
Proceedings of the Fifth Workshop on the Use of Computational Methods in the Study of Endangered Languages, pages 187 - 192
May 26-27, 2022 ©2022 Association for Computational Linguistics

Enhancing Documentation of Hupa with Automatic Speech Recognition

Zoey Liu
Boston College

zoey.liu@bc.edu

Justin Spence
University of California, Davis
jspence@ucdavis.edu

Emily Prud’hommeaux
Boston College

prudhome@bc.edu

Abstract

This study investigates applications of auto-
matic speech recognition (ASR) techniques to
Hupa, a critically endangered Native Ameri-
can language from the Dene (Athabaskan) lan-
guage family. Using around 9h12m of spo-
ken data produced by one elder who is a first-
language Hupa speaker, we experimented with
different evaluation schemes and training set-
tings. On average a fully connected deep
neural network reached a word error rate of
35.26%. Our overall results illustrate the util-
ity of ASR for making Hupa language doc-
umentation more accessible and usable. In
addition, we found that when training acous-
tic models, using recordings with transcripts
that were not carefully verified did not neces-
sarily have a negative effect on model perfor-
mance. This shows promise for speech cor-
pora of indigenous languages that commonly
include transcriptions produced by second-
language speakers or linguists who have ad-
vanced knowledge in the language of interest.

1 Introduction

The documentation of endangered and other less-
studied languages typically involves the creation of
high-quality audio and video recordings represent-
ing a variety of speech genres, with the long-term
goal of generating general-purpose linguistic data
that can be used by diverse audiences for differ-
ent research and applied purposes (Himmelmann,
1998; Riesberg, 2018). With the advent of cheap,
highly portable digital recording and storage tech-
nologies since the early 2000s, it is not uncommon
for fieldwork projects to generate hundreds of hours
of multimedia recordings.

While these collections of recordings are becom-
ing increasingly accessible via web-based portals,
in the sense that they can be downloaded, locat-
ing information of interest within them correctly
and efficiently is another matter entirely. Coarse-
grained catalog metadata describing the content of

the recordings can provide users with some shal-
low guidance, but the identification of more spe-
cific information requires enormous investments of
time and effort. Accordingly, it becomes essential
to have adequate transcriptions of recordings for
users to find the information they are interested in.

Transcribing recordings, however, is also an
extremely time-consuming endeavor, leading to
what is sometimes called the "transcription bottle-
neck" (Gupta and Boulianne, 2020; Zahrer et al.,
2020; Ćavar et al., 2016; Shi et al., 2021), which
refers to the situation where the language data is
mostly in the form of (archival) recordings, and
transcriptions of the data are not yet available.

Hupa (ISO 639-3 code: hup; Glottolog code:
hupa1240), a critically endangered Native Ameri-
can language of northwestern California, provides a
case in point. Since the early 2000s, Mrs. Verdena
Parker, an elder from the Hoopa Valley Tribe, has
generously shared her knowledge of the language
with other community members and academic re-
searchers. Recordings produced by and with Mrs.
Parker include several hours of monolingual Hupa
narratives and other texts, as well as over 800 hours
of linguistic interviews that are a mixture of Hupa
and English as the elicitation metalanguage. 1

The sheer quantity of these Hupa recordings
makes their transcription challenging, a situation
that is exacerbated by other factors. First, the peo-
ple who are considered first-language speakers of
Hupa are older and tend not to be literate in the lan-
guage. Therefore the pool of potential transcribers
is limited to second-language speakers and lin-
guists with advanced research knowledge. Second,
while literacy is used as a tool for some pedagogi-
cal purposes in the contemporary Hupa community
and there is a reasonably well-established practical
orthography, many of the classes for learning Hupa

1Many of these recordings are now available through the
California Language Archive web portal: https://cla.
berkeley.edu/.
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focus more on developing oral proficiency rather
than on literacy skills per se. This means many
of the younger people who have become second-
language speakers of the language may not feel
confident in their ability to produce accurate tran-
scriptions of connected discourse.

In this work, we apply automatic speech recogni-
tion (ASR) technology to help address the transcrip-
tion bottleneck for Hupa. In particular, we hope to
develop effective techniques that would lend them-
selves to transcribing spoken Hupa. At this stage
of the research, we are focusing primarily on mono-
lingual narratives and other texts since these have
the highest density of linguistic data and thus more
value for research and language documentation.

2 Meet the Language Data

2.1 The Hupa Language

Hupa is the ancestral language of the Hoopa Valley
Tribe in present-day Humboldt County, California.
Since the mid-19th century, Hupa people have en-
dured many hardships in the wake of the violent
colonization of the region, including decades of ed-
ucational policies that were designed to eradicate
indigenous languages and other manifestations of
traditional culture. As a result of this difficult his-
tory, by the mid-20th century most Hupa children
grew up primarily speaking English as their first
language, and today there are only a handful of
elderly people (probably fewer than a dozen) who
are considered first-language speakers of Hupa.

Nevertheless, at least since the 1970s, tribal
members have been engaged in various kinds of lan-
guage reclamation efforts (in the sense of Leonard
(2011)), and today a number of people have de-
veloped a high degree of L2 proficiency in the
language. Students at Hoopa Valley High School
can take four years of Hupa language as part of
their regular curriculum, and a practical orthog-
raphy for the language developed in the 1980s
and 1990s (Golla, 1996) is used in a number of
pedagogically-oriented resources. Good descrip-
tions of the linguistic features of Hupa are also
obtainable from Golla (1970) and Sapir and Golla
(2001) (see also Gordon (1996)), although there
remains something of a disconnect between the
highly technical descriptive materials produced by
professional academics and the needs on the ground
of language teachers and learners.

2.2 Audio data and transcriptions

The Hupa audio data in our experiments consists
of a subset of audio recordings collected from field-
work with Mrs. Verdena Parker (Table 1) that
started in 2005 and is ongoing today. The majority
of the recordings we use feature Mrs. Parker telling
stories from different genres, including personal
anecdotes from her life, oral-historical accounts
of significant events in Hoopa Valley, and tradi-
tional stories that explain how the world came to
be. Each recording has time-aligned transcriptions
in the practical orthography of Golla (1996); the
transcripts were produced by a human transcriber
using annotation tools such as ELAN (Brugman
and Russel, 2004).

Since the audio files had been transcribed gradu-
ally over a number of years by several researchers,
each transcript was lightly edited and corrected by
a linguist (an author of this paper), who has ad-
vanced research knowledge of the language. As
of now, after removing utterances that are fully in
English, the amount of spoken Hupa available for
conducting ASR experiments totals 9h12m.

Although all transcriptions were checked in con-
sultation with Mrs. Parker, each one typically goes
through several stages of manual checking before
being considered complete. As a result, some tran-
scriptions have been subsequently examined more
thoroughly than others. Based solely on transcrip-
tion quality differences, we divided the audio data
into two sets: the “verified" data (∼1h35m) vs. the
“coarse" data (∼7h37m).

Overall, the transcriptions of the verified data
are more accurate than those of the coarse data.
That said, the verified transcriptions typically
have undergone more orthographic normalization,
which includes removing elements (e.g., word-final
epenthetic vowels) that are audible in the record-
ings but are not part of the practical orthogra-
phy (Golla, 1996). In a small number of instances,
the verified transcriptions might have slight devia-
tions from what was actually produced in the corre-
sponding recording if Mrs. Parker felt strongly that
she had misspoken. Therefore while the verified
transcriptions tend to be more accurate, in some
ways they are idealizations that are less faithful to
the acoustic substance of their original recordings.

2.3 Digitized texts

In addition to the audio recordings and their tran-
scriptions, we also included digitized texts for our
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Data N of words N of types
verified transcriptions 9,265 2,024
coarse transcriptions 41,062 5,731
digitized written texts 41,381 8,205

Table 1: Descriptive statistics for the text data of Hupa
applied in experiments.

experiments (Section 4); these texts were originally
transcribed from dictation from Sapir and Golla
(2001) and Goddard (1904) (Table 1).

3 Related Work

While research on ASR for endangered language
documentation is still relatively rare, recently there
has been growing efforts trying to mitigate this
gap (Michaud et al., 2018; Prud’hommeaux et al.,
2021). Shi et al. (2021) adopted end-to-end sys-
tems for Yoloxóchitl Mixtec, an endangered Mix-
tecan language. Using encoder-decoder architec-
tures, they achieved the best word error rate (WER)
(∼16%) for over 55h of conversational speech from
more than twenty speakers. Gupta and Boulianne
(2020) applied neural ASR models for Cree, an in-
digenous language in Canada. Their data consists
of 4h30m story retelling or reading from six speak-
ers. Utilizing data from high-resource languages,
Zahrer et al. (2020) performed cross-linguistic
learning of phoneme recognition for the Muyu lan-
guage. In a study of ASR for two tonal languages,
Yongning Na and Eastern Chatino, Adams et al.
(2018) proposed a neural architecture to jointly
predict phonemes and tones without needing time-
aligned transcripts and pronunciation dictionary.

ASR technologies have also been developed for
some Dene languages (Littell et al., 2018), though
in a limited way. For instance, speech recog-
nition tools were incorporated into the Rosetta
Stone language learning software for Diné Bizaad
(Navajo). 2 The Persephone ASR software (Adams
et al., 2018) was combined in ELAN (Brugman
and Russel, 2004) for Tsuut’ina.

4 Experiments

4.1 Evaluation scheme
In (low-resource) ASR experiments 3, acoustic
models are commonly evaluated with data from
held-out speaker(s). This evaluation standard, how-
ever, is not applicable in our study here since all of

2https://navajorenaissance.org/
3Code in quarantine at https://github.com/

zoeyliu18/Hupa

the Hupa audio came from one speaker. Thus as
alternatives, we designed two separate evaluation
schemes for both the verified and the coarse data.

The first one utilized random splits, for which we
randomly divided all the recordings into training
and test sets at a 4:1 ratio for ten times. For the
second scheme, taking into account the fact that
the audio recordings were collected from distinct
fieldwork dates (17 dates for the verified data and
34 dates for the coarse data), we used recordings
from each held-out date as the test set and the rest of
the data was employed as the training set. WER and
character error rate (CER) were taken as evaluation
metrics for model performance.

Note that the results obtained from these two
evaluation methods are not directly comparable,
given that the amount of training data and that of
the test data for the two methods are different. On
the other hand, the goal of employing separate eval-
uation schemes is to acquire more realistic esti-
mates regarding the potential of the ASR systems
in the case of Hupa.

4.2 Acoustic training data configuration
With the two evaluation schemes outlined above,
we investigated different training settings with the
goal of exploring: (1) the differences between the
verified and coarse data; a(2) the utility of including
all acoustic data, regardless of transcription quality.

In our first four experiments, we focused on the
verified data, evaluating ASR performance with
random splits then with held-out dates. We then in-
cluded the coarse data for model training, keeping
the test data the same in order to determine whether
WER decreases with more training data, even when
there is a mismatch in transcription quality between
the test data and the training data. In our second
set of experiments, we carried out the same model
training procedures using the coarse data. Finally,
we combined the coarse data and verified data to
train and test acoustic models on random splits of
this combined data.

4.3 Language and acoustic models
For each training/test set split of the audio data,
we built one trigram language model with Witten-
Bell discounting using the SRILM toolkit (Stolcke,
2002); the data used to train the language model
also included the transcripts of the audio training
data along with the digitized texts.

For acoustic modeling, we drew on the open-
source Kaldi toolkit (Povey et al., 2011). The au-
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Original utterance: haya:ł keh do’ng haya: ch’in’ *** tehł
Model prediction: haya:ł *** do’ng haya: ch’in’ te: niwhsing
Evaluation: D I S

The original utterance has six words; compared to the original utterance; the utterance predicted by
the ASR model contains one deletion (D), one insertion (I), and one substitution (S); therefore:

WER = 100 * 1+1+1
6

= 50%

An example of WER calculation; I for insertion, D for deletion, and S for substitution.

Evaluation Data Training setting WER (%) CER (%)
random train: 1h16m; just verified data 53.23 24.58
splits test: 19m add coarse data 36.89 12.20

held-out train: 1h30m; just verified data 46.10 17.48
dates test: 5m add coarse data 37.96 13.57

Table 2: ASR evaluation results for the verified data.

Evaluation Data Training setting WER (%) CER (%)
random train: 6h6m; just coarse data 45.13 21.37
splits test: 1h31m add verified data 35.13 12.65

held-out train: 7h24m; just coarse data 37.70 12.58
dates test: 13m add verified data 35.60 12.37

Table 3: ASR evaluation results for the coarse data.

Evaluation Data WER (%) CER (%)
random splits train: 7h22m; 35.26 12.38

test: 1h50m

Table 4: ASR evaluation results when combining all verified and coarse data together.

dio recordings were transformed to the standard
13 dimensional mel-frequency cepstral coefficients
(MFCCs), as well as their delta- and delta-delta
features. The delta- and delta-delta features are,
respectively, numerical approximations of the first
and second order derivatives of the MFCCs, both
computed on a 25ms window with 10ms interval
apart which enables modeling the trajectories of
the audio signals. Linear Discriminant Analysis
and Maximum Likelihood Linear Transform were
then employed to reduce the dimensionality of the
feature vectors.

The acoustic model architecture that we used is a
fully connected deep neural network (DNN) (Miao
et al., 2015), which has been demonstrated to have
competitive performance when facing data limita-
tion (Morris et al., 2021). The DNN had six hidden
layers, each with 1024 hidden units. Sequence
training was carried out with the default parame-
ters in Kaldi using state-level minimum Bayes risk
criterion and a per-utterance Stochastic Gradient
Descent weight update. Decoding was performed
with the finite state transducer-based decoder im-

plemented in Kaldi.

5 Results

The average WER results for the verified data given
each training setting and evaluation scheme are pre-
sented in Table 2. When only using the verified
data for ASR training and evaluation, we obtained
a WER of 53.23%; on the other hand, we see that
combining coarse data with the training data of the
verified set resulted in much lower WER values
(and lower CER values as well), and accordingly
better model performance; this pattern is consistent
regardless of whether evaluating acoustic models
with random splits or held-out dates. Similar ob-
servations hold when developing models for the
coarse data with additional help of verified data
(Table 3), which also led to lower WER values.
These results indicate that including more training
data, even when the transcription quality of the
training data does not necessarily match that of the
test data, is helpful to build better ASR models.

When combining all data from the verified set
and the coarse set together, we reached a WER
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of 35.26% evaluated with random splits, which is
comparable to the results of random splits for each
data set separately.

6 Discussion & Ongoing Work

Leveraging ASR technologies, we investigate the
possibility and effectiveness of automatically tran-
scribing fieldwork recordings for Hupa. Through
experimentation with different evaluation schemes
and training settings, the acoustic models demon-
strate reasonable WER results, showing promise
for applying spoken language technology to doc-
ument Hupa. Interestingly, training ASR models
using recordings with transcripts that were not care-
fully verified did not negatively impact the perfor-
mance, which bodes well for speech corpora of
indigenous languages that include transcriptions
produced by second-language speakers or linguists.

In ongoing work, we are extending our efforts
in several directions. First, the transcripts of the
coarse data are being manually checked periodi-
cally to improve transcription and gloss alignment
quality. Second, as we are still in the preliminary
stage of performing ASR for Hupa, the current
study only used the DNN architecture from Kaldi.
We plan to explore other more recent neural ap-
proaches (Watanabe et al., 2018) that have been
found to be effective with limited amount of au-
dio data (Shi et al., 2021); then apply the trained
models to recordings that have not yet been tran-
scribed in an iterative fashion to better combine
ASR with documentation of Hupa. Even a WER as
high as ∼ 35.26% is expected to yield significant
savings in the time required to make transcribed
texts available.

Third, thus far our acoustic models are decoded
with language models at the word level. How-
ever, given the complex morphological features
of Hupa (Sapir and Golla, 2001), to reduce out-
of-vocabulary rate in future experiments, we are
working towards combining morphological seg-
mentation or subword unit models Liu et al. (2019)
into building ASR systems. Lastly, with better
performing acoustic models and more transcrip-
tions, we aim to develop a workflow to adapt these
transcribed materials into pedagogically-oriented
resources for use by members of the community.
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