
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 10717–10724
December 7-11, 2022 ©2022 Association for Computational Linguistics

Simplified Graph Learning for Inductive Short Text Classification

Kaixin Zheng∗1,2, Yaqing Wang∗∗1, Quanming Yao3, Dejing Dou1

1Baidu Research, Baidu Inc., China
2 Department of SIOE, Beihang University, China
3 Department of EE, Tsinghua University, China

zhengkaixin@buaa.edu.cn
{wangyaqing01, doudejing}@baidu.com

qyaoaa@tsinghua.edu.cn

Abstract

Short text classification (STC) is hard as short
texts lack context information and labeled data
is not enough. Graph neural networks ob-
tain the state-of-the-art on STC since they can
merge various auxiliary information via the
message passing framework. However, exist-
ing works conduct transductive learning, which
requires retraining to accommodate new sam-
ples and takes large memory. In this paper, we
present SimpleSTC which handles inductive
STC problem but only leverages words. We
construct word graph from an external large
corpus to compensate for the lack of semantic
information, and learn text graph to handle the
lack of labeled data. Results show that Sim-
pleSTC obtains state-of-the-art performance
with lower memory consumption and faster in-
ference speed. 1

1 Introduction

Short text classification (STC) is a fundamental
task in many applications, such as sentiment analy-
sis (Chen et al., 2019) and query intent classifica-
tion (Wang et al., 2017). Due to the limited length,
short texts lack context and strict syntactic struc-
ture, which makes them hard to understand (Wang
et al., 2017). Hence, existing STC methods strive
to enrich short texts by incorporating various aux-
iliary information, including concepts of external
knowledge bases (Wang et al., 2017; Chen et al.,
2019; Wang et al., 2022), topics discovered in the
corpus (Zeng et al., 2018; Yang et al., 2021), part-
of-speech (POS) tags (Wang et al., 2021), and enti-
ties residing in knowledge graphs (Hu et al., 2019).
Another challenge faced by STC is the shortage
of labeled data in practice (Pang and Lee, 2005;
Phan et al., 2008). Hence, recent STC methods
(Hu et al., 2019; Wang et al., 2021; Yang et al.,

∗ Equal contribution. K. Zheng did his work during
internship at Baidu Research. Correspondence to: Y. Wang.

1Codes are available at https://github.com/tata1661/
SimpleSTC-EMNLP22.

2021) further consider semi-supervised STC prob-
lem where only a small portion of the corpus is
labeled.

The state-of-the-art STC models are based on
graph neural networks (GNNs) (Defferrard et al.,
2016; Kipf and Welling, 2016). HGAT (Hu et al.,
2019) applies a GNN with dual-level attention on a
corpus-level graph containing topics, entities and
texts. SHINE (Wang et al., 2021) designs a hier-
archical GNN to operate on a corpus-level hierar-
chical graph of word-level components including
words, part-of-speech (POS) tags and entities, and a
learned text graph. In summary, they conduct trans-
ductive learning, modeling the whole dataset (in-
cluding the training and testing samples) as a large
heterogeneous graph of various semantic concepts.
Hence, they both suffer from two problems: (i) re-
quire model retraining if new samples come and (ii)
have high memory consumption to store the com-
plete dataset. The recent HGAT-inductive (Yang
et al., 2021) proposes to connect each new sam-
ple to training data and unlabeled data existing in
the corpus, which shows potential of solving STC
problem by inductive learning.

In this paper, we propose a simple STC method
called SimpleSTC to handle inductive STC prob-
lem. Inspired by the observation that semantic
information contained in large datasets can be help-
ful to understand small datasets (Krizhevsky et al.,
2012; Devlin et al., 2019), we use external large
corpus (which will be called global pool to avoid
confusion with the dataset corpus) to construct the
basic word graph of common words. Upon the
word graph, we represent short text embedding
by pooling over words which appear in the short
text, and dynamically learns the text graph which
only connects related short texts. In a nutshell,
the word graph constructed from the global pool
compensates for the lack of semantic information,
while the text graph handles the lack of labeled
data. Although existing STC methods leverage

10717

https://github.com/tata1661/SimpleSTC-EMNLP22
https://github.com/tata1661/SimpleSTC-EMNLP22

multiple auxiliary information, we find SimpleSTC
with word graph constructed using global pool is
enough to provide semantic information and obtain
state-of-the-art performance on benchmark STC
datasets, using much lower memory consumption.
Incorporating auxiliary information such as entities
or tags cannot further improve the performance.

2 Proposed Method

Given a training set Dtrain = {(xi, yi)}Ii=1 where
xi is a short text sample and yi is its label, we aim
at learning a predictive model to classify new sam-
ples. We present SimpleSTC (Figure 1) to solve
this inductive STC problem. We first construct
word graph using an external large corpus to com-
pensate for the lack of semantic information. Then,
we learn text graph by connecting short texts to
words appearing in them, and propagate the limited
labeled information among connected texts.

Figure 1: The architecture of the proposed SimpleSTC.

2.1 Word Graph Construction
To compensate for the lack of semantic informa-
tion in the limited training data, we take an external
large corpus as global pool which can provide abun-
dant words and their statistics. Then, we construct
word graph upon the global pool.

For global pool, we use WikiText (Merity et al.,
2016), a famous large corpus containing millions of
tokens extracted from Wikipedia articles. We only
use abstracts, which summarize each article. We
tokenize sentences, then remove stopping words
and infrequent words which appear less than 10
times in the global pool. In this way, we wish
global pool to retain more general and common
information. The word set Vw contain the 24,867
words left in the global pool. We now can con-
struct a word graph Gw which models the con-

nection among these words. We connect words
vm, vn ∈ Vw based on local co-occurrence statis-
tics calculated by point-wise mutual information
(PMI):

[C]mn = max(PMI(vm, vn), 0). (1)

We record node features in Ē ∈ R|Vw|×|Vw| where
the ith row is the one-hot node feature ēm ∈ R|Vw|
for vm ∈ Vw. This C then carries abundant seman-
tic information discovered from the global pool.

2.2 Hierarchical Graph Learning
Here, we first obtain node embeddings in Gw by
end-to-end training w.r.t each STC task to encode
both general topology of Gw and dataset-specific
information. We then leverage hierarchical graph
learning to pooling over the word graph and dynam-
ically learning a text graph to effectively propagate
the limited label information.

Let E ∈ R|Vw|×d denote node embeddings for
words in Gw, it is updated by 2-layer GNN as

E = (C + I)ReLU((C + I)ĒW1
w)W2

w, (2)

where [ReLU(x)]i = max([x]i, 0), C is obtained
by (1), I is identity matrix, and W1

w,W
2
w are pa-

rameters. We then concatenate E with pretrained
word embeddings as Ê following SHINE (Wang
et al., 2021).

The short texts are encoded as the aggregated
node embeddings in Gw. Let Gs represent the text
graph, where a node corresponds to a short text xi

in the training set. Each xi ∈ Gs is represented as

h̄i = Ê>si, with [si]m = TF-IDF(vm,xi), (3)

where (·)> denotes the transpose operation,
TF-IDF is the term frequency-inverse text fre-
quency (Aggarwal and Zhai, 2012). Words in xi

but not in Vw are ignored.
Let X denote all short text embeddings with xi

on the ith row. We then estimate Gs as

[A]ij = ReLU(cos(h̄i, h̄j)− δ), (4)

H = AReLU(AXW1
s)W2

s , (5)

where cos(·, ·) is cosine similarity, δ ≥ 0 is a
threshold to prune edges between irrelevant short
texts, and W1

s ,W
2
s are parameters.

Finally, we obtain class prediction of each xi and
optimize SimpleSTC w.r.t to classification loss:

ŷi = exp(w>yihi)/
∑

c
exp(w>c hi), (6)

L = −
∑

(xi,yi)∈Dtrain
(yi)

> log(ŷi),

10718

where yi ∈ RC is a one-hot vector with all 0s
but a single 1 denoting the index of ground truth
class yi ∈ {1, . . . , C}, and wc denotes classifier
parameter for class c.

During inference, all parameters of SimpleSTC
are fixed. A new sample xk is classified as follows:
(i) tokenize xk and obtain its feature h̄k by (3); (ii)
estimate its relevance [ak]i w.r.t each hi inDtrain by
(4); (iii) obtain short text embedding hk = akH +
ReLU(h̄kW

1
s)W2

s where the training short text
embedding matrix H is directly used; (iv) make
prediction by (6).

3 Experiments

We use a 24GB NVIDIA GTX 3090 GPU. All
results are averaged over five runs. Some results
are put in Appendix B due to space limit.

3.1 Datasets

Experiments are performed on benchmark short
text datasets (Table 1).

texts avg. len # classes # words
Twitter 9, 970 6.6 2 20, 726
MR 10, 661 11.2 2 18, 447
Snippets 10, 174 17.5 8 25, 906
TagMyNews 31, 279 6.5 7 23, 218

Table 1: Summary of short text datasets used.

Following Hu et al. (2019); Wang et al. (2021),
we remove the duplicate text to avoid unfair testing,
then tokenize each sentence and remove stopping
words. Then, we separately sample 20 labeled
samples per class as training and validation sets.
The rest samples form the testing set, which are
excluded during training.

3.2 Experimental Setup

Baselines. We compare our SimpleSTC with:
(i) traditional two-step feature extraction and
classification methods including TF-IDF+SVM,
LDA+SVM (Cortes and Vapnik, 1995), and
WideMLP (Galke and Scherp, 2022); (ii) pre-
trained BERT (Devlin et al., 2019) which repre-
sents each short text as the averaged word embed-
dings (BERT-AVG) or the embedding of the CLS
token (BERT-CLS) and is fine-tuned together with
a linear classifier; (iii) inductive GNN based text
classification methods including TLGNN (Huang
et al., 2019), TextING (Zhang et al., 2020), and
HyperGAT (Ding et al., 2020); and (iv) inductive

STC method HGAT-inductive (Yang et al., 2021).
Implementation details are in Appendix A.

Metric. We report micro-averaged accuracy
(ACC) and macro-averaged F1 score (F1) averaged
over five runs obtained on the testing sets.

Hyperparameter Setting. For methods which
have been applied on datasets in Table 1, we use
their reported hyperparameters. For other meth-
ods, we find hyperparameters by grid search. In
SimpleSTC, the sliding window size is 5 when
calculating PMI, the embedding size d is 200,
and the threshold δ in (4) is set as 0.6. We use
Adam (Kingma and Ba, 2014) with the learning
rate as 1 ∗ 10−3 to train the model for a maximum
number of 1000 epochs. Dropout rate is 0.9. In
ablation study, we consider adding entity graph and
POS tag graph, which are constructed as in SHINE.

3.3 Performance Comparison
Table 2 shows the classification performance. As
can be seen, SimpleSTC consistently obtains the
state-of-the-art. Given a small training set, LDA
cannot capture the topics well, thus performs even
worse than TF-IDF. WideMLP fails to perform well
given a small training set. BERT-AVG explicitly
preserves information of each word, and obtains
good performance on Snippets and TagMyNews
where more training samples are used to fine-tune
the model. HGAT separates 1000 unlabeled data
from each dataset as data-specific pool, which fails
to supplement the information loss. SimpleSTC
outperforms the second-best (i.e., TextING) in Ta-
ble 2 by 6.36% and 7.47% in terms of average
ACC and F1 respectively. We attribute this to the
exploitation of global pool which carries abundant
semantic information. Results in Appendix B also
show that SimpleSTC consistently outperforms
TextING and HGAT with varying training data per-
centage.

For memory size, we compare SimpleSTC with
(i) the state-of-the-art transductive STC methods
SHINE and HGAT-transductive, and (ii) inductive
STC methods HGAT-inductive. Results in Table 3
show that SimpleSTC takes the smallest memory
space except on Snippets. When considering large
dataset (i.e., TagMyNews), SimpleSTC works well,
while the others run out of memory.

For inference time, we compare SimpleSTC with
(i) the two inductive STC methods HGAT-inductive
and SimpleSTC and (ii) the inductive text classifi-
cation method TextING. Table 4 shows that Sim-

10719

Twitter MR Snippets TagMyNews
Model ACC F1 ACC F1 ACC F1 ACC F1
TFIDF+SVM 57.76(1.59) 56.53(1.95) 54.66(0.68) 54.06(0.44) 64.21(1.17) 63.81(0.89) 34.16(1.80) 32.87(1.26)
LDA+SVM 52.71(1.72) 49.08(3.36) 51.86(1.28) 50.98(1.58) 30.16(2.01) 28.71(1.85) 21.45(4.67) 18.19(1.81)
WideMLP 57.60(2.49) 56.51(3.53) 53.12(1.97) 51.41(4.28) 49.55(1.28) 48.69(1.25) 24.79(0.78) 23.97(0.95)
BERT-AVG 50.52(3.61) 47.33(4.17) 50.46(1.68) 48.10(2.95) 66.35(0.46) 65.83(0.88) 62.27(1.61) 56.91(1.00)
BERT-CLS 50.29(0.38) 36.32(4.62) 50.16(0.33) 35.61(1.63) 42.08(10.05) 38.37(10.91) 38.14(5.42) 29.13(4.41)
TLGNN 54.40(3.02) 45.29(8.23) 52.44(1.68) 46.88(7.14) 59.88(2.03) 59.21(2.16) 34.70(1.16) 31.25(1.17)
TextING 61.82(2.19) 60.77(2.44) 58.73(1.02) 58.30(1.26) 76.26(1.20) 75.70(1.41) 60.76(1.35) 57.22(1.27)
HyperGAT 56.12(4.81) 49.92(11.67) 51.59(0.35) 44.81(4.23) 34.91(0.81) 34.80(0.85) 24.43(4.39) 17.77(3.00)
HGAT-inductive 54.88(1.74) 52.51(2.23) 52.21(2.10) 48.48(7.11) 62.56(1.33) 61.98(1.36) OOM OOM
SimpleSTC 62.19(1.56) 62.01(1.59) 62.27(1.11) 62.14(1.12) 80.96(1.69) 80.56(2.01) 67.17(1.27) 63.34(1.38)

Table 2: Test performance (%) obtained on benchmark datasets. The best results are marked in bold, and the
second-best results are underlined. OOM indicates out-of-memory.

Twitter MR Snippets TagMyNews
SHINE 11.47 10.88 6.99 OOM
HGAT-transductive 18.88 14.14 OOM OOM
HGAT-inductive 12.38 15.33 21.69 OOM
SimpleSTC 9.10 9.20 9.15 12.37

Table 3: Memory consumption (GB) of STC methods.

pleSTC is much faster than the others, which is
more efficient in real deployment.

Twitter MR Snippets TagMyNews
TextING 2.88e-4 3.64e-4 2.58e-4 1.60e-4
HGAT-inductive 6.41e-6 7.33e-6 1.59e-5 OOM
SimpleSTC 3.53e-6 3.41e-6 3.64e-6 1.80e-6

Table 4: Inference time (seconds) per sample taken by
inductive STC methods.

3.4 Ablation Study
Recall that the proposed SimpleSTC models word
graph and then learns text graph. While the state-
of-the-art SHINE constructs word graph, POS tag
graph and entity graph as word-level component
graphs, aggregates their node embeddings into
short text embeddings and then learns text graph.
Here, we consider multiple variants of SimpleSTC:
(i) SimpleSTC+Gp adds POS tag graph Gp con-
structed from the 45 POS tags in global pool,
SimpleSTC+Ge adds entity graph Ge constructed
from 12,857 entities which appear more than 3
times in global pool, and SimpleSTC+Gp+Ge adds
both Gp and Ge in par with Gw. (ii) SimpleSTC-
Gs removes Gs and directly takes xi in (3) as hi

to be predicted in (6). (iii) FeatureOnly removes
the hierarchical graph networks: It takes the input
node features Xw as Hw, obtains short text embed-
ding xi by (3) and then estimates As by (4), then

directly uses label propagation (Zhou et al., 2004)
to obtain class prediction.

Figure 2 shows the results. The following ob-
servations can be made: (i) When constructing
word-level component graphs from a large global
pool, SimpleSTC with Gw is enough to obtain sat-
isfactory results, it does not need to use other aux-
iliary information captured in Gp and Ge like other
STC models; (ii) The learning of Gs is necessary to
obtain good performance, which is also observed
in the transductive SHINE; (iii) Given the same
amount of input, SimpleSTC outperforms Feature-
Only which validates the contribution of the hierar-
chical GNN designed in SimpleSTC.

Figure 2: Ablation study on Snippets.

3.5 Study of Global Pool
In SimpleSTC, we use an external large corpus as
the global pool to construct the work graph. This
global pool is believed to contain abundant seman-
tic information to represent short text datasets.

Table 5 shows how many of the words in each
dataset which can be covered by the word graph
constructed from the global pool. As shown, the
word graph does not contain every word. We think
the good performance of using word graph can be
attributed to its ability of capturing common se-

10720

mantic information, which is more important than
seeing every word.

Twitter MR Snippets TagMyNews
Words 20,726 18,447 25,906 23,218
Covered Words 5,711 9,134 10,038 11,901
Ratio (%) 27.6 49.5 38.8 51.3

Table 5: Summary of words in each dataset which are
covered by the global pool.

Recall that both HGAT and SHINE construct
their graphs based on the corpus statistics, which is
data-specific. Here, we further separate some sam-
ples from the corpus as the data-specific pool to
construct the word graph, and examine the effect of
using global pool vs data-specific pool. In addition,
we add both POS tag graph Gp and entity graph Ge
used by SHINE into SimpleSTC to analyze their
contribution in different pools. Figure 3 shows that
the inclusion of Gp and Ge indeed helps improve the
performance of using data-specific pool, while they
do not help when a global pool is used. We suspect
that the global pool already provides enough se-
mantic information, which covers the information
offered by entities and POS tags. Although using
a larger data-specific pool can increase the per-
formance, data-specific pool which contains 50%
samples of the corpus still cannot reach the perfor-
mance of using global pool. Besides, leaving such
a large amount of samples as the pool is impractical.
While in SimpleSTC, one only needs to construct
the word graph from global pool once, then can
freely use it in different corpora.

Figure 3: Varying pool size
corpus size ratio (%) on Snippets.

3.6 Visualization of Learned Text Graph

Finally, we visualize the text graph Gs learned by
SimpleSTC. As shown in Figure 4, SimpleSTC can
learn a Gs which captures the correct relationship

between samples, then the label information can be
naturally forwarded to the new sample.

Figure 4: A text graph learned by SimpleSTC on MR.

4 Conclusion

STC problem is particularly hard due to the lack of
context information. In the past, existing STC mod-
els leverage multiple auxiliary information such
as words, topics and entities to provide semantic
information. While in this paper, we find that us-
ing word graph of common words in the global
pool alone can provide enough semantic informa-
tion, incorporating other information cannot further
improve the performance. Based on this insight,
we propose SimpleSTC, which allows inductive
learning, obtains state-of-the-art performance, and
takes lower memory consumption and faster infer-
ence speed. We believe that we make a focused
contribution to STC problem.

5 Limitations

We consider solving inductive STC problem on a
hierarchically organized word graph and text graph.
We manage to supplement semantic information
by word graph constructed from an external large
corpus. Nonetheless, how to dig out the most infor-
mative words instead of the common words from
this external large corpus can be further explored.

Acknowledgements

This work is supported by the National Key Re-
search and Development Program of China (No.
2021ZD0110303).

10721

References
Charu C Aggarwal and ChengXiang Zhai. 2012. A

survey of text classification algorithms. In Mining
Text Data, pages 163–222. Springer.

Jindong Chen, Yizhou Hu, Jingping Liu, Yanghua Xiao,
and Haiyun Jiang. 2019. Deep short text classifi-
cation with knowledge powered attention. In AAAI
Conference on Artificial Intelligence, pages 6252–
6259.

Corinna Cortes and Vladimir Vapnik. 1995. Support-
vector networks. Machine Learning, 20(3):273–297.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks
on graphs with fast localized spectral filtering. In
Advances in Neural Information Processing Systems,
pages 3844–3852.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 4171–4186,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Kaize Ding, Jianling Wang, Jundong Li, Dingcheng Li,
and Huan Liu. 2020. Be more with less: Hypergraph
attention networks for inductive text classification.
In Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4927–4936, Online. Associ-
ation for Computational Linguistics.

Lukas Galke and Ansgar Scherp. 2022. Bag-of-words
vs. graph vs. sequence in text classification: Ques-
tioning the necessity of text-graphs and the surprising
strength of a wide MLP. In Annual Meeting of the As-
sociation for Computational Linguistics, pages 4038–
4051, Dublin, Ireland. Association for Computational
Linguistics.

Linmei Hu, Tianchi Yang, Chuan Shi, Houye Ji, and
Xiaoli Li. 2019. Heterogeneous graph attention net-
works for semi-supervised short text classification.
In Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4821–4830, Hong Kong,
China. Association for Computational Linguistics.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong
Zhang, and Houfeng Wang. 2019. Text level graph
neural network for text classification. In Conference
on Empirical Methods in Natural Language Process-
ing, pages 3444–3450, Hong Kong, China. Associa-
tion for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations.

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. ImageNet classification with deep convolu-
tional neural networks. Advances in Neural Informa-
tion Processing Systems, 25.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. In Annual Meeting of the As-
sociation for Computational Linguistics, pages 115–
124, Ann Arbor, Michigan. Association for Compu-
tational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Conference on Empirical Methods
in Natural Language Processing, pages 1532–1543,
Doha, Qatar. Association for Computational Linguis-
tics.

Xuan-Hieu Phan, Le-Minh Nguyen, and Susumu
Horiguchi. 2008. Learning to classify short and
sparse text & web with hidden topics from large-
scale data collections. In International Conference
on World Wide Web, pages 91–100.

Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun
Yan. 2017. Combining knowledge with deep convo-
lutional neural networks for short text classification.
In International Joint Conference on Artificial Intelli-
gence, pages 2915–2921.

Yaqing Wang, Song Wang, Yanyan Li, and Dejing Dou.
2022. Recognizing medical search query intent by
few-shot learning. In International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 502–512.

Yaqing Wang, Song Wang, Quanming Yao, and Dejing
Dou. 2021. Hierarchical heterogeneous graph rep-
resentation learning for short text classification. In
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3091–3101, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Tianchi Yang, Linmei Hu, Chuan Shi, Houye Ji, Xiaoli
Li, and Liqiang Nie. 2021. HGAT: Heterogeneous
graph attention networks for semi-supervised short
text classification. ACM Transactions on Information
Systems, 39(3):1–29.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7370–7377.

Jichuan Zeng, Jing Li, Yan Song, Cuiyun Gao,
Michael R. Lyu, and Irwin King. 2018. Topic mem-
ory networks for short text classification. In Con-
ference on Empirical Methods in Natural Language
Processing, pages 3120–3131, Brussels, Belgium.
Association for Computational Linguistics.

10722

https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.emnlp-main.399
https://doi.org/10.18653/v1/2020.emnlp-main.399
https://doi.org/10.18653/v1/2022.acl-long.279
https://doi.org/10.18653/v1/2022.acl-long.279
https://doi.org/10.18653/v1/2022.acl-long.279
https://doi.org/10.18653/v1/2022.acl-long.279
https://doi.org/10.18653/v1/D19-1488
https://doi.org/10.18653/v1/D19-1488
https://doi.org/10.18653/v1/D19-1345
https://doi.org/10.18653/v1/D19-1345
http://arxiv.org/abs/1609.07843
http://arxiv.org/abs/1609.07843
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/1219840.1219855
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/2021.emnlp-main.247
https://aclanthology.org/2021.emnlp-main.247
https://doi.org/10.18653/v1/D18-1351
https://doi.org/10.18653/v1/D18-1351

Yufeng Zhang, Xueli Yu, Zeyu Cui, Shu Wu, Zhongzhen
Wen, and Liang Wang. 2020. Every document owns
its structure: Inductive text classification via graph
neural networks. In Annual Meeting of the Associa-
tion for Computational Linguistics, pages 334–339,
Online. Association for Computational Linguistics.

Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Ja-
son Weston, and Bernhard Schölkopf. 2004. Learn-
ing with local and global consistency. In Advances in
Neural Information Processing Systems, pages 321–
328.

A Implementation Details

We provide the URLs to download the datasets and
codes of baselines.

A.1 Datasets

We use the following benchmark datasets: (i) Twit-
ter2 is a collection of tweets; (ii) MR3 is a collec-
tion of movie reviews for sentiment analysis (Pang
and Lee, 2005); (iii) Snippets4 is a collection of
web search snippets of Google Search (Phan et al.,
2008); and (iv) TagMyNews is a collection of En-
glish news titles.

A.2 Baselines

We compare the proposed SimpleSTC with:

• Traditional two-step feature extraction and clas-
sification methods including TF-IDF+SVM,
LDA+SVM (Cortes and Vapnik, 1995) which
use support vector machine (SVM) to classify
texts with TF-IDF feature and LDA feature re-
spectively, and WideMLP5 (Galke and Scherp,
2022) which applies MLP one pretrained word
embeddings. We obtain TF-IDF or LDA features
based on training set rather than the whole cor-
pus.

• Pretrained BERT6 (Devlin et al., 2019) is fine-
tuned by 5 epochs to the short text classification
task. Each text is represented as the averaged
word embeddings (denote as -AVG) or the em-
bedding of the CLS token (denote as -CLS).

• Inductive GNN based text classification meth-
ods including TLGNN7 (Huang et al., 2019)

2http://www.nltk.org/howto/twitter.html#corpus_reader
3http://www.cs.cornell.edu/people/pabo/

movie-review-data/
4Snippets and TagMyNews are downloaded from http://

acube.di.unipi.it:80/tmn-dataset/.
5https://github.com/lgalke/text-clf-baselines
6https://tfhub.dev/tensorflow/bert_en_uncased_L-12_

H-768_A-12/4
7https://github.com/LindgeW/TextLevelGNN

which operates on text-level word graphs where
node embeddings and edge weights are shared
for words appearing in the training set, Tex-
tING8 (Zhang et al., 2020) which constructs
text-specific graphs, while HyperGAT9 (Ding
et al., 2020) which construct hypergraphs using
training set.

• Inductive STC method HGAT-inductive10

(Yang et al., 2021) which discovers topics from
training set, learns a GNN with dual-level at-
tention from a heterogeneous graph of entities,
topics and texts, then connects new samples to
training samples.

For methods which require pretrained word
embeddings, we use the 300-dimensional
GloVe6B11 (Pennington et al., 2014).

B More Experimental Results

Figures Reporting F1. In the main text, we re-
port performance in ACC (%) in Figure 2 and Fig-
ure 3. Here, we provide the corresponding Figure 5
and Figure 6 which take F1 (%) as metric. As can
be seen, the observation still holds. SimpleSTC
with Gw constructed from the global pool outper-
forms the others consistently.

Figure 5: Ablation study on Snippets, reporting F1 (%).

Figure 6: F1 (%) vs pool size
corpus size ratio (%) on Snippets.

8https://github.com/CRIPAC-DIG/TextING
9https://github.com/kaize0409/HyperGAT

10https://github.com/ytc272098215/HGAT
11http://nlp.stanford.edu/data/glove.6B.zip

10723

https://doi.org/10.18653/v1/2020.acl-main.31
https://doi.org/10.18653/v1/2020.acl-main.31
https://doi.org/10.18653/v1/2020.acl-main.31
http://www.nltk.org/howto/twitter.html#corpus_reader
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://acube.di.unipi.it:80/tmn-dataset/
http://acube.di.unipi.it:80/tmn-dataset/
https://github.com/lgalke/ text-clf-baselines
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
https://github.com/LindgeW/TextLevelGNN
https://github.com/CRIPAC-DIG/TextING
https://github.com/kaize0409/HyperGAT
https://github.com/ytc272098215/HGAT
http://nlp.stanford.edu/data/glove.6B.zip

Effect of Training Data Percentage. We evalu-
ate the effect of varying training data percentage
in SimpleSTC, HGAT-inductive and TextING. As
shown in Figure 7, SimpleSTC consistently out-
performs the others. We attribute this to the ex-
ploitation of global pool which carries abundant
semantic information.

(a) ACC. (b) F1.

Figure 7: Varying training data percentage on Snippets.

Effect of Global Pool Size. In the main text, we
keep common words which appear at least 10 times
in the global pool. Here, we consider varying the
size of global pool by using different word fre-
quency. Table 6 shows that larger pool size leads
to performance gain at the cost of larger memory
space. One can balance the space and performance
according to the needs.

Word Frequency # word memory ACC F1
>25 13343 5.08GB 79.55(1.25) 78.35(1.39)
>15 18997 7.03GB 80.83(1.13) 80.37(1.23)
>10 24867 9.08GB 80.96(1.69) 80.56(2.01)

Table 6: Varying the size of global pool on Snippets.

Effect of Embedding Size. Figure 8 plots testing
performance vs embedding size. As shown, when
embedding size is equal to 200 or 300, the perfor-
mance is the best. Hence, we set embedding size
as 200 to reduce parameter size.

(a) ACC. (b) F1.

Figure 8: Varying embedding size on Snippets.

Effect of Threshold δ in (4). Figure 9 examines
the effect of δ in (4). Note that Gs is fully con-
nected when δ = 0, and Gs is removed when δ = 1.

As shown, δ = 0.6 obtains the best performance,
which validates the necessity of learning Gs. Recall
that we sample 20 texts per class, after pruning by
δ, the average number of edges per text node is
summarized in Table 7 below.

(a) ACC. (b) F1.

Figure 9: Varying δ in (4) on Snippets.

Twitter MR Snippets TagMyNews
Training Graph 9.5 8.9 14.7 12.0
Testing Graph 6.2 12.5 17.0 14.9

Table 7: Average number of edges per text node after
pruning by δ.

10724

