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Abstract

This paper presents MuCGEC, a multi-
reference multi-source evaluation dataset
for Chinese Grammatical Error Correc-
tion (CGEC), consisting of 7,063 sentences
collected from three Chinese-as-a-Second-
Language (CSL) learner sources. Each sen-
tence is corrected by three annotators, and
their corrections are carefully reviewed by a
senior annotator, resulting in 2.3 references per
sentence. We conduct experiments with two
mainstream CGEC models, i.e., the sequence-
to-sequence model and the sequence-to-edit
model, both enhanced with large pretrained
language models, achieving competitive bench-
mark performance on previous and our datasets.
We also discuss CGEC evaluation methodolo-
gies, including the effect of multiple refer-
ences and using a char-based metric. Our an-
notation guidelines, data, and code are avail-
able at https://github.com/HillZha
ng1999/MuCGEC.

1 Introduction

Given a potentially noisy input sentence, gram-
matical error correction (GEC) aims to detect and
correct all errors and produce a clean sentence.
Recently, GEC has increasingly gained attention
for its vital value in various downstream scenarios
(Grundkiewicz et al., 2020; Wang et al., 2021).

To support GEC research, high-quality manu-
ally labeled evaluation data is indispensable. For
English GEC (EGEC), such datasets are abun-
dant (Yannakoudakis et al., 2011; Dahlmeier et al.,
2013; Ng et al., 2014; Napoles et al., 2017; Bryant
et al., 2019; Napoles et al., 2019; Flachs et al.,
2020). However, Chinese GEC (CGEC) evaluation
datasets are relatively scarce. The two publicly
available CGEC evaluation datasets are NLPCC18
and CGED, contributed by the NLPCC-2018 (Zhao

† This work was partially done during the first author’s
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Source 我不知道他何时返回回来。
I don’t know when he will return back.

Ref. 1 我不知道他何时返回回来。
I don’t know when he will return.

Ref. 2 我不知道他何时返回回来。
I don’t know when he will be back.

Table 1: A CGEC example with two references.

et al., 2018) and the series of CGED shared tasks
(Rao et al., 2018, 2020), respectively.

Most EGEC evaluation datasets provide mul-
tiple references for each input sentence, such as
CoNLL14-test (Ng et al., 2014) and BEA19-test
(Bryant et al., 2019). In contrast, sentences in
existing CGEC evaluation datasets usually have
only one reference (i.e., 87% of the sentences in
NLPCC18 and all in CGED). This is probably due
to the different annotation workflows adopted.

As suggested by Bryant and Ng (2015), enforc-
ing multi-reference annotation is crucial for both
GEC model evaluation and GEC data annotation,
because there usually exist more than one accept-
able reference with similar meanings for an incor-
rect sentence, as illustrated by the example in Table
1. On the one hand, if a GEC model outputs a cor-
rect reference, which is yet different from the one
given in the evaluation data, then the model perfor-
mance will be unfairly underestimated. To mitigate
this issue, a straightforward solution is increasing
the number of references (Sakaguchi et al., 2016;
Choshen and Abend, 2018). On the other hand,
imposing a single-reference constraint makes data
annotation problematic. If annotators submit differ-
ent equally acceptable corrections, which is very
common, it will be difficult for the senior annotator
to decide which one is the best.

Besides the lack of multiple references, existing
CGEC datasets collect sentences from a single text
source, which may be insufficient for robust model
evaluation (Mita et al., 2019). In addition, we be-
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lieve that it is beneficial for improving data quality
to compile comprehensive annotation guidelines.

To fill these gaps, this paper presents a
multi-reference multi-source evaluation dataset for
CGEC, named MuCGEC. After investigating previ-
ous works on constructing GEC datasets, we com-
pile comprehensive annotation guidelines. Based
on a browser-based online annotation tool, each
sentence is assigned to three annotators for inde-
pendent correction, and one senior annotator for
final review. An annotator may submit multiple
references, and the senior annotator may also sup-
plement new references besides rejecting incorrect
submissions. In this way, we aim to produce as
many references as possible. In summary, this work
makes the following contributions.

(1) Our newly constructed MuCGEC consists
of 7,063 sentences from three representative
sources of Chinese-as-a-Second-Language
(CSL) learner texts. Each sentence obtains 2.3
references on average. We conduct detailed
analyses on our new dataset to gain more in-
sights.

(2) We conduct benchmark experiments using
two mainstream and competitive CGEC mod-
els, i.e., the sequence-to-edit (Seq2Edit)
and sequence-to-sequence (Seq2Seq) models,
both enhanced with pretrained language mod-
els (PLMs). We also experiment with an ex-
tremely effective ensemble strategy. More-
over, we investigate the effect of multiple ref-
erences on model evaluation, and propose to
use a char-based evaluation metric, which we
believe is simpler and more suitable than pre-
vious word-based ones for CGEC.

2 Data Annotation

2.1 Multi-Source Data Selection
This work focuses on CSL learner texts. In order
to investigate diverse types of Chinese grammati-
cal errors, we select data from the following three
sources.

(1) We re-annotate the NLPCC18 test set (Zhao
et al., 2018), which contains 2,000 sentences
from the Peking University (PKU) Chinese
Learner Corpus.

(2) We select and re-annotate sentences from
CGED-2018 and CGED-2020 test datasets
(Rao et al., 2018, 2020), which come from

the writing section of the HSK exam (Hanyu
Shuiping Kaoshi, translated as the Chinese
level exam), an official Chinese proficiency
test. After removing sentences marked as
correct from the total 5,006 ones, we obtain
3,137 potentially erroneous sentences for re-
annotation.

(3) Lang81 is a language learning platform, where
native speakers voluntarily correct texts writ-
ten by second-language learners. The NLPCC-
2018 shared task organizers collect about
717K Chinese sentences with their corrections
from Lang8 and encourage participants to use
them as the training data. We randomly select
2,000 sentences with 30 to 60 characters for
re-annotation.

In the end, we obtain 7,137 sentences. For sim-
plicity, we discard all original corrections and di-
rectly perform re-annotation from scratch follow-
ing our new annotation guidelines and workflow.

2.2 Annotation Paradigm: Direct Rewriting
There are mainly two types of annotation
paradigms for constructing GEC data, i.e., error-
coded and direct rewriting. The error-coded
paradigm requires annotators to explicitly mark
the erroneous span in the original sentence, then
choose its error type, and finally make correc-
tions. Ng et al. (2013, 2014) adopt the error-coded
paradigm for constructing data for the CoNLL-
2013/2014 EGEC shared tasks. For CGEC, the
original NLPCC18 and CGED datasets both follow
the error-coded paradigm as well.

As discussed by Sakaguchi et al. (2016), the
error-coded paradigm poses two challenges. First,
it is extremely difficult for different annotators to
agree upon the boundaries of the erroneous spans
and their error types, especially when there are
many categories to consider (Bryant et al., 2017).
This inevitably leads to an increase in annotation
effort and a decrease in annotation quality. Sec-
ond, under such a complex annotation paradigm,
annotators would pay less attention to the fluency
of the resulting reference, sometimes even leading
to unnatural expressions.

Instead, the direct rewriting paradigm asks anno-
tators to directly rewrite the input sentence and pro-
duce a corresponding grammatically correct one,
without changing the original meaning. In order to

1https://lang-8.com/

3119

https://lang-8.com/


Major Types Minor Types

Punctuation Missing; Redundancy; Misuse

Spelling Phonetic confusion; Glyph confusion;
Character disorder

Word Missing; Redundancy; Misuse

Syntax Word order; Mixing syntax patterns

Pragmatics Logical inconsistency; Ambiguity;
Commonsense mistake

Table 2: The 5 major and 14 minor error types adopted
by our guidelines for organizing the content.

evaluate model performance, edits can be extracted
automatically from parallel sentences by additional
tools (Bryant et al., 2017).

This annotation paradigm has proven to be ef-
ficient and cost-effective (Sakaguchi et al., 2016),
and has been adopted by several recent GEC data
construction works (Napoles et al., 2017, 2019;
Syvokon and Nahorna, 2021; Náplava et al., 2022).

In this work, we adopt the direct rewriting
paradigm. Besides above-mentioned advantages,
we believe this paradigm can help improve the di-
versity of references since annotators can correct
errors more freely.

2.3 Annotation Guidelines

After an extensive survey of previous work on
GEC data construction, we compiled 30 pages of
comprehensive guidelines for CGEC annotation.
During the course of the annotation process, we
gradually improved our guidelines according to
feedback from annotators.

To facilitate learning, our guidelines adopt a two-
tier hierarchical error taxonomy, including 5 major
error types and 14 minor types, as shown in Table
2. Our guidelines describe in detail how to handle
each minor error type and provide typical exam-
ples. We will release our guidelines along with the
dataset, which we hope can benefit future research.

For dealing with word-missing errors, we found
that it was unreasonable to simply insert cer-
tain words when the missing words are context-
dependent, which means the missing words are
related to context beyond the given sentence. Ta-
ble 3 shows a sentence in which a verb is missing.
However, under sentence-level GEC annotation,
annotators are unable to decide the specific miss-
ing verb. According to our observation, previous
CGEC datasets directly insert specific words like

Source 我的爸爸经常我。
My dad usually me.

Previous 我的爸爸经常骂我。
My dad usually scolds me.

Ours 我的爸爸经常[MC]我
My dad usually [MC] me.

Table 3: An example for handling context-dependent
missing components. The inserted tokens are underlined.
“Previous” means annotation in previous datasets, and
“Ours” refers to our annotation.

“scolds” under such circumstances, which we think
is inaccurate and may cause trouble for GEC model
evaluation, because there are many other acceptable
candidates. To handle this problem, we instead in-
sert a special tag named context-dependent miss-
ing components (MC). We find about 1% of sen-
tences in MuCGEC contain “[MC]” tags. Current
GEC models cannot handle “[MC]”, since “[MC]”
is not included in existing training data and vocab-
ulary. We leave this issue as future work.

2.4 Annotation Workflow and Tool

In order to encourage more diverse and high-quality
references, we assign each sentence to three ran-
dom annotators for independent annotation. Their
submissions are then aggregated and sent to a ran-
dom senior annotator (reviewer) for review. An
annotator may submit multiple references for one
sentence if he/she thinks they are all correct ac-
cording to the guidelines. The job of the senior
annotator includes: 1) modifying incorrect refer-
ences into correct ones (sometimes just rejecting
them); 2) adding new correct references accord-
ing to the guidelines. After review, the accepted
references are defined as final golden references.

For the sake of self-improvement, we employ
a self-study mechanism that allows annotators to
learn from their mistakes if they submit an incorrect
reference. Concretely, if an annotator submits a
reference that is not included in the final golden
references, he/she has to modify his/her submission
into a correct one. Moreover, the annotator can
also make complaints if he/she insists that his/her
submission is correct. We find that the self-study
and making-complaints mechanisms can trigger
very helpful discussions.

To improve annotation efficiency, we have de-
veloped a browser-based online annotation tool to
support the above workflow and mechanisms. Due
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Dataset #sent #err. sent (perc.) chars/sent edits/ref refs/sent
Original NLPCC18 2000 1983 (99.2%) 29.7 2.0 1.1
MuCGEC (NLPCC18) 1996 ( 4) 1904 (95.4%) 29.7 2.5 2.5
MuCGEC (CGED) 3125 (12) 2988 (95.6%) 44.8 4.0 2.3
MuCGEC (Lang8) 1942 (58) 1652 (85.1%) 37.5 2.8 2.1
MuCGEC 7063 (74) 6544 (92.7%) 38.5 3.2 2.3

Table 4: Data statistics, including the number of sentences, the number (proportion) of erroneous sentences, the
average number of characters per sentence, the average number of edits per reference, and the average number of
references per sentence. Some sentences in our source data were discarded since annotators could not understand
their meaning and thus were unable to correct them. Numbers in parentheses in the “#sent” row refer to such
sentences.

to the space limitation, we show the visual inter-
faces for annotation and review in Appendix B.

2.5 Annotation Process

We employed 21 undergraduate students who are
native speakers of Chinese and familiar with Chi-
nese grammar as part-time annotators. Annotators
received intensive training before real annotation.
In the beginning, two authors of this paper, who
were also in charge of compiling the guidelines,
served as senior annotators for review. After one
month, when the annotators were familiar with the
job, we selected 5 outstanding annotators as senior
annotators to join the review.

All participants were asked to annotate for at
least 1 hour every day. The whole annotation pro-
cess lasted for about 3 months.

2.6 Ethical Issues

All annotators and reviewers were paid for their
work. The salary was determined by both submis-
sion numbers and annotation quality. The average
salary of annotators and reviewers is 24 and 35
RMB per hour respectively.

All the data of the three sources are publicly
available. Meanwhile, we have obtained permis-
sion from organizers of the NLPCC-2018 and
CGED shared tasks to release our newly annotated
references in a proper way. We are deeply grateful
to them for their kind support.

3 Analysis of Our Annotated Data

Overall statistics of MuCGEC are shown in Table
4. We also include the original NLPCC18 dataset
(Zhao et al., 2018) for comparison2.

2Here we do not compare with the original CGED and
Lang8 datasets since: 1) the CGED-orig mainly focuses on
error detection annotation and does not provide corrections for

First, from the proportion of erroneous sentences,
we can see that most of the sentences are consid-
ered to contain grammatical errors in the original
annotation, but a considerable part of them are not
corrected in our annotation. We attribute this to our
strict control of the over-correction phenomenon.

Second, regarding sentence lengths, NLPCC18
has the shortest sentences, whereas CGED sen-
tences are much longer. This may be because candi-
dates on the HSK examination, an official Chinese
proficiency test, tend to use long sentences to show
their ability in Chinese.

Third, each sentence in the re-annotated
NLPCC18 receives 2.5 references on average,
which is more than twice that in the original
NLPCC18 data. Overall, each sentence obtains 2.3
references. We believe the multi-reference charac-
teristic makes our dataset more reliable for evalua-
tion, which is further discussed in Section 6.3.

Finally, we compare the number of char-based
edits per reference in different datasets. We de-
scribe how to derive such edits in detail in Section
6.2. We can see that the number of edit is tightly
correlated with sentence length. The difference in
the average sentence length and number of edits
indicates that the three data sources may have a sys-
tematic discrepancy in quality and difficulty, which
we believe is helpful for evaluating the generaliza-
tion ability of models. Moreover, compared with
NLPCC18-orig, we annotate 25% more edits (2.0
vs. 2.5) in each reference. We believe the major
reason is that the original NLPCC18 data are an-
notated under the minimal edit distance principle
(Nagata and Sakaguchi, 2016), which requires an-
notators to select a reference with fewer edits when
correcting errors.

word-order errors; 2) the Lang8-orig is automatically collected
from the internet, and its correction is quite noisy.
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Figure 1: The proportion of sentences with different
number of references in MuCGEC.

Sentence distribution with respect to numbers
of references is shown in Figure 1. Here, we only
consider erroneous sentences. Identical references
from different annotators are counted as one refer-
ence. Overall, most sentences have 2 references,
accounting for 39.4%; 29.1% of sentences have 3
references; 21.8% of sentences have only 1 refer-
ence, most of which are short and easy to correct.

We believe that the average number of references
could be further increased if more annotators were
assigned to each sentence. It is also worth noticing
that annotators tend to submit a single reference,
despite the fact that our annotation tool allows an-
notators to submit multiple ones. We suspect the
reason may be that it is more economical for anno-
tators to do so. One the one hand, it may be easy to
come up with the most suitable correction, whereas
thinking of alternatives is more time-consuming.
On the other hand, we did not give enough con-
sideration to this issue when designing the salary
computation formula. In the future, we plan to
optimize (or simplify) our annotation workflow so
that each annotator is required to give only one ref-
erence which he/she thinks is the best, and assign
each sentence to more annotators if we need more
references.

Human annotation performance. In order to
assess the annotation ability of our annotators and
human performance for CGEC task, we calculate
char-based F0.5 scores by evaluating all annotation
submissions against the final golden references.
We describe how to compute char-based metrics
in detail in Section 6.2. Each reference submitted
by an annotator is considered as a sample. Overall,
the average F0.5 is 72.12, which we believe could
be higher if we discarded data that were annotated
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Figure 2: The human performance of the 15 annotators
who annotated the most sentences.

at the early stage of our project when annotators
were less experienced and less familiar with our
guidelines.

Figure 2 shows F0.5 scores of 15 annotators who
annotated the most sentences, in descending order
of the number of annotated sentences. We can see
that human performance varies across different an-
notators. The best annotator achieves an 82.34 F0.5

score, while the annotator who completes the most
tasks only gets a score of 68.32. This indicates that
we should pay more attention to annotation quality
when calculating salaries and prevent annotators
from focusing too much on annotation speed.

Common mistakes made by annotators. We
randomly select 300 invalid references rejected by
reviewers and try to understand what mistakes are
more frequently made by annotators. We manually
classify all selected references into three mistake
categories. The most frequent mistakes are caused
by incomplete correction and account for 56.7% of
the invalid references. We found that it was some-
times difficult for annotators to correct all errors
without omissions, possibly due to the complex-
ity or flexibility of Chinese grammar. The second
frequent type of mistakes is erroneous correction,
which means that the correction of old errors incurs
new errors, with a proportion of 32.3%. Besides,
11.0% of submissions are rejected due to meaning
change, which means that the correction changes
the intended meaning of the original sentence.

4 Benchmark Models

To understand how well cutting-edge GEC mod-
els perform on our data, we adopt two mainstream
GEC approaches, i.e., Seq2Edit and Seq2Seq. Both
models are enhanced with PLMs. We also at-
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tempt to combine them after observing their com-
plementary power in dealing with different error
types. This section briefly describes these bench-
mark models. Due to the space limitation, please
kindly refer to Appendix C for more model details.

The Seq2Edit model treats GEC as a sequence
labeling task and performs error corrections via
a sequence of token-level edits, including inser-
tion, deletion, and substitution (Malmi et al., 2019).
A token corresponds to a word or a subword in
English, and to a character in Chinese. With mi-
nor modifications to accommodate Chinese, we
adopt GECToR (Omelianchuk et al., 2020), which
achieves the SOTA performance on EGEC datasets.

Following recent Seq2Edit work like Awasthi
et al. (2019) and Omelianchuk et al. (2020), we
enhance GECToR by using PLMs as its encoder.
After comparing several popular PLMs, we choose
StructBERT (Wang et al., 2019)3 due to its superior
performance after fine-tuning (see Table 5).

The Seq2Seq model straightforwardly treats
GEC as a monolingual translation task (Yuan and
Briscoe, 2016). Recent works propose to enhance
Transformer-based (Vaswani et al., 2017) Seq2Seq
EGEC models with PLMs like T5 (Rothe et al.,
2021) or BART (Katsumata and Komachi, 2020).
Unlike BERT (Devlin et al., 2019), T5 and BART
are specifically designed for text generation. There-
fore, it is straightforward to continue training them
on GEC data. We follow these works and utilize
the recently proposed Chinese BART from Shao
et al. (2021) to initialize our Seq2Seq model.

The ensemble model. Several previous works
have proven the effectiveness of model ensemble
for CGEC (Liang et al., 2020; Hinson et al., 2020).
In this work, we clearly observe the complementary
power of the above two models in fixing different
error types (see Table 7), and thus attempt to com-
bine them.

We adopt a simple edit-wise voting mechanism.
The edits are at the char-based span level, and cor-
respond to four error types. Please refer to Section
6.2 for detailed explanation of our char-based evalu-
ation metric. More specifically, we aggregate edits
from the results of each model, and only preserve
edits that appear more than N/2 times, where N
is the number of models. In other words, an edit is
kept in the final result only if it is produced by a
majority of models.4

3https://github.com/alibaba/AliceMind/
tree/main/StructBERT

4In fact, our voting strategy is a little more complex due

We experiment with two ensemble settings:
1) one Seq2Edit and one Seq2Seq, denoted
by “1×Seq2Edit+1×Seq2Seq”, and 2) three
Seq2Edit and three Seq2Seq, denoted by
“3×Seq2Edit+3×Seq2Seq”.The three Seq2Edit
models are obtained using different random
seeds for initialization, and the same goes for the
Seq2Seq.

Other settings. To obtain the single-model
performance of both kinds of models, we run
them three times separately with different ran-
dom seeds for initialization and calculate aver-
age metrics. For “1×Seq2Edit+1×Seq2Seq”, we
random select a pair of single models. For
“3×Seq2Edit+3×Seq2Seq”, we aggregate the re-
sults of all six single models.

5 Experiments on NLPCC18-Orig Data

In order to show that our benchmark models are
competitive among existing CGEC models, we con-
duct experiments on the original NLPCC18 test set,
on which most previous CGEC systems are tested.

Training data. For the sake of easy replica-
bility, we limit our training data strictly to public
resources, i.e., the Lang85 data (Zhao et al., 2018)
and the HSK6 data (Zhang, 2009). We filter dupli-
cate sentences that appear in our dataset, and dis-
card correct sentences. The final Lang8 and HSK
data contains 1,092,285 and 95,320 sentence pairs,
respectively. The HSK data is cleaner and of higher
quality than Lang8, but is smaller. Following the
re-weighting procedure of Junczys-Dowmunt et al.
(2018), we duplicate the HSK data five times, and
merge them with Lang8 data.

Comparison with previous works. Table 5
shows the results. For a fair comparison, we follow
the official setting of the shared task, including the
word-based MaxMatch scorer (Dahlmeier and Ng,

to the adaption of two pieces of modification, which consis-
tently improve performance in our preliminary experiments.
First, for word-order errors, we set the preserving threshold to
N/2− 1 considering the Seq2Seq model is much superior in
handling word-order errors than the Seq2Edit model. Imagine
the scenario when all Seq2Seq models agree on correcting
a word-order error, whereas all Seq2Edit models disagree.
Using N/2 − 1 means that a word-order edit is kept in the
final result even when it is produced by exactly half of models.
Second, we use a set of simple heuristic rules to recognize
spelling errors, a sub-type of substitution errors, and also use
N/2 − 1 as the preserving threshold for them. This is also
reasonable since both GEC models can obtain high precision
scores on such errors.

5http://tcci.ccf.org.cn/conference/2018/
taskdata.php

6http://hsk.blcu.edu.cn
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P R F0.5

Trained on Lang8
YouDao (Fu et al., 2018)♢ 35.24 18.64 29.91
AliGM (Zhou et al., 2018)♢ 41.00 13.75 29.36
BLCU (Ren et al., 2018)♢ 47.63 12.56 30.57
HRG (Hinson et al., 2020)♢ 36.79 27.82 34.56
MaskGEC (Zhao and Wang, 2020)♡ 44.36 22.18 36.97
Our Seq2Edit 39.83 23.01 34.75
Our Seq2Seq 37.67 29.88 35.80
1×Seq2Edit+1×Seq2Seq♢ 58.15 18.35 40.55
3×Seq2Edit+3×Seq2Seq♢ 55.58 19.78 40.81

Trained on Lang8+HSK
TEA (Wang et al., 2020)♡ 39.43 22.80 34.41
WCDA (Tang et al., 2021)♡ 47.41 23.72 39.51
Our Seq2Edit (BERT) 39.61 28.53 36.76
Our Seq2Edit (RoBERTa) 39.74 30.44 37.54
Our Seq2Edit (MacBERT) 40.46 30.73 38.05
Our Seq2Edit (StructBERT) 42.88 30.19 39.55
Our Seq2Seq 41.44 32.89 39.39
1×Seq2Edit+1×Seq2Seq♢ 60.72 22.48 45.31
3×Seq2Edit+3×Seq2Seq♢ 59.38 24.18 45.99

Table 5: Performance comparison on the original
NLPCC18 dataset (Zhao et al., 2018) using the offi-
cial word-based evaluation script. The first group lists
models that use only Lang8 for training, whereas the
second group shows those using both Lang8 and HSK
data. Models marked by ♢ use model ensemble, and
those marked by ♡ use data augmentation.

2012) for calculating the P/R/F values. We segment
model outputs by adopting the PKUNLP word seg-
mentation (WS) tool provided by the shared task
organizers (Zhao et al., 2018).

When only using Lang8 for training, our single
Seq2Seq model is already quite competitive. Its
performance is only lower than MaskGEC (Zhao
and Wang, 2020) by 1 point in F0.5. Please no-
tice that MaskGEC extra uses data augmentation.
For now, our benchmark models do not use any
synthetic data for simplicity, but we believe data
augmentation could further boost the performance
of our models.

Adding the HSK training data improves perfor-
mance of all our models by about 4 points. Our
two benchmark models already achieve SOTA per-
formance under the single-model setting.

The model ensemble technique leads to obvious
performance gains (more than 5 points) over single
models. However, the gains from increasing the
number of component models seem rather small.
We try to explain this issue in Section 6.3.

For Seq2Edit, we additionally present results
with other PLMs besides StructBERT, including
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), and MacBERT (Cui et al., 2020) from the

Hugging Face7 website. We use the “large” vari-
ants of all PLMs.

6 Experiments on MuCGEC

6.1 Data Splits

For hyperparameter tuning or model selection, pre-
vious works on other CGEC datasets often ran-
domly sample some sentence pairs from training
data as the dev set (Wang et al., 2020; Zhao and
Wang, 2020; Hinson et al., 2020), which is incon-
venient for reproducing or comparing.

In this work, we propose to provide a fixed dev
set for our newly annotated dataset, by randomly
selecting 1,125 sentences from the CGED source,
denoted as CGED-dev. The remaining 5,938 sen-
tences are used as the test set, in which each data
source has a roughly equal amount of sentences,
i.e., 1,996 sentences for NLPCC18-test, 2,000 for
CGED-test, and 1,942 for Lang8-test.

6.2 Evaluation Metrics

Problems with word-based metrics. As discussed
in Section 5, previous CGEC datasets are annotated
upon word sequences and adopt word-based met-
rics for evaluation. Before annotation and evalua-
tion, a sentence needs to be segmented into words
using a Chinese word segmentation (CWS) model.
We believe this will introduce unnecessary uncer-
tainty in CGEC evaluation procedure. First, CWS
models inevitably produce word segmentation er-
rors (Fu et al., 2020). Second, there are multiple
heterogeneous CWS standards. Finally, we found
that a correct edit may be judged as wrong due to
the word boundary mismatch.

Char-based span-level evaluation metrics are
adopted in this work instead. First, given an input
sentence and a correction, we obtain an optimal
sequence of char-level edits with the minimal edit
distance. We consider three types of char-level
edits, corresponding to three error types:

• Deleting a char for a redundant error;

• Inserting a char for a missing error;

• Substituting a char with another one for a sub-
stitution error;

Then, we convert all char-level edits into span-
level by merging consecutive edits of the same type,
following previous practice in EGEC and CGEC
(Felice et al., 2016; Hinson et al., 2020)

7https://huggingface.co/
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NLPCC18-test CGED-test Lang8-test All-test
P R F0.5 P R F0.5 P R F0.5 P R F0.5

Seq2Edit 50.09 32.09 45.04 42.87 27.69 38.64 39.65 21.62 33.98 44.11 27.18 39.22
Seq2Seq 47.99 35.12 44.71 46.04 26.97 40.34 36.10 25.01 33.16 43.81 28.56 39.58

1×Seq2Edit+1×Seq2Seq 74.13 24.11 52.39 68.59 20.35 46.53 62.25 14.23 37.17 68.92 19.68 45.94
3×Seq2Edit+3×Seq2Seq 72.82 26.38 53.81 67.95 21.58 47.52 60.65 16.39 39.38 67.76 21.42 47.29

Human 75.77 66.15 73.63 74.14 64.84 72.00 72.31 62.26 70.05 73.47 63.75 71.25

Table 6: Performance of models and our annotators on MuCGEC, using the char-based metric. For calculating the
human performance, each submitted result is considered as a sample if an annotator submits multiple references.

Seq2Edit Seq2Seq Ensemble Human
Missing (29.2%) 41.09 40.93 42.25 69.72
Redundant (16.1%) 43.11 37.65 54.18 72.78
Substitution (48.9%) 35.99 39.98 47.37 71.69
Word-order (5.8%) 28.28 40.33 42.44 72.58

Table 7: F0.5 scores for each error type on All-
test. The bold numbers in parentheses show the pro-
portion of each error type. “Ensemble” refers to
“3×Seq2Edit+3×Seq2Seq”.

The above two steps are applied to both the sys-
tem output sequence and golden reference, trans-
forming them into sets of span-level edits. Finally,
we can calculate the P/R/F value by comparing
them. If there are multiple golden references, we
will choose the one with the highest F-score.

Span-level word-order errors. When calculat-
ing overall metrics, we only consider above three
types of errors. When analyzing, we distinguish the
fourth error type — word-order. A span-level word-
order error is usually composed of a redundant and
a missing error, where the deleted span is the same
as the inserted one. We use simple heuristic rules
to identify such errors (Hinson et al., 2020).

Please kindly notice that we release our evalua-
tion script as well.

6.3 Results and Analysis

Main results. Table 6 shows the char-based per-
formance of the benchmark models and our an-
notators on MuCGEC. All models are trained on
Lang8+HSK, as described in Section 4.

The overall trend of performance change is
basically consistent with those on the original
NLPCC18 dataset in Table 5. First, the Seq2Seq
and Seq2Edit models perform quite closely on F0.5,
but clearly exhibit divergent strength in precision
and recall, giving a strong motivation for combin-
ing them. Second, the model ensemble approach
improves performance by a very large margin.

One interesting observation is that on MuCGEC,

1 2 3 All
20

40

60

80

Maximum Number of References

F
0
.5

Human
Seq2Edit
Seq2Seq
1×S2E+1×S2S
3×S2E+3×S2S

Figure 3: Effect of the number of references on F0.5.

“3×Seq2Edit+3×Seq2Seq” substantially outper-
forms “1×Seq2Edit+1×Seq2Seq” on All-test and
all three subsets. In contrast, the improvement is
only modest on the original NLPCC18 test data.
We suspect this may indicate that a multi-reference
dataset can more accurately evaluate model per-
formance. However, it may require further human
investigation for more insights.

Finally, there is still a huge performance gap
between models and humans, indicating that CGEC
research still has a long way to go.

Performance on four error types. Table 7
shows more fine-grained evaluation results on four
error types.

It is clear that the Seq2Edit model is better at
handling redundant errors, whereas the Seq2Seq
model is superior in dealing with substitution and
word-order errors. For missing errors, the two per-
form similarly well.

These phenomena are quite interesting and can
be understood after considering the underlying
model architectures. On the one hand, to correct
redundant errors, the Seq2Edit model only needs
to perform a fixed deletion operation, which is a
much more implicit choice for the Seq2Seq model,
since its goal is to rewrite the whole sentence. On
the other hand, the Seq2Seq is suitable to substitute
or reorder words due to its natural capability of uti-
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lizing language model information, especially with
the enhancement of BART (Lewis et al., 2020).

Again, the model ensemble approach substan-
tially improves performance on all error types. The
ensemble model is closest to the human on redun-
dant errors, probably because they are the easiest
to correct. The largest gap occurs in word-order
errors, which require global structure knowledge
to correct and are extremely challenging.

Influence of the number of references. To un-
derstand the impact of the number of references on
performance evaluation, we deliberately reduce the
available number of reference in our dataset. For
example, when the maximum number of references
is limited to 2, we only kept the first two references
in the dataset if a sentence has more than 2 golden
references. The results are shown in Figure 3.

When the maximum number of references in-
creases, the performance of both models and hu-
mans increases continuously, especially for hu-
mans. As only a few sentences have more than
3 references, the improvement is quite small when
the maximum number of references increases from
3 to All. This trend suggests that compared with
single-reference datasets, a multi-reference dataset
reduces the risk of underestimating performance,
and thus is more reliable for model evaluation.

7 Related Works

EGEC resources. There has been a lot of work on
EGEC data construction. As the two earliest EGEC
datasets, FCE (Yannakoudakis et al., 2011) and NU-
CLE (Dahlmeier et al., 2013) adopt the error-coded
annotation paradigm. In contrast, JFLEG (Napoles
et al., 2017) collects sentences from TOFEL exams
and adopts the direct rewriting paradigm. W&I
(Bryant et al., 2019) also chooses the direct rewrit-
ing paradigm, and extra annotates a score indicat-
ing the language proficiency level of the writer for
each input sentence. All four datasets are com-
posed of essays from non-native English speakers
and provide multiple references.

Recently, researchers have started to annotate
small-scale EGEC data for texts written by native
English speakers, including AESW (Daudaravi-
cius et al., 2016), LOCNESS (Bryant et al., 2019),
GMEG (Napoles et al., 2019) and CWEB (Flachs
et al., 2020). In the future, we plan to extend this
work to texts written by native Chinese speakers.

CGEC resources. Compared with EGEC,
progress in CGEC data construction largely lags be-

hind. As discussed in Section 1, NLPCC18 (Zhao
et al., 2018) and CGED (Rao et al., 2018, 2020)
are the only two evaluation datasets for CGEC re-
search. Besides them, there are also a few resources
for training CGEC models, e.g., the Lang8 corpus
(Zhao et al., 2018) and the HSK corpus (Zhang,
2009).

Concurrently with this work, Wang et al. (2022)
present a multi-reference CGEC dataset, named
as yet another Chinese learner corpus (YACLC),
containing 32,124 sentences from Lang8. Each
sentence is annotated by 10 annotators.

Recent progress in CGEC. In the NLPCC-2018
shared task (Zhao et al., 2018), many systems
adopt Seq2Seq models, based on RNN/CNN. Re-
cent work mainly utilizes Transformer (Wang et al.,
2020; Zhao and Wang, 2020; Tang et al., 2021).
Hinson et al. (2020) first employ a Seq2Edit model
for CGEC, and achieve comparable performance
with the Seq2Seq counterparts. Some systems in
the CGED-2020 shared task (Rao et al., 2020) di-
rectly employ the open-source Seq2Edit model, i.e.,
GECToR (Liang et al., 2020). Most Seq2Edit mod-
els use PLMs like BERT (Devlin et al., 2019) to
initialize their encoders. Besides the above two
mainstream models, Li and Shi (2021) for the first
time apply a non-autoregressive neural machine
translation model to CGEC.

Besides modeling optimization, techniques like
data augmentation (Zhao and Wang, 2020; Tang
et al., 2021) and model ensemble (Hinson et al.,
2020) have proven to be very useful for CGEC.

8 Conclusions

This paper presents MuCGEC, a newly annotated
evaluation dataset for CGEC, consisting of 7,063
sentences written by CSL learners. Compared with
existing CGEC datasets, ours can support more re-
liable evaluation due to three important features:
1) providing multiple references; 2) covering three
text sources; 3) adopting strict quality control (i.e.,
annotation guidelines and workflow). After de-
scribing the data construction process, we perform
detailed analyses of our data. Then, we adopt two
mainstream and competitive CGEC models, i.e.,
Seq2Seq and Seq2Edit, and carry out benchmark
experiments. We also propose to adopt char-based
evaluation metrics to replace previously used word-
based ones.
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Appendices

A More Discussion on the Char-based
Span-level Metric

We find that ERRANT_ZH (Hinson et al., 2020), a
useful evaluation tool for CGEC, only merges edits
for redundant errors and missing errors, and does
not merge edits for substitution errors. In contrast,
as discussed in Section 6.2, we also merge the con-
secutive edits for substitution errors for the sake of
simplicity. We hope future research can adopt our
simplified version unless there is a strong reason.
Meanwhile, we should keep thinking about which
evaluation metrics are more suitable for CGEC
task.

B Interface

Figure 4 shows our design of annotation interface
in our annotation tool, where annotators correct
assigned sentences. Given an annotation task, this
interface presents a potentially wrong sentence and

a text input box. The original sentence is copied
into the input box below, so that the annotator can
directly modify it. To support multiple corrections,
we also provide a button to add additional input
boxes. Two special buttons are provided to deal
with special cases. The error free button means that
the sentence is correct; the not annotatable button
means that the annotator can not understand the
sentence.

Figure 4: The screenshot of the annotation interface.

Figure 5 shows the review interface, where se-
nior annotators judge whether the submitted correc-
tions are correct. All corrections of a sentence from
annotators are shown on the screen, and reviewers
click a check box to mark each of them as correct
or incorrect. The input box below allows reviewers
to supplement extra valid corrections.

Figure 5: The screenshot of the review interface.

C Hyperparameters

Table 8 and Table 9 shows the detailed hyperpa-
rameters for training our two benchmark models.
Due to the GPU memory limitation, we truncated
sentences longer than 100 characters when training
the Seq2Seq model. In other words, extra charac-
ters in the input sentences and the references are
discarded.

A useful trick. We find that some sentences in
MuCGEC are actually composed of multiple sen-
tences. Therefore, we split one input sentence into
multiple ones based on punctuation marks such as
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periods, exclamation marks, and so on. Then, we
perform corrections on the smaller sentences and
concatenate the results. We find this trick can con-
sistently improve performance in our preliminary
experiments. For now, we decide not to break the
sentences when releasing in order to be consistent
with the sources where the data comes from.

Configurations Values
Model architecture BART (Lewis et al., 2020)
Pretrained model Chinese-BART-Large (Shao et al., 2021)

Number of max epochs 10
Devices 8 Nvidia V100 GPU (32GB)

Batch size per GPU 32

Optimizer
Adam (Kingma and Ba, 2014)

(β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8)
Learning rate 3× 10−6

Learning rate scheduler Polynomial
Gradient accumulation steps 4

Dropout 0.1
Gradient clipping 1.0

Loss function
Label smoothed cross entropy

(label-smoothing=0.1)
(Szegedy et al., 2016)

Total training time About 20 hours
Stopping criteria Loss value on the dev set

Patience 3

Table 8: Hyperparameter values of our Seq2Seq model.

Configurations Values
Model architecture GECToR (Omelianchuk et al., 2020)
Pretrained model Chinese-Struct-Bert-Large (Wang et al., 2019)

Number of max epochs 20
Number of cold epochs 2

Devices 1 Nvidia V100 GPU (32GB)

Optimizer
Adam (Kingma and Ba, 2014)

(β1 = 0.9, β2 = 0.999, ϵ = 1× 10−8)
Cold learning rate 1× 10−3

Learning rate 1× 10−5

Batch size 128
Loss function Cross entropy

Total training time About 10 hours
Stopping criteria Label prediction accuracy on the dev set

Patience 3

Table 9: Hyperparameter values of our Seq2Edit model.
“Cold” means that freeze the parameters of BERT.
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