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Abstract

This paper explores data augmentation meth-
ods for training Neural Machine Translation
to make use of similar translations, in a com-
parable way a human translator employs fuzzy
matches. In particular, we show how we can
simply feed the neural model with informa-
tion on both source and target sides of the
fuzzy matches, we also extend the similarity
to include semantically related translations re-
trieved using distributed sentence representa-
tions. We show that translations based on
fuzzy matching provide the model with “copy”
information while translations based on em-
bedding similarities tend to extend the trans-
lation “context”. Results indicate that the ef-
fect from both similar sentences are adding up
to further boost accuracy, are combining nat-
urally with model fine-tuning and are provid-
ing dynamic adaptation for unseen translation
pairs. Tests on multiple data sets and domains
show consistent accuracy improvements. To
foster research around these techniques, we
also release an Open-Source toolkit with ef-
ficient and flexible fuzzy-match implementa-
tion.

1 Introduction

For decades, the localization industry has been
proposing Fuzzy Matching technology in CAT
tools allowing the human translator to visual-
ize one or several fuzzy matches from transla-
tion memory when translating a sentence leading
to higher productivity and consistency (Yamada,
2011). Hence, even though the concept of fuzzy
match scores is not standardized and differs be-
tween CAT tools (Bloodgood and Strauss, 2014),
translators generally accept discounted translation
rate for sentences with ”high” fuzzy matches1.
With improving machine translation technology

1https://signsandsymptomsoftranslation.
com/2015/03/06/fuzzy-matches/.

and training of models on translation memories,
machine translated output has been progressively
introduced as a substitute for fuzzy matches when
no sufficiently “good” fuzzy match is found and
proved to also increase translator productivity given
appropriate post-editing environment (Plitt and
Masselot, 2010).

These two technologies are entirely different in
their finality - indeed, for a given source sentence,
fuzzy matching is just a database retrieval and scor-
ing technique always returning a pair of source and
target segments, while machine translation is ac-
tually building an original translation. However,
with Statistical Machine Translation, the two tech-
nologies are sharing the same simple idea about
managing and retrieving optimal combination of
longest translated n-grams and this property led
to the development of several techniques like use
of fuzzy matches in SMT decoding (Koehn and
Senellart, 2010; Wang et al., 2013), adaptive ma-
chine translation (Zaretskaya et al., 2015) or “fuzzy
match repairing” (Ortega et al., 2016).

With Neural Machine Translation (NMT), the
integration of Fuzzy Matching is less obvious since
NMT does not keep nor build a database of aligned
sequences and does not explicitly use n-gram lan-
guage models for decoding. The only obvious and
important use of translation memory is to use them
to train an NMT model from scratch or to adapt
a generic translation model to a specific domain
(fine-tuning) (Chu and Wang, 2018). While some
works propose architecture changes (Zhang et al.,
2018) or decoding constraints (Gu et al., 2018); a
recent work (Bulté and Tezcan, 2019; Bulté et al.,
2018) has proposed a simple and elegant frame-
work where, like for human translation, translation
of fuzzy matches are presented simultaneously with
source sentence and the network learns to use this
additional information. Even though this method
has showed huge gains in quality, it also opens
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many questions.
In this work, we are pushing the concept further

a) by proposing and evaluating new integration
methods, b) by extending the notion of similarity
and showing that fuzzy matches can be extended
to embedding-based similarities, c) by analyzing
how online fuzzy matching compares and com-
bines with offline fine-tuning. Finally, our results
also show that introducing similar sentence trans-
lation is helping NMT by providing sequences to
copy (copy effect), but also providing additional
context for the translation (context effect).

2 Translation Memories and NMT

A translation memory (TM) is a database that stores
translated segments composed of a source and its
corresponding translations. It is mostly used to
match up previous translations to new content that
is similar to content translated in the past.

Assuming that we translated the following En-
glish sentence into French: [How long does the
flight last?] ↝ [Combien de temps dure le vol?].
Both the English sentence and the corresponding
French translation are saved to the TM. This way,
if the same sentence appears in a future document
(an exact match) the TM will suggest to reuse the
translation that has just been saved. In addition
to exact matches, TMs are also useful with fuzzy
matches. These are useful when a new sentence is
similar to a previously translated sentence, but not
identical. For example, when translating the input
sentence: [How long does a cold last?], the TM
may also suggest to reuse the previous translation
since only two replacements (a cold by the flight)
are needed to achieve a correct translation. TMs
are used to reduce translation effort and to increase
consistency over time.

2.1 Retrieving Similar Translations

More formally, we consider a TM as a set of K
sentence pairs {(sk, tk) ∶ k = 1, . . . ,K} where
sk and tk are mutual translations. A TM must be
conveniently stored so as to allow fast access to
the pair (sk, tk) that shows the highest similarity
between sk and any given new sentence. Many
methods to compute sentence similarity have been
explored, mainly falling into two broad categories:
lexical matches (i.e. fuzzy match) and distribu-
tional semantics. The former relies on the num-
ber of overlaps between the sentences taken into
account. The latter counts on the generalisation

power of neural networks when building vector
representations. Next, we describe the similarity
measures employed in this work.

Fuzzy Matching Fuzzy matching is a lexicalised
matching method aimed to identify non-exact
matches of a given sentence. We define the fuzzy
matching score FM(si, sj) between two sentences
si and sj as:

FM(si, sj) = 1 −
ED(si, sj)

max(∣si∣, ∣sj∣)

where ED(si, sj) is the Edit Distance between si
and sj , and ∣s∣ is the length of s. Many variants
have been proposed to compute the edit distance,
generally performed on normalized sentences
(ignoring for instance case, number, punctuation,
space or inline tags differences that are typically
handled at a later stage). Also, IDF and stemming
techniques are used to give more weight on
significant words or less weight on morphological
variants (Vanallemeersch and Vandeghinste, 2015;
Bloodgood and Strauss, 2014).

Since we did not find an efficient TM fuzzy
match library, we implemented an efficient and
parameterizable algorithm in C++ based on suffix-
array (Manber and Myers, 1993) that we open-
sourced2. Fuzzy matching offers a great perfor-
mance under large overlapping conditions. How-
ever, in some cases, sentences with large overlaps
may receive low FM scores. Consider for instance
the input: [How long does the flight arriving in
Paris from Barcelona last?] and the TM entry of
our previous example: [How long does the flight
last?] ↝ [Combien de temps dure le vol?]. Even
though the TM entry may be of great help when
translating the input sentence, it receives a low
score (1 − 5

12
= 0.583) because of the multiple

insertion/deletion operations needed. We thus in-
troduce a second lexicalised similarity measure that
focuses on finding the longest of n-gram overlap
between sentences.

2https://github.com/systran/FuzzyMatch
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N -gram Matching3 We define the N -gram
matching score NM(si, sj) between si and sj :

NM(si, sj) =
»»»»»»»»
max({N (si) ∩N (sj)})

»»»»»»»»
where N (s) denotes the set of n-grams in sentence
s, max(q) returns the longest n-gram in the set
q and ∣r∣ is the length of the n-gram r. For N -
gram matching retrieval we also use our in-house
open-sourced toolkit.

Distributed Representations The current re-
search on sentence similarity measures has made
tremendous advances thanks to distributed word
representations computed by neural nets. In this
work, we use sent2vec4 (Pagliardini et al., 2018)
to generate sentence embeddings. The network im-
plements a simple but efficient unsupervised ob-
jective to train distributed representations of sen-
tences. The authors claim that the algorithm per-
forms state-of-the-art sentence representations on
multiple benchmark tasks in particular for unsuper-
vised similarity evaluation.

We define the similarity score EM(si, sj) be-
tween sentences si and sj via cosine similarity of
their distributed representations hi and hj :

EM(si, sj) =
hi ⋅ hj

∣∣hi∣∣ × ∣∣hj∣∣

where ∣∣h∣∣ denotes the magnitude of vector h.
To implement fast retrieval between the input

vector representation and the corresponding vec-
tor of sentences in the TM we use the faiss5

toolkit (Johnson et al., 2019).

2.2 Related Words in TM Matches
Given an input sentence s, retrieving TM matches
consists of identifying the TM entry (sk, tk) for
which sk shows the highest matching score. How-
ever, with the exception of perfect matches, not all
words in sk or s are present in the match. Con-
sidering the example in Section 2, the words the
flight and a cold are not related to each other, from
that follows that the TM target words le vol are
irrelevant for the task at hand. In this section we

3Note that this practice is also called “subsequence” or
“chunk” matching in CAT tools and is usually combined with
source-target alignment in order to help human translators
easily find translation fragments.

4https://github.com/epfml/sent2vec
5https://github.com/facebookresearch/

faiss

discuss an algorithm capable of identifying the set
of target words T ∈ tk that are related to words of
the input sentence s. Thus, we define the set T as:

T =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

j ∈ tk ∶
∃i ∈ LCS ∣ (i, j) ∈ A

∧ ∀i ∉ LCS ∣ (i, j) ∉ A

⎫⎪⎪⎪⎬⎪⎪⎪⎭

where A is the set of word alignments between
words in sk and tk, and LCS is the set of words in
sk which belong to the Longest Common Subse-
quence (LCS)6 between sk and s.
LCS is found as a sub-product of computing

fuzzy or n-gram matches. Word alignments are per-
formed by fast align7(Dyer et al., 2013). Fig-
ure 1 illustrates the alignments and LCS between
input sentences and their corresponding fuzzy (top)
and N -gram (bottom) matches.

Fuzzy Match

? • ? ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ■
last • last ⋅ ⋅ ⋅ ■ ⋅ ⋅ ⋅
cold ◦ flight ⋅ ⋅ ⋅ ⋅ ⋅ ■ ⋅

a ◦ the ⋅ ⋅ ⋅ ⋅ ■ ⋅ ⋅
does • does ⋅ ⋅ ⋅ ■ ⋅ ⋅ ⋅
long • long ⋅ ■ ■ ⋅ ⋅ ⋅ ⋅
How • How ■ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

C
om

bi
en

de
te

m
ps

du
re le vo
l

?
N -gram Match

? ◦ ? ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ■
last ◦ work ⋅ ⋅ ⋅ ■ ⋅ ⋅ ⋅
cold ◦ vaccine ⋅ ⋅ ⋅ ⋅ ⋅ ■ ⋅

a • a ⋅ ⋅ ⋅ ⋅ ■ ⋅ ⋅
does • does ⋅ ⋅ ⋅ ■ ⋅ ⋅ ⋅
long • long ⋅ ■ ■ ⋅ ⋅ ⋅ ⋅
How • How ■ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

C
om

bi
en

de
te

m
ps

du
re

un

va
cc

in

?

Figure 1: English-French TM entries with correspond-
ing word alignments (right) and LCS of words with
the input sentence (left). Matches are found following
Fuzzy (top) and N -gram (bottom) techniques.

6The LCS is computed as a by-product of the edit distance
(Paterson and Dančı́k, 1994)

7https://github.com/clab/fast_align
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The TM source sentence sk of the fuzzy
matching example has a LCS set of 5 words
{How, long, does, last, ?}. The set of related
target words T is also composed of 5 words
{Combien, de, temps, dure, ?}, all aligned to at
least one word in S and to no other word. The
N -gram match example has a LCS set of 4 words
{How, long, does, a}, while related target words
T consists of {Combien, de, temps, un}. The tar-
get word dure is not part of T as it is aligned to
work and work ∉ S . Notice that sets S and T con-
sist of collections of indices (word positions in their
corresponding sentences) while word strings are
used in the previous examples to facilitate reading.

2.3 Integrating TM into NMT

We retrieve fuzzy, n-gram and sentence embedding
matches as detailed in the previous section. We
explore various ways to integrate matches in the
NMT workflow. We follow the work by (Bulté
and Tezcan, 2019) where the input sentence is aug-
mented with the translation retrieved from the TM
showing the highest matching score (FM, NM or
EM). One special integration of fuzzy matching, de-
noted FMT , is rescoring fuzzy matches based on
the target edit distance. This special integration,
that is only performed on training data, is discussed
in the Target Fuzzy matches section.

Figure 2 illustrates the main integration tech-
niques considered in this work and detailed below.
The input English sentence [How long does the
flight last?] is differently augmented. For each
alternative we show: the TM (English) sentence
producing the match; the augmented input sentence
with the corresponding TM (French) translation.
Note that LCS words are displayed in boldface.

FM# We implement the same format as detailed
in (Bulté and Tezcan, 2019). The input English sen-
tence is concatenated with the French translation
with the (highest-scored) fuzzy match as computed
by FM(si, sj). The token ∥ is used to mark the
boundary between both sentences.8

FM∗ We modify the previous format by masking
the French words that are not related to the input
sentence. Thus, sequences of unrelated tokens are
replaced by the ∥ token. The mechanism to identify
relevant words is detailed in Section 2.2.

8The original paper uses ‘@@@’ as break token. We made
sure that ∥ was not part of the vocabulary.

FM+ As a variant of FM∗, we now mark target
words which are not related to the input sentence in
an attempt to help the network identify those target
words that need to be copied in the hypothesis.
However, we use an additional input stream (also
called factors) to let the network access to the entire
target sentence. Tokens used by this additional
stream are: S for source words; R for unrelated
target words and T for related target words.

NM+ In addition to fuzzy matches, we also con-
sider arbitrary large n-gram matching. Thus, we
use the same format as for FM+ but considering
the highest scored n-gram match as computed by
NM(si, sj).

EM+ Finally, we also retrieve the most similar
TM sentences as computed by EM(si, sj). In this
case, marking the words that are not related to the
input sentence is not necessary since similar sen-
tences retrieved following EM score do not neces-
sarily present any lexical overlap. Note from the
example in Table 2 that similar sentences retrieved
with distributed representations may contain many
word reorderings or synonyms (i.e.: duration −
last or flu − cold) that makes it difficult to align
both sentences. Hence, the same format employed
for FM can be used here. However, since we plan
to combine different kind of matches in a single
model we adopt the format employed by NM+ and
FM+ with a new factor label E.

FM# How long does the flight last ?

How long does a cold last ? ∥ Combien de temps dure le vol ?

FM∗ How long does the flight last ?

How long does a cold last ? ∥ Combien de temps dure ∥ ?

FM+ How long does the flight last ?

How long does a cold last ? ∥ Combien de temps dure le vol ?

S S S S S S S R T T T T R R T

NM+ How long does a vaccine work ?

How long does a cold last ? ∥ Combien de temps dure un vaccin ?

S S S S S S S R T T T R T R R

EM+ What is the duration of flu symptoms ?

How long does a cold last ? ∥ Quelle est la durée de la grippe ?

S S S S S S S E E E E E E E E E

Figure 2: Input sentence augmented with different TM
matches: FM# (Bulté and Tezcan, 2019), FM∗, FM+ and
EM+.
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3 Experimental Framework

3.1 Corpora and Evaluation

We used the following corpora in this work9 (Tiede-
mann, 2012): Proceedings of the European Parlia-
ment (EPPS); News Commentaries (NEWS); TED
talk subtitles (TED); Parallel sentences extracted
from Wikipedia (Wiki); Documentation from the
European Central Bank (ECB); Documents from
the European Medicines Agency (EMEA); Leg-
islative texts of the European Union (JRC); Lo-
calisation files (GNOME, KDE4 and Ubuntu) and
Manual texts (PHP). Detailed statistics about these
are provided in Appendix A. We randomly split
the corpora by keeping 500 sentences for valida-
tion, 1, 000 sentences for testing and the rest for
training. All data is preprocessed using the Open-
NMT tokenizer10 (conservative mode). We train
a 32K joint byte-pair encoding (BPE) (Sennrich
et al., 2016b) and use a joint vocabulary for both
source and target.

Our NMT model follows the state-of-the-
art Transformer base architecture (Vaswani
et al., 2017) implemented in the OpenNMT-tf11

toolkit (Klein et al., 2017). Further configuration
details are given in Appendix B.

3.2 TM Retrieval

We perform fuzzy matching, ignoring exact
matches, and keep the single best match if
FM(si, sj) ≥ 0.6 with no approximation. Sim-
ilarly, the largest N -gram match is used for each
test sentence with a threshold NM(si, sj) ≥ 5. A
similarity threshold EM(si, sj) ≥ 0.8 is also em-
ployed when retrieving similar sentences using dis-
tributed representations. The EM model is trained
on the source training data with default fasttext
params on 200 dimension, and 20 epochs.

Algorithm Indexing (s) Retrieval (word/s)
FM 546 607
NM 546 40,888
EM 181+342 4,142

Table 1: Indexing and retrieval time for the different
matching algorithm run on single thread Intel Core i7,
2.8GHz. EM index time is the sum of embedding build-
ing for the 2M sentences and faiss index building.

9Freely available from http://opus.nlpl.eu
10https://github.com/OpenNMT/Tokenizer
11https://github.com/OpenNMT/OpenNMT-tf

The faiss search toolkit is used through python
API with exact FlatIP index. Building and retrieval
times for each algorithm on a 2M sentences trans-
lation memory (Europarl corpus) are provided in
Table 1. Note that all retrieval algorithms are sig-
nificantly faster than NMT Transformer decoding,
thus, implying a very limited decoding overhead.

4 Results

We compare our baseline model, without augment-
ing input sentences, to different augmentation for-
mats and retrieval methods. Our base model is
built using the concatenation of all the original cor-
pora. All other models extend the original corpora
with sentences retrieved following various retrieval
methods. It is worth to notice that extended bitexts
share the target side with the original data.

Individual comparison of Matching algorithms
and Augmentation methods In this experiment,
all corpora are used to build the models while
matches of a given domain are retrieved from the
training data of this domain. Models are built using
the original source and target training data (base),
and after augmenting the source sentence as de-
tailed in Section 2.3: FM#, FM#T , FM∗, FM+, NM+

and EM+. Test sentences are augmented follow-
ing the same technique as for training sentences12.
Table 2 summarises the results that are divided in
three blocks, showing results for the three types of
matching studied in this work (FM, NM and EM).

Best scores are obtained by models using aug-
mented inputs except for corpora not suited for
translation memory usage: News, TED for which
we observe no gains correlated to low match-
ing rates. For the other corpora, large gains
are achieved when evaluating test sentences with
matches (up to +19 BLEU on GNOME corpus),
while a very limited decrease in performance is
observed for sentences that do not contain matches.
This slight decrease is likely to come from the fact
that we kept the corpus size and number of itera-
tions identical while giving harder training tasks.
Results are totally on par with the findings of (Bulté
and Tezcan, 2019).

All types of matching indicate their suitability
showing accuracy gains. In particular for fuzzy
matching, which seems to be the best for our task.
Among the different techniques used to insert fuzzy
matching, FM+ obtains the best results, validating

12Except for FM#
T for which we use FM# test set
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Model News TED ECB EMEA JRC GNOME KDE4 PHP Ubuntu Avg

%FM 3.1% 10.3% 49.8% 69.8% 50.1% 59.7% 47.3% 41.0% 23.3% −

base
37.16 43.23 49.19 50.14 59.19 51.14 50.16 30.24 45.52 47.94

57.69 - 41.95 54.88 - 44.10 66.34 - 52.84 55.80 - 47.92 53.05 - 48.77 42.19 - 25.25 56.05 - 42.27

FM#
36.68 42.93 55.15 61.16 66.35 61.82 54.37 33.10 48.26 54.32

69.79 - 41.54 70.87 - 43.53 80.46 - 53.55 73.61 - 45.83 65.57 - 47.85 47.04 - 26.08 66.72 - 42.08

FM
#
T

36.79 43.14 55.41 60.32 66.41 62.01 53.65 33.22 49.75 54.40
70.46 - 41.41 68.63 - 44.90 80.57 - 53.57 74.05 - 45.58 64.77 - 47.20 46.31 - 26.30 69.16 - 43.32

FM∗
36.44 43.27 54.52 59.49 65.24 59.54 53.30 32.77 48.74 53.37

68.43 - 41.68 67.64 - 44.85 77.59 - 54.10 70.16 - 45.19 62.63 - 48.00 44.50 - 26.31 68.34 - 42.20

FM+
37.12 42.62 56.18 61.97 66.91 62.68 54.59 33.81 48.62 54.97

72.26 - 41.25 71.52 - 44.72 81.58 - 53.62 74.99 - 45.83 65.95 - 48.01 47.74 - 26.27 67.49 - 42.37

%NM 45.5% 36.9% 69.9% 60.4% 69.6% 31.1% 22.9% 33.7% 14.1% −

base
37.16 43.23 49.19 50.14 59.19 51.14 50.16 30.24 45.52 47.94

49.97 - 46.44 50.94 - 47.43 60.32 - 55.70 53.86 - 46.59 54.16 - 45.89 34.64 - 26.88 58.29 - 40.68

NM+
36.74 43.07 55.40 59.17 65.60 58.46 51.54 31.87 46.16 52.60

58.65 - 44.06 62.69 - 46.60 69.24 - 54.32 70.05 - 42.21 59.87 - 42.11 39.35 - 26.10 63.22 - 39.59

base
37.16 43.23 49.19 50.14 59.19 51.14 50.16 30.24 45.52 47.94

52.09 - 40.74 52.07 - 40.08 62.60 - 48.16 54.20 - 45.88 51.62 - 48.60 42.22 - 21.42 52.20 - 41.82

EM+
36.50 42.89 54.02 56.41 66.04 58.07 53.70 32.37 49.88 52.93

58.52 - 40.86 59.47 - 40.16 71.45 - 48.33 66.09 - 44.06 59.43 - 47.43 46.91 - 20.96 62.04 - 43.20

Table 2: The first row in each block indicates the percentage of test sentences for which a match was found. Cells
below contain the BLEU score over the entire test set (top number) and over the subset of test sentences augmented
with matches (bottom left) and without matches (bottom right). Best scores of each column are outlined with bold
fonts. Last column is the average of all corpus but News and TED.
For instance on KDE4: the base model obtains a BLEU score of 50.16 while FM+ obtains the highest score 54.59.
Most of the gains are obtained over the test sentences having a fuzzy match (65.95 vs. 53.05) while for sentences
without fuzzy match the best score is obtained with the base system (48.77 compared to 48.01).

Model ECB EMEA JRC GNOME KDE4 PHP Ubuntu Avg

FM+ 56.18 61.97 66.91 62.68 54.59 33.81 48.62 54.97

⊖(FM+,NM+) 56.83 60.60 67.52 61.97 54.67 32.38 47.13 54.44
⊖(FM+,EM+) 56.71 61.61 67.64 62.71 54.82 33.60 49.98 55.30
⊖(FM+,NM+,EM+) 56.20 61.30 67.43 62.14 55.05 32.33 48.96 54.77
⊕(FM+,EM+) 57.08 62.27 68.06 63.30 55.48 33.39 49.50 55.58

FT(base) 52.65 54.06 61.58 56.16 54.20 33.54 50.14 51.76
FT(⊖(FM+,EM+)) 57.07 63.11 69.44 65.97 59.30 36.26 52.77 57.70
FT(⊕(FM+,EM+)) 57.44 63.41 69.82 65.72 58.71 35.49 52.40 57.57

Table 3: BLEU scores of models combining several types of matches (2nd block) and over Fine-Tuned models (3rd

block). We include again results of the FM+ model (1st block) to facilitate reading.

our hypothesis that marking related words is
beneficial for the model. Masking sequences of
unrelated words, FM∗ under-performs showing
that the neural network is more challenged when

dealing with incomplete sentences than with
sentences containing unrelated content.
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Target fuzzy matches To evaluate if the fuzzy
match quality is really the primary criterion for the
observed improvements, we consider FM#T where
the fuzzy matches are rescored (on the training set
only) with the edit distance between the reference
translation and the target side of the fuzzy match.
By doing so, we reduce the fuzzy match average
FM source score by about 2%, but increase target
edit distance from 61% to 69%.

The effect can be seen in Table 2 in the line FM#T
vs. FM#. In average, this technique is performing
better with large individual gains of +1.5 BLEU
on the Ubuntu corpus. This shows that in this con-
figuration where we do not differentiate related and
unrelated words, the model mainly learns to copy
fuzzy target words.

Unseen matches Note that in the previous exper-
iments, matches were built over domain corpora
that are already used to train the model. This is a
common use case: the same translation memory
used to train the system will be used in run time, but
now we evaluate the ability of our model in a dif-
ferent context where a test set is to be translated for
which we have a new TM that has never been seen
when learning the original model. This use case
corresponds to typical translation task where new
entries will be added continuously to the TM and
shall be used instantly for translation of following
sentences. Hence, we only use EPPS, News, TED
and Wiki data to build two models: the first em-
ploys only the original source and target sentences
(base) the second learns to use fuzzy matches
(FM+). Table 4 shows results for this use case.

Model ECB EMEA JRC GNOME KDE4 PHP Ubuntu Avg
%FM 49.8 69.8 50.1 59.7 47.3 41.0 23.3 −
base 36.48 26.31 45.03 27.90 23.62 19.50 25.85 29.24
FM+ 43.28 36.09 53.52 38.40 30.91 23.10 30.53 36.55

Table 4: BLEU scores when models are only trained
over EPPS, News, TED and Wiki datasets.

As it can be seen, the model using fuzzy matches
shows clear accuracy gains. This confirms that
gains obtained by FM+ are not limited to remember
an example previously “seen” during training. The
model using fuzzy matches acquired the ability to
actually copy or recycle words from the provided
fuzzy matches and therefore is suitable for adap-
tive translation workflows. Note that all scores are
lower than those showed in Table 2 as a result of
discarding all in-domain data when training the

models showing also that online use of translation
memory is not a substitute for in-domain model
fine-tuning as we will further investigate in Fine
Tuning.

Combining matching algorithms Next, we
evaluate the ability of our NMT models to com-
bine different matching algorithms. First, we use
⊖(M1,M2, ...) to denote the augmentation of an
input sentence that considers first the match speci-
fied by M1, if no match applies for the input sen-
tence then it considers using the match specified by
M2, and so on. Note that at most one match is used.
Sentences for which no match is found are kept
without augmentation. Similar to Table 2, mod-
els are learned using all the available training data.
Table 3 (2nd block) illustrates the results of this
experiment. The first 3 lines show BLEU scores
of models combining FM+, NM+ and EM+. The last
row illustrates the results of a model that learns
to use two different matching algorithms. We use
the best combination of matches obtained so far
(FM+ and EM+) and augment input sentences with
both matches. Figure 3 illustrates an example of an
input sentence augmented with both a fuzzy match
and an embedding match (FM+ and EM+). Notice
that the model is able to distinguish between both
types of augmented sequences by looking at the
token used in the additional stream (factor). As it
can be seen in Table 3 (2nd block), the best com-
bination of matches is achieved by ⊕(FM+,EM+)
further boosting the performance of previous con-
figurations. It is only surpassed by ⊖(FM+,EM+)
in two test sets by a slight margin.

Fine Tuning Results so far evaluate the ability of
NMT models to integrate similar sentences. How-
ever, we have run our comparisons over a “generic”
model built from a heterogeneous training data set
while it is well known that these models do not
achieve best performance on homogeneous test sets.
Thus, we now assess the capability of our augmen-
tation methods to enhance fine-tuned (Luong and
Manning, 2015) models, a well known technique
that is commonly used in domain adaptation sce-
narios obtaining state-of-the-art results. Table 3
illustrates the results of the model configurations
previously described after fine-tuning the models
towards each test set domain. Thus, building 7
fine-tuned models for each configuration. Note that
similar sentences (matches) are retrieved from the
same in-domain data sets used for fine tuning. As
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⊕(FM+,EM+)
How long does a cold last ? ∥ Combien de temps dure le vol ? ∥ Combien de temps dure un vaccin ?
S S S S S S S R T T T T R R T E E E E E E E E

Figure 3: Input sentence augmented with a fuzzy match FM+ and an embedding match EM+.

Token base FM# FM+ base NM+ base EM+ base FT(⊖(FM+,EM+))
T 66.3% 79.9% 80.3% 68.9% 83.3% − − 66.3% 79.3%
R 31.3% 54.6% 49.3% 27.0% 34.4% − − 31.3% 46.2%
E − − − − − 45.7% 58.6% 33.0% 37.7%

Table 5: Percentage of Tokens T, R and E effectively appearing in the translation.

shown in Table 3 (3rd block), models with FM/EM
also increase performance of fine-tuned models
gaining in average +6 BLEU on fine-tuned model
baselines, and +2.5 compared to FM/EM on generic
translation. This add-up effect is interesting since
both approaches make use of the same data.

Copy Vs. Context We observe that models al-
lowing for augmented input sentences effectively
learn to output the target words used as augmented
translations. Table 5 illustrates the rates of usage.
We compute for each word added in the input sen-
tence as T (part of a lexicalised match), R (not in
the match) and E (from an embedding match), how
often they appear in the translated sentence. Re-
sults show that T words increase their usage rate
by more than 10% compared to the correspond-
ing base models. Considering R words, models
incorporating fuzzy matches increase their usage
rate compared to base models, albeit with lower
rates than for T words. Furthermore, the number
of R words output by FM+ is clearly lower than
those output by FM#, demonstrating the effect of
marking unrelated matching words. Thus, we can
confirm the copy behaviour of the networks with
lexicalised matches. Words marked as E (embed-
ding matches) increase their usage rates when com-
pared to base models but are far from the rates of
T words. We hypothesize that these sentences are
not copied by the translation model, rather they are
used to further contextualise translations.

5 Related Work

Our work stems on the technique proposed by
(Bulté and Tezcan, 2019) to train an NMT model
to leverage fuzzy matches inserted in the source
sentence. We extend the concept by experimenting
with more general notions of similar sentences and

techniques to inject fuzzy matches.
The use of similar sentences to improve transla-

tion models has been explored at scale in (Schwenk
et al., 2019), where the authors use multilingual
sentence embeddings to retrieve pairs of similar
sentences and train models uniquely with such sen-
tences. In (Niehues et al., 2016), input sentences
are augmented with pre-translations performed by
a phrase-based MT system. In our approach, simi-
lar sentence translations are provided dynamically
to guide translation of a given sentence.

Similar to our work, (Farajian et al., 2017; Li
et al., 2018) retrieve similar sentences from the
training data to dynamically adapt individual input
sentences. To compute similarity, the first work
uses n-gram matches, the second includes dense
vector representations. In (Xu et al., 2019) the
same approach is followed but authors consider for
adaptation a bunch of semantically related input
sentences to reduce adaptation time.

Our approach combines source and target words
within a same sentence - the same type of approach
has also been proposed by (Dinu et al., 2019) for
introduction of terminology translation.

Last, we can also compare the extra-tokens ap-
pended in augmented sentences as “side constraints”
activating different translation paths on the same
spirit than the work done by (Sennrich et al., 2016a;
Kobus et al., 2017) for controlling translation.

6 Conclusions and Further Work

This paper explores augmentation methods for
boosting Neural Machine Translation performance
by using similar translations.

Based on “neural fuzzy repair” technique, we
introduce tighter integration of fuzzy matches in-
forming neural network of source and target and
propose extension to similar translations retrieved
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from their distributed representations. We show
that the different types of similar translations and
model fine-tuning provide complementary infor-
mation to the neural model outperforming consis-
tently and significantly previous work. We perform
data augmentation at inference time with negligi-
ble speed overhead and release an Open-Source
toolkit with an efficient and flexible fuzzy-match
implementation.

In our future work, we plan to optimise the
thresholds used with the retrieval algorithms in
order to more intelligently select those translations
providing richest information to the NMT model
and generalize the use of edit distance on the target
side.

We would also like to explore better techniques
to inject information of small-size n-grams with
possible convergence with terminology injection
techniques, unifying framework where target clues
are mixed with source sentence during translation.
As regards distributed representations, we plan
to study alternative networks to more accurately
model the identification and incorporation of addi-
tional context.
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A Corpora Statistics

Corpus #Sents (K)
Lmean Vocab (K)

English French English French

EPPS 1,992.8 27.7 32.0 129.5 149.2
News 315.3 25.3 31.7 90.5 96.7
TED 156.1 20.1 22.1 58.7 71.4
Wiki 749.0 25.9 23.5 527.5 506.6
ECB 174.1 28.6 33.8 45.3 53.5
EMEA 336.8 16.8 20.3 62.8 68.9
JRC 475.2 30.1 34.5 81.0 83.5
GNOME 51.9 9.6 11.6 19.0 21.6
KDE4 163.9 9.1 12.4 48.7 64.7
PHP 15.1 16.7 18.0 13.3 15.5
Ubuntu 7.1 6.7 8.3 7.5 7.9

Table 6: Corpora statistics. Note that K stands for thousands and Lmean is the average length in words.

B NMT Network Configuration

We use the next set of hyper-parameters: size of word embedding: 512; size of hidden layers: 512; size of
inner feed forward layer: 2, 048; number of heads: 8; number of layers: 6; batch size: 4, 096 tokens. Note
that when using factors (FM+, NM+ and EM+) the final word embedding is built after concatenation of the
word embedding (508 cells) and the additional factor embedding (4 cells).
We use the lazy Adam optimiser. We set warmup steps to 4, 000 and update learning rate for every 8
iterations. Models are optimised during 300K iterations. Fine-tuning is performed continuing Adam with
the same learning rate decay schedule until convergence on the validation set. All models are trained
using a single NVIDIA P100 GPU.
We limit the target sentence length to 100 tokens.The source sentence is limited to 100, 200 and 300 tokens
depending on the number of sentences used to augment the input sentence. We use a joint vocabulary
of 32K for both source and target sides. In inference we use a beam size of 5. For evaluation, we report
BLEU scores computed by multi-bleu.perl.

C Example of Embedding Matching

The table below gives examples of retrieved EM with matching distance ≥ 0.8 and with Fuzzy Match
distance lower than threshold 0.6.

Distance Source Sentence Matched Sentence

0.86 (i) supply of gas to power producers (CCGTs
[10]);

(a) Gas supply to power producers (CCGTs)

0.87 The Commission shall provide the chairman
and the secretariat for these working parties.

The Commission shall provide secretariat ser-
vices for the Forum, the Bureau and the working
parties.

0.93 Admission to a course of training as a pharma-
cist shall be contingent upon possession of a
diploma or certificate giving access, in a Mem-
ber State, to the studies in question, at universi-
ties or higher institutes of a level recognised as
equivalent.

Admission to basic dental training presupposes
possession of a diploma or certificate giving
access, for the studies in question, to universi-
ties or higher institutes of a level recognised as
equivalent, in a Member State.
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