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Abstract

Dialogue meaning representation formulates
natural language utterance semantics in their
conversational context in an explicit and
machine-readable form. Previous work typi-
cally follows the intent-slot framework, which
is easy for annotation yet limited in scala-
bility for complex linguistic expressions. A
line of works alleviates the representation is-
sue by introducing hierarchical structures but
challenging to express complex compositional
semantics, such as negation and coreference.
We propose Dialogue Meaning Representation
(DMR), a pliable and easily extendable rep-
resentation for task-oriented dialogue. Our
representation contains a set of nodes and
edges to represent rich compositional seman-
tics. Moreover, we propose an inheritance hi-
erarchy mechanism focusing on domain ex-
tensibility. Additionally, we annotated DMR-
FastFood, a multi-turn dialogue dataset with
more than 70k utterances, with DMR. We pro-
pose two evaluation tasks to evaluate different
dialogue models and a novel coreference res-
olution model GNNCoref for the graph-based
coreference resolution task. Experiments show
that DMR can be parsed well with pre-trained
Seq2Seq models, and GNNCoref outperforms
the baseline models by a large margin.1

1 Introduction

A task-oriented dialogue (TOD) system aims to
serve users to accomplish tasks in specific domains
with interactive conversations. The modeling of
converting natural language semantics in their con-
versational context into a machine-readable struc-
tured representation, also known as the dialogue
meaning representation, is at the core of TOD sys-
tem research. A meaning representation framework

∗Equal contribution.
† Work done during internship at Amazon Shanghai AI

Lab.
1The dataset and code are available at https://github.com/

amazon-research/dialogue-meaning-representation.

Customer:
Yes, I need a large coke, two green stripe added with extra cheese.

Flat Intent-Slot 

DMR

Intent : [ConfirmationIntent, OrderIntent]
FoodItem : [coke, green stripe]
Size : large
Quantity : [a, two]
Ingredient : extra cheese 

order-item

OrderIntent

and

coke|| DrinkItem

a || Quantity

green stripe || Pizza

large || Size two || Quantity extra cheese || Cheese

op1 op2

quant mod quant ingredient

and

ConfirmationIntent

op1 op2

Figure 1: An example of a customer’s utterance for
food ordering. The flat intent-slot schema can not align
the food items (“coke” and “green stripe”) with the
modifiers (“large”, “a”, “two” and “extra cheese”) in
conjunction constructions. These multiple conjunctions
and modifiers require a good meaning representation to
reveal the relations between attributes (e.g., size, quan-
tity) and their corresponding entities. Here, we propose
DMR with an example shown in the lower part of the
figure, a meaning representation for TOD, which can
resolve such compositional semantics.

sets the stage for natural language understanding
(NLU) and allows the system to communicate with
other downstream components such as databases
or web service APIs.

Derived from the theoretical framework of Fill-
more (1968), and wildly adopted in dialogue sys-
tem designs as early as Bobrow et al. (1977), the
classic flat intent-slot schema represents an utter-
ance into one specific intent with several associated
slots. Such schemas are convenient in annotation
but limited in the expression for compositional se-
mantics, such as conjunction, modification, nega-
tion, and coreference across dialogue turns. These
complex patterns are not at all uncommon in real-
world use cases. Take the fast-food domain data
from MultiDoGO dataset (Peskov et al., 2019) as an
example, where an agent is required to extract infor-
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mation about ordering food (e.g., food name, quan-
tity, size, and ingredients) from the conversation
with the customer, about 12.3% of the utterances
contain multi-intent and 11.2% are involved with
coreference semantics. However, the flat intent-slot
schema leaves these semantics uncovered. More-
over, 8.7% of the ordering utterances contain multi-
ple objects and modifiers. For example in Figure 1,
with the flat intent-slot schema, the extracted food
items “coke” and “green stripe” (a pizza name) can-
not be aligned with the size “large”, the quantities
“a” and “two”, and the ingredient “extra cheese”.

The vanilla flat intent-slot schema needs to be ex-
tended to support compositional semantics. Gupta
et al. (2018) proposes TOP in the form of a hi-
erarchical parsing tree to allow representation for
nested intents. Its successor, SB-TOP (Aghajanyan
et al., 2020), further simplifies the structure and
supports coreference. Cheng et al. (2020) intro-
duces TreeDST, which is also a tree-structured dia-
logue state representation to allow high composi-
tionality and integrate domain knowledge. These
studies imply the trend pointing to a balance in
a better expression for complex compositional se-
mantics and a lighter structure for extensibility.

This paper proposes Dialogue Meaning Rep-
resentation (DMR) that significantly extends the
intent-slot framework. DMR is a rooted, directed
acyclic graph (DAG) composed of nodes of Intent,
Entity and pre-defined Operator and Keyword, as
well as edges between them. Entity is an extension
of slot which wraps the slot value with the spe-
cific slot type defined in external knowledge. Such
design allows arbitrary complex compositionality
between slots and keeps the potential for type con-
straint. Operator and Keyword are components to
represent linguistic knowledge (i.e. general seman-
tics) such as conjunction, negation, quantification,
coreference, etc. The details of DMR can be found
in Section 2, and the example comparing DMR
with flat intent-slot representation is shown in Fig-
ure 1. As described later in Section 2, many of
the key designs are inspired by AMR(Banarescu
et al., 2013) but specialized for TOD. Thus, DMR
can be considered a dialect of AMR. From this
perspective, DMR is powerful enough and easily
extendable for TOD applications.

Moreover, DMR is capable of adapting to dif-
ferent domains. Unlike previous works, DMR uti-
lizes a domain-agnostic ontology to define the struc-
tural constraints and representations of general se-

mantics. It allows chatbot developers to derive
domain-specific ontology from this for their appli-
cations through the Inheritance Hierarchy mech-
anism. This design improves both generalization
and normalization of DMR.

To validate our idea, we propose a dataset, DMR-
FastFood, with 7194 dialogues and 70328 anno-
tated utterances. This dataset is extensively an-
notated with more linguistic semantics, includ-
ing 16087 conjunctions and 557 negations, sig-
nificantly more than other related datasets. We
developed and evaluated a few baseline models
to pinpoint where the challenges lie. We further
propose GNNCoref for the coreference resolution
task on DMR. In general, DMR parsing is not dif-
ficult, especially with a pre-trained model, though
graphs with more complex (and often deeper) struc-
tures are naturally more challenging. Moreover,
experiments show that GNNCoref performs better
compared to baseline models.

2 Dialogue Meaning Representation

This section describes the structure of the DMR
graph, the domain-agnostic ontology, and the rep-
resentation of general semantics.

2.1 DMR Ontology
DMR ontology defines the nodes, the edges, and
the rules for constructing DMR graphs. It also de-
scribes the inheritance hierarchy mechanism. DMR
is a rooted directed acyclic graph with node and
edge labels. Figure 2 shows an example of a DMR
graph from the fast-food domain.

order-item

v3 / OrderIntent

v4 / and

v5 / coke|| DrinkItem

v6 / a || Quantity

v8 / green stripe || Pizza

Yes, I need a large coke, two green stripe added with extra cheese.

v7 / large || Size v9 / two || Quantity v10 / extra cheese || Cheese

op1 op2

quant mod quant ingredient

v1 / and

v2 / ConfirmationIntent

op1 op2

Figure 2: An example of DMR graph from fast food
domain. Nodes in different types are in different box
colors, namely, Intent, Operator and Entity.

2.1.1 Nodes
Different from the general purpose of the predicates
and concepts defined in AMR, DMR utilizes the
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specialized designed nodes for TOD. There are four
types of nodes in DMR:

• Intent, denotes the intention of the speaker,
such as OrderIntent in Figure 2;

• Entity, denotes the objects mentioned in
the utterance. Generally, it is formed with
“<lexical_value> ∥ <canonical_value> ∥
Entity”, where <lexical_value> specifies the
surface form value from the utterance, and
<canonical_value> is the predefined value for
the entity in ontology. <lexical_value> and
<canonical_value> are optional;2

• Operator, supports compositional construc-
tions, such as and for conjunction, and
reference for cross-turn coreference. Details
are described in the next section;

• Keyword, specifies keywords for some special
semantics, such as “-” for negation.

Each node (except keywords) are assigned with
an identifier as AMR does, such as “v1” for node
OrderIntent in Figure 2. And the root node of a
DMR graph is restricted to be an Intent node or
a conjunction operator and for packing multiple
intentions.

2.1.2 Edges
The nodes in DMR graph are linked with directed
edges. For every edge, the node types it can reach
are pre-defined. Moreover, all types of nodes have
pre-defined arguments in the ontology, which con-
strains the argument type, namely the edge here,
and node types the edge can reach. In a specific
DMR graph, some arguments defined in ontology
may not appear. For example, in fast food domain,
intent OrderIntent has one argument order-item

(see Figure 2). Entity type DrinkItem has pre-
defined arguments quant, mod and ingredient, but
in the example of Figure 2, no ingredients of the
coke are mentioned in the utterance, thus, the edge
ingredient is not shown in the graph.

2.1.3 Inheritance Hierarchy
DMR is featured with inheritance hierarchy. With
this mechanism, chatbot developers can derive
domain-specific ontology easily and organize it hi-
erarchically. For example, in the fast-food domain,
we can derive the ontology like:

2In our DMR-FastFood dataset, there are no pre-defined
canonical values, we instead use the form “<lexical_value> ∥
Entity” for simplicity.

Intent ← OrderIntent | PaymentIntent | ThankYouIntent

Entity ← FoodItem | DrinkItem

FoodItem ← Pizza | Burger | Sandwich

It defines three intents OrderIntent, PaymentIntent
and ThankYouIntent; two base entity types FoodItem

and DrinkItem; and three FoodItem types Pizza,
Burger and Sandwich that inherits from FoodItem.
The derived intents and entity types inherit their par-
ents’ arguments by default. In the above example,
FoodItem and DrinkItem inherit arguments of Entity
such as mod and quant; Pizza, Burger and Sandwich

inherit arguments of FoodItem such as ingredient,
and so on. We describe more details on this in
Appendix C.

With inheritance hierarchy, the domain-specific
and domain-agnostic knowledge are well separated:
the general semantics that is common in all do-
mains, such as quantification, and negation, are
defined in the domain-agnostic ontology, while the
domain-specific part inherits these representations
and can focus on the application. Further, it re-
duces the burden of constructing ontology, as the
intent and entity types inherit their parents’ argu-
ments by default, and the ontology is organized
hierarchically.

2.2 Compositional Semantics

Here we describe the general compositional seman-
tics defined in the domain-agnostic ontology. It is
worth noting that we do not cover all the general
semantics in TOD, though this set can be extended
in the future. The examples used are taken from
the fast-food domain; we just show a sub-graph of
the DMRs and omit the variables for simplicity.

Modification refers to the semantics where a spe-
cific adjective modifies some entities. Modifiers,
such as the size or color of an object, are non-
essential descriptive content compared to regular
arguments (Dowty, 1982, 1989, 2003). The modifi-
cation semantics is expressed by mod, for example:

Veg Out, large
(Veg Out ∥ Pizza

:mod (large ∥ Size))

Quantification is also a common semantics in
TOD. Quantification is expressed by the edge la-
beled with quant. T3 in Figure 3 shows such case
similar to the following example:

2 burgers
(burgers ∥ Burger

:quant (2 ∥ Quantity))
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Conjunction refers to the semantic construction
that connects elements, e.g., “A and B”. Inspired
by AMR, DMR resolves conjunction with Operator

node, such as and, or. Conjunction is important
when multiple intentions or cumulative entities are
expressed. A nested conjunction is like follows:
sandwich and soda, thank you.
(and

:op1 (OrderIntent

:order-item (and

:op1 (sandwich ∥ Sandwich)

:op2 (soda ∥ DrinkItem)))

:op2 ThankYouIntent)

Cross-Turn Coreference is a common phe-
nomenon in dialogues. Since DMR represents se-
mantics in a graph, the implementation of corefer-
ence in DMR is to link corresponding nodes, rather
than simple text mentions. DMR introduces a spe-
cial operator Reference and edge refer to represent
cross-turn coreferences. The reference node is with
form “reference ∥ <lexical_value>”, along with an
argument refer that points to another node. For
example, T7 in Figure 3 contains a reference node
“v2” that points to “T:5 N:v4”, which means this
node refers to the node “v4” in the T5 turn’s DMR.

Negation is the construction which ties a nega-
tive polarity to another element, reversing the state
of an affair or discontinuing an act. For instance,
the utterance “Please cancel the burger” conveys
a cancel action to an order. Inspired by AMR,
we notice that negation can be seen as a binding
act attached to an element. Therefore, instead of
representing negation via additional Intent, DMR
resolves negation by edge polarity and keyword
“-”. For example, T9 in Figure 3, node “v4” is
negated. Moreover, one tricky issue about negation
is its scope. A negation act to an order item can be
confused as one to an (enclosing) order intent, lead-
ing to an unintended “overkill”. At this stage of
development, we make a simplification and restrict
the negation to attach only to Entity.

3 Related Work

There is a rising interest in developing more flex-
ible representation for TOD other than the slots
representation (Bobrow et al., 1977). In this sec-
tion, we briefly introduce them and compare the
most related works with DMR.

AMR and Dialogue-AMR Using AMR for se-
mantic parsing has been studied from a very early
time (Banarescu et al., 2013). There are several

Customer:

Oh,  sorry, I want no toppings,  instead order me a soda. that’s all.T9

Customer:

emmm, please add salted butter and onions on it.

Customer:

I want a veg out and one GREEN STRIP, each with 4 slices.

Customer:

Okey, one sandwich.

T7

T5

Customer:

Hello, good morning!

(v1 / OpeningGreeting)

T1

Agent:

Hello, what would you like to order today?
T2

T3

Agent:

Awesome!   would you like to have some sandwich? I must say we 

have some sizzling sandwiches...

T4

Agent:

I'll take that order. How about some toppings for sandwich?T6

Agent:

Perfect!  Is there anything else that you’d like to order?T8

(v1 / OrderIntent

:order-item (v2 / and

:op1 (v3 / veg out ||  Pizza
:quant (v4 / a ||  Quantity)
:mod (v5 / 4 slices ||  Unit))

:op2 (v6 / GREEN STRIP || Pizza
:quant (v7 / one ||  Quantity)
:mod (v8 / 4 slices ||  Unit))))

(v1 / and

:op1 (v2 / ConfirmationIntent)

:op2 (v3 / OrderIntent

:order-item (v4 / sandwich ||  Sandwich
:quant (v5 / one ||  Quantity))))

(v1 / OrderIntent

:order-item (v2 / reference

:refer T:5 N:v4

:ingredient (v3 / and

:op1 (v4 / salted butter || Ingredient)
:op2 (v5 / onions ||  Veggies))))

(v1 / OrderIntent

:order-item (v2 / and

:op1 (v3 / reference

:refer T:5 N:v4

:ingredient (v4 / reference||toppings
:refer (v5 / and

:op1 T:7 N:v4

:op2 T:7 N:v5)

:polarity –))

:op2 (v6 / soda ||  DrinkItem
:quant (v7 / a ||  Quantity))))

Figure 3: A dialogue example taken from fast food
domain. The customer turns are annotated with DMRs.

works that apply AMR to dialogue systems. Bai
et al. (2021) model dialogue state with AMR for
chit-chat. Bonial et al. (2019) extended AMR
for human-robot dialogues, and further formalize
it as Dialogue-AMR (Bonial et al., 2020, 2021).
Dialogue-AMR represents both the illocutionary
force and the propositional content of the utter-
ance. Compared to these works, DMR focuses
on TOD specifically with extended node types for
TOD description. DMR is intent-centric, and only
captures semantics defined in the ontology of the
intents. Further, the design of inheritance hierarchy
aims at a better domain generalization to support a
broad range of applications. AMR and Dialogue-
AMR are closely related to DMR, so we have more
detailed comparisons in Appendix B to show the
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differences between them.

Compositional Intent-Slot Some recent works
focus on the compositional intent-slot framework,
such as TOP (Gupta et al., 2018), SB-TOP (Agha-
janyan et al., 2020) and TreeDST (Cheng et al.,
2020). These formalizations are much more power-
ful than the flat intent-slot schema. Generally, they
focus less on how to get representations for differ-
ent domains and give fewer descriptions on how
nodes/edges are connected. On the contrary, the
design which contains both domain-agnostic and
domain-specific parts allows DMR to be applied
and extended to different domains while assuring
the maintenance of the representation structure in
the meantime. From this point of view, DMR is
designed to provide services to different businesses.
This different focus of the application scenarios
marks the key difference between DMR and these
compositional intent-slot representations.

Programs Many efforts have been devoted to ex-
plore the representation in programs (Price, 1990;
Zelle and Mooney, 1996; Zettlemoyer and Collins,
2005; Liang et al., 2011). Though powerful expres-
siveness, they are hard in annotation which makes
it limited in proposing large-scale dialogue datasets.
Recently, some works such as SMCalFlow (Seman-
tic Machines et al., 2020) and TOC (Campagna
et al., 2021) and ThingTalk (Lam et al., 2022; Cam-
pagna et al., 2022) proposes to use executable dia-
logue states for TOD. To this end, the representa-
tion itself is also a specially-designed programming
language. While executing, both database opera-
tions and response generation are performed by the
program at the same time. DMR keeps the dialogue
state architecture, and leaves the implementation
of business logic to the user applications.

4 Data

We use the fast food domain data from the Multi-
DoGO dataset proposed by Peskov et al. (2019).
We annotate all the customers’ utterances with the
redefined ontology. We call the annotated dataset
DMR-FastFood. This dataset contains 7k anno-
tated dialogues, and each dialogue has 18.5 turns
on average, which is much more than other datasets.
Further, there are 7k references, 16k conjunctions
and 557 negations annotated. The annotation pro-
cess, statistics and comparison with related datasets
are described in Appendix A.

5 NLU with DMR

As NLU tasks of the flat intent-slot representa-
tion including Intent Classification and Slot Filling,
NLU tasks under the DMR framework are to ex-
tract DMR graphs from the customer’s utterances.
Given a customer’s utterance xi and the dialogue
context (x0, · · · , xi−1), the NLU tasks are to pre-
dict the DMR graph gi. In this section, we intro-
duce NLU tasks with DMR and proposed models.

5.1 Tasks

Though most of the DMRs can be predicted by a
semantic parsing model, the turns that have cross-
turn coreferences, namely referring turns, are not
the case. The reference nodes in the referring turns
need to be resolved to link to their referent nodes –
nodes that are assigned with variables – in DMRs
from the dialogue context. Parsing DMRs and re-
solving coreferences for the referring turns at the
same time is not a trivial task. Thus, in this work
we split NLU with DMR into two sub-tasks: DMR
Parsing and Coreference Resolution.

DMR Parsing aims to parse a customer utterance
into a DMR graph, without resolving the reference
nodes. This semantic parsing task is similar to the
NLU task in most related works, including TOP,
SB-TOP, TreeDST and SMCalFlow.

Coreference Resolution resolves the reference
nodes predicted by DMR parsing. Differing from
traditional text-based coreference resolution, which
links referring expressions to their antecedents in
texts, this task is defined as follows: for each ref-
erence node nr in a referring turn’s DMR gt, the
task is to predict whether nr and a given candidate
node nc ∈ {g0, · · · , gt−1} are coreferred.

5.2 Models

Our overall framework is composed of two stages.
One is to parse graphs from the utterance by a
Seq2Seq model, then is to resolve coreferences
based on a GNN model.

5.2.1 DMR Parsing Model
The conventional approach to semantic parsing task
is the Seq2Seq architecture which inputs the utter-
ances and outputs the linearized tree or graph. This
approach is also applied by SMCalFlow, SB-TOP,
and Rongali et al. (2020). We utilize Seq2Seq ar-
chitecture for DMR parsing as well, and restrict the
decoder vocabulary to get more reasonable results.
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The details of our Seq2Seq model are described as
follows:

Input We concatenate the utterances to be
parsed and the dialogue context – which are the
customer’s and agent’s utterances in previous turns
– to form the model input according to their order.
Specifically, the model takes the input sequence
ri−c||xi−c, · · · , rj ||xj , · · · , ri−1||xi−1, ri||xi,
where xi is the customer’s utterance to be parsed;
xj is the customer’s or agent’s utterance in the
dialogue context; c is the context size. rj is the
role tag which can be = customer: or agent:, for
the customer’s and the agent’s turn, respectively.

Output The output sequence of turn i is the lin-
earized form of gi. To linearize gi takes three steps:
1) remove the refer edges of each reference node
since the coreference resolution model will resolve
them (see Section 5.2.2), 2) remove the variables of
nodes and assign them back in the post-processing
step for resolving references, and 3) convert the
graph to a bracket expression. For example, the
following DMR:

(v1 / OrderIntent

:order-item

(v2 / reference

:refer (T:3 N:v1)

:mod (v3 / large || Size)))

is converted to

( OrderIntent ( :order-item ( reference ( :mod ( large ||

Size ) ) ) )

Since the <lexical_value> units are from the ut-
terance contents, we constrain the decoding step to
only generate tokens from either the schema or the
utterance xi. In our model, we mask the probabil-
ities of non-relevant tokens to zeros in the output
distribution at each decoding step. The output se-
quence is then parsed to DMRs with a shift-reduce
parser, and the nodes are assigned with variables
with Depth-First-Search.

Post-processing Though we restrict the decoder
vocabulary, it does not guarantee the predicted se-
quence could be parsed to a valid graph because the
sequence could be an invalid bracket expression.
To tackle this issue, a rather flexible shift-reduce
parser is applied to get a valid bracket expression
by adding missing brackets or removing redundant
brackets. If this rescue fails, the prediction is set to
OutOfDomainIntent. And then we assign variables
to the nodes in the recovered DMR graphs.

OrderIntent

and

order-item

reference

reference || toppings

soda || DrinkItem

a || Quantity

op1 op2

-

ingredient quant

polarity

T9
TurnNode

turn-ed
ge

OrderIntent

order-item

reference

and

ingredient

salted butter || Ingredient onions || Veggies

op1 op2

T7
TurnNode

turn-ed
ge

1-hop

and

OrderIntent

sandwich || Sandwich

one || Quantity

order-item

quant

op2

ConfirmationIntent

op1TurnNode
turn-ed

ge

…

1-hop

2-hop

T5

refer

Figure 4: Dialogue Graph for GNNCoref model. The ex-
ample used here is for resolving reference nodes (pink-
colored nodes) in T9. The black arrows are edges within
DMRs; the orange arrows are edges from DMR nodes
to the turn nodes; the blue arrows are inter-turn edges
that link DMRs through turn nodes; and the purple ar-
row is the edge for linking resolved coreferences in the
context.

5.2.2 Coreference Resolution Model
For the graph-based coreference resolution task,
we propose a GNN-based model GNNCoref. The
following equations show how the model works:

Gt = BuildGraph(g0, · · · , gt) (1)

Gt = GNNEncoder(Gt) (2)

p(corefer|nr, nc) = Classifier(nr,nc) (3)

First, for each referring turn t, a Dialogue Graph
Gt is built; then the dialogue graph is encoded by a
GNN encoder to encode the node features, and the
encoded graph is denoted as Gt; nr and nc in Gt

are the encoded node features of the reference node
and candidate node respectively, they are input into
a binary classifier to predict whether they are core-
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ferred. Next, we describe the details of these three
modules.

Build Dialogue Graph The dialogue graph Gt is
built by connecting the DMRs (g0, · · · , gj , · · · , gt)
according to their order in the dialogue. Figure 4
shows the dialogue graph for resolving references
in T9 in Figure 3. Specifically, we first build a
Turn Graph for each turn with its DMR graph
structure, and link each node to a turn-level global
node which we call turn node with edge labeled
turn-edge. The turn graphs are included in the
dashed boxes in the figure. Then each turn node
(e.g. for gj) points to its k-hop ancestor (gj−k)
with the edge labeled k-hop. These inter-turn edges
connect the DMRs to form one connected dialogue
graph. Finally, if there are reference nodes already
resolved in the dialogue context, e.g. the reference
node in T7 in the figure, they are connected to
their referent nodes with edge refer. In this way,
the coreference resolution for the current referring
turn depends on the previously resolved references,
which brings more information for the task. Ad-
ditionally, we add inverse edges for each edge to
allow the message to pass bidirectionally. In di-
alogue graphs, every two turn graphs are linked
through the turn nodes. Since the turn node links to
all the nodes in that turn, every node in the dialogue
graph can connect to each other after a three-step
message passing so that all the context information
can be encoded to the nodes.

GNN Encoder The graph is encoded with a 3-
layer Relational Graph Convolutional Network (R-
GCN) (Schlichtkrull et al., 2018) to encode the
edge information to the nodes. The GNN encoder
is designed to enhance the message passing among
nodes and edges so that global context information
can be captured in this process.

Classifier The binary classifier is a Multilayer
Perceptron (MLP) with a Sigmoid activation for
output. In the inference stage, we set a threshold β
to determine the predictions. In our experiments,
the value of β is tuned on the development set (see
Appendix D.1 for details).

For a given reference node nr, treating all the
nodes in the context as its candidates is unwise,
because nr has the same entity type as its refer-
ents. However, the reference nodes are not labeled
with types. According to our annotation guideline
for the DMR-FastFood dataset described in Ap-
pendix A.2, all the reference nodes have the same

incoming edge as the referents, thus, we choose the
nodes in the context with the same incoming edge
(or have the same incoming edge if there are more
than one incoming edges) as nr to be its candidates.

6 Experiments

We report experiments for DMR Parsing and Coref-
erence Resolution separately, and the combined
results on the complete DMR graphs. Further, we
analyze the key factors that affect the model per-
formance for the two tasks. The hyperparameters
used and training details are listed in Appendix D.

6.1 DMR Parsing
The details of the DMR parsing models are de-
scribed as follows:

BiLSTM+GloVe The encoder is a two-layer bi-
directional LSTM (BiLSTM) and the decoder is a
two-layer uni-directional LSTM. The word embed-
dings are initialized with GloVe840B-300d. This
model contains 23M parameters.

RoBERTa-base The encoder is RoBERTa-base
(Liu et al., 2019), and the decoder is a two-layer
randomly initialized transformer with four attention
heads and the same hidden size as the encoder. This
model contains 183M parameters.

BART-base BART (Lewis et al., 2020) is a
powerful pretrained encoder-decoder model for
Seq2Seq tasks. We finetune the BART-base, di-
rectly for DMR Parsing. This model contains 140M
parameters.

We use Exact Match accuracy to measure be-
tween predicted DMRs and the ground truths to
evaluate the DMR Parsing results. To match the
graphs semantically, we utilize the Smatch met-
ric (Cai and Knight, 2013) designed for evaluating
AMRs.3 Two DMRs are exactly matched if their
Smatch score equals 1. Setting context size c = 1,
the performances of the DMR Parsing models are
shown in Table 1a. The best results are achieved by
BART-base model which are more than 10 points
over the other two models, showing a well pre-
trained Seq2Seq model is essential for this task.

6.2 Coreference Resolution
To show the effectiveness of the proposed Coref-
erence Resolution model, we compare the results
with a heuristic rule-based method and a MLP

3The Smatch code we use is adapted from https://github.

com/snowblink14/smatch
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Model Dev set Test set
BiLSTM+GloVe 65.57 65.75
RoBERTa-base 69.24 68.23
BART-base 82.56 83.39

(a) DMR Parsing exact match accuracy (c = 1).

Method Train set Dev set Test set
Rule 21.03 22.77 21.19
MLP - 69.92 70.42
GNNCoref - 78.23 79.01

(b) Coreference Resolution accuracy.

Model Dev set Test set
BiLSTM+GloVe 64.09 64.30
RoBERTa-base 67.57 66.69
BART-base 80.73 81.47

(c) The overall NLU results. The results are Exact Match of
the completed DMR graphs whose reference nodes have been
resolved by GNNCoref.

Table 1: Coreference resolution and the overall NLU
performances on the DMR-FastFood dataset.

baseline model. The rule-based method selects the
last DMR graph in the context and selects the candi-
date nodes in this DMR as the predicted referents.
This distance-based heuristic is commonly used
as an important feature in coreference resolution
(Bengtson and Roth, 2008). In the MLP model, the
features of the reference node and candidate nodes
are the average of the word embeddings of their
one-hop neighbor in the DMR graph and their own,
and the features of the reference node and candidate
node are concatenated to input into a 2-layer MLP
classifier. For GNNCoref model, the initial node
features for entity nodes and reference nodes are
the average of GloVe6B-100d embeddings (Pen-
nington et al., 2014) of all tokens ( except for the
variable) in the node. Other nodes are symbols
defined in the DMR-FastFood ontology and their
embeddings are randomly initialized. In our ex-
periments, we use the DGL (Wang et al., 2019)
implementation of R-GCN. All the methods are
trained and evaluated on ground truth DMRs.

We measure coreference resolution with accu-
racy, i.e., a reference node is resolved correctly if
the predicted turns and nodes are the same as the
ground truth. Note that about 31.2% of the refer-
ence nodes in DMR-FastFood dataset have only
one candidate which is directly their referent, we

ignore these cases during training and evaluation.
The results are listed in Table 1b. We can see that
a simple heuristic rule can’t handle this task well.
Also, GNNCoref outperforms MLP well indicating
the global dialogue context information captured
with the graph structure is very useful compared to
the local one-hop features.

6.3 The Overall NLU Performance
Combining the predictions of the DMR Parsing and
Coreference Resolution model, we get the com-
plete DMR graphs. The exact match of the com-
plete DMRs are shown in Table 1c, the coreference
resolution predictions used here are by GNNCoref
reported in Table 1b. Comparing to the parsing
results in Table 1a, the performance drops less than
two points which proves the effectiveness of the
two-step approach to this NLU task.

6.4 Error Analysis of DMR Parsing
We conduct error analysis to explore the difficulties
and room for improvement of the DMR Parsing
task. First, we analyze four types of errors:

• Invalid Graph, denotes that the predicted se-
quence cannot be parsed into a DMR graph
with the shift-reduce parser. It is similar to
Tree Validity used in Gupta et al. (2018).

• Ontology Mismatch, denotes that parts of the
graph structure are not aligned with the defi-
nition in the ontology, e.g. edge :order-item

points to a quantity, a Pizza entity with argu-
ment :address, etc.

• Wrong Intent, denotes wrong intents pre-
diction. As intents are the first-class citizen
which would directly affect the behavior of
the chatbot agent. We consider a predicted
DMR graph with wrong intents when the set
of intents in it are not exactly matched with
the golden DMR.

• Compositional Errors, denotes wrong or
missing compositions in complex structures.
In DMR-FastFood, we only care about the
errors for OrderIntent. We extract the
OrderIntent sub-graph from the golden DMR
and the predicted DMR, and consider it as a
compositional error if their Smatch score is
not 1.

We take the error cases from the parsing results
of BART-base model shown in Table 1a to conduct
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Error Type Dev set Test set
Invalid Graph 3.7% 2.9%
Ontology Mismatch 2.3% 0.8%
Wrong Intent 31.1% 39.7%
Compositional Error 54.1% 46.0%

Table 2: Portions of errors in the error cases of BART-
base model with c = 1.

the analysis. Table 2 shows the portions of the
errors in the development and test sets respectively.
We can see that the model can mostly generate valid
graphs which also match the ontology. The main
errors are compositional errors and wrong intent,
and we observe that 79% of the wrong intent cases
are the utterances with multiple intents. These
results indicate that compositional generalization
is the main bottleneck of Seq2Seq parsers.

Second, we analyze which factors affects the per-
formance of the DMR parsing models. The details
are listed in Appendix E. The main conclusions are
intuitive: 1) DMR parsing is dependent on the dia-
logue context, and 2) longer utterances, deeper and
larger DMR graphs make the parsing task harder.

6.5 Ablation Study of GNNCoref model

We conduct ablation studies to investigate the ef-
fectiveness of the two key designs in the dialogue
graph for GNNCoref: 1) the global nodes Turn
Node connecting DMRs through turn-level, and
2) depending on resolved coreferences in the con-
text by adding refer edges as described in Section
5.2.2. We remove the turn nodes by connecting
the DMRs through their root nodes instead, and re-
move the dependence on the resolved coreferences
by removing refer edges. As shown in Table 3,
both of the results are declined compared to origi-
nal GNNCoref. However, without the help of turn
node as a global node, performance drops sharply
(From 79.01 to 70.56 on Test set), which indicates
that the turn nodes are more critical.

In order to more rigorously prove the importance
of the dialogue context information, we further
conduct experiments of fewer R-GCN layers for
GNNCoref. The results are shown in the last two
rows of the table. Theoretically, With a 2-layer
R-GCN, the nodes can only see information within
their turns, thus, no dialogue context information
is captured; the 1-layer R-GCN only captures one-
hop information for each node. We can see that
the performances declined which indicates that less

Dev set Test set
GNNCoref 78.23 79.01
- Turn Node 68.45 70.56
- Depend on Resolved Coref 76.93 78.02
2-layer R-GCN 76.75 76.19
1-layer R-GCN 50.73 47.73

Table 3: Ablation study of GNNCoref.

captured context leads to lower performance.

7 Conclusion

In this paper, we focus on the representation with
the expression ability of both complex composi-
tional semantics and task-oriented semantics and
propose DMR which is capable of representing
complex linguistic constructions with a high trans-
ferability across domains. Moreover, we design
the inheritance hierarchy which allows reusing, ex-
tending and inheriting node types to enable DMR
scale to different domains easily. We annotated a
large dataset on fast-food ordering domain, named
DMR-FastFood, to incentive research on seman-
tics parsing, which contains more than 70k utter-
ances annotated with rich linguistic semantics. We
conduct experiments on DMR parsing and corefer-
ence resolution tasks. Experimental results show
that pre-trained Seq2Seq models could improve the
DMR parsing results. We also propose a graph-
based model, GNNCoref, for the coreference reso-
lution on DMRs.

Limitations

In this work, we propose DMR and a dialogue
dataset on the fast-food domain annotated with it.
There are some limitations of this work we describe
as follows. Firstly, DMR is designed to support a
broad range of domains and applications for task-
oriented dialogue. However, because of the human
resources, and the observation that enough compo-
sitional semantics to begin with, such as conjunc-
tion, modification, and negation are contained in
fast-food domain data, our dataset is only annotated
on the fast-food domain for now. Secondly, we use
DMR for natural language understanding task in
TOD. In the real-world TOD systems, the complete
pipeline also includes dialogue state tracking, di-
alogue policy and response generation that we do
not deal with. Thirdly, annotating conversations
with DMR is more expensive than annotating with
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intents and slots. Few-shot learning and transfer
learning for DMR parsing and coreference resolu-
tion could address this issue, and we leave them
to future work. And Lastly, compared with the
transition-based parser, the Seq2Seq-based seman-
tic parser is not guaranteed to generate well-formed
DMRs as it’s not introduced with the inductive bias
of the ontology, and it needs more data to train.
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A Data Annotation and Statistics

The data annotation process has two stages: 1)
DMR graph annotation and 2) reference annotation.

A.1 DMR Annotation

In this stage, the annotators draw DMR graphs
for each customer turn. They also annotate the re-
ferred turn number for the reference nodes. We
developed an annotation tool based on GoJS4 for
quickly drawing DMR graphs. As shown in Fig-
ure 5a, the right part of the tool shows the utter-
ances of dialogue up to the current turn, and the
left part is the area for drawing graphs.

Before the annotation, the annotators followed a
detailed guideline and took a training process. They
draw the DMR graph in the diagram by adding
nodes and linking them together. We enable the
graph drawing process to follow the schema, which
guarantees the validity of the resulting DMR.

To ensure the annotators do not hallucinate node
values, the annotators must either select nodes in
the bottom, or copy tokens from the current utter-
ance (tokenized by Spacy5) to fill the node. Also,
there are sanity checks before saving the annota-
tions to the database. After the graph annotation,
we assign variables to the nodes in each DMR.

A.2 Reference Annotation

In this stage, the annotators are given the current
turn’s DMR and the referred turn’s DMR, and they
need to annotate the referents for each reference
node. The tool is modified as Figure 5b, and the left
part has two diagrams. The below diagram shows
the DMR graph for the current turn, and there are
reference nodes there. When clicking the reference
node, the referred DMR graph will appear in the
above diagram, and the annotator can select the
referents in it. Further, we constrain the annotator
to only select referents with the same incoming
edges as the reference nodes.

A.3 Quality Control

We make some efforts to ensure the high quality of
the dataset.

First, we ask the annotators to fix the typos in
the utterances during the annotation process.

Second, in some dialogues, reference nodes ap-
pear in the first customer turn, mainly due to the

4
https://github.com/NorthwoodsSoftware/GoJS

5
https://spacy.io/

(a) DMR graph annotation tool.

(b) Reference annotation tool.

Figure 5: The interface of the annotation tool.

customer ordering toppings but no food items. We
remove these dialogues from the data.

The third is double annotation. Though the an-
notators are well-trained experts, we have 10%
of the dialogues double annotated. We compute
Fleiss’ kappa (Fleiss, 1971) for measuring the
Inter-Annotator Agreement (IAA). After cleaning
the annotation, 5,159 utterances have valid dou-
ble annotations, and the IAA is 0.748, which is a
substantial agreement.

A.4 Data Statistics

The statistics of DMR-FastFood are listed in Ta-
ble 4, we split the dataset as the original setting.

We add marks and exclude the following utter-
ances: first, we omit utterance-annotation pairs in
the train set that also occur in the dev and test set,
for including them will cause information leakage;
and second, a portion of the data annotated with
a single intent are excluded from the dev and test
set, since they are more like text classification and
trivial to get right. The left data is used for NLU. In
Table 4, “Utterance for NLU”, “NLU DMR Depth”
and “NLU DMR Nodes” are statistics based on the
utterances for NLU.

We also compare DMR-FastFood with related
open-source datasets in Table 7. Though DMR-
FastFood is not the biggest dataset, it has more
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Train Dev Test
Dialogue 5,585 710 899
Utterance 102,843 13,111 16,889
Utterance/Dialogue 18.41 18.47 18.79
Customer Utterance 54,465 6,911 8,952
Utterance for NLU 23,633 4,256 5,581
Utterance Length 10.24 10.28 10.25
Reference 6,007 802 1,039
Negation 430 62 65
Conjunction 11,770 1,499 1,989
NLU DMR Depth 2.43 2.66 2.64
NLU DMR Nodes 3.18 3.46 3.43

Table 4: Detailed statistics of DMR-FastFood dataset.

turns per dialogue, longer utterance content, and
more explicit annotations of negation and conjunc-
tion.

B Comparison of DMR with AMR and
Dialogue-AMR

In this section, we make detailed comparisons of
DMR with AMR and Dialogue-AMR.

B.1 DMR vs AMR
The key differences between DMR and AMR are
as follows:

• AMR is a sentence-level meaning representa-
tion, and it is designed for general purpose.
DMR is proposed for task-oriented dialogue
(TOD), so there are special contents in DMR
designed for TOD, such as Intent, Entity, and
cross-turn coreference. These contents are not
included in AMR.

• AMR has more than 8k pre-defined predicates
and is intended to capture as much semantics
as possible. While DMR is task-driven, it
only captures the contents that are related to
the dialogue task.

• AMR abstracts surface forms to con-
cepts, while DMR keeps the surface forms
(<lexical_value>) for entities, because the ab-
straction would depend on applications. For
example, ‘big mac’ in the fast food domain is
a type of burger, DMR abstracts it to ‘Burger’
entity, and keeps the surface form which could
be important for the downstream module, e.g.
the entity linking module, to find the exact
burger item.

• DMR ontology is featured with inheritance
hierarchy which serves for reusability across
domains.

B.2 DMR vs Dialogue-AMR

Dialogue-AMR is an extension of AMR, so the
differences described above also apply in the case
of Dialogue-AMR. Further, we highlight two more
differences between DMR and Dialogue-AMR as
follows.

First, they serve for different applications.
Dialogue-AMR is designed for human-robot in-
teraction, and focuses on the mapping of natural
language instructions to specific robotic control
commands (e.g movement), whereas DMR focuses
on the human interaction with software systems
and their underlying business logic. The intents in
DMR map to API calls, and entities map to pre-
defined (compositional) data structures.

Second, there are multiple structural differences
between them. Dialogue-AMR is an extension
of AMR, which captures the illocutionary force
(speech act), tense and aspect, spatial information
in addition to AMR. In contrast, DMR is moti-
vated by compositional intent-slot structures, and
borrows key ideas of AMR to make it generaliz-
able across applications in a task-oriented dialogue
system. The main structural differences are:

• Dialogue-AMR captures information about
speech acts, aspects, spatial information for
human-robot interaction, as well as other con-
cepts (defined in AMR) for general purpose.
In contrast, DMR captures task-related intents,
entities, relations defined in the ontology of a
TOD application and ignores irrelevant con-
tents.

• DMR represents coreferences across turns,
which are common in TOD, while Dialogue-
AMR does not.

C Details about the Inheritance
Hierarchy in DMR

Inheritance Hierarchy is designed for better domain
extensibility by reusing and expanding existing on-
tology. Extensibility and reusability of domain on-
tology are essential for chatbot development, given
the fact that a task-oriented dialogue system gen-
erally supports large amounts of applications, and
each application often serves multiple domains.
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The effectiveness and efficiency of the inheri-
tance hierarchy are rooted in the observation that
despite different domains, some intents and enti-
ties can be abstracted into one intent or entity. For
instance, the intent of ordering is a general intent
not only for fast food ordering, but also for flight
tickets, taxis, and meeting room ordering. Sim-
ilarly, the ‘PaymentIntent’, and ‘ConfirmationIn-
tent’, can also be reused across domains. On the
other hand, different domains imply different re-
quirements. Items to order in fast-food domain
(food, drink) are different from those in the flight
domain (tickets), which requires necessary adapta-
tion on ontology.

To this end, the inheritance hierarchy allows in-
heriting from existing intents and entities, which
allows preserving the arguments of their parent and
modifying new arguments as needed at the same
time. It is noted that the constraints about the ar-
guments can be also derived through inheritance
hierarchy. In this way, DMR arguments would help
reduce much less effort in designing ontology for
new domains while maintaining high extensibil-
ity. For instance, given pre-defined ’OrderIntent’
and ’Item’, ordering intent in the flight domain
can reuse the properties of ‘OrderIntent’ as ’Order-
FligthtTicketIntent’, e.g. they can order multiple
items; they can only order orderable things. And
‘FlightTicket’ can inherit from ‘Item’ like ‘Food-
Item’, because they are all orderable and countable,
etc.

D Experiment Settings

D.1 Hyperparameters

The hyperparameters for the reported results are as
follows.

DMR Parsing The DMR parsing models share
the following hyperparameters: Adam optimizer,
batch size 10, greedy search, and 10 training
epochs. Others are listed in Table 5.

Coreference Resolution The hyperparameters
for the GNN-based coreference resolution model
(GNNCoref) are listed in Table 6. Note that the
value of threshold β is tuned on the development set
during training. Specifically, during each validation
step, pick values in list [0.01, 0.02, · · · , 0.09] as
the thresholds and calculate the accuracies, choose
the threshold with the highest accuracy as β. GN-
NCoref model has 2.5M parameters.

Model Hyper-parameter Value

BiLSTM
+GloVe

Embedding size 300
Encoder layers 2
Decoder layers 2
Hidden size 512
Dropout 0.1
Learning rate 1e-3

RoBERTa
-base

Decoder layers 2
Decoder attention heads 4
Decoder hidden size 768
Learning rate 3e-5

BART-base Learning rate 1e-5

Table 5: Hyperparameters for DMR parsing models.

Hyper-parameter Value
R-GCN Layers 3
Dropout 0.2
Epoch 20
Batch size 10
Learning rate 1e-3
Hidden size 100
Activation LeakyReLU
β 0.89

Table 6: Hyper parameters for GNNCoref.

D.2 Training

All the models are trained on one NVIDIA Tesla T4
16G GPU. The training time of the DMR parsing
models is 2.3 hours, 2.4 hours and 33 minutes for
BiLSTM+GloVe, RoBERTa-base and BART-base
respectively. And the GNNCoref model can be
trained within 9 minutes.

E More Analysis of the DMR Parsing
model

To investigate factors that affect the performances,
we analyze the DMR Parsing model from four as-
pects: 1) the size of the dialogue context, 2) the
depth of the target DMR, 3) the number of nodes
in the target DMR, and 4) the content length of the
utterance.

Context Size For each DMR Parsing model, we
vary the context size c from 0 to 3. The compari-
son of the results are listed in Table 8. The mod-
els get the best results with one or two context
utterances, indicating the DMR Parsing is highly
context-dependent.
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TOP SB-TOP TreeDST SMCalFlow DMR-FastFood
Dialogue - - 27,280 41,517 7,194
Utterance/Dialogue - - 7.1 4.1 18.5
Annotated Turns 44,783 64,815 167,507 155,923 70,328
Utterance Length - 8.1 7.6 10.1 10.2
Reference - 3,154 9,609 45,520 7,846
Negation - - - - 557
Conjunction - - - 9,885 16,087

Table 7: Comparison of DMR-FastFood with related datasets that have tree/graph-structured representation for
task-oriented dialogue systems.
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Figure 6: DMR Parsing model performance analysis by a) DMR Depth b) Node Numbers, and c) Utterance Length.

Model c Dev set Test set

BiLSTM+GloVe

0 65.41 64.63
1 65.57 65.75
2 66.54 65.93
3 66.37 65.79

RoBERTa-base

0 65.93 66.29
1 69.24 68.23
2 67.31 67.49
3 63.20 62.55

BART-base

0 80.89 81.99
1 82.56 83.39
2 82.18 83.26
3 82.14 82.79

Table 8: DMR Parsing results with different context size
c.

The following analysis are based on the test set
results reported in Table 1a.

DMR Depth We compare the performance of
different DMR parsing models at different DMR
depths in Figure 6a. The performance drops for all
models as the depth gets larger. Thus, the DMR
depth is a good indicator of task complexity.

Node Number The more nodes in a DMR, the
longer sequence to predict. Results in Figure 6b in
line with our intuition. Moreover, we see the BART-
base model performs much better than the other
two on large DMR targets, indicating that a well-
pretrained decoder is critical for long sequence
generation.

Utterance Length We plot the DMR parsing re-
sults for different utterance lengths in Figure 6c. As
expected, the models perform worse on longer ut-
terances, and the BART-based model outperforms
others substantially on these challenging test cases.
This may be due to the correlation of the length of
utterance and target sequence: in general, the more
people say, the more information to be delivered.
Thus, this result is consistent with Figure 6b.
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