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Abstract
Term clustering is important in biomedical
knowledge graph construction. Using similar-
ities between terms embedding is helpful for
term clustering. State-of-the-art term embed-
dings leverage pretrained language models to
encode terms, and use synonyms and relation
knowledge from knowledge graphs to guide
contrastive learning. These embeddings pro-
vide close embeddings for terms belonging to
the same concept. However, from our prob-
ing experiments, these embeddings are not
sensitive to minor textual differences which
leads to failure for biomedical term clustering.
To alleviate this problem, we adjust the sam-
pling strategy in pretraining term embeddings
by providing dynamic hard positive and neg-
ative samples during contrastive learning to
learn fine-grained representations which result
in better biomedical term clustering. We name
our proposed method as CODER++1, and it
has been applied in clustering biomedical con-
cepts in the newly released Biomedical Knowl-
edge Graph named BIOS2.

1 Introduction

A critical step for building a biomedical knowledge
graph is clustering synonyms terms into concepts
(Nicholson and Greene, 2020; Yu et al., 2022). Af-
ter mining terms from the biomedical corpus or
electronic medical records, these terms may belong
to an existing concept dictionary or newly discov-
ered concepts. It is hard for humans to link terms
to an existing concept dictionary since the volume
of the concept dictionary is huge. Furthermore, it is
almost impossible for humans to determine if one
term is a new concept.

Embedding-based entity linking methods encode
terms into a dense space and use similarities among
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1Our codes and model will be released at https://
github.com/GanjinZero/CODER.

2
https://bios.idea.edu.cn/

terms for entity linking (Liu et al., 2021; Yuan et al.,
2022). Terms that belong to newly discovered con-
cepts should have low similarities to all concepts
in the dictionary. Embedding-based entity linking
methods can also assist humans in term clustering
by providing candidates. However, we find that ex-
isting state-of-the-art biomedical term embedding
models SapBERT (Liu et al., 2021) and CODER
(Yuan et al., 2022) are not sensitive to fine-grained
differences (i.e. They provide high similarities for
non-synonymous and textually similar term pairs).
These term pairs are common, especially in dis-
eases (e.g. Type 1 Diabetes v.s. Type 2 Diabetes)
and chemicals (e.g. xyloglucan endotransglycosy-

lase v.s. xyloglucan endoglucanase). We suggest
the reason comes from the pretraining sampling
strategy of SapBERT and CODER. They sample
Concept Unique Identifiers (CUIs) from UMLS
(Bodenreider, 2004) randomly in the mini-batch.
This produces hard positive pairs (i.e. textually dif-
ferent terms with the same CUIs) and easy negative
pairs (i.e. textually different terms with different
CUIs). Supervised contrastive learning is applied
to cluster embeddings under the same CUIs and
to keep away embeddings for different CUIs. For
benchmarking entity linking tasks, the ability to
determine positive pairs is important. For term
clustering, it further requests to determine negative
pairs. Hard negative pairs are absent in pretraining
SapBERT and CODER which lead to unsatisfac-
tory performances in term clustering.

In this paper, we propose a probing experiment
to evaluate term clustering on UMLS automatically.
This experiment shows SapBERT and CODER
have insufficient ability in term clustering. For bet-
ter term clustering, we propose a dynamic sampling
strategy that provides both hard positive and nega-
tive pairs to learn fine-grained terms embeddings
named CODER++. CODER++ not only reserves
the ability to normalize terms but also can distin-
guish different concepts with similar term names.
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CODER++ shows decent ability on biomedical
entity linking and a significant improvement on
biomedical term clustering evaluation.

2 Related Work

Automatic term clustering has long been discussed.
Traditional methods use statistical approaches to
define similar terms and perform clustering. Lin
(1998) defines term similarity based on distribu-
tions and Lewis and Croft (1989) forms clusters
based on co-occurrence in semantically coher-
ent documents. Kok and Domingos (2008) uses
Markov logic for unsupervised concept clustering.

Recent researches focus on deep learning ap-
proaches, where biomedical term embeddings can
be used for term clustering. Nguyen et al. (2015)
identifies biomedical synonyms using word embed-
dings. SapBERT (Liu et al., 2021; Nguyen et al.,
2021) and CODER (Yuan et al., 2022) learn syn-
onyms knowledge from UMLS to provide close
embeddings for synonyms. In this work, we im-
prove these embeddings by providing dynamic hard
negative samples.

3 Term Clustering Evaluation

We introduce the term clustering evaluation on
UMLS as the probing experiment, in which we
find that both CODER and SapBERT show poor
clustering performance. Through the case study,
we find the reason is that both models fail to dis-
tinguish between fine-grained biomedical terms,
which suggests a refinement is needed to support
biomedical term clustering.

3.1 Embedding-based Term Clustering

We use term embeddings including CODER and
SapBERT to perform clustering on UMLS terms.
We first generate embedding e for each term
t in UMLS. The similarity between term ti
and tj is measured by cosine similarity Sij =
cosine(ei, ej). If Sij > ✓, where ✓ is a hyperpa-
rameter, ti and tj are predicted to be clustered. In
practice, calculating similarities between all pairs
is time-consuming. Instead, for each term ti, we
use the Faiss index (Johnson et al., 2019) to only
save terms with top-m similarities with ti, denoted
by Mi. Only when tj 2 Mi and also Sij > ✓,
tj is predicted to be clustered with ti (i.e. ti and
tj are synonyms). For convenience, we denote
M =

S
iMi.

3.2 Large-scale Clustering Evaluation

For evaluation, terms under the same CUI i in
UMLS are regarded as ground truth clustering, de-
noted by Ci. We denote C =

S
i Ci. Suppose there

are n terms, then we have
�n
2

�
term pairs. For each

pair (ti, tj), if they are under the same CUI and
also predicted to be clustered, then (ti, tj) is re-
garded as true positive (TP). False positive (FP),
false negative (FN), and true negative (TN) are
defined similarly. Recall, precision and F1 score
can be computed based on TP, FP, FN, and TN.
Precision suggests how well a model differentiates
between negative term pairs. Recall suggests how
well a model clusters terms with similar meanings.

As n is large in practice (over 10M terms in a
biomedical terminology like UMLS), it is impos-
sible to enumerate all term pairs to directly count
TP, FP, FN, and TN. Nguyen et al. (2021) down-
samples negative pairs for evaluation, but this may
ignore some hard negative pairs. We propose an
efficient algorithm for large-scale clustering eval-
uation, which reduces the time complexity from
O(n2) to O(n) when ground truth cluster Ci is
bounded. The algorithm splits the searching space
into two parts, traversing through the Faiss index
M and traversing through the ground truth cluster
space C. When traversing through M, we first get
pairs with predicted labels to be true, then count
how many pairs in C to obtain TP and FP. When
traversing through C, we first get pairs with ground
truth label to be true, then count pairs in M to ob-
tain FN. TN is computed by subtracting TP, FP, and
FN from

�n
2

�
instead of counting which saves time

significantly. To speed up the searching process,
we also store C and M in prefix trees.

3.3 Probing Results

The results of term clustering evaluation in UMLS
2020 AA for CODER and SapBERT are shown
in Table 2. We search for the best threshold ✓0
according to the F1 score. F1 scores are both low
for SapBERT and CODER, which indicates that
both models could not differentiate terms well and
tend to cluster different terms together. These F1

scores are much lower than reported in (Nguyen
et al., 2021) (0.65 for SapBERT), the reason is they
downsample negative pairs in evaluation which un-
derestimates FN. The performance gap between
SapBERT and CODER comes from their different
sampling strategies.
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Term 1 Term 2 Similarity Same CUICODER SapBERT CODER++
julibroside j2 julibroside c1 0.918 0.918 0.339 F

orange colored urine pink urine 0.738 0.783 0.451 F
type 2 diabetes 1 type 1 diabetes 0.908 0.911 0.502 F

sb 212047 sb 216754 0.819 0.767 0.356 F
early onset late onset 0.831 0.807 0.416 F

ginsenoside rh ginsenoside rg 0.908 0.979 0.420 F
protein phosphatase 1 delta protein phosphatase 2c delta 0.910 0.832 0.616 F

type ii endometrial carcinoma endometrial cancer stage ii 0.845 0.846 0.420 F
headache cephalgia 0.798 0.741 0.776 T

fhx allergies fh: allergy 0.879 0.881 0.819 T
herpesvirus murid 004 murine herpesvirus 068 0.634 0.823 0.674 T

tex2 tex2 gene 0.890 0.995 0.921 T
eppin 1 protein, human eppin protein, human 0.991 0.941 0.834 T

chmp2b gene chromatin modifying protein 2b 0.743 0.797 0.724 T

Table 1: Similarities of different models between representative term pairs with the same CUI or different CUI.
Term pairs with the same CUI are considered positive. Compared with CODER and SapBERT, CODER++ has
relatively lower similarities on negative term pairs and moderately higher similarities on positive term pairs.

Model ✓0 P R F1

SapBERT 0.94 0.302 0.268 0.284
CODER 0.86 0.071 0.401 0.121

Table 2: Results for CODER and SapBERT on term
clustering evaluation in UMLS 2020 AA.

3.4 Case Study

We sample term pairs to check why CODER and
SapBERT fail on term clustering evaluation. Sim-
ilarities of representative false positive term pairs
for both CODER and SapBERT are shown in the
upper part of Table 1. We can observe that CODER
and SapBERT embeddings can’t distinguish terms
with number differences, body part differences, and
devices differences. CODER and SapBERT pro-
vide similarities for these false positive term pairs
as high as true positive term pairs shown in the
lower part of Table 1. Hence they tend to clus-
ter terms with highly similar strings but different
meanings.

4 Approach

We introduce CODER++ to address the above-
mentioned problem. The idea is simple, providing
hard negative pairs to reduce false positive term
pairs. We focus on how to construct mini-batches
to learn fine-grained term representations.

4.1 Term Encoding

CODER++ embeds a term s to a dense represen-
tation e with a pretrained language model. We
tokenize s into sub-words, and use the representa-
tion of [CLS] token for term representation.

4.2 Dynamic Sampling

Positive Sampling For each term t, we sample k
terms p1, ..., pk with same CUI from UMLS. This
adds positive pairs for training. The term pi can
be textually different from t which is considered a
hard positive sample.

Possibly Hard Negative Sampling We take
terms n1, ..., nm with top-m similarities with term
t as possibly hard negative samples. It is expen-
sive to find terms with top-m similarities on the
fly, and we use the Faiss index instead. For each
epoch, we update the Faiss index using the present
CODER++. Selected terms can have the same CUI
or different CUIs with term t. A not well-trained
model has more different CUIs terms as hard nega-
tive samples. The model is required to distinguish
these fine-grained terms. When the training is pro-
gressed, more selected terms will have the same
CUI with the term t.

Overall Sample Strategy We first sample terms
{ti}i randomly from the whole term set. For each
term ti, we sample k positive terms pi1 , ..., pik and
m possibly hard negative terms ni1 , ..., nim . All
these terms {ti, pi1 , ..., pik , ni1 , ..., nim}i construct
a mini-batch, and we use the CUIs of these terms to
guide supervised contrastive learning. An example
of mini-batch is visualized in Figure 1. We follow
Liu et al. (2021); Yuan et al. (2022) to optimize the
model using the Multi-Similarity loss (MS-loss)
(Wang et al., 2019) to guide terms with same CUIs
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Sample (Possible) Negative

ibuprofen Ibuprofenum

period pain painful period

backache dorsalgia

sciatica ischias

TERMS Sample Positive

Ibuprofeno

dismenorrea

back pain

Cotugno’s
disease

back

statics

Ibuprofene Ibu

ache

sci

pain period

Figure 1: Construction of a mini-batch in CODER++.

similar and terms with different CUIs dissimilar.

Ni := {j|1  j  m, ci 6= cj , Sij > min
ck=ci

Sik � ✏}

Pi := {j|1  j  m, ci = cj , Sij < max
ck 6=ci

Sik + ✏}

L =
1

m

mX

i=1

(
log(1 +

P
j2Pi

exp(�↵(Sij � �)))

↵

+
log(1 +

P
j2Ni

exp(�(Sij � �)))

�
),

where ci is the CUI of ith term, and ✏,↵,� are
hyperparameters.

5 Experiments

5.1 Pre-training
We train CODER++ initialized by CODER with
1,200K training steps 3. We update the Faiss index
every 60K steps. For each mini-batch, we set k =
m = 30. Training costs 9 days on 8 NVIDIA A100
40GB GPUs. Each GPU samples 16 terms {ti}
from UMLS 2020 AA at one time with 8 gradient
accumulation steps which indicates a total of 16⇥
(1 + 30 + 30) ⇥ 8 ⇥ 8 = 62, 464 terms for each
parameter update step. The maximal term length is
set to 32. We use AdamW (Loshchilov and Hutter,
2017) as the optimizer with a linear warm-up in
the first 10000 steps to a peak of 4e-5 learning rate
and a linear decay. The setting of hyperparameters
✏,↵,� in MS-loss is following (Yuan et al., 2022).

5.2 Term Clustering Evaluation
We evaluate CODER++ based on Section 3.2. The
result is shown in Figure 2 and Table 3. Ta-
ble 3 shows that CODER++ greatly outperforms
CODER and SapBERT, obtaining 0.732, 0.576,
and 0.644 for precision, recall, and F1 scores
respectively. We can see from Figure 2 that
CODER++ has a comparable spread in recall
with both CODER and SapBERT, which indicates
CODER++ reserves the ability of clustering terms

3SapBERT can also be used as the initial checkpoint.

Figure 2: UMLS term clustering evaluation for
CODER, SapBERT, and CODER++ under different
thresholds.

Model ✓0 P R F1

SapBERT 0.94 0.302 0.268 0.284
CODER 0.86 0.071 0.401 0.121
CODER++ 0.70 0.732 0.576 0.644

Table 3: Results for CODER, SapBERT, and
CODER++ on term clustering evaluation in UMLS
2020 AA.

with similar meanings, while achieving much bet-
ter precision for most thresholds, which indicates
a significant improvement in distinguishing terms
with different meanings.

5.3 Case Study
We compute similarities for the same term pairs
as in Section 3.4 using CODER++, and the results
are shown in the upper part of Table 1. It sug-
gests that CODER++ has relatively low similarities
on negative term pairs and reduces the FP rate.
To check if CODER++ maintains high similarities
for positive term pairs, we sample some positive
terms pairs and compute the similarities, which are
shown in the lower part of Table 1. We observe
that CODER++ has moderately high similarities
for positive term pairs, which suggests CODER++
reserves the ability to normalize terms with similar
meanings.

In conclusion, our dynamic sampling strategy
significantly decreases similarities in negative term
pairs, while mildly decreasing similarities in posi-
tive pairs. The results indicate the efficacy of our
dynamic sampling strategy in pretraining.

5.4 Zero-shot Term Normalization
We evaluate CODER++ with zero-shot term nor-
malization on BC5CDR (Li et al., 2016), results
are shown in Table 4. CODER++ achieves bet-
ter performance than CODER and comparable
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Model BC5CDR-d BC5CDR-c
SapBERT 93.5, 96.0 96.5, 98.2
CODER 92.2, 94.7 95.1, 97.2
CODER++ 92.2, 94.9 96.5, 97.9

Table 4: Acc@1 and Acc@5 on BC5CDR for CODER,
SapBERT, and CODER++.

Setting ✓0 P R F1

CODER 0.88 0.273 0.310 0.290
(a) 0.76 0.482 0.289 0.361
(b) 0.74 0.667 0.517 0.583
(c) 0.68 0.830 0.659 0.735

Table 5: Ablation study on sampling strategies with Ds

term clustering.

performance with SapBERT, which shows that
CODER++ generalizes well and reserves the ability
to normalize terms with different names.

5.5 Ablation Study

Here we conduct ablation studies on sampling
strategies. Ablation studies are based on a sampled
subset of UMLS, which consists of 500K terms
(denote as Ds). We train models with different set-
tings on Ds respectively, then use each model to
perform clustering evaluation on it:
Setting (a): k = 1,m = 30, do not update Faiss.
Setting (b): k = m = 30, do not update Faiss.
Setting (c): k = m = 30, update Faiss index every
epoch (i.e. proposed CODER++).

Figure 3 displays results for thresholds ranging
from 0.6 to 0.98, and Table 5 lists the best per-
formances among those thresholds of each model.
Setting (a) has much higher precision than the orig-
inal CODER in all thresholds, which indicates hard
negative samples do improve the ability to differ-
entiate negative term pairs. Setting (b) has higher
precision and recall than setting (a), especially re-
call, which indicates simultaneously using posi-
tive and negative samples reserves the ability of
clustering similar terms while achieving a better
capability of differentiating terms. Setting (c) has
higher precision than setting (b), which indicates
dynamic negative samples greatly enhance the abil-
ity to differentiate negative term pairs. The negative
sampling under setting (b) is static, the model can
easily overfit these samples; while setting (c) will
provide new hard negative samples based on the
current model. The result is quite intuitive since
dynamic negative samples improve precision and
recall simultaneously along with all thresholds. In
conclusion, dynamic negative sampling with bal-

Figure 3: Ablation study on sampling strategies with
Ds term clustering under different thresholds.

anced positive sampling is the setting that performs
best and we use it for training CODER++.

6 Conclusions

We propose CODER++, a fine-grained biomedical
term representation, which benefits from our dy-
namic sampling strategy that provides hard positive
and negative pairs. We propose an automatic large-
scale clustering evaluation algorithm. Through
a combination of automatic evaluation and the
case study, we find CODER++ greatly outperforms
CODER and SapBERT on UMLS term clustering
and has a much better ability to distinguish dif-
ferent concepts with similar term names. The ef-
fectiveness of our dynamic sampling strategy is
also proved through an ablation study. Our work
can be used for automatic term clustering or rec-
ommend candidate similar terms for experts and
crowdsourcing participants in human term cluster-
ing. Our work also suggests that biomedical term
embedding models such as CODER can be further
pretrained by focusing on specific information.
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