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Abstract

Conventional approaches to medical intent de-
tection require fixed pre-defined intent cate-
gories. However, due to the incessant emer-
gence of new medical intents in the real world,
such requirement is not practical. Consider-
ing that it is computationally expensive to s-
tore and re-train the whole data every time new
data and intents come in, we propose to incre-
mentally learn emerged intents while avoiding
catastrophically forgetting old intents. We first
formulate incremental learning for medical in-
tent detection. Then, we employ a memory-
based method to handle incremental learning.
We further propose to enhance the method
with contrastive replay networks, which use
multilevel distillation and contrastive objec-
tive to address training data imbalance and
medical rare words respectively. Experiments
show that the proposed method outperforms
the state-of-the-art model by 5.7% and 9.1%
of accuracy on two benchmarks respectively.

1 Introduction

Medical intent detection aims to identify intents
of medical queries and classify them into specific
categories (Chen et al., 2012; Howard and Cam-
bria, 2013; Guo et al., 2014; Cai et al., 2017). In
medical scenarios, understanding query intent is
very important for medical question answer system-
s (Wu et al., 2020; Mrini et al., 2021). Typically, to
perform medical intent detection, existing methods
pre-define a class set of fixed medical intent cat-
egories in advance, and train the whole collected
dataset with the fixed class set. However, novel
medical intents incessantly emerge with new data
in the real world. When given a query with new
intent category that is out of the pre-defined class
set, these models can do nothing about it.

A straightforward solution is to store and re-train
the whole data every time new data and intents
come in. However, it is almost infeasible with limit-
ed storage budget and computation cost in practice
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Medical Fees
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Data for Treatment Plan Data for Medical Fees Data for Cause Analysis

Figure 1: Incremental medical intent detection.

(Wang et al., 2019). Consider the above problems,
we propose to address this issue in a incremental
learning way (Ring et al., 1994; Thrun, 1998),
where the number of intent categories is allowed
to incrementally increase and the system can inces-
santly learn emerged novel intents from continually
arriving data of new intents, which is illustrated as
Figure 1.

Naturally, one simple incremental method is to
directly finetune the model by new intents data.
However, this method suffers from the serious
catastrophic forgetting problem (McCloskey
and Cohen, 1989; French, 1999; Wang et al., 2019).
After fitting emerged data of new intent, the per-
formance of the model on old classes will in-
evitably drop a lot. There are some studies that
have made effects to overcome the catastrophic for-
getting problem. Typically, they are divided into
parameter-based methods that preserve parameters
important to the previous classes when updating
(Kirkpatrick et al., 2017; Aljundi et al., 2018), and
memory-based methods that store a few examples
for each old class and replay them with arriving
data of new classes (Rebuffi et al., 2017; Hou et al.,
2018, 2019). Due to the simplicity and effective-
ness, memory-based methods dominated this field.

However, when applying memory-based meth-
ods to incremental intent detection for medical do-
main, these methods face two new challenges –
training data imbalance and medical rare words.
Training Data Imbalance: While the amount of
new classes data is often large, only a few examples
for old classes are stored in the limited memory.
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Therefore, the model can be drastically altered by
the richer new classes data and ignore old class-
es (He and Garcia, 2009; Wu et al., 2019; Zhang
et al., 2017). Medical Rare Words: Compared
with common domains, the medical domain typi-
cally contains many domain-specific rare words1.
These rare words are usually not well learned by
the model and bring disturbance to representations
of examples, which is adverse to selecting represen-
tative examples as memory for old classes replay.

Considering the above problems, we propose
contrastive replay networks to enhance incremental
intent detection for medical domain. Specifically,
to address training data imbalance, we devise mul-
tilevel distillation to make the current model mimic
the behaviors of the original model. To address
medical rare words, we devise contrastive objec-
tive to push examples from the same intent close
and examples from different intents further apart.
Experimental results demonstrate that our method
outperforms previous state-of-the-art models.

2 Related Work

2.1 Medical Intent Detection

The goal of intent detection is to identify query
intent and classify them into specific categories
(Chen et al., 2012; Howard and Cambria, 2013;
Guo et al., 2014; Cai et al., 2017). With artifi-
cial intelligence gradually changing the landscape
of healthcare and biomedical research (Yu et al.,
2018), medical intent detection (Zhang et al., 2021;
Chen et al., 2020a) becomes an important task. In
medical domain, query intent can be divided in-
to many categories, such as disease description,
medical fees, treatment plan, precautions, and so
on, which are domain-specific with highly special-
ized medical knowledge (Zhang et al., 2021). Un-
derstanding medical can assist medical question
answer systems and significantly improve the rel-
evance of medical search results(Wu et al., 2020;
Mrini et al., 2021).

With the development of medical systems, the
categories of intent continually increase in real-
world applications. It means that medical intent
detection is facing new challenges of how to incre-
mentally learning new intents while avoid forget-
ting old classes.

1In our experiments, more than 60% queries contain at
least one rare word (such as diseases, proteins and chemicals)
in the context.

2.2 Incremental Learning

Incremental learning, which is also called contin-
ual learning or lifelong learning, is a problem that
deserves effort and has been studied for a long time
in machine learning (Cauwenberghs and Poggio,
2001; Kuzborskij et al., 2013). It aims to incre-
mentally train a model on new data to learn in-
cessantly emerging novel classes while avoiding
the catastrophic forgetting problem of old class-
es (McCloskey and Cohen, 1989; French, 1999).
Existing incremental learning methods are mainly
divided into two types, parameter-based methods
(Kirkpatrick et al., 2017; Aljundi et al., 2018) and
memory-based methods (Rebuffi et al., 2017; Hou
et al., 2019; Wang et al., 2019; Cao et al., 2020; ?).

In parameter-based methods, these methods try
to capture and preserve parameters important to the
previous classes (Kirkpatrick et al., 2017; Zenke
et al., 2017; Aljundi et al., 2018). When updat-
ing the model with new data, recognized important
parameters tend to be constant. For example, exist-
ing studies propose to keep the updated parameters
close to the optimal parameters for the old class-
es when training data of new classes (Kirkpatrick
et al., 2017). However, it is difficult to provide a
reasonable metric to evaluate all the parameters.
In memory-based methods, these methods store a
few examples to replay for each old class (Castro
et al., 2018; Wang et al., 2019; Han et al., 2020).
When data of new classes arrives, memory-based
methods learn these examples again with the new
data to alleviate catastrophic forgetting. For exam-
ple, existing studies propose an episodic memory
replay method that randomly selects examples to
store (Wang et al., 2019).

Among these methods, memory-based methods
dominated this field due to their simplicity and ef-
fectiveness. However, these methods cannot handle
medical term disturbance and training data imbal-
ance in incremental intent detection for medical
domain.

3 Problem Definition

Medical intent detection (MID) is a classification
task. In real medical applications, new intent class-
es incessantly emerge. Therefore, a practical MID
system should be able to incrementally learn new
query intent classes. We introduce a new problem,
incremental intent detection. Suppose that
there is a class-incremental data stream, denoted as
{X 1,X 2, . . . ,X (M)}. Each X (k) contains train-
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ing/validation/testing data (X (k)
train,X

(k)
valid,X

(k)
test)

and its own intent class set C(k). Note that any
two intent class sets are disjoint2, i.e., C(i)∩C(j) =
∅(i 6= j). At the k-th step, the MID model opti-
mizes its parameters using the training data X (k)

train

and the updated model should still perform well
on historical classes, i.e., classes from 1 to k − 1.
Thus, for testing at the k-th step, we evaluate the
updated model on the testing data of all old classes,
i.e., ∪ki=1X

(i)
test. Given an input from X (j)(j ≤ k),

the model needs to give a prediction from ∪ki=1C(i),
instead of C(j). To alleviate catastrophic forgetting,
memory-based incremental learning methods al-
low limited memory to store a few examples for
each old class. Therefore, every time new classes
data arrive, the MID model utilizes the stored old
classes data and new classes data X (k)

train as training
data to re-train parameters. The overall training
procedures are described in Appendix.

4 Method

In this paper, we propose Contrastive Reply
Networks for incremental medical intent detection
(CRN). CRN consists of three components: 1) In-
tent classifier with memory, 2) Multilevel distilla-
tion and 3) Contrastive objective.

4.1 Intent Classifier with Memory

4.1.1 Memory-based Framework
We use BERT (Devlin et al., 2018) as the medical
intent classifier. When the new medical intent class-
es C(k) arrives, the corresponding new training data
is denoted as X (k)

train = {(Xi, Yi), 1 ≤ i ≤ K},
where K is the number of training examples, Xi

is the query and Yi denotes the intent label of the
query Xi. The memory stores the representative
examples for old m classes, i.e., m = | ∪k−1i=1 C(i)|,
we denoted it as P = {P(1), · · · ,P(m)}, where
P(i) is the set of stored examples for the i-th class.
We combine the stored old data and new classes
data, which is denoted asN = P ∪X (k)

train, to train
the current model. The current label set Co contains
all observed intent categories, i.e., Co = ∪ki=1Ci.
Then a softmax classifier is to predict intent cate-
gories with representations of “[CLS]” in BERT.
Finally, we use the cross entropy to train the intent
detection model, denoted as loss Lce. Note that the
current label set size is the number of all observed

2X (k) contains one or more new classes represented by
C(k).

classes, i.e., |Co|. The overall training procedures
are illustrated in the appendix.

4.1.2 Memory Updating

To overcome the catastrophic forgetting problem
of old classes, memory-based methods store exam-
ples for each old class in the memory. All classes
are treated equally in our model. Therefore, if m
classes have been learned so far and B is the to-
tal number of examples stored in the memory, our
model will store n = B/m examples for each old
class. Inspired by prototype learning (Snell et al.,
2017; Yang et al., 2018), we select the top n ex-
ample closest to the centroid of examples (based
on “[CLS]” embeddings) of each class and store
them into the memory as representative ones for
old classes. When new data comes in, these ex-
amples in the memory are trained with the new
data. Before the next new class arrives, we remove
B/m − B/(m + t) stored examples of each old
class in the memory and allocate space to store
B/(m + t) current new classes examples based
on the centroid, where t = |Ck| is the number of
current new classes.

4.2 Multilevel Distillation

Although storing a few examples for each old class
as memory is useful to avoid catastrophic forget-
ting, there is a serious data imbalance problem be-
tween memory and new classes data, which makes
the model have an obvious bias towards the new
classes, resulting in severely forgetting classifica-
tion ability of previous classes. To address it, we
devise multilevel distillation to make the current
model mimic the behaviors of the original model.

Inspired by (Hinton et al., 2015), we first perfor-
m it at prediction level. We encourage the current
predictions on old classes to match the soft labels
by the original model. Formally,

Lpl = −
1

|N |
∑
X∈N

∑
x∈X

m∑
i=1

α∗i log(αi) (1)

where α∗i and αi is the output probability for the
i-th label of the original and current model, re-
spectively. This loss function is performed for all
arriving new classes data and stored old classes
data in the memory.

Then, we also perform it at feature level. We
encourage the feature representations (“[CLS]” of
BERT) of the current model don’t greatly deviate
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from the ones of the original model. Formally,

Lfl = −
1

|N |
∑
X∈N

∑
x∈X

cos(f∗(x), f(x)) (2)

where cos(f∗(x), f(x)) measures the cosine dis-
tance between feature vectors of the original and
current model. This loss is computed for all sam-
ples from the new classes and stored examples in
the memory.

4.3 Contrastive Objective
Medical rare words are usually not well learned
by the model and bring disturbance to representa-
tions of examples, which is detrimental to memory
selection for old classes. Inspired by (Chen et al.,
2020b), we devise contrastive objective to push ex-
amples from the same intent close and examples
from different intents further apart. As a result, we
can obtain better representations for examples and
select more representative examples for replay.

Specifically, we first perform data augmentation
to obtain more examples. We use a medical dictio-
nary that contains medical rare words3 to randomly
add, delete or replace rare words over the origi-
nal examples. After that, we employ an objective
to push examples from the same intent close and
examples from different intents further apart:

Lco = −
∑
i

1

Nyi − 1

∑
j 6=i

(1yi=yj−1yi 6=yj ) log sij

(3)
where sij =

exp(f(xi)·f(xj))∑
k 6=i exp(f(xi)·f(xk))

, f(x) denotes
the embeddings of “[CLS]” token of example x.
Finally, our model is optimized by the total loss
L = Lce + Lpl + Lfl + Lco.

5 Experiments

5.1 Benchmarks
We use two public medical datasets KUAKE-QIC
in CBLUE (Zhang et al., 2021) and CMID (Chen
et al., 2020a) to construct benchmarks for incre-
mental learning setting. For a medical intent de-
tection dataset, its intent classes are arranged in a
fixed order. Then, methods are trained in a class-
incremental way on the available training data4.
Due to its long-tail frequency distribution, we use
the data of the top 10/20 most frequent classes for
KUAKE-QIC/CMID.

3We build it by collecting medical entities in OpenKG at
http://www.openkg.cn/dataset.

4Only one new class is available for the model at each time,
i.e., t = |C(k)| = 1.

Models KUAKE-QIC CMID
Avg Whole Avg Whole

Upperbound 94.6 91.6 78.0 87.2
Finetune 20.9 43.0 9.2 24.9

EWC 63.7 52.5 27.5 26.9
EMR 68.6 62.9 31.3 30.3

EMAR 71.0 65.9 33.7 32.1
CRN(Ours) 75.8 71.6 43.5 41.2

Table 1: The average accuracy (%, “Avg”) on all ob-
served classes and whole accuracy (%, “Whole”) on
the whole testing data at the last step.

5.2 Evaluation and Implementation

We use accuracy as the evaluation metric. Every
time the model finishes training on the new classes
data, we report the accuracy on the whole testing
data of all observed classes. Besides, we also re-
port the performance at the last step, containing
Average accuracy (macro-averaging) and Whole
accuracy (micro-averaging).

We use base BERT as the classifier. The learning
rate is set to 2e-5. The batch size is 8. For the
two benchmarks, both the capacity of memory is
B = 200.

5.3 Baselines

We compare CRN with 4 baselines: 1) EWC (Kirk-
patrick et al., 2017): The representative parameter-
based method that keeps the network parameters
close to the optimal parameters for the previous
classes when training new classes data. 2) EMR
(Wang et al., 2019): The representative memory-
based method that avoids catastrophic forgetting
via randomly storing a few examples of old classes.
3) EMAR (Han et al., 2020): The latest memory-
based method that utilizes prototypes for memory
reconsolidation exercise to keep a stable under-
standing of old classes. 4) Finetune: The lower
bound that simply finetunes the model on arriving
data of new classes. 5) Upperbound: The upper
bound that stores and trains all observed samples.

5.4 Compared with State-of-the-art Methods

We conduct experiments on KUAKE-QIC and
CMID. The accuracies over all observed classes
during the whole incremental learning process are
plotted in Figure 2. We also show the results at the
last step in Table 1. We can find that our method
outperforms all other baselines by a large mar-
gin. Specifically, compared with the state-of-the-
art model EMAR, our method achieves 5.7% and
9.1% improvements of whole accuracy score on the

3552



2 4 6 8 10 12 14 16 18 20
Number of classes

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(b) CMID benchmark
Upperbound
CRN(Ours)

EMAR
EMR

EWC
Finetune

2 3 4 5 6 7 8 9 10
Number of classes

0.5

0.6

0.7

0.8

0.9
Ac

cu
ra

cy

(a) KUAKE-QIC benchmark
Upperbound
CRN(Ours)

EMAR
EMR

EWC
Finetune

Figure 2: The performance on (a) KUAKE-QIC and (b) CMID. Our method CRN outperforms others.

Models KUAKE-QIC CMID
Avg Whole Avg Whole

CRN 75.8 71.6 43.5 41.2
w/o PL 72.5 66.8 37.7 37.0
w/o FL 72.3 67.1 37.1 36.3
w/o CO 73.4 69.7 40.6 39.3

Table 2: Ablation studies for the main components.

KUAKE-QIC and CMID, respectively. It demon-
strates the effectiveness of our proposed CRN. Be-
sides, Finetuning always obtains the worst perfor-
mance on both benchmarks and becomes the lower
bound, which indicates that the catastrophic forget-
ting problem is serious. Moreover, the large gap
between all methods and Upperbound indicates that
this issue is still challenging.

5.5 Ablation Experiment

To investigate the effectiveness of the different part-
s in our method, we conduct ablation studies. The
results are shown in Table 2. (1) Effectiveness of
distillation at prediction level: The performance
drops with removing Lpl (“w/o PL”). It demon-
strates that it is useful to handle training data im-
balance. (2) Effectiveness of distillation at feature
level: The performance drops with removing Lfl
(“w/o FL”). It demonstrates that it is effective to
address training data imbalance. (3) Effectiveness
of contrastive objective: The performance drops
with removing Lco (“w/o CO”). It demonstrates
that it is helpful to handle medical rare words. We
report extra experiments in Appendix.

6 Conclusion

We explore to incrementally learning medical intent
detection. We propose contrastive replay networks

to handle training data imbalance and medical rare
words. Experiments demonstrate that our method
outperforms previous state-of-the-art models.
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Models
CRN EMAR

Avg Whole Avg Whole
50 66.8 61.9 60.9 60.4
100 69.2 64.7 61.8 61.2
150 72.8 68.5 65.2 63.2
200 75.8 71.6 71.0 65.9

Table 3: The effect of the number of stored examples.
We compare our CRN with EMAR on KUAKE-QIC.
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Figure 3: Feature spaces learned by CRN and EMR,
respectively.

Below we provide some extra experiments for
discussion and overall training procedures for un-
derstanding.

A The Effect of the Number of Stored
Examples

To show the effect of different numbers of stored
examples, we compare our CRN with another
memory-based method EMAR on KUAKE-QIC ,
where the memory size to store examples is from
50 to 200. We can observe the results in Table 3.

First, the more examples stored, the better perfor-
mance for both memory-based methods. We also
see that our method performs better, which demon-
strates the effectiveness of our method. Even with
fewer examples stored, our CRN still performs bet-
ter, demonstrating that our method is effective to
address training data imbalance.

B Visualization

To show the effectiveness of introduced contrast
objective for medical rare words, we also give the
visualization in Figure 3 to show the feature spaces
learned by our CRN (Ours) and EMAR (i.e., the lat-
est representative work of memory-based method)
on KUAKE-QIC.

Specifically, we extract the representations of
“[CLS]” and use t-SNE to implement visualization.
We can see that the feature space of CRN is more
sparse and features from different intents are more
distinguishable. However, the features learned by

Algorithm 1 Training Procedures

Require: arriving training data X (k)
train at the k-th

step, the number of new classes t = |C(k)|,
memory capacityB, current modelM, current
reserved example sets P = (P(1), · · · ,P(m)),
m observed classes

1: combining training data X (k)
train ∪ P

2: Update the modelM with loss L
3: for c = 1, · · · ,m do
4: Remove stored examples for each old class

c until the number reaches B/(m+ t)
5: end for
6: for c = m+ 1, · · · ,m+ t do
7: Update the centroid
8: Select the top B/(m+ t) examples close to

the centroid to store in the memory
9: end for

EMAR are more difficult to distinguish. Examples
from the same intent in CRN are closer than ones
in EMAR. It is because medical rare words are easy
to bring disturbance and make the queries confused
in EMAR. This result shows that our contrast ob-
jective in CRN can learn better representations for
queries against medical rare words.

C Training Procedures

Algorithm 1 describes the overall training pro-
cedures of incremental learning. After training a
intent detection model with limited intents, new
intents come in. Through our method, the model
incrementally learns new intents while avoiding
catastrophically forgetting old intents.
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