
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10859–10882
December 7-11, 2022 ©2022 Association for Computational Linguistics

The Better Your Syntax, the Better Your Semantics? Probing Pretrained
Language Models for the English Comparative Correlative

Leonie Weissweiler*�, Valentin Hofmann†*, Abdullatif Köksal*�, Hinrich Schütze*�

*Center for Information and Language Processing, LMU Munich
�Munich Center of Machine Learning

†Faculty of Linguistics, University of Oxford
{weissweiler,akoksal}@cis.lmu.de

valentin.hofmann@ling-phil.ox.ac.uk

Abstract

Construction Grammar (CxG) is a paradigm
from cognitive linguistics emphasising the con-
nection between syntax and semantics. Rather
than rules that operate on lexical items, it
posits constructions as the central building
blocks of language, i.e., linguistic units of dif-
ferent granularity that combine syntax and se-
mantics. As a first step towards assessing the
compatibility of CxG with the syntactic and
semantic knowledge demonstrated by state-of-
the-art pretrained language models (PLMs), we
present an investigation of their capability to
classify and understand one of the most com-
monly studied constructions, the English com-
parative correlative (CC). We conduct exper-
iments examining the classification accuracy
of a syntactic probe on the one hand and the
models’ behaviour in a semantic application
task on the other, with BERT, RoBERTa, and
DeBERTa as the example PLMs. Our results
show that all three investigated PLMs are able
to recognise the structure of the CC but fail to
use its meaning. While human-like perform-
ance of PLMs on many NLP tasks has been al-
leged, this indicates that PLMs still suffer from
substantial shortcomings in central domains of
linguistic knowledge.

1 Introduction

The sentence “The better your syntax, the better
your semantics.” contains a construction called
the English comparative correlative (CC; Fillmore,
1986). Paraphrased, it could be read as “If your
syntax is better, your semantics will also be better.”
Humans reading this sentence are capable of doing
two things: (i) recognising that two instances of
“the” followed by an adjective/adverb in the compar-
ative as well as a phrase of the given structure (i.e.,
the syntax of the CC) express a specific meaning
(i.e., the semantics of the CC); (ii) understanding
the semantic meaning conveyed by the CC, i.e.,
understanding that in a sentence of the given struc-

ture, the second half is somehow correlated with
the first.

In this paper, we ask the following question: are
pretrained language models (PLMs) able to achieve
these two steps? This question is important for
two reasons. Firstly, we hope that recognising the
CC and understanding its meaning is challenging
for PLMs, helping to set the research agenda for
further improvements. Secondly, the CC is one
of the most commonly studied constructions in
construction grammar (CxG), a usage-based syntax
paradigm from cognitive linguistics, thus providing
an interesting alternative to the currently prevailing
practice of analysing the syntactic capabilities of
PLMs with theories from generative grammar (e.g.,
Marvin and Linzen, 2018).

We divide our investigation into two parts. In
the first part, we examine the CC’s syntactic prop-
erties and how they are represented by PLMs, with
the objective to determine whether PLMs can re-
cognise an instance of the CC. More specifically,
we construct two syntactic probes with different
properties: one is inspired by recent probing meth-
odology (e.g., Belinkov et al., 2017; Conneau et al.,
2018) and draws upon minimal pairs to quantify
the amount of information contained in each PLM
layer; for the other one, we write a context-free
grammar (CFG) to construct approximate minimal
pairs in which only the word order determines if
the sentences are an instance of the CC or not. We
find that starting from the third layer, all invest-
igated PLMs are able to distinguish positive from
negative instances of the CC. However, this method
only covers one specific subtype of comparative
sentences. To cover the full diversity of instances,
we conduct an additional experiment for which we
collect and manually label sentences from C4 (Raf-
fel et al., 2020) that resemble instances of the CC,
resulting in a diverse set of sentences that either
are instances of the CC or resemble them closely
without being instances of the CC. Applying the
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same methodology to this set of sentences, we ob-
serve that all examined PLMs are still able to sep-
arate the examples very well.

In the second part of the paper, we aim to de-
termine if the PLMs are able to understand the
meaning of the CC. We generate test scenarios in
which a statement containing the CC is given to the
PLMs, which they then have to apply in a zero-shot
manner. As this way of testing PLMs is prone to a
variety of biases, we introduce several mitigating
methods in order to determine the full capability
of the PLMs. We find that none of the PLMs we
investigate perform above chance level, indicating
that they are not able to understand and apply the
CC in a measurable way in this context.

We make three main contributions:

– We present the first comprehensive study examin-
ing how well PLMs can recognise and understand
a CxG construction, specifically the English com-
parative correlative.

– We develop a way of testing the PLMs’ recog-
nition of the CC that overcomes the challenge
of probing for linguistic phenomena not lending
themselves to minimal pairs.

– We adapt methods from zero-shot prompting and
calibration to develop a way of testing PLMs for
their understanding of the CC.1

2 Construction Grammar

2.1 Overview

A core assumption of generative grammar (Chom-
sky, 1988), which can be already found in Bloom-
fieldian structural linguistics (Bloomfield, 1933), is
a strict separation of lexicon and grammar: gram-
mar is conceptualized as a set of compositional
and general rules that operate on a list of arbit-
rary and specific lexical items in generating syn-
tactically well-formed sentences. This dichotom-
ous view was increasingly questioned in the 1980s
when several studies drew attention to the fact
that linguistic units larger than lexical items (e.g.,
idioms) can also possess non-compositional mean-
ings (Langacker, 1987; Lakoff, 1987; Fillmore
et al., 1988; Fillmore, 1989). For instance, it is
not clear how the effect of the words “let alone”(as

1In order to foster research at the intersection of NLP
and construction grammar, we will make our data and code
available at https://github.com/LeonieWeissweiler/
ComparativeCorrelative.

in “she doesn’t eat fish, let alone meat”) on both the
syntax and the semantics of the rest of the sentence
could be inferred from general syntactic rules (Fill-
more et al., 1988).. This insight about the ubiquity
of stored form-meaning pairings in language is ad-
opted as the central tenet of grammatical theory by
Construction Grammar (CxG; see Hoffmann and
Trousdale (2013) for a comprehensive overview).
Rather than a system divided into non-overlapping
syntactic rules and lexical items, CxG views lan-
guage as a structured system of constructions with
varying granularities that encapsulate syntactic and
semantic components as single linguistic signs—
ranging from individual morphemes up to phrasal
elements and fixed expressions (Kay and Fillmore,
1999; Goldberg, 1995). In this framework, syn-
tactic rules can be seen as emergent abstractions
over similar stored constructions (Goldberg, 2003,
2006). A different set of stored constructions can
result in different abstractions and thus different
syntactic rules, which allows CxG to naturally ac-
commodate for the dynamic nature of grammar as
evidenced, for instance, by inter-speaker variability
and linguistic change (Hilpert, 2006).

2.2 Construction Grammar and NLP

We see three main motivations for the development
of a first probing approach for CxG:

– We believe that the active discourse in (cognit-
ive) linguistics about the best description of hu-
man language capability can be supported and
enriched through a computational exploration of
a wide array of phenomena and viewpoints. We
think that the probing literature in NLP investig-
ating linguistic phenomena with computational
methods should be diversified to include theor-
ies and problems from all points on the broad
spectrum of linguistic scholarship.

– We hope that the investigation of large PLMs’ ap-
parent capabilities to imitate human language and
the mechanisms responsible for these capabilit-
ies will be enriched by introducing a usage-based
approach to grammar. This is especially import-
ant as some of the discourse in recent years has
focused on the question of whether PLMs are
constructing syntactically acceptable sentences
for the correct reasons and with the correct under-
lying representations (e.g. McCoy et al., 2019).
We would like to suggest that considering altern-
ative theories of grammar, specifically CxG with
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its incorporation of slots in constructions that
may be filled by specific word types and its focus
on learning without an innate, universal grammar,
may be beneficial to understanding the learning
process of PLMs as their capabilities advance
further.

– Many constructions present an interesting chal-
lenge for PLMs. In fact, recent work in challenge
datasets (Ribeiro et al., 2020) has already started
using what could be considered constructions,
in an attempt to identify types of sentences that
models struggle with, and to point out a potential
direction for improvement. One of the central
tenets of CxG is the relation between the form of
a construction and its meaning, or to put it in NLP
terms, a model must learn to infer parts of the
sentence meaning from patterns that are present
in it, as opposed to words. We believe this to be
an interesting challenge for future PLMs.

2.3 The English Comparative Correlative
The English comparative correlative (CC) is one
of the most commonly studied constructions in lin-
guistics, for several reasons. Firstly, it constitutes
a clear example of a linguistic phenomenon that
is challenging to explain in the framework of gen-
erative grammar (Culicover and Jackendoff, 1999;
Abeillé and Borsley, 2008), even though there have
been approaches following that school of thought
(Den Dikken, 2005; Iwasaki and Radford, 2009).
Secondly, it exhibits a range of interesting syntactic
and semantic features, as detailed below. These
reasons, we believe, also make the CC an ideal
testbed for a first study attempting to extend the
current trend of syntax probing for rules by devel-
oping methods for probing according to CxG.

The CC can take many different forms, some of
which are exemplified here:

(1) The more, the merrier.

(2) The longer the bake, the browner the colour.

(3) The more she practiced, the better she became.

Semantically, the CC consists of two clauses, where
the second clause can be seen as the dependent vari-
able for the independent variable specified in the
first one (Goldberg, 2003). It can be seen on the one
hand as a statement of a general cause-and-effect
relationship, as in a general conditional statement
(e.g., (2) could be paraphrased as “If the bake is
longer, the colour will be more brown”), and on the
other as a temporal development in a comparative

sentence (paraphrasing (3) as “She became better
over time, and she practiced more over time”). Us-
age of the CC typically implies both readings at the
same time. Syntactically, the CC is characterised
in both clauses by an instance of “the” followed
by an adverb or an adjective in the comparative,
either with “-er” for some adjectives and adverbs,
or with “more” for others, or special forms like
“better”. Special features of the comparative sen-
tences following this are the optional omission of
the future “will” and of “be”, as in (1). Crucially,
“the” in this construction does not function as a de-
terminer of noun phrases (Goldberg, 2003); rather,
it has a function specific to the CC and has vari-
ously been called a “degree word” (Den Dikken,
2005) or “fixed material” (Hoffmann et al., 2019).

3 Syntax

Our investigation of PLMs’ knowledge of the CC
is split into two parts. First, we probe for the PLMs’
knowledge of the syntactic aspects of the CC, to
determine if they recognise its structure. Then we
devise a test of their understanding of its semantic
aspects by investigating their ability to apply, in a
given context, information conveyed by a CC.

3.1 Probing Methods

As the first half of our analysis of PLMs’ know-
ledge of the CC, we investigate its syntactic aspects.
Translated into probing questions, this means that
we ask: can a PLM recognise an instance of the
CC? Can it distinguish instances of the CC from
similar-looking non-instances? Is it able to go bey-
ond the simple recognition of its fixed parts (“The
COMP-ADJ/ADV, the ...”) and group all ways of com-
pleting the sentences that are instances of the CC
separately from all those that are not? And to frame
all of these questions in a syntactic probing frame-
work: will we be able to recover, using a logistic
regression as the probe, this distinguishing inform-
ation from a PLM’s embeddings?

The established way of testing a PLM for its
syntactic knowledge has in recent years become
minimal pairs (e.g., Warstadt et al., 2020, Dem-
szky et al., 2021). This would mean pairs of sen-
tences which are indistinguishable except for the
fact that one of them is an instance of the CC and
the other is not, allowing us to perfectly separate
a model’s knowledge of the CC from other con-
founding factors. While this is indeed possible for
simpler syntactic phenomena such as verb-noun
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number agreement, there is no obvious way to con-
struct minimal pairs for the CC. We therefore con-
struct minimal pairs in two ways: one with artificial
data based on a context-free grammar (CFG), and
one with sentences extracted from C4.

3.1.1 Synthetic Data
In order to find a pair of sentences that is as close
as possible to a minimal pair, we devise a way to
modify the words following “The X-er” such that
the sentence is no longer an instance of the con-
struction. The pattern for a positive instance is
“The ADV-er the NUM NOUN VERB”, e.g., “The harder
the two cats fight”. To create a negative instance,
we reorder the pattern to “The ADJ-er NUM VERB the
NOUN”, e.g., “The harder two fight the cats”. The
change in role of the numeral from the depend-
ent of a head to a head itself, made possible by
choosing a verb that can be either transitive or in-
transitive, as well as the change from an adverb
to an adjective, allows us to construct a negative
instance that uses the same words as the positive
one, but in a different order.2 In order to generate
a large number of instances, we collect two sets
each of adverbs, numerals, nouns and verbs that
are mutually exclusive between training and test
sets. To investigate if the model is confused by ad-
ditional content in the sentences, we write an CFG
to insert phrases before the start of the first half, in
between the two halves, and after the second half
of the CC (see Appendix, Algorithms 1 and 2 for
the complete CFG).

While this setup is rigourous in the sense
that positive and negative sentences are exactly
matched, it comes with the drawback of only con-
sidering one type of CC. To be able to conduct
a more comprehensive investigation, we adopt a
complementary approach and turn to pairs extrac-
ted from C4 (see Appendix, Tables 6 and 7, for
examples of training and test data). These cover a
broad range of CC patterns, albeit without meeting
the criterion that positive and negative samples are
exactly matched.

3.1.2 Corpus-based Minimal Pairs
While accepting that positive and negative in-
stances extracted from a corpus will automatically
not be minimal and therefore contain some lexical

2Note that an alternative reading of this sentence exists:
the numeral “two” forms the noun phrase by itself and “The
harder” is still interpreted as part of the CC. The sentence is
actually a positive instance on this interpretation. We regard
this reading as very improbable.

overlap and context cues, we attempt to regularise
our retrieved instances as far as possible. To form
a first candidate set, we POS tag C4 using spaCy
(Honnibal and Montani, 2018) and extract all sen-
tences that follow the pattern “The” (DET) followed
by either “more” and an adjective or adverb, or an
adjective or adverb ending in “-er”, and at any point
later in the sentence again the same pattern. We dis-
card examples with adverbs or adjectives that were
falsely labelled as comparative, such as “other”.
We then group these sentences by their sequence of
POS tags, and manually classify the sequences as
either positive or negative instances. We observe
that sentences sharing a POS tag pattern tend to be
either all negative or all positive instances, allowing
us to save annotation time by working at the POS
tag pattern level instead of the sentence level. To
make the final set as diverse as possible, we sort the
patterns randomly and label as many as possible.
In order to further reduce interfering factors in our
probe, we separate the POS tag patterns between
training and test sets (see Appendix, Table 8, for
examples).

3.1.3 The Probe
For both datasets, we investigate the overall ac-
curacy of our probe as well as the impact of sev-
eral factors. The probe consists of training a
simple logistic regression model on top of the
mean-pooled sentence embeddings (Vulić et al.,
2020). To quantify the impact of the length of
the sentence, the start position of the construction,
the position of its second half, and the distance
between them, we construct four different subsets
Dtrain

f and Dtest
f from both the artificially construc-

ted and the corpus-based dataset. For each subset,
we sample sentences such that both the positive and
the negative class is balanced across every value of
the feature within a certain range of values. This
ensures that the probes are unable to exploit correla-
tions between a class and any of the above features.
We create the dataset as follows

Df =
⋃

v∈fv

⋃

l∗∈L
S(D, v, l∗, n∗),

where f is the feature, fv is the set of values for
f , L = {positive, negative} are the labels, and S
is a function that returns n∗ elements from D that
have value v and label l∗.

To make this task more cognitively realistic,
we aim to test if a model is able to general-
ise from shorter sentences, which contain relat-
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Figure 1: Overall accuracy per layer for Dlength. All
shown models are the large model variants. The models
can easily distinguish between positive and negative
examples in at least some of their layers.

ively little additional information besides the parts
relevant to the classification task, to those with
greater potential interference due to more addi-
tional content that is not useful for classification.
Thus, we restrict the training set to samples from
the lowest quartile of each feature so that fv be-
comes [vmin

f , vmin
f + 1

4(v
max
f −vmin

f )] for Dtrain
f and

[vmin
f , vmax

f ] for Dtest
f . We report the test perform-

ance for every value of a given feature separately to
recognise patterns. For the artificial syntax probing,
we generate 1000 data points for each value of each
feature for each training and test for each subset
associated with a feature. For the corpus syntax
probing, we collect 9710 positive and 533 negat-
ive sentences in total, from which we choose 10
training and 5 test sentences for each value of each
feature in a similar manner. To improve compar-
ability and make the experiment computationally
feasible, we test the “large” size of each of our
three models, using the Huggingface Transformers
library (Wolf et al., 2019). Our logistic regression
probes are implemented using Scikitlearn (Pedre-
gosa et al., 2011).

3.2 Probing Results
3.2.1 Artificial Data
As shown in Figure 1, the results of our syntactic
probe indicate that all models can easily distin-
guish between positive and negative examples in
at least some of their layers, independently of any
of the sentence properties that we have investig-
ated. We report full results in the Appendix in
Figures 2, 3, and 4. We find a clear trend that De-
BERTa performs better than RoBERTa, which in
turn performs better than BERT across the board.

As DeBERTa’s performance in all layers is nearly
perfect, we are unable to observe patterns related to
the length of the sentence, the start position of the
CC, the start position of the second half of the CC,
and the distance between them. By contrast, we ob-
serve interesting patterns for BERT and RoBERTa.
For Dlength, and to a lesser degree Ddistance (which
correlates with it), we observe that at first, perform-
ance goes down with increased length as we would
expect—the model struggles to generalise to longer
sentences with more interference since it was only
trained on short ones. However, this trend is re-
versed in the last few layers. We hypothesize this
may be due to an increased focus on semantics in
the last layers (Peters et al., 2018; Tenney et al.,
2019), which could lead to interfering features par-
ticularly in shorter sentences.

3.2.2 Corpus Data
In contrast, the results of our probe on more nat-
ural data from C4 indicate two different trends:
first, as the positive and negative instances are not
identical on a bag-of-word level, performance is
not uniformly at 50% (i.e., chance) level in the first
layers, indicating that the model can exploit lexical
cues to some degree. We observe a similar trend as
with the artificial experiment, which showed that
DeBERTa performs best and BERT worst. The cor-
responding graphs can be found in the Appendix in
Figures 5, 6, and 7.

Generally, this additional corpus-based experi-
ment validates our findings from the experiment
with artificially generated data, as all models per-
form at 80% or better from the middle layers on,
indicating that the models are able to classify in-
stances of the construction even when they are very
diverse and use unseen POS tag patterns.

Comparing the average accuracies on Dlength

for both data sources in Figure 1, we observe that
all models perform better on artificial than on cor-
pus data from the fifth layer on, with the notable
exception of a dip in performance for BERT large
around layer 10.

4 Semantics

4.1 Probing Methods

4.1.1 Usage-based Testing
For the second half of our investigation, we turn
to semantics. In order to determine if a model has
understood the meaning of the CC, i.e., if it has
understood that in any sentence, “the COMP .... the
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No. Purpose Approach Sentence Schema

S1 Base The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.
NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

S2
B

ia
s

Te
st

Recency The ANT1-er you are, the ANT2-er you are. The ADJ1-er you are, the ADJ2-er you are.
NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

S3 Vocabulary The ADJ1-er you are, the ANT2-er you are. The ANT1-er you are, the ADJ2-er you are.
NAME2 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

S4 Name The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.
NAME2 is ADJ1-er than NAME1. Therefore, NAME2 is [MASK] than NAME1.

S5

C
al

ib
ra

tio
n

Short NAME1 is ADJ1-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

S6 Name The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.
NAME1 is ADJ1-er than NAME2. Therefore, NAME3 is [MASK] than NAME4.

S7 Adjective The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.
NAME1 is ADJ3-er than NAME2. Therefore, NAME1 is [MASK] than NAME2.

Table 1: Overview of the schemata of all test scenarios used for semantic probing

COMP” implies a correlation between the two halves,
we adopt a usage-based approach and ask: can the
model, based on the meaning conveyed by the CC,
draw a correct inference in a specific scenario? For
this, we construct general test instances of the CC
that consist of a desired update of the belief state of
the model about the world, which we then expect
it to be able to apply. More concretely, we gen-
erate sentences of the form “The ADJ1-er you are,
the ADJ2-er you are.”, while picking adjectives at
random. To this general statement, we then add a
specific scenario with two random names: “NAME1
is ADJ1-er than NAME2.” and ask the model to draw
an inference from it by predicting a token at the
masked position in the following sentence: “There-
fore, NAME1 is [MASK] than NAME2.” If the model
has understood the meaning conveyed by the CC
and is able to use it in predicting the mask, we ex-
pect the probability of ADJ2 to be high. To provide
the model with an alternative, we add a second
sentence, another instance of the CC, using the
antonyms of the two adjectives. This sentence is
carefully chosen to have no impact on the best filler
for [MASK], but also for other reasons explained
in Section 4.1.2. The full test context is shown in
Table 1, S1. This enables us to compare the prob-
ability of ADJ2 for the mask token directly with a
plausible alternative, ANT2. One of our test sen-
tences might be “The stronger you are, the faster
you are. The weaker you are, the slower you are.
Terry is stronger than John. Therefore, Terry will
be [MASK] than John”, where we compare the prob-
abilities of “faster” and “slower”.

Note that success in our experiment does not

necessarily indicate that the model has fully un-
derstood the meaning of the CC. The experiment
can only provide a lower bound for the underlying
understanding of any model. However, we believe
that our task is not unreasonable for a masked lan-
guage model in a zero-shot setting. It is compar-
able in difficulty and non-reliance on world know-
ledge to the NLU tasks presented in LAMBADA
(Paperno et al., 2016), on which GPT-2 (117M
to 1.5B parameters) has achieved high zero-shot
accuracy (Radford et al., Table 3). While we invest-
igate masked language models and not GPT-2, our
largest models are comparable in size to the sizes
of GPT-2 that were used (340M for BERTL, 355M
for RoBERTaL, and 1.5B parameters for DeBERTa-
XXLL), and we believe that this part of our task is
achievable to some degree.

4.1.2 Biases
In this setup, we hypothesise several biases that
models could exhibit and might cloud our assess-
ment of its understanding of the CC, and devise a
way to test their impact.

Firstly, we expect that models might prefer to re-
peat the adjective that is closest to the mask token.
This has recently been documented for prompt-
based experiments (Zhao et al., 2021). Here, this
adjective is ANT2, the wrong answer. To test the in-
fluence this has on the prediction probabilities, we
construct an alternative version of our test context
in which we flip the first two sentences so that the
correct answer is now more recent. The result can
be found in Table 1, S2.

Secondly, we expect that models might assign
higher probabilities to some adjectives, purely
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based on their frequency in the pretraining corpus,
as for example observed by Holtzman et al. (2021).
To test this, we construct a version of the test con-
text in which ADJ2/ANT2 are swapped, which means
that we can keep both the overall words the same
as well as the position of the correct answer, while
changing which adjective it is. The sentence is now
S3 in Table 1. If there is a large difference between
the prediction probabilities for the two different
versions, that this means that a model’s prediction
is influenced by the lexical identity of the adjective
in question.

Lastly, a model might have learned to associ-
ate adjectives with names in pretraining, so we
construct a third version, in which we swap the
names. This is S4 in Table 1. If any prior associ-
ation between names and adjectives influences the
prediction, we expect the scores between S4 and
S1 to differ.

4.1.3 Calibration

After quantifying the biases that may prevent us
from seeing a model’s true capability in understand-
ing the CC, we aim to develop methods to mitigate
it. We turn to calibration, which has recently been
used in probing with few-shot examples by Zhao
et al. (2021). The aim of calibration is to improve
the performance of a model on a classification task,
by first assessing the prior probability of a label
(i.e., its probability if no context is given), and
then dividing the probability predicted in the task
context by this prior; this gives us the conditional
probability of a label given the context, represent-
ing the true knowledge of the model about this task.
In adapting calibration, we want to give a model
every possible opportunity to do well so that we do
not underestimate its underlying comprehension.

We therefore develop three different methods
of removing the important information from the
context in such a way that we can use the prediction
probabilities of the two adjectives in these contexts
for calibration. The simplest way of doing this is to
remove both instances of the CC, resulting in S5 in
Table 1. If we want to keep the CC in the context,
the two options to remove any information are to
replace either the names or the adjectives with new
names/adjectives. We therefore construct two more
instances for calibration: S6 and S7 in Table 1.

For each calibration method, we collect five ex-
amples with different adjectives or names. For a
given base sample Sb, we calculate Pc, the calib-

Accuracy Decision Flip

S1 S2 S2 S3 S4

BERTB 37.65 64.64 26.98 75.69 02.70
BERTL 36.85 67.21 30.44 73.31 02.32
RoBERTaB 61.60 52.84 09.91 76.18 02.76
RoBERTaL 55.71 68.00 14.33 79.47 04.33
DeBERTaB 49.72 49.80 00.91 99.66 01.07
DeBERTaL 50.88 51.40 07.04 94.83 02.23
DeBERTaXL 47.73 49.33 05.46 89.28 02.51
DeBERTaXXL 47.34 48.72 03.59 82.09 01.13

Table 2: Selected accuracies and results for the semantic
probe. We report the average accuracy on the more dif-
ficult sentences in terms of recency bias (S1) and the
easier ones (S2), as well as the percentage of decisions
flipped by changing from the base S1 to the sentences
testing for recency bias (S2), vocabulary bias (S3), and
name bias (S4). RoBERTa and DeBERTa perform close
to chance on S1 and S2 accuracy, indicating that they
do not understand the meaning of CC. BERT’s perform-
ance is strongly influenced by biases (recency, lexical
identity), also indicating that it has very limited if any
understanding of CC.

rated predictions, as follows:

Pc(a|Sb) = P (a|Sb)/[
i=5∑

i=1

(P (a|Ci)/5)]

where Ci is the i-th example of a given calibration
technique, a is the list of adjectives tested for the
masked position, and the division is applied ele-
mentwise. We collect a list of 20 adjectives and
their antonyms manually from the vocabulary of
the RoBERTa tokenizer and 33 common names
and generate 144,800 sentences from them. We
test BERT (Devlin et al., 2019) in the sizes base
and large, RoBERTa (Liu et al., 2019) in the sizes
base and large, and DeBERTa (He et al., 2020) in
the sizes base, large, xlarge and xxlarge.

4.2 Results

In Table 2, we report the accuracy for all examined
models. Out of the three variations to test biases,
we report accuracy only for the sentence testing the
recency bias as we expect this bias to occur system-
atically across all sentences: if it is a large effect, it
will always lead to the sentence where the correct
answer is the more recent one being favoured. To
assess the influence of each bias beyond accuracy,
we report as decision flip the percentage of sen-
tences for which the decision (i.e., if the correct
adjective had a higher probability than the incorrect
one) was changed when considering the alternative
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sentence that was constructed to test for bias. We
report full results in Appendix, Table 4.

Looking at the accuracies, we see that
RoBERTa’s and DeBERTa’s scores are close to
50% (i.e., chance) accuracy for both S1 and S2.
BERT models differ considerably as they seem to
suffer from bias related to the order of the two
CCs, but we can see that the average between them
is also very close to chance. When we further
look at the decision flips for each of the biases,
we find that there is next to no bias related to the
choice of names (S4). However, we can see a
large bias related to both the recency of the cor-
rect answer (S2) and the choice of adjectives (S3).
The recency bias is strongest in the BERT models,
which also accounts for the difference in accuracies.
For RoBERTa and DeBERTa models, the recency
bias is small, but clearly present. In contrast, they
exhibit far greater bias towards the choice of ad-
jective, even going as far as 99.66% of decisions
flipped by changing the adjective for DeBERTa
base. This suggests that these models’ decisions
about which adjective to assign a higher probability
is almost completely influenced by the choice of
adjective, not the presence of the CC. Overall, we
conclude that without calibration, all models seem
to be highly susceptible to different combinations
of bias, which completely obfuscate any underly-
ing knowledge of the CC, leading to an accuracy at
chance level across the board.

We therefore turn to our calibration methods,
evaluating them first on their influence on the de-
cision flip scores, which directly show if we were
able to reduce the impact of the different types of
bias. We report these only for order and vocabulary
bias as we found name bias to be inconsequen-
tial. We report the complete results in Appendix,
Tables 4 and 5. We see that across all models, while
all three calibration methods work to reduce some
bias, none does so consistently across all models
or types of bias. We report the impact of all calib-
ration methods on the final accuracies of the three
largest models in Table 3. Even in cases where cal-
ibration has clearly reduced the decision flip score,
we find that the final calibrated accuracy is still
close to 50%. This indicates that despite the ef-
fort to retrieve any knowledge that the models have
about the CC, they are unable to perform clearly
above chance, and we have therefore found no evid-
ence that the investigated models understand and
can use the semantics of the CC.

Model Test - S5 S6 S7

BERTL

S1 36.85 31.91 47.21 44.03
S2 67.13 73.48 54.39 64.45
S3 36.46 43.43 47.79 44.36

RoBERTaL

S1 55.72 58.37 65.08 69.53
S2 68.01 74.53 62.73 77.76
S3 55.36 52.02 65.28 69.23

DeBERTaXXL

S1 47.35 53.56 54.92 54.12
S2 48.73 52.85 54.03 53.81
S3 47.57 49.36 55.25 53.59

Table 3: Effect of our three calibration methods com-
pared to no calibration, for the three largest models. We
report the accuracy scores for the base sentence (S1),
recency bias (S2), and vocabulary bias (S3). The results
indicate that, even if we try to address bias through cal-
ibration, the models are unable to perform clearly above
chance. We have therefore found no evidence that the
models understand the semantics of the CC.

4.2.1 Problem Analysis

Different conclusions might be drawn as to why
none of these models have learned the semantics
of the CC. They might not have seen enough ex-
amples of it in their training corpus to have formed
a general understanding. Given the many examples
that we were able to find in C4, and the overall pos-
itive results from the syntax section, we find this to
be unlikely. Alternatively, it could be argued that
models have never had a chance to learn what the
CC means because they have never seen it applied,
and do not have the same opportunities as humans
to either interact with the speaker to clarify the
meaning or to make deductions using observations
in the real world. This is in line with other con-
siderations about large PLMs acquiring advanced
semantics, even though it has for many phenomena
been shown that pretraining is sufficient (Radford
et al., 2019). Lastly, it might be possible that the
type of meaning representation required to solve
this task is beyond the current transformer-style ar-
chitectures. Overall, our finding that PLMs do not
learn the semantics of the CC adds to the growing
body of evidence that complex semantics like neg-
ation (Kassner and Schütze, 2020) is still beyond
state-of-the-art PLMs.

5 Related Work

5.1 Construction Grammar in NLP

CxG has only recently and very sparsely been
investigated in neural network-based NLP. Tay-
yar Madabushi et al. (2020) use a probe to show
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that while a probe on top of BERT contextual em-
beddings is able to mostly correctly classify if two
sentences contain instances of the same construc-
tion, injecting this knowledge into the model by
adding it to pretraining does not improve its per-
formance. Our work differs from this study in that
we delve deeper into what it means to understand
a construction on a semantic level, and take care-
ful precautions to isolate the recognition of the
construction at the syntax level from confounding
factors. Li et al. (2022) recreate the experiments
of Bencini and Goldberg (2000) and Johnson and
Goldberg (2013) on argument structure construc-
tions, by creating artificial sentences with four ma-
jor argument structure types and a random combin-
ation of verbs, to investigate whether PLMs prefer
sorting by construction or by main verb. Tseng
et al. (2022) choose items from a Chinese construc-
tion list and investigate PLM’s predictions when
masking the open slots, the closed slots, or the en-
tire construction. They find that models find closed
slots easier to predict than open ones. Other com-
putational studies about CxG have either focused
on automatically annotating constructions (Dunietz
et al., 2017) or on the creation and evaluation of
automatically built lists of constructions (Marques
and Beuls, 2016; Dunn, 2019).

5.2 Probing

Our work also bears some similarity to recent work
in generative grammar-based syntax probing of
large PLMs in that we approximate the minimal
pairs-based probing framework similar to Wei et al.
(2021), Marvin and Linzen (2018) or Goldberg
(2019). However, as we are concerned with dif-
ferent phenomena and investigating them from a
different theoretical standpoint, the syntactic half
of our work clearly differs.

The semantic half of our study is closest to re-
cent work on designing challenging test cases for
models such as Ribeiro et al. (2020), who design
some edge cases for which most PLMs fail. Des-
pite the different motivation, the outcome is very
similar to a list of some particularly challenging
constructions.

6 Conclusion

We have made a first step towards a thorough in-
vestigation of the compatibility of the paradigm of
CxG and the syntactic and semantic capabilities
exhibited by state-of-the-art large PLMs. For this,

we chose the English comparative correlative, one
of the most well-studied constructions, and invest-
igated if large PLMs have learned it, both syntactic-
ally and semantically. We found that even though
they are able to classify sentences as instances of
the construction even in difficult circumstances,
they do not seem to be able to extract the mean-
ing it conveys and use it in context, indicating that
while the syntactic aspect of the CC is captured
in pretraining, the semantic aspect is not. We see
this an indication that major future work will be
needed to enable neural models to fully understand
language to the same degree as humans.

Limitations

As our experimental setup requires significant cus-
tomisation with regards to the properties of the
specific construction we investigate, we are unable
to consider other constructions or other languages
in this work. We hope to be able to extend our
experiments in this direction in the future. Our ana-
lysis is also limited—as all probing papers are—by
the necessary indirectness of the probing tasks: we
cannot directly assess the model’s internal repres-
entation of the CC, but only construct tasks that
might show it but are imperfect and potentially
affected by external factors.
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Algorithm 1 Context-Free Grammar for Artificial Data Creation Training Set
S→ SPOS | SNEG
SPOS→ POS1 PUNCT POS2 ’.’ | POS1 INSERT PUNCT POS2 ’.’
SNEG→ NEG1 PUNCT NEG2 ’.’ | NEG1 INSERT PUNCT NEG2 ’.’
PUNCT→ ’,’ | ’;’ | ”
CORE_POS→ ADV_I ’the’ NUM NOUN VERB
CORE_NEG→ ADV_I NUM VERB ’the’ NOUN
POS_UPPER→ ’0 The’ CORE_POS
POS_LOWER→ ’0 the’ CORE_POS
NEG_UPPER→ ’0 The’ CORE_NEG
NEG_LOWER→ ’0 the’ CORE_NEG
POS1→ POS_UPPER | POS_UPPER ADD | START POS_LOWER | START POS_LOWER ADD
POS2→ POS_LOWER | POS_LOWER ADD
NEG1→ NEG_UPPER | NEG_UPPER ADD | START NEG_LOWER | START NEG_LOWER ADD
NEG2→ NEG_LOWER | NEG_LOWER ADD
INSERT→ INSERT1 | INSERT2
INSERT2→ ADDITION BETWEEN_ADD_AND_SENT SENT
PRON→ ’we’ | ’they’
ADDITION→ ’, and by the way ,’ | ’, and I want to add that’ | ’, and’ PRON ’just want to say that’ | ’,
and then’ PRON ’said that’ | ’, and then’ PRON ’said that’
SAY→ ’say’ | ’think’ | ’mean’ | ’believe’
BETWEEN_ADD_AND_SENT→ PRON SAY ’that’ | PRON SAY ’that’ | PRON SAY ’that’ | PRON
SAY ’that’
LOC_SENT→ PRON ’said this in’ LOC ’too’
LOC→ CITY ’and’ LOC | CITY
CITY→ ’Munich’ | ’Washington’ | ’Cologne’ | ’Prague’ | ’Istanbul’
SENT→ ’this also holds in other cases’ | ’this is not always true’ | ’this is always true’ | ’this has only
recently been the case’ | ’this has not always been the case’ | ’this has always been the case’
INSERT1→ ’without stopping’ | ’without a break’ | ’without a pause’ | ’uninterrupted’ |
START→ ’Nowadays ,’ | ’Nowadays’ | ’Therefore ,’ | ’Therefore’ | ’We can’ CANWORD ’that’ | ’It is’
KNOWNWORD ’that’ | ’It follows that’ | ’Sometimes’ | ’Sometimes ,’ | ’It was recently announced that’
| ’People have told me that’ | ’I recently read in a really interesting book that’ | ’I have recently read in
an established , well-known newspaper that’ | ’It was reported in a special segment on TV today that’
CANWORD→ ’say’ | ’surmise’ | ’accept’ | ’state’
KNOWNWORD→ ’clear’ | ’known’ | ’accepted’ | ’obvious’
ADD→ TEMP | UNDER1 | TEMP UNDER1 | UNDER1 TEMP
ADV_I→ ADV | ADV ’and’ ADV
TEMP→ TEMP1 TEMP2
TEMP1→ ’before’ | ’after’ | ’during’
TEMP2→ ’the morning’ | ’the afternoon’ | ’the night’
UNDER1→ ’under the’ UNDER2
UNDER2→ ’bed’ | ’roof’ | ’sun’
VERB→ ’push’ | ’attack’ | ’chase’ | ’beat’ | ’believe’ | ’boil’ | ’box’ | ’burn’ | ’call’ | ’date’
NOUN→ ’lions’ | ’pandas’ | ’camels’ | ’pigs’ | ’horses’ | ’sheep’ | ’chickens’ | ’foxes’ | ’cows’ | ’deer’
ADV→ ’worse’ | ’earlier’ | ’slower’ | ’deeper’ | ’bigger’ | ’smaller’ | ’flatter’ | ’weaker’ | ’stronger’ |
’louder’
NUM→ ’twelve’ | ’thirteen’ | ’fourteen’ | ’fifteen’ | ’sixteen’ | ’seventeen’ | ’eighteen’ | ’nineteen’ |
’twenty’ | ’twenty-one’
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Algorithm 2 Context-Free Grammar for Artificial Data Creation Test Set
S→ SPOS | SNEG
SPOS→ POS1 PUNCT POS2 ’.’ | POS1 INSERT PUNCT POS2 ’.’
SNEG→ NEG1 PUNCT NEG2 ’.’ | NEG1 INSERT PUNCT NEG2 ’.’
PUNCT→ ’,’ | ’;’ | ”
CORE_POS→ ADV_I ’the’ NUM NOUN VERB
CORE_NEG→ ADV_I NUM VERB ’the’ NOUN
POS_UPPER→ ’0 The’ CORE_POS
POS_LOWER→ ’0 the’ CORE_POS
NEG_UPPER→ ’0 The’ CORE_NEG
NEG_LOWER→ ’0 the’ CORE_NEG
POS1→ POS_UPPER | POS_UPPER ADD | START POS_LOWER | START POS_LOWER ADD
POS2→ POS_LOWER | POS_LOWER ADD
NEG1→ NEG_UPPER | NEG_UPPER ADD | START NEG_LOWER | START NEG_LOWER ADD
NEG2→ NEG_LOWER | NEG_LOWER ADD
INSERT→ INSERT1 | INSERT2
INSERT2→ ADDITION BETWEEN_ADD_AND_SENT SENT
PRON→ ’I’ | ’you’
ADDITION→ ’, and by the way ,’ | ’, and I want to add that’ | ’, and’ PRON ’just want to say that’ | ’,
and then’ PRON ’said that’ | ’, and then’ PRON ’said that’
SAY→ ’say’ | ’think’ | ’mean’ | ’believe’
BETWEEN_ADD_AND_SENT→ PRON SAY ’that’ | PRON SAY ’that’ | PRON SAY ’that’ | PRON
SAY ’that’
LOC_SENT→ PRON ’said this in’ LOC ’too’
LOC→ CITY ’and’ LOC | CITY
CITY→ ’London’ | ’New York’ | ’Berlin’ | ’Madrid’ | ’Paris’
SENT→ ’this also holds in other cases’ | ’this is not always true’ | ’this is always true’ | ’this has only
recently been the case’ | ’this has not always been the case’ | ’this has always been the case’
INSERT1→ ’without stopping’ | ’without a break’ | ’without a pause’ | ’uninterrupted’ |
START→ ’Nowadays ,’ | ’Nowadays’ | ’Therefore ,’ | ’Therefore’ | ’We can’ CANWORD ’that’ | ’It is’
KNOWNWORD ’that’ | ’It follows that’ | ’Sometimes’ | ’Sometimes ,’ | ’It was recently announced that’
| ’People have told me that’ | ’I recently read in a really interesting book that’ | ’I have recently read in
an established , well-known newspaper that’ | ’It was reported in a special segment on TV today that’
CANWORD→ ’say’ | ’surmise’
KNOWNWORD→ ’clear’ | ’known’
ADD→ TEMP | UNDER1 | TEMP UNDER1 | UNDER1 TEMP
ADV_I→ ADV | ADV ’and’ ADV
TEMP→ TEMP1 TEMP2
TEMP1→ ’before’ | ’after’ | ’during’
TEMP2→ ’the day’ | ’the night’ | ’the evening’
UNDER1→ ’under the’ UNDER2
UNDER2→ ’bridge’ | ’stairs’ | ’tree’
VERB→ ’slam’ | ’break’ | ’bleed’ | ’shake’ | ’smash’ | ’throw’ | ’strike’ | ’shoot’ | ’swallow’ | ’choke’
NOUN→ ’cats’ | ’dogs’ | ’girls’ | ’boys’ | ’men’ | ’women’ | ’people’ | ’humans’ | ’mice’ | ’alligators’
ADV→ ’faster’ | ’quicker’ | ’harder’ | ’higher’ | ’later’ | ’longer’ | ’shorter’ | ’lower’ | ’wider’ | ’better’
NUM→ ’two’ | ’three’ | ’four’ | ’five’ | ’six’ | ’seven’ | ’eight’ | ’nine’ | ’ten’ | ’eleven’
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Figure 2: Full results for BERTLARGE on artificial data. Columns indicate the variable that the training and test set
controls for.
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Figure 3: Full results for RoBERTaLARGE on artificial data. Columns indicate the variable that the training and test
set controls for.
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Figure 4: Full results for DeBERTaLARGE on artificial data. Columns indicate the variable that the training and test
set controls for.
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Figure 5: Full results for BERTLARGE on corpus data. Columns indicate the variable that the training and test set
controls for.
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Figure 6: Full results for RoBERTaLARGE on corpus data. Columns indicate the variable that the training and test set
controls for.
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Figure 7: Full results for DeBERTaLARGE on corpus data. Columns indicate the variable that the training and test set
controls for.
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Model Test Scenario - S5 S6 S7

BERTB

S1 37.65% 37.62% 44.39% 47.9%
S2 64.64% 62.79% 56.66% 55.41%
S3 38.04% 44.78% 44.09% 48.29%

BERTL

S1 36.85% 31.91% 47.21% 44.03%
S2 67.13% 73.48% 54.39% 64.45%
S3 36.46% 43.43% 47.79% 44.36%

RoBERTaB

S1 61.6% 58.76% 42.13% 62.32%
S2 52.85% 51.35% 71.33% 60.25%
S3 62.21% 55.17% 43.04% 62.76%

RoBERTaL

S1 55.72% 58.37% 65.08% 69.53%
S2 68.01% 74.53% 62.73% 77.76%
S3 55.36% 52.02% 65.28% 69.23%

DeBERTaB

S1 49.72% 49.72% 49.86% 49.2%
S2 49.81% 48.67% 49.7% 49.06%
S3 50.28% 50.19% 49.97% 50.0%

DeBERTaL

S1 50.88% 49.86% 50.03% 49.39%
S2 51.41% 48.09% 47.21% 48.04%
S3 50.58% 49.94% 50.41% 49.42%

DeBERTaXL

S1 47.73% 45.08% 43.31% 43.67%
S2 49.34% 46.27% 45.58% 41.74%
S3 47.9% 49.14% 42.68% 45.58%

DeBERTaXXL

S1 47.35% 53.56% 54.92% 54.12%
S2 48.73% 52.85% 54.03% 53.81%
S3 47.57% 49.36% 55.25% 53.59%

Table 4: Accuracies for the semantic probe with our three calibration methods compared to no calibration. We
report the average accuracy on the more difficult sentences in terms of recency bias (S1),the easier ones (S2), and
vocabulary bias (S3). Our calibration tecniques are short (S5), name (S6), and adjective (S7).
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Model Test Scenario - S5 S6 S7

BERTB

S2 26.99% 25.22% 14.75% 10.77%
S3 75.69% 23.51% 86.33% 91.05%
S4 2.71% - - -

BERTL

S2 30.44% 41.8% 13.37% 22.24%
S3 73.31% 25.94% 88.65% 85.97%
S4 2.32% - - -

RoBERTaB

S2 9.92% 8.67% 31.13% 10.86%
S3 76.19% 22.04% 79.03% 74.75%
S4 2.76% - - -

RoBERTaL

S2 14.34% 17.82% 15.94% 15.86%
S3 79.48% 43.54% 64.78% 57.27%
S4 4.34% - - -

DeBERTaB

S2 0.91% 11.77% 7.13% 10.8%
S3 99.67% 56.44% 96.52% 94.94%
S4 1.08% - - -

DeBERTaL

S2 7.04% 7.85% 14.31% 14.28%
S3 94.83% 43.18% 85.75% 79.86%
S4 2.24% - - -

DeBERTaXL

S2 5.47% 7.87% 13.48% 18.78%
S3 89.28% 45.44% 68.48% 65.94%
S4 2.51% - - -

DeBERTaXXL

S2 3.59% 3.09% 17.02% 17.21%
S3 82.1% 79.06% 63.43% 59.81%
S4 1.13% - - -

Table 5: Decision flip scores for the semantic probe with our three calibration methods compared to no calibration.
We report the percentage of decisions flipped by changing from the base S1 to the sentences testing for recency bias
(S2), vocabulary bias (S3), and name bias (S4). Our calibration tecniques are short (S5), name (S6), and adjective
(S7).
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Sentence Label

Nowadays , the bigger the eighteen sheep date , the louder and bigger the twelve horses beat
under the sun .

Positive

The flatter the fourteen lions push , the deeper and smaller the sixteen deer burn under the
roof .

Positive

The deeper the sixteen cows beat ; the flatter and earlier the twenty cows attack . Positive
Therefore , the worse the sixteen sheep believe after the morning without a pause , the smaller
the thirteen cows box after the morning under the sun .

Positive

The flatter the fourteen lions push , the deeper and smaller the sixteen deer burn under the
roof .

Positive

Sometimes , the worse and earlier seventeen believe the deer , and we just want to say that
they mean that this has always been the case , the flatter twenty-one attack the foxes before
the afternoon under the roof .

Negative

Nowadays , the smaller sixteen box the camels , and by the way , they mean that this is
always true ; the weaker thirteen date the cows .

Negative

Therefore the earlier and weaker fourteen chase the deer , the stronger and earlier thirteen
boil the chickens during the night .

Negative

The weaker and worse fifteen box the lions during the morning under the sun , the worse
twenty push the cows .

Negative

It follows that the worse twelve date the pigs without a break the flatter and louder nineteen
call the pigs under the sun .

Negative

Table 6: Examples of artificial training data

Sentence Label

The harder and longer the three cats throw , the harder and shorter the ten dogs shake . Positive
I have recently read in an established , well-known newspaper that the later the ten mice
strike ; the later and better the seven men smash under the tree during the night .

Positive

The shorter the ten girls break without a pause ; the later the ten boys bleed under the tree . Positive
It was recently announced that the better and later the five women break ; the quicker the six
mice smash under the tree during the evening .

Positive

The faster the seven humans choke under the stairs after the evening , and I just want to say
that I think that this is not always true , the lower and higher the two boys swallow .

Positive

The higher nine strike the women without a pause the shorter ten choke the girls . Negative
We can say that the longer and faster four strike the men under the stairs before the evening ,
the harder four throw the dogs after the day under the bridge .

Negative

The quicker and higher eight bleed the people , and then I said that you believe that this also
holds in other cases ; the longer seven break the girls after the night .

Negative

The shorter four smash the people before the night , and by the way , you think that this is
always true ; the harder three bleed the people .

Negative

The longer seven shoot the women without stopping , the faster ten strike the mice after the
night under the bridge .

Negative

Table 7: Examples of artificial test data
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Sentence Label

" The higher up the nicer ! " Positive
She thinks the more water she drinks the better her skin looks . Positive
It becomes an obsession lightly because the more fish you catch the higher your adrenaline
flows .

Positive

It is worth noting , however , that the more specific you are the better . Positive
In other words , the more videos you make the greater your audience reach . Positive
Subtract the smaller from the larger . " Negative
The way the older guys help out the younger guys is fantastic . Negative
In this procedure the lower lip is pulled ventrally to expose the lower incisors . Negative
The 5th bedroom is on the lower floor with easy access to the lower bath . Negative
Note the distinctive bend of the larger vein adjacent to the smaller vein at the top . Negative

Table 8: Examples of corpus data
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