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Abstract
Few-shot Named Entity Recognition (NER)
is imperative for entity tagging in limited re-
source domains and thus received proper at-
tention in recent years. Existing approaches
for few-shot NER are evaluated mainly un-
der in-domain settings. In contrast, little is
known about how these inherently faithful mod-
els perform in cross-domain NER using a few
labeled in-domain examples. This paper pro-
poses a two-step rationale-centric data augmen-
tation method to improve the model’s gener-
alization ability. Results on several datasets
show that our model-agnostic method signif-
icantly improves the performance of cross-
domain NER tasks compared to previous state-
of-the-art methods, including the data aug-
mentation and prompt-tuning methods. Our
codes are available at https://github.
com/lifan-yuan/FactMix.

1 Introduction

Named Entity Recognition (NER) is a subtask of
natural language processing, which detects the
mentions of named entities in input text, such
as location, organization, and person (Sang and
De Meulder, 2003; Yang et al., 2017; Cui et al.,
2021). It has attracted research from academia and
industry due to its broadened usage in customer ser-
vices and document parsing as a core task in natural
language understanding (Nadeau and Sekine, 2007;
Ma and Hovy, 2016; Cui and Zhang, 2019; Yamada
et al., 2020). However, training data for NER is
available only for limited domains. It has been
shown that such labeled data introduces challenges
for a model to generalize to new domains (Snell
et al., 2017; Ma et al., 2021a; Lin et al., 2021).

To address this problem, a line of research con-
siders how to allow a model to effectively learn
from a few labeled examples in a new target do-
main (Zhang et al., 2021; Ma et al., 2021b; Das
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Figure 1: The demonstration of two components of Fact-
Mix, namely context-level semi-fact and entity-level
semi-fact examples.

et al., 2021; Chen et al., 2022; Wang et al., 2022a,b).
However, such methods still require manual label-
ing for target domains, which makes them difficult
to generalize to zero-shot diverse domain settings.
A different line of research in NER considers data
augmentation, using automatically constructed la-
beled examples to enrich training data. Zeng et al.
(2020) consider using entity replacement to gener-
ate intervened new instances. We follow this line of
work and consider a new setting – how to generate
NER instances for data augmentations effectively –
so that a few labeled examples in a source domain
can generalize to arbitrary target domains.

Cross-domain NER poses unique challenges in
practice. First, as a structured learning problem,
it is essential to understand dependencies within
the labels instead of classifying each token inde-
pendently (Dai and Adel, 2020). While examples
from different domains usually have different de-
pendency patterns, which inevitably brings chal-
lenges for fine-tuning few-shot NER models to
cross-domain tasks (Liu et al., 2021). Second,
non-entity tokens in NER do not hold unified se-
mantic meanings, but they could become noisy
when combined with entity tokens in the training
set. Such compositional generalization challenges
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have proven to be manifest in performance decay
problems in various NLP tasks, such as sentiment
analysis (Kaushik et al., 2019) and machine trans-
lation (Li et al., 2021), especially when faced with
out-of-domain data.

As a consequence of the challenges above, spuri-
ous patterns between non-entity tokens and labels
learned by models could obstruct the generalization
of few-shot NER models in cross-domain settings.
For example, given that “Jane monitored the pa-
tient’s heart rate", ‘Jane’ is labeled as a person. The
NER model will learn the relationship between the
word ‘Jane’ and ‘monitor’ for the prediction. Sup-
pose a NER model is trained on a medical domain
and tested on the movie review. The correlation
between ‘Jane’ and ‘monitor’ could become the
‘spurious pattern’ (Kaushik et al., 2019; Yang et al.,
2021). From a causal perspective, spurious correla-
tions are caused by confounding factors rather than
a cause-effect relation.

To deal with these challenges and avoid spuri-
ous patterns, we present a novel model-agnostic,
two-step, rationale-enhanced approach called Fact-
Mix, where we care about the efficacy of data aug-
mentations for improving in-domain and out-of-
domain (OOD) performance. We aim to leverage
the contrast among – original, context-level semi-
fact, and entity-level semi-fact instances – for teach-
ing the model to capture more causal label depen-
dencies between entities and the context. As Fig-
ure 1 shows, FactMix consists of two parts, namely
context-level semi-fact generations and entity-level
semi-fact instances generations. It is motivated by
the natural intuition that models are much easier
to learn from two-step contrastive examples com-
pared to the one-step semi-fact augmentation (Zeng
et al., 2020) 1.

The semi-factual generation component aims to
alleviate the pitfall of non-entity tokens, which the
previous data augmentation approach has not con-
sidered. We conduct synonym substitutions for
non-entity tokens only. In particular, we mask
the non-entity tokens, leverage the masked lan-
guage models to predict the masked tokens, and
replace the original tokens with predicted tokens.
This replacement operation potentially introduces

1Zeng et al. (2020) use “counterfactual” to denote the
setting, where augmented data contains different entities with
the same type compared with the original data. However,
strictly speaking, “counterfactual” refers to augmented data
that contains different types of entities with a minimum change
of the input that can flip the predicted label. Hence, we use
semi-fact instead in our paper

out-of-context information produced by the pre-
trained masked language model when generating
augmented examples. The entity-level semi-fact
examples are generated by replacing the existing
entity words in the training set. Finally, the aug-
mented data generated by two steps will be mixed
up together for training models. FactMix is a fully
automatic method that does not require any addi-
tional hand-labeled data or human interventions
and can be plugged for any few-shot NER mod-
els with different tuning strategies, including the
standard fine-tuning and recent prompt-tuning.

Our method supoorts a new cross-domain NER
setting, which is difficult from existing work. In
particular, existing few-shot NER work considers
in-domain fine-tuning (Ma et al., 2021a) and in-
domain prompt-tuning (Cui et al., 2021). While our
method also considers using only a source domain
dataset for training models that generalize to target
domains. Experimental results show that FactMix
can achieve an average 3.16% performance gain
in the in-domain fine-tuning setting compared to
the state-of-the-art entity-level semi-fact genera-
tion approach (Zeng et al., 2020) and an average
6.85% improvement for prompt-tuning compared
to EntLM (Ma et al., 2021b). Improvements in
such a scale hint that FactMix builds a novel bench-
mark. To the best of our knowledge, we are the first
to explore the cross-domain few-shot NER setting
using fine-tuning and prompt-tuning methods.

2 Related Work

Cross-domain NER focuses on transferring NER
models across different text styles (Pan et al., 2013;
Xu et al., 2018; Liu et al., 2021; Chen et al.,
2021). Current NER models cannot guarantee well-
generalizing representation for out-of-domain data
and result in sub-optimal performance. To address
this issue, Lee et al. (2018) continue fine-tuning
the model trained on the source domain by using
the data from the target domain. Yang et al. (2017)
jointly train NER models in both the source do-
main and target domain. Jia et al. (2019) and Jia
and Zhang (2020) perform cross-domain knowl-
edge transfer by using the language model. These
methods rely on NER annotation or raw data in the
target domain. In contrast, we propose a data argu-
mentation method that only boosts cross-domain
performance by using the source-domain corpus.

Few-shot NER aims to recognize pre-defined
named entities by only using a few labeled ex-
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amples and is commonly used for evaluating
structured prediction models in recent (Ravi and
Larochelle, 2016; Snell et al., 2017; Das et al.,
2021). Wiseman and Stratos (2019) and Yang and
Katiyar (2020) propose distance-based methods,
which copy the label of nearest neighbors. Huang
et al. (2021) further investigates the efficacy of the
self-training method on external data based on the
distance-based methods. Cui et al. (2021) and Ma
et al. (2021a) adopt prompt-based methods by us-
ing BART and BERT, respectively. These methods
focus on designing few-shot-friendly models with-
out any external guidance. In contrast, we augment
both entity-level semi-fact and context-level semi-
fact examples to boost the model performance on
the new cross-domain few-sot setting.

The area of Few-shot Cross-domain Learning
is motivated by the ability of humans to learn ob-
ject categories from a few examples at a rapid pace,
which is called rationale-based learning. Induc-
tive bias (Baxter, 2000; Zhang et al., 2020) has
been identified for a long time as a critical compo-
nent. Benefits from the rapid development of large-
scale pre-trained language models, few-shot learn-
ing, and out-of-distribution generalization become
rapidly growing fields of NLP research (Brown
et al., 2020; Shen et al., 2021; Chen et al., 2022).
However, these two research directions have been
separately explored in down-streaming tasks but
rarely discussed together, except in the very recent
study of sentiment analysis (Lu et al., 2022). To the
best of our knowledge, we are the first to consider
this setting for NER.

Data Augmentation through deformation has
been known to be effective in various text classifi-
cation tasks (Feng et al., 2021; Li et al., 2022), such
as sentiment analysis (Yang et al., 2021; Lu et al.,
2022) and natural language inference (Kaushik
et al., 2021; Wu et al., 2022). In the task of NER,
self-training has been applied to automatically in-
crease the amount of training data (Wang et al.,
2020). Paul et al. (2019) propose to combine self-
training with noise handling on the self-labeled
data to increase the robustness of the NER model.
Bansal et al. (2020) and Wang et al. (2021) develop
self-training and meta-learning techniques for train-
ing NER models with few labels, respectively.

In addition to self-training methods, prompt-
based (Lee et al., 2021; Ma et al., 2021b) and
causal-enhanced (Zeng et al., 2020) approaches
have also surfaced in this domain, which are two

Standard Fine-tuning Prompt-tuningIn-dom
ain

O
ut-of-dom

ain

In-domain Fine-tuning 
NER (Sec. 5.3)
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In-domain Prompt-
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Out-of-domain 
Prompt-tuning NER 
(Sec. 5.4)

100-shot per class

Zero-shot Test Zero-shot Test

5-shot per class

Figure 2: The categorization of experiment settings.

important baselines for our work. Zeng et al. (2020)
consider using the human intervention to generate
the augmented data to improve few-shot NER mod-
els, and Ma et al. (2021b) aims to leverage the
template-free prompt for boosting the performance
of few-shot NER models. Nevertheless, both meth-
ods only focus on the in-domain accuracy while
ignoring the cross-domain generalization of few-
shot NER models.

3 Settings

We investigate the effectiveness of FactMix using
different methods under several settings. We first
introduce task settings in Section 3.1, then show
the standard fine-tuning method and prompt-based
method in Section 3.2 and Section 3.3, respectively.

3.1 Task Settings

The input of the NER system is a sentence x =
x1, . . . , xn, which is a sequence of n words and the
output is a sequence of NER tags y = y1, . . . , yn,
where yi ∈ Y for each word and Y is selected from
a pre-defined label set{B−X, I −X,S−X,E−
X...O}. B, I,E, S represent the beginning, mid-
dle, ending, and single-word entity, respectively.
X indicates the entity type, such like PER and
LOC, and O refers to the non-entity tokens. We
use Dori and Dood to represent the original dataset
and out-of-domain dataset, respectively.

Given small labelled instances of Dori, we first
train a model Mori through the standard fine-
tuning method. We test the performance of Mori

on Dood and Dood under In-domain Few-shot Set-
ting and Out-of-domain Zero-shot Setting, respec-
tively, which can be seen in Figure 2.

3.2 Standard Fine-tuning Methods

Following Devlin et al. (2018), we feed contextual-
ized word embeddings into a linear classification
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Figure 3: The pipeline of the two-step FactMix approach operated on the source domain, which consists with
entity-level semi-fact generations and context-level semi-fact generations.

with the softmax function to predict the probabil-
ity distribution of entity types. Formally, we first
feed the input x into the feature encoder PLMθ to
get the corresponding contextualized word embed-
dings h:

h = PLMθ(x), (1)

where h is the sequence of contextualized word
embeddings based on pre-trained language mod-
els (PLMs), i.e., BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019). We optimize the cross
entropy loss LNER by using AdamW (Loshchilov
and Hutter, 2018), which is formulated as:

LNER = −
N∑
c=1

yo,c log (po,c) , (2)

where N is the number of classes, y is the binary
indicator (0 or 1) depending on if the gold label c
is the correct prediction for observation o, and p is
the predicted probability for observation o of c.

3.3 Prompt-tuning Methods
Prompt-tuning NER reformulates classification
tasks by using the mask-and-infill technique based
on human-defined templates to generate label
words. We perform the template-based and
template-free prompt tuning as two additional ex-
perimental scenes to verify the validity of our
method. Unlike the standard fine-tuning, no new
parameters are introduced in this setting.

Template-based Approach Formally, we adopt
the prompt template function Fprompt(·) proposed
by a very recent work (Ma et al., 2021b) to converts
the input x to a prompt input xprompt = Fprompt(x),

and pre-defined label words P from the label set
Y are generated through a mapping function M :
Y → P. In particular, two slots need to be infilled
for each instance: the input slot [X] is filled by
the original input x directly, and the prompt slot
[Z] is filled by the label word. To be note that
[Z] is predicted by the masked language model
(MLM) for prompt-based tuning in this work. The
probability distribution over the label set Y can be
optimized by the softmax function for predicting
masked tokens using pre-trained models.

Template-free Approach In order to reduce the
computational cost of the decoding process for
template-based prompt tuning, Ma et al. (2021b)
propose an entity-oriented LM (EntLM) objective
for fine-tuning NER. Following Ma et al. (2021b),
we first construct a label word set Pf by the la-
bel word engineering, which is also connected
with the label set through a mapping function
M : Y → Pf . Next, we replace entity tokens
at entity positions with corresponding label word
M(yi). Finally, the target input can be represented
as xRep = {x1, ...,M (yi) , ..., xn}. We train the
language model by maximizing the probability
P
(
xRep | x

)
. The loss function for generating

the prompt can be formulated as:

LRepLM = −
N∑
i=1

logP
(
xi = xRep

i | x
)
, (3)

where N is the number of classes. Initial param-
eters of the predictive model are obtained from
pre-trained language models.
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4 Method

FactMix automatically generates semi-fact exam-
ples for both standard fine-tuning and prompt-
tuning. The pipeline of our approach is shown in
Figure 3 and is made up of three components: (1)
entity-level semi-fact generator; (2) context-level
semi-fact generator; (3) augmented data selection
and mixing. Briefly, a key innovation in this work
is using a mixed semi-fact generator to improve
the single entity-level data augmentation approach
by adding the intermediate thinking process in a
human-thinking manner.

4.1 Semi-factual Generation

We randomly remove one O token in each sen-
tence. Specifically, we introduce out-of-context
information by randomly masking an O word and
then filling the span using the Masked Language
Model (MLM), i.e., BERT (Devlin et al., 2018).
Intuitively, we can generate numerous semi-factual
samples because the MLM model can fill the
masked span with multiple predictions. More im-
portantly, choosing the number and order of the
selected words is a combinatorial permutation prob-
lem. However, in practice, we find that more aug-
mented data can not always lead to a better result;
and for each semi-factual sample, we only replace
one word or two-word phrase in a sentence using
the top one mask-and-infill prediction of MLM.

Formally, given an input of NER as x =
x1, ..., xi, ..., xn, where xi is the chosen O word.
We first mask xi by replacing it with the [MASK]
token, and thus get x = x1, ..., [MASK], ..., xn.
Then we fill the [MASK] token using BERT-base-
cased2 model and finally obtain a semi-factual ex-
ample xsemi = x1, ..., xi

′, ..., xn. For instance, as
seen in Fig. 3, sheep may first be masked and then
infilled by an out-of-context word coffee, which
can be generated by PLMs.

The intervention of the selected word may inflect
the entity tag of other words and introduce extra
noises into the dataset. Thus, we adopt a denoising
mechanism that can filter out noisy examples by
leveraging the predictive model trained on the orig-
inal dataset that contains prior knowledge for NER
tasks. Different from Zeng et al. (2020), who filter
only those samples whose replaced entities cannot
be predicted correctly, we use a stricter constraint
to preserve only those samples where all tokens are

2https://huggingface.co/
bert-base-cased

predicted accurately.

4.2 Entity-level Semi-fact Generation

We generate entity-level semi-fact examples by in-
terventions on the existing entity words. Specifi-
cally, for each training sample, we randomly select
one of its entity words and replace it with words
of the same type in a prepared Entity_Base. For
cases where data is not extremely scarce, e.g. in
the fine-tuning setting in our experiments, the
Entity_Base can be constructed by extracting and
categorizing all entity words in the original dataset.
Otherwise, e.g. in the 5-shot prompt-tuning setting
in our experiments, the Entity_Base should be
constructed from other available datasets.

Formally, given the input as x =
x1, . . . , xj , . . . , xn, and xj as the chosen en-
tity word. We assume that the label of xj is
B-LOC and extract all the B-LOC entities in the
Entity_Base and denote them as B-LOC Set.
Next, a word in B-LOC Set is chosen to replace
xj and denoted as xj ′. In this way, the generated
semi-fact sample is xcf = x1, . . . , xj

′, . . . , xn.
For example, as seen in Fig. 3, the B-LOC entity
word German is replaced by Israel in B-LOC Set.
All augmented samples are labeled as the same tag
with original ones for saving manual efforts.

4.3 Mix Up

In the last step, we combine two types of auto-
matically generated data by a mix-up strategy. Al-
though the FactMix method can generate an unlim-
ited amount of data theoretically, past experience
(Lu et al., 2022) suggests that more fact-based data
instances can not always bring performance bene-
fits accordingly.

Following Zeng et al. (2020), we set the max-
imum augmentation ratio as 1:8 for the entity-
level semi-fact data generation. While for context-
level semi-fact generations, we set the ratio as
1:5. The optimal augmentation ratios for these
two kinds of augmentations are jointly selected
by the grid search on the development set of in-
domain data. Finally, we obtain the final FactMix
augmented training data, which can be represented
as xmix = Concat{xsemi,xcf}.

5 Experiments

As shown in Table 2, we conduct experiments un-
der the scenarios of both fine-tuning and prompt-
tuning, using in-domain and out-of-domain evalua-

https://huggingface.co/bert-base-cased
https://huggingface.co/bert-base-cased
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Domain # Instances Entity TypesTrain Dev Test
Reuters 14,987 3,466 3,684

Person,
Location,

Organization,
Miscellaneous

TechNews - - 2000
AI - - 431

Literature - - 416
Music - - 456

Politics - - 651
Science - - 543

Table 1: Statistics of datasets used in experiments.

tions. We are also interested in better understanding
the contributions of the two-step data augmentation
approach when it comes to prediction performance.
Thus, we consider several ablation studies to bet-
ter the relative contributions of entity-level and
context-level semi-fact augmented data. Micro F1
is used as evaluation metric for all settings.

5.1 Methodology

Fine-tuning. Given that FactMix is a model-
agnostic data augmentation approach, we adopt
the standard fine-tuning method based on two
pre-trained models with different parameter sizes:
BERT-base, BERT-large, RoBERT-base, and
RoBERT-large. All backbone models are imple-
mented on the transformer package provided by
Huggingface 3. To fine-tune NER models in a few-
shot setting, we randomly sample 100 instances
per label from the original dataset to ensure that
the model converges. We report the average perfor-
mance of models trained by five-times training.

Prompt-tuning. We adopt the recent EntLM
model proposed by Ma et al. (2021b) as the bench-
mark for prompt-tuning. Following Ma et al.
(2021b), we conduct the prompt-based experiments
using the 5-shot training strategy. Again, we con-
duct a comparison between the state-of-the-art
prompt-tuning method and several variants of Fact-
Mix. We also analyze the separate contribution of
the counterfactual generator and semi-fact genera-
tor by providing an ablation study based on the the
base and large versions of the BERT-cased back-
bone. For the standard hold-out test, we report
results on both development and test sets. We also
select two representative datasets for the out-of-
domain test in terms of the highest (TechNews)
and lowest (Science) word overlap with the origi-
nal training domain (Reuters).

3https://huggingface.co/models

Dataset Backbone In-domain Fine-tuning Results
Ori CF Semi FactMix

CoNLL2003
(Dev)

BERT-base-cased 57.98 79.78 81.48 83.13*
BERT-large-cased 69.18 83.27 85.87 85.73*

RoBERTa-base 52.44 85.81 87.99 88.51*
RoBERTa-large 68.81 88.25 89.39 89.95*

CoNLL2003
(Test)

BERT-base-cased 54.03 77.71 78.70 80.10*
BERT-large-cased 65.38 81.11 83.04 82.65

RoBERTa-base 48.53 82.74 85.05 85.33*
RoBERTa-large 65.70 85.20 86.84 86.91*

Table 2: The Micro F1 score of different models by
using FactMix and related data augmentation meth-
ods – CF: Entity-level Semi-fact Generation (Zeng
et al., 2020); Semi: Context-level Semi-fact Generation
(Ours); FactMix (Ours) – using the in-domain few-shot
fine-tuning. ∗ indicates the statistically significant under
T-test, p<0.05.

5.2 Datasets

The statistics of both source domain and out-of-
domain datasets are introduced in Table 1. As a
common understanding, it is easy to collect a large
unlabeled corpus for one domain, while the cor-
pus size could be small for low-resource domains.
Then, we introduce datasets used in experiments
for in-domain tests and out-of-domain tests, respec-
tively, as follows.

In-domain Dataset. We conduct the in-domain
experiments on the widely used CoNLL2003 (Sang
and De Meulder, 2003) dataset with a text style of
Reuters News and categories of person, location,
organization, and others.

Out-of-domain Datasets. We adopt the cross-
domain dataset collected by Liu et al. (2021) with
new domains of AI, Literature, Music, Politics, and
Science. Vocabularies for each domain are created
by considering the top 5K most frequent words
(excluding stopwords). Liu et al. (2021) report that
vocabulary overlaps between domains are generally
small, which further illustrates that the overlaps
between domains are comparably small and out-
of-domain datasets are diverse. Notably, since the
model trained on CoNLL2003 can only predict
person, location, organization, and various entities,
we set all the unseen labels in OOD datasets to O.

5.3 Results on Few-shot Fine-tuning

In-domain experimental results on a widely used
CoNLL2003 dataset show that FactMix achieves an
average 3.16% performance gain in the in-domain
fine-tuning setting (100 instances per class) and an
average 2.81% improvement for prompt-tuning (5
instances per class) compared to the state-of-the-art
data augmentation approach. For OOD test results,

https://huggingface.co/models
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Dataset Backbone Fine-tuning OOD Results Dataset Fine-tuning OOD Results
Ori CF Semi FactMix Ori CF Semi FactMix

TechNews

BERT-base-cased 41.46 61.20 65.20* 65.09*

Music

10.46 19.33 17.59 19.49
BERT-large-cased 52.63 67.51 69.98* 69.28 12.00 19.64 19.32 19.97*

RoBERTa-base 44.88 71.83 73.15 73.62* 11.78 22.24 21.37 23.75*
RoBERTa-large 51.76 73.11 74.89* 74.62 14.44 21.13 22.93* 20.96

AI

BERT-base-cased 15.88 22.49 23.66 24.67*

Politic

21.38 41.84 40.82 43.60*
BERT-large-cased 18.62 26.00 26.03 26.25* 29.77 43.37 42.57 43.84*

RoBERTa-base 18.63 32.03 29.79 32.09 26.81 44.12 44.09 44.66*
RoBERTa-large 23.27 28.76* 29.77* 30.06* 28.56 45.87 44.36 45.05

Literature

BERT-base-cased 12.85 22.89 23.05 25.70*

Science

12.41 25.67 28.26 29.72*
BERT-large-cased 17.53 24.96 26.25* 25.39 16.05 28.75 27.02 27.88

RoBERTa-base 15.05 28.21 27.90 28.89* 14.17 33.33 31.06 34.13*
RoBERTa-large 19.20 25.43 26.76* 26.30* 17.25 31.36 29.89 32.39*

Table 3: The average five times running results of Fine-tuning OOD over six datasets using various data augmentation
approaches compared to the original training method (Standard Fine-tuning). CF: Entity-level Semi-fact Generation
(Zeng et al., 2020); Semi: Context-level Semi-fact Generation (Ours); FactMix (Ours). ∗ indicates the statistically
significant under T-test, p<0.05, when compared to CF.

Dataset Backbone Prompt-tuning In-domain Results Dataset Prompt-tuning OOD Results
EntLM CF Semi FactMix EntLM CF Semi FactMix

CoNLL2003
(Dev)

BERT-base-cased 51.73 48.14 59.30 62.40* TechNews 47.16 52.36 50.96 52.44*
BERT-large-cased 60.95 58.42 49.53 61.64* 52.53 48.32 32.48 48.64

CoNLL2003
(Test)

BERT-base-cased 54.00 55.61 57.23 59.19* Science 15.70 18.32 17.28 18.62*
BERT-large-cased 60.37 56.49 58.37 60.80* 15.32 15.34 13.01 16.80*

Table 4: The comparison among our methods, counterfactual data augmentation, and EntLM (Ma et al., 2021b)
using prompt-tuning hold-out test and OOD test. ∗ indicates the statistically significant under T-test, p<0.05, when
compared to EntLM.

FactMix increases absolute 14.19% F1 score in av-
erage in fine-tuning compared to (Zeng et al., 2020)
and 1.45% increase in prompt-tuning compared to
(Ma et al., 2021b).

In-domain Fine-tuning results are presented
in Table 2 under the standard fine-tuning setting,
using each of the baselines (Ori) and several varia-
tions of our FactMix approach. All results average
five times running with randomly training instance
selections.

FactMix achieves the best performance on both
development and test sets, in terms of the high-
est Micro F1 score, excluding that the BERT-large
model can achieve the best performance using our
semi-fact augmentation approach only. Further-
more, we observe that improvements introduced by
variants of the data augmentation approach are rela-
tively significant when compared to models trained
without data augmentations (25.3% absolute F1
improvements on average). FactMix also shows
its superior performance compared to the previous
state-of-the-art data augmentation method (Zeng
et al., 2020) with a 2.1% absolute improvement in
average. Finally, FactMix establishes a new state-
of-the-art for the data augmentation approach in
the cross-domain few-shot NER.

Out-of-domain Fine-tuning. We consider the

performance of few-shot NER in the context of a
more challenging cross-domain setting. The micro-
f1 score of pre-trained models based on different
augmentation methods is shown in Table 3. We
find that the performance decay in technews is rela-
tively lower than other domains since the technews
domain also holds a relatively higher overlap with
the training set (Reuters News). Again, our semi-
factual generation and FactMix achieve the best
performance in most settings. For instance, the
RoBERTa-large model trained with Semi-fact Only
and FactMix can achieve 74.89% and 74.62% F1,
respectively, compared to only 51.76% F1 using
the original training set. We also notice that all
pre-trained methods manifest a significant drop in
accuracy on other datasets, which share fewer over-
laps with the training data than technews. For ex-
ample, the RoBERTa-base model gets an 11.78%
F1 by using the standard fine-tuning, while it can
be improved to 23.75% with FactMix. Moreover,
we can see that our methods, including Semi-fact
and FactMix, achieve a significantly consistent im-
provement over different datasets compared to stan-
dard fine-tuning and the previous state-of-the-art
method (Zeng et al., 2020), no matter the dataset
distribution gap between domains. Finally, the ab-
lation study shows that the mix-up strategy can
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effectively improve the performance of fine-tuning
methods in most scenarios, compared to the single
semi-fact augmentation method.

5.4 Results on Few-shot Prompt-tuning
To further understand the benefits of FactMix, in
what follows, we also consider several ablation
studies based on the few-shot prompt-tuning setting
(5 instances per class).

In-domain Prompt-tuning. The results are
shown in Table 4. We can see that FactMix achieves
the best performance in 5-shot prompt-tuning on
the development set and test set of CoNLL2003,
compared to EntLM (Ma et al., 2021b) and the ab-
lation part of FactMix. The overall Micro F1 score
of prompt-tuning with FactMix is relatively lower
than the results of 100-shot fine-tuning, i.e., 88.51
vs. 60.80 based on the BERT-large model. It is
noteworthy that our approach shows its superior for
all settings, while the previous data augmentation
approach (Zeng et al., 2020) hurts the performance
when using the BERT-large models, i.e., the F1
score decreases from 60.37 to 56.49 as shown in
the test set. The stable performance further proves
that two-step fact-based augmentations can signifi-
cantly benefit NER models for both fine-tuning and
prompt-tuning models.

Out-of-domain Prompt-tuning. The OOD re-
sults for prompt-tuning methods are also shown in
Table 4. In general, we observe that prompt-based
tuning methods have considerable potential for the
cross-domain few-shot NER. While cross-domain
results evaluated on the high-overlap dataset (Tech-
News) with the training domain are significantly
higher than the low-overlap dataset (Science), i.e.,
52.44 vs. 18.62 based on BERT-base. Furthermore,
FactMix provides the best performance based on
all of the pre-trained models, compared to EntLM
and its variants. In contrast, EntLM performs bet-
ter than FactMix on TechNews. It hints that our
method could be more useful in a low-resource set-
ting where the overlap between the original domain
and target domain is relatively low.

5.5 Discussion
Benefiting from the generalized ability of pre-
trained models, FactMix achieves much improved
results on the few-shot in-domain test – 86.91%.
More importantly, it shows decent scalability when
combined with fine-tuning and prompt-tuning
methods. To better understand the influence of
the number of initial training examples and aug-
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Figure 4: In-domain fine-tuning results are reported
based on the BERT-base-cased model.
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Figure 5: In-domain fine-tuning results based on BERT-
base-cased using different augmentation ratios.

mentation ratios, we illustrate the comparison of
in-domain fine-tuning as follows.

The Influence of Training Samples. The com-
parison of results based on the BERT-base-cased
model is shown in Figure 4. We present the results
of three different methods by using the different
number of training examples varying from 100 to
500. Results show that FactMix holds the best
performance when the size of training examples
has been set as 100, 300, and 500. We also notice
that the improvements introduced by FactMix de-
creased as the amount of raw training data per class
increased from 100 to 300 when compared to the
standard fine-tuning method. Finally, our method
shows its superior for all settings when compared
to the previous state-of-the-art data augmentation
method (Zeng et al., 2020) for Few-shot NER.

The Influence of Augmentation Ratios. In-
domain fine-tuning results using different augmen-
tation ratios are shown in Figure 5. We con-
sider three approaches in the evaluation, including
semi-factual generation, FactMix, and the baseline
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method (Zeng et al., 2020). FactMix shows its ab-
solute performance advantage using the augmenta-
tion ratio from one to eight. In particular, Micro-F1
scores of all methods increase with the increase of
the number of augmented training instances when
the augmentation ratio is less than 1:4, whereas
the trend of increase gradually slow down when
generating examples more than 1:4.

6 Conclusion

We proposed a joint context-level and entity-level
semi-fact generation framework, FactMix, for bet-
ter cross-domain NER using few labeled in-domain
examples. Experimental results show that our
method can not only boost the performance of
pre-trained backbones in in-distribution and OOD
datasets, but also show promising results combined
with template-free prompt-tuning methods. As a
single data augmentation method, FactMix can be
useful for different NLP tasks to enable fast general-
ization, i.e., relation extraction, question answering,
and sentiment analysis.
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Figure 6: The word overlap between NER datasets from
different domains.

A Appendix: Domain Distributions

The similarity between the dataset of source do-
main and six out-of-domain datasets is shown
in Figure 6. We find that the technical news
dataset shares the highest overlap ratio with the
CoNLL2003 dataset, while the science domain
shares the lowest overlap. Based on that, we
select TechNews and Science as two representa-
tive datasets in prompt-tuning experiments. Also,
the experimental results shown in Tables 3 and 4
demonstrate that cross-domain transfer between
low-overlap domains still be a challenge problem,
even for FactMix.
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