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Abstract

We describe an application of Knowledge Dis-

tillation used to distill and deploy multilingual

Transformer models for voice assistants, en-

abling text classification for customers glob-

ally. Transformers have set new state-of-the-

art results for tasks like intent classification,

and multilingual models exploit cross-lingual

transfer to allow serving requests across 100+

languages. However, their prohibitive infer-

ence time makes them impractical to deploy in

real-world scenarios with low latency require-

ments, such as is the case of voice assistants.

We address the problem of cross-architecture

distillation of multilingual Transformers to

simpler models, while maintaining multi-

linguality without performance degradation.

Training multilingual student models has re-

ceived little attention, and is our main focus.

We show that a teacher-student framework,

where the teacher’s unscaled activations (log-

its) on unlabelled data are used to supervise

student model training, enables distillation of

Transformers into efficient multilingual CNN

models. Our student model achieves equiv-

alent performance as the teacher, and outper-

forms a similar model trained on the labelled

data used to train the teacher model. This

approach has enabled us to accurately serve

global customer requests at speed (18x im-

provement), scale, and low cost.

1 Introduction

For nearly all natural language understanding tasks,

e.g. SuperGLUE (Wang et al., 2019), state-of-the-

art results are obtained using pre-trained Trans-

former models. Their performance is dependent

on their size and the amount of pre-training data,

typically billions of tokens (Xue et al., 2021).

Intent Classification (IC), the task of understand-

ing a user’s intent from an utterance, is a core

component of all voice assistants such as Siri or

Alexa. IC is challenging due to the hundreds of

intents and contexts that such systems must sup-

port, and IC performance has benefited greatly

from Transformers (Chen et al., 2019). As voice

systems have expanded support to new languages,

the benefits of Transformers have multiplied with

the advent of multilingual versions such as XLM-

RoBERTa (Conneau et al., 2020).

Despite the advantages, deploying Transformers

at scale is not always feasible, mainly due to: (i)

large memory footprint (hundreds of GB),1 and (ii)

long inference time2 that is prohibitive for applica-

tions processing millions of inputs per minute.

While approaches to reducing memory footprint

— such as quantization (Vargaftik et al., 2021) or

pruning (Gordon et al., 2020) — have been pro-

posed, minimizing inference time is more challeng-

ing. Pruning can speed up inference, but there are

limitations to how many self-attention layers can

be pruned without loss of performance. Knowledge

Distillation (KD) (Hinton et al., 2015) is another

approach for transferring knowledge across model

architectures, e.g. from Transformers to LSTMs

(Wasserblat et al., 2020), to optimize performance.

However, cross-architecture distillation of

multilingual Transformers to multilingual non-

Transformer architectures has received almost no

attention in the community. In this work we present

the first exposition of this task. Specifically, we de-

scribe an approach used to deploy multilingual IC

models for voice assistants allowing accurate infer-

ence at scale, speed, and low-cost.

We face two key challenges: (i) meeting low in-

ference latency requirements, allowing us to glob-

ally serve customers in real time (millions per

minute), and (ii) supporting multi-linguality, here

we support 11 locales with 7 languages. Exam-

ple utterances are shown below, which represent e-

commerce questions issued in different languages.

1e.g. GPT-3 (Brown et al., 2020) contains 175B parame-
ters, roughly requiring 350GB, when using float16.

2Self-attention layers have quadratic time-complexity.
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• how many calories are in a banana? (EN)

• wie viel fett enthält hühnchen? (DE)

• come si conservano le vongole in frigo (IT)

• cómo se hace un queque de yogur (ES)

• combien de temps peut-on réfrigérer une banane (FR)

• é possível congelar pastéis de nata (PT)

We use the teacher-student distillation paradigm,

and show the optimal KD strategy for multilingual

IC can leverage teacher logits alone (Mukherjee

and Awadallah, 2020). Utterances for IC are typ-

ically 10-40 tokens, allowing us to exploit an ef-

ficient ConvNet architecture, and assess how they

can obtain multilingual and pretrained knowledge

from models like XLM-R via distillation.

While there have been previous attempts on dis-

tilling transformer models into ConvNets (Chia

et al., 2019), our work is the first to explore cross-

architecture multilingual KD on real-world appli-

cations with strict requirements for latency and

accuracy. We make the following contributions.

• Knowledge distillation from Transformers to

multilingual student (ConvNet) for intent clas-

sification based on the teacher-student paradigm;

• Minimal inference latency multilingual student

models (18x speed up relative to teacher) without

any loss in classification accuracy.

• Evaluation framework outlining the amount of

distillation data required, and assessment of the

student model’s generalization on unseen data.

2 Related Work

We now review some of the popular approaches for

distilling and compressing Transformer models.

Model Finetuning. Eisenschlos et al. (2019) pro-

pose an efficient way to fine tune monolingual mod-

els on multilingual tasks by simply using the output

of cross-lingual Transformer models as pseudo-

labels. Their approach is based on the ULMFiT

model (Howard and Ruder, 2018), where instead

of the stacked LSTM networks (Hochreiter and

Schmidhuber, 1997), they rely on quasi recurrent

neural networks (Bradbury et al.) (QRNN). QRNN

are similar to CNN, with the difference that the

convoluational operators are done at each timestep,

however, due to parallelization, they can be com-

puted much more efficiently than LSTMs.

QRNNs are up to 16x faster than LSTMs, how-

ever, for our case, we find that ConvNets are more

efficient than QRNNs, as they do not perform step-

wise computations as QRNNs do. We compare the

inference time of QRNNs and our proposed student

model, and conclude that simple ConvNets have

significantly lower inference time.

Model Compression. Ganesh et al. (2021) sys-

tematically review approaches for compressing

transformers. To reduce memory usage, quantiza-

tion is often applied (Vargaftik et al., 2021). Quan-

tization reduces the amount of bits required to store

network parameters. For example, parameters rep-

resented using float32, can instead be stored us-

ing only 16 or fewer bits, reducing memory usage

significantly. This allows deploying larger models

in compute infrastructure with limited resources.

Model pruning is a widely explored research

direction for compression, mainly consisting of two

techniques. First, in unstructured pruning, weights

are zeroed out using different strategies (Gordon

et al., 2020). Second, in structured pruning either

the self-attention heads (Fan et al., 2019) or the

encoder layers (Hou et al., 2020) are pruned.

Quantization and pruning facilitate usage of

large transformers without the requirement of very

high memory capacity (GPU or CPU) machines.

Quantization, and unstructured model pruning,

mainly reduce memory usage. Structured prun-

ing, where encoder and self-attention layers are

dropped, can improve efficiency. Yet, for many

real-world applications the latency needs cannot be

met (with few milliseconds, as is our case). For

instance, pruning more than 50% of attention heads

can lead to performance loss (Fan et al., 2019).

Knowledge Distillation (KD). Hinton et al.

(2015) discuss the trade-offs between model size

and performance. Training a larger model, and dis-

tilling its knowledge to a smaller model, either us-

ing the same training data or unsupervised training

data, yields identical performance. The contrary

cannot be said when training a small model directly,

where the performance is significantly worse than

its bigger counterpart. KD works under the teacher-

student paradigm, where the teacher’s output is

used to train the student model such that it mimics

the teacher model in terms of the output.

There are several efforts in distilling transform-

ers into recurrent (Wasserblat et al., 2020) and con-

volutional architectures (Chia et al., 2019). While

recurrent models like LSTMs can significantly re-
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duce memory footprint and latency, the step-wise

sequential computation induces a large latency

overhead that cannot be overcome. Conversely,

ConvNets are highly efficient for text classification,

both in terms of performance and latency.

Our approach is similar to that of Chia et al.

(2019), in that we use CNNs as the main building

block of the student model, However, we differ

in several fundamental aspects and make contribu-

tions that further push the application of knowledge

distillation. First, we deal with a multilingual task,

which increases the complexity of the knowledge

transfer from the teacher to the student model. Sec-

ond, our ConvNet architecture is different to ac-

count for the multilingual requirement. Thirdly, we

rely on unsupervised data for distillation, where we

show how much data is necessary across different

languages to have identical performance between

the teacher and student models.

3 Multilingual Distillation Method

We now describe the KD approach: the IC task, the

teacher/student models, and the learning objective.

3.1 IC Task

Our intent classification task requires categoriz-

ing utterances into two intents: Commerce Ques-

tion (CQ), which are questions to the voice assis-

tant about consumer products, and Non-Commerce

Question (NCQ), which are all other questions.

3.2 Teacher and Student Models

Teacher Model: As our classifier is deployed

globally in many languages, we use the multilin-

gual XLM-RoBERTa (XLMR) transformer (Con-

neau et al., 2020) as our teacher model.

Given an utterance w = (w1, . . . , wn), consist-

ing of n tokens, the teacher model is used to encode

the input, T(w) = hT (w), where hT (w) ∈ R
m

represents the [CLS] pooling representation from

the last XLMR layer. This is fed to a softmax classi-

fication head, consisting of a dense projection that

yields the raw activations of the network (i.e. un-

scaled log probabilities, or logits), which are then

normalized to probabilities via softmax:

logitsT (w) = hT (w)T ·WT (1)

pT (w) = softmax(logitsT (w)) (2)

where W ∈ R
m×C , C is the number of intent

classes, and logitsT (w) captures the intent of the

utterance, and is used to student training.

Student Model: Figure 1 shows our student

model architecture. We use a deep convolu-

tional model (ConvNet) (LeCun and Bengio, 1995),

which are widely used for text classification (Kim,

2014), mainly for two reasons. Firstly, their convo-

lutional operators allow for effective extraction of

local subword interactions in an utterance, allow-

ing to connect question shapes (e.g. “how many

calories”) and product names (e.g. banana). Sec-

ondly, convolutional operations can be computed

in parallel, allowing for minimal inference time,

an important prerequisite for real-world applica-

tions. Finally, as IC utterances are typically short

(10-40 tokens), CNNs can sufficiently capture all

the important local/global lexical cues for the IC

task.

Tokenization and Word Representations: Ut-

terances are tokenized using the byte-pair encoding

tokenizer model (Sennrich et al., 2016). To create a

multilingual ConvNet, we leverage pretrained mul-

tilingual subword embeddings (Heinzerling and

Strube, 2018). This approach allows representa-

tions of all languages, with a small vocabulary.

Encoder: Five 1D kernels of size 2-6 tokens,

each with 500 filters, are aggregated with max-

pooling. The pooled outputs are concatenated to

form the final text representation.

Next, the student model computes the utterance

representation (cf. Figure 1 (e)), S(w; θ) = hS ∈
R
m, that is used to predict the intent probability:

logitsS(w) = hS(w)T ·WS (3)

pS(w) = softmax (logitsS(w)) (4)

where WS ∈ R
m×C and θ represent the student

model parameters that need to be optimized.

3.3 Distillation Learning Objective

We use soft targets from the teacher, i.e. the un-

scaled log probabilities prior to softmax normaliza-

tion (the logits), to train the student. We directly

supervise the training of the student model S(w; θ)
such that logitsS(w) ≈ logitsT (w).

To this end, our learning objective is to minimize

the Mean Squared Error (MSE) loss over the log-

its (Mukherjee and Awadallah, 2020), computed

over the N unlabelled instances:

L =
1

N

N∑

i=1

‖logitsS(wi)− logitsT (wi)‖
2

(5)
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Figure 1: Student model: (a) input text, (b) byte-pair

tokenizer, (c) pretrained embeddings compute subword

representation; (d) 1D kernels with max-pooling; (e)

concatenated representations; (f) output classification.

This logit loss encourages the student to output

the same unnormalized activations as the teacher,

which result in the same probabilities when nor-

malized, and is more numerically stable to train.

By minimizing L on a large sample of unlabelled

data, the distillation process can successfully trans-

fer the intent classification knowledge from the

teacher to the student. In this aspect, it is impor-

tant to consider a large and representative sample

given that L can be minimal for a specific set of

utterances, i.e. |logitsS(w) − logitsT (w)| < ǫ,

however, for unseen utterances the difference be-

tween |logitsS(w)− logitsT (w)| ≫ ǫ (for some

value that induces change in utterance’s label.)

4 Experimental Setup

We now describe the datasets used to train the

teacher model, and for distillation. We also de-

fine the evaluation metrics used to asses how well

the student model mimics its teacher.

4.1 Datasets

We use 3 types of data: (i) teacher datasets (su-

pervised IC training data); (ii) student datasets,

unannotated utterances to train the student; and (iii)

test data used to evaluate the teacher and student.

Teacher Datasets: Table 1 (a) shows details of

the training data used for the teacher model. Ut-

terances come from 7 different languages and 11

locales. The task is imbalanced, but for confiden-

tiality, the class distribution cannot be disclosed.

(a) (b) (c)

Language Locale
Teacher

instances
Distillation
instances

Test
instances

English
en-US 1.7M 4M 733k
en-GB 443k 32k 280k

Spanish
es-ES 7.5k 2.9M 106k
es-US 6.8k 1.7M 11k
es-MX 6.8k 1.4M 61k

French
fr-FR 7.3k 2.4M 62k
fr-CA 11.6k 911.3k 10.8k

German de-DE 1M 3M 208k
Italian it-IT 7.4k 3M 11k
Portuguese pt-BR 11k 1.3M 30k
Hindi hi-IN 12.6k 647k 45k

3.5M 22.6M 1.7M

Table 1: (a) Teacher data includes 3.5M utterances with

annotated binary labels. (b) Student data has 22.6M

unannotated utterances used to train the student model.

(c) Test instances are used to evaluate both models.

Distillation Datasets: Table 1 (b) shows the

statistics of the distillation data. We randomly sam-

ple a target number of utterances from each locale

over a 1-month period. The data is unlabelled. Us-

ing unsupervised data allows the KD process to

transfer any of Transformer’s pretrained knowledge

that may not overlap with our supervised set.

Test Datasets Table 1 (c) shows the test datasets

used to evaluate the performance of our teacher

and student models. In total, our test set across all

locales consists of 1.7M labelled instances.

4.2 Teacher and Student Configuration

Teacher Model: Model T is based on XLMR

base model3 with a total of 278M parameters, is

fine-tuned on data from Table 1 for our multi-

lingual IC task. The model is trained by mini-

mizing the cross-entropy loss function using the

AdamW (Loshchilov and Hutter, 2019) optimizer

with a learning rate of lr = 3e− 5.

Distilled Student Model: Model S is described

in Figure 1, and consists of a total of 103M param-

eters. It is trained using the data in Table 1 (b) by

minimizing the loss in Equation (5). A dropout rate

of 10% is applied to the embeddings and CNN fil-

ters for regularization. We fine-tune the pretrained

embeddings, and apply learning rate warmup over

the first 2 epochs to prevent catastrophic forgetting.

We train for 50 epochs (via the Adam optimizer),

with an early stopping criterion of 3 consecutive

epochs of non-decreasing loss.

3https://huggingface.co/

xlm-roberta-base
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4.3 Baseline

Our main objective is minimizing inference latency

of Transformer models for IC. IC accuracy is not

problematic for in-domain data, and most models

achieve high performance (Larson et al., 2019).

QRNN: We focus in comparing only w.r.t the in-

ference time between different approaches.4 We

compare S to QRNN, proposed in (Bradbury et al.),

and consider two configurations: (i) QRNN4: with

4 ConvNet layers (as reported in Bradbury et al.),

and (ii) QRNN5: with 5 ConvNet layers, equiva-

lent to the layers used in S.

Supervised Student Model: To assess whether

distillation of teacher’s knowledge into S using

unlabelled data is needed in the cases of abundance

of labelled training data, we additionally train an

identical model to S using the supervised training

data in Table 1 instead, which we denote with Ssup.

The training loss for Ssup is the cross-entropy loss.

4.4 Evaluation Metrics

Accuracy: We measure performance based on Pre-

cision (P) and Recall (R). Specifically, we compare

the models at the threshold-agnostic P/R Break-

Even Point (PR-BEP) (Joachims, 2005), where the

precision and recall of the model are equal. To

compare performance over all thresholds, we re-

port PR-AUC (area under the PR Curve) which is a

meaningful metric for imbalanced tasks (Liu et al.,

2019). Due to confidentiality, we report only the

gap of S and Ssup to T, as their absolute difference.

Efficiency: We measure wall-time t to compute

the inference latency in milliseconds (ms). All

measurements are the averaged latency over 100
trials, computed on an m5.4xlarge instance.5

5 Results

5.1 Model Accuracy

Overall Performance: Table 2 shows the perfor-

mance difference between the teacher and student

models. The overall PR-BEP gap across locales

with 0.1% between T and S is negligible.6

Contrary to S, Ssup has a large gap to T, with

an overall difference of 6%, and in certain locales,

exceeding 30% in terms of PR-AUC. This gap

4Experimental evaluation shows that S achieves nearly
identical performance to T. Thus, we do not report accuracy
metrics for QRNN, given that its inference latency is higher.

5https://aws.amazon.com/ec2/

instance-types/
6Statistically not significant per Binomial Proportion Test.

S Ssup

PR AUC PR BEP PR AUC PR BEP

en-US H 0.2% H 0.2% H 6% H 6%

en-GB N 0.2% N 0.8% H 5% H 3%

es-ES N 0.2% H 0.1% H 8% H 6%

es-US H 1.3% H 0.9% H 8% H 7%

es-MX H 0.4% H 0.4% H 10% H 7%

fr-FR N 0.1% N 0.1% H 8% H 6%

fr-CA N 0.4% N 0.8% H 7% H 6%

de-DE H 0.4% H 0.6% H 6% H 5%

it-IT H 0.3% H 1.0% H 11% H 9%

pt-BR N 0.2% H 0.1% H 33% H 25%

hi-IN N 0.2% H 1.0% H 30% H 24%

average H 0.1% H 0.2% H 6% H 6%

Table 2: The gap between the student models (S and

Ssup) to T is reported for the same test set. For S the

gap of 0.2% is marginal, whereas for Ssup the gaps are

highly significant according to the Binomial proportion

test (p–value < 0.01).

remains large in the languages with the largest

amount of supervised data, but is much more promi-

nent in those with little data. This highlights two

main findings: (i) T due to its Transformer ar-

chitecture has a superior learning capacity when

compared to directly training Ssup in a supervised

manner; (ii) knowledge distillation allows us to suc-

cessfully transfer the teacher’s pretrained knowl-

edge to the student, allowing the student to ac-

quire knowledge not present in the labeled data,

and achieve similar generalization as the teacher

(cf. Appendix A).

Incremental Distillation Performance: Ta-

ble 3 shows the gap in performance between the

student and teacher models, for varying amount of

data used to train the student model. The data from

Table 1 (b) is sampled using stratified sampling,

with the locales representing the groups.

With only 1% of the data, the gap in terms of

PR-BEP is 8.7% absolute points. Increasing this

to 10% or more, the gap closes to less than 1%.

Concretely, 10% represents 2.2M instances across

all locales. In real-world settings it is reasonably

cheap to obtain such amounts of unlabelled data.

Results indicate that with appropriate data, logit

loss is highly effective for capturing the teacher’s

knowledge. The student, using a different tokenizer

and subword embeddings, is able to match teacher

performance. Relative to other methods, logit loss

is simpler to implement, and faster to train. For the

IC task, we did not need to distill internal model
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PR-BEP Absolute Percentage Difference to the Teacher Model.

1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

en-US H 8.60% H 2.70% H 1.40% H 0.90% H 0.70% H 0.30% H 0.40% H 0.20% H 0.40% H 0.60% H 0.20%
en-GB H 7.30% H 2.10% H 0.80% H 0.50% H 0.70% H 0.10% H 0.30% 0% N 0.40% N 0.20% N 0.10%
es-ES H 9.40% H 4.40% H 1.40% H 0.70% H 0.60% H 0.80% H 0.80% H 0.90% H 0.50% H 0.70% H 1.00%
es-US H 9.00% H 3.90% H 3.60% H 0.90% H 0.60% H 1.20% N 0.60% N 0.30% N 0.90% N 0.90% H 1.20%
es-MX H 9.80% H 4.60% H 1.90% H 1.50% H 0.80% H 1.40% H 0.80% H 0.60% H 0.40% H 0.90% H 1.20%
fr-FR H 8.30% H 3.10% H 1.30% H 1.60% H 0.90% H 1.10% H 0.80% H 0.70% H 0.80% H 1.00% H 0.70%
fr-CA H 9.50% H 3.00% H 0.30% H 0.30% H 0.30% N 0.30% N 1.20% H 0.30% N 0.60% H 1.20% H 0.30%
de-DE H 8.20% H 3.30% H 1.70% H 1.20% H 1.30% H 0.70% H 0.60% H 0.60% H 0.60% H 0.50% H 0.20%
it-IT H 11.20% H 4.30% H 2.00% H 1.10% H 1.90% H 1.20% H 0.70% H 1.00% H 1.10% H 1.10% H 1.40%
pt-BR H 11.80% H 5.10% H 1.80% H 1.70% H 2.60% H 1.00% H 0.40% H 0.80% H 1.40% H 0.60% H 1.50%
hi-IN H 11.90% H 8.30% H 5.90% H 4.30% H 3.10% H 2.40% H 1.80% H 1.40% H 1.20% H 1.10% H 1.30%

average H 9.54% H 4.1% H 2.01% H 1.34% H 1.22% H 0.95% H 0.76% H 0.62% H 0.75% H 0.8% H 0.82%

Table 3: PR-BEP performance of the student model trained on varying portion of the distillation data from Table 1

(b). Overall, with 1% of the data used for distillation, the student model has an average gap in terms of PR-BEP of

8.7%. With increasing percentage of data used for distillation the gap is shrunk to 0.6% for 40% of the data.

values (e.g. representation loss). We did not use the

supervised data for student training (e.g. with cross-

entropy loss); our finding is that a sufficiently large

and representative unsupervised sample will con-

tain samples similar to those in the supervised set,

as well as dissimilar ones, thus allowing the trans-

fer of knowledge represented by both the labelled

data and the Transformer’s pretrained knowledge.

5.2 Inference Latency

A drawback in deploying transformers is their pro-

hibitive inference latency, mainly impacted by: (i)

model size, and (ii) number of encoder layers.

Figure 2 shows the latency for different ablations

of T (with varying numbers of encoder layers),

and the latency of S, as the model with the lowest

latency. Comparing T and S, our student model

has nearly 18x lower inference latency, with only

2.7ms. This represents a drastic latency reduction,

allowing us to process inputs extremely quickly.

For the teacher ablations, even for T1, the in-

ference latency is still higher than that of S, with

an additional +1.24ms latency per utterance. Fur-

thermore, pruning layers is not lossless in terms of

performance, especially in this case where only one

layer is retained (Fan et al., 2019). The bottom part

of Figure 2 shows the gap of the different pruned

teacher models Tl w.r.t the full model T. The gap

is high when we use fewer than 8 layers, with more

than 12% drop in PR-BEP. It is clear that there is no

clear trade-off between self-attention layer pruning

and inference latency reduction.

Finally, comparing the baseline QRNN4 and

QRNN5, we note that the proposed student archi-

tecture, relying solely on ConvNets, results in a

significantly lower inference latency. Our student

architecture has 3.8x and 2.95x lower latency than

QRNN5 and QRNN4, respectively. This signif-

icant increase in terms of latency can be explained

by the fact that QRNN applies its convolutional

operators for timestep (each token in an utterance),

which although more efficient than LSTMs (due to

parallelization), it introduces a significant overhead

over the traditional ConvNet architectures.

6 Conclusions

We described an approach for distilling knowledge

from Transformer into a single multilingual CNN.

To our knowledge this is the first detailed exposi-

tion of cross-architecture KD to multilingual stu-

dent models. We leverage the outlined framework

to accurately serve predictions for our customers

at speed, scale, low-cost, and across all languages.

Empirically we showed how such a KD framework

can be utilized in practice:

1. With sufficient unsupervised data, leveraging

logits is an optimal distillation strategy for train-

ing smaller and more efficient student models,

without significant performance loss.

2. KD allows smaller and more efficient models to

mimic the performance of their teacher counter-

parts, which is not the case if similar architec-

tures are directly trained using labelled data.

3. KD is highly preferred over other techniques

such as pruning. Transformers, even with a sin-

gle encoder layer have higher inference latency,

and the performance drop with pruning is large,

where T1 has a 23% and 22% gap in terms of

PR-BEP w.r.t T and S, respectively.
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Figure 2: The upper plot shows the inference latency (in milliseconds) for the teacher models, where Tl (l ∈
{1, . . . , 11}). T1 is a single encoder layer, with the other 11 layers pruned. The bottom plot shows the gap in

terms of PR-BEP of the Tl models to the full teacher model. Note that, T1 which has the closest inference time to

S (with 2.71ms latency), has a 22.8% and 22.5% drop in terms of PR-BEP w.r.t T and S, respectively. Similarly,

for QRNN, the inference time is shown in the orange and yellow dashed lines, with a latency of QRNN4 = 8.02
ms and QRNN5 = 10.02 ms.

4. For IC, a single multilingual CNN using mul-

tilingual subword embeddings can match the

teacher performance despite using a different

tokenizer. It is highly efficient, decreasing the

latency by nearly 18x relative to the teacher.

5. Using as few as 2-3M distillation instances, S

achieves highly comparable performance as T,

with less than 1% PR-BEP difference. The gap

diminishes to 0.95% with just 40% of distilla-

tion data, specifically 8.8M instances.

6. S achieves the same generalization power as T.

On a held out test set (unseen during training

and distillation), the output probabilities have a

very low KL divergence (cf. Appendix A).
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Appendix

A Generalizability of Distillation

Distribution Loyalty: We now assess the gener-

alization of the KD process: whether the teacher

and student behave similarly on unseen data. From

the test set in Table 1, we take the instances that

are not present in either the teacher or distillation

data, resulting in 806k instances. We measure the

Kullback-Leibler (KL) divergence between the out-

put probabilities of the teacher and student models

(trained with varying number of instances). KL

values closer to zero, reflect similar distributions

and behavior of the two models on the unseen data.

Figure 3 shows that with increasing amount of

distillation data, the teacher and student models out-

put highly similar probabilities. Further, we note

that in some cases, such as for hi-IN, with 1%

of the distillation data (or 6472 instances), the two

models output highly diverging probabilities. In-

creasing the distillation data to 30% and upwards,

we see that the probability distributions become

highly similar, a fact also reflected in Table 3,

where the student models have very close scores.

NCQ/CQ Class Separation: Figure 4 shows the

class separation for the different student models,

distilled with varying amount of data (1%, 10%,

and 50%), and as well as the teacher model (rep-

resenting the target performance for S). An ideal

classifier would output 0 probability for NCQ class,

and 1.0 for the CQ class, given that the IC models

are trained on the binary case to predict whether an

utterance is a commercial question or not.

From Figure 4, it can be noted that for S1%,

there is a large amount of CQ utterances that have

low CQ probability (x-axis). As the amount of

distillation data is increased, we note that the distri-

bution become more skewed (Dean and Illowsky,

2018), which represents an increase in classifier

accuracy. For instance, from a skewedness score of

G1CQ = −2.29 for S1%, we obtain a skewedness

score of G1CQ = −3.71 for S50%, which implies

that the CQ probability distribution is more skewed

towards the higher CQ scores. In the case of classi-

fication models, the more skewed the distributions,

the higher the classification performance.
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Figure 3: KL-Divergence of the confidence score distribution between teacher and student models on unseen data.

With increasing amounts of distillation data, the probability distributions become highly similar.

Figure 4: NCQ/CQ confidence distribution (x–axis) as a function of how likely an utterance is to be CQ. For NCQ,

this probability ideally should be close to zero, and vice-versa for CQ (close to one). The skewedness score G1
measures the concentration of the probability mass for NCQ and CQ, respectively. For NCQ the higher score the

better (in the positive range), whereas for CQ, the lower the score the better (negative range). The results are shown

for the student models: S1%, S10%, S50% (distilled with 1%, 10%, and 50% of the data, respectively), and for the

teacher model T.


