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Abstract
Pre-trained language models (PLMs) have
achieved remarkable success on various nat-
ural language understanding tasks. Sim-
ple fine-tuning of PLMs, on the other hand,
might be suboptimal for domain-specific tasks
because they cannot possibly cover knowl-
edge from all domains. While adaptive
pre-training of PLMs can help them obtain
domain-specific knowledge, it requires a large
training cost. Moreover, adaptive pre-training
can harm the PLM’s performance on the
downstream task by causing catastrophic for-
getting of its general knowledge. To over-
come such limitations of adaptive pre-training
for PLM adaption, we propose a novel do-
main adaption framework for PLMs coined
as Knowledge-Augmented Language model
Adaptation (KALA), which modulates the in-
termediate hidden representations of PLMs
with domain knowledge, consisting of entities
and their relational facts. We validate the per-
formance of our KALA on question answer-
ing and named entity recognition tasks on mul-
tiple datasets across various domains. The
results show that, despite being computation-
ally efficient, our KALA largely outperforms
adaptive pre-training. Code is available at:
https://github.com/Nardien/KALA.

1 Introduction

Pre-trained Language Models (PLMs) (Devlin
et al., 2019; Brown et al., 2020) have shown to
be effective on various Natural Language Under-
standing (NLU) tasks. Although PLMs aim to ad-
dress diverse downstream tasks from various data
sources, there have been considerable efforts to
adapt the PLMs to specific domains —distributions
over the language characterizing a given topic or
genre (Gururangan et al., 2020)— for which the ac-
quisition of domain knowledge is required to accu-
rately solve the downstream tasks (e.g., Biomedical
Named Entity Recognition (Dogan et al., 2014)).
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Figure 1: F1 Score and Training FLOPs for different methods
on Question Answering (NewsQA). Note that DAPT uses
about 112 times larger data for adaptation. Details are in §5.3

This problem, known as Language Model Adap-
tation, can be viewed as a transfer learning prob-
lem (Yosinski et al., 2014; Ruder, 2019) under
domain shift, where the model is pre-trained on
the general domain and the labeled distribution is
available for the target domain-specific task. The
most prevalent approach to this problem is adaptive
pre-training (Figure 2a) which further updates all
parameters of the PLM on a large domain-specific
or curated task-specific corpus, with the same pre-
training strategy (e.g., masked language modeling)
before fine-tuning it on the downstream task (Belt-
agy et al., 2019; Lee et al., 2020; Gururangan et al.,
2020). This continual pre-training of a PLM on the
target domain corpus allows it to learn the distri-
bution of the target domain, resulting in improved
performance on domain-specific tasks (Howard and
Ruder, 2018; Han and Eisenstein, 2019).

While it has shown to be effective, adaptive pre-
training has obvious drawbacks. First, it is com-
putationally inefficient. Although a PLM becomes
more powerful with the increasing amount of pre-
training data (Gururangan et al., 2020), further
pre-training on the additional data requires larger
memory and computational cost as the dataset size
grows (Bai et al., 2021). Besides, it is difficult to
adapt the PLM to a new domain without forgetting
the general knowledge it obtained from the initial
pretraining step, since all pre-trained parameters
are continually updated to fit the domain-specific
corpus during adaptive pre-training (Chen et al.,
2020). This catastrophic forgetting of the task-
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Figure 2: Concepts (Left). (a) Adaptive Pre-training updates whole parameters of the PLM through further pre-training on the
domain corpus. (b) Our method KALA integrates the external knowledge so that the PLM adapts to the target domain only with
fine-tuning, which is realized by the affine transformation on the intermediate feature. Visualization of the contextualized
representation from the PLM for seen and unseen entities (Right). Our KALA framework embeds the unseen entities on the
embedding space of seen entities by representing them with their relational knowledge over the graph, while the strong DAPT
baseline (Gururangan et al., 2020) cannot appropriately handle unseen entities that are not given for task fine-tuning.

general knowledge may lead to the performance
degradation on the downstream tasks. In Figure 1,
we show that adaptive pre-training with more train-
ing steps could lead to performance degeneration.

Thus, it would be preferable if we could adapt
the PLM to the domain-specific task without costly
adaptive pre-training. To this end, we aim to inte-
grate the domain-specific knowledge into the PLM
directly during the task-specific fine-tuning step,
as shown in Figure 2b, eliminating the adaptive
pre-training stage. Specifically, we first note that
entities and relations are core building blocks of
the domain-specific knowledge that are required
to solve for the domain-specific downstream tasks.
Clinical domain experts, for example, are familiar
with medical terminologies and their complex re-
lations. Then, to represent the domain knowledge
consisting of entities and relations, we introduce
the Entity Memory, which is the source of entity
embeddings but independent of the PLM parame-
ters (See Entity Memory in Figure 2b). Then, we
further exploit the relational structures of the enti-
ties by utilizing a Knowledge Graph (KG), which
denotes the factual relationships between entities,
as shown in Knowledge Graph of Figure 2b.

The remaining step is how to integrate the knowl-
edge into the PLM during fine-tuning. To this
end, we propose a novel layer named Knowledge-
conditioned Feature Modulation (KFM, §3.2),
which scales and shifts the intermediate hidden rep-
resentations of PLMs by conditioning them with
retrieved knowledge representations. This knowl-
edge integration scheme has several advantages.
First, it does not modify the original PLM architec-
ture, and thus could be integrated into any PLMs
regardless of their architectures. Also, it only re-

quires marginal computational and memory over-
head, while eliminating the need of excessive fur-
ther pre-training (Figure 1). Finally, it can effec-
tively handle unseen entities with relational knowl-
edge from the KG, which are suboptimally em-
bedded by adaptive pre-training. For example, as
shown in Figure 2, an entity restenosis does not
appear in the training dataset for fine-tuning, thus
adaptive pre-training only implicitly infers them
within the context from the broad domain corpus.
However, we can explicitly represent the unknown
entity by aggregating the representations of known
entities in the entity memory (i.e., in Figure 2,
neighboring entities, such as asthma and pethidine,
are used to represent the unseen entity restenosis).

We combine all the previously described com-
ponents into a novel language model adapta-
tion framework, coined as Knowledge-Augmented
Language model Adaptation (KALA) (Figure 3).
We empirically verify that KALA improves the
performance of the PLM over adaptive pre-training
on various domains with two knowledge-intensive
tasks: Question Answering (QA) and Named Entity
Recognition (NER). Our contribution is threefold:

• We propose a novel LM adaptation framework,
which augments PLMs with entities and their re-
lations from the target domain, during fine-tuning
without any further pre-training. To our knowl-
edge, this is the first work that utilizes the struc-
tured knowledge for language model adaptation.

• To reflect structural knowledge into the PLM, we
introduce a novel layer which scales and shifts
the intermediate PLM representations with the
entity representations contextualized by their re-
lated entities according to the KG.
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• We show that our KALA significantly enhances
the model’s performance on domain-specific QA
and NER tasks, while being significantly more
efficient over existing LM adaptation methods.

2 Related Work

Language Model Adaptation Nowadays, trans-
fer learning (Howard and Ruder, 2018) is a dom-
inant approach for solving Natural Language Un-
derstanding (NLU) tasks. This strategy first pre-
trains a Language Model (LM) on a large and un-
labeled corpus, then fine-tunes it on downstream
tasks with labeled data (Devlin et al., 2019). While
this scheme alone achieves impressive performance
on various NLU tasks, adaptive pre-training of the
PLM on a domain-specific corpus helps the PLM
achieve better performance on the domain-specific
tasks. For example, Lee et al. (2020) demonstrated
that a further pre-trained LM on biomedical doc-
uments outperforms the original LM on biomed-
ical NLU tasks. Also, Gururangan et al. (2020)
showed that adaptive pre-training of the PLM on
the corpus of a target domain (Domain-adaptive
Pre-training; DAPT) or a target task (Task-adaptive
Pre-training; TAPT) improves its performance on
domain-specific tasks. However, above approaches
generally require a large amount of computational
costs for pre-training.

Knowledge-aware LM Accompanied with in-
creasing sources of knowledge (Vrandecic and
Krötzsch, 2014), some prior works have proposed
to integrate external knowledge into PLMs, to en-
hance their performance on tasks that require struc-
tured knowledge. For instance, ERNIE (Zhang
et al., 2019) and KnowBERT (Peters et al., 2019)
incorporate entities as additional inputs in the pre-
training stage to obtain a knowledge-aware LM,
wherein a pre-trained knowledge graph embedding
from Wikidata (Vrandecic and Krötzsch, 2014) is
used to represent entities. Entity-as-Experts (Févry
et al., 2020) and LUKE (Yamada et al., 2020) use
the entity memory that is pre-trained along with
the LMs from scratch. ERICA (Qin et al., 2021)
further uses the fact consisting of entities and their
relations in the pre-training stage of LMs from
scratch. Previous works aim to integrate external
knowledge into the LMs during the pre-training
step to obtain a universal knowledge-aware LM
that requires additional parameters for millions of
entities. In contrast to this, our framework aims to
efficiently modify a general PLM for the domain-

specific task with a linear modulation layer scheme
discussed in Section 3.2, during fine-tuning.

3 Method

3.1 Problem Statement

Our goal is to solve Natural Language Understand-
ing (NLU) tasks for a specific domain, with a
knowledge-augmented Language Model (LM). We
first introduce the NLU tasks we target, followed
by the descriptions of the proposed knowledge-
augmented LM. After that, we formally define the
ingredients for structured knowledge integration.

NLU tasks The goal of an NLU task is to predict
the label y of the given input instance x, where the
input x contains the sequence of tokens (Devlin
et al., 2019): x = [w1, w2, . . . , w|x|]. Then, given
a training dataset D = {(x(i),y(i))}Ni=1, the objec-
tive is to maximize the log-likelihood as follows:

max
θ
L(θ) := max

θ

∑

(x,y)∼D
log p(y|x; θ),

p(y|x; θ) = g(H; θg), H = f(x; θf ),

where f is an encoder of the PLM which outputs
contextualized representationH from x, and g is
a decoder which models the probability distribu-
tion p of the label y, with trainable parameters
θ = (θf , θg). If the LM is composed of L-layers of
transformer blocks (Devlin et al., 2019), the func-
tion f is decomposed to multiple functions f =
[f0, . . . , fL], where each block gets the output of
the previous block as the input: H l = f l(H l−1).1

Knowledge-Augmented Language Model The
conventional learning objective defined above
might be sufficient for understanding the texts if
the tasks require only the general knowledge stored
in PLMs. However, it is suboptimal for tackling
domain-specific tasks since the general knowledge
captured by the parameters θf may not include the
knowledge required for solving the domain-specific
tasks. Thus, contextualizing the texts by the do-
main knowledge, captured by the domain-specific
entities and their relations, is more appropriate for
handling such domain-specific problems.

To this end, we propose a function h(·;φ) which
augments PLMs conditioned on the domain knowl-
edge. Formally, the objective for a NLU task with

1f0 denotes a word embedding layer which gets x as an
input, i.e., H0 = f0(x), for the sake of simplicity.
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our knowledge-augmented LM is given as follows:

max
θ,φ
L(θ, φ) := max

θ,φ

∑

(x,y)∼D
log p(y|x; θ, φ),

p(y|x; θ, φ) = g(H̃; θg),

H̃ l = f l(H l−1, hl(H l−1, E ,M,G;φ); θf l),

where φ is parameters for the function h, E is the set
of entities,M is the set of corresponding mentions,
and G is a knowledge graph. In the following,
we will describe the definition of the knowledge-
related inputs E ,M,G, and the details of h(·, φ).

Definition 1 (Entity and Mention). Given a se-
quence of tokens x = [w1, . . . , w|x|], let E be
a set of entities in x. Then an entity e ∈ E
is composed of one or multiple adjacent tokens
within the input text: [wmα , . . . , wmω ] v x2. Here,
m = (mα,mω) is a mention that denotes the start
and end locations for the entity within the input
tokens x, which term is commonly used for defin-
ing entities (Févry et al., 2020). Consequently, for
each given input x(i), there are a set of entities
E(i) = {e1, . . . , eK} and their corresponding men-
tionsM(i) = {m1, . . . ,mK}. For example, given
an input x = [New, York, is, a, city], we have two
entities E = {New_York, city} and their associated
mentionsM = {(1, 2), (4, 4)}.

We further construct the entity vocabulary
Etrain =

⋃N
i=1 E(i), which consists of all entities

appearing in the training dataset. However, at test
time, we may encounter unseen entities that are not
in Etrain. To tackle this, we regard unknown entities
as the null entity e∅, so that ∀e ∈ Etrain ∪ {e∅}.

Definition 2 (Entity Memory). Given a set of
all entities Etrain ∪ {e∅}, we represent them in the
continuous vector (feature) space to learn meaning-
ful entity embeddings. In order to implement this,
we define the entity memory E ∈ R(|Etrain|+1)×d

that comprises of an entity e ∈ R as a key and
its embedding e ∈ Rd as its value. Also, to ac-
cess the value in the entity memory, we define the
point-wise memory access function EntEmbed
which takes an entity as an input. For instance, e =
EntEmbed(New_York) returns the embedding of
the New_York entity, and e = EntEmbed(e∅) re-
turns the zero embedding. This entity memory E
is the part of the parameter φ used in function h.

2E v E′ iff E = E′, or E is included in E′ such that the
order of elements in E and E′ is the same.

Definition 3 (Knowledge Graph). Since the en-
tity memory alone cannot represent relational in-
formation between entities, we further define a
Knowledge Graph (KG) G that consists of a set
of factual triplets {(h, r, t)}, where the head and
the tail entities, h and t, are the elements of E ,
and a relation r is an element of a set of relations
R: h, t ∈ E and r ∈ R. We assume that a pre-
constructed KG G(i) is given for each input x(i),
and provide the details of the KGs and how to con-
struct them in Appendix A.

3.2 Knowledge-conditioned Feature
Modulation on Transformer

The remaining problem is how to augment a PLM
by conditioning it on the domain-specific knowl-
edge, through the function h. An effective ap-
proach to do so without stacking additional layers
on top of the LM is to interleave the knowledge
from h with the pre-trained parameters of the lan-
guage model (Devlin et al., 2019) consisting of
transformer layers (Vaswani et al., 2017). Before
describing our interleaving method in detail, we
first describe the Transformer architecture.

Transformer Given |x| token representations
H l−1 = [hl−11 , . . . ,hl−1|x| ] ∈ R|x|×d from the layer
l − 1 where d is the embedding size, each trans-
former block outputs the contextualized representa-
tions for all tokens. In detail, the l-th block consists
of the multi-head self-attention (Attn) layer and the
residual feed-forward (FF) layer as follows:

Ĥ l = LN(H l−1 +Attn(H l−1))

FF (Ĥ l) = σ(Ĥ l ·W1) ·W2,

H l = LN(Ĥ l + FF (Ĥ l)),

where LN is a layer normalization (Ba et al., 2016),
σ is an activation function (Hendrycks and Gimpel,
2016), W2 ∈ Rd′×d and W1 ∈ Rd×d′ are weight
matrices, and d′ is an intermediate hidden size. We
omit the bias term for brevity.

Linear Modulation on Transformer An effec-
tive yet efficient way to fuse knowledge from differ-
ent sources without modifying the original model
architecture is to scale and shift the features of
one source with respect to the data from another
source (Dumoulin et al., 2018). This scheme of
feature-wise affine transformation is effective on
various tasks, such as language-conditioned image
reasoning (Perez et al., 2018) or style-transfer in
image generation (Huang and Belongie, 2017).
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Figure 3: Framework Overview. (Left) The architecture of a knowledge-augmented LM with our method. Some of the input
tokens are annotated as entities with their mentions. (Middle) Inside the transformer block, KFM (§3.2) is applied after the
layer normalization as in equation 1, to modulate the hidden representations of tokens in entity mentions. (Right) The retrieved
embedding of an entity New_York is composed by the weighted aggregation of neighbors through the knowledge graph (§3.3).

Motivated by them, we propose to linearly trans-
form the intermediate features after the layer nor-
malization of the transformer-based PLM, condi-
tioned on the knowledge sources E ,M,G. We term
this method as the Knowledge-conditioned Fea-
ture Modulation (KFM), described as follows:

Γ,B, Γ̃, B̃ = hl(H l−1, E ,M,G;φ),
Ĥ l = Γ ◦ LN(H l−1 +Attn(H l−1)) +B,

FF (Ĥ l) = σ(Ĥ l ·W1) ·W2,

H̃ l = Γ̃ ◦ LN(Ĥ l + FF (Ĥ l)) + B̃, (1)

whereH l−1 ∈ R|x|×d is the matrix of hidden rep-
resentations from the previous layer, ◦ denotes
the hadamard (element-wise) product, and Γ =
[γ1, . . . ,γ|x|] ∈ R|x|×d, B = [β1, . . . ,β|x|] ∈
R|x|×d. Γ andB are learnable modulation param-
eters from the function h, which are conditioned
by the entity representation. For instance, in Fig-
ure 3, γ and β for token ‘New’ are conditioned on
the corresponding entity New_York. However, if
tokens are not part of any entity (e.g., ‘is’), γ and
β for such tokens are fixed to 1 and 0, respectively.

One notable advantage of our KFM is that mul-
tiple tokens associated to the identical entity are
affected by the same modulation (e.g., ‘New’ and
‘York’ in Figure 3), which allows the PLM to know
which adjacent tokens are in the same entity. This
is important for representing the tokens of the do-
main entity (e.g., ‘cod’ and ‘on’), since the original
PLM might regard them as separate, unrelated to-
kens (See analysis in §5.5 with Figure 5). However,
with our KFM, the PLM can identify associated
tokens and embed them to be close to each other.

Then, how can we design such functional op-
erations in h? The easiest way is to retrieve the
entity embedding of e, associated to the typical to-

ken, from the entity memory E, and then use the
retrieved entity embedding as the input to obtain γ
and β for every entity (See Figure 3). Formally, for
each entity e ∈ E and its mention (mα,mω) ∈M,

v = EntEmbed(e) (2)

γj = 1 + h1(v), βj = h2(v),

γ̃j = 1 + h3(v), β̃j = h4(v), mα ≤ j ≤ mω,

where v is the retrieved entity embedding from the
entity memory, h1, h2, h3, and h4 are mutually in-
dependent Multi-Layer Perceptrons (MLPs) which
return a zero vector 0 if e = e∅.

3.3 Relational Retrieval from Entity Memory

Although the simple access to the entity memory
can retrieve the necessary entity embeddings for
the modulation, this approach has obvious draw-
backs as it not only fails to reflect the relations with
other entities, but also regards unseen entities as
the same null entity e∅. If so, all unseen entities are
inevitably modulated by the same parameters even
if they have essentially different meaning.

To tackle these limitations, we further consider
the relational information between two entities that
are linked with a particular relation. For example,
the entity New_York alone will not give meaningful
information. However, with two associated facts
(New_York, instance of, city) and (New_York, coun-
try, USA), it is clear that New_York is a city in the
USA. Motivated by this observation, we propose
Relational Retrieval which leverages a KG G to
retrieve entity embeddings from the memory, ac-
cording to the relations defined in the given KG
(See Figure 3, right).

More specifically, our goal is to effectively uti-
lize the relations among entities in G, to improve
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the EntEmbed function in equation 2. We tackle
this objective by utilizing a Graph Neural Net-
work (GNN) which learns feature representations
of each node using a neighborhood aggregation
scheme (Hamilton et al., 2017), as follows:

v = UPDATE(EntEmbed(e),

AGG({EntEmbed(ê) : ∀ê ∈ N (e;G)})),

where N (e;G) is a set of neighboring entities of
the entity e, AGG is the function that aggregates em-
beddings of neighboring entities of e, and UPDATE
is the function that updates the representation of e
with the aggregated messages from AGG.

However, simple aggregation (e.g., mean) can-
not reflect the relative importance on neigh-
boring nodes, thus we consider the attentive
scheme (Velickovic et al., 2018; Brody et al., 2021)
for neighborhood aggregation, to allocate weights
to the target entity’s neighbors by their importance.
This scheme is helpful in filtering out less use-
ful relations. Formally, we first define a scoring
function ψ that calculates a score for every triplet
(ei, rij , ej), which is then used to weigh each node
during aggregation:

ei = EntEmbed(ei), ej = EntEmbed(ej),

e∗ = [ei ‖ rij ‖ ej ‖ hei ],
ψ(ei, rij , ej ,hei) = a

>σ(W · e∗),

where σ is a nonlinear activation, e∗ ∈ R4d is
concatenated vector where ‖ denotes the concate-
nation, a ∈ Rd and W ∈ Rd×4d are learnable
parameters, rij ∈ Rd is a embedding of the rela-
tion, and hei ∈ Rd is a context representation of
the entity ei obtained from the intermediate hidden
states of the LM3.

The scores obtained from ψ are normalized
across all neighbors ej ∈ N (ei;G) with softmax:

αij = softmax(ψ(ei, rij , ej))

=
exp(ψ(ei, rij , ej))∑

ej′∈N (ei;G) exp(ψ(ei, rij′ , ej′))
.

Then, we update the entity embedding with a
weighted average of the neighboring nodes with α
as an attention coefficient, denoted as follows:

v = UPDATE
(∑

ej′∈N (ei;G)αij · ej′
)
. (3)

3The context representation of the entity is calculated with
its mention as follows: he = 1

mω−mα+1

∑mω

i=mα hl−1
i

By replacing the EntEmbed function in equa-
tion 2 with the above GNN in equation 3, we now
represent each entity with its relational information
in KG. This relational retrieval has several advan-
tages over simple retrieval of a single entity from
the entity memory. First, the relational retrieval
with KG can consider richer interactions among
entities, as described in Figure 3.

In addition, we can naturally represent an un-
seen entity – which is not seen during training but
appears at test time – through neighboring aggre-
gation, which is impossible only with the entity
memory. In Figure 2, we provide an illustrative
example of the unseen entity representation, where
the unseen entity restenosis is represented with a
weighted sum of representations of its neighboring
entities myocardial_infarction, asthma, and pethi-
dine, which is beneficial when the set of entities
for training and test datasets have small overlaps.

4 Experiment

4.1 Tasks and Datasets

We evaluate our model on two NLU tasks: Ques-
tion Answering (QA) and Named Entity Recogni-
tion (NER). For QA, we use three domain-specific
datasets: NewsQA (News, Trischler et al., 2017)
and two subsets (Relation, Medication) of EMRQA
(Clinical, Pampari et al., 2018). We use the Exact-
Match (EM) and the F1 score as evaluation met-
rics. For NER, we use three datasets from different
domains, namely CoNLL-2003 (News, Sang and
Meulder, 2003), WNUT-17 (Social Media, Der-
czynski et al., 2017) and NCBI-Disease (Biomedi-
cal, Dogan et al., 2014). We use the F1 score as the
evaluation metric. We report statistics and detailed
descriptions of each dataset in Appendix B.2.

4.2 Baselines

A direct baseline of our KALA is the adaptive
pre-training, which is commonly used to adapt the
PLM independent to the choice of a domain and
task. Also, to compare ours against a more pow-
erful baseline, we modify a recent method (Chen
et al., 2020) that alleviates forgetting of PLM dur-
ing fine-tuning. Details for each baseline we use
are described as follows:

1. Vanilla Fine-Tuning (FT): A baseline that di-
rectly fine-tunes the LM on downstream tasks.

2. Fine-Tuning + more params: A baseline with
one more transformer layer at the end of the
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Method NewsQA Relation Medication

Fine-Tuning 53.06 ± 0.63 | 67.20 ± 0.19 54.01 ± 1.14 | 61.43 ± 1.18 12.50 ± 0.28 | 43.31 ± 0.67
+ more params 53.59 ± 0.99 | 67.79 ± 0.67 54.06 ± 1.35 | 62.07 ± 1.44 12.46 ± 0.25 | 42.74 ± 0.91
TAPT 53.47 ± 1.69 | 67.59 ± 1.44 53.57 ± 2.05 | 60.87 ± 2.52 12.58 ± 0.42 | 43.82 ± 1.10
+ RecAdam 53.95 ± 1.02 | 67.89 ± 0.75 54.88 ± 1.94 | 62.54 ± 2.14 12.63 ± 0.30 | 43.86 ± 0.87
DAPT† 53.68 ± 0.94 | 67.76 ± 0.61 55.29 ± 1.74 | 62.25 ± 1.80 12.67 ± 0.27 | 43.26 ± 0.88

KALA (point-wise) 53.41 ± 0.74 | 67.30 ± 0.45 56.13 ± 0.85 | 64.69 ± 0.92 12.01 ± 0.47 | 42.97 ± 0.70
KALA (relational) 54.25 ± 0.63 | 68.27 ± 0.63 55.96 ± 1.37 | 64.22 ± 1.15 12.75 ± 0.61 | 44.19 ± 0.46

Table 1: Experimental results of the extractive QA task on three different datasets with the BERT-base. The reported results are
means and standard deviations of performances over five different runs with Exact Match / F1 score as a metric. The numbers in
bold fonts denote the best score. † indicates the method under an extremely high computational resource setting (See Figure 1).

Method CoNLL-2003 WNUT-17 NCBI-Disease

Fine-Tuning 90.58 ± 0.19 45.70 ± 1.25 84.42 ± 0.58
+ more params 90.75 ± 0.23 46.42 ± 0.55 84.70 ± 0.49
TAPT 90.61 ± 0.73 45.39 ± 0.77 84.39 ± 0.73
+ RecAdam 90.69 ± 0.30 46.73 ± 0.94 84.99 ± 0.88
DAPT† 90.30 ± 0.39 48.29 ± 1.08 84.68 ± 1.63

KALA (point-wise) 90.96 ± 0.21 47.33 ± 0.82 85.10 ± 0.73
KALA (relational) 91.02 ± 0.29 48.35 ± 0.92 85.77 ± 0.43

Table 2: Experimental results of the NER task on three dif-
ferent datasets with the BERT-base. The reported results are
means and standard deviations over five different runs with an
F1 score as a metric. The numbers in bold fonts denote the
best score. † indicates the baseline under an extremely high
computational resource setting (See Figure 1).

LM. We use this baseline to show that the per-
formance gain of our model does not come from
the use of additional parameters.

3. Task-Adaptive Pre-training (TAPT): A base-
line that further pre-trains the PLM on task-
specific corpus as in Gururangan et al. (2020).

4. TAPT + RecAdam: A baseline that uses
RecAdam (Chen et al., 2020) during further
pre-training of PLMs (i.e., TAPT), to alleviate
catastrophic forgetting of the learned general
knowledge in PLMs from adaptive pre-training.

5. Domain-Adaptive Pre-training (DAPT): A
strong baseline that uses a large-scale domain
corpus outside the training set during further pre-
training (Gururangan et al., 2020), and requires
extra data and large computational overhead.

6. KALA (pointwise): A variant of KALA that
only uses the entity memory and does not use
the knowledge graphs.

7. KALA (relational): Our full model that uses
KGs to perform relational retrieval from the en-
tity memory.

4.3 Experimental Setup
We use the uncased BERT-base (Devlin et al., 2019)
as the base PLM for all our experiments on QA
and NER tasks. For more details on training and
implementation, please see the Appendix B.

4.4 Experimental Results

Performance on QA and NER tasks On both
extractive QA and NER tasks, our KALA out-
performs all baselines, including TAPT and
TAPT+RedcAdam (Gururangan et al., 2020; Chen
et al., 2020), as shown in Table 1 and 2. These
results show that our KALA is highly effective
for the language model adaptation task. KALA
also largely outperforms DAPT (Gururangan et al.,
2020) which is trained with extra data and requires
a significantly higher computational cost compare
to KALA (See Figure 1 for the plot of efficiency,
discussed in Section 5.3).

Effect of Using more Parameters One may sus-
pect whether the performance of our KALA comes
from the increment of parameters. However, the
experimental results in Table 1 and 2 show that in-
creasing the parameters for PLM during fine-tuning
(+ more params) yields marginal performance im-
provements over naive fine-tuning. This result con-
firms that the performance improvement of KALA
is not due to the increased number of parameters.

Importance of Relational Retrieval The perfor-
mance gap between KALA (relational) and KALA
(point-wise) shows the effectiveness of relational
retrieval for language model adaptation, which al-
lows us to incorporate relational knowledge into
the PLM. The relational retrieval also helps address
unseen entities, as discussed in Section 5.4.

5 Analysis and Discussion

5.1 Ablation Studies

We perform an ablation study to see how much each
component contributes to the performance gain.

KFM Parameters We first analyze the effect of
feature modulation parameters (i.e., gamma and
beta) in transformers by ablating a subset of them
in Table 3, in which we observe that using both
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Method NewsQA Relation WNUT-17 NCBI-Disease

Fine-Tuning 57.21 ± 0.56 | 71.91 ± 0.35 46.61 ± 2.75 | 53.89 ± 2.92 55.00 ± 1.66 86.91 ± 1.08
+ more params 58.07 ± 1.19 | 72.38 ± 1.04 45.12 ± 0.86 | 53.22 ± 1.27 56.62 ± 0.26 87.21 ± 0.26
TAPT 57.24 ± 0.53 | 71.77 ± 0.34 45.66 ± 2.20 | 53.23 ± 2.38 55.46 ± 1.90 86.24 ± 0.76

KALA (relational) 58.01 ± 0.57 | 72.70 ± 0.25 47.40 ± 1.67 | 55.13 ± 1.26 56.96 ± 0.27 87.72 ± 0.27

Table 5: Experimental results of the extractive QA and NER tasks on four different datasets – NewsQA, Relation, WNUT-17
and NCBI-Disease – with the RoBERTa-base. The reported results are means and standard deviations over five different runs.
We use Exact Match and F1 score as a metric for QA, and F1 score for NER. The numbers in bold fonts denote the best score.

KFM (§3.2) NewsQA
Components EM F1

None (Fine-tuning) 53.06 67.20
+ Γ, Γ̃ (gamma only) 54.10 67.98
+B, B̃ (beta only) 53.74 67.69
+ Γ,B (first only) 53.77 67.88
+ Γ̃, B̃ (second only) 53.89 67.49

+ Γ,B, Γ̃, B̃ (final) 54.25 68.27

Table 3: An ablation study of
the KFM parameters Γ, B, Γ̃, B̃.
We report the average results over
five different runs.

Architecture NewsQA
Variants (§5.2) EM F1

ERNIE 53.35 67.49
Adapter 53.32 67.38
KT-Net 53.15 67.01
EaE 53.00 67.40
ERICA 51.99 66.40

KALA (ours) 54.25 68.27

Table 4: Experimental re-
sults on knowledge integra-
tion architecture variants,
averaged over five runs.

gamma and beta after both layer normalization on
a transformer layer obtains the best performance.

Architectural Variants We now examine the ef-
fectiveness of the proposed knowledge condition-
ing scheme in our KALA framework. To this end,
we use or adapt the knowledge integration methods
from previous literature, to compare their effective-
ness. Specifically, we couple the following five
components with KALA: Entity-as-Experts (Févry
et al., 2020), Adapter (Houlsby et al., 2019), KT-
Net (Yang et al., 2019), ERNIE (Zhang et al., 2019),
and ERICA (Qin et al., 2021). Note that, most
of them were proposed for improving pre-training
from scratch, while we adapt them for fine-tuning
under our KALA framework (The details are given
in Appendix B.4). As shown in Table 4, our KFM
used in KALA outperforms all variants, demon-
strating the effectiveness of feature modulation in
the middle of transformer layers for fine-tuning.

5.2 Robustness to Other PLMs

Although we believe our experimental results on
Table 1, 2 with BERT (Devlin et al., 2019) are
enough to show the effectiveness of KALA across
different pre-trained language models (PLMs), one
might be curious that KALA can work on even
other PLMs such as RoBERTa (Liu et al., 2020).
Thus, to address such concerns, we additionally
conduct experiments on RoBERTa. As shown in
Table 5, we observe that our KALA outperforms
all baselines except for one case (Fine-Tuning +

Seen Unseen89

90

91

92

93 CoNLL-2003
Fine-tuning
TAPT
DAPT
KALA (point-wise)
KALA (relational)

Seen Unseen42

44

46

48

50 WNUT-17

Seen Unseen70

75

80

85

90 NCBI-Disease

Figure 4: Results on seen and unseen, where Seen denotes the
context having less than 3 unseen entities, otherwise Unseen.
Note that DAPT uses extra datasets in addition to the training
dataset, thus the Unseen for other models could be considered
as the Seen for DAPT.

more params on NewsQA). Thus, we believe that
our KALA would be useful to any PLMs, not de-
pending on specific PLMs.

5.3 Efficiency

Figure 1 illustrates the performance and training
FLOPs of KALA against baselines on the NewsQA
dataset. We observe that the performance of TAPT
decreases with the increased number of iterations,
which could be due to forgetting of the knowledge
from the PLM. On the other hand, DAPT, while
not suffering from performance loss, requires huge
computational costs as it trains on 112 times larger
data for further pre-training (See Appendix B.3
for detailed explanations on training data). On the
other hand, our KALA outperforms DAPT without
using external data, while requiring 17 times fewer
computational costs, which shows that KALA is
not only effective but also highly efficient.

To further compare the efficiency in various as-
pects, we report GPU memory, training wall time,
and training FLOPs for baselines and ours in Ta-
ble 6. Through this, we verify that our KALA is
more efficient to train for language model adapta-
tion settings than baselines. Note that the resource
requirement of KALA could be further reduced by
adjusting the size of the entity memory (e.g., remov-
ing less frequent entities). Therefore, to show the
flexibility of our KALA on the typical resource con-
straint, we provide the experimental results on two
different settings (i.e., tuning the number of entities
in the entity memory) – KALA with memory size
of 200 and 62.8k (full memory) in Appendix C.6.
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Context: A nonsense mutation in
exon 17 ( codon 556 ) of the RB1
gene was found to be present
homozygously in both the retinal
and the pineal tumours.

Fact: (retinal, instance of, gene)

nonsense mutation
ex

##on
cod

##on
genere

##tina
##l

Fine-Tuning

nonsensemutationex
##oncod##on

genere##tina
##l

KALA (Ours)

Figure 5: A case study on one context of the NCBI-Disease dataset. A left table shows the
context and its fact, and a right figure shows a visualization of token representations. Text in
blue and red denote the seen and unseen entities, respectively.

NewsQA
T5-small EM F1

Fine-tuning 48.96 64.24
TAPT 48.66 64.30
+ RecAdam 48.37 63.41

KALA (ours) 51.78 66.88

Table 7: Experimental results
on generative question answer-
ing with T5-small as a PLM and
NewsQA as a dataset.

Method GPU Mem. Approx. Wall Time FLOPs (1016)

Fine-Tuning 8 GB 3 hrs 9.5
+ more params 8.8 GB 3 hrs 10.1
TAPT 8 GB 3.8 hrs 10.1
DAPT 48 GB 40 hrs < 182.0

KALA (ours, 0.2k) 8.4 GB 3 hrs 9.97
KALA (ours, 62.8k) 9.2 GB 3 hrs 10.5

Table 6: Efficiency comparisons of GPU memory, Wall Time,
and FLOPs on the NewsQA dataset. The number 0.2k and
62.8k indicate the size of entity memory used in our KALA.

5.4 Effectiveness on Unseen Entities

One remarkable advantage of our KALA is its abil-
ity to represent an unseen entity by aggregating
features of its neighbors from a given KG. To an-
alyze this, we first divide all contexts into one of
Seen and Unseen, where Seen denotes the context
with less than 3 unseen entities, and then measure
the performance on the two subsets. As shown in
Figure 4, we observe that the performance gain
of KALA over the baselines is much larger on
the Unseen subset, which demonstrates the effec-
tiveness of KALA’s relational retrieval scheme to
represent unseen entities. DAPT also largely out-
performs fine-tuning and TAPT as it is trained on
an extremely large external corpus for adaptive
pre-training. However, KALA even outperforms
DAPT in most cases, verifying that our knowledge-
augmentation method is more effective for tack-
ling domain-specific tasks. The visualization of
embeddings of seen and unseen entities in Fig-
ure 2 shows that KALA embeds the unseen entities
more closely to the seen entities4, which explains
KALA’s good performance on the Unseen subset.

5.5 Case Study

To better see how our KFM (§3.2) works, we show
the context and its fact, and then visualize repre-
sentations from the PLM modulated by the KFM.

4We quantitatively measure the mean of cosine distance
of each unseen entity to its nearest seen entity, observing that
KALA embeds unseen 1.5 times more closer to seen than
DAPT (i.e., 0.07 for KALA vs 0.11 for DAPT for distance).

As shown in Figure 5 right, the token ‘##on’ is not
aligned with their corresponding tokens, such as
‘ex’ (for exon) and ‘cod’ (for codon), in the baseline.
However, with our feature modulation that trans-
forms multiple tokens associated with the single
entity equally, the two tokens (e.g., (‘ex’, ‘##on’)),
composing one entity, are closely embedded. Also,
while the baseline cannot handle the unseen entity
consisting of three tokens: ‘re’, ‘##tina’, and ‘##l’,
KALA embeds them closely by representing the
unseen retinal from the representation of its neigh-
borhood gene derived by the domain knowledge –
(retinal, instance of, gene).

5.6 Extension to Generative Model

Our KALA framework is also applicable to
encoder-decoder PLMs by applying the KFM to the
encoder. Therefore, we further validate KALA’s
effectiveness on the encoder-decoder PLMs on the
generative QA task (Lee et al., 2021) with T5-
small (Raffel et al., 2020). Table 7 shows that
KALA largely outperforms baselines even with
such a generative PLM.

6 Conclusion
In this paper, we introduced KALA, a novel frame-
work for language model adaptation, which mod-
ulates the intermediate representations of a PLM
by conditioning it with the entity memory and the
relational facts from KGs. We validated KALA on
various domains of QA and NER tasks, on which
KALA significantly outperforms relevant baselines
while being computationally efficient. We demon-
strate that the success of KALA comes from both
KFM and relational retrieval, allowing the PLM to
recognize entities but also handle unseen ones that
might frequently appear in domain-specific tasks.
There are many other avenues for future work, in-
cluding the application of KALA on pre-training
of knowledge-augmented PLMs from scratch.

5152



Ethical Statements
Enhancing the domain converge of pre-traind lan-
guage models (PLMs) with external knowledge
is increasingly important, since the PLMs cannot
observe all the data during training and cannot
memorize all the necessary knowledge for solv-
ing down-stream tasks. Our KALA contributes to
this problem by augmenting domain knowledge
graphs for PLMs. However, we have to still con-
sider the accurateness of knowledge, i.e., the fact in
the knowledge graph may not be correct, which af-
fects the model to generate incorrect answers. Also,
the model’s prediction performance is still far from
optimal. Thus, we should be aware of model’s
failure from errors in knowledge and prediction, es-
pecially on high-risk domains (e.g., biomedicine).
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Figure 6: Visual diagram of the KG construction pipeline used in this work. The entity format is composed of its corresponding
text in the data, its character-level mention boundary, and its wikidata id. The fact format is composed of the head, relation, and
tail, where head and tail entities are represented with their wikidata ids following the entity format.

Hyperparameters NewsQA Relation Medication CoNLL-2003 WNUT-17 NCBI-Disease

LM for Relation Extraction BERT-base-uncased
Threshold on Relation Extraction 0.1
Size of Entity Memory 62823 5724 4635 10288 101 3502

The location of KFM 11 11 11 8 9, 11 8, 10

Table 8: Hyperparamters for Knowledge Graph (Top) and KALA (Bottom) on six datasets we used. The reported
performances on main paper are measured with the above settings.

A Details on KG Construction

In this work, we propose to use the Knowledge
Graph (KG) that can define the relational informa-
tion among entities that only appear in each dataset.
However, unfortunately, most of the task datasets
do not contain such relational facts on its context,
thus we need to construct them manually to obtain
the knowledge graph. In this section, we explain
the way of constructing the knowledge graph that
we used, consisting of facts of entities for each
context in the task dataset.

Relation extraction is the way how we obtain
the factual knowledge from the text of the target
dataset. To do so, we first need to extract entities
and their corresponding mentions from the text, and
then link it to the existing entities in wikidata (Vran-
decic and Krötzsch, 2014). In order to do this, we
use the existing library named as spaCy5, and open-
sourced implementation of Entity Linker6. To sum
up, in our work, a set of entities E(i) and corre-
sponding mentionsM(i) for the given input x(i)

are obtained through this step. Regarding a con-
crete example, please see format (a) in Figure 6. In
the example, “Text” indicates the entity mention
within the input x, the “start” and “end” indicates
its mention position denoted as (mα,mω), and “id”
indicates the wikidata id for the entity identification
used in the next step.

To extract the relation among entities that we
obtained above, we use the scheme of Relation Ex-
traction (RE). In other words, we use the trained

5https://spacy.io/
6https://github.com/egerber/spaCy-entity-linker

RE model to build our own knowledge base (KB)
instead of using the existing KG directly from the
existing general-domain KB7. Specifically, we first
fine-tune the BERT-base model (Devlin et al., 2019)
for 2 epochs with 600k distantly supervised data
used in Qin et al. (2021), where the Wikipedia doc-
ument and the Wikidata triplets are aligned. Then,
we use the fine-tuned BERT model to extract the
relations between entity pairs in the text. We use
the model with a simple bilinear layer on top of it,
which is widely used scheme in the relation extrac-
tion literature (Yao et al., 2019). For an example
of the extracted fact, please see format (b) in Fig-
ure 6. In the example, “h” denotes the wikidata id
of the head entity, “r” denotes the wikidata id of
the extracted relation, and “t” denotes the wikidata
id of the tail entity. In the relation extraction, the
model returns the categorical distribution over the
top 100 frequent relations. In general, the relation
of top-1 probability is used as the relation for the
corresponding entity pair. However, this approach
sometimes results in predicting no_relation
on most entity pairs. Thus, to obtain more rela-
tions, we further use the relation of top-2 probabil-
ity in the case where no_relation has a top-1

7We faced several problems here. First of all, most KBs
such as Wikidata are less informative, especially for the en-
tities included in the domain-specific context (e.g., News,
Medical records). It only has a few facts for each context of
domain-specific tasks, although we can find a lot of entities
included in the context. Second, the entity linker is imperfect.
Due to the wrongly linked entity to the wikidata, even existing
relations in the KG are ignored a lot. Therefore, we instead
use a trained neural network to effectively extract the relations
between entities, instead of direct querying to obtain facts.
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Training Validation Test
Dataset # Context C. Length # Question # Context C. Length # Question # Context C. Length # Question

NewsQA 11428 655.7 74160 - - - 106 625.8 674
Relation 296 1386.1 6162 42 1206.6 321 85 1467.7 802
Medication 182 1737.3 7518 26 1626.5 1858 53 2005.0 4005

Table 9: QA dataset statistics. We report the number of contexts and questions (i.e., # Context and # Question), with the
average length of contexts (i.e., C. Length) where the length is measured as the number of tokens after wordpiece tokenization.

probability but the top-2 probability is larger than
a certain threshold (e.g., > 0.1). In Figure 6, we
summarize our KG construction pipeline. In Ta-
ble 8, we report the hyperparameters related to our
KG construction.

B Experimental Setup

In this section, we introduce the detailed setups for
our models and baselines used in Table 1, 2, and 4.

B.1 Implementation Details

We use the Pytorch (Paszke et al., 2019) for the
implementation of all models. Also, to easily im-
plement the language model, we use the hugging-
face library (Wolf et al., 2020) containing vari-
ous transformer-based pre-trained language models
(PLMs) and their checkpoints.

Details for KALA In this paragraph, we de-
scribe the implementation details of the compo-
nents, such as four linear layers in the proposed
KFM, architectural specifications in the attention-
based GNN, and initialization of both the entity
memory and relational embeddings, in the follow-
ing. In terms of the functions h1, h2, h3, and h4 in
the KFM of Equation 2, we use two linear layers
with the ReLU (Nair and Hinton, 2010) activation
function, where the dimension is set to 768.

For relational retrieval, we implement the novel
GNN model based on GATv2 (Brody et al., 2021)
provided by the torch-geometric package (Fey and
Lenssen, 2019). Specifically, we stack two GNN
layers with the RELU activation function and also
use the dropout with a probability of 0.1. For at-
tention in our GNN, we mask the nodes of the null
entity, so that the attention score becomes zero for
them. Moreover, to obtain the context representa-
tion of the entity (See Footnote 3 in the main paper)
used in the GNN attention, we use the scatter oper-
ation8 for reduced computational cost.

For Entity Memory, we experimentally found
that initializing the embeddings of the entity mem-
ory with the contextualized features obtained from

8https://github.com/rusty1s/pytorch_scatter

the pre-trained language model could be helpful.
Therefore, the dimension of the entity embedding
is set to the same as the language model d = 768.
For relation embeddings, we randomly initialize
them, where the dimension size is set to 128.

Location of KLM in the PLM Note that, the
number and location of the KFM layers inside the
PLM are hyperparameters. However, we empiri-
cally found that inserting one to three KFM layers
at the end of the PLM (i.e., after the 9th - 11th
layers of the BERT-base language model) is ben-
eficial to the performance (See Appendix C.4 for
experiments on diverse layer locations).

B.2 Dataset Details

Here we describe the dataset details with its statis-
tics for two different tasks: extractive question an-
swering (QA) and named entity recognition (NER).

Question Answering We evaluate models on
three domain-specific datasets: NewsQA, Rela-
tion, and Medication. Notably, NewsQA (Trischler
et al., 2017) is curated from CNN news articles.
Relation and Medication are originally part of the
emrQA (Pampari et al., 2018), which is an auto-
matically constructed question answering dataset
based on the electrical medical record from n2c2
challenges9. However, Yue et al. (2020) extract
two major subsets by dividing the entire dataset
into Relation and Medication and suggest the us-
age of sampled questions from the original em-
rQA dataset. Following the suggestion of Yue et al.
(2020), we use only 1% of generated questions of
Relation for training, validation, and testing. Also,
we only use 1% of generated questions of Medica-
tion for training and use 5% of generated questions
of Medication for validation and testing. Since the
original emrQA is automatically generated based
on templates, the quality is poor – it means that
the original emrQA dataset was inappropriate to
evaluate the ability of the model to reason over
the clinical text since the most of questions can be

9https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
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Hyperparameters NewsQA Relation Medication CoNLL-2003 WNUT-17 NCBI-Disease Generative NewsQA

Fine-tuning

Language Model BERT-base-uncased T5-small
Maximum Sequence Length 384 384 384 128 128 128 512
Batch Size 12 12 12 32 32 32 64
Training Epochs 2 2 2 20 20 20 4
Optimizer AdamW Adafactor
Learning rate 3e-5 3e-5 3e-5 5e-5 5e-5 5e-5 1e-4
Weight Decay 0.01 0.01 0.01 0 0 0 -
LR decay Warmup rate 0.06 0.06 0.06 0 0 0 -
Half Precision Yes Yes Yes No No No No

Task-Adaptive Pre-training (TAPT)

Maximum Sequence Length 384 384 384 128 128 128 384
Batch Size 12 12 12 32 32 32 64
Training Epochs 1 1 1 3 3 3 4
Training Epochs (RecAdam) 3 1 1 3 3 3 4
Optimizer AdamW Adafactor
Learning rate 5e-5 1e-3
Weight Decay 0.01 0.01 0.01 0 0 0 -
LR decay Warmup rate 0.06 0.06 0.06 0 0 0 -
Half Precision Yes Yes Yes No No No No

Table 10: Hyperparamters for Fine-tuning (Top) and TAPT (Bottom) on six datasets (+ generative QA) we used for
reporting the performances in the main paper. Note that the Fine-tuning setup is applied to all methods including KALA.

Training Validation Test
Dataset # Context C. Length # Context C. Length # Context C. Length

CoNLL-2003 14,041 19.95 3,250 21.36 3,453 18.77
WNUT-17 3,394 31.32 1,009 19.28 1,287 30.58
NCBI-Disease 5,433 34.36 924 35.00 941 35.50

Table 11: NER dataset statistics. We report the number of
contexts (i.e., # Context), with the average length of them (i.e.,
C. Length) on training, validation, and test sets.

answered by the simple text matching. To over-
come this limitation, Yue et al. (2020) suggests
two ways to make the task more difficult. First,
they divide the question templates into easy and
hard versions and then use the hard question only.
Second, they suggest replacing medical terminolo-
gies in the question of the test set into synonyms
to avoid the trivial question which can be solvable
with a simple text matching. We use both methods
to Relation and Medication datasets to report the
performance of every model. For more details on
Relation and Medication datasets, please refer to
the original paper (Yue et al., 2020). The statis-
tics of training, validation, and test sets on all QA
datasets are provided in Table 9.

Named Entity Recognition We use three dif-
ferent domain-specific datasets for evaluating our
KALA on NER tasks: CoNLL-2003 (Sang and
Meulder, 2003) (News), WNUT-17 (Derczynski
et al., 2017) (Social Network Service) and NCBI-
Disease (Dogan et al., 2014) (Biomedical). The
CoNLL-2003 is constructed from the manually cu-
rated 1,393 English news articles, including 301.4k
tokens, which has 9 class labels. The WNUT-
17 dataset consists of 65,124 emerging and rare
entities from social media (e.g., Twitter, Reddit,
YouTube, to name a few), which has 13 class la-

Hyperparameters News Medical Textbook

Domain-Adaptive Pre-training (DAPT)

The number of text (by lines) 10M 100k
The number of text (by words) 618M 12.8M
The size of data (by volume) 3.5G 86M
Maximum Sequence Length 384
Batch Size 64
Training Epochs 50
Maximum Steps 12.5k
Optimizer AdamW
Learning rate 5e-5
Weight Decay 0.01
LR decay Warmup rate 0.06
Half Precision Yes

Applied Dataset
NewsQA

CoNLL-2003
WNUT-17

Relation
Medication

NCBI-Disease

Table 12: Hyperparamters for DAPT on two domains we
used for reporting the performances in the main paper.

bels. The NCBI-Disease dataset consists of the
793 PubMed articles from the biomedical domain,
which contains 6,892 disease mentions and 790
disease concepts, and also has 3 class labels. The
statistics of training, validation, and test sets are
provided in Table 11.

B.3 Training details

All experiments are constrained to be done with a
single 12GB Geforce RTX 2080 Ti GPU for fair-
ness in terms of memory and the availability on the
academic budget, except for the DAPT and gener-
ative QA which use a single 48GB Quadro 8000
GPU. KALA training needs 3 hours in wall time
with a single GPU. For all experiments, we select
the best checkpoint on the validation set. For the
summary of training setups, please see Table 10
and 12.
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Fine-tuning Setup In the following three para-
graphs, we explain the setting of fine-tuning for
QA, NER, and generative QA tasks. For all ex-
periments on extractive QA tasks, we fine-tune the
Pre-trained Language Model (PLM) for 2 epochs
with the weight decay of 0.01, learning rate of 3e-5,
maximum sequence length of 384, batch size of 12,
linear learning rate decay of 0.06 warmup rate, and
half precision (Micikevicius et al., 2018).

For all experiments on NER tasks, we fine-
tune the PLM for 20 epochs, where the learning
rate is set to 5e-5, maximum sequence length is
set to 128, and batch size is set to 32. We use
AdamW (Loshchilov and Hutter, 2019) as an opti-
mizer using BERT-base as the PLM.

For the generative QA task in Table 7, we fine-
tune the T5-small (Raffel et al., 2020) for 4 epochs
with the learning rate of 1e-4, maximum sequence
length of 512, and batch size of 64. We also use
the Adafactor (Shazeer and Stern, 2018) optimizer.
Instead of training with the same optimizer as in
BERT for QA and NER, we instead use the inde-
pendent AdamW optimizer with the learning rate
of 1e-4 and weight decay of 0.01 to train the KALA
module with T5.

Adaptive Pre-training Setup In this paragraph,
we describe the experimental settings of adaptive
pre-training baselines, namely TAPT, TAPT (+
RecAdam), and DAPT. For QA tasks, we further
pre-train the PLM for {1,3,5,10} epochs and then
report the best performance among them. Specifi-
cally, reported TAPT result on NewsQA, Relation,
and Medication are obtained by 1 epoch of fur-
ther pre-training. We use the weight decay of 0.01,
learning rate of 5e-5, maximum sequence length of
384, batch size of 12, and linear learning rate decay
of 0.06 warmup rate, with a half-precision. Also,
the masking ratio for the pre-training objective is
set to 0.15, following the existing strategy intro-
duced in the original BERT paper (Devlin et al.,
2019).

For NER tasks, we further pre-train the PLM
for 3 epochs across all datasets. In particular, the
learning rate is set to 5e-5, batch size is set to 32,
and the maximum sequence length is set to 128. We
also use AdamW (Loshchilov and Hutter, 2019) as
the optimizer for all experiments.

In the case of T5-small for generative QA in Ta-
ble 7, we further pre-train the PLM for 4 epochs
with the learning rate of 0.001, batch size of 64,
maximum sequence length of 384, and Adafac-

tor (Shazeer and Stern, 2018) optimizer.
Regarding the setting of TAPT (+ RecAdam) on

all tasks, we follow the best setting in the original
paper (Chen et al., 2020) – sigmoid as an annealing
function with annealing parameters: k = 0.5, t0 =
250, and the pretraining coefficient of 5000.

For training with DAPT, we need an external
corpus having a large amount of data for adaptive
pre-training. Thus, we first choose the datasets of
two domains – News and Medical. Specifically,
as the source of corpus for the News domain, we
use the sampled set of 10 million News from the
RealNews dataset used in Gururangan et al. (2021).
As the source of corpus for the Medical domain, we
use the set of approximately 100k passages from
the Medical textbook provided in Jin et al. (2020).
The size of pre-training data used in DAPT is much
larger than TAPT. In other words, for experiments
on NewsQA, TAPT only uses fine-tuning contexts
containing 5.8 million words from the NewsQA
training dataset, while DAPT uses more than a hun-
dred times larger data – enormous contexts contain-
ing about 618 million words from the RealNews
database. For both News and Medical domains,
we further pre-train the BERT-base model for 50
epochs with the batch size of 64, to match the sim-
ilar computational cost used in Gururangan et al.
(2020). Other experimental details are the same as
TAPT described above.

B.4 Architectural Variant Details

In this subsection, we describe the details of archi-
tectural variants reported in Section 5.1. For all
variants, we use the same KGs used in KALA.

Entity-as-Experts (Févry et al. (2020); EaE)
utilizes the entity memory similar to our work, but
they use the parametric dense retrieval more like the
memory neural network (Sukhbaatar et al., 2015).
Similar to Févry et al. (2020); Verga et al. (2021),
we change the formulation of query and memory
retrieval by using the mention representation of the
entity from the intermediate hidden states of PLMs,
which is formally defined as follows:

he =
1

mω −mα + 1

mω∑

i=mα

hl−1i , (4)

v = softmax(he ·E>) ·E,

where he represents the average of token represen-
tations of the entity mention m = (mα,mω). We
also give the supervised retrieval loss (ELLoss
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in Févry et al. (2020)), when training the EaE
model. With this retrieval, EaE also can repre-
sent the unseen entity e /∈ Etrain if we know the
mention boundary of the given entity on the con-
text. We believe it is expected to work well, if the
entity memory is pre-trained on the enormous text
along with the pre-training of the language model
from the scratch. However, it might underperform
for the language model adaptation scenario, since
it can fall into the problem of circular reasoning
– the PLM does not properly represent the unseen
entity, but it should predict which entity it is similar
from the representation. Regarding the integration
of the knowledge from the entity memory into the
PLM, the retrieved entity representation v is simply
added (Peters et al., 2019) to the hidden represen-
tations H after the transformer block as follows:

H̃ l =H l + h(v) (5)

where h is Multi-Layer Perceptrons (MLPs).
Adapter (Houlsby et al., 2019) is introduced to

fine-tune the PLM only with a few trainable param-
eters, instead of fine-tuning the whole parameters
of the PLM. To adapt this original implementa-
tion into our KALA framework, we replace our
Knowledge-conditioned Feature Modulation with
it, where the Adapter is used as the knowledge inte-
gration module. We interleave the layer of Adapter
after the feed-forward layer (FF ) and before the
residual connection of the transformer block. Also,
instead of only providing the LM hidden states as
an input, we concatenate the knowledge represen-
tation in Equation 3 to the LM hidden states. Note
that we fine-tune the whole parameters following
our KALA setting, unlike fine-tuning the parame-
ters of only Adapter layers in Houlsby et al. (2019).

ERNIE (Zhang et al., 2019) is a notable PLM
model that utilizes the external KB as an input for
the language model. The key feature of ERNIE can
be summarized into two folds. First, they use the
multi-head self-attention scheme (Vaswani et al.,
2017) to contextualize the input entities. Second,
ERNIE fuses the entity representation at the end
of the PLM by adding it to the corresponding lan-
guage representation. We assume that those two
features are important points of ERNIE. Therefore,
instead of using a Graph Neural Network (GNN)
layer, we use a multi-head self-attention layer to
contextualize the entity embeddings. Then, we add
it to a representation of the entity from the PLM,
which is the same as the design in equation 5.

KT-Net (Yang et al., 2019) uses knowledge as an
external input in the fine-tuning stage for extractive
QA. Since they have a typical layer for integrating
existing KB (Miller, 1995; Carlson et al., 2010)
with the PLM, we only adopt the self-matching
layer as the architecture variant of the KFM layer
used in our KALA framework. The computation
of the self-matching matrix in KT-Net is costly,
i.e., it requires a large computational cost that is
approximately 12 times larger than KALA.

ERICA (Qin et al., 2021) uses contrastive learn-
ing in LM pre-training to reflect the relational
knowledge into the language model. We use the
Entity Discrimination task from ERICA on the pri-
mary task of fine-tuning. We would like to note that,
as reported in Section 5 of the original paper (Qin
et al., 2021), the use of ERICA on fine-tuning has
no effect, since the size and diversity of entities and
relations in downstream training data are limited.
Such limited information rather harms the perfor-
mance, as it can hinder the generalization. In other
words, contrastive learning cannot reflect the entity
and relation in the test dataset.

B.5 FLOPs Computation

In this subsection, we give detailed descriptions of
how the FLOPs in Figure 1 are measured. We ma-
jorly follow the script from the ELECTRA (Clark
et al., 2020) repository to compute the approxi-
mated FLOPs for all models including ours. For
FLOPs computation of our KALA, we addition-
ally include the FLOPs of the entity embedding
layer, linear layers for h1, h2, h3, h4, and GNN
layer. Since the GNN layer is implemented based
on the sparse implementation, we first calculate
the FLOPs of the message propagation over one
edge, and then multiply it to the average number of
edges per node. Also, in terms of the computation
on mentions, we consider the maximum sequence
length of the context rather than the average num-
ber of mentions, to set the upper bound of FLOPs
for our KALA. Note that, in NewsQA training data,
the average number of nodes is 57, the average
number of edges for each node is 0.64, and the av-
erage number of mentions in the context is 92.68.

C Additional Experimental Results

In this section, we provide the analyses on the for-
getting of TAPT, entity memory, number of entities
and facts, location of the KLM layer, and values of
Gamma and Beta.
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Figure 7: Masked Language Model loss from Task-Adaptive
Pre-Training on the domain-specific training dataset (Relation)
and the general domain test dataset (Sampled wikipedia).
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Figure 8: The performance (F1 score and Exact Match) and
the GPU memory usage on NewsQA dataset with varying the
size of elements in the entity memory.

C.1 Analysis on forgetting of TAPT

In Figure 1, we observe that the performance of
TAPT decreases as the number of training steps
increases. To get a concrete intuition on this par-
ticular phenomenon, we analysis what happens
in the Pre-trained Language Model (PLM), when
we further pre-train it on the task-specific corpus.
Specifically, in Figure 7, we visualize the Masked
Language Model (MLM) loss of TAPT on both
domain-specific corpus from the Relation dataset
and general corpus from the sampled Wikipedia
documents during the adaptive pre-traing. As Fig-
ure 7 shows, the test MLM loss increases while
the training MLM loss persistently increases as the
training step increases. This result indicates that
TAPT on domain-specific corpus may yield the
catastrophic forgetting of the general knowledge in
the PLM.

C.2 Effects of the Size of Entity Memory

In this subsection, we analyze how the size of en-
tity memory affects the performance of our KALA.
In Figure 8, we plot the performance of KALA
on the NewsQA dataset by varying the number of
entity elements in the memory. Note that, we re-
duce the size of the entity memory by eliminating
the entity appearing fewer times. Thus, the results
are obtained by only considering the entities that
appear more than [1000, 100, 10, 5, 0] times, e.g.,
0 means the model with full entity memory. As
shown in Figure 8, we observe that the size of the
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Figure 9: Performance improvements of our KALA from
simple fine-tuning, with varying the number of entities and
facts in the context on Named Entity Recognition tasks.
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Figure 10: The performance of our KALA with varying the
location of the KFM layer inside the BERT-base model. y-
axis denotes the F1 score on NewsQA and x-axis denotes the
location of the KFM layer. For instance, 11 means the case
where the KFM layer is appended in the 11th transformer layer
of BERT-base.

entity memory is larger, the performance of our
KALA is better in general. However, interestingly,
we also observe that the smallest size of the entity
memory shows decent performance, which might
be due to the fact that some parameters in the entity
memory are stale. For more discussions on it in-
cluding visualization, please refer to Appendix D.2.
Finally, we would like to note that, in Figure 1, we
report the performance of our KALA in the case
of [1000, 5, 0] (i.e., considering entities appearing
more than [1000, 5, 0] times).

C.3 Effects of the Number of Entity and Fact

In this subsection, we aim to analyze which num-
bers of entities and facts per context are appropriate
to achieve good performance in NER tasks. Specif-
ically, we first collect the contexts having more
than or equal to the k number of entities (or facts),
and then calculate the performance difference from
our KALA to the fine-tuning baseline. As shown
in Figure 9, while there are no obvious patterns,
performance improvements from the baseline are
consistent across a varying number of entities and
facts. This result suggests that our KALA is indeed
beneficial when entities and facts are given to the
model, whereas the appropriate number of entities
and facts to obtain the best performance against the
baseline is different across datasets.
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Figure 11: Histogram of values of gamma and beta on the CoNLL-2003 dataset.
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Figure 12: Visualization of contextual representations for
seen and unseen entities on the NCBI-Disease dataset.

C.4 Effects of the Location of KFM
In the main paper and Appendix B.1, we describe
that the location of the KFM layer inside the PLM
architecture is the hyperparameter. However, some-
one might wonder which location of KFM yields
the best performance, and what is the reason for
this. Therefore, in this section, we analyze where
we obtain the best performance in various locations
of the KFM layer on the NewsQA dataset. Specif-
ically, in Figure 10, we show the performance of
our KALA with varying the location of the KFM
layer insider the BERT-base model. The results
demonstrate that the model with the KFM on the
last layer of the BERT-base outperforms all the
other choices. This might be because, as the final
layer of the PLM is generally considered as the
most task-specific layer, our KFM interleaved in
the latest layer of BERT expressively injects the
task-specific information from the entity memory
and KGs, to such a task-specific layer.

C.5 Analysis on Values of Gamma and Beta
To see how much amount of value on gamma and
beta is used to shift and scale the intermediate hid-
den representations in transformer layers, we visu-
alize the modulation values, namely gamma and
beta, in Figure 11. We first observe that, as shown
in Figure 11, the distribution of values of gamma
and beta approximately follow the Gaussian dis-

tribution, with zero mean for beta and one mean
for gamma. Also, we notice that the scale of val-
ues remain nearly around the mean point, which
suggests that the small amount of shifting to in-
termediate hidden representations on transformer
layers is enough to contribute to the performance
gain, as we can see in the main results of Table 1, 2.

C.6 Detailed Efficiency Comparison

While we provide the efficiency on FLOPs in Fig-
ure 1, we further provide the efficiency on GPU
memory, wall time, and FLOPs for training each
method in Table 6. Specifically, we measure the
computational cost on the NewsQA dataset with
BERT-base, where we use the single Geforce RTX
2080 Ti GPU on the same machine. For our KALA,
as we can flexibly manage the cost of GPU mem-
ory by reducing the number of entities in entity
memory (See Figure 8 with Appendix C.2 for more
analysis on the effects of the size of entity memory),
we provide the experimental results on two settings
– KALA with memory size 0.2k and 62.8k (full
memory). As shown in Table 6, we confirm that
the computational cost of our KALA with the full
memory is similar to the cost of the more params
baseline that uses one additional transformer layer
on top of BERT-base. However, by reducing the
number of entities in the memory, we can achieve
better efficiency than more params in terms of GPU
memory and FLOPs. Also, we observe that the
training cost (i.e., Wall Time and FLOPs) of TAPT
and DAPT is high, especially on DAPT, thus we
verify that our KALA is more efficient to train for
domain adaptation settings.

D Additional Visualization Results

Here we provide the frequency distribution of enti-
ties, additional case studies, and more illustrations
of textual examples and embedding spaces.

D.1 Additional Representation Visualization

While we already show the contextualized repre-
sentations of seen and unseen entities in the latent
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Figure 13: Distribution of frequency of entities on QA
datasets: NewsQA, Relation, and Medication, where almost
all entities appear less than 10 times, while an extremely few
numbers of entities appear very frequently.

space in Figure 2 right, we further visualize them
including the missing baselines of Figure 2, such
as Fine-tuning or TAPT, in Figure 12 on the NCBI-
Disease dataset. Similar to Figure 2, we observe
that all baselines fail to closely embed the unseen
entities in the representation space of seen enti-
ties. While this visualization result does not give
a strong evidence of why our KALA outperforms
other baselines, we clearly observe that KALA is
beneficial to represent unseen entities in the feature
space of seen entities, which suggests that such an
advantage of our KALA helps the PLM to general-
ize over the test dataset, where the context contains
unseen entities.

D.2 Entity Frequency Distribution

We visualize the frequency of entities in Figure 13
and 14. The entity frequency denotes the number
of mentions of their associated entities within the
entire text corpus of the training dataset. As shown
in Figure 13 and 14 of QA and NER datasets, the
entity frequency follows the long-tail distribution,
where most entities appear a few times. For in-
stance, in the NewsQA dataset, more than 20k en-
tities among entire 60k entities appear only once
in the training dataset, whereas one entity (CNN10)
appears approximately 20k times. This observa-
tion suggests that most of the elements in the entity
memory are not utilized frequently. In other words,
only few entities are accurately trained with many
training instances, whereas there exists the stale
embeddings which are rarely updated. This obser-
vation raises an interesting research question on the
efficient usage of the entity memory, as we can see
in Figure 8 that the small size of entity memory
could result in the better performance (See Ap-
pendix C.2). We leave the more in-depth analysis
on the entity memory as the future work.

10Almost every context in NewsQA includes the text ‘CNN’
since they are originated from the CNN News.
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Figure 14: Distribution of frequency of entities on NER
datasets: CoNLL-2003, WNUT-17, and NCBI-Disease, where
almost all entities appear less than 10 times, while an ex-
tremely few numbers of entities appear very frequently.

D.3 Additional Case Study
In addition to the case study in Figure 5, we further
show the case on the question answering task in Fig-
ure 15, like in Section 5.5, With this example, we
explain how the factual knowledge in KGs could be
utilized to solve the task via our KALA. The ques-
tion in the example is “who was kidnapped because
of her neighbor”. We observe that DAPT answers
this question as Araceli Valencia. This prediction
may come from matching the word ‘her’ in the
question to the feminine name ‘Araceli Valencia’
in the context. In contrast, our KALA predicts the
Jaime Andrade as an answer, which is the ground
truth. We suspect that this might be because of
the fact “(Jaime Andrade, spouse, Valencia)” in
the knowledge graph, which relates the ‘Valencia’
to the ‘Jaime Andrade’. Although it is not clear
how it directly affects the model’s performance, we
can reason that KALA can successfully answer the
question by utilizing the existing facts.

D.4 Additional Data Visualization
In Figure 16 and 17, we visualize the examples of
the context with its seen and unseen entities and its
relational facts. We first confirm that the quality of
facts is moderate to use. For instance, in the first
example of Figure 16, the fact in the context that
Omar_bin_Laden is son of Osama_bin_Laden, is
also appeared in the knowledge graph. In addition,
we observe that there are facts that link unseen en-
tities to the seen entities in both Figure 16 and 17.
Thus, while some of the facts in the knowledge
graph are not accurate, we can represent the unseen
entities with their relation to the seen entities. We
expect that there is a still room to improve in terms
of the quality of KGs, allowing our KALA to mod-
ulate the entity representation more accurately. We
leave the study on this as the future work.
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Context PHOENIX, Arizona (CNN) – Jamie Andrade had just gotten 
out of the shower when the men came to snatch him. Jamie Andrade 
was kept in this closet for three days without food or water, police say. 
His wife, Araceli Valencia, was mopping the kitchen in … (ellipse)…

Question who was kidnapped because of her neighbour?
Answer Jaime Andrade

Facts (Sampled)
(Valencia, spouse, Jaime Andrade Jr.)
(Jamie Andrade Jr., spouse, Valencia)

KALA (Ours)DAPT

DAPT prediction Araceli Valencia, KALA prediction Jaime Andrade

Figure 15: A textual example from NewsQA with predictions from each method (DAPT and KALA), and also the T-SNE plot
of contextualized representations from the last layer of BERT obtained by each method. Grey dots indicate tokens without any
mentions, and dots in other colors indicate tokens with mentions to the entity. We also represent sampled facts in Knowledge
Graph we used. Blue text indicates the mention of seen entities and red text indicates the mention of unseen entities. The fact is
represented as the format of (head, relation, tail). Text with yellow background indicates the ground truth answer span.
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Context MADRID, Spain (CNN) – One of Osama bin Laden’s sons 
has been denied asylum in Spain, an Interior Ministry spokeswoman 
told CNN on Wednesday. Omar bin Laden pictured earlier this year
during television interview in Rome, Italy. Omar bin Laden, who is in 
his late 20s, stepped off a plane at Madrid’s Barajas International 
Airport during a stopover late Monday and informed authorities that 
he planned to request political asylum, the spokeswoman said. Bin 
Laden has publicly called on his father to abandon terrorism. He 
prepared his formal asylum request Tuesday at the airport with the 
help of a translator, filing it around 1 p.m., the spokeswoman said. 
The Interior Ministry, which had 72 hours to reply to the request, was 
required to seek the opinion of the U.N. High Commissioner for 
Refugees on the matter. The UNHCR recommended … (ellipse) …

Question 1 Where was Omar previously denied?
Answer 1 asylum in Britain.

Facts (Sampled)
(Bin Laden, significant event, Flight)
(International Airport, country, Spain)
(International Airport, [UNK], Madrid)
(Omar bin Laden, father, Osama Bin 
Laden)
(Spain, diplomatic relation, Italy)
(Osama Bin Laden, child, Omar Bin 
Laden)
(Italy, diplomatic relation, Spain)

Question 2 Did Spain give a reason for turning down the asylum?
Answer 2 was given

Question 3 Who was denied asylum in Britain?
Answer 3 Omar bin Laden

Question 4 What family member of Omar bin Laden was associated with terrorism?
Answer 4 his father

Context (CNN) – unseeded Frenchwoman Aravane Rezai produced 
one of the shocks of the year on Sunday by defeating favorite Venus 
Williams in straight sets to win the final of the Madrid Open. The 23-
year-old Rezai – who had only claimed WTA Tour titles at Strasbourg
and Bali prior to Madrid – continued her remarkable week with a 6-2 
7-5 victory, adding Williams’ scalp to her earlier surprise victories 
over former world number one’s Junstine Henin and Jelena Jankovic. 
Williams, who returns to No.2 in the world behind younger sister 
Serena on Monday, lost the opening set in just 27 minutes and then 
failed to take advantage of a 4-1 lead in the. “I just cannot believe 
this,” world number 24 Rezai – who must now enter calculations for 
the French Open – told reporters. “Venus played very well and I’ve 
always respected her as a player and a champion. I just tried my best 
today and it worked well for me.” Williams, who was looking to 
secure her 44th career title, only converted two of her 13 break points 
in the batch – a statistic that contributed greatly to her defeat.

Question 1 Which player was the favourite?
Answer 1 Venus Williams

Facts
(Venus Williams, sibling, Aravane Rezai)
(Final, part of, Year)
(Mutua Madrid Open, located in the 
administrative territorial entity, Madrid)
(Victories, instance of, Military rank)
(Surprise, instance of, Military rank)
(Mutua Madrid Open, instance of, 
Military rank)
(Final, instance of, Military rank)

Question 2 Which title number was this?
Answer 2 44th

Question 3 When did the Mardrid Open final take place?
Answer 3 Sunday

Figure 16: NewsQA examples with facts in Knowledge Graph we used in this work. Blue text indicates the mention of seen
entities and red text indicates the mention of unseen entities. The fact is represented as the format of (head, relation, tail).
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Context The adenomatous polyposis coli ( APC ) tumour - suppressor 

protein controls the Wnt signalling pathway by forming a complex

with glycogen synthase kinase 3beta ( GSK - 3beta ), axin / conductin

and betacatenin.

Facts (Sampled)

(complex, subclass of,  protein)

(GSK, instance of, protein)

(glycogen, instance of, protein)

(APC, instance of, protein)

Context HLA typing for HLA - B27, HLA - B60, and HLA - DR1

was performed by polymerase chain reaction with sequence - specific 

primers, and zygosity was assessed using microsatellite markers.

Facts (Sampled)

(microsatellite, subclass of, primers)

(DR1, instance of, microsatellite)

(microsatellite, subclass of, typing)

Context We identified four germline mutations in three breast cancer

families and in one breast - ovarian cancer family. among these were 

one frameshift mutation, one nonsense mutation, one novel splice site 

mutation, and one missense mutation.

Facts (Sampled)

(frameshift mutation, subclass of, 

Germline mutations)

(Nonsense mutation, subclass of, 

Germline mutations)

(splice site mutation, subclass of, 

Germline mutations)

(missense mutations, subclass of, 

Germline mutations)

(Nonsense mutation, subclass of, cancers)

(frameshift mutation, subclass of, cancers)

(missense mutations, subclass of, cancers)

Context A nonsense mutation in exon 17 ( codon 556 ) of the RB1 

gene was found to be present homozygously in both the retinal and 

the pineal tumours.

Facts (Sampled)

(retinal, instance of, gene)

(Nonsense mutation, subclass of, gene)

Context Sixteen different p16 germline mutations were found in 21 

families, while one germline mutation, Arg24His, was detected in the 

CDK4 gene.

Facts (Sampled)

(p16, subclass of, Germline mutations)

(Germline mutations, subclass of, gene)

(p16, instance of, gene)

Context Aspartylglucosaminuria ( AGU ) is a rare disorder of 

glycoprotein metabolism caused by the deficiency of the lysosomal 

enzyme aspartylglucosaminidase ( AGA ).

Facts (Sampled)

(Aspartylglucosaminuria, subclass of, 

deficiency)

Context Detection of heterozygous carriers of the ataxia -

telangiectasia ( ATM ) gene by G2 phase chromosomal 

radiosensitivity of peripheral blood lymphocytes.

Facts (Sampled)

(ATM, instance of, gene)

(G2 phase, part of, blood)

(G2 phase, instance of, gene)

Context Recently, we reported five Austrian families with generalized 

atrophic benign epidermolysis bullosa who share the same COL17A1 

mutation.

Facts (Sampled)

(epidermolysis bullosa, instance of, 

mutations)

Figure 17: NCBI-Disease examples with facts in Knowledge Graph we used in this work. Blue text indicates the mention of
seen entities and red text indicates the mention of unseen entities. The fact is represented as the format of (head, relation, tail).
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