
Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages, pages 170 - 176
May 26, 2022 ©2022 Association for Computational Linguistics

CUET-NLP@DravidianLangTech-ACL2022: Investigating Deep Learning
Techniques to Detect Multimodal Troll Memes

Md. Maruf HasanΨ, Nusratul JannatΨ, Eftekhar Hossainf,
Omar SharifΨ and Mohammed Moshiul HoqueΨ
ΨDepartment of Computer Science and Engineering

fDepartment of Electronics and Telecommunication Engineering
fΨChittagong University of Engineering & Technology, Chattogram-4349, Bangladesh

{u1604089, u1604115}@student.cuet.ac.bd
{eftekhar.hossain, omar.sharif, moshiul_240}@cuet.ac.bd

Abstract

With the substantial rise of internet usage, so-
cial media has become a powerful communi-
cation medium to convey information, opin-
ions, and feelings on various issues. Recently,
memes have become a popular way of sharing
information on social media. Usually, memes
is visuals with text incorporated into them and
quickly disseminate hatred and offensive con-
tent. Detecting or classifying memes are chal-
lenging due to their region-specific interpreta-
tion and multimodal nature. This work presents
a meme classification technique in Tamil devel-
oped by the CUET NLP team under the shared
task (DravidianLangTech-ACL2022). Several
computational models have been investigated
to perform the classification task. This work
also explored visual and textual features us-
ing VGG16, ResNet50, VGG19, CNN and
CNN+LSTM models. Multimodal features are
extracted by combining image (VGG16) and
text (CNN, LSTM+CNN) characteristics. Re-
sults demonstrate that the textual strategy with
CNN+LSTM achieved the highest weighted
f1-score (0.52) and recall (0.57). Moreover,
the CNN-Text+VGG16 outperformed the other
models concerning the multimodal memes de-
tection by achieving the highest f1-score of
0.49, but the LSTM+CNN model allowed the
team to achieve 4th place in the shared task.

1 Introduction

The Meme refers to an element of a culture or sys-
tem of behaviour conveyed from one individual to
another by imitation or other non-genetic actions.
Memes appear in various formats, including but not
limited to photographs, videos, tweets, and have a
growing influence on social media communication
(French, 2017; Suryawanshi et al., 2020b). Images
with embedded text are the most widely used form
of memes. Memes facilitate transmitting ideas or
feelings spontaneously. Posting and sharing memes
have recently become a popular way of dissemi-
nating information on social media since memes

can propagate information humorously or sarcas-
tically (Ghanghor et al., 2021a,b; Yasaswini et al.,
2021). Propagation of malicious memes and other
related activities via memes such as trolling, cy-
berbullying is rapidly rising (Chakravarthi, 2020;
Chakravarthi and Muralidaran, 2021). The implicit
meaning of the memes, presence of ambiguous,
humorous, sarcastic terms, and usage of attractive,
comical, theatrical images have made meme clas-
sification even more complicated (Kumari et al.,
2021; Chakravarthi et al., 2021). For example, in
Figure 1, text and image individually exhibit no
means of attack. However, considering both modal-
ities, it insults the persons by directing the age
gap in their marriage. To facilitate research in this
arena, this work presents our system to classify
multimodal troll memes for the Tamil language.

Tamil is a member of the southern branch of
the Dravidian languages, a group of about 26 lan-
guages indigenous to the Indian subcontinent. It
is also classed as a member of the Tamil language
family, which contains the languages of around
35 ethno-linguistic groups, including the Irula and
Yerukula languages (Sakuntharaj and Mahesan,
2021, 2017, 2016; Thavareesan and Mahesan, 2019,
2020a,b, 2021). Tamil is an official language of
Tamil Nadu, Sri Lanka, Singapore, and the Union
Territory of Puducherry in India. Significant mi-
nority speak Tamil in the four other South Indian
states of Kerala, Karnataka, Andhra Pradesh, and
Telangana, as well as the Union Territory of the An-
daman and Nicobar Islands (Bharathi et al., 2022;
Priyadharshini et al., 2022). It is also spoken by the
Tamil diaspora, which may be found in Malaysia,
Myanmar, South Africa, the United Kingdom, the
United States, Canada, Australia, and Mauritius.
Tamil is also the native language of Sri Lankan
Moors. Tamil, one of the 22 scheduled languages
in the Indian Constitution, was the first to be des-
ignated as a classical language of India (Anita
and Subalalitha, 2019b,a; Subalalitha and Poovam-
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mal, 2018; Subalalitha, 2019; Srinivasan and Sub-
alalitha, 2019; Narasimhan et al., 2018).

We experimented with several deep learning
models to extract visual and textual features. Af-
ter investigating the outcomes, an early fusion ap-
proach is employed to combine the features from
both modalities. The results indicate that the tex-
tual models acquired higher f1-score compared to
the visual and multimodal counterparts.

Figure 1: A sample Troll meme

2 Related Work

Over the past few years, trolling, hostility, offen-
sive, and abusive language detection from social
media data have been extensively studied by NLP
professionals (Kumari et al., 2021; Hossain et al.,
2021; Mandl et al., 2020; Sharif et al., 2021a). The
majority of these researches were carried out con-
sidering only textual information (Li, 2021; Sharif
et al., 2021b). However, a meme’s existence can be
found in an image and text embedded in an image.
Few researchers have investigated both textual and
visual features of memes to classify trolls, offences
and aggression. Sadiq et al. Sadiq et al. (2021)
developed and compared several models to identify
cyber-trolling tweets. Models include the Multi-
Layer Perceptron (MLP) with TF–IDF features,
MLP with word embedding, and two deep neural
networks: CNN with LSTM and CNN with BiL-
STM. Results exhibited that MLP with the TF–IDF
features-based model outperformed other models
with an accuracy of 0.92. Kumari et al. (2021)
proposed a hybrid model in which the image fea-
tures are retrieved using pre-trained VGG-16, and
the textual features are extracted through a layered
CNN model. These features are optimized using
the binary particle swarm optimization technique
(BPSO), contributing to a weighted f1-score of

0.74. Suryawanshi et al. (2020a) created a multi-
modal dataset of 743 offensive and not-offensive
memes from the 2016 presidential election in the
United States. To merge the multimodal charac-
teristics, they used an early fusion method. The
combined model received a 0.50 f1-score, but the
text-based CNN model outperformed it with a 0.54
f1-score. Most previous studies focused on cate-
gorizing memes based on unimodal data: text or
image. However, this work considers detecting
memes from multimodal data: text and image in
Tamil. Pranesh and Shekhar (2020) proposed a
multimodal framework (MemSem) consisting of
VGG19 for image features and BERT for text fea-
tures. MemeSem achieved a better result than all
unimodal and multimodal baselines with 67.12%
accuracy. Gomez et al. (2020) developed a multi-
modal hate speech dataset containing images and
corresponding tweets. The results indicate that
the multimodal model (CNN+RNN) was not out-
performed the textual model. Bucur et al. (2022)
employed a 3-branch network for sentiment analy-
sis. They used EfficientNetV4 and CLIP to extract
image features, while a sentence transformer was
used to get the text features. The system achieved a
weighted f1-score of 0.5318 with the CORAL loss
function.

3 Task and Dataset Descriptions

A troll meme is an image with embedded offensive
or sarcastic text which degrade, provoke, or of-
fend a person or group (Suryawanshi et al., 2020b;
Gandhi et al., 2019). This work aims to classify
troll memes by exploiting the visual and textual in-
formation. The task organizers1 provided a dataset
having two types of memes (troll and not troll) in
Tamil (Suryawanshi and Chakravarthi, 2021).

Dataset Train Test
Troll 1282 395

Not-troll 1018 272
Total 2300 667

Table 1: Meme dataset distribution

Table 1 presents the distribution of the data sam-
ples in the train and test set. Dataset is provided
in the form of an image with an associated caption.
Participants can use the image, caption, or both to
perform the classification task. We utilized image,

1https://competitions.codalab.org/competitions/36397
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text, and multimodal (i.e., image + text) features to
address the assigned task.

4 Methodology

The objective of this work is to identify the troll
from multimodal memes. Initially, we exploit the
visual aspects of the memes and develop several
CNN architectures. Subsequently, the textual in-
formation is considered, and deep learning-based
methods (i.e., LSTM, CNN, LSTM+CNN) are ap-
plied for classification. Finally, the visual and tex-
tual features are synergistically combined to make
more robust meme classification inferences. Figure
2 depicts the abstract process of the troll meme
classification system.

4.1 Data preprocessing

In the preprocessing step, unwanted symbols and
punctuations are removed from the text automati-
cally using a Python script. The preprocessed text
is transformed into a vector of unique numbers.
The Keras tokenizer function is utilized to find the
mapping of this word to the index. The padding
technique is applied to get equal length vectors.
Similar to ImageNet’s preprocessing method (Deng
et al., 2009), all images are transformed into a size
of (224× 224× 3) during preprocessing.

4.2 Visual Approach

Several pre-trained CNN architectures including
VGG16 (Simonyan and Zisserman, 2014), VGG19,
and ResNet50 (He et al., 2016) are employed here.
To accomplish the task, this work utilized the trans-
fer learning approach (Tan et al., 2018). At first,
the top two layers of the models are frozen and then
added a global average pooling layer followed by a
sigmoid layer for the classification. The models are
trained using the ‘binary_crossentropy’ loss func-
tion and ‘adam’ optimizer with a learning rate of
1e−3. Training is performed by passing 32 samples
at each iteration. Besides, we use the Keras call-
back method to save the best intermediate model.

4.3 Textual Approach

In order to extract features from the text modal-
ity, various deep learning architectures are used.
The investigation employs CNN and RNN archi-
tectures, specifically CNN and LSTM with CNN
(LSTM+CNN). Firstly, the Keras embedding layer
generates the word embeddings for a maximum
caption length of 1000. Subsequently, these em-

beddings are propagated to the models. We con-
struct a CNN model consisting of one convolution
layer associated with a filter size of 32 and a ReLU
(Rectified Linear Unit) activation function in one ar-
chitecture. To further downsample the convoluted
features, we use a max-pooling layer followed by
a classification layer for the prediction. In another
architecture, we added a single LSTM layer of 100
neurons at the top of the CNN network and thus
created the LSTM + CNN model. Here, the LSTM
layer is introduced due to its effectiveness in cap-
turing the long-term dependencies from the long
text.

4.4 Multimodal Approach

Visual features are extracted using the pre-trained
VGG16 model. Following the VGG16 model, we
added a global average pooling layer with fully
connected and sigmoid layers. We employed CNN
and LSTM models to extract the textual features.
Finally, the output layers of the visual and textual
models are concatenated to form a single integrated
model. The output prediction is produced in all
combinations by a final sigmoid layer inserted after
the multimodal concatenation layer. All the models
are compiled with the ‘binary crossentropy’ loss
function. Aside from that, we utilize the ‘adam’
optimizer with a learning rate of 1e−3 and a batch
size of 32. Table 2 shows the list of tuned hyperpa-
rameters used in the experiment.

Hyperparameters Values
Dropout rate 0.2

Epoch 15
Optimizer ‘adam’

Learning rate 1e−3

Batch size 32

Table 2: List of hyperparameters values.

5 Result and Analysis

The task’s purpose is to categorize troll memes in
Tamil. We experimented with various visual and
textual models to deal with each modality. Fur-
thermore, the features from both modalities were
merged. The weighted f1-score determines the
models’ superiority. Other evaluation criteria, such
as precision and recall, are also considered to un-
derstand the model’s performance better. Table 3
exhibits the evaluation results of the models on the
test set. Concerning the multimodal approach, the
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Figure 2: Abstract process of troll meme classification

Approach Classifier Accuracy Precision Recall f1-score
VGG16 0.58 0.53 0.58 0.50

Visual ResNet50 0.58 0.50 0.58 0.45
VGG19 0.55 0.51 0.55 0.50

Textual CNN 0.55 0.52 0.55 0.52
LSTM+CNN 0.55 0.54 0.57 0.52

LSTM+VGG16 0.58 0.44 0.58 0.44
Multimodal CNN-Text+VGG16 0.59 0.55 0.59 0.49

CNN+LSTM+VGG16 0.59 0.49 0.58 0.46

Table 3: Evaluation results of visual, textual and multimodal models on the test set

CNN_Text+VGG16 model obtained a precision of
0.49 (not-troll class) and 0.60 (troll class) with a
weighted average precision of 0.55. The overall
performance of the models varies between 44%
and 56% weighted f1-score. The results indicate
that VGG16 and VGG19 have the same weighted
f1-score, but VGG16 has superior precision and
recall. Although ResNet50 has a lower f1-score,
its precision and recall are similar to VGG16. The
performance of the text-based models proved su-
perior to that of the image-based models. In the
textual approach, CNN and LSTM + CNN both
have the same f1-score of 0.52.

We also conducted experiments by combining
features from both modalities into a single model.
In the multimodal approach, the LSTM + VGG16
model had a f1-score of 0.44, whereas the CNN
Text + VGG16 model had a 3% higher f1-score
of 0.49. However, their combination with 0.46
f1-score could not outperform the textual-based

models. According to the results, the multimodal
model (CNN-Text +VGG16) outdoes others by ac-
quiring the highest recall of 0.59 but could not
perform well in terms of f1-score. The presence
of several images in all of the classes could cause
this. The dataset contains many memes with the
same visual content but distinct captions. Further-
more, many images do not convey any explicit
useful information that can be utilized to determine
whether a meme is a troll or not. Table 4 shows
the performance comparison between the proposed
(CUET89109115) and other models developed by
shared task participating teams. With 0.529 f1-
score our team (CUET89109115) placed fourth in
the competition. The implementation is available
on the Github2.

2https://github.com/Maruf089/DravidianLangTech-2022
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(a) Textual (b) Visual (c) Multimodal

Figure 3: Confusion Matrix of the best model in each approach (based on f1-score): (a) Textual (b) Visual (c)
Multimodal

Team Precision Recall f1-score
BPHC 0.6 0.613 0.596

hate-alert 0.558 0.567 0.561
SSN_MLRG1 0.555 0.565 0.558

CUET89109115 0.527 0.531 0.529
DLRG_RR 0.529 0.529 0.519

TeamX 0.466 0.544 0.466

Table 4: Summary of performance comparison for all
participating teams in the shared task

6 Error Analysis

A detailed error analysis is done on the best model
for each modality to gain more insights. Confu-
sion matrices are used to analyze the performance
(Figure 3). Figure 3c shows that, out of 395 troll
memes, the CNN Text + VGG16 model accurately
categorized 373 images while misclassifying 22
as not-troll. However, this model’s actual posi-
tive rate is lower than its true negative rate since
it correctly classified just 21 not-troll memes and
incorrectly classified 251 memes. The VGG16
model also performed well in the visual method,
successfully detecting 354 troll memes out of 395.
However, the model struggled to identify not-troll
memes, correctly classifying only 31 of a total of
272 not-troll memes and incorrectly classifying 241
of the exact total. Meanwhile, Figure 3a shows that
the CNN text model accurately categorized 294 of
395 troll memes, which is lower than the accuracy
of other models. In comparison, the model accu-
rately recognized only 72 non-troll memes out of
272. According to the results of the above investi-
gation, all models are biased toward troll memes
and incorrectly label more than 73% of memes
as trolls. This improper detection is most likely
due to the overlapping nature of memes across all
classes. Furthermore, 80 memes in the train set
and 34 memes in the test set were missed embed-
ded captions, making it challenging for textual and

multimodal models to predict the actual class.

7 Conclusion

This paper presented a deep learning model for de-
tecting troll memes in Tamil. We experimented
with visual, textual, and visual-textual fusion
techniques. Results revealed that the visual ap-
proach obtained the highest weighted f1-score of
0.50, whereas the textual approach (LSTM+CNN)
achieved 0.52 f1-score. However, after aggregat-
ing features from both modalities, we noticed a
slight drop in the model performance. The com-
bined CNN-Text+VGG16 model acquired the max-
imal weighted f1-score (0.49) with multimodal
approach outperformed other models. It will be
interesting to catch how the multimodal fusion per-
forms after extracting the visual and textual fea-
tures with state-of-the-art models. We aim to in-
vestigate transformer-based models (e.g., vision
transformer, IndicBERT, mBERT, XML-R, Electra,
MuRIL) with the extended dataset in the future.
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