
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 5755 - 5772

May 22-27, 2022 c©2022 Association for Computational Linguistics

Unified Structure Generation for Universal Information Extraction

Yaojie Lu1,4,∗, Qing Liu1,4,∗, Dai Dai3, Xinyan Xiao3, Hongyu Lin1,†,
Xianpei Han1,2,5, Le Sun1,2,†, Hua Wu3

1Chinese Information Processing Laboratory 2State Key Laboratory of Computer Science
Institute of Software, Chinese Academy of Sciences, Beijing, China

3Baidu Inc., Beijing, China
4University of Chinese Academy of Sciences, Beijing, China
5Beijing Academy of Artificial Intelligence, Beijing, China

{yaojie2017,liuqing2020,hongyu,xianpei,sunle}@iscas.ac.cn
{daidai,xiaoxinyan,wu_hua}@baidu.com

Abstract

Information extraction suffers from its varying
targets, heterogeneous structures, and demand-
specific schemas. In this paper, we propose a
unified text-to-structure generation framework,
namely UIE, which can universally model dif-
ferent IE tasks, adaptively generate targeted
structures, and collaboratively learn general
IE abilities from different knowledge sources.
Specifically, UIE uniformly encodes different
extraction structures via a structured extraction
language, adaptively generates target extrac-
tions via a schema-based prompt mechanism
– structural schema instructor, and captures
the common IE abilities via a large-scale pre-
trained text-to-structure model. Experiments
show that UIE achieved the state-of-the-art per-
formance on 4 IE tasks, 13 datasets, and on
all supervised, low-resource, and few-shot set-
tings for a wide range of entity, relation, event
and sentiment extraction tasks and their unifi-
cation. These results verified the effectiveness,
universality, and transferability of UIE1.

1 Introduction

Information extraction (IE) aims to identify and
structure user-specified information from unstruc-
tured texts (Andersen et al., 1992; Grishman, 2019).
IE tasks are highly diversified due to its varying
targets (entity, relation, event, sentiment, etc.), het-
erogeneous structures (spans, triplets, records, etc.),
and demand-specific schemas (Grishman and Sund-
heim, 1996; Mitchell et al., 2005; Ji and Grishman,
2011).

Currently, most IE approaches are task-
specialized, which leads to dedicated architec-
tures, isolated models, and specialized knowl-
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Figure 1: From (a) Task-specialized IE: different tasks,
different structures, different schemas to (b) Universal
IE: unified modeling via structure generation.

edge sources for different IE task. These task-
specialized solutions greatly hinder the rapid ar-
chitecture development, effective knowledge shar-
ing, and quick cross-domain adaptation of IE sys-
tems. First, it is very complicated to develop
dedicated architectures for a large amount of IE
tasks/settings/scenarios. Second, learning isolated
models severely restricts the knowledge sharing
between related tasks and settings. Finally, it is
costly and time-consuming to construct data sets
and knowledge sources specialized for different
IE tasks. Therefore, it will be of great benefit to
develop a universal IE architecture that can uni-
formly model different IE tasks, adaptively predict
heterogeneous structures and effectively learn from
various resources, which we referred to as Univer-
sal IE.

Fundamentally, all IE tasks can be modeled
as text-to-structure transformations, with different
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tasks correspond to different structures. For ex-
ample, as shown in Figure 1, an entity is a named
span structure, an event is a schema-defined record
structure. These text-to-structure transformations
in IE can be further decomposed into several atomic
transformation operations: 1) Spotting, which lo-
cates the desirable spans concerning to given spe-
cific semantic types (Kripke and Munitz, 1971;
Chen and Yuille, 2004). For example, locating
span “Steve” as a Person entity and locating “ex-
cited” as a sentiment expression. 2) Associating,
which connects spans by assigning them with se-
mantic roles in pre-defined schemas (Onyshkevych,
1994; Milward and Thomas, 2000). For example,
associating “Steve” and “Apple” by assigning them
as the Arg1 and the Arg2 of a Work-for relation. In
this way, different IE tasks can be decomposed into
a sequence of atomic text-to-structure transforma-
tions, and all IE models share the same underlying
spotting and associating abilities. For example, en-
tity extraction can be viewed as spotting mention
spans of corresponding entity types, while event
detection can be reformulated as spotting triggers
spans with event types. And the spotting abilities
can be shared between these two tasks.

Based on the above observations, we propose
UIE, a unified text-to-structure generation architec-
ture that can universally model different IE tasks,
adaptively generate targeted structures, and collab-
oratively learn general IE abilities from different
knowledge sources. Specifically, to model hetero-
geneous IE structures, we design a structural ex-
traction language (SEL) that can effectively encode
different IE structures into a uniform representa-
tion, so that various IE tasks can be universally
modeled in the same text-to-structure generation
framework. To adaptively generate targeted struc-
tures for different IE tasks, we propose structural
schema instructor (SSI), a schema-based prompt
mechanism which controls what to spot, what to
associate, and what to generate in UIE. To learn
common IE abilities for UIE, we pre-train UIE
on large-scale, heterogeneous datasets mined from
easily accessible web sources. The large-scale pre-
trained UIE model provides a solid foundation for
knowledge sharing and quick adaptation to new
IE settings, and significantly boosts the IE perfor-
mance in all supervised, low-resource, and few-
shot settings.

We conduct experiments on 13 datasets of 4
main IE tasks (entity/relation/event/sentiment ex-

traction and their unification), and supervised, low-
resource, and few-shot settings. Experiment re-
sults show that UIE achieves significant improve-
ments in all settings. On supervised settings, UIE
achieved 1.42% F1 scores improvements over the
state-of-the-art, task-specialized architectures on
all datasets. On few-shot and low-resource settings,
UIE exhibits strong on-demand adaptation ability:
it outperforms baselines dramatically by a large
margin. These results verified the effectiveness,
universality, and transferability of UIE across dif-
ferent IE tasks, settings, and scenarios.

The main contributions of this paper are:
1) We propose UIE, a unified text-to-structure

generation architecture that can universally model
different IE tasks, adaptively generate targeted
structures, and collaboratively learn general IE abil-
ities from different knowledge sources.

2) We design a unified structure generation net-
work, which encodes heterogeneous IE structures
into a uniform representation via a structural extrac-
tion language, and controls the UIE model which
to spot, which to associate, and which to generate
via structural schema instructor mechanism.

3) We pre-train a large-scale text-to-structure
generation model via a unified pre-training algo-
rithm. To the best of our knowledge, this is the
first text-to-structure pre-trained extraction model,
which can benefit future IE studies.

2 Unified Structure Generation for
Universal Information Extraction

Information extraction tasks can be formulated as
text-to-structure problems, where different IE tasks
correspond to different structures. This paper aims
to uniformly model the text-to-structure transforma-
tions of different IE tasks via a single framework,
i.e., different structure transformations will share
the same underlying operations and different trans-
formation abilities in a universal model. Formally,
given a specific pre-defined schema s and texts x,
a universal IE model needs to generate a structure
that contains the desirable structural information in
the text x indicated by the schema s.

Generally, there are two main challenges here.
Firstly, due to the diversity of IE tasks, there are
many different target structures to extract, e.g., en-
tity, relation, event, etc. Secondly, IE tasks are
often demand-specific which are defined using dif-
ferent schemas, therefore we need to adaptively
control the extraction process.
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(
(Spot Name: Info Span
(Asso Name: Info Span)
(Asso Name: Info Span)

)
)

(a) Structured extraction language (SEL) for Universal IE.
(

(person: Steve
(work for: Apple)

)
(start-position: became
(employee: Steve)
(employer: Apple)
(time: 1997)

)
(organization: Apple)
(time: 1997)

)

(b) The SEL representation of the extraction structure of
“Steve became CEO of Apple in 1997.”, where the relation
structure is marked blue, the event structure is marked red,
and the rest are entities.

Figure 2: Illustrations of structured extraction lan-
guage.

In this section, we describe how to jointly formu-
late, learn, and conduct various IE tasks in a unified
text-to-structure generation architecture, named
UIE. Specifically, we first design structured ex-
traction language (SEL) to uniformly encode het-
erogeneous extraction structures, i.e., encode entity,
relation, event into a unified representation. Then
we describe structural schema instructor (SSI), a
schema-based prompt mechanism that controls the
UIE model which to spot, which to associate, and
which to generate for different extraction settings.
The details are as follows.

2.1 Structured Extraction Language for
Uniform Structure Encoding

This section describes how to encode heteroge-
neous IE structures into a uniform representation.
Based on the above discussions, IE structure gen-
eration can be decomposed into two atomic opera-
tions:
1. Spotting indicates locating target information

pieces from the sentence, e.g., the entity and the
trigger word in the event.

2. Associating indicates connecting different in-
formation pieces based on the desirable associ-
ations, e.g., the relation between entity pair or
the role between event and its argument.

Then different IE structures can be represented as
a combination of atomic structure generation oper-
ations.

Concretely, we design a unified structured ex-

traction language (SEL), which encodes different
IE structures via the spotting-associating structure.
As shown in Figure 2a, each SEL expression con-
tains three types of semantic units: 1) SPOTNAME

represents there is a specific information piece with
the type of spot name existing in the source text;
2) ASSONAME indicates there exists a specific in-
formation piece in the source text that is with the
AssoName association to its upper-level Spotted in-
formation in the structure; 3) INFOSPAN represents
the text span corresponding to the specific spotting
or associating information piece in the source text.
Furthermore, “:” in the SEL indicates the mapping
from InfoSpan to its spotting or associating names,
and the two structure indicators “(” and “)” are
used to form the hierarchical structure between the
extracted information.

Using SEL, Figure 2b shows how to represent en-
tity, relation, and event structures. There are three
entities and each entity is represented as a spot-
ting structure such as “person:Steve”, “organiza-
tion:Apple”, and “time:1997”; one relation which
is represented as an association structure between
“Steve” and “Apple” with association name work
for; and one event which is represented as an associ-
ation structure, where the trigger is a spotting struc-
ture “start-position:became”, and its arguments are
associated with the trigger: Steve as employee, Ap-
ple as employer, 1997 as time.

We can see that, SEL have the advantages that:
1) uniformly encodes varying IE structures, there-
fore different IE tasks can be modeled as the same
text-to-structure generation process; 2) efficiently
represents all extraction results of a sentence in the
same structure, thus can perform joint extraction
naturally; 3) the output structure of generation is
very compact, which greatly reduce the complexity
of decoding.

For example, the two different tasks entity recog-
nition and event detection can be revisited using the
same “(SpotName: InfoSpan)” grammar. While
both relation extraction and event extraction can
be formulated using the grammar “(SpotName: In-
foSpan (AssoName: InfoSpan), ...)”, even they are
with totally different binary “entity-relation-entity”
and N-ary “event-arguments” structures. Such a
unified structured extraction language enables UIE
to learn from and adapt to different IE tasks without
designing task-specialized architectures, because
these IE tasks are all universally formulated as the
transformation from texts to SEL representations.
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UIE

[spot] person [asso] work for [text]
Steve became CEO of Apple in 1997.

[spot] start-position … [asso] employee …[text]
Steve became CEO of Apple in 1997.

[spot] person [spot] organization [spot] time [text]
Steve became CEO of Apple in 1997.

((person: Steve
(work for: Apple)))

((start position: became
(employee: Steve)
(employer: Apple) …
(organization: Apple))

((person: Steve)
(organization: Apple)
(time: 1997)))

SSI + Text → SEL

Structural Schema Instructor Structured Extraction Language

Figure 3: The overall framework of UIE.

2.2 Structural Schema Instructor for
Controllable IE Structure Generation

Using SEL, UIE can uniformly generate differ-
ent IE structures. However, because different IE
tasks have different schemas, one challenge here
is how to adaptively control which information
we want to generate during extraction. For ex-
ample, given a sentence “Steve became CEO of
Apple in 1997.”, an entity recognition system will
generate “((person: Steve) (organization: Apple)
(Time: 1997))”, and an event extraction system
will generate “(start position: became (employee:
Steve) (employer: Apple))”. To this end, we pro-
pose structural schema instructor (SSI), a schema-
based prompt mechanism that controls which kinds
of information need to be spotted and associated.

Figure 3 shows the overall framework of UIE.
Formally, UIE takes the given structural schema
instructor (s) and the text sequence (x) as input, and
generates the linearized SEL (y) which contains the
extracted information from x based on schema s:

y = UIE(s⊕ x) (1)

where x = [x1, ..., x|x|] is the text sequence, s =
[s1, ..., s|s|] is the structural schema instructor, and
y = [y1, ..., y|y|] is a SEL sequence that can be eas-
ily converted into the extracted information record.

2.2.1 Structural Schema Instructor
To describe the extraction target of a task, the struc-
tural schema instructor constructs a schema-based
prompt and uses it as a prefix during generation.

Specifically, corresponding to the spotting-
association structure, the structural schema instruc-
tor contains three types of token segments: 1) SPOT-
NAME: the targeted spotting name in the specific
information extraction task, such as “person“ in
the NER task; 2) ASSONAME: the targeted asso-
ciation name, such as “work for” in the relation
extraction task; 3) Special Symbols ([spot], [asso],

[text]) which are added before each SPOTNAME,
ASSONAME, and input text sequence. All tokens
in SSI are concatenated and put before the original
text sequences. As shown in Figure 3, the entire
input for UIE is in the form of:

s⊕ x = [s1, s2, ..., s|s|, x1, x2, ..., x|x|]

= [[spot], ...[spot]...,

[asso], ..., [asso]...,

[text], x1, x2, ..., x|x|]

(2)

For example, the SSI “[spot] person [spot] com-
pany [asso] work for [text]” indicates extracting
records of the relation schema “the person works
for the company” from the sentence. Given the SSI
s, UIE first encodes the text x, then generates the
target record y in linearized SEL using an encoder-
decoder-style architecture.

We found that the schema-based prompt can: 1)
effectively guide the SEL generation of UIE, so that
the general IE ability can be transferred to new IE
tasks; 2) adaptively control which to spot, which to
associate, and which to generate, so that semantic
knowledge across different labels and tasks can be
better shared.

2.2.2 Structure Generation with UIE
Given SSI s and text x as input, UIE extracts tar-
geted information by generating a linearized SEL.
We formulate this text-to-SEL generation process
using an encoder-decoder-style architecture. Given
the raw text sequence x and the schema instruc-
tor s, UIE first compute the hidden representation
H = [s1, ..., s|s|,x1, ...,x|x|] of each token:

H = Encoder(s1, ..., s|s|, x1, ..., x|x|) (3)

where Encoder(·) is a Transformer encoder. Then
UIE will decode the input text into a linearized
SEL in an auto-regressive style. At the step i of de-
coding, UIE generates the i-th token yi in the SEL
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sequence and the decoder state hdi as following:

yi,h
d
i = Decoder([H;hd1, ...,h

d
i−1]) (4)

Decoder(·) is a transformer decoder, which pre-
dicts the conditional probability p(yi|y<i, x, s) of
token yi. Finally, Decoder(·) finishes prediction
when outputting the end symbol <eos>, then we
convert the predicted SEL expression into the ex-
tracted information record.

Compared with previous IE studies which treat
labels as specific symbols, the text-to-structure
generation paradigm treats labels as natural lan-
guage tokens. By verbalizing and generating labels
and structures, our method can effectively trans-
fer knowledge from pre-trained language models
such as BART (Lewis et al., 2020), T5 (Raffel et al.,
2020), and related tasks can easily share knowledge
because their labels have similar semantics (e.g.,
location and place) and share common label-text
associations (e.g., victim for different event types).

3 Pre-training and Fine-tuning for UIE

In this section, we describe: 1) how to pre-train a
large-scale UIE model which captures common IE
abilities for different IE tasks; 2) how to adapt UIE
to different IE tasks in different settings via quick
fine-tuning. Specifically, we first collect several
large-scale datasets from the Web, including struc-
tured (e.g., knowledge bases), unstructured (e.g.,
raw texts), and parallel (e.g., Wikipedia-Wikidata
links) data, then we uniformly pre-train our UIE
model on these heterogeneous datasets. Finally,
we adapt the pre-trained UIE model to the specific
downstream IE tasks via on-demand fine-tuning.
We found that the pre-trained UIE model provides
a solid foundation for capturing, sharing, and trans-
ferring knowledge between different IE tasks, and
new IE tasks can be effectively solved because UIE
learns general IE ability.

3.1 Pre-training Corpus Construction

UIE needs to encode the text, map text to structure,
and decode valid structure. Therefore, we collect
a large-scale pre-training corpus from easily ac-
cessible web data sources (more details are in the
appendix):
Dpair is the text-structure parallel data, where

each instance is a parallel pair (token sequence x,
structured record y). We collect large-scale paral-
lel text-structure pairs by aligning Wikidata with

English Wikipedia. Dpair is used to pre-train the
text-to-structure transformation ability of UIE.
Drecord is the structure dataset where each in-

stance is structured record y. We collect structured
records from ConceptNet (Speer et al., 2017) and
Wikidata. Drecord is used to pre-train the structure
decoding ability of UIE.
Dtext is the unstructured text dataset, and we use

all plain texts in English Wikipedia. Dtext is used
to pre-train the semantic encoding ability of UIE.

3.2 Pre-training
We pre-train UIE using three sequence generation
tasks with above mentioned pre-training datasets.

Text-to-Structure Pre-training usingDpair. To
capture the fundamental text-to-structure mapping
ability, we pre-train UIE using Dpair = {(x, y)}.
Specifically, for each parallel pair (x, y), we extract
the spot type ss+ and the associating type sa+ in
the record y as the positive schema s+ = ss+ ∪ sa+.
However, we found that if we only feed UIE with
a positive schema, it will only simply remember
the triplet in the pre-training data. To learn gen-
eral mapping ability, we also automatically con-
struct negative schemas for each pair, i.e., we
first sample negative spots ss- and negative as-
sociation set sa-, then concatenate meta-schema
smeta = s+ ∪ ss- ∪ sa-, and construct the final ex-
traction target. For example, person and work for is
the positive schema in the record “((person: Steve
(work for: Apple)))”, and we sample vehicle and
located in as the negative schema to construct meta-
schema. Finally, the objective of text-to-structure
pre-training is:

LPair =
∑

(x,y)∈Dpair

− log p(y|x, smeta; θe, θd) (5)

where θe and θd are the parameter of encoder and
decoder, respectively.

Structure Generation Pre-training with Drecord.
To pre-train the ability of generating valid struc-
tures defined by SEL and schemas, we pre-train
UIE on Drecord. We pre-train UIE decoder as an
structured language model, where each record in
Drecord is an expression of SEL:

LRecord =
∑

y∈Drecord

− log p(yi|y<i; θd) (6)

By pre-training for structure generation, the de-
coder can capture the regularity of SEL and the
interactions between different labels.
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Retrofitting Semantic Representation using
Dtext. During text-to-structure pre-training, we
continually pre-train UIE also with the masked lan-
guage model tasks (Raffel et al., 2020) on Dtext to
retrofit semantic representations of UIE. Specifi-
cally, we add span corruption based mask language
modeling objective in the pre-training stage:

LText =
∑
x∈Dtext

− log p(x′′|x′; θe, θd) (7)

where x′ is the corrupted source text and x′′ is
corrupted target spans. We found this pre-training
can effectively alleviate the catastrophic forgetting
of token semantics especially on SPOTNAME and
ASSONAME tokens.

Final Pre-training Criteria. We initialize UIE-
base and UIE-large with T5-v1.1-base and T5-v1.1-
large (Raffel et al., 2020), and the model architec-
tures are shown in Table 7. The final objective is
the combine of the above tasks:

L = LPair + LRecord + LText (8)

For implementation, we uniformly represent all
pre-training data as triplets. For text data (x) in
Dtext, we build a triplet (None, x′, x′′) where x′ is
the corrupted source text and x′′ is corrupted spans.
For text-record data (x, y) in Dpair, we construct (s,
x, y) by sampling the meta-schema s for each text-
record pair. For record data (y) in Drecord, we take
(None, None, y) as the input triplet. We randomly
pack instances for different tasks in one batch, and
details are shown in Algorithm 1 in the appendix.

3.3 On-Demand Fine-tuning
Given the pre-trained UIE model, we can quickly
adapt it to different IE tasks and settings through
model fine-tuning. Given a labeled corpus Dtask =
{(s, x, y)}, we fine-tune the UIE model using
teacher-forcing cross-entropy loss:

LFT =
∑

(s,x,y)∈DTask

− log p(y|x, s; θe, θd) (9)

To alleviate the exposure bias (Ranzato et al.,
2016; Zhang et al., 2020) of the auto-regressive
model during decoding, we also design a Rejection
Mechanism for effective fine-tuning. Specifically,
given an instance (s, x, y), we first encode y us-
ing SEL language, then we randomly insert several
[NULL] unit with negative SPOTNAME and AS-
SONAME: (SPOTNAME, [NULL]) and (ASSON-
AME, [NULL]) into the ground-truth SEL with the

SSI <spot> person ... <spot> facility <asso> ... <text>
Text Steve became CEO of Apple in 1997.

SEL ((person: Steve (work for: Apple)) (start-position: ...
+ RM ((person: Steve (work for: Apple)) (facility: [NULL]) ...

Table 1: An example of rejection mechanism (RM),
here “(facility: [NULL])” is the injected rejection noise
during learning stage, and the [NULL]-valued span will
be ignored during inference stage.

probability of pε. For example, in Table 1, facility
is the negative spot in the schema prompt, i.e., there
is no facility entity in the sentence “Steve became
CEO of Apple in 1997”. Therefore, we randomly
inject the noise of “(facility: [NULL])” into the
target record during model learning. In this way,
the UIE can effectively learn to reject misleading
generation by generating [NULL] token.

4 Experiments

To verify the effectiveness of UIE, we conducted
experiments on different IE tasks and settings.

4.1 Experimental Settings

Datasets. We conduct experiments on 13 IE
benchmarks across 4 well-representative IE tasks
(including entity extraction, relation extraction,
event extraction, structured sentiment extraction)
and their combinations (e.g., joint entity-relation
extraction). The used datasets includes ACE04
(Mitchell et al., 2005), ACE05 (Walker et al.,
2006); CoNLL03 (Tjong Kim Sang and De Meul-
der, 2003), CoNLL04 (Roth and Yih, 2004), Sci-
ERC (Luan et al., 2018), NYT (Riedel et al., 2010),
CASIE (Satyapanich et al., 2020), SemEval-14
(Pontiki et al., 2014), SemEval-15 (Pontiki et al.,
2015), SemEval-16 (Pontiki et al., 2016), see Ta-
ble 8 for detail. We employ the end-to-end setting
for all extraction tasks, which takes the raw text as
input and directly generates the target structure.

Evaluation. We use the same evaluation metrics
as all previous methods, and details of metrics are
shown in the appendix. For each fine-tuning ex-
periment, we report the average performance on
3 random seeds. Because UIE only generates text
spans, we map spans to offsets by finding the first
matched offsets that are not already matched in the
same SEL hierarchical level (details in appendix).
We found this simple heuristic rule is very effective
(<0.5% error offsets) and more complicated map-
ping approaches (such as attention-weight guided
span mapping) are left as the future work.
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Dataset Domain Metric Comparable SOTA SEL UIE

ACE04 News, Speech Entity F1 (Yan et al., 2021b) 86.84 86.52 86.89
ACE05-Ent News, Speech Entity F1 (Yan et al., 2021b) 84.74 85.52 85.78
CoNLL03 News Entity F1 (Wang et al., 2021a) 93.21 92.17 92.99

ACE05-Rel News, Speech Relation Strict F1 (Zhong and Chen, 2021) 65.60 64.68 66.06
CoNLL04 News Relation Strict F1 (Wang and Lu, 2020) 73.60 73.07 75.00

NYT News Relation Triplet F1 (Zheng et al., 2021) 92.70 93.54 -
SciERC Scientific Relation Strict F1 (Zhong and Chen, 2021) 35.60 33.36 36.53

ACE05-Evt News, Speech
Event Trigger F1 (Lin et al., 2020) 72.80 72.63 73.36

Event Argument F1 (Lin et al., 2020) 54.80 54.67 54.79

CASIE Cybersecurity
Event Trigger F1 (Lu et al., 2021) 67.51 68.98 69.33

Event Argument F1 (Lu et al., 2021) 59.45 60.37 61.30

14-res Reviews Sentiment Triplet F1 (Zhang et al., 2021) 72.16 73.78 74.52
14-lap Reviews Sentiment Triplet F1 (Zhang et al., 2021) 60.78 63.15 63.88
15-res Reviews Sentiment Triplet F1 (Xu et al., 2021) 63.27 66.10 67.15
16-res Reviews Sentiment Triplet F1 (Xu et al., 2021) 70.26 73.87 75.07

Table 2: Overall results of UIE-large on different datasets. SEL refers to UIE without pre-training by directly using
T5-v1.1-large as the backbone. Because NYT overlaps with pre-training data, we didn’t conduct UIE on NYT for
fair comparsion. More results of UIE-base and the details of evaluation metric are shown in the appendix.

4.2 Experiments on Supervised Settings

UIE provides a universal backbone for IE tasks.
This section assesses the UIE performance in su-
pervised settings. We compare UIE with the state-
of-the-art, task-specific supervised models. For a
fair comparison, we only compare the state-of-the-
art without leveraging additional dataset-specific
knowledge or larger-scale contexts. These exten-
sions are good complementary of UIE, and can be
left for further improvement. Table 2 shows the
performance of UIE on the 13 IE datasets across
4 tasks. We can observe that: 1) By modeling IE
as text-to-structure generation and encoding with
an effective SEL language, UIE provides an effec-
tive universal architecture for IE. The UIE model
achieves state-of-the-art performance on nearly all
datasets and tasks, even without pre-training (SEL).
2) The large-scale pre-trained model provides a
solid foundation for universal IE. Compared with
baselines, the pre-trained model achieves the per-
formance of the state-of-the-art in most datasets
and improves 1.42% F1 on average. 3) By uni-
versally modeling IE tasks and pre-training using
large-scale datasets, UIE can effectively capture,
share, and transfer IE abilities. Pre-training im-
proves all tasks at the same time, especially events
and sentiment knowledge rarely appear in the pre-
train dataset. It proves that SEL is a unified and
cross-task transferable structured representation for

IE, which allows UIE to share learned capabilities
and information across different and various infor-
mation extraction tasks.

4.3 Experiments on Low-resource Settings

To verify the quick adaptation ability of UIE, we
conducted low-resource experiments on six differ-
ent partitions of the original training sets (1/5/10-
shot, 1/5/10% ratio) across 4 tasks. For the few-
shot experiments, we sample 1/5/10 sentences for
each entity/relation/event/sentiment type in the
training set. To avoid the influence of random sam-
pling, we repeated each experiment 10 times with
different samples and reported their averaged re-
sults as previous works (Huang et al., 2021).

We compare UIE with the following pre-trained
model: 1) T5-v1.1-base is an initial model of UIE-
base; 2) Fine-tuned T5-base is fine-tuned with se-
quence generation tasks such as summarization,
which have been shown effective in many low-
resource NLP tasks (Paolini et al., 2021); 3) UIE-
base w/o SSI is the distant supervised version of
UIE without SSI in the pre-training stage, which is
used to verify the necessity of SSI when adapting
UIE in low-resource settings. Table 3 shows the
performance of 4 IE tasks under 6 low-resource
settings. We observe that: 1) By guiding the gen-
eration using schema-based prompts, SSI is an ef-
fective way for adaptively controlling which to ex-
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Model 1-Shot 5-Shot 10-Shot AVE-S 1% 5% 10% AVE-R

Entity
(CoNLL03)

Ent-F1

T5-v1.1-base 12.73 30.17 58.89 33.93 75.74 85.71 87.70 83.05
Fine-tuned T5-base 24.93 54.85 65.31 48.36 78.51 87.67 88.91 85.03
UIE-base w/o SSI 43.52 64.76 72.47 60.25 81.91 88.41 89.84 86.72
UIE-base 46.43 67.09 73.90 62.47 82.84 88.34 89.63 86.94

Relation
(CoNLL04)

Rel-S F1

T5-v1.1-base 2.35 7.99 25.98 12.11 6.08 32.38 41.87 26.78
Fine-tuned T5-base 4.24 28.16 41.44 24.61 12.89 37.75 49.95 33.53
UIE-base w/o SSI 13.21 40.35 49.47 34.34 24.21 48.70 56.59 43.17
UIE-base 22.05 45.41 52.39 39.95 30.77 51.72 59.18 47.22

Event Trigger
(ACE05-Evt)

Evt Tri F1

T5-v1.1-base 19.40 43.35 50.57 37.77 25.59 49.47 57.18 44.08
Fine-tuned T5-base 30.18 48.31 51.27 43.25 31.08 51.16 57.76 46.67
UIE-base w/o SSI 32.07 48.11 51.00 43.73 32.71 53.20 59.26 48.39
UIE-base 38.14 51.21 53.23 47.53 41.53 55.70 60.29 52.51

Event Argument
(ACE05-Evt)
Evt Arg F1

T5-v1.1-base 2.75 20.21 27.53 16.83 3.59 21.53 30.90 18.67
Fine-tuned T5-base 6.96 25.07 30.96 21.00 7.39 24.97 33.90 22.09
UIE-base w/o SSI 9.31 23.99 30.31 21.20 9.57 27.25 34.18 23.67
UIE-base 11.88 27.44 33.64 24.32 12.80 30.43 36.28 26.50

Sentiment
(16res)

Rel-S F1

T5-v1.1-base 0.04 2.11 12.66 4.94 3.50 27.08 45.97 25.52
Fine-tuned T5-base 6.55 21.06 29.92 19.18 18.72 39.63 51.65 36.67
UIE-base w/o SSI 7.79 17.77 32.07 19.21 19.14 42.76 53.44 38.45
UIE-base 10.50 26.24 39.11 25.28 24.24 49.31 57.61 43.72

Table 3: Low-resource results on end-to-end IE tasks, where AVE-S(hot) and AVE-R(atio) are the averaged per-
formance across 3 few-shot settings and 3 low-resource settings respectively.

tract. Compared with the UIE model w/o SSI, UIE
equipped with SSI achieves improvements of 4.16
and 3.30 on average for n-shot and n-ratio experi-
ments. 2) Our pre-training algorithms can learn
general IE ability rather than capture task-specific
information. Even the pre-training of UIE didn’t
include event and sentiment knowledge, UIE still
achieved significantly better performance on these
tasks compared to the baseline with only a small
number of samples.

4.4 Ablations on Pre-training Tasks

Task Entity Relation Event Sent.

F1 Ent Rel-S Evt-Tri Evt-Arg Rel-S

UIE-base 95.89 75.97 72.63 57.27 74.73
w/o LPair 95.83 75.07 71.20 55.79 74.27
w/o LRecord 95.69 75.68 71.99 57.60 74.43
w/o LText 95.66 75.70 70.89 54.16 74.28

T5-v1.1-base 95.29 72.12 70.50 54.42 72.03

Table 4: Experiment results of UIE-base with dif-
ferent learning tasks on the development set of four
downstream datasets: entity (CoNLL03), relation
(CoNLL04), event (ACE05-Evt) and sentiment (16res).

To investigate the effect of different pre-training
tasks, Table 4 shows ablation experiment results
of UIE-base on four downstream tasks. We can

∆ P P R F

UIE-base
+11.41

79.54 72.63 75.91
w/o rejection 68.13 67.85 66.13

UIE-base w/o SSI
+9.41

78.96 70.50 74.49
w/o rejection 69.55 63.69 66.44

T5-base
+17.95

74.12 61.72 67.33
w/o rejection 56.17 56.00 55.94

T5-v11
+13.88

71.88 51.23 59.67
w/o rejection 58.00 45.04 50.38

Table 5: Experiment results of 10-shot setting on the
CoNLL 03 development set.

see that: (1) The pre-training of SEL (LRecord)
and sequence-to-structure mapping (LPair) is cru-
cial for UIE, and such a structure generation
pre-training is especially useful for small-scale
datasets. In small datasets CoNLL04 and 16res,
adding structure generation pre-training (from T5-
v1.1-base to UIE-base w/o LText), the performance
significantly increases from 72.12 to 75.70 and
72.03 to 74.28. (2) Retrofitting semantic using the
mask language model task (LText) is more impor-
tant for the complex extraction task. In the tasks
with more semantic types such as event extraction
(33 types), the performance drops significantly af-
ter removing the LText task, e.g., 72.63→70.89 and
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57.27→54.16. (3) The mapping pre-training with
LPair enables the model to learn the ability of ex-
traction. After ablating LPair, the extraction ability
of UIE is significantly decreased, i.e., the perfor-
mance on the relation (-0.90), event (-1.43/-1.48),
and sentiment (-0.46) tasks all see large decline.

4.5 Effects of Rejection Noise

This section investigates the effect of the proposed
rejection noise. Table 5 shows the results of the
different pre-trained models on the development
set of CoNLL 03 under the 10-shot setting. The
mis-generated label has a negative influence on the
precision of the proposed generation method lead-
ing to a large number of error extraction results.
The proposed rejection noise is useful for the gen-
eration method, which leads to improvements of
13.16 precision (P) on average.

5 Related Work

Building and pre-training universal models of NLP
tasks has attracted a lot of attention in recent years,
e.g., contextualized representation (Devlin et al.,
2019; Liu et al., 2019), text generation (Lewis et al.,
2020; Raffel et al., 2020), multi-modal (Li et al.,
2021b; Cho et al., 2021), and multi-lingual (Con-
neau et al., 2020; Xue et al., 2021). This paper
proposes and pre-trains the first universal model
for information extraction.

IE is a long-researched area and many classi-
cal neural architectures have been proposed, such
as sequence tagging (Lample et al., 2016; Zheng
et al., 2017; Lin et al., 2019), span classification
(Sohrab and Miwa, 2018; Lin et al., 2018; Wad-
den et al., 2019), and MRC (Levy et al., 2017; Li
et al., 2020; Du and Cardie, 2020). And several
task-specific pre-training techniques are proposed
on these architectures (Mengge et al., 2020; Wang
et al., 2021b; Qin et al., 2021). More relevant to
our work are generation-based IE methods, which
generate text spans via tagging (Straková et al.,
2019; Ma et al., 2019), index pointer (Ren et al.,
2021; Yan et al., 2021b) or copy mechanism (Zeng
et al., 2018), and these methods usually employ
specific classifiers to represent labels. The gener-
ation can be enhanced using label templates (Li
et al., 2021a; Liu et al., 2021; Cui et al., 2021),
schema (Lu et al., 2021; Ahmad et al., 2021), and
augmented language methods (Paolini et al., 2021).

Compared with previous IE studies which focus
on developing more effective task-specialized mod-

els, this paper aims to universally model various
IE tasks in an unified text-to-structure framework,
which can greatly benefit the rapid development,
effective knowledge sharing, and quick adaptation
of IE systems.

6 Conclusion

In this paper, we propose a unified text-to-structure
generation framework – UIE, which can univer-
sally model different IE tasks, adaptively generate
targeted structures, and unfiedly learn general IE
abilities from different knowledge sources. Ex-
perimental results show that UIE achieves very
competitive performance in both supervised and
low-resource settings, which verified its universal-
ity, effectiveness, and transferability. A large-scale
pre-trained text-to-structure model is also released,
which will benefit future studies. For future work,
we want to extend UIE to KB-aware IE tasks such
as entity linking (Cao et al., 2021), and document-
aware IE tasks such as co-reference (Lee et al.,
2017; Lu et al., 2022).
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A Experiment Details

This section describes the details of experiments,
including pre-training and fine-tuning on down-
stream tasks.

A.1 Pre-training Details
Data Construction We use the 20210401 ver-
sion of Wikipedia2 and Wikidata3 dump and Con-
ceptNet4 to construct the pre-train dataset.

For Wikidata and Wikipedia, we use them to col-
lect the tuples Tw = {< Th, eh, r, et, X >}, where
Th is head entity type, eh is head entity, r is rela-
tion, et is tail entity, X is sentence, and the Tw can
be used to constructDpair,Drecord andDtext. Firstly,
we construct entity type dictionary L and relation
dictionary P from Wikidata. Wikidata has more
than 40M entity items and each item has its corre-
sponding properties which indicate the association
between entities. For type dictionary L, we regard
each item as an entity, use the “instance of” and
“subclass of” property values as its corresponding
entity types and consider other properties as the
relation of the entity with others. To learn general
knowledge, all entity types will be retained except
those whose instances are < 5. For the type whose
name is longer than 3 tokens, we use its headwords
as the final type for simplicity, e.g.,“state award
of the Republic of Moldova” is converted to “state
award”. For relation dictionary P , Wikidata has
more than 9K kinds of properties5, we filter out
the properties of external-id, URL, and math types.
In this way, we obtain a collection of 31K types
and retained 1535 properties which can serve as
a solid foundation for universal IE. Secondly, we
collect the mentions of each entity by using its
anchor texts in Wikipedia and the top 3 frequent
noun phrase occurrences of its entry page (Li et al.,
2010). Then for each mention, we identify its en-
tity types by linking it to its Wikidata item’s types.
For each Wikipedia page, we split the text into sen-
tences6 and filter out sentences that have no entities.
Thirdly, we regard each entity as a head entity and
find the associated entities according to its proper-
ties. The associated entity will set as as tail entity,
and the property value will set as association type.
If a head entity has no type, Th will be blank or

2https://www.wikipedia.org/
3https://www.wikidata.org/
4https://conceptnet.io/
5https://www.wikidata.org/wiki/

Wikidata:List_of_properties
6nltk.tokenize.punkt

Algorithm 1 The pre-training process of UIE in a
Python-like style.

# The training details of UIE

function pretraining_process
for step in all_steps do

batch = []
# load ntext unstructured text samples

texts = get_data(Dtext, ntext)
# construct corrupted source text x′ and

# corrupted spans x′′ for each text sample

for x in texts do
x′, x′′ = span_corrupt(x)
batch.extend((None, x′, x′′))

end for
# load nrecord structured record samples

records = get_data(Drecord, nrecord)
for y in records do

batch.extend((None,None, y))
end for
# load npair text-record parallel pairs

text_record_pairs = get_data(Dpair, npair)
# construct meta-schema smeta

# for each text-record pair (x, y)

for (x, y) in text_record_pairs do
s = meta_schema_sample(y)
batch.extend((s, x, y))

end for
# compute loss and backward

LPair, LRecord, LText = UIE(batch)
loss = LPair + LRecord + LText
loss.backward()

end for
end function

# The meta sample of UIE

function meta_schema_sample(y)
# get positive spots and associations

# in the record y

ss+, sa+ = get_schema_from_record(y)
# sample negative spots

ss- = sample_negative_spot(s+)
# sample negative associations

sa- = sample_negative_association(s+)
return ss+ ∪ ss- ∪ sa+ ∪ sa-

end function

has no associated tail entity, r and et will be blank.
To this end, given a sentence, we can construct in-
stances based on the collected tuples Tw by setting
eh and et as INFOSPAN, and assigning Th as SPOT-
NAME, r as ASSONAME. Finally, from Wikipedia
and Wikidata, we construct Dpair, Drecord and Dtext
with 65M instances, respectively. And we keep
50K as the development dataset.

To add common sense knowledge to structured
extraction language (SEL), we extract the tuples Tc
from ConceptNet. ConceptNet contains 48 associ-
ations and has no context or entity types. So we
leave the Th, Tt X blank and finally construct 1M
instances.
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Hyper-parameter

UIE-base UIE-large

Pre-training
Fine-tuning

Pre-training
Fine-tuning

Ent/Rel/Evt Sentiment Low-resource Ent/Rel/Evt Sentiment

Learning Rate 1e-4 1e-4, 3e-4, 5e-4 1e-4 1e-4 5e-5, 1e-4, 3e-4
Rejection Noise pε 0.0 0, 0.1, 0.2 0.1 0.0 0, 0.1, 0.2
Global Batch Size 512 64 16 16 512 32 8

Schedule linear linear linear constant linear linear linear
Warmup Rate 0.06 0.06 0.06 0.0 0.06 0.06 0.06
Epoch/Step 500K step 50 epoch 50 epoch 200 epoch 500K step 50 epoch 50 epoch

Table 6: Hyper-parameters pre-training and fine-tuning for UIE-base and UIE-large.

Hyper-parameter UIE-base UIE-large

# Layers of Encoder 12 24
# Layers of Decoder 12 24
Hidden Dimension 768 1,024

FF hidden size 2,048 2,816
Layer Normalize ε 1e-6 1e-6
# Attention head 12 16

Attention head size 64 64

Table 7: Model architectures.

|Ent| |Rel| |Evt| #Train #Val #Test

ACE04 7 - - 6,202 745 812
ACE05-Ent 7 - - 7,299 971 1,060
CoNLL03 4 - - 14,041 3,250 3,453

ACE05-Rel 7 6 - 10,051 2,420 2,050
CoNLL04 4 5 - 922 231 288

NYT 3 24 - 56,196 5,000 5,000
SciERC 6 7 - 1,861 275 551

ACE05-Evt - - 33 19,216 901 676
CASIE 21 - 5 11,189 1,778 3,208
14res 2 3 - 1,266 310 492
14lap 2 3 - 906 219 328
15res 2 3 - 605 148 322
16res 2 3 - 857 210 326

Table 8: Detailed datasets statistics. |*| indicates the
number of categories, and # is the number of sentences
in the specific subset. We take sentiment types as spe-
cial relation type: positive, negative, and neutral; and
each sentiment triplet holds a aspect and a opinion.

Training Details We first initialize UIE-base and
UIE-large with T5-v1.1-base and T5-v1.1-large
checkpoints (Raffel et al., 2020), and the model
architectures are shown in Table 7. We employ
Adam optimizer (Kingma and Ba, 2015) as the
optimizer with learning rate=1e-4, and use linear
scheduling with a warming up proportion 6%. For
negative spots and associations in the LPair, we ran-
domly select negative spots and associations up
to 10 for each instance, respectively. For LText,
we set the corruption rate to 15% and the average

corrupting span length to 3, following Raffel et al.
(2020). We truncate the concatenated overall length
of schema prompt s and raw text x, as well as the
length of SEL expression y, together to 128 during
pre-training. We train our base model and large
model for both 500K steps with batch size 512 on
8 NVIDIA A100 GPUs.

The detailed pre-training process in a python-
like style is shown in Algorithm 1. In each batch
of pre-training processes for UIE, we construct a
batch of triplets (s, x, y) containing text-record
pairs, text instances, and record instances. In prac-
tice, since 8 GPUs could only run the large model
with an overall batch of 128 (batch=16 on each
GPU), we update the model parameters after accu-
mulating 4 gradients.

A.2 Details of Downstream Tasks

We conduct downstream tasks on 4 IE tasks, 13
datasets, and the detailed statistic of each dataset is
shown in Table 8.

Entity We conduct entity extraction experiments
on three entity datasets: ACE047 (Mitchell et al.,
2005), ACE05-Ent8 (Walker et al., 2006), and
CoNLL03 (Tjong Kim Sang and De Meulder,
2003). For nested entity extraction datasets ACE04
and ACE05-Ent, we follow the pre-processing steps
and data split of previous works (Li et al., 2020).

Relation We conduct experiments on four wide-
used end-to-end relation extraction datasets across
several languages and domains: ACE05-Rel
(Walker et al., 2006), CoNLL049 (Roth and Yih,
2004), NYT10 (Riedel et al., 2010), and SciERC11

(Luan et al., 2018). We follow the preprocessing

7https://catalog.ldc.upenn.edu/LDC2005T09
8https://catalog.ldc.upenn.edu/LDC2006T06
9https://github.com/btaille/sincere

10https://github.com/yubowen-ph/JointER
11http://nlp.cs.washington.edu/sciIE/
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steps and data split of previous works (Taillé et al.,
2020; Yu et al., 2020; Wadden et al., 2019).

Event For ACE05-Evt, we follow the same types,
data splits, and pre-processing steps as Lin et al.
(2020). For CASIE (Satyapanich et al., 2020), we
first remove three incomplete annotated documents
(999, 10001, 10002), then split the remaining doc-
uments into three sets: train/val/test=697/100/200
according to the time order of each document. We
employ the state-of-the-art generation-based event
extraction method TEXT2EVENT (Lu et al., 2021)
as the comparable state-of-the-art system.

Sentiment We conduct sentiment extraction ex-
periments on the sentiment triplet extraction (Xu
et al., 2020) of SemEval 14/15/16 aspect sentiment
analysis datasets. We employ the pre-processing
datasets of the previous work (Yan et al., 2021a)12.

Evaluation We use span-based offset Micro-F1
as the primary metric to evaluate the model:
• Entity: an entity mention is correct if its offsets

and type match a reference entity.
• Relation Strict: relation with strict match, a re-

lation is correct if its relation type is correct and
the offsets and entity types of the related entity
mentions are correct.

• Relation Triplet: relation with boundary match,
a relation is correct if its relation type is correct
and the string of the subject/object are correct.

• Event Trigger: an event trigger is correct if its
offsets and event type matches a reference trigger.

• Event Argument: an event argument is correct
if its offsets, role type, and event type match a
reference argument mention.

• Sentiment Triplet: a correct triplet requires the
offsets boundary of the target, the offsets bound-
ary of the opinion span, and the target sentiment
polarity to be all correct at the same time.

To make a fair comparison with baseline systems,
we mapped the generated string-level extraction
results to offset-level for model evaluation. In de-
tail, we reconstructed the offset of predicted en-
tity/trigger mentions by finding the matched utter-
ance in the input sequence one by one. For argu-
ment mentions in relation and event tasks, we found
the nearest matched utterance to the predicted en-
tity/trigger mention as the predicted offset. This
simple heuristic offset strategy achieves high ac-
curacy. Compared to the string level evaluation,

12https://github.com/yhcc/BARTABSA

Methods PLM 14res 14lap 15res 16res

(Xu et al., 2020) BERT-base 62.40 51.04 57.53 63.83
(Yan et al., 2021a) BART-base 65.25 58.69 59.26 67.62
(Xu et al., 2021) BERT-base 71.85 59.38 63.27 70.26
(Zhang et al., 2021) T5-base 72.16 60.78 62.10 70.10

SSI + SEL
UIE-base 72.55 62.94 64.41 72.86

T5-v1.1-base 71.27 58.69 59.60 70.24

Table 9: Experiment results of UIE-base on the senti-
ment triplet extraction tasks.

Methods PLM P R F

(Wang et al., 2020) BERT-base 91.40 92.60 92.00
(Sui et al., 2020) BERT-base 92.50 92.20 92.30
(Zheng et al., 2021) BERT-base 93.50 91.90 92.70

SSI + SEL T5-v1.1-base 91.94 93.28 92.60

Table 10: Experiment results of SSI and SEL on the
NYT (the joint entity and relation extraction setting).

the error rate of the reported offset level evalua-
tion is less than 0.5%. More complicated mapping
approaches are left as future work.

Table 6 shows the detailed hyper-parameters for
downstream tasks.

A.3 Comparison of UIE-base
This section introduces detailed experiment results
of UIE-base.

Table 9 shows the performance of UIE-base
and the state-of-the-art systems on the four aspect-
based sentiment analysis datasets. As shown in
Table 9, the proposed SEL and SSI also have
strong portability to sentiment triplets extraction,
which achieves the competitive performance with
the state-of-the-art with task-specific architectures.
With the unified pre-training, UIE-base achieves an
improvement of 3.24 on average over T5-v1.1-base
across four datasets. This verifies the proposed uni-
fied pre-training algorithms can learn general IE
ability even the sentiment knowledge is rarely in
the pre-training stage.

Table 10 shows the performance of SEL-SSI
with the T5-v1.1-base for NYT. Due to the high
overlapping of NYT and pre-trained data, we didn’t
conduct the experiment of UIE on NYT. Even with-
out pre-training, SSI + SEL still achieved the state-
of-the-art performance on NYT. This is because
of the flexible generation architecture and the uni-
versal SEL expression, UIE can naturally handle
entity overlap problems.
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Task Dataset Structural Schema Instructor

Entity ACE04/05-Ent <spot> facility <spot> geographical social political <spot> location <spot>
organization <spot> person <spot> vehicle <spot> weapon

Entity CoNLL03 <spot> location <spot> miscellaneous <spot> organization <spot> person

Relation ACE05-Rel <spot> facility <spot> geographical social political <spot> location <spot>
organization <spot> person <spot> vehicle <spot> weapon <asoc> agent artifact
<asoc> general affiliation <asoc> organization affiliation <asoc> part whole
<asoc> personal social <asoc> physical

Relation CoNLL04 <spot> location <spot> organization <spot> other <spot> people <asoc> kill
<asoc> live in <asoc> located in <asoc> organization in <asoc> work for

Relation NYT <spot> location <spot> organization <spot> person <asoc> administrative divi-
sions <asoc> advisors <asoc> capital <asoc> children <asoc> company <asoc>
contains <asoc> country <asoc> ethnicity <asoc> founders <asoc> geographic
distribution <asoc> industry <asoc> location <asoc> major shareholder of
<asoc> major shareholders <asoc> nationality <asoc> neighborhood of <asoc>
people <asoc> place founded <asoc> place lived <asoc> place of birth <asoc>
place of death <asoc> profession <asoc> religion <asoc> teams

Relation SciERC <spot> generic <spot> material <spot> method <spot> metric <spot> other
scientific term <spot> task <asoc> compare <asoc> conjunction <asoc> evaluate
for <asoc> feature of <asoc> hyponym of <asoc> part of <asoc> used for

Event ACE05-Evt <spot> acquit <spot> appeal <spot> arrest jail <spot> attack <spot> born <spot>
charge indict <spot> convict <spot> declare bankruptcy <spot> demonstrate
<spot> die <spot> divorce <spot> elect <spot> end organization <spot> end
position <spot> execute <spot> extradite <spot> fine <spot> injure <spot>
marry <spot> meet <spot> merge organization <spot> nominate <spot> pardon
<spot> phone write <spot> release parole <spot> sentence <spot> start organi-
zation <spot> start position <spot> sue <spot> transfer money <spot> transfer
ownership <spot> transport <spot> trial hearing <asoc> adjudicator <asoc>
agent <asoc> artifact <asoc> attacker <asoc> beneficiary <asoc> buyer <asoc>
defendant <asoc> destination <asoc> entity <asoc> giver <asoc> instrument
<asoc> organization <asoc> origin <asoc> person <asoc> place <asoc> plaintiff
<asoc> prosecutor <asoc> recipient <asoc> seller <asoc> target <asoc> vehicle
<asoc> victim

Event CASIE <spot> capabilities <spot> common vulnerabilities and exposures <spot> data
<spot> databreach <spot> device <spot> discover vulnerability <spot> file
<spot> geopolitical entity <spot> malware <spot> money <spot> number
<spot> organization <spot> patch <spot> patch vulnerability <spot> payment
method <spot> person <spot> personally identifiable information <spot> phish-
ing <spot> purpose <spot> ransom <spot> software <spot> system <spot>
time <spot> version <spot> vulnerability <spot> website <asoc> attack pat-
tern <asoc> attacker <asoc> capabilities <asoc> common vulnerabilities and
exposures <asoc> compromised data <asoc> damage amount <asoc> discov-
erer <asoc> issues addressed <asoc> number of data <asoc> number of victim
<asoc> patch <asoc> patch number <asoc> payment method <asoc> place
<asoc> price <asoc> purpose <asoc> releaser <asoc> supported platform <asoc>
time <asoc> tool <asoc> trusted entity <asoc> victim <asoc> vulnerability
<asoc> vulnerable system <asoc> vulnerable system owner <asoc> vulnerable
system version

Sentiment 14/15/16-res <spot> aspect <spot> opinion <asoc> negative <asoc> neutral <asoc> positive

Sentiment 14-lap <spot> aspect <spot> opinion <asoc> negative <asoc> neutral <asoc> positive

Table 11: Structured schema instructor for each dataset (we use <spot> and <asoc> rather than [spot] and [asoc]
for better visualization).
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Task Dataset Structured Extraction Language

Entity ACE04/ACE05-Ent ((geographical social political: Filipino)
(person: Filipino President)
(person: Filipino President Ramos)
(person: the six people awarded Magasaysay award)
(person: Magasaysay))

Entity CoNLL03 ((organization: EU)
(miscellaneous: German)
(miscellaneous: British))

Relation ACE05-Rel ((geographical social political: European)
(geographical social political: troika
(part whole: European))
(geographical social political: itself)
(geographical social political: Washington))

Relation CoNLL04 ((location: Rome
(located in: Lazio))
(location: Lazio)
(location: Naples
(located in: Campania))
(location: Campania))

Relation NYT ((person: William F. Weld
(place lived: New York))
(location: New York))

Relation SciERC ((method: HMMs)
(other scientific term: weak duration constraints
(feature of: HMMs)))

Event ACE05-Evt ((transport: heading
(artifact: family)
(destination: new hampshire)
(origin: lakeland)
(vehicle: plane)))

Event CASIE ((phishing: email scam
(trusted entity: a Netflix notification)
(victim: subscribers)
(trusted entity: the streaming service))
(file: a Netflix notification)
(person: subscribers)
(system: the streaming service))

Sentiment 14/15/16-res ((aspect: staff
(negative: horrible))
(opinion: horrible))

Sentiment 14lap ((opinion: good)
(aspect: battery life
(positive: good)))

Table 12: Structured extraction language expressions for each dataset.
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