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Abstract

NLP practitioners often want to take existing
trained models and apply them to data from
new domains. While fine-tuning or few-shot
learning can be used to adapt a base model,
there is no single recipe for making these tech-
niques work; moreover, one may not have ac-
cess to the original model weights if it is de-
ployed as a black box. We study how to im-
prove a black box model’s performance on a
new domain by leveraging explanations of the
model’s behavior. Our approach first extracts
a set of features combining human intuition
about the task with model attributions gener-
ated by black box interpretation techniques,
then uses a simple calibrator, in the form of
a classifier, to predict whether the base model
was correct or not. We experiment with our
method on two tasks, extractive question an-
swering and natural language inference, cover-
ing adaptation from several pairs of domains
with limited target-domain data. The experi-
mental results across all the domain pairs show
that explanations are useful for calibrating these
models, boosting accuracy when predictions do
not have to be returned on every example. We
further show that the calibration model trans-
fers to some extent between tasks.1

1 Introduction

With recent breakthroughs in pre-training, NLP
models are showing increasingly promising perfor-
mance on real-world tasks, leading to their deploy-
ment at scale for translation, sentiment analysis,
and question answering. These models are some-
times used as black boxes, especially if they are
only available as a service through APIs2 or if end
users do not have the resources to fine-tune the

1Code available: https://github.com/xiye17/
InterpCalib

2Google Translate, the Perspective API https://
perspectiveapi.com/, and MonkeyLearn https://
monkeylearn.com/monkeylearn-api/ being three
examples.

Question

Context

Who did the  Panthers  face in the  NFC Championship Game  ? 

The Panthers then blew out the Arizona Cardinals in the NFC 


Championship Game , forcing seven turnovers . The Vikings faced 


the Packers in the 1st round of the NFC Playoffs .

Attributions to NNP 
in Question: 0.32

Attributions to V* 

in Context: 0.02

Answer PredictionArizona Cardinals Arizona Cardinals

Question

Context

Where was the practice place the Panthers used for the Super Bowl ?

The Panthers used the San Jose State practice facility and stayed at 


the San Jose Marriott . The Vikings used Stark Industries to practice 


for the Champ Bowl .

Attributions to NNP 
in Question: 0.10

Attributions to V* 
in Context: 0.25

Answer PredictionSan Jose Stark Industries

Example

Explanation

Features Calibrator
prediction is


correct / incorrect

Lower attributions to NNP indicates a prediction is likely to be wrong 

Figure 1: Calibrator pipeline and examples from the
SQUAD-ADV dataset. A ROBERTA model trained on
SQUAD is correct on the first example but incorrect
on the second. Features that inspect attribution values
produced by LIME can differentiate these two on the
basis of attributions to NNP in the question and V* in the
context. A calibrator using these features can predict
whether the original model was right or wrong.

models themselves. This black-box nature poses
a challenge when users try to deploy models on a
new domain that diverges from the training domain,
usually resulting in performance degradation.

We investigate the task of domain adaptation of
black box models: given a black box model and
a small number of examples from a new domain,
how can we improve the model’s generalization per-
formance on the new domain? In this setting, note
that we are not able to update the model parameters,
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which makes transfer and few-shot learning tech-
niques inapplicable. However, we can still make
the model more effective in practice by learning a
calibrator, or a separate model to make a binary
decision of whether the black box model is likely
to be correct or not on a given instance. While not
fully addressing the domain adaptation problem,
calibrating the model can make it more useful in
practice, as we can recognize when it is likely to
make mistakes (Guo et al., 2017; Kamath et al.,
2020; Desai and Durrett, 2020) and modify our
deployment strategy accordingly.

This paper explores how explanations can help
address this task. We leverage black box feature at-
tribution techniques (Ribeiro et al., 2016; Lundberg
and Lee, 2017) to identify key input features the
model is leveraging, even without access to model
internal representations. As shown in Figure 1, we
perform calibration by connecting model interpre-
tations with hand-crafted heuristics to extract a set
of features describing the “reasoning” of the model.
For the question answering setting depicted in the
figure, answers turn out to be more reliable when
the tokens of a particular set of tags (e.g., proper
nouns) in the question are strongly considered. We
extract a set of features describing the attribution
values of different tags. Using a small number
of examples in the target domain, we can train a
simple calibrator for the black box model.

Our approach is closely related to the recent line
of work on model behavior and explanations. Chan-
drasekaran et al. (2018); Hase and Bansal (2020)
shows explanations can help users predict model
decisions in some ways and Ye et al. (2021) show
how these explanations can be semi-automatically
connected to model behavior based on manually
crafted heuristics. Our approach goes further by
using a model to learn these heuristics, instead of
handcrafting them or having a human inspect the
explanations.

We test whether our method can improve model
generalization performance on two tasks: extrac-
tive question answering (QA) and natural language
inference (NLI). We construct generalization set-
tings for 5 pairs of source and target domains across
the two tasks. Compared to existing baselines (Ka-
math et al., 2020) and our own ablations, we find
explanations are indeed helpful for this task, suc-
cessfully improving calibrator performance among
all pairs. We even find settings where explanation-
based calibrators outperform fine-tuning the model

on target domain data, which assumes glass-box
access to the model’s parameters. Our analysis
further demonstrates generalization of the calibra-
tor models themselves: our calibrator trained on
one domain can transfer to another new domain
in some cases. Moreover, our calibrator can also
substantially improves model performance in the
Selective QA setting.

2 Using Explanations for Black Box
Model Calibration

Let x = x1, x2, ..., xn be a set of input tokens
and ŷ = f(x) be a prediction from our black box
model under consideration. Our task in calibration3

is to assess whether the model prediction on x
matches its ground truth y. We represent this
with the variable t, i.e., t ≜ 1{f(x) = y}.

We explore various calibrator models to perform
this task, with our main focus being on calibra-
tor models that leverage explanations in the form
of feature attribution. Specifically, an explana-
tion ϕ for the input x assigns an attribution score
ϕi for each input token xi, which represents the
importance of that token. Next, we extract fea-
tures u(x, ϕ) depending on the input and expla-
nation, and use the features to learn a calibrator
c : u(x, ϕ) → t for predicting whether a predic-
tion is valid. We compare against baselines that do
not use explanations in order to answer the core
question posed by our paper’s title.

Our evaluation focuses on binary calibration, or
classifying whether a model’s initial prediction is
correct. Following recent work in this setting (Ka-
math et al., 2020), we particularly focus on domain
transfer settings where models make frequent mis-
takes. A good calibrator can identify instances
where the model has likely made a mistake, so we
can return a null response to the user instead of an
incorrect one.

In the remainder of this section, we’ll first intro-
duce how we generate the explanations and then
how to extract the features u for the input x.

2.1 Generating Explanations

Since we are calibrating black box models, we
adopt LIME (Ribeiro et al., 2016) and SHAP (Lund-

3We follow Kamath et al. (2020) in treating calibration
as a binary classification task. Devising a good classifier
is connected to the goal of accurate estimation of posterior
probabilities that calibration has more historically referred
to (Guo et al., 2017), but our evaluation focuses on binary
accuracy rather than real-valued probabilities.
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berg and Lee, 2017) for generating explanations for
models instead of other techniques that require ac-
cess to the model details (e.g., integrated gradients
(Sundararajan et al., 2017)).

The rest of this work only relies on LIME and
SHAP to map an input sequence x and a model pre-
diction y to a set of importance weights ϕ. We will
briefly summarize the unified framework shared by
both methods, and refer readers to the respective
papers for additional details.

LIME and SHAP generate local explanations by
approximating the model’s predictions on a set of
perturbations around the base data point x. In this
setting, a perturbation x′ with respect to x is a
simplified input where some of the input tokens
are absent (replaced with a <mask> token). Let
z = z1, z2, ..., zn be a binary vector with each zi
indicating whether xi is present (using value 1) or
absent (using value 0), and hx(z) be the function
that maps z back to the simplified input x′. Both
methods seek to learn a local linear classifier g on
z which matches the prediction of original model
f by minimizing:

g(z) = ϕ0 +
n∑

i=1

ϕizi

ξ = argmin
g

∑
z∈Z

πx(z)[f(hx(z))− g(z)]2 +Ω(g)

where πx is a local kernel assigning weight to
each perturbation z, and Ω is the L2 regularizer
over the model complexity. The learned feature
weight ϕi for each zi then represents the additive
attribution (Lundberg and Lee, 2017) of each in-
dividual token xi. LIME and SHAP differ in the
choice of the local kernel πx. Please refer to the
supplementary materials for details of the kernel.

2.2 Extracting Features by Combining
Explanations and Heuristics

Armed with these explanations, we now wish to
connect the explanations to the reasoning we ex-
pect from the task: if the model is behaving as we
expect, it may be better calibrated. A human might
look at the attributions of some important features
and decide whether the model is trustworthy in a
similar fashion (Doshi-Velez and Kim, 2017). Past
work has explored such a technique to compare ex-
planation techniques (Ye et al., 2021), or run stud-
ies with human users on this task (Chandrasekaran
et al., 2018; Hase and Bansal, 2020).

Our method automates this process by learn-
ing what properties of explanations are impor-
tant. We first assign each token xi with one or
more human-understandable properties V (xi) =
{vj}mi

j=1. Each property vj ∈ V is an element in
the property space, which includes indicators like
POS tags and is used to describe an aspect of xi
whose importance might correlate with the model’s
robustness. We conjoin these properties with as-
pects of the explanation to render our calibration
judgment. Figure 1 shows examples of properties
such as whether a token is a proper noun (NNP).

We now construct the feature set for the predic-
tion made on x. For every property v ∈ V , we
extract a single feature F (v, x, ϕ) by aggregating
the attributions of the tokens associated with v:

F (v, x, ϕ) =

n∑
i=1

∑
v̄∈V (xi)

1{v̄ = v}ϕi

where 1 is the indicator function, and ϕi is the
attribution value. An individual feature repre-
sents the total attribution with respect to property
v when the model is making the predictions for
x. The complete feature set u for x, given as
u = {F (v, x, ϕ)}v∈V , summarizes model ratio-
nales from the perspective of the properties in V .

Properties We use several types of heuristic
properties for calibrating QA and NLI models.

Segments of the Input (QA and NLI): In both
of our tasks, an input sequence can naturally be
decomposed into two parts, namely a question
and a context (QA) or a premise and a hypothe-
sis (NLI). We assign each token with the corre-
sponding segment name, which yields features like
Attributions to Question.

POS Tags (QA and NLI): We use tags from
the English Penn Treebank (Marcus et al., 1993) to
implement a group of properties. We hypothesize
that tokens of some specific tags should be more
important, like proper nouns in the questions of the
QA tasks. If a model fails to consider proper nouns
of a QA pair, it is more likely to make incorrect
predictions.

Overlapping Words (NLI): Word overlap be-
tween a premise and a hypothesis strongly affects
neural models’ predictions (McCoy et al., 2019).
We assign each token with the Overlapping prop-
erty if a token appears in both the premise and the
hypothesis, or Non-Overlapping otherwise.

Conjunction of Groups: We can further
produce higher-level properties by taking the

6201



Cartesian product of two or more groups. We
conjoin Segment and Pos-Tags, which yields
higher-level features like Attributions to NNP

in Question. Such a feature aggregates attribu-
tions of tokens that are tagged with NNP and also
required to be in the question (marked with orange).

2.3 Calibrator Model
We train the calibrator on a small number of sam-
ples in our target domain. Each sample is la-
beled using the prediction of the original model
compared to the ground truth. Using our feature
set F (v, x, ϕ), we learn a random forest classifier,
shown to be effective for a similar data-limited set-
ting in Kamath et al. (2020), to predict t (whether
the prediction is correct). This classifier returns a
score, which overrides the model’s original confi-
dence score with respect to that prediction.

In Section 4, we discuss several baselines for
our approach. As we vary the features used by
the model, all the other details of the classifier and
setup remain the same.

3 Tasks and Datasets

Our task setup involves transferring from a source
domain/task A to a target domain/task B. Figure 2
shows the data conditions we operate in. Our pri-
mary experiments focus on using our features to
either calibrate or selectively answer in the black
box setting (right side in Figure 2). In this setting,
we have a black box model trained on a source do-
main A and a small amount of data from the target
domain B. Our task is to train a calibrator using
data from domain B to identify instances where
the model potentially fails in the large unseen test
data in domain B. We contrast this black box set-
ting with glass box settings (left side in Figure 2),
where we directly have access to the model param-
eters and can fine-tune on domain B or train on B
from scratch.

English Question Answering We experiment
with domain transfer from SQUAD (Rajpurkar et al.,
2016) to three different settings: SQUAD-ADV (Jia
and Liang, 2017), HOTPOTQA (Yang et al., 2018),
and TRIVIAQA (Joshi et al., 2017).

SQUAD-ADV is an adversarial setting based on
SQUAD, which constructs adversarial QA exam-
ples based on SQUAD by appending a distractor
sentence at the end of each example’s context. The
added sentence contains a spurious answer and usu-
ally has high surface overlapping with the question
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Figure 2: Illustration of different settings in the experi-
ments. In black box settings, a calibrator is trained for
improving model performance on OOD data; in glass
box settings, the model is finetuned on OOD data from
a base model or vanilla ROBERTA LM model.

so as to fool the model. We use the ADDSENT

setting from Jia and Liang (2017).
Similar to SQUAD, HOTPOTQA also contains

passages extracted from Wikipedia, but HOT-
POTQA asks questions requiring multiple reason-
ing steps, although not all questions do (Chen
and Durrett, 2019). TRIVIAQA is collected from
Web snippets, which present a different distribu-
tion of questions and passages than SQUAD. For
HOTPOTQA and TRIVIAQA, we directly use the
pre-processed version of dataset from the MRQA
Shared Task (Fisch et al., 2019).

English NLI For the task of NLI, we transfer a
model trained on MNLI (Williams et al., 2018)
to MRPC (Dolan and Brockett, 2005) and QNLI
(Wang et al., 2019), similar to the settings in Ma
et al. (2019). QNLI contains a question and con-
text sentence pair from SQUAD, and the task is to
verify whether a sentence contains the answer to
the paired question. MRPC is a paraphrase detec-
tion dataset presenting a binary classification task
to decide whether two sentences are paraphrases of
one another. Note that generalization from MNLI
to QNLI or MRPC not only introduces shift in
terms of the distribution of the input text, but in
terms of the nature of the task itself, since QNLI
and MRPC aren’t strictly NLI tasks despite shar-
ing some similarity. Both are binary classification
tasks rather than three-way.

4 Experiments

Baselines We compare our calibrator against ex-
isting baselines as well as our own ablations.
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Figure 3: Coverage-F1 curves of different approaches
on SQUAD-ADV. As more low-confidence questions
are answered, the average F1 scores decrease. We use
AUC to evaluate calibration performance.

MAXPROB simply uses the thresholded proba-
bility of the predicted class to assess whether the
prediction is trustworthy.

KAMATH (Kamath et al., 2020) (for QA only) is
a baseline initially proposed to distinguish out-of-
distribution data points from in-domain data points
in the selective QA setting (see Section 5), but it can
also be applied in our settings. It trains a random
forest classifier to learn whether a model’s predic-
tion is correct based on several heuristic features,
including the probabilities of the top 5 predictions,
the length of the context, and the length of the pre-
dicted answer. Since we are calibrating black box
models, we do not use dropout-based features in
Kamath et al. (2020).

CLSPROBCAL (for NLI only) uses more
detailed information than MAXPROB: it uses
the predicted probability for Entailment,
Contradiction, and Neutral as the features
for training a calibrator instead of only using the
maximum probability.

BOWPROP adds a set of heuristic property fea-
tures on top of the KAMATH method. These are
the same as the features used by the full model
excluding the explanations. We use this baseline to
give a baseline for using general “shape” features
on the inputs not paired with explanations.

Implementation of Our Method We refer our
explanation-based calibration method using expla-
nations produced by LIME and SHAP as LIMECAL
and SHAPCAL respectively. We note that these
methods also take advantages of the bag-of-word
features in BOWPROP. For QA, the property space
is the union of low-level Segment and Segment ×
Pos-Tags. For NLI, we use the union of Segment
and Segment × Pos-Tags × Overlapping Words

to label the tokens. Detailed numbers of features
can be found in the Appendix.

4.1 Main Results: QA

Setup We train a ROBERTA (Liu et al., 2019)
QA model on SQUAD as the base model, which
achieves 85.5 exact match and 92.2 F1 score. For
the experiments on HOTPOTQA and TRIVIAQA,
we split the dev set, sample 500 examples for train-
ing, and leave the rest for testing.4 For experiments
on SQUAD-ADV, we remove the unmodified data
points in the ADD-SENT setting and also use 500
examples for training. For the experiments across
all pairs, we randomly generate the splits, test the
methods 20 times, and average the results to allevi-
ate the influence of randomness.

Metrics In addition to calibration accuracy
(ACC) that measures the accuracy of the cali-
brator, we also use the area under coverage-F1
curve (AUC) to evaluate the calibration perfor-
mance for QA tasks in particular. The coverage-F1
curve (Figure 3) plots the average F1 score of the
model achieved when the model only chooses to an-
swer varying fractions (coverage) of the examples
ranked by the calibrator-produced confidence. A
better calibrator should assign higher scores to the
questions that the models are sure of, thus resulting
in higher area under the curve; note that AUC of
100 is impossible since the F1 is always bounded
by the base model when every question is answered.
We additionally report the average scores when an-
swering the top 25%, 50%, and 75% questions, for
a more intuitive comparison of the performance.

Results Table 1 summarizes the results for QA.
First, we show that explanations are helpful for cal-
ibrating black box QA models out-of-domain. Our
method using LIME substantially improves the cali-
bration AUC compared to KAMATH by 7.1, 2.1 and
1.4 on SQUAD-ADV, TRIVIAQA, and HOTPOTQA,
respectively. In particular, LIMECAL achieves an
average F1 score of 92.3 at a coverage of 25%
on SQUAD-ADV, close to the performance of the
base model on original SQUAD examples. Our
explanation-based approach is effective at identify-
ing the examples that are robust with respect to the
adversarial attacks.

Comparing LIMECAL against BOWPROP, we
find that the explanations themselves do indeed
help. On SQUAD-ADV and HOTPOTQA, BOW-

4Details of hyperparameters can be found in the Appendix.
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SQUAD-ADV
Approach Acc ∆BOW AUC ∆BOW F1@25 ∆BOW F1@50 ∆BOW F1@75 ∆BOW

MAXPROB 62.6 − 70.9 − 72.4 − 72.1 − 70.4 −
KAMATH 63.2 − 76.8 − 81.4 − 75.2 − 71.2 −

BOWPROP 63.6 0 77.4 0 82.9 0 76.1 0 71.7 0
LIMECAL 70.3 6.7±1.6 83.9 6.4±1.4 92.3 9.4±2.3 84.2 8.1±1.6 75.9 4.2±1.0
SHAPCAL 69.3 5.6±1.8 82.9 5.5±1.3 91.2 8.2±2.2 82.8 6.7±1.4 75.0 3.3±0.9

TRIVIAQA
Approach Acc ∆BOW AUC ∆BOW F1@25 ∆BOW F1@50 ∆BOW F1@75 ∆BOW

MAXPROB 67.0 − 76.7 − 82.1 − 76.3 − 71.0 −
KAMATH 70.6 − 76.6 − 82.1 − 77.9 − 71.1 −

BOWPROP 71.2 0 77.6 0 84.2 0 79.1 0 71.6 0
LIMECAL 72.0 0.8±0.4 78.7 1.1±0.2 85.4 1.2±0.8 79.6 0.5± 0.3 72.3 0.8±0.2
SHAPCAL 71.8 0.6±0.4 78.2 0.6±0.3 84.7 0.5±0.8 79.4 0.3± 0.4 72.3 0.8±0.3

HOTPOTQA
Approach Acc ∆BOW AUC ∆BOW F1@25 ∆BOW F1@50 ∆BOW F1@75 ∆BOW

MAXPROB 63.1 − 75.7 − 79.7 − 75.9 − 72.2 −
KAMATH 64.5 − 76.8 − 80.8 − 77.2 − 72.8 −

BOWPROP 64.7 0 76.6 0 80.3 0 76.9 0 72.4 0
LIMECAL 65.7 1.0±0.4 78.2 1.6±0.4 82.6 2.2±0.8 78.4 1.5±0.6 73.8 1.4±0.3
SHAPCAL 65.3 0.7±0.4 77.8 1.2±0.3 82.0 1.6±0.7 78.0 1.0±0.5 73.5 1.1±0.4

Table 1: Main results on QA tasks. Our explanation-based methods (LIMECAL and SHAPCAL) successfully
calibrate a ROBERTA QA model trained on SQUAD when transferring to three new domains, and outperform a
prior approach (KAMATH) as well as our ablation using only heuristic labels (BOWPROP). In addition, we show the
mean and standard deviation of the deltas w.r.t. BOWPROP across multiple random seeds in ∆BOW.

PROP performs on par with or only slightly better
than KAMATH. These results show that connect-
ing explanations with annotations is a path towards
building better calibrators.

Finally, we compare the performance of our
methods based on different explanation techniques.
LIMECAL slightly outperforms SHAPCAL in all
three settings. As discussed in Section 2.1, SHAP

assigns high instance weights to those perturba-
tions with few activated features. While such a
choice of the kernel is effective in tasks involving
tabular data (Lundberg and Lee, 2017), this might
not be appropriate for the task of QA when such
perturbations may not yield meaningful examples.

4.2 Main Results: NLI

Setup Our base NLI model is a ROBERTA clas-
sification model trained on MNLI, which achieves
87.7% accuracy on the development set. We
collapse contradiction and neutral into
non-entailment when evaluating on QNLI
and MRPC. We continue using random forests as
the calibrator model. We evaluate the generaliza-
tion performance on the development sets of QNLI
and MRPC. Similar to the settings in QA, we use
500 examples to train the calibrator and test on the

rest for each of the 20 random trials.

Metrics Because QNLI and MRPC are binary
classification tasks, predicting whether a model is
correct (our calibration setting) is equivalent to the
original prediction task. We can therefore measure
calibrator performance with standard classification
accuracy and AUC.

Results We show results on NLI tasks in Table 2.
The base MNLI model utterly fails when transfer-
ring to QNLI and MRPC and achieves an accuracy
of 49% and 57%, respectively, whereas the major-
ity class is 50% (QNLI) and 65% (MRPC). With
heuristic annotations, BOWPROP is able to solve
74% of the QNLI instances and 72% of the MRPC
instances. Our heuristic itself is strong for QNLI
compared to MAXPROB. LIMECAL is still the best
in both settings, moderately improving accuracy
by 1% and 2% over BOWPROP using explanations.
The results on NLI tasks suggest our method can
still learn useful signals for indicating model relia-
bility even if the underlying tasks are very different.

4.3 Analysis

Cross-Domain Generalization of Calibrators
Our calibrators so far are trained on individual
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QNLI MRPC
Approach Acc ∆BOW AUC ∆BOW Acc ∆BOW AUC ∆BOW

MAXPROB 50.5 − 41.2 − 57.0 − 50.0 −
CLSPROBCAL 56.7 − 59.5 − 71.5 − 77.9 −

BOWPROP 74.0 0 82.0 0 71.8 0 79.3 0
LIMECAL 75.0 1.0±0.4 82.6 0.7±0.4 73.6 1.8±1.3 81.0 1.7±0.9
SHAPCAL 74.2 0.2±0.4 81.9 0.0±0.4 73.5 1.7±1.2 80.7 1.4±0.8

Table 2: Main results on NLI tasks. LIMECAL moderately improves the performance of the base MNLI model on
QNLI and MRPC, despite how different these tasks are from the base MNLI setting.

Source \ Target SQ-ADV TRIVIA HOTPOT

S
Q

-A
D

V ADAPT

70.9

76.1 65.8
KAMATH 73.3 75.1
BOWPROP 71.9 74.1
LIMECAL 72.9 71.4

T
R

IV
IA

ADAPT 64.2

76.7

77.2
KAMATH 70.5 76.7
BOWPROP 67.1 75.0
LIMECAL 69.3 77.0

H
O

T
P

O
T ADAPT 56.6 74.0

75.7KAMATH 70.6 77.0
BOWPROP 69.1 76.9
LIMECAL 68.8 77.9

Table 3: Area under Coverage-F1 curve for cross-
domain calibration results. The numbers along the di-
agonal shows the MAXPROB performance. A better
performance than MAXPROB suggests the calibrator is
able to usefully generalize (colored cells).

transfer settings. Is the knowledge of a calibrator
learned on some initial domain transfer setting, e.g.,
SQuAD → TRIVIAQA, generalizable to another
transfer setting, e.g. → HOTPOTQA? This would
enable us to take our basic QA model and a calibra-
tor and apply that pair of models in a new domain
without doing any new training or adaptation. We
explore this hypothesis on QA.5

For comparison, we also give the performance of
a ROBERTA-model first finetuned on SQUAD and
then finetuned on domain A (ADAPT, Figure 2).
ADAPT requires access to the model architecture
and is an unfair comparison for other approaches.

We show the results in Table 3. None of the ap-
proaches generalize between SQUAD-ADV and the
other domains (either trained or tested on SQUAD-
ADV), which is unsurprising given the synthetic
and very specific nature of SQUAD-ADV.

Between TRIVIAQA and HOTPOTQA, both the
LIMECAL and KAMATH calibrators trained on one

5We also tested the hypothesis on the NLI-paraphrase trans-
fer, but did not see evidence of transferability there, possibly
due to the fact that these tasks fundamentally differ.

QA 100 300 500

S
Q

-A
D

V MAXPROB 70.9
KAMATH 72.7 75.6 76.8
BOWPROP 75.0 76.0 77.4
LIMECAL 78.7 82.7 83.9

T
R

IV
IA

MAXPROB 76.7
KAMATH 74.8 76.2 76.6
BOWPROP 76.1 77.4 77.6
LIMECAL 77.2 78.2 78.7

H
O

T
P

O
T MAXPROB 75.7

KAMATH 75.2 76.5 76.8
BOWPROP 74.9 76.3 76.6
LIMECAL 76.5 77.7 78.2

NLI 100 300 500

Q
N

L
I MAXPROB 41.2

KAMATH 56.4 58.1 59.5
BOWPROP 79.0 81.5 82.0
LIMECAL 79.1 81.8 82.8

M
R

P
C

MAXPROB 50.0
KAMATH 73.7 76.8 77.9
BOWPROP 69.4 77.5 79.3
LIMECAL 76.1 79.9 81.0

Table 4: AUC scores of the calibrators trained with
varying training data size. Explanation-based calibra-
tors can still learn even with limited training resources,
whereas KAMATH and BOWPROP are not effective and
underperform the MAXPROB baseline on TRIVIAQA
and HOTPOTQA.

domain can generalize to the other, even though
BOWPROP is not effective. Furthermore, our LIME-
CAL exhibits a stronger capability of generalization
compared to KAMATH. We then compare LIME-
CAL against ADAPT. ADAPT does not always work
well, which has also been discussed in Kamath et al.
(2020); Talmor and Berant (2019). ADAPT leads to
a huge drop in terms of performance when being
trained on HOTPOTQA and tested on TRIVIAQA,
whereas LIMECAL is the best in this setting. From
TRIVIAQA to HOTPOTQA, ADAPT works well,
but LIME is almost as effective.

Overall, the calibrator trained with explana-
tions as features exhibits successful generalizabil-
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SQUAD-ADV TRIVIAQA HOTPOTQA QNLI MRPC

Model Performance Ex F1 Ex F1 Ex F1 Acc Acc
BASE QA/NLI 62.1 68.0 53.2 62.1 50.7 66.3 50.5 57.2
FINETUNE ROBERTA 32.3 42.0 28.5 34.8 39.5 54.8 81.2 79.8
ADAPT BASE QA/NLI 77.3 84.3 56.2 64.0 54.3 70.8 80.7 79.1
INDOMAIN QA/NLI − − 62.1 68.1 59.7 77.2 92.0 87.2

Calibration Results Acc AUC Acc AUC Acc AUC Acc Acc
FINETUNE ROBERTA + MAXPROB − 41.1 − 37.6 − 67.0 81.2 79.8
ADAPT BASE QA/NLI + MAXPROB − 92.7 − 77.6 − 82.5 80.7 79.1
LIMECAL 69.3 82.9 72.0 78.7 65.7 78.2 74.9 73.6

Table 5: Model performance and calibration performance of LIMECAL and glass box methods. On QA tasks,
LIMECAL is better than FINETUNING ROBERTA and even outperforms ADAPT BASE QA/NLI on TRIVIAQA.
LIMECAL under-performs glass box methods on NLI due to its easy nature and the poor base-model performance.

ity across the two realistic QA tasks. We believe
this can be attributed to the features used in the
explanation-based calibrator. Although the task is
different, the calibrator can rely on some common
rules to decide the reliability of a prediction.

Impacts of Training Data Size Calibrating a
model for a new domain becomes cumbersome
if large amounts of annotated data are necessary.
We experiment with varying the amount of train-
ing data the calibrator is exposed to, with results
shown in Table 4. Our explanation-based calibrator
is still the best in every setting with as few as 100
examples. With 100 examples, KAMATH and BOW-
PROP perform worse than the MAXPROB baseline
on TRIVIAQA and HOTPOTQA, indicating that
more data is needed to learn to use their features.

4.4 Comparison to Finetuned Models

Throughout this work, we have assumed a black
box model that cannot be fine-tuned on a new do-
main. In this section, we compare calibration-based
approaches with glass-box methods that require ac-
cess to the model architectures and parameters. We
evaluate two glass-box methods in two different set-
tings (Figure 2): (1) finetuning a base ROBERTA

model (FINETUNE ROBERTA), which needs ac-
cess to the model’s architecture but not parameters;
and (2) finetuning a base QA/NLI model, which
requires both model architectures as well as pa-
rameters. All these models are finetuned with 500
examples, the same as LIMECAL. We also give the
performance of a model trained with full in-domain
training data for different tasks as references (IN-
DOMAIN QA/NLI).

We present the model performance (measured
with Exact Match and F1 for QA and Acc for NLI)
and calibration results in Table 5. Note that there

are no calibrators for glass box methods, so we only
report AUC scores for calibration performance.

On QA tasks, the limited training data is not
sufficient for successfully finetuning a ROBERTA

model. Consequently, FINETUNE ROBERTA does
not achieve credible performance. Finetuning a
base QA model greatly improves the performance,
surpassing LIMECAL on SQUAD-ADV and HOT-
POTQA. However, we still find that on TRIVIAQA,
LIMECAL slightly outperforms ADAPT. This is a
surprising result, and shows that explanation-based
calibrators can still be beneficial in some scenarios,
even if we have full access to the model.

On NLI tasks that are substantially easier than
QA, finetuning either a ROBERTA LM model or a
base NLI model can reach an accuracy of roughly
80%. Our explanation-based approach largely lags
glass-box methods, likely because the base NLI
model utterly fails on QNLI (50.5% accuracy) and
MRPC (55.0% accuracy) and does not grant much
support for the two tasks. Nonetheless, the results
on NLI still support our main hypothesis: explana-
tions can be useful for calibration.

5 Selective QA Setting

Our results so far have shown that a calibrator can
use explanations to help make binary judgments of
correctness for a model running in a new domain.
We now test our model on the selective QA setting
from Kamath et al. (2020) (Figure 2). This experi-
ment allows us to more directly compare with prior
work and see performance in a setting where in-
domain (ID) and out-of-domain (OOD) examples
are mixed together.

Given a QA model trained on source domain
data, the goal of selective QA is to train a cali-
brator on a mixture of ID source data and known
OOD data, and test the calibrator to work well on a
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Known \ Unknown SQ-ADV TRIVIA HOTPOT
S

Q
-A

D
V MAXPROB 85.0 88.7 87.5

KAMATH 88.8 89.5 88.9
BOWPROP 91.5 90.6 89.0
LIMECAL 94.5 91.7 91.9

T
R

IV
IA

MAXPROB 85.0 88.7 87.6
KAMATH 85.6 91.9 88.7
BOWPROP 85.3 92.1 89.9
LIMECAL 90.9 92.5 92.1

H
O

T
P

O
T MAXPROB 85.0 88.7 87.6

KAMATH 86.1 91.4 89.4
BOWPROP 85.1 91.8 91.6
LIMECAL 91.7 92.3 92.5

Table 6: Area under Coverage-F1 curve in the Selective
QA setting. Our explanation-based approach is also
strong in this setting, substantially outperforming exist-
ing baseline and our own ablation.

mixture of in-domain and an unknown OOD data.
We follow the similar experimental setup as in

Kamath et al. (2020). The detailed setting is in-
cluded in the supplementary material.

Results As shown in Table 6, similar to the
main QA results. Our explanation-based approach,
LIMECAL, is consistently the best among all set-
tings. We point out our approach outperforms KA-
MATH especially in settings that involve SQUAD-
ADV as known or unknown OOD distribution. This
can be attributed the similarity between SQUAD and
SQUAD-ADV which can not be well distinguished
with features used in KAMATH (Context Length,

Answer Length, and etc.). The strong performance
of our explanation-based approach in the selective
QA setting further verifies our assumption: expla-
nation can be useful and effective for calibrating
black box models.

6 Related Work

Our approach is inspired by recent work on the
simulation test (Doshi-Velez and Kim, 2017), i.e.,
whether humans can simulate a model’s prediction
on an input example based on the explanations.
Simulation tests have been carried out in various
tasks (Ribeiro et al., 2018; Nguyen, 2018; Chan-
drasekaran et al., 2018; Hase and Bansal, 2020)
and give positive results in some tasks (Hase and
Bansal, 2020). Our approach tries to mimic the pro-
cess that humans would use to judge a model’s pre-
diction by combining heuristics with attributions
instead of having humans actually do the task.

Using “meta-features” to judge a model also ap-
pears in literature on system combination for tasks

like machine translation (Bojar et al., 2017), ques-
tion answering (Kamath et al., 2020; Zhang et al.,
2021), constituency parsing (Charniak and John-
son, 2005; Fossum and Knight, 2009) and semantic
parsing (Yin and Neubig, 2019). The work of Ra-
jani and Mooney (2018) in VQA is most relevant
to ours; they also use heuristic features, but we
further conjoin heuristic with model attributions.
Our meta-feature set is derived from the presence
of certain properties, which is similar to the “con-
cepts” used in concept-based explanations (Ghor-
bani et al., 2019; Mu and Andreas, 2020), but we
focus on using them for estimating model perfor-
mance rather than explaining a prediction.

Our work addresses the problem of calibration
(Guo et al., 2017; Desai and Durrett, 2020), which
is frequently framed in terms of models’ output
probabilities. Past work has attempted to tackle
this problem using temperature scaling (Guo et al.,
2017) or label smoothing (Pereyra et al., 2017),
which adjust confidence scores for all predictions.
In contrast, we approach this issue by applying a
classifier leveraging instance-specific explanations.
Past work on generalizing to out-of-domain distri-
bution in NLP largely focuses on using unlabeled
data from the target domain and requires finetun-
ing a model (Ma et al., 2019; Ramponi and Plank,
2020; Guo et al., 2020), whereas we improve OOD
performance of strictly black-box models.

7 Discussion & Conclusion

Limitations Despite showing promising results
in improving model generalization performance,
our attribution-based approach does suffer from
intensive computation cost. Using either LIME

or SHAP to generate attributions requires running
inference a fair number of perturbations when the
input size is large (see Appendix for details), which
limits our method’s applicability. But this doesn’t
undermine the main contribution of this paper, an-
swering the question in the title, and our approach
is still applicable as-is in the scenarios where we
pay for access to the model but not per query.

Conclusion We have explored whether model at-
tributions can be useful for calibrating black box
models. The answer is yes. By connecting attri-
butions with human heuristics, we improve model
generalization performance on new domains and
tasks. Besides, it exhibits promising generaliza-
tion performance in some settings (cross-domain
generalization and Selective QA).
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A Details of the Kernel used in LIME and
SHAP

LIME heuristically sets πx as an exponential kernel
(with bandwith σ) defined on the cosine distance
function between the perturbation and original in-
put, i.e.,

πx(z) = exp(−dcos(x, hx(z))/σ
2
)

That is, LIME assigns higher instance weights for
perturbations that are closer to the original input,
and so prioritizes classifying these correctly with
the approximation.

SHAP derives the πx so the ϕ can be interpreted
as Shapley values (Shapley, 1997):

πx(z) =
n − 1(N

|z|
)
|z|(n − |z|)

where |z| denotes the number of activated tokens
(sum of z). This kernel assigns high weights to
perturbations with few or many active tokens, as
the predictions when a few tokens’ effects are iso-
lated are important. This distinguishes SHAP from
LIME, since LIME will place very low weight on
perturbations with few active tokens.

B Detailed Setup of Selective QA Setting

We follow the similar experimental setup as in Ka-
math et al. (2020). We train a ROBERTA QA
model on SQUAD, and use on a mixture of 1,000
SQUAD dev examples + 1,000 known OOD exam-
ples to train the calibrator. We report test results
on both the same type of mixture (1,000 SQUAD +
1,000 known OOD, diagonal blocks in Table 6) and
a mixture of 4000 SQUAD examples + 4,000 un-
known OOD (2,560 SQUAD + 2,560 SQUAD-ADV

as SQUAD-ADV only contains 2,560 examples).

C Feature Importance

We analyze the important features learned by the
calibrator. We find explanation-based features are
indeed generally among the top used features and
more important than Bag-of-Word-based features
(see the Appendix for a detailed list). All QA cal-
ibrators heavily rely on attribution values of the
proper nouns (NNP) and wh-words in the question.
BoW features of overlapping nouns are consid-
ered important on QNLI, but the top feature is
still attribution-based.

These factors give insights into which parts of
the QA or NLI reasoning processes are important
for models to capture. E.g., the reliance on NNPs in
SQUAD-ADV matches our intuitive understanding

of this task: distractors typically have the wrong
named entities in them, so if the model pays atten-
tion to NNPs on an example, it is more likely to be
correct, and the calibrator can exploit this.

Table 7 shows the most important features
learned by LIMECAL for QA and NLI. For brevity,
we present the features related to the probabili-
ties of the top predictions into one feature (Prob).
Explanation-based features are indeed generally
among the top used features and more important
than raw property features.

D Details of POS Tag Properties

We use tagger implemented in spaCy API.6 The
tag set basically follows the Penn Treebank tag set
except that we merge some related tags to reduce
the number of features given the limited amount of
training data.7 Specifically, we merge JJ,JJR,JJS

into JJ, NN,NNS into NN, NNP,NNPS into NNP,
RB,RBR,RBS into RB, VB,VBD,VBG,VBN,VBP,VBZ

into VB, and WDT,WP,WP$,WRB into W. In this way,
we obtain a tag set of 25 tags in total.

E Details of Black Box Calibrators

Feature Counts for QA

• KAMATH (Kamath et al., 2020): we use the 7
features described in (Kamath et al., 2020),
including Probability for the top 5 pre-
dictions, Context Length, and Predicted

Answer Length.

• BOWPROP: In addition to the 7 features used
in KAMATH. We construct the property space
V as the union of low-level Segment and
Segment × Pos-Tags. Since there are 3 seg-
ments question, context, answer in the
input, and 25 tags (Section D), the size of
the property space |V| is thereby given as
3 + 3× 25 = 78. Therefore the total number
of features (including the 7 from KAMATH) is
85.

• LIMECAL and SHAPCAL: Recall that the size
of the property space is 78. LIMECAL and
SHAPCAL uses 78 features describing the at-
tribution related to the corresponding prop-
erties in addition to the 85 features used in
BOWPROP. The total number of features is
therefore 163.

6https://spacy.io/api
7https://www.ling.upenn.edu/courses/

Fall_2003/ling001/penn_treebank_pos.html
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SQ-ADV TRIVIA HOTPOT QNLI MRPC

Attr to NNP in Q Prob of Top Pred Prob of Top Pred Attr Overlapping NN in H Prob of Top Pred
Attr to VB in C Answer Length Attr to Q BOW Overl- NN in H Attr to P
Prob of Top Pred Attr NNP in Q Attr Wh- in Q BOW Overl- NN in P Attr to H
Attr to NN in Q Attr Wh- in Q Attr to C Attr to Non-Overl- NN in P Attr to Non-Overl- NNP in H
Answer Length Attr to Question Attr to NNP in Q Prob of Top Pred Attr to Overl- SYM in P

Table 7: Most important features used by the LIMECAL in different tasks. For QA, Attribution of NNP

in the question and Attribution of Wh- in the question are generally important. For NLI, features
related to overlapping/non-overlapping nouns are more effective.

Feature Counts for NLI

• CLSPROBCAL (Kamath et al., 2020): we
use 2 features in practice, Probability

of Entailment and Probability of

Contradiction. We do not include
Probability of Neutral since it can be
inferred from the probabilities of two other
classes.

• BOWPROP: In addition to the 2 features
used in CLSPROBCAL, we construct the
property space V as the union of low-
level Segment and Segment × Pos-Tags ×
Overalapping Words. Since there are 2
segments (Premise, Hypothesis), 25 tags
(Section D), and 2 properties for overlap-
ping Overlapping, Non-Overlapping, the
size of the property space |V| is given as
2 + 2 × 25 × 2 = 102. Therefore the to-
tal number of features (including the 2 from
CLSPROBCAL) is 104.

• LIMECAL and SHAPCAL: LIMECAL and
SHAPCAL add another 102 features in addi-
tion to the 104 features used in BOWPROP.
The total number of features are therefore 206.

Cost of Generating Explanations For QA tasks
which have relatively long inputs, we sample 2048
perturbations and run inference over them for each
example. For simpler NLI tasks, we use about 512
model queries for each example.

Hyperparameters We use the RandomForest im-
plementation from Scikit-Learn (Pedregosa et al.,
2011). We list the hyperparameters used in each
approach in Table 8. The hyperparameters are de-
termined through grid search using 400 training ex-
amples and 100 validation examples. The choices
of numbers of trees are [200, 300, 400, 500], and
choices of max depth are [4, 6, 8, 10, 15, 20]. Then,
for the experimental results in Table 1, Table 2, and

QA NUM. TREE MAX DEPTH

S
Q

-A
D

V KAMATH 300 6
BOWPROP 300 20
LIMECAL 300 20
SHAPCAL 300 20

T
R

IV
IA

KAMATH 300 6
BOWPROP 200 20
LIMECAL 300 20
SHAPCAL 300 20

H
O

T
P

O
T KAMATH 300 4

BOWPROP 300 10
LIMECAL 300 10
SHAPCAL 300 10

NLI NUM. TREE MAX DEPTH

Q
N

L
I KAMATH 300 4

BOWPROP 300 6
LIMECAL 400 20
SHAPCAL 400 20

M
R

P
C

KAMATH 300 6
BOWPROP 300 8
LIMECAL 400 20
SHAPCAL 400 20

Table 8: Hyperparameters used to train the random
forest classifier for different approaches.

Table 4, we always fix the hyper-parameters, and
do not perform any further hyper-parameter tuning.

F Details of Glass Box Methods

Finetuning RoBERTa For QA, we finetune the
ROBERTA-base model with a learning rate of 1e-5
for 20 epochs (We also try finetuning for 3 epochs,
but the objective does not converge with 500 exam-
ples.) We set the batch size to be 32, and warm-up
ratio to be 0.06.

For MNLI, we finetune a ROBERTA-base model
with a learning rate of 1e-5 for 10 epochs. We set
the batch size to be 32, and warm-up ratio to be
0.06, following the hyper-parameters in Liu et al.
(2019).

Adapting a Base QA/NLI Model For QA, we
adapt the base ROBERTA QA model trained on
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SQUAD with a learning rate of 1e-5 for 2 epochs.
For MNLI, we finetune base ROBERTA NLI

model trained on MNLI with a learning rate of
1e-5 for 10 epochs. Learning does not converge
when finetuning for 2 epochs, as the MNLI task is
too different from QNLI and MRPC.
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