
Findings of the Association for Computational Linguistics: ACL 2022, pages 2789 - 2810
May 22-27, 2022 c©2022 Association for Computational Linguistics

ELLE: Efficient Lifelong Pre-training for Emerging Data

Yujia Qin1,2,3∗, Jiajie Zhang1,2,3∗, Yankai Lin4, Zhiyuan Liu1,2,3,5,6†, Peng Li7‡,
Maosong Sun1,2,3,5,6,8†, Jie Zhou4

1Department of Computer Science and Technology, Tsinghua University, Beijing, China
2Beijing National Research Center for Information Science and Technology

3Institute for Artificial Intelligence, Tsinghua University, Beijing, China
4Pattern Recognition Center, WeChat AI, Tencent Inc.

5International Innovation Center of Tsinghua University, Shanghai, China
6Beijing Academy of Artificial Intelligence

7Institute for AI Industry Research (AIR), Tsinghua University, China.
8Jiangsu Collaborative Innovation Center for Language Ability, Xuzhou, China

{qyj20,jiajie-z19}@mails.tsinghua.edu.cn

Abstract

Current pre-trained language models (PLM) are
typically trained with static data, ignoring that
in real-world scenarios, streaming data of var-
ious sources may continuously grow. This re-
quires PLMs to integrate the information from
all the sources in a lifelong manner. Although
this goal could be achieved by exhaustive pre-
training on all the existing data, such a process
is known to be computationally expensive. To
this end, we propose ELLE, aiming at efficient
lifelong pre-training for emerging data. Specif-
ically, ELLE consists of (1) function preserved
model expansion, which flexibly expands an
existing PLM’s width and depth to improve the
efficiency of knowledge acquisition; and (2)
pre-trained domain prompts, which disentan-
gle the versatile knowledge learned during pre-
training and stimulate the proper knowledge for
downstream tasks. We experiment ELLE with
streaming data from 5 domains on BERT and
GPT. The results show the superiority of ELLE
over various lifelong learning baselines in both
pre-training efficiency and downstream perfor-
mances. The codes are publicly available at
https://github.com/thunlp/ELLE.

1 Introduction

Pre-trained language models (PLM) have broken
the glass ceiling for various natural language pro-
cessing (NLP) tasks (Radford et al., 2018; Devlin
et al., 2019; Han et al., 2021). However, most
of the existing PLMs are typically trained with
a static snapshot of the web information, ignor-
ing that in real-world scenarios, streaming data

∗Indicates equal contribution.
†Corresponding author.
‡Part of the work was done while Peng Li was working

at Tencent.

from various sources may continuously grow, e.g.,
the gatherings of literary works (Zhu et al., 2015),
news articles (Zellers et al., 2019) and science pa-
pers (Lo et al., 2020). In addition, the distribution
of incoming data may also vary over time. This
requires PLMs to continually integrate the informa-
tion from all the sources to grasp the versatile struc-
tural and semantic knowledge comprehensively, so
that PLMs could utilize the proper knowledge to
boost the performance in various downstream tasks.

A simple yet effective way to integrate all the
information is to pre-train PLMs on all the existing
data exhaustively. However, such a process is com-
putationally expensive (Schwartz et al., 2019), es-
pecially under the information explosion era when
tremendous data is continually collected. This
leaves us an important question: with limited com-
putational resources, how can we efficiently adapt
PLMs in a lifelong manner? We formulate it as the
efficient lifelong pre-training problem. Similar to
conventional lifelong learning, PLMs are expected
to continually abosrb knowledge from emerging
data, and in the meantime, mitigate the catastrophic
forgetting (McCloskey and Cohen, 20p) on previ-
ously learned knowledge.

In addition, efficient lifelong pre-training poses
two new challenges: (1) efficient knowledge
growth. When the overall data scale accumulates
to a certain magnitude, packing more knowledge
into a fixed-sized PLM becomes increasingly hard,
which significantly impacts the efficiency of PLM’s
knowledge growth. This is because larger PLMs
show superior sample efficiency and training ef-
ficiency over their smaller counterparts (Kaplan
et al., 2020; Li et al., 2020) due to overparameter-
ization (Arora et al., 2018). That is, larger PLMs
learn knowledge in a more efficient way. Therefore,

2789

https://github.com/thunlp/ELLE

timely model expansions are essential for efficient
knowledge growth; (2) proper knowledge stim-
ulation. During pre-training, various knowledge
from all domains is packed into PLMs hastily. How-
ever, a certain downstream task may largely require
the knowledge from a specific domain. Thus it is
essential for PLMs to disentangle different kinds
of knowledge and properly stimulate the needed
knowledge for each task.

In this paper, we propose ELLE, targeting at
Efficient LifeLong pre-training for Emerging data.
Specifically, (1) to facilitate the efficiency of knowl-
edge growth, we propose the function preserved
model expansion to flexibly expand an existing
PLM’s width and depth. In this way, we increase
PLM’s model size and thus improve its training
efficiency. Before being adapted to a new domain,
the expanded PLM performs a function recovering
warmup to regain the functionality of the original
PLM; (2) for proper knowledge stimulation, we
pre-implant domain prompts during pre-training
to prime the PLM which kind of knowledge it is
learning. Therefore, versatile knowledge from mul-
tiple sources can be disentangled. During down-
stream fine-tuning, we could further utilize these
implanted prompts and manipulate the PLM to
stimulate the proper knowledge for a specific task.

To demonstrate the effectiveness of ELLE, we
simulate the scenario where streaming data from 5
domains sequentially comes. We pre-train two typi-
cal PLMs (BERT and GPT) and expand their model
sizes each time when the new data is available.
We experiment when the number of parameters is
sequentially grown from both 30M to 125M and
125M to 355M. The experimental results show the
superiority of ELLE over multiple lifelong learning
baselines in both pre-training efficiency and down-
stream task performances. In addition, we conduct
sufficient experiments to verify the effectiveness of
each component of ELLE. In general, we provide
a promising research direction and hope this work
could inspire more future attempts towards efficient
lifelong pre-training.

2 Related Work

Lifelong Learning for PLMs. Lifelong learning
aims at incrementally acquiring new knowledge,
and in the meantime, mitigating the catastrophic
forgetting issue. Numerous efforts have been spent
towards this goal, including (1) memory-based
methods (Rebuffi et al., 2017; Rolnick et al., 2019),

which perform experience replay with authentic
data (de Masson d’Autume et al., 2019), automat-
ically generated data (Sun et al., 2020), or previ-
ously computed gradients (Lopez-Paz and Ranzato,
2017) conserved in the memory, (2) consolidation-
based methods (Kirkpatrick et al., 2017; Aljundi
et al., 2018), which introduce additional regulariza-
tion terms to consolidate the model parameters that
are important to previous tasks, and (3) dynamic
architecture methods (Rusu et al., 2016; Yoon et al.,
2018), which fix trained network architectures in
old tasks and dynamically grow branches for new
tasks. Lifelong learning is also a hot topic for
PLMs. Some target at domain adaptation through
continual pre-training (Gururangan et al., 2020),
parameter-efficient adapters (He et al., 2021) and
sparse expert models (Gururangan et al., 2021).
Others focus on the incremental acquisition of fac-
tual knowledge that changes over time (Dhingra
et al., 2021; Jang et al., 2021). However, the ex-
isting works seldom consider our lifelong learning
setting where streaming data from multiple sources
is sequentially gathered. Recently, researchers have
also conducted a series of empirical studies on the
continual learning of PLMs (Wu et al., 2021; Jin
et al., 2021).

Efficient Pre-training in NLP. Many attempts
have been made towards improving the efficiency
of pre-training, such as designing novel pre-
training tasks (Clark et al., 2020), model archi-
tectures (Zhang and He, 2020), optimization al-
gorithms (You et al., 2020) and parallel architec-
tures (Shoeybi et al., 2019; Shazeer et al., 2018).
Until recently, researchers propose to “back dis-
till” the knowledge from existing PLMs to accel-
erate large PLMs’ pre-training (Qin et al., 2021a).
Another line of work proposes progressive train-
ing to dynamically expand an existing PLM’s size
through parameter recycling (Gong et al., 2019; Gu
et al., 2021; Chen et al., 2021). However, these
methods typically focus on training PLMs on one
static corpus, and thus cannot be directly applied
to our lifelong pre-training setting.

3 Methodology

3.1 Preliminaries

Background for PLM. A PLM M generally
consists of an embedding layer and L Trans-
former (Vaswani et al., 2017) layers. Given an
input x consisting of a series of tokens, i.e.,

2790

Width Expansion

𝑥!𝑥! 𝑥"

𝑦! 𝑦"

𝑥" 𝑥!

𝑦! 𝑦"
𝑜 𝑟

𝑝 𝑞
𝑜/2

𝑜/2
𝑞/2𝑞/2

𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑡𝑒

Depth Expansion

4

3
2

4
3

2
1

3

1 1

4
3
2
1

4
3
2
1

Μ#$! M#$!
%&'

!

Μ#
Previous Data
𝐷! 𝐷#$!

Pre-trained Domain Prompts

𝑦!
𝑦" =

𝑜 𝑝
𝑞 𝑟

𝑥!
𝑥" =

(
"

(
"

𝑝
)
"

)
"

𝑟

𝑥!
𝑥!
𝑥" Prompts

!
!𝑃* ℎ! ℎ" ℎ+!

Task 1Acquire
Knowledge Task 2

Expose
Knowledge

Stimulate
Needed Knowledge

Disentangle
the Knowledge

Downstream TasksRaw Corpus

Acquire Knowledge
on New Data

Memory Replay
on Previous Data

!

copy

copy

𝐷#

𝐷! 𝐷#$!M#$!
%&

Function
Recovering Warmup

!
𝐷! 𝐷#$!

Task 3

ELLE Framework

Width + Depth
Expansion

Function Preserved Model Expansion

Figure 1: Illustration of ELLE when adapting an existing PLM Mi−1 trained on previous data Di−1 to a new
corpus Di. We also visualize the mechanism of width / depth expansion and pre-trained domain prompts.

x = {w1, . . . , w|x|}, M first converts the in-
put into embeddings {h0

1, . . . ,h
0
|x|}, which are se-

quentially processed by each Transformer layer
into contextualized hidden representations Hl =
{hl

1, . . . ,h
l
|x|}, where 1≤ l≤L.

Task Definition. Assume a stream of corpus DN

from N domains (e.g., news articles, web content
and literary works) is sequentially gathered, i.e.,
DN = {D1, . . . ,DN}, where Di = {xj

i}
|Di|
j=1. The

whole training process can be partitioned into sev-
eral stages. Initially, we have a PLM M1, which
has been well trained on D1, and for the i-th stage
(i > 1), we obtain a new collection of data Di.
Assume in this stage, we only have limited compu-
tational resources Ri, our goal is to continually pre-
train the existing PLM Mi−1 to learn new knowl-
edge on Di, and obtain a new PLM Mi. Mean-
while, we expect the adapted PLM Mi should not
forget the previously learned knowledge of Di−1.

Overall Framework. As illustrated in Figure 1,
starting from Mi−1, which is trained on previous
data Di−1, we first expand Mi−1’s width and depth
and construct an enlarged PLM MWD

i−1 to improve
its training efficiency. Then we perform function
recovering warmup and train MWD

i−1 to inherit the
knowledge of Mi−1 to obtain MWD+

i−1 . The above
procedures are dubbed as function preserved
model expansion (§ 3.2). After that, we continu-
ally pre-train MWD+

i−1 to gain new knowledge on Di.
To mitigate the catastrophic forgetting on the pre-
viously learned knowledge, we employ data-based
memory replay on a subset of previously gath-
ered data Dsub

i−1 = {Dsub
1 , . . . ,Dsub

i−1} conserved
in the memory, where Dsub

k = {x1k, . . . , xBk } ∈ Dk

(1 ≤ k ≤ i− 1) and B is the constrained memory

size for each domain. To help PLMs disentangle
the knowledge during pre-training and also stim-
ulate the needed knowledge for each downstream
task, we implant domain prompts into PLMs dur-
ing the whole training process (§ 3.3).

3.2 Function Preserved Model Expansion
To accumulate knowledge more efficiently, each
time when a new corpus Di comes, we expand
both Mi−1’s width and depth to attain the superior
sample efficiency and fast convergence brought by
larger model capacity (Li et al., 2020).

Width Expansion. For width expansion, we bor-
row the function preserving initialization (FPI)
from Chen et al. (2021). For a brief introduction,
FPI expands the matrices of all modules of a Trans-
former layer to arbitrary larger sizes and constructs
an enlarged PLM MW

i−1. MW
i−1 is initialized using

the corresponding matrices of the original Mi−1

through parameter replication. For example, as vi-
sualized in Figure 1, the core principle of FPI is to
divide the product of o×x1 into multiple partitions,
e.g. o

2 × x1 +
o
2 × x1. Formally, FPI expands a ma-

trix W ∈ Rh1×h2 of Mi−1 to an enlarged matrix
W ′ ∈ R(h1+∆h1

)×h2 of MW
i−1 as follows:

m(i) =

{
i i ∈ [1, h1]

U({1, . . . , h1}) i ∈ (h1, h1 +∆h1],

Ci =

h1+∆h1∑
i′=1

I(m(i′) = m(i)),

W ′
(i,∗) =

1

Ci
·W(m(i),∗) + I(Ci > 1) · δi,

(1)

where U(·) denotes a uniform sampling function,
m(·) denotes the mapping function between two
matrices, I(·) is an indicator function, Ci counts
how many partitions a specific neuron is splitted

2791

and δi ∈ Rh2 is a random gaussian noise. FPI
ensures that both MW

i−1 and Mi−1 have approx-
imately the same functionality, i.e., both models
have almost the same output given the same input.
Besides function preservation, the initialized model
could serve as a good starting point for further op-
timization. We refer readers to Chen et al. (2021)
for more details about width expansion. Different
from Chen et al. (2021), we additionally introduce
random noises δi into the newly copied parameters
of W ′ during initialization. These slight noises
would break the symmetry after the replication and
accelerate later pre-training.

Depth Expansion. For depth expansion, previ-
ous works generally resort to stacking all the origi-
nal PLM layers into 2× layers through parameter
replication (Gong et al., 2019). Such initialization
is demonstrated to improve training efficiency.

However, the above layer stacking method re-
stricts the number of layers of the enlarged PLM
MD

i−1 to be integer multiples of that of the original
PLM Mi−1, which is not flexible for practical uses.
To improve the expansion flexibility so that Mi−1

could be expanded with arbitrary number of layers,
we propose a novel layer insertion method to con-
struct a new PLM MD

i−1 with L+L′ layers, where
1 ≤ L′ ≤ L. Specifically, we randomly select L′

layers from Mi−1, copy each layer’s parameters
and insert the replication layer right before / after
the original layer. We found empirically that in-
serting the copied layer into other positions would
cause a performance drop, and the reason is that
it will violate the processing order of the original
layer sequence and break the PLM’s original func-
tionality. At each expansion stage when new data
comes, since different layers have different func-
tionalities, we always choose those layers that have
not been copied before to help PLMs develop in
an all-around way, instead of just developing a cer-
tain kind of functionality. Since both width expan-
sion and depth expansion are compatible with each
other, we simultaneously expand both of them to
construct an enlarged model MWD

i−1, which inherits
Mi−1’s knowledge contained in the parameters.

Function Recovering Warmup. Since the above
model expansion cannot ensure exact function
preservation and inevitably results in functional-
ity loss and performance drops, we pre-train the
initialized PLM MWD

i−1 on the previous corpora

Dsub
i−1 conserved in the memory to recover the lan-

guage abilities lost during model expansion, which
is dubbed as function recovering warmup (FRW).
After the warmup, we obtain MWD+

i−1 , which suc-
cessfully inherits the knowledge from Mi−1 and
is also well-prepared for the next training stage.

3.3 Pre-trained Domain Prompt

Instead of training a separate model for each do-
main, we expect a single compact PLM to inte-
grate the knowledge from all the sources. When
confronted with a downstream task from a spe-
cific domain, the PLM needs to expose the proper
knowledge learned during pre-training. To facili-
tate both knowledge acquisition during pre-training
and knowledge exposure during fine-tuning, we
resort to prompts as domain indicators and condi-
tion the PLM’s behavior on these prompts. Soft
prompts have been demonstrated excellent task in-
dicators (Qin et al., 2021b) and have non-trivial
transferability among tasks (Su et al., 2021).

Specifically, during pre-training, to disentangle
the knowledge from different sources, we implant a
soft prompt token into the input to prime the PLM
which kind of knowledge it is learning. The prompt
of domain i is a tunable vector pi. We prepend
pi before the original token embeddings H0 =
{h0

1, . . . ,h
0
|x|} for an input x ∈ Di, resulting in the

modified input H0∗ = {pi;h
0
1, . . . ,h

0
|x|}, which is

then processed by all the Transformer layers. Each
pi is optimized together with other parameters of
the PLM during pre-training. During fine-tuning,
when applying the PLM on a similar domain of
data seen before, we could leverage the trained
domain prompt and prepend it before the input
of downstream data. In this way, we manually
manipulate the PLM to stimulate the most relevant
knowledge learned during pre-training.

4 Experiments

4.1 Experimental Setting

Data Streams. We simulate the scenario where
streaming data from 5 domains is gathered se-
quentially, i.e., the concatenation of WIKIPEDIA

and BOOKCORPUS (WB) (Zhu et al., 2015),
NEWS ARTICLES (NS) (Zellers et al., 2019), AMA-
ZON REVIEWS (REV) (He and McAuley, 2016),
BIOMEDICAL PAPERS (BIO) (Lo et al., 2020) and
COMPUTER SCIENCE PAPERS (CS) (Lo et al.,
2020). For each corpus Di, we roughly sam-
ple 3, 400M tokens, and the quantity for each Di

(1 ≤ i ≤ 5) is comparable to the pre-training data

2792

Domain WB NS REV BIO CS
Metrics AP AP+ AP AP+ AP AP+ AP AP+ AP AP+

Growing from BERTL6_D384 to BERTL12_D768
Naive (Lower Bound) 7.96 - 8.03 5.54 13.52 21.42 13.86 17.67 9.93 9.81
EWC 7.96 - 8.09 5.65 13.40 20.98 13.92 17.75 9.94 9.82
MAS 7.96 - 8.08 5.65 13.44 21.17 13.87 17.67 9.91 9.75
A-GEM 7.96 - 8.82 6.72 13.31 20.06 14.73 18.89 10.56 10.58
ER 7.96 - 6.85 1.59 6.99 4.09 6.66 3.62 6.39 3.16
Logit-KD 7.96 - 7.60 0.99 7.19 1.95 7.08 2.02 6.92 1.92
PNN 7.96 - 6.52 0.00 5.29 0.00 4.84 0.00 4.76 0.00
ELLE (ours) 7.92 - 5.62 -0.20 4.81 0.64 4.41 0.64 4.06 0.44
Growing from BERTL12_D768 to BERTL24_D1024
ER 4.54 - 4.33 1.31 4.02 1.46 3.73 1.15 3.82 1.28
ELLE (ours) 4.52 - 3.89 0.47 3.61 0.75 3.66 0.97 3.29 0.54
Growing from GPTL6_D384 to GPTL12_D768
Naive (Lower Bound) 46.54 - 52.91 37.96 81.28 177.22 94.44 160.51 60.64 80.48
MAS 46.54 - 53.12 38.44 81.23 177.20 93.21 157.93 60.62 80.28
ER 46.54 - 44.49 12.42 35.46 21.78 33.24 23.38 31.94 19.83
Logit-KD 46.54 - 48.93 5.41 37.60 9.97 34.60 11.74 33.67 11.19
PNN 46.54 - 39.90 0.00 26.84 0.00 22.19 0.00 21.43 0.00
ELLE (ours) 46.50 - 36.84 2.25 25.60 4.38 22.29 5.88 20.49 4.31

Table 1: Average perplexity (AP) and average increased perplexity (AP+) of PLMs trained by different lifelong
learning methods with the same train wall time. PLMs are trained with streaming data from WB, NS, REV, BIO
and CS domain sequentially. We evaluate the performance each time when PLMs finish training on one domain.

of BERT (Devlin et al., 2019). In addition, con-
sidering that in practice, the expense of storage is
far cheaper than the computational resources for
pre-training, we maintain a relatively large memory
compared with conventional lifelong learning set-
tings by randomly sampling 200M tokens (Dsub

i)
for each corpus Di.

Evaluated Models. We mainly follow the model
architectures of BERT and GPT (Radford et al.,
2018). We use byte-level BPE vocabulary to en-
sure there are few unknown tokens in each corpus.
We experiment with the initial PLM M1 of 6 layers
and hidden size of 384 (around 30M parameters,
denoted as BERTL6_D384 / GPTL6_D384), and lin-
early enlarge the PLM’s number of parameters for 4
times, to the final PLM M5 of 12 layers and hidden
size of 768 (around 125M parameters, denoted as
BERTL12_D768 / GPTL12_D768). We also experiment
on a larger model size, i.e., growing the PLM from
BERTL12_D768 (125M) to BERTL24_D1024 (355M).
Details of each Mi’s architecture are listed in ap-
pendix B. We also discuss the effect of expanded
model size at each stage in appendix A.

Training Details. We train our model for 62, 500
steps for the first corpus. For the following domain
i (i > 1), after the model expansion, we perform
function recovering warmup for 5, 000 steps, then
train the resulting PLM for 20, 000 steps on the
new data together with memory replay. Following

Chaudhry et al. (2019b), we jointly train PLMs
on a mixture samples from both Di and Dsub

i−1 in

each batch, and the sampling ratio of Di and Dsub
i−1

is set to 9 : 1 in every batch. Adam (Kingma
and Ba, 2015) is chosen as the optimizer. All the
experiments are conducted under the same environ-
ment of 8 V100 GPUs with a batch size of 2, 048.
More training details of pre-training are left in ap-
pendix B. We also experiment with fewer computa-
tional budgets and memory budgets in appendix G,
and find that within a reasonable range, both of the
two factors would not significantly influence the
performance of ELLE.

Evaluation Metrics. We deem one algorithm to
be more efficient if it could achieve the same per-
formance with other methods utilizing fewer com-
putations. For PLM, this is equivalent to achieving
better performance using the same computations
since pre-training with more computations almost
always results in better performance (Clark et al.,
2020). We evaluate the PLM’s performance during
both pre-training and downstream fine-tuning.

Specifically, for pre-training, we propose two
metrics to evaluate how PLMs perform on the
learned domains following Chaudhry et al. (2019a):
(1) average perplexity (AP) and (2) average in-
creased perplexity (AP+). We record the train wall
time (Li et al., 2020) during pre-training. For a
model checkpoint at time step T when learning
the j-th domain, we measure the checkpoint’s per-

2793

WB News Review Bio CS
Train Wall Time

4

8

12

16
A

P

Naive
EWC
MAS
GEM
ER
Logit-KD
PNN
Ours

Figure 2: Average perplexity (AP) of different lifelong
learning methods with BERTL6_D384 as the initial PLM.
The trend curves for AP+ and other PLMs are left in
appendix D.

plexity PPLT,i on the validation set of each domain
i. Let PPLf

i,i be the perplexity on the i-th domain
when the PLM finishes training on the i-th domain,
the above metrics are calculated as follows:

AP = exp
(1
j

j∑
i=1

log PPLT,i

)
,

AP+ =
1

j − 1

j−1∑
i=1

(PPLT,i − PPLf
i,i),

(2)

where AP measures the average performance on all
the seen data {D1, . . . ,Dj}. Lower AP indicates
the PLM generally learns more knowledge from
existing domains; AP+ measures the influence of
current data Dj on previous data Dj−1. Lower AP+

means PLMs forget less knowledge learned before.
To evaluate PLMs’ performance in downstream

tasks, for each domain, we select a representative
task that is relatively stable, i.e., MNLI (Williams
et al., 2018), HYPERPARTISAN (Kiesel et al.,
2019), HELPFULLNESS (McAuley et al., 2015),
CHEMPROT (Kringelum et al., 2016) and ACL-
ARC (Jurgens et al., 2018) for WB, NS, REV,
BIO and CS, respectively. Training details for fine-
tuning are left in appendix C.

Baselines. Keeping most of the experimental set-
tings the same, we choose the following baselines
for comparison: (1) Naive, which is a naive ex-
tension of Gururangan et al. (2020) to continu-
ally adapt PLMs for each domain and can be seen
as the lower bound; (2) EWC (Schwarz et al.,
2018), which adopts elastic weight consolidation
to add L2 regularization on parameter changes; (3)
MAS (Aljundi et al., 2018), which estimates pa-
rameter importance via the gradients of the model

Domain WB NS REV BIO CS AVG
Growing from BERTL6_D384 to BERTL12_D768
Naive 77.2 72.8 60.6 77.1 64.8 70.5
EWC 77.4 72.8 61.6 77.5 59.6 69.8
MAS 77.1 73.7 60.7 77.5 68.2 71.5
A-GEM 76.6 71.4 61.5 76.9 67.5 70.8
ER 77.6 72.2 61.9 78.3 63.5 70.7
Logit-KD 77.2 69.5 63.9 76.8 58.9 69.2
PNN 76.0 76.3 68.0 79.5 65.2 73.0
ELLE 83.2 81.8 68.5 82.9 72.7 77.8
Growing from BERTL12_D768 to BERTL24_D1024
ER 84.7 83.3 68.0 82.7 71.4 78.0
ELLE 86.3 90.4 70.5 84.2 73.8 81.0

Table 2: Final downstream performance (F1) of BERT
on each domain after finishing pre-training on all do-
mains. Experiments of NS domain are repeated for 10
times with different seeds and others are repeated for
5 times. More detailed results at different pre-training
stages are illustrated in appendix C.

outputs; (4) ER (Chaudhry et al., 2019b), which
alleviates forgetting by jointly training models on a
mixture samples from new data Di and the memory
Dsub

i−1. ELLE is based on ER and additionally intro-
duces the model expansion and pre-trained domain
prompts. For ER, we set the sampling ratio of Di

and Dsub
i−1 to be 9 : 1 in every batch same as ELLE;

(5) A-GEM (Chaudhry et al., 2019a), which con-
strains the new parameter gradients to make sure
that optimization directions do not conflict with
gradients on old domains; (6) Logit-KD, which
prevents forgetting by distilling knowledge from
the previous model Mi−1 using the old data in the
memory; (7) PNN (Rusu et al., 2016), which fixes
the old PLM Mi−1 to completely avoid knowledge
forgetting and grows new branches for learning new
knowledge. For a fair comparison, we control the
total train wall time of ELLE and all the baselines
to be the same at each training stage, so that each
method consumes the same computational costs.

4.2 Main Results

Table 1 summarizes the pre-training performance
each time when the PLM finishes training on a spe-
cific domain. Figure 2 depicts the trend of AP for
BERT w.r.t. train wall time, other trend curves are
illustrated in appendix D. We also report the final
downstream performance for discriminative PLMs
(BERT) on each domain after finishing the whole
pre-training in Table 2. The intermediate down-
stream performance each time when the PLM fin-
ishes training on one domain is left in appendix C.

2794

Domain WB NS REV BIO CS
WE DE FRW δN PT AP AP+ AP AP+ AP AP+ AP AP+ AP AP+

7.96 - 6.85 1.59 6.99 4.09 6.66 3.62 6.39 3.16

! ! 7.96 - 6.23 0.78 5.34 1.42 4.98 1.20 4.48 0.89

! ! 7.96 - 5.81 0.03 5.49 1.43 5.16 1.32 4.79 0.94

! ! ! 7.96 - 5.78 0.02 4.91 0.76 4.49 0.73 4.13 0.52

! ! 7.96 - 5.79 0.09 5.09 1.13 4.58 0.88 4.22 0.65

! ! ! ! 7.96 - 5.69 −0.13 4.85 0.67 4.45 0.69 4.09 0.47

! ! ! ! ! 7.92 - 5.62 -0.20 4.81 0.64 4.41 0.64 4.06 0.44

Table 3: AP and AP+ of different combinations of strategies when growing BERTL6_D384 to BERTL12_D768.

Superiority of ELLE. (1) From the results in Ta-
ble 1, we observe that, compared with all the base-
lines, ELLE achieves the lowest AP and satisfying
AP+ after finishing training on each domain. This
demonstrates that, given limited computational re-
sources, ELLE could acquire more knowledge and
in the meantime, mitigate the knowledge forgetting
problem. (2) We also observe from Figure 2 that
the AP of ELLE descends the fastest, showing the
superior training efficiency of ELLE over all base-
lines. (3) Besides, ELLE performs the best on all
downstream tasks, indicating that the knowledge
learned during pre-training could be properly stim-
ulated and leveraged for each downstream task. (4)
The superiority of ELLE is consistently observed
on the larger model size, i.e., BERTL24_D1024 and
other model architectures, i.e., GPTL12_D768. This
shows that ELLE is agnostic to both the model size
and the specific PLM model architecture chosen.
We expect future work to apply ELLE on other
PLM architectures and extremely large PLMs.

Comparisons with Baselines. (1) First of all,
consolidation-based methods (EWC and MAS) per-
form almost comparable with the naive baseline
in either pre-training or downstream tasks. This
means that parameter regularization may not be
beneficial for PLMs’ knowledge acquisition. (2)
Among memory-based methods, gradient-based
reaply (A-GEM) exhibits poorer performance in
pre-training, on the contrary, data-based replay (ER
and Logit-KD) achieve lower AP and AP+ than
the naive baseline, demonstrating that replaying
real data points could more efficiently mitigate the
knowledge forgetting problem. Meanwhile, all of
the memory-based methods perform comparable
or worse than the naive baseline in downstream
performance. (3) PNN achieves significantly lower
AP than non-progressive baselines, and is immune
to knowledge forgetting (AP+= 0). It also per-
forms better on the downstream tasks than other

baselines. This indicates that enlarging the network
is an effective way for lifelong pre-training and
also benefits downstream tasks.

5 Analysis

In this section, we conduct analyses to investi-
gate the effect of ELLE’s components. We fol-
low the setting in § 4 by choosing BERTL6_D384
as the initial model and continually growing it to
BERTL12_D768. Specifically, we investigate the ef-
fect of (1) width expansion (WE), (2) depth expan-
sion (DE), (3) function recovering warmup (FRW),
(4) the random noises added into the newly con-
structed parameters during model expansion (δN)
and (5) the pre-trained domain prompts (PT). We
test ELLE under different combinations of the
above components and compare the results. The ex-
perimental results of pre-training and downstream
tasks are summarized in Table 3 and Table 4, re-
spectively. Detailed trend curves for AP and AP+

are illustrated in appendix D.

Effect of Width / Depth Expansion. First,
we compare the differences of conducting only
width expansion (WE+FRW), only depth expan-
sion (DE+FRW) and expansion on both width and
depth (WE+DE+FRW) before function preserving
warmup. For a fair comparison, we keep the to-
tal number of Mi’s increased parameters for the
above three strategies almost the same at each stage
i. The specific model architectures are listed in
appendix F. The results show that: (1) compared
with the non-expanding baseline, all these three
strategies achieve better pre-training and down-
stream performance, showing that with the growth
of model size, the sample efficiency and train-
ing efficiency are extensively increased. There-
fore, PLMs could gain more knowledge with lim-
ited computational resources and perform better in
downstream tasks; (2) compared with expanding
only width or depth, expanding both of them is

2795

WE DE FRW δN PT WB NS REV BIO CS AVG
77.6 72.2 61.9 78.3 63.5 70.7

! ! 81.9 77.5 64.9 80.3 70.7 75.1

! ! 82.4 79.9 66.2 80.4 71.0 75.9

! ! ! 83.4 74.7 67.4 82.4 72.2 76.0

! ! 82.6 75.7 67.4 82.3 71.4 75.9

! ! ! ! 83.5 77.1 66.9 83.3 71.3 76.4

! ! ! ! ! 83.2 81.8 68.5 82.9 72.7 77.8

Table 4: BERTL12_D768’s downstream performance (F1)
on each domain after being continually pre-trained on
all domains with different combinations of strategies.

more efficient and can also achieve better down-
stream performance on almost all domains, except
the NS domain. This is also aligned with previ-
ous findings that PLM’s growth favors compound
scaling (Gu et al., 2021). We also conclude from
the trend curves in appendix D that only expanding
depth will make the training process unstable.

Effect of Function Recovering Warmup. We
compare the performance of the model expansion
w/ and w/o FRW, i.e., WE+DE and WE+DE+FRW.
For a fair comparison, we keep the total train wall
time for either strategy the same, in other words, for
WE+DE, PLMs can be trained for more steps on
the new domain due to the removal of FRW. How-
ever, the results show that WE+DE achieves worse
AP and AP+, indicating that without FRW, PLM
would learn new knowledge slower and also for-
get more previous knowledge. The trend curve in
appendix D also shows that AP and AP+ decrease
faster with FRW. This demonstrates the necessity
of the warmup after model expansion, i.e., PLMs
could better recover the knowledge lost during
model expansion and also get prepared for learning
new knowledge. Meanwhile, WE+DE+FRW per-
forms slightly better than WE+DE in most of the
downstream tasks, except the NS domain.

Effect of Random Noises. Different from the
original FPI (Chen et al., 2021), ELLE addition-
ally adds random noises into the newly copied pa-
rameters after expanding the width of PLMs as
mentioned in § 3.2. By comparing the model per-
formance w/ and w/o this trick, i.e., WE+DE+FRW
and WE+DE+FRW+δN , we can see that the added
noises significantly speed up pre-training and also
conduce to improving PLM’s overall downstream
performance. This validates our hypothesis that
random noises are useful for breaking the symme-
try of the copied parameters, thus providing a better

Domain WB NS REV BIO CS AVG
ELLE − PTfine-tune 82.9 79.9 67.0 82.1 67.7 75.9

ELLE + ¬PTfine-tune 83.1 80.6 68.1 81.7 70.8 76.9
ELLE 83.2 81.8 68.5 82.9 72.7 77.8

Table 5: BERTL12_D768’s downstream performance (F1)
on each domain when no prompt / a wrong prompt is
prepended in the input.

initialization that further optimization favors.

Effect of Pre-trained Domain Prompts. To
investigate the effect of pre-trained domain
prompts, we first compare the performance w/
and w/o them, i.e., WE+DE+FRW+δN and
WE+DE+FRW+δN+PT. From the results we can
conclude that when aided with domain prompts,
PLMs achieve lower AP and AP+ during pre-
training, showing that domain prompts could accel-
erate pre-training and alleviate catastrophic forget-
ting by disentangling the knowledge from different
sources. Furthermore, domain prompts generally
improve downstream performance by stimulating
the proper knowledge needed for each task.

To rigorously investigate how domain prompts
stimulate the knowledge during fine-tuning, for
a PLM pre-implanted with prompts during pre-
training, we test its downstream performance when
(1) no prompt is prepended in the input (i.e., ELLE-
PTfine-tune) during fine-tuning and (2) a prompt
from a random wrong domain is prepended in the
input (i.e., ELLE + ¬PTfine-tune). The results in Ta-
ble 5 show that both of the above strategies have
lower downstream performance than prepending
the right prompt (ELLE). We hypothesize the rea-
sons are two-fold: (1) firstly, for ELLE- PTfine-tune,
there exists a great gap between the formats of in-
put during pre-training and fine-tuning, and such a
gap would hinder the successful knowledge trans-
fer; (2) secondly, for ELLE + ¬PTfine-tune, although
the above gap disappears, the PLM is primed with
a wrong domain prompt, and thus cannot properly
stimulate the knowledge that is most relevant to
the downstream task. Although manually decid-
ing the most relevant domain prompt for a specific
downstream task is relatively easy and fast, such a
process can also be automated by training a domain
discriminator, which is left as future work.

Attention Pattern Visualization of a Stream of
PLMs. Through the function preserved model
expansion, PLMs inherit the knowledge of their
“ancestors” contained in the parameters. Intuitively,

2796

1

L0 H3 L1 H0 L1 H2 L2 H1 L2 H4 L3 H0 L3 H1 L4 H3

2

L0 H3 L1 H0 L1 H2 L3 H1 L3 H4 L4 H0 L4 H1 L5 H3

3

L0 H3 L1 H0 L1 H2 L3 H1 L3 H4 L5 H0 L5 H1 L7 H3

4

L0 H3 L2 H0 L2 H2 L4 H1 L4 H4 L6 H0 L6 H1 L8 H3

5

L0 H3 L2 H0 L2 H2 L4 H1 L4 H4 L6 H0 L6 H1 L8 H3

Figure 3: The visualization of the attention patterns of different attention heads in M1 (BERTL6_D384), M2

(BERTL8_D512), M3 (BERTL10_D640), M4 (BERTL11_D708) and M5 (BERTL12_D768) after finishing training on the
new corpus Di. Note that in this figure, all the attention heads of a PLM Mi are expanded from all its ancestors
{M1, . . . ,Mi−1} in the same column. We observe similar attention patterns between the descendant PLM and the
ancestor PLM, demonstrating the descendant PLM successfully preserves the functionality of its ancestors.

the descendant PLM (the expanded larger PLM)
should have similar functionalities to the ancestor
PLM (the original PLM before model expansion).
We thus investigate such functionality similarity
through the lens of attention patterns of each atten-
tion head in the Transformer layer.

Specifically, we visualize the attention patterns
of a stream of PLMs ({M1, . . . ,M5}) trained
by ELLE when growing from BERTL6_D384 to
BERTL12_D768. We checkpoint each PLM Mi

when it finishes training on the emerging data Di.
We input the same data into these checkpoints to
derive the attention patterns. The results are illus-
trated in Figure 3, from which we observe that the
attention patterns of a head in a descendant PLM
are surprisingly similar to those of its “ancestors”,
even if the descendant PLM is further trained on the
new data and enlarged many times. This indicates
that the expanded PLM by ELLE successfully in-
herits the knowledge from its “ancestor”, and thus
exhibits similar functionality to some extent.

6 Conclusion

In this paper, we present the efficient lifelong pre-
training problem, which requires PLMs to continu-
ally integrate the information from emerging data
efficiently. To achieve our goal, we propose ELLE

and progressively expand PLMs to acquire knowl-
edge efficiently and mitigate the knowledge forget-
ting. We also pre-implant domain prompts during
pre-training and use them to stimulate the needed
knowledge for downstream tasks. The experimen-
tal results show the superiority of ELLE over vari-
ous lifelong learning baselines in both pre-training
efficiency and downstream performances.

Acknowledgments

This work is supported by the National Key
R&D Program of China (No. 2020AAA0106502),
NExT++ project from the National Research Foun-
dation, Prime Minister’s Office, Singapore under
its IRC@Singapore Funding Initiative, Beijing
Academy of Artificial Intelligence (BAAI), and In-
ternational Innovation Center of Tsinghua Univer-
sity, Shanghai, China. This work is also supported
by the Pattern Recognition Center, WeChat AI, Ten-
cent Inc. Yujia Qin, Jiajie Zhang and Yankai Lin
designed the methods and the experiments. Jiajie
Zhang conducted the experiments. Yujia Qin, Jiajie
Zhang and Yankai Lin wrote the paper. Zhiyuan
Liu, Peng Li, Maosong Sun and Jie Zhou advised
the project and participated in the discussion. The
authors would like to thank Yichun Yin and Cheng
Chen for their constructive advice.

2797

References
Samira Abnar, Lisa Beinborn, Rochelle Choenni, and

Willem Zuidema. 2019. Blackbox meets blackbox:
Representational similarity and stability analysis of
neural language models and brains. ArXiv preprint,
abs/1906.01539.

Rahaf Aljundi, Francesca Babiloni, Mohamed Elho-
seiny, Marcus Rohrbach, and Tinne Tuytelaars. 2018.
Memory aware synapses: Learning what (not) to for-
get. In Proceedings of the European Conference on
Computer Vision (ECCV).

Sanjeev Arora, Nadav Cohen, and Elad Hazan. 2018.
On the optimization of deep networks: Implicit accel-
eration by overparameterization. In Proceedings of
the 35th International Conference on Machine Learn-
ing, ICML 2018, Stockholmsmässan, Stockholm, Swe-
den, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pages 244–253. PMLR.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus
Rohrbach, and Mohamed Elhoseiny. 2019a. Effi-
cient lifelong learning with A-GEM. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elho-
seiny, Thalaiyasingam Ajanthan, Puneet K Dokania,
Philip HS Torr, and Marc’Aurelio Ranzato. 2019b.
On tiny episodic memories in continual learning.
ArXiv preprint, abs/1902.10486.

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang,
Yujia Qin, Fengyu Wang, Zhi Wang, Xiao Chen,
Zhiyuan Liu, and Qun Liu. 2021. bert2bert: To-
wards reusable pretrained language models. ArXiv
preprint, abs/2110.07143.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: pre-
training text encoders as discriminators rather than
generators. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Cyprien de Masson d’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 13122–13131.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Bhuwan Dhingra, Jeremy R Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W Cohen. 2021. Time-aware language mod-
els as temporal knowledge bases. ArXiv preprint,
abs/2106.15110.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei
Wang, and Tie-Yan Liu. 2019. Efficient training of
BERT by progressively stacking. In Proceedings of
the 36th International Conference on Machine Learn-
ing, ICML 2019, 9-15 June 2019, Long Beach, Cali-
fornia, USA, volume 97 of Proceedings of Machine
Learning Research, pages 2337–2346. PMLR.

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen
Chen, and Jiawei Han. 2021. On the transformer
growth for progressive BERT training. In Proceed-
ings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
5174–5180, Online. Association for Computational
Linguistics.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A
Smith, and Luke Zettlemoyer. 2021. Demix layers:
Disentangling domains for modular language model-
ing. ArXiv preprint, abs/2108.05036.

Suchin Gururangan, Ana Marasović, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. In
Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
8342–8360, Online. Association for Computational
Linguistics.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao
Liu, Yuqi Huo, Jiezhong Qiu, Liang Zhang, Wentao
Han, Minlie Huang, Qin Jin, Yanyan Lan, Yang Liu,
Zhiyuan Liu, Zhiwu Lu, Xipeng Qiu, Ruihua Song,
Jie Tang, Ji-Rong Wen, Jinhui Yuan, Wayne Xin
Zhao, and Jun Zhu. 2021. Pre-trained models: Past,
present and future. ArXiv preprint, abs/2106.07139.

Ruidan He, Linlin Liu, Hai Ye, Qingyu Tan, Bosheng
Ding, Liying Cheng, Jiawei Low, Lidong Bing, and
Luo Si. 2021. On the effectiveness of adapter-based
tuning for pretrained language model adaptation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 2208–
2222, Online. Association for Computational Lin-
guistics.

Ruining He and Julian J. McAuley. 2016. Ups and
downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In Pro-
ceedings of the 25th International Conference on
World Wide Web, WWW 2016, Montreal, Canada,
April 11 - 15, 2016, pages 507–517. ACM.

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin,
Janghoon Han, Gyeonghun Kim, Stanley Jungkyu

2798

https://arxiv.org/abs/1906.01539
https://arxiv.org/abs/1906.01539
https://arxiv.org/abs/1906.01539
https://openaccess.thecvf.com/content_ECCV_2018/html/Rahaf_Aljundi_Memory_Aware_Synapses_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Rahaf_Aljundi_Memory_Aware_Synapses_ECCV_2018_paper.html
http://proceedings.mlr.press/v80/arora18a.html
http://proceedings.mlr.press/v80/arora18a.html
https://openreview.net/forum?id=Hkf2_sC5FX
https://openreview.net/forum?id=Hkf2_sC5FX
https://arxiv.org/abs/1902.10486
https://arxiv.org/abs/2110.07143
https://arxiv.org/abs/2110.07143
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://proceedings.neurips.cc/paper/2019/hash/f8d2e80c1458ea2501f98a2cafadb397-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/f8d2e80c1458ea2501f98a2cafadb397-Abstract.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2106.15110
https://arxiv.org/abs/2106.15110
http://proceedings.mlr.press/v97/gong19a.html
http://proceedings.mlr.press/v97/gong19a.html
https://doi.org/10.18653/v1/2021.naacl-main.406
https://doi.org/10.18653/v1/2021.naacl-main.406
https://arxiv.org/abs/2108.05036
https://arxiv.org/abs/2108.05036
https://arxiv.org/abs/2108.05036
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://arxiv.org/abs/2106.07139
https://arxiv.org/abs/2106.07139
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.18653/v1/2021.acl-long.172
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037
https://doi.org/10.1145/2872427.2883037

Choi, and Minjoon Seo. 2021. Towards contin-
ual knowledge learning of language models. ArXiv
preprint, abs/2110.03215.

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao,
Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and
Xiang Ren. 2021. Lifelong pretraining: Continu-
ally adapting language models to emerging corpora.
ArXiv preprint, abs/2110.08534.

David Jurgens, Srijan Kumar, Raine Hoover, Dan Mc-
Farland, and Dan Jurafsky. 2018. Measuring the
evolution of a scientific field through citation frames.
Transactions of the Association for Computational
Linguistics, 6:391–406.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. ArXiv
preprint, abs/2001.08361.

Johannes Kiesel, Maria Mestre, Rishabh Shukla, Em-
manuel Vincent, Payam Adineh, David Corney,
Benno Stein, and Martin Potthast. 2019. SemEval-
2019 task 4: Hyperpartisan news detection. In
Proceedings of the 13th International Workshop on
Semantic Evaluation, pages 829–839, Minneapolis,
Minnesota, USA. Association for Computational Lin-
guistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. 2017. Over-
coming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences,
114(13):3521–3526.

Jens Kringelum, Sonny Kim Kjaerulff, Søren Brunak,
Ole Lund, Tudor I Oprea, and Olivier Taboureau.
2016. Chemprot-3.0: a global chemical biology dis-
eases mapping. Database, 2016.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt
Keutzer, Dan Klein, and Joey Gonzalez. 2020. Train
big, then compress: Rethinking model size for ef-
ficient training and inference of transformers. In
Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Vir-
tual Event, volume 119 of Proceedings of Machine
Learning Research, pages 5958–5968. PMLR.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S2ORC: The semantic
scholar open research corpus. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4969–4983, Online. Asso-
ciation for Computational Linguistics.

David Lopez-Paz and Marc’Aurelio Ranzato. 2017.
Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 6467–6476.

Julian J. McAuley, Christopher Targett, Qinfeng Shi,
and Anton van den Hengel. 2015. Image-based rec-
ommendations on styles and substitutes. In Proceed-
ings of the 38th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, Santiago, Chile, August 9-13, 2015, pages
43–52. ACM.

Michael McCloskey and Neal J Cohen. 20p. Catas-
trophic interference in connectionist networks: The
sequential learning problem. ArXiv preprint, abs/p.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han,
Zhengyan Zhang, Yusheng Su, Zhiyuan Liu, Peng Li,
Maosong Sun, et al. 2021a. Knowledge inheritance
for pre-trained language models. ArXiv preprint,
abs/2105.13880.

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin,
Ning Ding, Zhiyuan Liu, Juanzi Li, Lei Hou, Peng
Li, Maosong Sun, et al. 2021b. Exploring low-
dimensional intrinsic task subspace via prompt tun-
ing. ArXiv preprint, abs/2110.07867.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H. Lampert. 2017. icarl: In-
cremental classifier and representation learning. In
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, pages 5533–5542. IEEE Computer
Society.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Tim-
othy P. Lillicrap, and Gregory Wayne. 2019. Expe-
rience replay for continual learning. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 348–358.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. ArXiv preprint,
abs/1606.04671.

2799

https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2110.08534
https://arxiv.org/abs/2110.08534
https://doi.org/10.1162/tacl_a_00028
https://doi.org/10.1162/tacl_a_00028
https://arxiv.org/abs/2001.08361
https://doi.org/10.18653/v1/S19-2145
https://doi.org/10.18653/v1/S19-2145
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://www.pnas.org/content/114/13/3521.short
https://www.pnas.org/content/114/13/3521.short
https://pubmed.ncbi.nlm.nih.gov/26876982/
https://pubmed.ncbi.nlm.nih.gov/26876982/
http://proceedings.mlr.press/v119/li20m.html
http://proceedings.mlr.press/v119/li20m.html
http://proceedings.mlr.press/v119/li20m.html
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://proceedings.neurips.cc/paper/2017/hash/f87522788a2be2d171666752f97ddebb-Abstract.html
https://doi.org/10.1145/2766462.2767755
https://doi.org/10.1145/2766462.2767755
https://arxiv.org/abs/p
https://arxiv.org/abs/p
https://arxiv.org/abs/p
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://arxiv.org/abs/2105.13880
https://arxiv.org/abs/2105.13880
https://arxiv.org/abs/2110.07867
https://arxiv.org/abs/2110.07867
https://arxiv.org/abs/2110.07867
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.1109/CVPR.2017.587
https://doi.org/10.1109/CVPR.2017.587
https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/fa7cdfad1a5aaf8370ebeda47a1ff1c3-Abstract.html
https://arxiv.org/abs/1606.04671

Roy Schwartz, Jesse Dodge, Noah A Smith, and
Oren Etzioni. 2019. Green ai. ArXiv preprint,
abs/1907.10597.

Jonathan Schwarz, Wojciech Czarnecki, Jelena
Luketina, Agnieszka Grabska-Barwinska, Yee Whye
Teh, Razvan Pascanu, and Raia Hadsell. 2018.
Progress & compress: A scalable framework for
continual learning. In Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML
2018, Stockholmsmässan, Stockholm, Sweden, July
10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 4535–4544. PMLR.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, Ryan Sepassi, and Blake A. Hechtman. 2018.
Mesh-tensorflow: Deep learning for supercomputers.
In Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 10435–10444.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
ArXiv preprint, abs/1909.08053.

Yusheng Su, Xiaozhi Wang, Yujia Qin, Chi-Min Chan,
Yankai Lin, Zhiyuan Liu, Peng Li, Juanzi Li, Lei
Hou, Maosong Sun, et al. 2021. On transferability
of prompt tuning for natural language understanding.
ArXiv preprint, abs/2111.06719.

Fan-Keng Sun, Cheng-Hao Ho, and Hung-Yi Lee.
2020. LAMOL: language modeling for lifelong lan-
guage learning. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Tongtong Wu, Massimo Caccia, Zhuang Li, Yuan-Fang
Li, Guilin Qi, and Gholamreza Haffari. 2021. Pre-
trained language model in continual learning: A com-
parative study. In International Conference on Learn-
ing Representations.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju
Hwang. 2018. Lifelong learning with dynamically
expandable networks. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings. OpenReview.net.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu,
Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh.
2020. Large batch optimization for deep learning:
Training BERT in 76 minutes. In 8th International
Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages
9051–9062.

Minjia Zhang and Yuxiong He. 2020. Accelerat-
ing training of transformer-based language models
with progressive layer dropping. ArXiv preprint,
abs/2010.13369.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. In 2015 IEEE Interna-
tional Conference on Computer Vision, ICCV 2015,
Santiago, Chile, December 7-13, 2015, pages 19–27.
IEEE Computer Society.

2800

https://arxiv.org/abs/1907.10597
http://proceedings.mlr.press/v80/schwarz18a.html
http://proceedings.mlr.press/v80/schwarz18a.html
https://proceedings.neurips.cc/paper/2018/hash/3a37abdeefe1dab1b30f7c5c7e581b93-Abstract.html
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2111.06719
https://arxiv.org/abs/2111.06719
https://openreview.net/forum?id=Skgxcn4YDS
https://openreview.net/forum?id=Skgxcn4YDS
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://openreview.net/pdf?id=figzpGMrdD
https://openreview.net/pdf?id=figzpGMrdD
https://openreview.net/pdf?id=figzpGMrdD
https://openreview.net/forum?id=Sk7KsfW0-
https://openreview.net/forum?id=Sk7KsfW0-
https://openreview.net/forum?id=Syx4wnEtvH
https://openreview.net/forum?id=Syx4wnEtvH
https://proceedings.neurips.cc/paper/2019/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/3e9f0fc9b2f89e043bc6233994dfcf76-Abstract.html
https://arxiv.org/abs/2010.13369
https://arxiv.org/abs/2010.13369
https://arxiv.org/abs/2010.13369
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11
https://doi.org/10.1109/ICCV.2015.11

Appendices

A Additional Analysis on Function
Preserved Model Expansion

In addition to the analyses of function preserved
model expansion conducted in our main paper, in
this section, we further analyze the effect of (1)
the expanded model size at each training stage
and (2) the choice of copied layer during depth
expansion. We experiment on the combination of
WE+DE+FRW as mentioned in § 5 and choose
BERTL6_D384 as the initial PLM M1. Other set-
tings are kept the same as § 5.

Effect of Expanded Model Size. In our main
experiments, we assume that the data size of each
emerging corpus is the same and linearly enlarge
the model size when conducting model expansion.
In this section, we explore the effect of expanded
model size given limited computational resources.
We conduct experiments on a stream of data from 3
domains, i.e., WB, NS and REV domain. We start
from the initial PLM BERTL6_D384 and continually
adapt it to new corpora. Under the same training
environment, we control the computational costs
(train wall time) of each domain to be 7200 seconds.
We compare the performances when the PLM ex-
pands 0, 2, 4, and 6 layers and heads for each do-
main, respectively. Note the PLMs expanded with
a larger size would be trained with fewer steps to
control the train wall time.

The results are shown in Table 6, from which
we can conclude that the best performance is ob-
tained when the model expands 2 layers and heads
at each expansion stage, and expanding more or
fewer parameters leads to a performance drop. The
reasons are two-fold: (1) firstly, as mentioned be-
fore, expanding the model size improves the sam-
ple efficiency (Kaplan et al., 2020; Li et al., 2020),
which is beneficial for PLMs’ knowledge acquisi-
tion; (2) secondly, when increasing the expanded
model size, the benefits from inheriting the knowl-
edge of a small PLM would become less and less
evident. To sum up, expanding with an interme-
diate size strikes the best trade-off between the
above two reasons, and there may exist an optimal
expanded size when performing model expansion.

Intuitively, the optimal expanded model size may
be influenced by many factors, e.g., the computa-
tional budgets, the amount of emerging data, the
PLM’s model architecture, etc. And systematically
analyzing the effects of all these factors is beyond

the scope of this paper, thus we expect future works
to design algorithms to accurately estimate the op-
timal expanded size for model expansion.

Choice of Copied Layer. As mentioned in § 3.2,
each time when we conduct width expansion, we
choose those layers that have not been copied be-
fore. To demonstrate the benefit of this trick, we
compare three expansion strategies: (1) always
replicating those layers that have not been copied
before (WE+DE+FRW); (2) always replicating the
first layer (WE+DEfirst+FRW) and (3) always repli-
cating the last layer (WE+DElast+FRW).

The results in Figure 4 show that AP and AP+

descend the fastest when we always replicate
those layers that have not been copied before (i.e.,
WE+DE+FRW). This demonstrates that, since dif-
ferent layers have different functionalities, choos-
ing those layers that have not been expanded be-
fore would help PLMs develop in an all-around
way, instead of just developing a certain kind of
functionality. Furthermore, we find empirically
that when pre-training PLMs continually on mul-
tiple domains, if we always choose those layers
that have not been expanded before at each depth
expansion stage, then the final performance is not
sensitive to choosing which layers to expand first.

B Pre-training Hyper-parameters

In Table 7, we list the architectures and the hyper-
parameters for the PLMs we pre-trained with
ELLE in this paper, including the total number
of trainable parameters (nparams), the number of
layers (nlayers), the number of units in each bottle-
neck layer (dmodel), the number of attention heads
(nheads), the inner hidden size of FFN layer (dFFN),
the learning rate (lr), the training steps of FRW
(SF), the training steps of adaptation after FRW
(STF) when learning the new corpus, the ratio of
learning rate warmup (RW), and the total train wall
time (TWT). We set the dropout rate for each model
to 0.1, weight decay to 0.01 and use linear learning
rate decay for BERT and inverse square root decay
for GPT. We adopt Adam (Kingma and Ba, 2015)
as the optimizer. The hyper-parameters for the opti-
mizer is set to 1× 10−6, 0.9, 0.98 for ϵ, β1, β2, re-
spectively. We reset the optimizer and the learning
rate scheduler each time when the PLM finishes
FRW or the training on new corpus. All experi-
ments are conducted under the same computation
environment with 8 NVIDIA 32GB V100 GPUs.
All the pre-training implementations are based on

2801

Domain WB NEWS REVIEW

Metrics AP AP+ AP AP+ AP AP+

Expand 0 layers and heads per domain 13.09 - 8.99 −0.49 8.24 2.80
Expand 2 layers and heads per domain 13.09 - 8.28 -1.44 7.25 1.11
Expand 4 layers and heads per domain 13.09 - 8.62 −0.95 7.53 1.30
Expand 6 layers and heads per domain 13.09 - 9.08 −0.24 7.92 1.49

Table 6: AP and AP+ of PLMs trained with ELLE that expands 0, 2, 4 and 6 layers and heads during model
expansion, respectively. AP and AP+ are evaluated when each PLM finishes training on each domain.

WB News Review Bio CS
Train Wall Time

4

5

6

7

8

9

A
P

WE + DE + FRW
WE + DEfirst + FRW
WE + DElast + FRW

WB News Review Bio CS
Train Wall Time

0.0

0.5

1.0

1.5

2.0

A
P+

WE + DE + FRW
WE + DEfirst + FRW
WE + DElast + FRW

Figure 4: AP and AP+ of PLMs trained by ELLE using different depth expansion strategies: WE+DE+FRW,
WE+DEfirst+FRW and WE+DElast+FRW w.r.t train wall time.

Model nparams nlayers dmodel nheads dFFN lr SF STF RW TWT(s)
Growing from BERTL6_D384 to BERTL12_D768

M1 30.3M 6 384 6 1536 5.0× 10−4 - 62.5k 8% 6.0× 104

M2 51.5M 8 512 8 2048 5.0× 10−4 5k 20k 8% 2.4× 104

M3 82.2M 10 640 10 2560 5.0× 10−4 5k 20k 8% 5.0× 104

M4 102M 11 704 11 2816 5.0× 10−4 5k 20k 8% 5.8× 104

M5 125M 12 768 12 3072 5.0× 10−4 5k 20k 8% 6.8× 104

Growing from BERTL12_D768 to BERTL24_D1024

M1 125M 12 768 12 3072 5.0× 10−4 - 62.5k 8% 1.9× 105

M2 216M 15 960 15 3840 2.5× 10−4 1k 20k 20% 6.5× 104

M3 280M 18 1024 16 4096 2.5× 10−4 1k 20k 20% 1.4× 105

M4 318M 21 1024 16 4096 2.5× 10−4 1k 20k 20% 1.7× 105

M5 355M 24 1024 16 4096 2.5× 10−4 1k 20k 20% 2.2× 105

Growing from GPTL6_D384 to GPTL12_D768

M1 29.9M 6 384 6 1536 5.0× 10−4 - 62.5k 16% 6.7× 104

M2 51.0M 8 512 8 2048 5.0× 10−4 5k 20k 16% 3.9× 104

M3 81.4M 10 640 10 2560 5.0× 10−4 5k 20k 16% 5.6× 104

M4 101M 11 704 11 2816 5.0× 10−4 5k 20k 16% 6.8× 104

M5 124M 12 768 12 3072 5.0× 10−4 5k 20k 16% 7.8× 104

Table 7: Model architectures, learning rate (lr), steps of FRW (SF), steps of training after FRW (STF), the ratio of
steps for learning rate warmup (for both FRW and pre-training) (RW), and train wall time (TWT) for all the models
pre-trained with ELLE in this paper. We list the details when growing BERTL6_D384 to BERTL12_D768, BERTL12_D768
to BERTL24_D1024 and GPTL6_D384 to GPTL12_D768, respectively. The total train wall time consumed by the above
three settings is 2.57× 105 seconds, 7.79× 105 seconds, and 3.08× 105 seconds, respectively.

fairseq1 (Ott et al., 2019) (MIT-license).

2802

HyperParam MNLI HYPERPARTISAN HELPFULNESS CHEMPROT ACL-ARC

Learning Rate 1× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5

Batch Size 32 256 256 256 256
Weight Decay 0.1 0.1 0.1 0.1 0.1
Max Epochs 10 10 10 10 10
Learning Rate Decay Linear Linear Linear Linear Linear
Warmup Ratio 0.06 0.06 0.06 0.06 0.06

Table 8: Hyper-parameters for fine-tuning on downstream tasks of each domain. As mentioned in the main
paper, for each domain, we select a representative task that is relatively stable, i.e., MNLI (Williams et al., 2018),
HYPERPARTISAN (Kiesel et al., 2019), HELPFULLNESS (McAuley et al., 2015), CHEMPROT (Kringelum et al.,
2016) and ACL-ARC (Jurgens et al., 2018) for WB, NS, REV, BIO and CS, respectively.

C Implementation Details and Additional
Experiments for Downstream
Fine-tuning

Implementation Details. Table 8 describes the
hyper-parameters for fine-tuning PLMs on down-
stream tasks of each domain. The implementa-
tions of MNLI are based on fairseq2 (Ott et al.,
2019) (MIT-license). The implementations of HY-
PERPARTISAN, HELPFULNESS CHEMPROT, and
ACL-ARC are based on (Gururangan et al., 2020)3.

Additional Experiments. Figure 5 visualizes the
specific F1 on each downstream tasks and the av-
erage F1 of PLMs trained with Naive, A-GEM,
EWC, MAS, ER, Logit-KD, PNN and ELLE after
finishing training on each domain when we choose
BERTL6_D384 as the initial PLM M1. The average
F1 when finishing training on the i-th domain is
calculated as follows:

F1iavg =
1

N

N∑
j=1

F1jMi
(3)

where F1jMi
is the F1 score of Mi evaluated on

the downstream task of the j-th domain. We also
list the detailed numerical results for each task in
Table 9, covering all PLMs trained by each lifelong
learning method.

The results show that ELLE outperforms all the
lifelong learning baselines after finishing training
on each domain, demonstrating that ELLE could
properly stimulate the learned knowledge during
pre-training and boost the performance in down-
stream tasks.

1https://github.com/pytorch/fairseq
2https://github.com/pytorch/fairseq
3https://github.com/allenai/

dont-stop-pretraining

D Trend Curves for AP and AP+

For the experiments in § 4, the trend curves
of average perplexity (AP) and average in-
creased perplexity (AP+) w.r.t train wall time are
shown in Figure 7 (growing from BERTL6_D384
to BERTL12_D768), Figure 8 (growing from
BERTL12_D768 to BERTL24_D1024), and Figure 9
(growing from GPTL6_D384 to GPTL12_D768). Each
figure illustrates the performance of different life-
long learning methods. The above results reflect
that, compared with all the baselines, AP and AP+

of ELLE descend with the fastest speed, demon-
strating that ELLE could acquire knowledge and
mitigate the knowledge forgetting on previous do-
mains more efficiently. Thus given limited compu-
tational resources, PLMs trained by ELLE could
integrate more information from different domains.

For the analysis in § 5, we visualize the trend
curves of AP and AP+ when choosing different
combinations of strategies. Specifically, we inves-
tigate (1) the effect of width / depth expansion in
Figure 10 (comparing WE+FRW, DE+FRW and
WE+DE+FRW); (2) the effect of function recover-
ing warmup in Figure 11 (comparing WE+DE and
WE+DE+FRW); (3) the effect of random noises
added into the newly initialized parameters dur-
ing model expansion in Figure 11 (comparing
WE+DE+FRW and WE+DE+FRW+δN) and (4)
the effect of pre-trained domain prompts in Fig-
ure 12 (comparing ELLE and ELLE-PT). All of
the above results again demonstrate the effective-
ness of ELLE’s each component.

E Representational Similarity of a
Stream of PLMs

We investigate the representational similarity (Ab-
nar et al., 2019) of a descendant PLM and its an-
cestors. Representational similarity measures how
similar two PLMs represent the data. Specifically,

2803

https://github.com/pytorch/fairseq
https://github.com/pytorch/fairseq
https://github.com/allenai/dont-stop-pretraining
https://github.com/allenai/dont-stop-pretraining

75.0

77.5

80.0

82.5

F1

MLNI (WB)

Naive
ER

A-GEM
MAS

EWC
Logit-KD

PNN
ELLE

70

80

F1

HYP (News)

62.5

65.0

67.5

F1

Helpful (Review)

75

80

F1

ChemProt (Bio)

60

70

F1

ACL-ARC (CS)

WB News Review Bio CS
Domain

70

75

A
vg

 F
1

Average

Figure 5: Specific and average F1 on downstream tasks
of all domains of different lifelong learning methods.
The initial PLM is chosen as BERTL6_D384. The score
is evaluated after each model finishes training on each
domain.

we experiment on a stream of PLMs when grow-
ing BERTL6_D384 to BERTL12_D768. For a model
Mj and its ancestor Mi (1 ≤ i ≤ j − 1), we
randomly sample n [MASK] tokens from the raw
corpus Dj , and get the probability distributions

Domain WB NS REV BIO CS AVG
Naive
M1 77.11 76.29 62.85 76.49 63.07 71.16
M2 78.17 80.21 61.54 75.95 61.64 71.50
M3 77.70 73.00 64.46 73.39 53.41 68.39
M4 75.60 68.33 61.32 80.32 59.49 69.01
M5 77.18 72.84 60.63 77.12 64.82 70.52
A-GEM
M1 77.11 76.29 62.85 76.49 63.07 71.16
M2 77.99 76.80 61.99 75.53 59.65 71.50
M3 77.71 72.96 63.92 73.39 53.66 68.39
M4 74.76 71.80 61.41 79.70 62.00 69.93
M5 76.55 71.37 61.53 76.85 64.82 70.75
MAS
M1 77.11 76.29 62.85 76.49 63.07 71.16
M2 78.13 76.75 61.68 75.12 62.69 70.87
M3 76.60 73.79 64.04 72.11 53.95 70.87
M4 76.09 71.90 61.83 80.62 64.26 70.94
M5 77.14 73.70 60.69 77.53 68.23 71.46
MAS
M1 77.11 76.29 62.85 76.49 63.07 71.16
M2 78.30 80.15 61.18 75.87 59.96 71.09
M3 77, 11 72.26 64.41 72.37 52.07 67.64
M4 76.21 73.21 61.34 80.81 62.33 70.78
M5 77.41 72.79 61.62 77.49 59.62 69.79
ER
M1 77.11 76.29 62.85 76.49 63.07 71.16
M2 78.40 79.13 61.41 76.25 67.41 72.52
M3 78.18 78.04 63.98 75.57 57.53 70.70
M4 77.47 72.40 62.19 80.44 59.89 73.13
M5 77.57 72.15 61.92 78.25 63.49 70.68
Logit-KD
M1 77.11 79.29 62.85 76.49 64.07 71.16
M2 76.33 69.77 63.14 75.21 59.19 68.73
M3 76.63 71.32 64.97 74.46 55.91 68.66
M4 76.84 69.12 64.30 76.96 59.11 69.27
M5 77.21 69.48 63.86 76.82 58.87 69.25
PNN
M1 76.04 74.11 62.31 75.09 59.57 69.42
M2 76.04 76.30 64.74 75.65 59.19 70.24
M3 76.04 76.30 68.01 75.51 55.91 71.76
M4 76.04 76.30 68.01 79.46 59.11 72.51
M5 76.04 76.30 68.01 79.46 58.87 73.01
ELLE
M1 77.12 78.85 64.05 76.81 65.67 72.50
M2 79.67 78.48 67.93 76.38 65.84 73.66
M3 81.99 86.75 69.32 78.14 62.63 75.77
M4 82.55 81.18 69.19 83.27 69.03 77.04
M5 83.17 81.83 68.47 82.87 72.69 77.81

Table 9: Specific and average F1 scores on downstream
tasks from each domain after the PLM finishes training
on each domain. We evaluate PLMs trained with differ-
ent lifelong learning methods that choose BERTŁ6_D384
as the initial model M1.

pi
k and pj

k output by the LM head of Mi and
Mj , respectively for each [MASK] token k, where
1 ≤ k ≤ n. We calculate the average represen-
tational similarity (ARS) between Mj and all its
ancestors {M1, · · · ,Mj−1} as follows:

ARSj =
−1

(j − 1)× n

j−1∑
i=1

n∑
k=1

KL(pi
k,p

j
k), (4)

2804

Domain WB NS REV BIO CS
Metrics AP AP+ AP AP+ AP AP+ AP AP+ AP AP+

Half train wall time
MAS 7.96 - 8.50 6.22 12.85 18.88 13.99 17.52 10.31 10.22
ER 7.96 - 7.12 1.98 7.11 4.14 6.83 3.77 6.53 3.78
Logit-KD 7.96 - 7.72 1.12 7.27 1.94 7.17 2.08 7.06 1.99
PNN 7.96 - 6.75 0.00 5.53 0.00 5.09 0.00 5.03 0.00
ELLE (ours) 7.92 - 6.05 0.26 5.21 1.04 4.83 0.96 4.42 0.68
Smaller memory
MAS 7.96 - 8.08 5.65 13.44 21.17 13.87 17.67 9.91 9.75
ER 7.96 - 6.99 2.09 7.15 4.53 6.86 4.09 6.49 3.42
Logit-KD 7.96 - 7.68 1.15 7.24 2.06 7.21 2.27 7.05 2.16
PNN 7.96 - 6.52 0.00 5.29 0.00 4.84 0.00 4.76 0.00
ELLE (ours) 7.92 - 5.85 0.39 5.04 1.13 4.58 0.98 4.20 0.70
Full train wall time & memory (the main results in § 4)
ELLE (ours) 7.92 - 5.62 −0.20 4.81 0.64 4.41 0.64 4.06 0.44

Table 10: Average perplexity (AP) and average increased perplexity (AP+) of PLMs trained by different lifelong
learning methods with half train wall time on Ns, Rev, Bio, CS domains and smaller memory containing 34M tokens
for each domain. We evaluate the performance each time when PLMs finish training on one domain.

WB News Review Bio CS
Domain

1.0

0.5

0.0

A
R

S Naive
MAS
Replay
Logit-KD
Ours

Figure 6: Average representational similarity (ARS) of
a stream of PLMs comparing different lifelong learning
algorithms. We choose BERTL6_D384 as the initial PLM
M1.

Domain WB NS REV BIO CS AVG
Half train wall time
MAS 76.7 72.3 61.6 77.4 64.3 70.5
ER 78.0 71.0 61.1 77.4 65.8 70.7
Logit-KD 77.0 72.6 63.8 76.2 58.4 69.6
PNN 76.0 55.9 62.6 53.1 28.0 55.1
ELLE 82.0 78.4 68.7 81.7 74.0 77.0
Smaller memory
MAS 77.1 73.7 60.7 77.5 68.2 71.5
ER 77.9 72.0 61.5 76.3 63.6 70.3
Logit-KD 77.0 73.1 63.3 75.9 57.4 69.3
PNN 76.0 64.9 64.2 55.1 30.5 58.1
ELLE 82.9 80.5 68.9 82.6 74.2 77.8
Full train wall time & memory (the main results in § 4)
ELLE 83.2 81.8 68.5 82.9 72.7 77.8

Table 11: Final downstream performance (F1) of BERT
on each domain after finishing pre-training on all do-
mains with half train wall time on Ns, Rev, Bio, CS
domains and smaller memory containing 34M tokens
for each domain. Experiments of NS domain are re-
peated for 10 times with different seeds and others are
repeated for 5 times.

where KL denotes the Kullback-Leibler divergence
between two probability distributions. Higher

ARSj means the representations of Mj and its
ancestors are more similar. To some extent, ARSj

could reflect how much knowledge / functionality
of the ancestors is preserved by Mj .

We compare ARS of PLMs trained by Naive,
MAS, ER, Logit-KD and ELLE and illustrate the
results in Figure 6, from which we observe that
Logit-KD has the highest ARS. This is because
the training objective of knowledge distillation in
Logit-KD is highly correlated with ARS. In addi-
tion, ELLE takes second place. We also find that,
with PLMs continually absorbing new knowledge,
the ASR generally decreases.

F Model Architectures for the Analysis of
Model Expansion

In Table 12, we list the model architectures of all
the investigated PLMs when conducting analysis
of model expansion in § 5. Specifically, three
strategies are investigated, including WE+FRW,
DE+FRW and WE+DE+FRW. As mentioned in
our main paper, for a fair comparison, we keep the
total number of Mi’s increased parameters for the
above three strategies almost the same at each stage
i.

G Performance of ELLE with Fewer
Computational Budgets and Storage
Budgets

To investigate the performance of ELLE under lim-
ited (1) computational budgets and (2) storage bud-
gets, in this section, we take an initial step to in-
vestigate the effect of (1) training resources (train

2805

Model nparams nlayers dmodel nheads dFFN lr
WE + FRW
M1 30.3M 6 384 6 1536 5.0× 10−4

M2 53.6M 6 576 9 2304 5.0× 10−4

M3 82.2M 6 768 12 3072 5.0× 10−4

M4 104M 6 896 14 3584 5.0× 10−4

M5 129M 6 1024 16 4096 5.0× 10−4

DE + FRW
M1 30.3M 12 768 12 3072 5.0× 10−4

M2 51.6M 18 768 12 3072 2.5× 10−4

M3 83.6M 36 768 12 3072 2.5× 10−4

M4 105M 48 768 12 3072 2.5× 10−4

M5 126M 60 768 12 3072 2.5× 10−4

WE + DE + FRW
M1 30.3M 6 384 6 1536 5.0× 10−4

M2 51.5M 8 512 8 2048 5.0× 10−4

M3 82.2M 10 640 10 2560 5.0× 10−4

M4 102M 11 704 11 2816 5.0× 10−4

M5 125M 12 768 12 3072 5.0× 10−4

Table 12: Model architectures the investigated PLMs of WE+FRW, DE+FRW, WE+DE+FRW. We keep the total
number of Mi’s increased parameters for the above three strategies almost the same at each stage i.

wall time) and (2) memory size for ELLE. Follow-
ing the experimental setting in § 4, we continually
grow BERTL6_D384 to BERTL12_D768 on a stream
of data from 5 domains. We test the performance
of ELLE and a series of lifelong learning baselines
(MAS, ER, Logit-KD and PNN), by (1) reducing
the train wall time by half (for NS, REV, BIO and
CS domain) and (2) randomly sample only 34M
tokens (1% of the full corpus) as the memory Dsub

i

for each corpus i, compared with the memory size
200M in § 4.

The experimental results for the above two set-
tings are listed in Table 10 (pre-training) and Ta-
ble 11 (fine-tuning), respectively. We also illus-
trate the trend curves of AP and AP+ in Figure 13
and Figure 14. From the above results, we find
that: (1) when given fewer computational budgets
and storage budgets, ELLE still outperforms all
the lifelong learning baselines in both pre-training
and downstream performance, which demonstrates
the superiority of ELLE; (2) for ELLE, when
PLMs are trained with fewer computational bud-
gets, we observe significant performance drops
in both pre-training (higher AP and AP+) and
downstream tasks (lower average F1). This shows
that pre-training with fewer computations would
harm PLMs’ knowledge acquisition; (3) for ELLE,
when there are fewer memory budgets, although
we also observe slight performance drops in pre-
training (higher AP and AP+), the performance
in downstream tasks is generally not influenced,
with the average F1 score keeping almost the same

(77.8). This shows the data-efficiency of PLMs,
i.e., PLMs could easily recall the learned knowl-
edge by reviewing small-scale data conserved in
the memory (as few as 1%). As mentioned before,
considering that for pre-training, the expense of
storage (e.g., hard disks) is far cheaper than the
computational resources (e.g., GPUs), the storage
space problem for memory seldom needs to be con-
sidered.

H Details of Baselines

We tried different hyper-parameters for baselines,
including the regularization parameter λ for EWC
and MAS, and the memory size for A-GEM, to
derive and report their best performance. Their AP
and AP+ curves are shown in Figure 15, 16 and
17. From the results we can see that none of these
hyperparameters works well. For EWC and MAS,
when the regularization parameter λ is small, the
pre-training performance is not obviously better
than that of naive method. However, if we slightly
increase λ, the performance would become worse
than baseline. For A-GEM, the case with bigger
memory also doesn’t clearly outperform cases with
smaller memory and naive case. Specially, we
observed that during A-GEM pre-training, 99.9%
of the inter-products of current gradient and replay
gradient are positive, implying that pre-training on
different domains is similar to each other to a large
extent. This might indicate that EWC, MAS, and
A-GEM cannot deal with the subtle difference of
various domains.

2806

WB News Review Bio CS
Train Wall Time

4

8

12

16
A

P

Naive
EWC
MAS
GEM
ER
Logit-KD
PNN
Ours

WB News Review Bio CS
Train Wall Time

0

5

10

15

20

A
P+

Naive
EWC
MAS
GEM
ER
Logit-KD
PNN
Ours

Figure 7: AP and AP+ of different lifelong learning methods with BERTL6_D384 as the initial PLM w.r.t train wall
time. ELLE continually grows BERTL6_D384 to BERTL12_D768.

WB News Review Bio CS
Train Wall Time

3

3.5

4

4.5

5

5.5

6

A
P

ER
Ours

WB News Review Bio CS
Train Wall Time

0.0

0.5

1.0

1.5

2.0

A
P+

ER
Ours

Figure 8: AP and AP+ of ELLE when growing BERTL12_D768 to BERTL24_D1024.

WB News Review Bio CS
Train Wall Time

20

30

40

50

60

100

A
P

Niave
MAS
ER
Logit-KD
PNN
Ours

WB News Review Bio CS
Train Wall Time

0

25

50

75

100

125

150

175

A
P+

Niave
MAS
ER
Logit-KD
PNN
Ours

Figure 9: AP and AP+ of different lifelong learning methods with GPTL6_D384 as the initial PLM w.r.t train wall
time. ELLE continually grows GPTL6_D384 to GPTL12_D768.

2807

WB News Review Bio CS
Train Wall Time

4

5

6

7

8

9
A

P
WE + FRW
DE + FRW
WE + DE + FRW

WB News Review Bio CS
Train Wall Time

0.0

0.5

1.0

1.5

2.0

2.5

A
P+

WE + FRW
DE + FRW
WE + DE + FRW

Figure 10: AP and AP+ of PLMs trained with different model expansion strategies: expanding width only
(WE+FRW), expanding depth only (DE+FRW) and expanding width and depth together (WE+DE+FRW) w.r.t train
wall time.

WB News Review Bio CS
Train Wall Time

4

5

6

7

8

9

A
P

WE + DE
WE + DE + FRW
WE + DE + FRW + N

WB News Review Bio CS
Train Wall Time

0.0

0.5

1.0

1.5

2.0

2.5

A
P+

WE + DE
WE + DE + FRW
WE + DE + FRW + N

Figure 11: AP and AP+ of PLMs trained by WE+DE, WE+DE+FRW, WE+DE+FRW+δN w.r.t train wall time.

WB News Review Bio CS
Train Wall Time

4

5

6

7

8

9

A
P

ELLE
ELLE - prompt

WB News Review Bio CS
Train Wall Time

0.0

0.5

1.0

1.5

2.0

A
P+

ELLE
ELLE - prompt

Figure 12: AP and AP+ of PLMs trained by ELLE with and without domain prompts w.r.t train wall time.

2808

WB NewsReview Bio CS
Train Wall Time

4

8

12

16
A

P

MAS
ER
Logit-KD
PNN
Ours

WB NewsReview Bio CS
Train Wall Time

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

A
P+

MAS
ER
Logit-KD
PNN
Ours

Figure 13: AP and AP+ of different lifelong learning methods with BERTL6_D384 as the initial model w.r.t train wall
time. The train wall time on News, Review, Bio, CS domains is half of the original experiment in Section 4. ELLE
continually grows BERTL6_D384 to BERTL12_D768.

WB News Review Bio CS
Train Wall Time

4

8

12

16

A
P

MAS
ER
Logit-KD
PNN
Ours

WB News Review Bio CS
Train Wall Time

0

5

10

15

20

A
P+

MAS
ER
Logit-KD
PNN
Ours

Figure 14: AP and AP+ of different lifelong learning methods with BERTL6_D384 as the initial model with smaller
memory w.r.t train wall time. For domain i, we randomly sample only about 34M tokens as memory Dsub

i , which is
1% of training corpus Di . ELLE continually grows BERTL6_D384 to BERTL12_D768.

WB News Review Bio CS
Train Wall Time

6

8

10

12

16

A
P

Naive
=0.001
=0.0001
=0.00001
=0.000001

WB News Review Bio CS
Train Wall Time

0

5

10

15

20

25

30

35

40

A
P+

Naive
=0.001
=0.0001
=0.00001
=0.000001

Figure 15: AP and AP+ of EWC with BERTL6_D384 as the initial model and with different regularization parameter
λ w.r.t train wall time.

2809

WB News Review Bio CS
Train Wall Time

6

8

10

12

16

A
P

Naive
=1
=0.1
=0.001
=0.00001

WB News Review Bio CS
Train Wall Time

0

5

10

15

20

A
P

Naive
=1
=0.1
=0.001
=0.00001

Figure 16: AP and AP+ of MAS with BERTL6_D384 as the initial model and with different regularization parameter
λ w.r.t train wall time.

WB News Review Bio CS
Train Wall Time

6

8

10

12

16

A
P

Naive
memory=0.1G
memory=0.17G
memory=0.5G
memory=1G

WB News Review Bio CS
Train Wall Time

0

5

10

15

20

A
P

Naive
memory=0.1G
memory=0.17G
memory=0.5G
memory=1G

Figure 17: AP and AP+ of GEM with BERTL6_D384 as the initial model and with different memory size w.r.t train
wall time.

2810

