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Abstract
Computational approaches in historical linguis-
tics have been increasingly applied during the
past decade and many new methods that im-
plement parts of the traditional comparative
method have been proposed. Despite these in-
creased efforts, there are not many easy-to-use
and fast approaches for the task of phonological
reconstruction. Here we present a new frame-
work that combines state-of-the-art techniques
for automated sequence comparison with novel
techniques for phonetic alignment analysis and
sound correspondence pattern detection to al-
low for the supervised reconstruction of word
forms in ancestral languages. We test the
method on a new dataset covering six groups
from three different language families. The re-
sults show that our method yields promising
results while at the same time being not only
fast but also easy to apply and expand.

1 Introduction

Phonological reconstruction is a technique by
which words in ancestral languages, which may
not even be reflected in any sources, are restored
through the systematic comparison of descendant
words (cognates) in descendant languages (Fox,
1995). Traditionally, scholars apply the technique
manually, but along with the recent quantitative
turn in historical linguistics, scholars have increas-
ingly tried to automate the procedure. Recent auto-
matic approaches for linguistic reconstruction, be
they supervised or unsupervised, show two major
problems. First, the underlying code is rarely made
publicly available, which means that they cannot
be further tested by applying them to new datasets.
Second, the methods have so far only been tested
on a small amount of data from a limited num-
ber of language families. Thus, Bouchard-Côté
et al. (2013) report remarkable results on the re-
construction of Oceanic languages, but the source
code has never been published, and the method
was never tested on additional datasets. Meloni

et al. (2021) report very promising results for the
automated reconstruction of Latin from Romance
languages, using a new test set derived from a
dataset originally provided by Dinu and Ciobanu
(2014), but they could only share part of the data,
due to restrictions underlying the data by Dinu and
Ciobanu (2014). Bodt and List (2022) experiment
with the prediction of so far unelicited words in
a small group of Sino-Tibetan languages, which
they registered prior to verification (Bodt and List,
2019), but they do not test the suitability of their
approach for the reconstruction of ancestral lan-
guages. Jäger (2019) presents a complete pipeline
by which words are clustered into cognate sets and
ancestral word forms are reconstructed, but the
method is only tested on a very small dataset of
Romance languages.

With increasing efforts to unify and standardize
lexical datasets from different sources (Forkel et al.,
2018), more and more datasets that could be used
to test methods for automated linguistic reconstruc-
tion have become available. Additionally, thanks
to the huge progress which techniques for auto-
mated sequence comparison have made in the past
decades (Kondrak, 2000; Steiner et al., 2011; List,
2014), it is much easier today to combine existing
methods into new frameworks that tackle individ-
ual tasks in computational historical linguistics.

In this study, we present a new framework for au-
tomated linguistic reconstruction which combines
state-of-the-art methods for automated sequence
comparison with fast machine-learning techniques
and test it on a newly compiled test set that covers
multiple language families.

2 Materials

The number of cross-linguistic datasets amenable
for automated processing has been constantly in-
creasing during the past years, as reflected specif-
ically also in the development of standards for
data representation that are increasingly used by
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Figure 1: Workflow for the new framework for word prediction and linguistic reconstruction based on gap-free
alignments and sound correspondence patterns.

Name Source Subgroup L C W
Bai Wang (2004) Bai 10 459 3866
*Burmish Gong and Hill (2020) Burmish 9 269 1711
*Karen Luangthongkum (2020) Karen 11 365 3231
Lalo Yang (2011) Lalo (Yi) 8 1251 7815
Purus Carvalho (2020) Purus 4 199 693
Romance Meloni et al. (2021) Romance 6 4147 18806

Table 1: Datasets used in this study (L=Languages,
C=Cognate Sets, W=Word Forms *=new data prepared
for this study).

scholars (see Forkel et al. 2018 as well as List
et al. 2021b for recent initiatives to make stan-
dardized cross-linguistic wordlists available in the
form of open repositories). Unfortunately, the
number of datasets in which proto-languages are
provided along with descendant languages is still
rather small. For the experiments reported here, a
new cross-linguistic collection of six datasets from
three language families (Sino-Tibetan, Purus, and
Indo-European) was created. Datasets were all
taken from published studies and then converted
to Cross-Linguistic Data Formats (CLDF) (Forkel
et al., 2018) using the CLDFBench Python pack-
age (Forkel and List, 2020) with the PyLexibank
plugin (Forkel et al., 2021).

CLDF allows for a consistent handling of data
when using software like Python or R. In addition,
CLDF offers several levels of standardization by
allowing to link the data to existing reference cata-
logs, such as Glottolog (Hammarström et al., 2021)
for languages, Concepticon for concepts (List et al.,
2021c), or Cross-Linguistic Transcription Systems
(Anderson et al., 2018; List et al., 2021a) for speech
sounds.

While three of the datasets (Bai, Lalo, and Pu-
rus) had been previously included into the Lex-
ibank collection, a repository of lexical datasets in
Cross-Linguistic Data Formats (List et al., 2021b),
we converted the open part of the Latin dataset
by Meloni et al. (2021) to CLDF. Additionally,

we converted a selection of a smaller part of the
data by Gong and Hill (2020) to CLDF and retro-
standardized the data by Luangthongkum (2019).
While all datasets provided forms for ancestral lan-
guages, not all datasets provided the direct links
between these proto-forms and the reflexes in the
descendant languages in the form of annotations
indicating cognacy. While these were added manu-
ally for the Karen data, using the EDICTOR tool
for etymological data curation (List, 2017, 2021),
we used the automated method for partial cognate
detection by List et al. (2016) to cluster proto-forms
and reflexes into cognate sets for the data on Bai,
Lalo, and Purus.

The datasets, along with their sources and some
basic information regarding the number of lan-
guages (L), cognate sets (C), and word forms (W)
are listed in Table 1. The collection offers a rather
diverse selection, in which the amount of data
varies both with respect to the number of word
forms, cognate sets, and languages.

3 Methods

3.1 Workflow

The new framework can be divided into a training
and a prediction stage. The training consists of four
steps. In step (1), the cognate sets in the training
data are aligned with a multiple phonetic alignment
algorithm. In step (2), the alignments are trimmed
by merging sounds in the ancestral language into
clusters which would leave no trace in the descen-
dant languages (§ 3.2). In step (3), the alignments
of the descendant languages are enriched by cod-
ing for context that might condition sound changes
(§ 3.3). In step (4) the enriched alignment sites are
assembled and fed to a classifier for training.

The prediction consists of three steps. Given a
cognate set as input, the word forms are aligned
with the help of the same algorithm for multiple
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1 2 3 4 5 6 7

Latin k - eː n aː r ɛ
↑ ↑ ↑ ↑ ↑ ↑ ↑

Romanian tʃ - i n a - -

Spanish θ - e n a ɾ -

Portuguese s j - - a ɹ -

Figure 2: Prediction problems when ancestral segments
in multiple alignments do not show reflexes in the de-
scendant languages.

alignment used in the training phase in step (1).
In step (2), the alignment is enriched using the
same method applied in the training phase and then
passed to the classifier to predict the word form in
the ancestral language in step (3).

Figure 1 illustrates the workflow, which is flex-
ible with respect to individual methods used for
individual steps. For phonetic alignment, we use
the Sound-Class-Based Phonetic Alignment (SCA)
algorithm (List, 2012), which is the current state-
of-the-art method, but any other method that yields
multiple alignments could be used. The same holds
for the trimming procedure, (see § 3.2), the enrich-
ment procedure, (see § 3.3), or the classifier (see
§ 3.4).

3.2 Trimming Alignments

Using multiple alignments to predict ancestral or
new words is nothing new and has essentially been
practised by classical historical linguists for a long
time (Grimm, 1822). That multiple alignments
can also be used in computational frameworks has
been demonstrated by List (2019a), who inferred
correspondence patterns from phonetic alignments
and later used these correspondence patterns to
predict words missing from the data. One problem
not considered in this approach, however, is that
correspondence patterns can only be inferred for
those cases in which descendant languages have a
reflex for a given sound in the ancestral language.
In those cases where the sound has been lost, a
prediction is not possible.

This problem is illustrated in Figure 2, where the
Latin ending [E] has no reflex sound in either of the
descendant languages in the sample, yielding an
alignment column that is completely filled with gap
symbols. Our solution to deal with this problem is
to post-process the multiple alignments in the train-
ing procedure by merging those columns which

show only gaps in the descendant languages with
the preceding alignment column. This is illustrated
in Figure 3, where the Latin ending is now repre-
sented as a single sound unit [r.E]. This trimming
procedure, which was introduced for by Ciobanu
and Dinu (2018) for pairwise alignments and is
here extended to multiple alignments, is justified
by the fact that correspondence patterns preceding
lost sounds usually convey enough information to
be distinguished from those patterns in which no
sound has been lost.

3.3 Coding Context

Previous alignment-based approaches to automated
word prediction have made exclusive use of the in-
formation provided by individual correspondence
patterns derived from phonetic alignments (List,
2019a). While this has shown to yield already sur-
prisingly good results, we know well that sound
change often happens in certain phonetic environ-
ments. For example, we know that the initial posi-
tion of a word is typically much stronger and less
prone to change than the final position (Geisler,
1992). Similarly, consonants in the syllable on-
set position (preceding a vowel) also tend to show
different types of sound change compared to con-
sonants in the syllable offset (List, 2014). Last
but not least, certain sound changes may be due
to “long-range dependencies”, or supra-segmental
features like tone, which is typically marked in
the end of a morpheme in the phonetic transcrip-
tion of South-East Asian languages. In order to
allow a classifier to make use of this information,
our framework allows to enrich the phonetic align-
ments further, by deriving contextual information
from individual phonetic alignments and adding it
to the correspondence patterns that are then used to
train the classifier. An example for this procedure

1 2 3 4 5 6

Latin k - eː n aː r.ɛ
↑ ↑ ↑ ↑ ↑ ↑

Romanian tʃ - i n a -
Spanish θ - e n a ɾ
Portuguese s j - - a ɹ

Figure 3: Trimming alignments by merging sounds in
the ancestral languages in those cases where an align-
ment column does not have sound reflexes in the descen-
dant languages.
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1 tʃ θ s 1 C ^ → k

2 - - j 2 C - → -

3 i e - 3 v - → eː

4 n n - 4 C - → n
5 a a a 5 v - → aː
6 - ɾ ɹ 6 c $ → r.ɛ

Figure 4: Enriching a phonetic alignment by coding
various forms of context.

is given in Figure 4, where the phonetic alignment
is given in transposed form (switching columns
and rows), with each row corresponding to one cor-
respondence pattern. While the information from
correspondence patterns alone would only account
for the first three columns of the matrix, three addi-
tional types of phonetic context have been added.
Thus, column P indicates the position of a pattern
in the form of an index. Column S provides in-
formation on the syllable structure following List
(2014), and column Ini indicates, whether a pat-
tern occurs in the beginning (^), the end ($) or the
middle (-) of a word form. Enriching alignments
should be done in a careful way, in order to avoid
over-fitting the classifier. In our experiments, we
contrast all eight possible combinations, ranging
from the full coding shown in Figure 4, up to a cod-
ing of the alignment without additional enrichment.

3.4 Classifiers

Our approach is very flexible with respect to the
choice of the classifier. In order to keep the ap-
proach fast, we decided to restrict our experiments
to the use of a Support Vector Machine (SVM)
with a linear kernel, since SVMs have been suc-
cessfully applied in recent approaches in compu-
tational historical linguistics dealing with differ-
ent classification tasks (Jäger et al., 2017; Cristea
et al., 2021). We compare this approach with the
graph-based method based on correspondence pat-
terns (henceford called CorPaR) presented by List
(2019a), which we modified slightly. While the
original method uses a greedy algorithm to identify
the largest cliques in the network, we now compute
all cliques and rank them by counting the num-
ber of nodes they cover. An alignment site in an
alignment is now compared against the consensus

patterns extracted from the cliques in the graph and
the prediction for the pattern with the largest num-
ber of reflexes is taken as the prediction. When no
compatible pattern can be found, a search for the
best candidates among patterns that are only par-
tially compatible with the alignment site is invoked.
This increases the chances too find a suitable recon-
struction in those cases where the correspondence
patterns are not fully regular.

3.5 Evaluation

Most scholars tend to report only the edit distance
– also called Levenshtein distance (Levenshtein,
1965) – between the predicted and the attested
string, both normalized by the length of the longer
string and in unnormalized form. However, report-
ing the edit distance alone has the disadvantage
that systematic differences between predicted and
attested forms may be penalized too high, which
is why we follow List (2019b) in computing the
B-Cubed F-scores (Amigó et al., 2009) of the align-
ments of source and target sequences. B-Cubed
F-Scores measure the difference between two clas-
sifications, ranging from 0 to 1, with 1 indicat-
ing complete similarity with respect to the struc-
ture of the classifications. Since the prediction of
words can be seen as a classification task in which
a certain number of sound slots should be clas-
sified by rendering them as identical or different
from each other, B-Cubed F-Scores do not measure
whether automated reconstructions are identical
with attested reconstructions in the gold standard,
but rather whether automated reconstructions ap-
proximate the structure of the reconstructions in the
gold standard. As a result, B-Cubed F-Scores can
show to which degree an automated reconstruction
comes structurally close to the gold standard, even
if individual reconstructed sounds differ. Given
that B-Cubed F-Scores measure consistency across
a set of reconstructed word forms, they should not
be applied to individual items.

3.6 Implementation

The new framework is implemented as part of the
LingRex Python package (List and Forkel, 2022)
and allows the use of classifiers from the Scikit-
Learn Python package (Pedregosa et al., 2011).

4 Results

In order to evaluate the framework, we tested two
classifiers, a Support Vector Machine, and the Cor-

92



Bai Burmish Karen Lalo Purus Romance
0.65

0.70

0.75

0.80

0.85

0.90

0.95

PosStrIni/SVM

PosStrIni/CorPaR

StrIni/SVM

StrIni/CorPaR

Ini/SVM

Ini/CorPaR

-/SVM

-/CorPaR

Figure 5: Comparing the results for selected coding techniques and classifiers on individual datasets.

PaR classifier (see § 3.4). Furthermore, we tested
three different forms of alignment enrichment by
coding individual positions (Pos), prosodic struc-
ture (Str), as well as whether a sound appears in
the beginning or the end (Ini). For each test, we
ran 100 trials in which 90% of the data were used
for training and 10% for evaluation.

Classifier Analysis ED NED BC
SVM PosStrIni 0.7491 0.1598 0.8110
SVM PosStr 0.7478 0.1594 0.8115
SVM PosIni 0.7701 0.1624 0.8077
SVM StrIni 0.7578 0.1601 0.8110
SVM Pos 0.7685 0.1618 0.8084
SVM Str 0.7681 0.1614 0.8086
SVM Ini 0.7895 0.1641 0.8061
SVM none 0.8059 0.1673 0.8006
CorPaR PosStrIni 0.8503 0.1816 0.7862
CorPaR PosStr 0.8655 0.1826 0.7854
CorPaR PosIni 0.8425 0.1802 0.7882
CorPaR StrIni 0.8402 0.1771 0.7924
CorPaR Pos 0.8836 0.1847 0.7840
CorPaR Str 0.9048 0.1851 0.7848
CorPaR Ini 0.8342 0.1763 0.7946
CorPaR none 0.9379 0.1898 0.7821

Table 2: Results for edit distance, normalized edit dis-
tance, and B-Cubed F-Scores on all datasets.

Table 2 shows the results for all eight combina-
tions between the three techniques for alignment
enrichment. As can be seen, the SVM classifier
outperforms the CorPaR method, although the dif-
ferences are not very large. While the impact of
the alignment enrichment techniques on the results
is not very large, we still find that they enhance
the results in all SVM trials, while the raw cod-
ing of the position (Pos) leads to lower scores for
the CorPaR classifier in our test set. For the SVM

classifier, coding for prosodic structure (Str) and
information on whether a segment occurs at the
beginning, in the middle, or the end of a sequence
(StrIni) yields the best results with respect to all
measures, while Ini coding outperforms the other
techniques for the CorPaR classifier. From these
results, we can see that alignment enrichment is
a promising technique that deserves further explo-
ration, but we do not think that the current codings
are the last word on the topic.

Figure 5 compares the results for four coding
techniques on individual datasets. As can be seem
from the figure, the impact of the coding techniques
varies quite drastically across datasets. This shows
that it would be premature to rule out any of the
techniques tested here directly, but rather calls for
a careful selection of alignment enrichment tech-
niques dependent on the language family one wants
to investigate.

5 Conclusion

In this study, we have presented a new framework
for supervised phonological reconstruction, which
is implemented in the form of a small Python pack-
age. The new framework has the advantage of
being easy to use, easy to extend, and fast to apply,
while at the same time yielding promising results
on a newly compiled collection of datasets from
three different languages families. Given that our
framework can be easily extended, by varying the
individual components of the worfklow, we hope
that it will provide a solid basis for future work
on phonological reconstruction, as well as the pre-
diction of words from cognate reflexes (Bodt and
List, 2022; Dekker and Zuidema, 2021; Beinborn
et al., 2013; Fourrier et al., 2021) in computational
historical linguistics.
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A Appendix

A.1 Source Code and Data
The new data collection along with the source code and the data needed to replicate the re-
sults reported in this study have been curated on GitHub at https://github.com/lingpy/
supervised-reconstruction-paper (Version 1.0) and archived with Zenodo (DOI: https:
//doi.org/10.5281/zenodo.6426074).

A.2 Table of Results for Individual Datasets
A.2.1 SVM

DATASET PosStrIni StrIni Str Ini none
Bai 0.7848 0.7870 0.7832 0.7846 0.7770
Burmish 0.8388 0.8418 0.8420 0.8405 0.8226
Karen 0.8696 0.8736 0.8734 0.8731 0.8723
Lalo 0.7232 0.7214 0.7204 0.7202 0.7191
Purus 0.9011 0.9021 0.9016 0.9013 0.9022
Romance 0.7487 0.7401 0.7310 0.7171 0.7103

A.2.2 CorPaR
DATASET PosStrIni StrIni Str Ini none
Bai 0.7485 0.7581 0.7560 0.7572 0.7560
Burmish 0.8319 0.8449 0.8422 0.8458 0.8331
Karen 0.8564 0.8581 0.8614 0.8604 0.8581
Lalo 0.6852 0.6874 0.6890 0.6893 0.6871
Purus 0.8688 0.8865 0.8730 0.8897 0.8880
Romance 0.7262 0.7192 0.6871 0.7253 0.6705
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