanding of individual
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speakers is important especially in multi-party inter-
action. In comparison to the binary indicator used
in BL and SR that can handle only up to two speak-
ers, adding the subtask for speaker-grounded en-
coding is shown to perform better for multi-speaker
dialogues: the improvement of OR+SG over SR is
3.5% F1 for Friends, but around 1% F1 for the
other two. Our statistics show that 43% dialogues
in Friends have at least 4 speakers, while being
only 15% and 24% for the other two, suggesting
that the multi-speaker environment indeed benefits
more from the new speaker encoding scheme.

In addition, the percentages of pronouns in the
gold mentions are 80.3%, 53.5%, and 63.5% in
Friends, Onto-Conv, and BOLT respectively, which
also highlights the importance of a better encod-
ing scheme to handle a large portion of pronouns
present in dialogue. Thus, we suggest to employ
a more advanced dialogue encoding that utilizes
the speaker interaction clues as one of the future
research direction for this online-decoding task.

4 Conclusion

This paper presents a new coreference resolution
direction that aims towards an online decoding set-
ting for dialogue processing. A baseline and four
incremental-updated models are proposed and eval-
uated on three datasets of the dialogue domain, and
the best-performing model shows significant im-
provement over the baseline by ≈10% F1. Further
analysis suggests the importance of mention recall
and speaker encoding, which could serve as the
next future directions of this online setting.
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A Appendix

A.1 Dataset
The annotation in Friends includes plural links
where a mention can belong to more than one en-
tity clusters. We discard those mentions with plural
links in our experiments and leave them as future
work. All remaining mentions for Friends are per-
sonal mentions.

BOLT does not come with a predefined
train/dev/test split. We use a random split of 80%,
10%, 10% of documents in each genre for the
train/dev/test split. In addition, we only use gen-
res “en” and “sm” in BOLT, as other genres cur-
rently do not have user IDs provided and only con-
stitute less than 5% documents of entire dataset.
The details of our split are provided in https:
//github.com/lxucs/online-bolt.

A.2 Implementation
For training on entire dialogue contexts as docu-
ment input (BL and SR), we follow the similar hy-
perparameter settings as Joshi et al. (2019, 2020);
Xu and Choi (2020), where long documents are
split into independent segments with the maximum
sequence length of 384 for SpanBERTBASE. We
employ the learning rate of 2× 10−5 for BERT pa-
rameters and 2× 10−4 for task parameters with the
dropout rate as 0.3. Maximum span length is set
to 6 for Friends and 25 for Onto-Conv and BOLT.
In the coarse pruning stage, we keep a maximum
number of antecedents as 20 for Friends and 50 for
Onto-Conv and BOLT.

For online training and inference on the utter-
ance sequence input (OR, +SG, +SA), we use one
BERT segment so that the length of current utter-
ance with past context does not exceed 384 tokens
in our experiments. Gradient accumulation of 16
steps is applied during online training. We use the
same learning rates and training epochs, similar as
training on document input. Our best model has
αc = 1, αm = 0.1, αs = 0.1 for the multi-task
learning.

All experiments are conducted on NVIDIA TI-
TAN RTX GPUs with 24GB memory. Training on
document input takes around 3 hours and training
on online input takes around 8-12 hours. All pro-
posed methods have similar inference time, as they
follow similar architecture and all operate on the
online inference for prediction.
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