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Abstract
Recent advancements in natural language processing (NLP) have reshaped the industry, with powerful language models such
as GPT-3 achieving superhuman performance on various tasks. However, the increasing complexity of such models turns
them into “black boxes”, creating uncertainty about their internal operation and decision-making. Tsetlin Machine (TM)
employs human-interpretable conjunctive clauses in propositional logic to solve complex pattern recognition problems and has
demonstrated competitive performance in various NLP tasks. In this paper, we propose ConvTextTM, a novel convolutional
TM architecture for text classification. While legacy TM solutions treat the whole text as a corpus-specific set-of-words
(SOW), ConvTextTM breaks down the text into a sequence of text fragments. The convolution over the text fragments
opens up for local position-aware analysis. Further, ConvTextTM eliminates the dependency on a corpus-specific vocabulary.
Instead, it employs a generic SOW formed by the tokenization scheme of the Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019a). The convolution binds together the tokens, allowing ConvTextTM to address
the out-of-vocabulary problem as well as spelling errors. We investigate the local explainability of our proposed method
using clause-based features. Extensive experiments are conducted on seven datasets, to demonstrate that the accuracy of
ConvTextTM is either superior or comparable to state-of-the-art baselines.

Keywords: Set-Of-Word (SOW), Convolutional Tsetlin Machine (CTM), Explainable, Human-Interpretable, Language
Model, Text Classification, Tsetlin Machine (TM).

1. Introduction

Recent advances in Artificial Intelligence (AI) have
brought increasingly accurate learning algorithms and
powerful computation platforms. However, the ac-
curacy gains come with escalating computation costs,
and models are getting too complicated for humans
to comprehend. Prohibitive computation costs hinder
the training of state-of-the-art models, while a lack of
model transparency reduces trust. When end-users can-
not understand model decisions and researchers report
on how susceptible the models are to data bias, confi-
dence in machine learning models declines.
Mounting computation costs are problematic because
of the long-term environmental impact. The obscurity
of AI-driven decisions, however, raises immediate eth-
ical concerns. Indeed, many decision errors can be fa-
tal in high-risk application domains, including bank-
ing (Le and Viviani, 2018), medicine (Esteva et al.,
2019), bioinformatics (Freitas et al., 2008), and self-
driving cars (Badue et al., 2020). Transparency is re-
quired to ensure fair and safe decisions. AI model inter-
pretability is thus a research area of increasing interest,
crucial for further advancement of the AI field.
The field of Natural Language Processing (NLP) man-
ifests all of the above concerns. With the develop-
ment of powerful language models such as Transform-
ers (Vaswani et al., 2017), the prediction accuracy al-
ready peaks for several NLP tasks, such as sentiment
analysis and text classification. However, model com-
plexity is immense, and only approximate interpreta-

tion techniques are available. On the other side of
the spectrum, traditional models like Linear Regres-
sion, Logistic Regression, and Decision Trees can be
highly interpretable but are far from achieving state-of-
art accuracy. As such, they demonstrate the challeng-
ing accuracy-interpretability trade-off researchers must
resolve.

The Tsetlin Machine (TM) (Granmo, 2018) is a rule-
based pattern recognition approach that aims to bridge
the gap between accuracy and interpretability. It uses
a majority vote among multiple rules for decision-
making. As such, TMs unify summation-based (cf.
logistic regression) and rule-based (cf. decision trees)
approaches. TMs further employ three powerful strate-
gies for learning patterns: (i) Frequent pattern mining
with so-called Type I Feedback; (ii) Pattern discrimi-
nation with so-called Type II Feedback; and (iii) Data
dissection utilizing a vote margin.

Recent papers report TM accuracy results that are com-
parable to or surpass the accuracy of contemporary
interpretable methods. These results cover sentiment
analysis (Yadav et al., 2021a), novelty detection (Bhat-
tarai et al., 2021a)(Bhattarai et al., 2022), fake news
detection (Bhattarai et al., 2021b), and semantic re-
lation analysis (Saha et al., 2020). Indeed, in some
cases, the TM outperforms state-of-the-art deep learn-
ing baselines (Bhattarai et al., 2021b). Based on propo-
sitional logic and bitwise operations for learning, TMs
offer an alternative approach to deep learning models.
The advantages are interpretable learning, minimalist
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complexity, and comparable or better prediction accu-
racy in an increasing number of cases.
TMs achieve human-level interpretability through
AND rules with negation that uses set-of-words (SOW)
based features. In SOW, each word is one-hot encoded
and then ORed into a document bit vector. One can also
view each AND-rule as a conjunctive clause in propo-
sitional logic. A propositional variable represents each
word. As reported by Blakely et al., clauses learned
by a TM are highly discriminative, while being easy to
interpret (Blakely and Granmo, 2020). Because each
clause is self-contained, one can interpret the TM glob-
ally simply by inspecting each clause.
With increasing vocabulary size, however, the SOW
representation becomes increasingly sparse. The
sparseness affects both the preprocessing time, train-
ing time, and accuracy. Yadav et al. were able
to reduce sparsity by boosting the SOW with GloVe
synonyms (Yadav et al., 2021b). However, reduc-
ing pre-trained word embeddings to synonyms re-
moves information from the embeddings. A main
problem is that pre-trained word embeddings such as
word2vec (Mikolov et al., 2013), GloVe (Pennington
et al., 2014), and FastText (Bojanowski et al., 2017),
are real-valued. TMs, however, require binary input.
How to produce binary embeddings that are suitable
for TMs is an open problem. Additionally, using non-
interpretable word embeddings would impact TM in-
terpretability.
Contributions: In this paper, we propose Conv-
TextTM, a novel convolutional TM (CTM) (Granmo
et al., 2019) architecture for text classification. While
legacy TM solutions treat the whole text as a corpus-
specific SOW, ConvTextTM breaks down the text into
a sequence of text fragments. The convolution over
the text fragments opens up for local position-aware
analysis. Further, ConvTextTM eliminates the depen-
dency on a corpus-specific vocabulary. Instead, it
employs a generic SOW formed by the tokenization
scheme of the Bidirectional Encoder Representations
from Transformers (BERT). The convolution binds to-
gether the tokens, allowing ConvTextTM to address the
out-of-vocabulary problem as well as spelling errors.
We investigate the local explainability of our proposed
method using clause-based features. To our knowledge,
this is the first time CTM has been used in a text-based
application.

2. Related Work
Human interpretable machine learning models have a
long history, with Breiman’s research on decision trees
and random forests being an early example (Breiman,
2001)(Li et al., 1984). Since then, several approaches
for explaining the prediction of models have appeared.
However, only a few studies focus on model inter-
pretability (Lipton, 2018)(Lage et al., 2019). Some of
these address local interpretability, i.e., they study how
to understand single outputs (Ribeiro et al., 2016). Oth-

ers try to interpret the entire model, providing global
interpretability (Ustun and Rudin, 2016).
Gilpin et al. define interpretability of deep learning in
terms of three categories (Gilpin et al., 2018): (1) mod-
els that map an input to output, focusing on connec-
tivity, (2) models that explain latent variables for an
explanation, and (3) models that explain themselves.
Based on these categories, Agarwal et al. (Agarwal et
al., 2020) proposed a deep learning-based interpretable
model inspired by the family of Neural Additive Mod-
els (NAMs). However, their model was not able to
surpass regular deep learning models accuracy-wise.
As recent advances have demonstrated, interpretable
rule-based approaches may provide a better trade-off
between interpretability and accuracy. Numerous ap-
proaches, such as frequent itemset mining for associ-
ation rule learning (Agrawal et al., 1993), and Prob-
ably Approximately Correct (PAC) (Feldman, 2009)
have provided insights into how data patterns can be
represented in Disjunctive Normal Form (DNF) using
propositional formula. These techniques, however, are
generally not scalable and robust to noise, and cannot
compete with deep learning models.
TMs are a recent approach to rule-based machine learn-
ing that extracts human-interpretable patterns from data
using propositional reasoning. Berge et al. (Berge
et al., 2019) employed TM for categorizing medical
records, with an emphasis on the interpretability of the
rules generated by TM. They demonstrated that TMs
are interpretable, yet provide competitive accuracy in
comparison with other machine learning techniques,
including Convolutional Neural Networks (CNN) and
Long Short-Term Memory (LSTM) Neural Networks.
Other researchers report similar findings, for example
within regression (Darshana Abeyrathna et al., 2020),
natural language understanding (Yadav et al., 2021a;
Bhattarai et al., 2021b; Saha et al., 2020; Yadav et al.,
2021c), and speech understanding (Lei et al., 2021).
Additionally, the Convolutional TM performs com-
petitively on MNIST, Fashion-MNIST, and Kuzushiji-
MNIST, compared with several other contemporary
methods including CNNs (Granmo et al., 2019).
Methods for global and local model interpretation are
gaining increasing attention in the NLP research com-
munity. (Jacovi et al., 2018) examined how CNN net-
works process and categorize text. They demonstrate,
by employing various alternative activation patterns,
how filters may capture several semantic classes of
n-grams. They compute word-level scores in two
ways: locally and globally. Both techniques, however,
need a specific input and employ leave-one-out evalu-
ations. The authors of (Xiong et al., 2018) conclude
that Layer-wise Relevance Propagation (LRP) extracts
more relevant features and argue that a single word
does not adequately explain any given outcome. For
instance, a single word can be a component of a signif-
icant n-gram. However, their method requires knowl-
edge of the model parameters, which cannot be consid-
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Figure 1: Preprocessing text for Convolutional TM.

ered an explanation for the black-box nature of the neu-
ral network. (Chen and Ji, 2020) use masks over word
embedding named variational word mask (VMASK)
and provide an interpretable architecture for text clas-
sification to learn task-specific important words. They
demonstrate the model’s interpretability by compar-
ing it to LIME and SampleShapley (Strumbelj and
Kononenko, 2010). Similarly, (Nguyen, 2018) pre-
sented a robust technique for text categorization that
relies on local explanation. They demonstrate through
crowdsourcing experiments that automatic evaluation
metrics based on word elimination, such as LIME, are
reasonably consistent with human evaluations.
Despite these advances in NLP interpretability, strong
transformer-based language models such as BERT (De-
vlin et al., 2019a) and XLNet (Yang et al., 2019a) out-
perform alternative approaches that rely on pre-trained
embeddings. In summary, previous work report that
as the complexity of the model increases, the interpre-
tation becomes more ambiguous (Lipton, 2018). For
example, it is possible that the small neural network
models may be more interpretable than large decision
trees. One can argue that some models employ an at-
tention mechanism that can be interpreted based on the
weighting of the input features. Still, other researchers
report that attention weights do not provide a meaning-
ful explanation (Bai et al., 2020)(Serrano and Smith,
2019). To overcome these shortcomings, the interest
in rule-based interpretable techniques is rising, with
TM being a promising approach. However, as dis-
cussed, the SOW sparsity introduced by large vocab-
ularies is significantly limiting TMs. Yadav et al. were
able to partially mitigate increasing sparsity by boost-
ing TM SOWs with GloVe synonyms, significantly in-
creasing accuracy (Yadav et al., 2021b). The work we
present here, however, attempts to address this issue by
employing a fixed-sized pre-trained BERT embedding
vocabulary. Accordingly, we establish a general TM
SOW of manageable size.

3. ConvTextTM Architecture
3.1. Tsetlin Machine Basics
A basic TM consists of two-action Tsetlin Au-
tomata (TAs) with 2N states. Each TA performs an

action associated with its current state, which is either
an “Include” action (in State 1 to N ) or an “Exclude”
action (N + 1 to 2N ). The state updates are based on
iterative feedback, i.e., rewards and penalties. Rewards
reinforce the action performed by the TA, while penal-
ties suppress the action. In this way, the TA progres-
sively shifts toward the optimal action (Tsetlin, 1961).
To address the pattern recognition problem, the collec-
tion of TAs construct conjunctive clauses in proposi-
tional logic. The input to a TM consists of proposi-
tional values, i.e., the input is Boolean. A TM uses
both the non-negated and negated version of each input
when forming the clauses, each of which is handled by
an individual TA. Accordingly, each TM clause cap-
tures a specific sub-pattern. The output, in turn, is de-
termined based on votes for the available classes. It
is the class with the largest number of matching sub-
patterns that wins the round of voting and is output by
the TM.
The TM takes a Boolean input vector, X =
(x1, . . . , xo), xk ∈ {0, 1}, k ∈ {1, . . . , o} to be clas-
sified into one of the Cl classes, Y = (y1, . . . , yCl),
where Cl is total number of classes. From the in-
put vector, we obtain 2o literals L = (l1, l2, . . . , l2o).
The literals consist of the inputs xk and their negated
counterparts x̄k = ¬xk = 1 − xk, i.e., L =
(x1, . . . , xo,¬x1, . . . ,¬xo). The TM patterns are
formed using m conjunctive clauses. Subscript j =
1, . . . ,m/2 denotes the clause index, while the super-
script describes the polarity of a clause. In brief, half
of the clauses are assigned positive polarity, i.e., C+

j ,
and the other half are assigned negative polarity, i.e.,
C−

j . A clause Cξ
j , ξ ∈ {−,+}, is formed by ANDing

a subset of the literals, i.e., the ones that are “included”
by the corresponding TAs, Lξ

j ⊆ L, as:

Cξ
j (X) =

∧
lk∈Lξ

j

lk =
∏

lk∈Lξ
j

lk. (1)

The final classification output is obtained by subtract-
ing the negative votes from the positive votes, and then
thresholding the resulting sum via the unit step function
u:

ŷ = u

m/2∑
j=1

C+
j (X)−

m/2∑
j=1

C−
j (X)

 . (2)

The TM learning process carefully guides the TAs to
make optimal decisions. The reinforcement is chan-
neled directly to the conjunctive clauses. Each clause,
in turn, forwards the feedback to its individual TAs ran-
domly. To this end, the TM employs Type I and Type
II feedback. These feedback types control how rewards
and penalties are distributed to the TAs. The distribu-
tion depends on six factors: (1) target output (y = 0 or
y = 1), (2) clause polarity, (3) clause output (Cj = 0 or
1), (4) literals value (x = 1, or ¬x = 1), (5) vote sum,
and (6) the current state of the TA. Type I feedback is
intended to generate frequent patterns, eliminate false
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Figure 2: ConvTextTM Architecture.

negatives, and make clauses evaluate to 1. Positive po-
larity clauses receive Type I input when y = 1, while
negative polarity clauses receive it when y = 0. Type II
feedback, on the other hand, improves pattern discrim-
ination, suppresses false positives, and spurs clauses to
evaluate to 0. Type II feedback is given to positive
polarity clauses when y = 0 and to negative polarity
clauses when y = 1.
The feedback is further regulated by the sum of votes
v for each output class. That is, the voting sum is
compared against a voting margin T , which is em-
ployed to guide distinct clauses to learn different sub-
patterns. The details of the learning process can be
found in (Granmo, 2018).

3.2. Convolutional Tsetlin Machine and
Pre-processing for Text

The CTM is a variation of TM developed for image
classification. The CTM takes an image X = (xk) ∈
{0, 1}A×B×C as input. Here, A×B specifies the image
dimension and C denotes the depth of the binary layers.
Because CTM is designed for fixed-sized images, we
must preprocess our text data prior to feeding it to the
CTM. To begin with, each input instance is segmented
into a number of equal-sized windows. To make the
window size equal, we append “PAD” tokens at the
end of the instances. Because the average lengths of
instances in different datasets can be quite different,
the number of windows generated for different datasets
may vary.
To integrate the information from BERT, we create a
dictionary that indexes all of the tokens in the BERT
vocabulary. The words in each window are then one-
hot encoded using their indices in the dictionary and
the window number in which they appear. That is, each
word is denoted by a 2D SOW representation. For ex-
ample, suppose a word present in the second window of
the first input instance is assigned the 500th index in the
dictionary of BERT. Then, position (2, 500) of the input
is set to 1. After preprocessing, each input text is repre-
sented as a Boolean 2D SOW. Now, the complete input
dataset can be represented by (xk) ∈ {0, 1}A×B×C .
Here A denotes the total number of input instances, B
denotes the total number of windows, and C represents
the total number of tokens in the BERT vocabulary list.
Figure 1 depicts the full preprocessing pipeline.
The CTM for text uses clauses with spatial dimension
1× 1 as filters to perform convolution over the prepro-

Dataset name Train set size Test set size Label
PolitiFact 716 238 2
GossipCop 15,175 5,058 2
BBCSports 517 220 5
Twitter 2,176 932 3
Query 17,500 3,850 2
R8 5,478 2,189 8
WOS-5736 4,588 1,148 11

Table 1: Dataset Statistics.

cessed input text. The filter evaluates P = B−1
q + 1

patches of dimensionality C, with q being the step
size of the convolution. Additionally, each clause can
specify binary encoded coordinates for location aware-
ness (visualized as red boxes in Figure 2). The coor-
dinates are encoded by augmenting each patch input
vector xp = [xp

k] ∈ {0, 1}C , p ∈ {1, 2, . . . , P}, with a
coordinate vector. The coordinate vector lp = [lpk] ∈
{0, 1}P×2 of each patch is threshold-encoded (Dar-
shana Abeyrathna et al., 2020). That is, the input vec-
tor is extended with one propositional variable per po-
sition. The resulting augmented vector is denoted by
xp : xp = [xp

k] ∈ {0, 1}C+P . The overall ConvTextTM
architecture is depicted in Figure 2.
Classification in CTM is similar to that of vanilla TM,
as shown in Eq. 2. However, because we have P input
vectors xp for CTM, each clause produces P output
values. The final output is obtained by ORing the indi-
vidual outputs from each patch, specified as follows:

ŷ = u

m/2∑
j=1

P∨
p=1

 ∧
lk∈L+

j

lpk

−
m/2∑
j=1

P∨
p=1

 ∧
lk∈L−

j

lpk


 .

(3)
CTM learning leverages the TM learning, with clauses
receiving the feedback based on the input vector and
label. However, for CTM, there are P input patches in
an input. Therefore, when a clause is updated, CTM
randomly selects one of the patch input vector xp that
made the clause evaluate to 1:

xp
j = Random


xp

∣∣∣∣∣∣∣
 ∧

lk∈L
ξ
j

lpk

 = 1, 1 ≤ p ≤ P


 .

(4)
The randomly chosen patch input xp enables each
clause to extract a specific sub-pattern, and the unpre-
dictability of the uniform distribution statistically scat-
ters the clauses for various sub-patterns in the target
text.

4. Experiments
4.1. Datasets
Table 1 provides an overview of the publicly available
datasets used in our experiment. The goal of this study
is to assess our framework across a variety of datasets
with varying semantic content, sentence lengths, and



3765

Datasets Epochs #clauses Threshold (T) Sensitivity (s) Window
PolitiFact 200 10,000 100*100 10.0 3
GossipCop 200 15,000 100*100 20.0 3
BBCSports 100 10,000 150*150 10.0 2
Twitter 100 10,000 50*50 10.0 2
Query 100 5,000 150*150 10.0 2
R8 150 10,000 100*100 10.0 2
WOS-5736 150 10,000 150*150 10.0 2

Table 2: Hyperparameter configurations.

linguistic patterns. To this end, we employ datasets
related to fact-checking, document classification, aca-
demic text classification, and short text classification.
We organize the datasets as follows:

• Fact Checking: We here utilize a publicly avail-
able data repository for fake news detection,
FakeNewsNet (Shu et al., 2020a). The labels
are provided by professional journalists from the
fact-checking websites PolitiFact and GossipCop.
PolitiFact focuses on U.S. political news, whereas
GossipCop focuses on entertainment news from
various media.

• Topic Classification: For topic classification, we
use BBC Sports and a Twitter dataset. BBC Sports
consists of 737 documents from the BBC Sports
website, collected between 2004 and 2005, la-
beled according to five sports categories. Further-
more, the Twitter dataset consists of a collection
of 5, 513 tweets that have been hand-classified
into one of the four topics: Apple, Google, Twit-
ter, and Microsoft. The tweets are further labeled
with sentiments positive, negative, or neutral.

• Short text classification: These datasets in-
volve short text sentences. We explore perfor-
mance using the Query (Faruqui and Das, 2018)
and R8 (Debole and Sebastiani, 2005) datasets.
Google’s query dataset was created by crowd-
sourcing well-formedness annotations for 25, 100
queries from the Paralex corpus. Each query
was binary annotated by five raters regarding
whether the query was well-formed. R8 is a subset
of the Reuters-21578 corpus that contains news
documents classified into the eight most popular
classes. Note that the document distribution in R8
is severely skewed, with the smallest class holding
just 51 documents.

• Academic text classification: We utilize the Web
of Science (WoS)-5736 datset (Kowsari et al.,
2017a), which comprises 5, 736 published papers
with eleven categories organized under three main
categories.

4.2. Baselines
We begin by summarizing the baseline methods.

• FastText (Joulin et al., 2017) uses a linear classi-
fier to input a document embedding, which is cre-
ated by the average of word/n-grams embeddings.

• Rhetorical Structure Theory (RST) (Rubin et al.,
2015) uses a tree structure to depict the relation-
ship between words in a document. It extracts the
news style features from a bag of words by map-
ping them into a latent feature representation.

• Linguistic Inquiry and Word Count (LIWC) (Pen-
nebaker et al., 2015) is used to extract and learn
features from psycholinguistic and deception cat-
egories.

• Hierarchical attention neural net-
work (HAN) (Yang et al., 2016) is employed for
embedding word-level attention on each sentence
and sentence-level attention on news content for
fake news detection.

• CNN-text (Kim, 2014) utilizes a convolutional
neural network (CNN) with pre-trained word vec-
tors to perform sentence-level classification. Mul-
tiple convolutional filters enable the model to col-
lect various granularities of text features from
news articles.

• LSTM-ATT (Lin et al., 2019a) employs long short
term memory (LSTM) in conjunction with an at-
tention mechanism. The model feeds a two-layer
LSTM with a 300-dimensional vector representa-
tion of news items as input for fake news detec-
tion.

• Hierarchical Deep Learning for Text Classifica-
tion (HDLTex) (Kowsari et al., 2017b) performs
hierarchical classification by stacking deep learn-
ing architectures to give specialized comprehen-
sion at each level of the document hierarchy.

• RoBERTa-MWSS was proposed in (Shu et al.,
2020b), which employs the Multiple Sources of
Weak Social Supervision (MWSS) approach built
upon RoBERTa (Liu et al., 2019).

• Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019b) is
a Transformer-based model which contains an
encoder with 12 transformer blocks, self-attention
heads, and a hidden shape size of 768.

• XLNet (Yang et al., 2019b) is a generalized auto-
regressive pretraining model that integrates au-
toencoding and a segment recurrence mechanism
from transformers.

Other approaches include Word Mover’s Dis-
tance (WMD), which defines the distance between
two documents as the minimum cost of converting
the words of one document into words of the other.
Deepsets adopt objective functions defined on sets
that are invariant to permutations, allowing for the
building of a deep network architecture that operates
on sets. Similarly, NNattention and Set-Transformer
are variants of Deepsets that substitutes an attention
mechanism for the sum operator.
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Datasets RST LIWC HAN CNN-text LSTM-ATT RoBERTa-MWSS BERT XLNet TM TMconv TMconv(max)
PolitiFact 60.7 76.9 83.7 65.3 83.3 82.5 88 89.5 87.1±0.24 90.27±0.33 91.21
GossipCop 53.1 73.6 74.2 73.9 79.3 80.3 85 85.5 84.2±0.03 85.82±0.27 86.28

Table 3: Performance comparison of our model with other baseline models for fact checking.

Datasets WMD Deepsets NNattention Transformer LSTM BERT XLNet TM TMconv TMconv(max)
BBCSports 95.40± 0.70 74.55±20.1 95.28±0.97 95.82±1.23 95.52 99 98 96.91 96.78 ± 0.32 97.97
Twitter 71.3±0.70 70±1.62 70.91±0.62 72.21±0.47 72.1 74.71 78 71.13 70.67±0.27 71.91

Table 4: Performance comparison of our model with other baseline models for topic classification.
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4.3. Training and Testing
We use a random train-test split of 70% / 30% for all
datasets except R8 and query as they have predefined
train and test sets. The process is repeated five times,
and the average accuracy and F1 scores are reported.
To provide robust results, we calculated an ensemble
average by first taking the average of 50 stable epochs,
followed by taking the average of the resulting five av-
erages. The experiments were conducted on the server
- NVIDIA DGX-2 with dual Intel Xeon Platinum 8168,
2.7 GHz, 16× NVIDIA Tesla V100 (32 GB), and
Ubuntu 18.04 LTS x64. The hyperparameter config-
urations of the experiment for each dataset are listed in
Table 2.

5. Results and Discussions
In this section, we evaluate the performance of our
framework with the aforementioned baselines for each
classification task, including seven datasets.
For fact-checking (i.e., PolitiFact and GossipCop), we
see that HAN outperforms LIWC, CNN-text, and RST
on both datasets. This is arguable because HAN can
capture the syntactic and semantic rules required to de-
tect fake news via hierarchical attention. Similarly, the
LIWC performs better than RST. One possible reason
for this is that LIWC is able to extract the linguistic
features from news articles based on words that de-
note psycholinguistic characteristics. The LSTM-ATT,
which incorporates substantial preprocessing utilizing
count features and sentiment features, as well as hyper-
parameter tweaking (Lin et al., 2019b), performs sim-
ilarly to HAN in PolitiFact but exceeds it on Gossip-

Cop. One possible explanation for this can be that the
attention mechanism is able to capture the relevant rep-
resentation of the input. Our model outperforms all the
baselines, including transformer-based models such as
RoBERTa-MWSS, BERT, and XLNet. Indeed, Con-
vTextTM achieves maximum accuracy of 91.21% for
PolitiFact and 86.28% for GossipCop. Besides, our
model is significantly simpler than the deep learning
models since we do not use any pre-trained embed-
dings in preprocessing. This also contributes to the
transparency, interpretability, and explainability of our
model. Table 3 illustrates the comparison outcomes.

For topic classification (i.e., BBC Sports and Twit-
ter), Table 4 shows the classification accuracy of our
proposed model and those of the baselines. The
set-transformer outperforms other deep learning algo-
rithms including Deepsets, NNattention, and LSTM,
marginally. The disparate performance of LSTM might
be explained by the fact that bidirectional LSTMs are
ineffective in modeling ungrammatical text. However,
BERT and XLNet surpass all other approaches, with
BERT achieving the accuracy of 99% in BBC Sports.
As the prior knowledge in the pre-trained BERT and
XLNet is not particular to any domain, fine-tuning is
required to unleash the actual potential of BERT and
XLNet. Our proposed CTM method outperforms the
vanilla TM and all other techniques except BERT and
XLNet, and obtains an accuracy close to those of BERT
and XLNet. The low accuracy of our model in the Twit-
ter dataset is most probably because our model, by rely-
ing entirely on the SOW approach, overlooks important
word orders that are useful in sentiment classification.

For short text classification (i.e., Query and R8), Ta-
ble 5 compares the accuracy of ConvTextTM against
state-of-the-art methods. As previously stated, with
large-scale pretraining and fine-tuning on small-data
tasks, BERT achieves 80% on Query and XLNet ob-
tains 98% on R8, surpassing other approaches signifi-
cantly. Human evaluation was conducted on the query
dataset by submitting 1, 000 queries to a human profi-
cient in English, who were able to match the label with
88.4% accuracy, indicating an estimated upper bound.

For academic text classification (i.e., WOS-5736), Ta-
ble 6 compares the accuracy of our model with other
techniques. While the RNN outperforms DNN and
CNN, HDLTex with stacked deep learning CNN ar-
chitecture performed surprisingly well, outperforming
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Datasets CNN Fasttext LSTM HAN BERT XLNet Human TM TMconv TMconv(max)
Query 67.38 62.1 65.8 64.64 80 77 88.4 53.87 67.43±0.22 67.94
R8 95.71 96.13 96.09 - 97.8 98 - 96.16 96.32±0.11 96.43

Table 5: Performance comparison of our model with other baseline models for short text classification.

Dataset DNN CNN RNN Stacking SVM HDLTex-CNN BERT XLNet TM TMconv TMconv(max)

WOS-5736 86.15 88.68 89.46 85.68 90.93 90.24 90 89.47 90.73±0.27 91.28

Table 6: Performance comparison of our model with other baseline models for academic classification.

BERT, XLNet, and TM. However, the maximum accu-
racy from our proposed model outperformed HDLTex-
CNN by a slight margin.

5.1. Accuracy vs Window Size
We now use the PolitiFact dataset to investigate the
effect of increasing the window size W on accuracy.
As PolitiFact contains long sentences per example, our
model is able to achieve very high accuracy by utiliz-
ing clauses to capture linguistic patterns in each win-
dow. However, for datasets with short sentences such
as Query and R8, it is not feasible to use more than two
windows since each window would contain only a few
words, rendering it useless for classification. Figure 3
illustrates the trade-off between window size and accu-
racy. We notice that as the window size increases, the
accuracy decreases. The highest accuracy is attained
when W = 1, which means that the input text sentence
has not been divided into any windows. The maximum
accuracy obtained for each dataset using W = 1 is
shown in Table 8. Because we are investigating the
local interpretability using parts of a text sentence, we
have to break the text sentence into windows. As a re-
sult, W = 2 and W = 3 are most suitable for us, as
their accuracy is comparable to that of W = 1, with
the added benefit of local interpretation. From this ex-
periment, we can conclude that the length of the text
sentence determines the window size. That is, if the
dataset contains lengthy sentences, we may increase
the window size without compromising accuracy.

6. Interpretability Analysis
We examine the interpretability of our framework using
the R8 dataset. Here, we consider both global and lo-
cal interpretability. We define global interpretability as
identifying global features from the trained model that
contribute significantly to classification. In contrast, lo-
cal interpretability refers to identifying significant fea-
tures inside a particular window. For example, consider
the following input sentence from the R8 dataset, “Tai-
wan shipbuilder looks for Japanese ventures Taiwan’s
state-owned China shipbuilding corp csbc plans to seek
joint production agreements with Japan and further di-
versify into ship repairing.” with the classification label
“ship”. We divide the sentence into windows. Using a
window size of two, the sentence can be separated into
two phrases: Window 1: [Taiwan shipbuilder looks for

Japanese ventures Taiwan’s state-owned China ship-
building corp] and Window 2: [csbc plans to seek joint
production agreements with Japan and further diversify
into ship repairing]. As a result, we can observe that
the first window is sufficient to classify the text. There-
fore, through local interpretability, our proposed model
determines which section of the sentence is relevant for
classification. Additionally, global interpretability can
be used to highlight the relevant features inside the win-
dow as seen in Table 7.
We split the R8 dataset into two windows for our exper-
iment, given the dataset contains short sentences. That
is, as seen in Figure 1, each example sentence is split
into two local parts. The model is trained on the pre-
processed dataset, and clause-specific features are ex-
tracted. We note that certain clauses capture features
of all the windows, whereas others capture features of
a particular window. This suggests that we can distin-
guish between features that have a global impact and
the ones that are responsible for a particular classifi-
cation on a local location-aware level. To demonstrate
the local interpretability, we visualize the features from
two windows for “acq” class in Figure 4. The fea-
tures in each window signify the classification decision
based on the corresponding part of the sentence. That
is, we can know which part of the sentence is essential
for the classification.

7. Conclusion
In this paper, we introduce an explainable Convolu-
tion Tsetlin Machine (CTM) architecture for text clas-
sification. Due to the fact that CTM is optimized for
image-based tasks, we preprocess the text document
into various windows. Thus, the clauses from the CTM
can capture the semantic features associated with each
particular window’s word patterns. We propose us-
ing predefined fixed-length vocabulary features derived
from the standard Bidirectional Encoder Representa-
tions from Transformers (BERT) tokens. This allows
us to mitigate the TM dependency on vocabulary for
each dataset and the out-of-vocabulary problem. We
illustrate the effectiveness of our model on four clas-
sification tasks using seven different datasets. Our ex-
perimental findings demonstrate that our approach is
superior to or competitive with more sophisticated and
non-transparent approaches, including BERT and XL-
Net. We then investigate the effect of different window
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acq crude earn grain interest money-fx ship trade
pointing ##connect accomplish island tesla kruger farmhouse ##ities
doping thorns ##sby treating ##oko ashton road harlow
##rified notably looting surface linux tonight agency pianos
evergreen ##enter ##osed facebook bed ##sitor ##voking sanskrit
phone dramatic endelle trail slams becker ##met plunged
premiere chloride confrontation ##emia photo bed rockies ##cured
demonstrated racers temporarily summer mural burning trafficking script
collections fountain werewolf road vaccines handicap likeness theories
unwilling ##lon segregation garbage families lightning flaming ineffective
##liest safety presiding ##nity bronze patent gesellschaft extensive

Table 7: Significant features captured by our model for each class in R8 dataset.

(a) Window 0. (b) Window 1.

Figure 4: Wordcloud visualization of local interpretability for “acq”.

Dataset Accuracy (max)
PolitiFact 92.46
GossipCop 85.94
BBCSports 99.54
Twitter 73.67
Query 68.25
R8 96.93
WOS-5736 92.42

Table 8: Maximum accuracy obtained using window
size 1 (i.e., W = 1).

sizes on our model’s performance. Additionally, we
illustrate the global and local interpretability provided
by the CTM depending on the significance of features
captured by clauses in separate windows.
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