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Abstract

Commonsense question answering (QA) re-
quires machines to utilize the QA content and
external commonsense knowledge graph (KG)
for reasoning when answering questions. Ex-
isting work uses two independent modules
to model the QA contextual text representa-
tion and relationships between QA entities in
KG, which prevents information sharing be-
tween modules for co-reasoning. In this pa-
per, we propose a novel model, Co-Reasoning
Network (CORN), which adopts a bidirectional
multi-level connection structure based on Co-
Attention Transformer. The structure builds
bridges to connect each layer of the text en-
coder and graph encoder, which can introduce
the QA entity relationship from KG to the
text encoder and bring contextual text infor-
mation to the graph encoder, so that these fea-
tures can be deeply interactively fused to form
comprehensive text and graph node represen-
tations. Meanwhile, we propose a QA-aware
node based KG subgraph construction method.
The QA-aware nodes aggregate the question
entity nodes and the answer entity nodes, and
further guide the expansion and construction
process of the subgraph to enhance the con-
nectivity and reduce the introduction of noise.
We evaluate our model on QA benchmarks
in the CommonsenseQA and OpenBookQA
datasets, and CORN achieves state-of-the-art
performance.

1 Introduction

Commonsense Question answering (QA) research
requires the machine to have a human thought pat-
tern, which is capable of comprehending text con-
tent and combining commonsense knowledge to
reason and arrive at the correct answer. Despite
the success of large pre-trained language models
(PLMs) (Devlin et al., 2019; Liu et al., 2019) on
various NLP tasks, there is still a large gap be-
tween PLMs and humans on commonsense QA
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Figure 1: The network architecture of current com-
monsense QA research. Text encoder for encoding the
QA content, graph encoder for reasoning on the graph.
There is no connection between stacked text layers and
stacked GNN layers.

tasks. Therefore, researchers try to introduce exter-
nal knowledge, such as Freebase (Bollacker et al.,
2008) and ConceptNet (Speer et al., 2017), which
are large knowledge graphs (KGs) that entities link
by various relationships.

There has already been a significant amount of
work that combines PLMs and KGs for reasoning
(Lin et al., 2019; Wang et al., 2020; Feng et al.,
2020; Yasunaga et al., 2021). As illustrated in Fig-
ure 1, these works are mainly composed of two
modules: (1) capturing text features on QA with
a text encoder (such as PLM). (2) extracting sub-
graph from KG and reasoning on it with a graph
encoder, such as the GNN-based model (Kipf and
Welling, 2017; Schlichtkrull et al., 2018). Most
work (Lin et al., 2019; Wang et al., 2020; Feng
et al., 2020) focuses on building more efficient
graph encoders to capture relationships between en-
tities in graphs for reasoning. However, it ignores
the interconnections between the QA content and
graph due to GNN and PLM being treated as inde-
pendent modules. To address the above problems,
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Figure 2: Overview of our model. (a) is the overall architecture of CORN. We first construct a subgraph related to
QA by KG (§3.1), use PLM to encode the QA content, then apply N-layer Co-Reasoning Network, which combines
GNN layer (§3.4) and LM layer (§3.3) through Co-Attention Transformer (CAT) (§3.2), to perform reasoning. (b)
is the detail of connection part (Co-Attention Transformer).

Yasunaga et al. (2021) perform joint reasoning by
explicitly adding the QA content to the graph in the
form of a node. Nevertheless, this method is a one-
way connection structure, only enabling the graph
encoder to obtain textual context information for
reasoning while the text encoder cannot perceive
graph information.

We propose a novel model, Co-Reasoning
Network (CORN), to solve the above problems.
CORN adopts a bidirectional multi-level connec-
tion structure, which connects the language model
(LM) and GNN. Specifically, we build bridges be-
tween each layer of these two types of models by
the Co-Attention Transformer. Through this bridge,
the text representation and graph node representa-
tion can be fused bidirectionally and respectively
fed into the next LM and GNN layer. Therefore, the
GNN layer can reason on the subgraph with con-
textual text representation to enrich the graph node
representation, and the LM layer can further en-
code the text with the graph node representation to
improve the text representation. We adopt a multi-
level connection structure to connect each layer,
enabling text and graph representation with differ-
ent semantic levels to interact, generating a more
comprehensive feature representation. Meanwhile,
we propose a QA-aware node based KG subgraph
construction method. We use a question-aware
node and an answer-aware node to aggregate the
question entity nodes and the answer entity nodes
respectively and then guide the expansion and con-
struction process of the subgraph to enhance the
connectivity of the subgraph and reduce the intro-
duction of noise. Moreover, the QA-aware node
can help the model perceive the difference between
different types of nodes and help the model to learn
the representation of graph nodes better.

The main contributions of this work are summa-
rized as follows:

• We propose CORN, which adopts a bidi-
rectional multi-level connection structure.
CORN uses Co-Attention Transformer to con-
nect each layer of the LM and GNN, which
allows LM to perceive graph information and
enables GNN to integrate contextual text in-
formation, so that GNN and LM can generate
richer text and graph node representations.

• We propose a QA-aware node based KG sub-
graph construction method. Question entity
nodes and answer entity nodes are aggregated
through the QA-aware nodes and then the QA-
aware nodes guide the subgraph expansion
and construction to improve the connectivity
and reduce the noise.

• We conduct extensive experiments on Open-
BookQA and CommonsenseQA, and CORN
achieves state-of-the-art performance com-
pared to other KGs+PLMs models.

2 Problem Statement

In this paper, we focus on the task of multiple-
choice question answering which required extra
knowledge of reasoning. Formally, giving a ques-
tion q, a set of answer choices C and external knowl-
edge graph, our purpose is to identify the correct
answer from C.

To be specific, we calculate the probability score
between q and each answer choice a ∈ C and
then select the answer with the highest probability
score. We construct a multi-relational subgraph
G = (V, E) by KG (detailed in §3.1). Here V
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Figure 3: The QA-aware node based subgraph construction method. We first use the QA-aware nodes to aggregate
QA entities and then derive different subgraph expansion strategies to construct the final subgraph.

is the subset of entity nodes from KG and is re-
lated to the mentioned entities in the QA content,
E ⊆ V × R × V is the set of edges that connect
nodes in V , where R represents a set of relation
types.

3 Co-Reasoning Network

The overview of our model is shown in Figure 2.
We concatenate a question q and an answer choice
a to get the QA content s, where s = [q; a]. We
apply PLMs (e.g., RoBERTa) on s to get the initial
text representation s

′
. For each QA content s, we

use the QA-aware node based subgraph construc-
tion method (§3.1) to construct a subgraph G and
initialize the graph node representation G′

. Then,
We use N-layer Co-Reasoning Network (CORN) to
reason on the QA content s

′
and subgraph G′. Each

CORN layer consists of LM layer (§3.3), GNN
layer (§3.4) and Co-Attention Transformer (§3.2),
where Co-Attention Transformer bidirectionally
connects LM and GNN, LM encodes QA text with
graph representation, and GNN reasons on the sub-
graph with the contextual text representation. Fi-
nally, we use the pooled graph representation and
text representation from the last CORN layer to
make predictions to get the probability that the cur-
rent choice a is the correct choice.

3.1 The QA-aware node based KG Subgraph
Construction Method

We propose a QA-aware node based KG subgraph
construction method. As shown in Figure 3, there

are two stages during the process of constructing a
subgraph.
Relationship Construction. We introduce a
question-aware node Aq and an answer-aware
node Aa which are respectively responsible for
aggregating entity nodes that appear in the ques-
tion context and answer context. Specifically, the
question-aware node Aq first connects all ques-
tion entity nodes Vq existing in the KG with the
"co-occurrence" relationship, then queries the rela-
tionship in KG between each pair of the question
entity nodes and connects them with the queried
relationship. We construct the relationship between
answer-aware node Aa and answer entity nodes Va

in the same steps.
Subgraph Expansion and Construction. After
constructing relationship in QA entity nodes, we
expand the subgraph to supplement additional QA-
related knowledge nodes Vo to obtain richer graph
information. To reduce the introduction of noisy
nodes, we propose different subgraph expansion
strategies. (a) Direct-Connection: This strategy
does not introduce additional knowledge nodes.
It only connects question-answer entity pairs that
have a relationship in KG. It sacrifices some graph
information in exchange for introducing the least
number of noisy nodes. (b) Neighbor-Aware: This
strategy introduces the neighbor entity nodes of
question and answer entity nodes as additional
knowledge nodes. It introduces rich neighbor in-
formation for each question answering entity node.
(c) Multi-Hop-Aware: This strategy searches for
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a reachable path within K-hop in KG between two
nodes of question and answer entity nodes set, and
introduces the nodes on the path as the additional
knowledge nodes. It introduces less graph informa-
tion and noisy nodes. We take different strategies to
introduce additional nodes to form the subgraph G,
and evaluate each subgraph construction strategy in
the experiment. We initialize the node embedding
of Vq, Va and Vo by its entity embedding (§4.2),
and simply initialize Aq and Aa with zero vectors.

3.2 Co-Attention Transformer
The most central problem of the current model
is that the GNN and LM are treated as indepen-
dent modules for reasoning. GNN model can not
effectively use QA contextual text representation
and only rely on the subgraph extracted from KGs
for reasoning. Also, LM only encodes QA text
and ignores the QA entity relationship. To address
this problem, we bidirectionally connect each layer
of GNN and LM through the Co-Attention Trans-
former, which allows these two modules to interact
with each other’s information to improve the text
and graph node representation. The structure of the
Co-Attention Transformer is shown in Figure 2 (b).

Specially, given the text representation H
(l)
t ∈

Rm×d from the l-th layer of LM and node repre-
sentation H

(l)
g ∈ Rn×d from the l-th layer of GNN

model, where m, n are the text length and number
of nodes and d is the hidden size, we map them to
query Qt, Qg, key Kt,Kg and value V t, V g matri-
ces as in a standard transformer layer:

Qi = H(l)WQ
i

Ki = H(l)WK
i

Vi = H(l)W V
i

(1)

where i is i-th of h matrices, {WQ
i ,WK

i ,W V
i } ∈

Rd×dk are parameter matrices and dk ∈ Rd/h.
Then, we apply two transformer layers and ex-

change key-value pairs in multi-head attention to
perform interactive computation. Qt,Kg and V g

form one group and Qg,Kt and V t form other
group. Each group performs multi-head attention
computation conditioned on the other modules.
The single attention head is as following:

Ti(Q
t
i,K

g
i , V

g
i ) = softmax

(
Qt

iK
g
i
T

√
dk

)
V g
i (2)

Gi(Q
g
i ,K

t
i , V

t
i ) = softmax

(
Qg

iK
t
i
T

√
dk

)
V t
i (3)

The attention outputs of each head are then con-
catenated and followed by a linear transformation
as following:

O
(l)
t =MultiHead(Qt,Kg, V g)

=Concat (T1, · · · ,Th)W
O
t (4)

O(l)
g =MultiHead(Qg,Kt, V t)

=Concat (G1, · · · ,Gh)W
O
g (5)

where {WO
t ,WO

g } ∈ Rhdk×d are parameter ma-

trices, O
(l)
t ∈ Rm×d and O

(l)
g ∈ Rn×d. After

that, two residual add operations are worked on
the initial representation and output of multi-head
attention to get a fused representation of text and
graph:

H
(l)
t = LayerNorm(H

(l)
t +O

(l)
t ) (6)

H(l)
g = LayerNorm(H(l)

g +O(l)
g ) (7)

where LayerNorm is the layer normalization opera-
tion (Ba et al., 2016). H(l)

t is the text representation
with graph information and H

(l)
g is the node rep-

resentation with text information. Then, two feed
forward networks (MLP) and two another residual
add operations are applied on the above representa-
tion to get the Co-Attention Transformer output:

H
(l+1)
t = LayerNorm(H

(l)
t +MLP(H

(l)
t )) (8)

H(l+1)
g = LayerNorm(H(l)

g +MLP(H(l)
g )) (9)

where H(l+1)
t ∈ Rm×d and H

(l+1)
g ∈ Rn×d are the

input of (i+ 1)-th layer of LM and GNN. We use
Co-Attention Transformer to connect each layer of
the LM and GNN layer, which can fuse semantic
features of different levels to obtain a more com-
prehensive representation.

3.3 Language Model
To effectively utilize the capability of the PLM, we
do not modify its architecture and use it to encode
the text at first. Specifically, we apply PLM (e.g.,
RoBERTa) on the QA content s to get initial text
representation H

(0)
t :

H
(0)
t = PLM(s), (10)

where H
(0)
t ∈ Rm×dp , m is the text length and dp

is the hidden size of PLM.
Before Co-Reasoning Network, we use an MLP

to unify the hidden size:

H
(0)
t = MLP(H

(0)
t ), (11)
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where the new H
(0)
t ∈ Rm×d, d is the unified hid-

den size.
After that, we use an N-layer Co-Reasoning

Network which consists of LM, GNN, and Co-
Attention Transformer for co-reasoning. For the
l-th layer, the input text representation H

(l−1)
t inter-

acts with node representation H
(l−1)
g in graph (de-

tailed in §3.4) through Co-Attention Transformer
and gets the text representation H

(l)
t that is con-

tained graph node information.
Further, we apply transformer encoder layer

(Vaswani et al., 2017) as the LM in Co-Reasoning
Network for reasoning:

H
(l)
t = Transformer(H

(l)
t ) (12)

The transformer encoder layer can encode the text
representation with graph information to get the
output H(l)

t .

3.4 GNN Model
After getting knowledge concept graph G and
initializing the entity node embedding H

(0)
g ∈

Rn×din , where n is the number of nodes and din is
the initial hidden size, we also use an MLP to unify
the hidden size of node:

H(0)
g = MLP(H(0)

g ), (13)

where the new H
(0)
g ∈ Rn×d, d is the unified hid-

den size.
We put the graph into N-layer Co-Reasoning

Network. For the l-th layer, the input node repre-
sentation H

(l−1)
g interacts with text representation

H
(l−1)
t through Co-Attention Transformer and gets

the node representation H
(l)
g that is contained con-

textual text information.
Further, We apply RGCN (Schlichtkrull et al.,

2018), a graph encoder that can encode multi-
relational graphs by aggregating messages from
its neighbors, as the GNN model in Co-Reasoning
Network for reasoning. Specially, for each node
h
(l)
i ∈ Rd in graph, where [h

(l)
1 ; · · · ;h(l)n ] = H

(l)
g ,

the node representation is updated via message
passing from neighbors:

h
(l+1)
i = σ(

∑
r∈R

∑
j∈N r

i

1

ci,r
W (l)

r h
(l)
j

+W
(l)
0 h

(l)
i ), (14)

where N r
i denotes the set of neighbor indices of

node i under relation r ∈ R, ci,r = |N r
i | is a

normalization constant. W (l)
r is the parameter ma-

trix related to relation r and W
(l)
0 is the parameter

matrix of node i information transformation. How-
ever, the number of parameters grows rapidly with
the increase in the number of relations. We apply
basis decomposition to regularize the weights of
R-GCN-layers:

W (l)
r =

B∑
b=1

a
(l)
rb V

(l)
b , (15)

where V
(l)
b ∈ Rd(l+1)×dl is the parameter matri-

ces for all relation and a
(l)
rb is the coefficients de-

pend on r. After apply RGCN-layer, the new
node representations are updated and get the output
H

(l)
g = [h

(l+1)
1 ; · · · ;h(l+1)

n ].

3.5 Inference & Learning
The probability score for answer a as the correct
answer for question q is calculated by text repre-
sentation and graph node representations from the
last layer:

p(q, a)=MLP(Pool(H
(L)
t )⊕Pool(H(L)

g )) (16)

where Pool is the mean pooling operation over the
text representations and the node representations.

In the training process, each question provides a
list of answer choices, one of which is correct. we
use the cross-entropy loss function to optimize the
model.

4 Experiments

4.1 Datasets
We evaluate our model on two multiple-choice
question answering datasets that require external
knowledge to arrive at the correct answer: Open-
BookQA (Mihaylov et al., 2018) and Common-
senseQA (Talmor et al., 2019).

OpenBookQA is a multiple choice question QA
task with 4 choices that require elementary sci-
ence knowledge for reasoning. This dataset also
provides external knowledge called Open Books
describing scientific facts to help models answer
questions. As our study focuses on reasoning by
using structured knowledge, we do not utilize Open
Books and instead utilize ConceptNet as the exter-
nal knowledge.

CommonsenseQA is a multiple choice question
QA task with 5 choices that require commonsense
knowledge for reasoning. Questions and answers
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are generated according to entities in ConceptNet
and their relations. We perform experiments on the
in-house (IH) data splits used in Lin et al. (2019).

4.2 Knowledge Graph

We use ConceptNet, a general-domain structured
knowledge graph, as our external commonsense
knowledge. We use the entity embeddings prepared
by Feng et al. (2020), which they utilize TransE
model (Bordes et al., 2013) for node embedding
(100-dimensional) in ConceptNet. Following the
work by Lin et al. (2019), we merge the original
42 relation types in ConceptNet into 17 relation
types. The subgraph construction method for each
question and answer is described in section §3.1.

4.3 Implementation & training details

We set the dimension (D = 100) and number of
layers (L = 3) of our Co-Reasoning Network, with
dropout rate 0.2 applied to each layer. We train the
model with the RAdam optimizer using one GPU
(Tesla T4). We use batch size of 64 (mini batch of
2), with 14 epochs (~4 hours) for OpenBookQA
and 10 epochs (~6 hours) for CommonsenseQA.

4.4 Baseline Models

The purpose of our work is to leverage structured
external knowledge for reasoning on knowledge
question answering tasks. Therefore, we only com-
pare with the models that combine PLMs and KGs,
not the models using other formats of external
knowledge (e.g., Wikipedia, human-annotated evi-
dence.)

RoBERTa (Liu et al., 2019) is used as the base-
line model to study the performance of PLMs with-
out introducing extra KG information.

GconAttn (Wang et al., 2019) generalizes the
Match-LSTM model in the field of text matching
to knowledge concept matching.

KagNet (Lin et al., 2019) extracts the QA-
related subgraph from KG, and applies GCN and
LSTM to model the relational paths.

Relation Network (RN) (Santoro et al., 2017)
utilizes multilayer perceptron to encode triplets on
paths in KG and all the triplets representation as to
the graph representation for classification.

MHGRN (Feng et al., 2020) designs a multi-
hop relational reasoning module to obtain a path-
level graph representation, and combines GNN and
PLMs for classification.

QA-GNN (Yasunaga et al., 2021) introduces a

Methods Dev Acc.(%) Test Acc.(%)

RoBERTa-large 66.76 (±1.14) 64.80 (±2.37)

+ GconAttn 66.85 (±1.82) 64.75 (±1.48)
+ RN 67.00 (±0.71) 65.20 (±1.18)
+ MHGRN 68.10 (±1.12) 66.85 (±1.19)
+ QA-GNN 68.27 (±1.09) 67.80 (±2.75)

+ CORN (Ours) 72.35 (±0.86) 71.30 (±0.64)

Table 1: Dev and Test accuracy on OpenBookQA.

Methods IHdev-Acc.(%) IHtest-Acc.(%)

RoBERTa-large 73.07 (±0.45) 68.69 (±0.56)

+ GconAttn 72.61 (±0.39) 68.59 (±0.96)
+ KagNet 73.47 (±0.22) 69.01 (±0.76)
+ RN 74.57 (±0.91) 69.08 (±0.21)
+ MHGRN 74.45 (±0.10) 71.11 (±0.81)
+ QA-GNN 76.54 (±0.21) 73.41 (±0.92)

+ CORN (Ours) 79.58 (±0.38) 74.43 (±0.59)

Table 2: Dev and Test accuracy on CommonsenseQA
in-house split.

QA content node in the subgraph for joint reason-
ing over the QA content and KG.

4.5 Main Results

Table 1 shows the result on OpenBookQA. For fair
comparison, we use the RoBERTa-large as the text
encoder for all models. Our model achieves the best
performance across all baseline models by greatly
improving the dev accuracy by ~4.08% and test ac-
curacy by ~3.5%. The improvement over QA-GNN
suggests that CORN is a better method to combine
the QA content and KG for co-reasoning. Notably,
QA-GNN (1.1B total parameters) uses 2.5x more
total parameters than our model (our has 440M to-
tal parameters). This benefits from CORN’s use of
fewer layers, smaller hidden dimension, and sim-
pler designed GNN but more efficient connection
structure. In addition, we did not compare with
other models that use the extra corpus of scientific
facts provided by official, because our purpose is
to reason from a structured knowledge graph.

Table 2 shows the result on CommonsenseQA.
All models also use Roberta-large as the text en-
coder. CORN achieves state-of-art performance
across all existing models with improving the dev
accuracy by ~3.04% and test accuracy by ~1.02%.
The result suggests that CORN improves the per-
formance of through the bidirectional interaction
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Methods OpenBookQA CommonseQA

Direct-Connection 69.27 (±0.41) 74.43 (±0.59)
Neighbor-Aware 71.30 (±0.64) 72.66 (±0.40)
Multi-Hop-Aware (K=1) 69.60 (±1.28) 71.64 (±0.16)
Multi-Hop-Aware (K=2) 68.30 (±1.30) 71.77 (±0.56)

Table 3: Results of different subgraph construction
methods. We report the test accuracy on OpenBookQA
and CommonsenseQA.

Method Test Acc.

CORN 71.30
w/o CAT (Text) 70.17
w/o CAT (Graph) 70.20
w/o CAT (Multi-level) 70.26
w/o CAT 69.67
w/o QA-aware nodes 70.20

CORN Layers Test Acc.

L = 2 70.90
L = 3 71.30
L = 4 70.73
L = 5 70.40

Table 4: Ablation study of our model components,
using the OpenBookQA test set. CAT is the abbreviation
of Co-Attention Transformer.

of GNN and LM without designing complex graph
inference networks.

4.6 Subgraph Construction Result

Table 3 shows the results of constructing subgraphs
by different subgraph expansion methods. We eval-
uate our proposed strategies for introducing addi-
tional QA-related knowledge nodes in KG.

For OpenBookQA, we find that the Neighbor-
Aware performs best. The OpenBookQA empha-
sizes reasoning using multiple scientific knowledge.
The question entity nodes require multiple scien-
tific knowledge to connect with the answer entity
nodes. Therefore, the model cannot perform rea-
soning efficiently without introducing extra nodes,
which is the reason that Direct-Connect performs
worst. Compared to Multi-Hop-Aware (K=1) and
Multi-Hop-Aware (K=2), Neighbor-Aware can pro-
vide extra influential related entity nodes to cover
possible scientific knowledge, further helping the
model for reasoning.

For CommonsenseQA, the best strategy is to not
introduce additional QA-related knowledge nodes
(Direct-Connection). We analyze that this is caused
by the construction method of CommonsenseQA.
The four answer entities and one question entity in
CommonsenseQA are directly connected in Con-
ceptNet. Therefore, the introduction of additional
QA-related knowledge nodes will lead to noise and
redundancy, which will reduce the performance of
the model.

4.7 Ablation Study

The ablation study on each of our model compo-
nents is shown in Table 4, using the OpenBookQA
test set. We found that removing the attention
computation of any module (text or graph) in the
Co-Attention Transformer would result in a per-
formance drop of ~1.1%. We also test remov-
ing the multi-level connection structure and only
keeping one layer of the Co-Attention Transformer,
the degraded performance result shows that multi-
level connections can indeed interact with differ-
ent levels of semantic features to get richer rep-
resentation. Removing Co-Attention Transformer
will significantly degrade performance by 1.63%,
which proves the importance of connecting and co-
reasoning between LM and GNN. We also analyze
the impact of QA-aware nodes. When we remove
QA-aware nodes, the performance of the model
drops by 1.1%, which proves that QA-aware nodes
can help the model to perform better reasoning. For
the number of CORN layers, we find L = 3 works
best on the dev set, which is also similar to the
number of layers generally used in GNN.

4.8 Model Visualization

The purpose of our model is to make GNN and LM
mutually aware of the information of each other’s
modules for reasoning. Therefore, we analyze the
attention weights of text module and graph module
in Co-Attention Transformer. Figure 4 gives a vi-
sualization of an example. Given question "Where
would you find magazines along side many other
printed works?" and choices "A. doctor B. book-
store", we show the attention weights of the last
Co-Attention Transformer layer under these two
choices separately. The key entity in this ques-
tion is "magazines". For the wrong choice "doc-
tor", though the attention of text module can give a
higher weight of "magazines" entity in the graph,
the attention weight distribution of graph module is
rather average, and cannot provide meaningful in-
formation. For the correct choice "bookstore", not
only the attention of text module can capture the im-
portance of the "magazine" entity in the graph, but
also the attention in graph module gives a higher
weight to the "bookstore" in the text, which is also
the correct answer. Therefore, the Co-Attention
Transformer in CORN can effectively capture the
relationship between the QA text and knowledge
graph formed by the correct choice.
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Q: Where would you find magazines along side many other printed works?

A. doctor B. bookstore

Text module

(Key: text; Query: node)

Graph module

(Key: node; Query: text)

Text module

(Key: text; Query: node)

Graph module

(Key: node; Query: text)

Figure 4: Visualization of the attention weights of the last CORN layer. Given a question and corresponding
choices. We show the attention weights between text and graph formed by each choice. The row indices of the
heatmap are the words in the text, and the column indices are the entity nodes in the graph. The red box represents
the part with the highest attention weight.

5 Related Work

Question answering with PLMs. The recent suc-
cess of PLMs in various NLP tasks has prompted
much work to try directly utilize PLMs to encode
external knowledge. These work can be divided
into two paradigms: 1) Format external knowl-
edge (eg. Wikipedia, knowledge graph) into text
or triples as corpus for PLM pre-training task (Ye
et al., 2019; Li et al., 2019; Sun et al., 2019; Gu-
rurangan et al., 2020). 2) Fine-tuning PLMs with
evidence for external knowledge (Pan et al., 2019;
Lv et al., 2020). However, such models can not
provide interpretable reasoning process, which is
the key to commonsense reasoning.
Question answering with KG+LM. Many works
attempt to additionally perform reasoning with
GNN on knowledge graphs to address the problem
that PLMs unable to reason on structured knowl-
edge. GCN (Kipf and Welling, 2017) aggregates
the neighborhood information of each node for mes-
sage passing. RGCN (Schlichtkrull et al., 2018)
can encode multi-relational graphs by aggregat-
ing messages from its neighbors of different rela-
tions. GAT (Velickovic et al., 2018) assigns dif-
ferent attention weights to aggregate each node
feature, and is used (Chen et al., 2019) to distin-
guish the importance of different concept entity
nodes in KG. The related work of question answer-
ing (Lin et al., 2019; Feng et al., 2020; Lv et al.,
2020) try to design complex graph neural networks

for single-hop or multi-hop reasoning in KG. How-
ever, these works treat the QA content and KG as
separate modules. Though Yasunaga et al. (2021)
add the QA content to graph for joint reasoning,
it still cannot solve the problem that information
unable exchange between GNN and LM. CORN
addresses the above problem by connecting each
layer of these two models through Co-Attention
Transformer for co-reasoning.

6 Conclusion

We propose a novel commonsense QA model,
CORN, which adopts a bidirectional multi-level
connection structure. It bidirectionally connects
each layer of the LM and GNN through the Co-
Attention Transformer, which enables the LM to
perceive the relationship of QA entity nodes to im-
prove the text representation, and allows GNN to
utilize contextual text information to enhance the
graph node representation. Meanwhile, we pro-
pose a QA-aware node based KG subgraph con-
struction method. The QA-aware nodes aggregate
question entity nodes and answer entity nodes and
then guide the subgraph expansion and construc-
tion to increase the connectivity of the subgraph,
and reduce the introduction of noise. Through ex-
tensive experiments and visual analysis, CORN
can perform multi-level bidirectional interaction to
improve the LM+KG models, and achieves state-
of-the-art performance among them.
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