
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
Volume 1: Long Papers, pages 1554 - 1576

May 22-27, 2022 c©2022 Association for Computational Linguistics

Online Semantic Parsing
for Latency Reduction in Task-Oriented Dialogue

Jiawei Zhou«∗ Jason Eisner3 Michael Newman3

Emmanouil Antonios Platanios3 Sam Thomson3

«Harvard University 3Microsoft Semantic Machines
«jzhou02@g.harvard.edu

3{jason.eisner,mike.newman,
anthony.platanios,samuel.thomson}@microsoft.com

Abstract

Standard conversational semantic parsing
maps a complete user utterance into an exe-
cutable program, after which the program is
executed to respond to the user. This could
be slow when the program contains expensive
function calls. We investigate the opportunity
to reduce latency by predicting and executing
function calls while the user is still speaking.
We introduce the task of online semantic pars-
ing for this purpose, with a formal latency re-
duction metric inspired by simultaneous ma-
chine translation. We propose a general frame-
work with first a learned prefix-to-program pre-
diction module, and then a simple yet effec-
tive thresholding heuristic for subprogram se-
lection for early execution. Experiments on
the SMCalFlow and TreeDST datasets show
our approach achieves large latency reduction
with good parsing quality, with a 30%–63% la-
tency reduction depending on function execu-
tion time and allowed cost.

1 Introduction

In task-oriented dialogue systems, a software agent
typically translates a user’s intent into a program,
executes it to query information sources (e.g., find
a person in the user’s contact list) or effect external
actions (e.g., schedule a meeting or send an email),
then communicates the results back to the user. If
an agent waits to begin this process until the user
finishes speaking, there is a noticeable lag before
the user receives a response. The complex intents
in the datasets SMCalFlow (Semantic Machines
et al., 2020) and TreeDST (Cheng et al., 2020),
for example, can be slow to execute, nesting up to
7 slow function calls that cannot be parallelized.
Inspired by simultaneous machine translation, we
ask: How much can latency be reduced by inter-
preting and executing early, before the user finishes
speaking?

∗ Work performed during a research internship at Mi-
crosoft Semantic Machines.

FindPerson

“Barack
Obama”

Create
Event subject

“pool
party”

start DateAt
Time

Tomorrow

AM 9

attendees contains FindPerson…

Yield

Create
Event…

Utterance
End

Add a pool party with Barack Obama for tomorrow at 9 : 00 AM

Execution
End

Utterance
Start

Figure 1: A possible execution timeline for “Add a
pool party with Barack Obama for tomorrow at 9:00
AM”. FindPerson was predicted and executed af-
ter the token “Obama.” CreateEvent was pre-
dicted and executed after the token “9” (AM was
guessed). Yield was also predicted after the to-
ken “9”, but could not begin until CreateEvent fin-
ished. Because FindPerson and CreateEvent
started execution before the end of the utterance, the
top-level node Yield was able to finish early, and
overall latency was reduced. Gray nodes have near-
instantaneous execution, and do not contribute to the
timeline. Edge labels were omitted to save space.

In general, an agent could begin speculatively ex-
ecuting any subprogram at any instant while a user
is speaking, based on partial results from automatic
speech recognition (ASR) and the current state of
execution. Take Figure 1 for a hypothetical exam-
ple. If partial programs can be identified while the
user is still speaking, they can be pre-executed and
the final response to the user could be expedited.

This is an online decision problem: decisions to
invoke particular functions on particular arguments
can be made before all information has arrived.
Thus, we refer to it as online semantic parsing.
This requires spotting user intents that have already
been expressed (without the help of aligned training
data) and—even harder—anticipating user intents
that have not been expressed yet. To assess an
online semantic parser, we propose reporting the
reduction in latency of the agent’s final response
(relative to an offline agent), as measured by real
or simulated execution of the function calls.

1554

We propose two approaches. Our first system
is built on a neural graph-based semantic parser,
which is specially trained to parse an incomplete
utterance into a full program. Our second system
is a pipeline that uses a language model (LM) to
predict how a user will finish the incomplete ut-
terance, and then parses the predicted completed
utterance. In either case, a subprogram is selected
for execution as soon as the semantic parser pre-
dicts that it has a high probability of being in the
correct parse. Experiments on both SMCalFlow
and TreeDST datasets show that both approaches
achieve high latency reduction with a small number
of excess function calls. We make three main con-
tributions: First, we propose a new task for online
semantic parsing and a realistic evaluation metric
for latency reduction. Second, we present a neu-
ral graph-based semantic parser that matches or
surpasses the state-of-the-art on SMCalFlow and
TreeDST, and extend it to support two novel ap-
proaches to map utterance prefixes to programs.
Third, we show our approaches achieve estimated
latency reductions of 30%–63%, setting up a good
benchmark for future explorations.

2 Background

Simultaneous Translation Our task is inspired
by the online version of machine translation (MT),
known as simultaneous MT, which aims to trans-
late a source sentence in real time into a target
language (Wahlster, 1993). The latency of such a
system is assessed by counting how many source
tokens it has observed before it produces the first,
second, third, etc. target token. These counts are ag-
gregated into an overall latency metric—a measure
either of “waiting,” such as Average Proportion
(AP) (Cho and Esipova, 2016) and Consecutive
Wait (CW) (Gu et al., 2017), or of “lagging” (in
comparison with an ideally paced system), such as
Average Lagging (AL) (Ma et al., 2019) and Dif-
ferentiable Average Lagging (DAL) (Cherry and
Foster, 2019; Arivazhagan et al., 2019). We discuss
the relationship of our proposed metric to DAL and
other existing metrics in Section 4.3.

Approaches to simultaneous MT include explicit
source word prediction (Grissom II et al., 2014),
discrete decision sequence modeling with reinforce-
ment learning (Satija and Pineau, 2016; Gu et al.,
2017), latency-controllable wait-k systems with
fixed scheduling (Ma et al., 2019), learned adap-
tive scheduling (Arivazhagan et al., 2019), and re-

translation (Arivazhagan et al., 2020a,b).

Executable Programs as Semantic Graphs Se-
mantic parsing maps natural language to structured
meaning representations (MRs) that can be exe-
cuted or reasoned about. These include general-
purpose MRs (Clark and Curran, 2007; Banarescu
et al., 2013), database queries (Tang and Mooney,
2001; Zettlemoyer and Collins, 2005; Yu et al.,
2018), and source code in general-purpose pro-
gramming languages (Yin and Neubig, 2017), etc.
Despite formal differences, these representations
can generally be represented as graphs. We will
focus on the dataflow graph (Semantic Machines
et al., 2020), which represents an executable pro-
gram in response to a user’s utterance in a task-
oriented dialogue system (Zettlemoyer and Collins,
2009). Each function invocation is represented by a
node, whose label specifies the function, and whose
outgoing1 edges indicate its arguments, which may
be constants or other function invocations.

Preliminaries Formally, we represent a program
as a labeled directed acyclic graph G = (V,E),
where each node v ∈ V represents a function invo-
cation or a constant value, and each directed edge
u

`−→ v ∈ E represents that v fills the ` argument
of the function u. Positional arguments are given
edge labels arg0, arg1, etc. We use “graph” and
“program” interchangeably hereon.

In task-oriented dialogue systems, an executable
program G is generated in response to a user ut-
terance u with possible context c from the dia-
logue history. The utterance is a token sequence
u = (u1, u2, . . . , u|u|) and the context is also en-
coded as a sequence c = (c1, c2, . . . , c|c|).

We use u[m] to denote the mth prefix presented
to the online system, and tm to denote the time at
which it is presented. t denotes the time at which
the complete utterance u is presented. In our ex-
periments, each u[m] is some prefix of the gold
utterance u. A real system could use the noisy
partial outputs returned by an ASR system from
successively longer speech prefixes. Each partial
ASR output u[m] is returned at some time tm ∈ R.
It may append one or more words to the previous
output u[m−1], and may also revise some words.

An offline system models p(G | c,u), predict-
ing the program only after the user utterance u has
been fully received. But our online system aims

1Our description has reversed the edge directions from
Semantic Machines et al. (2020).

1555

to simultaneously parse u as the user utters it, so
as to pre-execute subprograms to reduce the final
response time. Our setting differs from simultane-
ous MT in an important way: we currently do not
show the user any output until their utterance is
complete. So speculatively executing a predicted
subprogram, silently, does not commit to using it
in the final result. Our parse of u[m−1] therefore
does not constrain our parse of u[m].2 Indeed, in
this work, we re-parse each prefix from scratch.

We distinguish between the time or times at
which a function invocation is selected by the sys-
tem for execution, the time it is actually executed,
and the time it returns. A selected function invo-
cation is not actually executed until its arguments
have returned from execution. But by that point,
the system may have deselected it (and so will
not execute it), since the system’s predictions may
have changed based on additional input.

3 Methods

After each successive utterance prefix u[m], we
perform the following two steps (see Figure 2):

1. propose: Predict the complete graphG from
only the current prefix u[m] and context c.

2. select: Select the graph nodes (function invo-
cations) that are worth executing at this time.
This is an update that replaces the former list
of selected nodes; so any formerly selected
nodes that were still waiting for their argu-
ments have lost their chance to execute until
they are selected again.3

In the first step, we currently search for the single
most probable G. More generally, one could con-
struct an estimate of the distribution p(G | c,u[m]).
In the second step, we select nodes that are proba-
bly correct, using a heuristic approximation to their
marginal probability. In future work, selecting a
node should also consider the predicted execution
cost and the predicted effect on overall latency.

An alternative design would collapse propose
and select into a single step that directly predicts
some graph fragments to execute. But as gold frag-
ments are not defined, this would require a more
complicated training objective. Predicting com-
plete programs may also yield more accurate frag-
ments, by making latent structure explicit.

2The corresponding setup in simultaneous MT is re-
translation (Arivazhagan et al., 2020b; Han et al., 2021).

3Ongoing executions of formerly selected nodes will be
allowed to finish, however.

We first describe our general approach for graph
prediction (Section 3.1), followed by two different
approaches for propose (Section 3.2–3.3), and
finally our heuristic for select (Section 3.4).

3.1 Graph Generation Model

We encode any graph G as a sequence a =
(v1, e1, v2, e2, . . . , v|V |, e|E|). Each element of a
can be regarded as an action that adds a node or a
sequence of edges to the graph. Note that the sub-
graphs selected in Section 3.4 below will not nec-
essarily correspond to contiguous substrings of a.

This representation is borrowed from the action-
pointer mechanism in Zhou et al. (2021a), but they
are operating with graph-utterance alignments in
a transition-based model, whereas we develop a
more general alignment-free model. Each vk is
a node, representing a constant value or function
invocation, while each ek is a subsequence that lists
all edges between vk and earlier nodes. At training
time, graphs are converted to action sequences to
enable us to train a sequence-to-sequence model.
At inference time, the model outputs the action
sequence, from which the graph can be constructed.

In our action sequence representation, each node
and each edge in G corresponds to one token in a,
with the only exception being string literals, which
can span multiple action tokens. A token of a string
literal can appear directly as an action or can be
copied from the jth token of the source via a spe-
cial COPYINPUT(j) action. The details of the for-
mulation of the action sequence and the model
parametrization can be found in Appendix A.

For an offline parser, the model learns p(G |
c,u) =

∏|a|
n=1 p(an | c,u,a1:n−1), where the in-

put to the encoder is the concatenation of the con-
text and the full utterance. We call this standard
setup FULLTOGRAPH.

3.2 Approach 1: PREFIXTOGRAPH

The FULLTOGRAPH model achieves very strong
performance when trained and tested on the stan-
dard offline benchmark (see Table 1). We could
simply run this trained model on utterance prefixes
for our propose step, but that would suffer from
a train-test mismatch. Thus, we replace it with a
PREFIXTOGRAPH model p(G | c,u[m]) that we
explicitly train to map from each prefix of u to
the complete graph. Every ((c,u), G) pair in the
original training data is multiplied into many train-
ing pairs ((c,u[m]), G). Notice that we always use

1556

B

D

C

E

A - B - (A,B) - D - (B,D) - E - (B,E) - C -
- (C,E) - (A,C)

A

B

D

E

D E

A - B - (A,B) - D - (B,D) - E - (A,E)

A

actions

full utterance: o�ine

graph

B C

X

A - B - (A,B) - D - (B,D) - X - (B,X) - C -
- (A,C) - E - (C,E)

A Z

actionsactions

utterance pre�x: 2utterance pre�x: 1

graphgraph selection selection

Y

D

C

E

A - Y - (A,Y) - D - (Y,D) - E - (Y,E) - C -
- (C,E) - (A,C) - Z - (Z,C)

A

actions

utterance pre�x: 3

graph selection

Figure 2: Our framework for simultaneous semantic parsing. Graph nodes and edges are represented as actions in
the target (following a depth-first traversal order). Left is the baseline FULLTOGRAPH scenario. For the online
scenario, at each prefix position, our model first proposes a full graph which is then pruned based on predicted
probabilities. The surviving (selected) nodes, in black, can be executed once their children have returned.

When is my dentist appointment ?

Yield Find ?~= “dentist appointment”subject:arg0 :arg0 :arg0 :arg0

When is my dentist appointment ?

When is my dentist <mask>

When is my dentist <mask>

Yield Find ?~= “dentist <mask>”subject:arg0 :arg0 :arg0 :arg0

source

target

source

target

source

target

full-to-graph

pre�x-to-graph

LM-complete

Figure 3: Example of source utterance/prefix and target
training data for different models. The red link marks
copying from source.

the full graph as the target, rather than attempting
to predict only the part of the graph that aligns to
the prefix. Hence our method requires no align-
ment. It tries to predict any function calls that are
likely given the prefix, even if they have not been
explicitly mentioned yet.

A problem with this setup is that the target graph
is often unreachable because it contains string liter-
als that have not been seen yet. This happens when
the gold action sequence includes COPYINPUT(j)
and j is a position beyond the current prefix. To
handle such cases, we modify the target action se-
quence to instead copy the final position of the
prefix, where we have appended a special MASK

token as a placeholder for all future tokens. Such a
modified training example is shown in the second
row of Figure 3. In this way, we disable hallucina-
tion of free text by the model, while keeping the
graph structure intact with the MASK placeholder.

3.3 Approach 2: LMCOMPLETE then
FULLTOGRAPH

Alternatively, propose can first predict the full ut-
terance from the prefix, and use FULLTOGRAPH

to parse this completed utterance.4 Specifically, we
4To avoid training-test mismatch, we could have retrained

FULLTOGRAPH to predict the gold graphs from these noisily

fine-tune a pretrained BART model (Lewis et al.,
2020) so that it can map an utterance prefix (ter-
minated with the MASK symbol, just as in BART’s
pre-training recipe) to the full utterance (freely hal-
lucinating content words). As before, the training
data includes one example for each prefix of each
utterance, so the fine-tuning objective is to maxi-
mize the sum of log p(u | c,u[m]) over all prefixes
u[m] of all utterances u.

3.4 Subgraph Selection

Let Ĝm be the graph proposed from u[m]. We
wish to execute only its probable subgraphs. Re-
call that we predicted Ĝm by attempting to max-
imize

∏|a|
n=1 p(an | c,u[m],a1:n−1) (approach 1)

or p(u | c,u[m]) ·
∏|a|

n=1 p(an | c,u,a1:n−1) (ap-
proach 2). The probability of a subgraph could be
obtained by marginalizing over all possible action
sequences (and also all completions u in approach
2), which could be approximated by sampling from
the models. For simplicity and efficiency, we in-
stead approximate the probability of a subgraph
of Ĝm by the product of the conditional proba-
bilities of the predicted actions that actually built
that subgraph5—that is, each subgraph of the pre-
dicted Ĝm was built by a subset of the predicted ac-
tions a. This essentially approximates the marginal
probability of the relevant action subsequence by
its conditional probability given preceding actions.
In practice we found that this simplified heuristic
works relatively well, with action-level likelihoods

completed utterances, instead of from the gold utterances.
However, this learning problem might be too difficult. Instead,
we will consider the uncertainty of completion during select.

5In approach 2, this includes the probabilities of the pre-
dicted unseen tokens of u. We cannot limit to the tokens that
contributed to the subgraph because all tokens potentially did
so: we do not have an alignment. Thus, when p(u | c,u[m])
is small, all subgraphs will be regarded as uncertain.

1557

being decently calibrated (Section 6.4).
We then select the nodes v ∈ Ĝm such that

the subgraph rooted at v has probability above a
constant threshold τ .6 There are three exceptions:
(1) Of course we do not select any node whose
subgraph we have previously executed (after pre-
dicting and selecting it from a previous prefix).
That is unnecessary: we already know the result or
are waiting for it. (2) Until the utterance is com-
plete, we do not select any nodes whose function
invocations have side effects, as they are unsafe to
pre-execute. (In particular, we do not show final
results to the user.) (3) But once the utterance is
complete, we select all unexecuted nodes of the
final predicted graph, Ĝ, since now they are both
safe and necessary to execute.

4 Evaluation

To quantify the latency improvements for online se-
mantic parsing methods, we propose a new metric,
final latency reduction.

4.1 Program Execution Process

We assume that functions can be executed, in
parallel, as soon as their arguments are available.
Given a graph G, any node v ∈ G is the root of an
executable subgraph. Let g(v) be the time that this
subgraph is selected.7 Let e(v) ≥ 0 be the time it
takes to execute just the function at v on its given
arguments.8 The return time r(v) of node v is

r(v) = max[g(v), max
w∈children(v)

r(w)] + e(v) (1)

where children(v) is the set of nodes that return the
arguments of v. This is a recursive definition—a
node can only be executed after it is selected and all
its children (if any) have finished executing—and

6As Section 3 noted, this strategy is not optimal. All sub-
graphs with the same probability do have the same risk of
being useless work, but they do not all represent the same
amount of useless work: some incorrect subgraphs require
more computation. And they have the same probability of
being useful work, but they are not all equally useful: some
correct subgraphs can be postponed for longer without affect-
ing the overall latency, because they will run more quickly
or will not be needed as soon. In both cases, it would be ap-
propriate to raise the subgraph’s threshold and wait for more
evidence that the subgraph is actually correct.

7More precisely, the final time that this happens; it may
have previously been selected but not executed (section 3).

8e(v) could be modeled as a random variable with some
distribution learned from data, so that FLR becomes a random
variable whose expectation we would report. In our simu-
lated experiments we model it by a constant ∆ for all “slow”
function calls, and 0 otherwise.

so r(v) ≥ r(w) for w ∈ children(v). The program
G finishes executing at time9

r(G) = max
v∈G

r(v) (2)

We assume that our own system’s computation
time is negligible, so g(v) = tm if the subgraph
rooted at v was predicted and selected from u[m].
In our fully simulated experiments, we set tm =
m, which measures time in units of input tokens.
These practices follow the simultaneous machine
translation literature (Cho and Esipova, 2016; Gu
et al., 2017; Ma et al., 2019; Cherry and Foster,
2019). In Section 5, we will also explore using
real-time measurements to define tm.

4.2 Final Latency Reduction
We compute the time at which the system com-
pletes executing the gold graph G∗, namely r(G∗).
Thus, the system cannot achieve a good comple-
tion time simply by predicting a small graph. The
system’s final latency is r(G∗) − t. Note that
r(G∗) ≥ t, since at least the root node that shows
final results to the user has to wait until the utter-
ance is complete (section 3.4).

If the system’s final prediction Ĝ 6= G∗, then
there may be nodes v ∈ G∗ whose subgraph was
never executed. Then r(G∗) ≥ r(v) = ∞, prop-
erly speaking—but we keep it finite by defining
g(v) = t for these nodes v. That is, for purposes
of latency evaluation, we generously consider the
worst case for v ∈ G∗ to be that v is selected for
execution when the utterance is complete (rather
than that v is never executed).

We also compute a baseline: ro(G∗) is the com-
pletion time r(G∗) achieved by the offline parser,
which is a batch system that sees no prefixes before
seeing the full utterance at time t. It is found by set-
ting g(v) = t for all v ∈ G∗ in equations (1)–(2).

We now define our final latency reduction

FLR = ro(G
∗)− r(G∗) ≥ 0 (3)

An oracle system would have g(v) = 0 for all
v ∈ G∗, achieving the best possible final latency of
max(ro(G

∗) − t, t) and the best possible FLR of
min(t, ro(G

∗)− t). This is the FLR upper bound.

4.3 Relationship to Existing Metrics
FLR focuses on how much sooner the user can
see results from the target program after the user

9In the literature on job-shop scheduling (Applegate and
Cook, 1991), the quantity r(G) is known as the makespan.

1558

has finished speaking. This is different from si-
multaneous MT, whose focus is how far the tar-
get is lagging behind while the user is speaking.
Therefore, instead of measuring the average over
different subprograms, our metric attends to the
final completion of the whole program. This al-
lows flexibility in execution order, compared to
the translation scenario, where target generation
always follows a linear order.

We share with other simultaneous generation ap-
plications the assumption that the model inference
time is negligible, compared to slower spoken input
and program execution (which may involve system
and database interactions).

Separate from the final form of our FLR met-
ric, our latency measurement of subprogram return
time r(v) can be seen as a generalization of the tar-
get time measurement in DAL (Cherry and Foster,
2019) for simultaneous MT. Our program execu-
tion time is analogous to the target speaking time
in DAL, but DAL operates in a narrower spectrum
with a linear chain structured target, and a fixed
constant estimate for the target speaking rate.

5 Experimental Setup

Data We make use of two recently released large-
scale conversational semantic parsing datasets, SM-
CalFlow v2.0 (Semantic Machines et al., 2020)
and the version of TreeDST (Cheng et al., 2020)
released by Platanios et al. (2021). Table 1 and
Appendix B provide statistics about the datasets.

Model Training We use the training splits
of these datasets to train our FULLTOGRAPH,
PREFIXTOGRAPH, and LMCOMPLETE models,
and evaluate them on the corresponding validation
data. From each training example (u, G), we ex-
tract prefixes of different relative lengths, obtaining
(u0%, G), (u10%, G), . . . , (u90%, G), (u100%, G).10

The prefix-graph pairs of the same percentage
length are then stacked to form different training
sets, denoted as {prefix0%, prefix10%, . . .,
prefix90%, prefix100%}. The FULLTOGRAPH

parser is trained only using the prefix100% data.
For our PREFIXTOGRAPH parser, we experiment
with training on different mixtures of the prefix
datasets, to quantify the effect on parsing accuracy.
For LMCOMPLETE we train on all pairs (u′, G)
where u′ is a prefix of u of any length (not limited
to the above percentages).

10We omit the context c here as it remains the same.

Model Details All of our parsers are based on
the Transformer architecture (Vaswani et al., 2017),
adapted to the graph action sequence (see Ap-
pendix A). The LMCOMPLETE is based on fine-
tuning the pre-trained BART large model (Lewis
et al., 2020). One turn of dialogue history is in-
cluded as the context c. We use greedy decoding
for all models. See more details in Appendix E.11

Model Evaluation We directly evaluate the
parsers FULLTOGRAPH and PREFIXTOGRAPH

using exact match accuracy (Semantic Machines
et al., 2020; Cheng et al., 2020; Platanios et al.,
2021). We also report a finer-grained metric, graph
tuple match (Anderson et al., 2016): the F1 score
of the set of labeled nodes and labeled edges in
the predicted parse. We evaluate LMCOMPLETE

using BLEU score (Papineni et al., 2002).

Online Parsing Evaluation For online parsing,
we simulate the program execution procedure
described in Section 4.1, presenting the system
with all prefixes of u in order: that is, u[m] =
(u1, . . . , um). We experiment with different prob-
ability thresholds τ . For each τ , we report the ben-
efit of our approach as FLR, versus the cost as the
number of excess function calls (on top of gold).

When computing FLR, we consider two defi-
nitions of tm: an intrinsic one with everything
measured by the number of source tokens (tm =
|u[m]|), and an extrinsic one with real utterance
speaking times in milliseconds. For the latter we
recorded human speech data and timing informa-
tion of the ASR output for 300 randomly sampled
examples from SMCalFlow data.12 When comput-
ing FLR, we also assume e(v) = ∆ for all slow
function nodes v,13 and sweep over the constant
∆ to see its effects, where ∆ is measured either in
number of source tokens or in milliseconds.

6 Results and Analysis

6.1 FULLTOGRAPH and LMCOMPLETE

We evaluated our offline parser FULLTOGRAPH

and utterance completion model LMCOMPLETE

on all prefixes of all utterances in validation data.

11Our code is available at http://aka.ms/simulsp.
12More details in Appendix C. We also extended this eval-

uation to the full validation data (Appendix D), by using a
linear model of tm fit on recorded speech.

13We follow descriptions in https://github.
com/microsoft/task_oriented_dialogue_
as_dataflow_synthesis to identify the set of slow
functions. For fast functions, we assume e(v) = 0.

1559

http://aka.ms/simulsp
https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis
https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis
https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis

Dataset SMCalFlow TreeDST

utterances in training 121,024 121,652
utterances in validation 13,496 22,910

Best reported accuracy= 80.4 88.3
FULLTOGRAPH accuracy 80.7 90.8

Prefix BLEU (no completion) 38.04 37.54
LMCOMPLETE BLEU 53.51 55.93

Table 1: Dataset statistics (more in Table 3), offline
parser exact-match accuracy, and language model pre-
fix completion performance on corresponding valida-
tion data. = both from Platanios et al. (2021).

0 20 40 60 80 100
Relative Prefix Length (%)

0

20

40

60

80

Ex
ac

t M
at

ch
 (%

)

prefix100% (full)
prefix90%+
prefix80%+
prefix70%+
prefix60%+
prefix50%+

prefix40%+
prefix30%+
prefix20%+
prefix10%+
prefix0%+

0 20 40 60 80 100
Relative Prefix Length (%)

0

20

40

60

80

100

Tu
pl

e
M

at
ch

 F
1

(%
)

prefix100% (full)
prefix90%+
prefix80%+
prefix70%+
prefix60%+
prefix50%+

prefix40%+
prefix30%+
prefix20%+
prefix10%+
prefix0%+

Figure 4: PREFIXTOGRAPH performance on SM-
CalFlow validation data of varying prefix lengths, by
models trained with varying prefix data. E.g., the
model with “prefix80%+” is trained on the prefix data
with 80%+ relative lengths. We show exact match ac-
curacy on top and graph tuple match F1 scores at the
bottom. The larger the area under the curve, the better.

The parser achieves state-of-the-art accuracy on
both validation sets. Completing the sentences us-
ing our fine-tuned BART model achieves a rather
high corpus BLEU score, much higher than if we
do not complete them. These models provide a
strong foundation for our online parsing methods.

6.2 PREFIXTOGRAPH Quality

In Figure 4 we plot the PREFIXTOGRAPH parser
performance when tested on different prefix
lengths,14 with models trained with different mix-

14This is similar to the latency-BLEU curve in Grissom II
et al. (2014) for simultaneous machine translation.

tures of the prefix training sets. Parsing perfor-
mance of course degrades for shorter prefixes, but
degrades most rapidly for the offline parser (the pre-
fix100% curve). Gradually mixing in shorter prefix
data does not affect offline parsing results much
(the scores at prefix length 100%, on the top-right),
but significantly lifts the curve for earlier prefixes,
making the parser better at anticipating. The trend
is more obvious under the graph tuple match met-
ric, suggesting that PREFIXTOGRAPH succeeds at
predicting useful subgraphs from short prefixes.

6.3 Final Latency Reduction and Cost
We obtain FLR vs. cost tradeoff curves by vary-
ing the threshold τ in our method. Results on the
two datasets are shown in Figure 5 under the in-
trinsic source-timing setup, and results with ex-
trinsic source-timing are shown in Figure 6. The
offline approach, FULLTOGRAPH, operates with
no latency reduction and no extra calls. The ideal
system would have high latency reduction with few
excessive function calls, thus the upper left region
is desired. We compare our proposed methods
with the baseline that directly applies the offline
parser on utterance prefixes, which under-performs
our methods across all evaluation setups. Between
the PREFIXTOGRAPH15 and LMCOMPLETE +
FULLTOGRAPH approaches, we observe that: 1)
on SMCalFlow the latter performs better in most
cost regions, but on TreeDST they are much closer;
2) when the function execution time ∆ is longer,
PREFIXTOGRAPH tends to show more advantages
in low-cost regions, which is perhaps due to the
fact that its early prediction is better when the ex-
ecution time dominates the source speaking time.
Results are similar with the real utterance timing
information. Overall, we reduce the final latency
by 30%–63%. In fast execution regimes, we ob-
tain 50%–65% of the “best possible” reduction
(achieved by the oracle), and 30%–50% in slow exe-
cution regimes. Although the FLR metric does not
consider model inference time, the LMCOMPLETE

+ FULLTOGRAPH approach does have higher in-
ference time, since it requires two steps per prefix.

6.4 Analysis and Discussion
PREFIXTOGRAPH Parsing Example In Fig-
ure 7, we show the model log-probabilities of indi-
vidual actions. In (a), the model guesses a complete
program structure, but one that finds the next event

15We show results of the model trained with prefix30%+
data, as different training setups result in similar curves.

1560

0 2 4 6 8 10
Average # Excessive Function Calls

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

FL
R

[SMCalFlow] Execution Time: 0.2

Best Possible Reduction: 0.37

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 1 2 3 4 5
Average # Excessive Function Calls

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

FL
R

[SMCalFlow] Execution Time: 1.0

Best Possible Reduction: 1.85

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 1 2 3 4
Average # Excessive Function Calls

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Av
er

ag
e

FL
R

[SMCalFlow] Execution Time: 3.0

Best Possible Reduction: 4.91

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 2 4 6 8 10
Average # Excessive Function Calls

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

FL
R

[TreeDST] Execution Time: 0.2

Best Possible Reduction: 0.45

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 1 2 3 4 5 6
Average # Excessive Function Calls

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Av

er
ag

e
FL

R

[TreeDST] Execution Time: 1.0

Best Possible Reduction: 2.21

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 1 2 3 4 5
Average # Excessive Function Calls

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
e

FL
R

[TreeDST] Execution Time: 3.0

Best Possible Reduction: 5.61

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

Figure 5: Intrinsic latency reduction vs. cost as we vary the selection threshold τ , with timing measured by number
of soure tokens. Columns show different function execution times ∆. The upper left region is desired for better
tradeoff. The top row shows results on SMCalFlow dataset, and bottom row is on TreeDST dataset, both on the
whole validation data. The average number of gold “slow” function calls (footnote 8) is 1.93 and 2.28, respectively.

0 2 4 6 8
Average # Excessive Function Calls

0

10

20

30

40

Av
er

ag
e

FL
R

(m
s)

[SMCalFlow] Execution Time: 50 ms

Best Possible Reduction: 91.83 ms

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 1 2 3 4 5
Average # Excessive Function Calls

0

50

100

150

200

250

300

350

Av
er

ag
e

FL
R

(m
s)

[SMCalFlow] Execution Time: 500 ms

Best Possible Reduction: 909.50 ms

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 1 2 3 4
Average # Excessive Function Calls

0

100

200

300

400

500

Av
er

ag
e

FL
R

(m
s)

[SMCalFlow] Execution Time: 1000 ms

Best Possible Reduction: 1633.17 ms

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

Figure 6: Extrinsic latency reduction vs. cost as we vary the selection threshold τ , with real utterance timing from
ASR outputs for 300 examples from SMCalFlow validation data. Columns show different function execution times
∆. The upper left region is desired for better tradeoff. There are on average 1.84 “slow” gold function calls.

instead of finding the supervisor’s name. The un-
certainty of this guess is reflected in the low proba-
bilities of the actions, and our simple thresholding
heuristic can filter out the incorrect subgraphs. But
once the new word “supervisor” arrives in (b), the
model anticipates the correct program even before
seeing the final tokens, and all actions have higher
scores. Appendix F traces a complete example.

Action-level Probability Calibration In Fig-
ure 8 we plot the actual probability of a node’s
being in the true graph against the (binned) model
probability of the action that predicted it. Perfectly
calibrated model probabilities would fit the dotted
diagonal. Ours are slightly overconfident, likely
because they are conditional (on action history),

whereas we are treating them as marginal. But they
roughly follow the true likelihoods, which empiri-
cally justifies our use of action-level probabilities
to assess subgraph probabilities.16

Latency Reduction per Function We inspect
the absolute latency reduction (allowing an ear-
lier finish time than the user utterance) for each
function type in Figure 9. The largest gains are
obtained for RecipientWithNameLike and
FindManager, likely because invocations of
these functions tend to have less structure, often
having a string literal as their only argument.

16Section 3.4 proposed a product of action probabilities. We
found that min worked equally well, and used min throughout
our experiments (Sections 6.3–6.4).

1561

Yield

:a
rg
0

:a
rg
0

:arg1

:ty
pe

-a
rg
0

FindNumNextEvent

EmptyStructConstraint

1L

Event

(a) Prefix: What is my

:a
rg
0

:a
rg
0

:a
rg
0

Yield

FindManager

toRecipient

CurrentUser

(b) Prefix: What is my supervisor

Figure 7: PREFIXTOGRAPH’s action-level scores and
parsed programs for two prefixes of What is my super-
visor ’s name ? Gray nodes have lower action-level
scores (whereas in Figure 2, gray nodes were the roots
of subgraphs with lower scores).

0.0 0.2 0.4 0.6 0.8 1.0
Action-level Probability

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

in
 Tr

ue
 G

ra
ph

Figure 8: Action-level probability calibration plot from
the PREFIXTOGRAPH model, over all prefix data.

7 Related Work

An incremental algorithm for computing the func-
tion f updates f(x) efficiently each time x grows.
In this spirit, incremental parsing updates a partial
parse or parse chart each time a new word arrives
(e.g. Earley, 1970; Huang and Sagae, 2010; Ambati
et al., 2015; Damonte et al., 2017). An online algo-
rithm may commit to possibly suboptimal decisions
before it has seen all the input, as in simultaneous
MT or online sequence-to-sequence transduction
(Jaitly et al., 2016; Yu et al., 2016). By analogy, an
online parser might be expected to start printing the
parse early. However, when we speak of online se-
mantic parsing in this paper, we really mean online
semantic interpretation—parsing into a program
and executing that program—and our algorithm
starts executing early. It commits early to incurring
execution costs, but not to any parse (we rapidly
reparse each prefix from scratch) nor to any output

0 1 2 3 4 5
Time Unit

FindEventWrapperWithDefaults
Yield

DeletePreflightEventWrapper
DeleteCommitEventWrapper
CreatePreflightEventWrapper
CreateCommitEventWrapper

RecipientWithNameLike
UpdatePreflightEventWrapper
UpdateCommitEventWrapper

FindManager
EventAttendance

RecipientAvailability
FindReports

Fu
nc

tio
n

Ca
ll

offline latency
latency reduction

Figure 9: Average latency reduction in SMCalFlow
from PREFIXTOGRAPH parsing, when ∆ = 1 token
and τ allows 3 excessive calls. The gray bar shows
how long the offline system takes to return a value for
this type of function call once the utterance is complete.
The pink bar shows the reduction in this latency.

(only side-effect-free functions execute early).
Ma et al. (2019) directly trained a model to gen-

erate from source prefixes for simultaneous MT.
However, they used a prefix-to-prefix paradigm
whereas we trained a prefix-to-full model, in which
more aggressive anticipation is not blocked by tar-
get reordering. Also, we allow updating the target
history by reparsing at each prefix. We masked
the unseen source with copying to avoid excessive
hallucination in program prediction. Arivazhagan
et al. (2020b) adopted a similar idea but only used
a crude heuristic to mask the last k target tokens.

More recently, Deng et al. (2021) also explored
parsing an utterance prefix into a full program (in
their case an SQL query). They focus on saving
user effort in formulating questions, while we focus
on reducing latency. Accordingly, our task does not
stop at predicting the full program; we also decide
which subprograms to execute and when.

8 Conclusion

We propose a new task, online semantic parsing,
with an accompanying formal evaluation metric, fi-
nal latency reduction. We show that it is possible to
reduce latency by 30%–63% using a strong graph-
based semantic parser—either trained to parse pre-
fixes directly or combined with a pre-trained lan-
guage model for utterance completion—followed
by a simple heuristic for subgraph selection. Our
general framework can work with different types of
parsers and executable semantic representations. In
future work, the subgraph selection decisions could
be made by a learned model that considers the cost
and benefit of each call, instead of using a fixed
threshold. The parser could also condition on the
execution status, instead of operating separately.

1562

Ethical Considerations

Our paper describes an enabling technology that
can expedite a dialogue system’s response for a
better user experience. It could also assist people
who have trouble interacting with the system by
reducing their effort in completing the query utter-
ance.

Caution must be taken when pre-executing pro-
gram calls before the user intent is fully revealed,
as there may be an unacceptable cost to mistak-
enly executing state-changing programs (for ex-
ample, sending emails or scheduling meetings)
without user confirmation. In this work, we only
pre-execute “safe” function calls, which retrieve or
compute information without changing the state of
the environment.

Another concern, if training on real user data, is
leaking private information to other users. This
is especially pressing when predicting with in-
complete intent, as the model is encouraged to
hallucinate, and may hallucinate information that
it has memorized from other users’ data. For
PREFIXTOGRAPH, we use an explicit MASK token
for unrevealed future tokens, and force the model
to copy MASK to the predicted program instead
of freely generating text. We could easily com-
pletely remove the model’s ability to hallucinate
free text. LMCOMPLETE, on the other hand, can
and will leak text from the training data directly
into an utterance completion, which can then be
copied into a string literal in the predicted program.
Thus PREFIXTOGRAPH may be closer to suitable
for production use.

References
Bharat Ram Ambati, Tejaswini Deoskar, Mark John-

son, and Mark Steedman. 2015. An incremental al-
gorithm for transition-based CCG parsing. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
53–63, Denver, Colorado. Association for Computa-
tional Linguistics.

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. SPICE: Semantic proposi-
tional image caption evaluation. In European confer-
ence on computer vision, pages 382–398. Springer.

David Applegate and William Cook. 1991. A Compu-
tational Study of the Job-Shop Scheduling Problem.
INFORMS Journal on Computing, 3(2):149–156.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, Chung-Cheng Chiu, Semih Yavuz,

Ruoming Pang, Wei Li, and Colin Raffel. 2019.
Monotonic infinite lookback attention for simulta-
neous machine translation. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 1313–1323, Florence,
Italy. Association for Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Wolfgang
Macherey, and George Foster. 2020a. Re-translation
versus streaming for simultaneous translation. In
Proceedings of the 17th International Conference
on Spoken Language Translation, pages 220–227,
Online. Association for Computational Linguistics.

Naveen Arivazhagan, Colin Cherry, Isabelle Te, Wolf-
gang Macherey, Pallavi Baljekar, and George Fos-
ter. 2020b. Re-translation strategies for long
form, simultaneous, spoken language translation.
In ICASSP 2020-2020 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP), pages 7919–7923. IEEE.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Jianpeng Cheng, Devang Agrawal, Héctor
Martínez Alonso, Shruti Bhargava, Joris Driesen,
Federico Flego, Dain Kaplan, Dimitri Kartsaklis,
Lin Li, Dhivya Piraviperumal, Jason D. Williams,
Hong Yu, Diarmuid Ó Séaghdha, and Anders
Johannsen. 2020. Conversational semantic parsing
for dialog state tracking. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 8107–8117,
Online. Association for Computational Linguistics.

Colin Cherry and George Foster. 2019. Thinking Slow
about Latency Evaluation for Simultaneous Ma-
chine Translation. arXiv:1906.00048 [cs]. ArXiv:
1906.00048.

Kyunghyun Cho and Masha Esipova. 2016. Can neu-
ral machine translation do simultaneous translation?
arXiv preprint arXiv:1606.02012.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG
and log-linear models. Computational Linguistics,
33(4):493–552.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for Abstract Mean-
ing Representation. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 536–546, Valencia, Spain. Association
for Computational Linguistics.

1563

https://doi.org/10.3115/v1/N15-1006
https://doi.org/10.3115/v1/N15-1006
https://link.springer.com/chapter/10.1007/978-3-319-46454-1_24
https://link.springer.com/chapter/10.1007/978-3-319-46454-1_24
https://doi.org/10.1287/ijoc.3.2.149
https://doi.org/10.1287/ijoc.3.2.149
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/P19-1126
https://doi.org/10.18653/v1/2020.iwslt-1.27
https://doi.org/10.18653/v1/2020.iwslt-1.27
https://ieeexplore.ieee.org/document/9054585
https://ieeexplore.ieee.org/document/9054585
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://doi.org/10.18653/v1/2020.emnlp-main.651
https://doi.org/10.18653/v1/2020.emnlp-main.651
http://arxiv.org/abs/1906.00048
http://arxiv.org/abs/1906.00048
http://arxiv.org/abs/1906.00048
https://arxiv.org/abs/1606.02012
https://arxiv.org/abs/1606.02012
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.1162/coli.2007.33.4.493
https://doi.org/10.1162/coli.2007.33.4.493
https://aclanthology.org/E17-1051
https://aclanthology.org/E17-1051

Naihao Deng, Shuaichen Chang, Peng Shi, Tao Yu,
and Rui Zhang. 2021. Prefix-to-SQL: Text-to-
SQL Generation from Incomplete User Questions.
arXiv:2109.13066 [cs]. ArXiv: 2109.13066.

J. Earley. 1970. An efficient context-free parsing algo-
rithm. Communications of the ACM, 13(2):94–102.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until
the final verb wait: Reinforcement learning for si-
multaneous machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1342–
1352, Doha, Qatar. Association for Computational
Linguistics.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to translate in real-time
with neural machine translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1053–1062, Valencia, Spain.
Association for Computational Linguistics.

Hyojung Han, Sathish Indurthi, Mohd Abbas Zaidi,
Nikhil Kumar Lakumarapu, Beomseok Lee, Sangha
Kim, Chanwoo Kim, and Inchul Hwang. 2021.
Faster Re-translation Using Non-Autoregressive
Model For Simultaneous Neural Machine Transla-
tion. arXiv:2012.14681 [cs]. ArXiv: 2012.14681
version: 2.

Liang Huang and Kenji Sagae. 2010. Dynamic pro-
gramming for linear-time incremental parsing. In
Proceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1077–
1086, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Navdeep Jaitly, Quoc V Le, Oriol Vinyals, Ilya
Sutskever, David Sussillo, and Samy Bengio. 2016.
An online sequence-to-sequence model using partial
conditioning. Advances in Neural Information Pro-
cessing Systems, 29.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 7871–7880, Online. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv:1907.11692 [cs]. ArXiv:
1907.11692.

Mingbo Ma, Liang Huang, Hao Xiong, Renjie Zheng,
Kaibo Liu, Baigong Zheng, Chuanqiang Zhang,

Zhongjun He, Hairong Liu, Xing Li, Hua Wu,
and Haifeng Wang. 2019. STACL: Simultane-
ous Translation with Implicit Anticipation and Con-
trollable Latency using Prefix-to-Prefix Framework.
arXiv:1810.08398 [cs]. ArXiv: 1810.08398 ver-
sion: 2.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics
(Demonstrations), pages 48–53, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the Association for Computational Linguistics.

Emmanouil Antonios Platanios, Adam Pauls, Subhro
Roy, Yuchen Zhang, Alexander Kyte, Alan Guo,
Sam Thomson, Jayant Krishnamurthy, Jason Wolfe,
Jacob Andreas, and Dan Klein. 2021. Value-
agnostic conversational semantic parsing. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 3666–
3681, Online. Association for Computational Lin-
guistics.

Harsh Satija and Joelle Pineau. 2016. Simultaneous
machine translation using deep reinforcement learn-
ing. Abstraction in Reinforcement Learning Work-
shop, ICML 2016.

Semantic Machines, Jacob Andreas, John Bufe, David
Burkett, Charles Chen, Josh Clausman, Jean Craw-
ford, Kate Crim, Jordan DeLoach, Leah Dorner, Ja-
son Eisner, Hao Fang, Alan Guo, David Hall, Kristin
Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Sm-
riti Jha, Dan Klein, Jayant Krishnamurthy, Theo
Lanman, Percy Liang, Christopher H. Lin, Ilya
Lintsbakh, Andy McGovern, Aleksandr Nisnevich,
Adam Pauls, Dmitrij Petters, Brent Read, Dan Roth,
Subhro Roy, Jesse Rusak, Beth Short, Div Slomin,
Ben Snyder, Stephon Striplin, Yu Su, Zachary
Tellman, Sam Thomson, Andrei Vorobev, Izabela
Witoszko, Jason Wolfe, Abby Wray, Yuchen Zhang,
and Alexander Zotov. 2020. Task-oriented dialogue
as dataflow synthesis. Transactions of the Associa-
tion for Computational Linguistics, 8:556–571.

Lappoon R. Tang and Raymond J. Mooney. 2001. Us-
ing Multiple Clause Constructors in Inductive Logic
Programming for Semantic Parsing. In Machine
Learning: ECML 2001, pages 466–477, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International

1564

http://arxiv.org/abs/2109.13066
http://arxiv.org/abs/2109.13066
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://aclanthology.org/E17-1099
https://aclanthology.org/E17-1099
http://arxiv.org/abs/2012.14681
http://arxiv.org/abs/2012.14681
http://arxiv.org/abs/2012.14681
http://www.aclweb.org/anthology/P10-1110
http://www.aclweb.org/anthology/P10-1110
https://dl.acm.org/doi/pdf/10.5555/3157382.3157664
https://dl.acm.org/doi/pdf/10.5555/3157382.3157664
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1810.08398
http://arxiv.org/abs/1810.08398
http://arxiv.org/abs/1810.08398
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2021.acl-long.284
https://doi.org/10.18653/v1/2021.acl-long.284
https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.1162/tacl_a_00333
https://link.springer.com/chapter/10.1007/3-540-44795-4_40
https://link.springer.com/chapter/10.1007/3-540-44795-4_40
https://link.springer.com/chapter/10.1007/3-540-44795-4_40
https://dl.acm.org/doi/10.5555/3295222.3295349
https://dl.acm.org/doi/10.5555/3295222.3295349

Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000–6010, Red Hook, NY,
USA. Curran Associates Inc.

Wolfgang Wahlster. 1993. Verbmobil. In Grundlagen
und anwendungen der künstlichen intelligenz, pages
393–402. Springer.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Lei Yu, Jan Buys, and Phil Blunsom. 2016. Online seg-
ment to segment neural transduction. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1307–1316,
Austin, Texas. Association for Computational Lin-
guistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang,
and Dragomir Radev. 2018. Spider: A large-
scale human-labeled dataset for complex and cross-
domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
3911–3921, Brussels, Belgium. Association for
Computational Linguistics.

Luke Zettlemoyer and Michael Collins. 2009. Learn-
ing context-dependent mappings from sentences to
logical form. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural
Language Processing of the AFNLP, pages 976–984,
Suntec, Singapore. Association for Computational
Linguistics.

Luke S. Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial grammars.
In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, UAI’05, page
658–666, Arlington, Virginia, USA. AUAI Press.

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-
tudillo, and Radu Florian. 2021a. AMR parsing with
action-pointer transformer. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 5585–5598, On-
line. Association for Computational Linguistics.

Jiawei Zhou, Tahira Naseem, Ramón Fernandez As-
tudillo, Young-Suk Lee, Radu Florian, and Salim
Roukos. 2021b. Structure-aware fine-tuning of
sequence-to-sequence transformers for transition-
based AMR parsing. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 6279–6290, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

1565

https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/D16-1138
https://doi.org/10.18653/v1/D16-1138
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://aclanthology.org/P09-1110
https://aclanthology.org/P09-1110
https://aclanthology.org/P09-1110
https://dl.acm.org/doi/10.5555/3020336.3020416
https://dl.acm.org/doi/10.5555/3020336.3020416
https://dl.acm.org/doi/10.5555/3020336.3020416
https://aclanthology.org/2021.naacl-main.443.pdf
https://aclanthology.org/2021.naacl-main.443.pdf
https://aclanthology.org/2021.emnlp-main.507
https://aclanthology.org/2021.emnlp-main.507
https://aclanthology.org/2021.emnlp-main.507

A Graph Generation Model

We encode the graph G as a sequence a =
(v1, e1, v2, e2, . . . , v|V |, e|E|). This enables us to
train a sequence-to-sequence model to predict G.
Each element of a can be regarded as an action that
adds a vertex or edge to the graph. Each vk is a
vertex, representing a constant value or function in-
vocation, while each ek is a subsequence that lists
all edges between vk and earlier vertices.

The vertices v1, . . . , v|V | are enumerated in the
same order that they appear in the dataset, which is
a top-down DFS order.17 The edges in each ek are
sorted such that edges from/to more recent vertices
come first, i.e., an edge vj

`−→ vk (or vj
`←− vk)

precedes an edge vi
`′−→ vk (or vi

`′←− vk) if i < j.
Borrowing from the action-pointer mechanism

(Zhou et al., 2021a,b), an edge vi
`−→ vk in

the subsequence ek is represented in the form
RIGHTARC(n, `) where n is the position in a

such that an = vi. Similarly vi
`←− vk in

the subsequence ek is represented in the form
LEFTARC(n, `).

Thus, each node and each edge in G cor-
responds to one token in a. As an ex-
ception, a vertex vi that is labeled with a
string literal is encoded as multiple tokens,
e.g., <str> lunch meeting </str> (and
the vertex’s position n is taken to be the position of
the initial <str> token). Within such a string lit-
eral, we include tokens of the form COPYINPUT(j)
action wherever possible, meaning to copy token j
of the source sequence. Constructing the program
graph from the actions is straightforward—read
off the nodes and edges, and append them to the
graph. This provides an efficient and compact se-
quential representation of the graph, with structural
well-formedness maintained. An example of the
program graph (derived from the original Lispress
format18) and the action sequence is shown in Ta-
ble 2.

We model the action sequence generation
with a Transformer encoder-decoder network
(Vaswani et al., 2017), augmented with two pointer
networks—target-side pointing for the edges and
source-side pointing for the copied node values.
See Appendix E for details. Similar to Zhou et al.

17We experimented with other vertex orders, including
bottom-up, but found that this made little difference.

18https://github.com/microsoft/task_
oriented_dialogue_as_dataflow_synthesis/
blob/master/README-LISPRESS.md.

(2021a,b), we do not introduce new modules for
the pointer networks but directly re-purpose the
decoder self-attention head and source-attention
head respectively. The actions, edge pointers and
copy pointers are supervised together during train-
ing and are decoded and combined during infer-
ence to reconstruct the complete actions and thus
graphs. For each parser, we model p(G | u, c) =∏|a|

n=1 p(an | c,u,a1:n−1), where the source to the
encoder is the concatenation of the context and the
full utterance. We decode greedily, incorporating
both edge pointers (as in Zhou et al. (2021a)) and
source-copy pointers into the action space.

B Prefix Data Length Distribution

We provide basic dataset statistics in Table 3. We
further display the length distribution of the com-
plete utterances and their prefixes in Figure 10, for
both SMCalFlow and TreeDST training data.

C Real Utterance Timing from ASR

To obtain real utterance speaking timing informa-
tion for Figure 6, we randomly sampled 300 ut-
terances from the SMCalFlow validation data and
recruited two volunteers to each read a portion of
the utterances with their normal voice and pace.
An ASR system was run to process the 300 record-
ings and output word segmentations with timing
information. The audio was processed using off-
the-shelf models in the Microsoft real-time ASR
system.19 Running with the appropriate flags ex-
poses word-level time markings, which allows us
to factor recognition latency into the overall com-
putation.

As the ASR outputs are associated with tokens
recognized from the human voice, they are not fully
consistent with the original utterance text. We map
the ASR output tokens back to the original utter-
ance tokens with the dynamic time warping (DTW)
algorithm using edit distance as the distance metric.
This gives a sequence of segmentation boundaries
of the ASR output tokens, where each segmentation
contains zero, one, or a few consecutive words with
recorded ASR timing information, that align with
one token in the original utterance. The times are
then mapped back to the original utterance based
on the DTW alignments. On average, each word
of the original utterance takes 0.386 seconds to

19See documentation at https://docs.microsoft.
com/en-us/azure/cognitive-services/
speech-service/spx-overview.

1566

https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis/blob/master/README-LISPRESS.md
https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis/blob/master/README-LISPRESS.md
https://github.com/microsoft/task_oriented_dialogue_as_dataflow_synthesis/blob/master/README-LISPRESS.md
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/spx-overview
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/spx-overview
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/spx-overview

[Lispress]
(let

(x0
(Execute

(refer
(extensionConstraint

(^(Event)
EmptyStructConstraint)))))

(Yield
(UpdateCommitEventWrapper

(UpdatePreflightEventWrapper
(Event.id x0)
(Event.duration_?

(?= (addDurations
(Event.duration x0)
(toHours 1))))))))

:typ
e-arg0

:arg0

:arg0

:arg0

:ar
g0

:arg0

:arg0

:arg0 :arg1

:arg0

:arg0

:arg0 :arg1

:arg0

:arg0

EmptyStructConstraint

Event

extensionConstraint

refer

Execute

Event.id

Event.duration

1

toHours

addDurations

?=

Event.duration_?

UpdatePreflightEventWrapper

UpdateCommitEventWrapper

Yield

[Actions] (top-down generation order)
Yield UpdateCommitEventWrapper -RA-(0,:arg0) UpdatePreflightEventWrapper
-RA-(1,:arg0) Event.duration_? -RA-(3,:arg1) ?= -RA-(5,:arg0) addDurations
-RA-(7,:arg0) toHours -RA-(9,:arg1) 1 -RA-(11,:arg0) Event.duration -RA-(9,:arg0)
Event.id -RA-(3,:arg0) Execute -RA-(17,:arg0) -RA-(15,:arg0) refer -RA-(19,:arg0)
extensionConstraint -RA-(22,:arg0) Event EmptyStructConstraint -LA-(26,:type-arg0)
-RA-(24,:arg0)

Table 2: Graph representation and action sequence of the program formulated by our model. -RA- repre-
sents RIGHTARC and -LA- represents LEFTARC. For example, -RA-(1,:arg0) constructs an edge between
UpdatePreflightEventWrapper (the most recent node) and UpdateCommitEventWrapper (the node
previously generated at action index 1), with the edge direction being rightward (from previous node to current
node) and the label being :arg0. The original Lispress format18 is shown in the upper left. The action sequence
is obtained by converting the Lispress into a graph (upper right) and traversing the graph.

Dataset SMCalFlow TreeDST

utterances in training 121,024 121,652
utterances in validation 13,496 22,910
Avg. length of full utterance u 8.5 8.6
Avg. length of target sequence a 22.5 39.1

Table 3: Dataset statistics.

speak. We show the distribution of the voice dura-
tion of words in Figure 11. For the corresponding
experiments, the real utterance timing of the 300
utterances is used in the execution process for each
prefix (whereas the function execution times ∆ are
still simulated).

D FLR Evaluation with Extrinsic
Timings

To simulate realistic speaking rates on the full SM-
CalFlow and TreeDST corpora, we took a private
corpus of 1000 spoken utterances with ASR out-
put, and fit a linear model predicting word du-

ration based on the number of characters in the
word. The fit model had the form len(word) *
0.05502014s + 0.11375083s. Using this
model, we were then able to simulate speaking
rates on our full text-only data.

For slow function calls (see footnote 8), we
swept over various execution times ∆ in millisec-
onds. Under the extrinsic setting, the FLR vs. cost
tradeoff curves for various ∆ values are shown in
Figure 12.20 Our proposed methods consistently
outperform the baseline with the FULLTOGRAPH

directly applied on the utterance prefix. Overall we
achieved 30%–63% final latency reduction relative
to the offline parser, depending on ∆ and τ .

20Its top row is similar to Figure 6, but it evaluates on the
full SMCalFlow validation dataset, by using simulated utter-
ance timings. Also, it shows a different range of ∆ values. The
bottom row evaluates on the full TreeDST validation dataset.
Thus, Figure 12 evaluates on the same data as Figure 5.

1567

0 20 40 60 80
Utterance Length

0

2000

4000

6000

8000

10000

12000
Co

un
t

[SMCalFlow] Utterance Length Histogram

0 20 40 60 80
Prefix Length

0

20000

40000

60000

80000

100000

120000

Co
un

t

[SMCalFlow] Prefix Length Histogram

0% 10%20%30%40%50%60%70%80%90%100%
Relative Prefix Length

0

10

20

30

40

50

60

70

80

le
ng

th

[SMCalFlow] Length Distribution per % Prefix Length

0 10 20 30 40 50
Utterance Length

0

2000

4000

6000

8000

10000

12000

Co
un

t

[TreeDST] Utterance Length Histogram

0 10 20 30 40 50
Prefix Length

0

20000

40000

60000

80000

100000

120000

Co
un

t

[TreeDST] Prefix Length Histogram

0% 10%20%30%40%50%60%70%80%90%100%
Relative Prefix Length

0

10

20

30

40

50

le
ng

th

[TreeDST] Length Distribution per % Prefix Length

Figure 10: Utterance and prefix length distribution for SMCalFlow (top row) and TreeDST (bottom row) training
data. The left column shows the length distribution of the complete utterances, the middle column shows the
length distribution of the extracted all possible prefixes, and the right column shows the length distribution for
each relative prefix length group (corresponding to our different prefix training subsets {prefix0%, prefix10%, . . .,
prefix90%, prefix100%} mentioned in Section 5). Tokenization is considered in all lengths.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Word Duration (seconds)

0

50

100

150

200

Co
un

t

Word Speaking Time Histogram

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Word Duration (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Word Speaking Time CDF

Figure 11: Utterance word voice duration distribution from real ASR outputs, collected from normal human read-
ing voices on 300 randomly sampled utterances in SMCalFlow validation data (2118 words in total, with 0 duration
tokens such as punctuation marks removed). The left shows the histogram with the smooth kernel density estima-
tion curve, and the right shows the CDF curve (both with zoomed x-axis to ignore outliers for better visualization).
The average voice duration from ASR for a word is 0.386 seconds, and the 0%, 25%, 50%, 75%, 100% quantiles
are 0.03, 0.20, 0.34, 0.52, 6.16 seconds, respectively.

E Implementation Details

All of our parsers are based on a 6-layer-4-head
Transformer architecture (Vaswani et al., 2017),
with 256 hidden dimensions and 512 dimensions
for fully connected layers, without additional mod-
ules. Pointers for edges are modeled by a self-
attention head on the decoder’s top layer, and the

source copy mechanism is modeled by a cross-
attention head of the penultimate decoder layer.
The LMCOMPLETE model is based on fine-tuning
the pre-trained BART large model (Lewis et al.,
2020). The context c includes 1 previous turn of
dialogue history, consisting of the user utterance
and agent response. We encode the source (c fol-
lowed by u) with the fixed RoBERTa (Liu et al.,

1568

0 2 4 6 8 10
Average # Excessive Function Calls

0

10

20

30

40

50

60

Av
er

ag
e

FL
R

(m
s)

[SMCalFlow] Execution Time: 50 ms

Best Possible Reduction: 92.52 ms

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 2 4 6 8
Average # Excessive Function Calls

0

20

40

60

80

100

120

Av
er

ag
e

FL
R

(m
s)

[SMCalFlow] Execution Time: 100 ms

Best Possible Reduction: 185.04 ms

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 1 2 3 4 5
Average # Excessive Function Calls

0

50

100

150

200

250

300

350

Av
er

ag
e

FL
R

(m
s)

[SMCalFlow] Execution Time: 500 ms

Best Possible Reduction: 910.49 ms

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 2 4 6 8 10
Average # Excessive Function Calls

0

10

20

30

40

50

60

70

Av
er

ag
e

FL
R

(m
s)

[TreeDST] Execution Time: 50 ms

Best Possible Reduction: 112.68 ms

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 2 4 6 8
Average # Excessive Function Calls

0

20

40

60

80

100

120

140

Av
er

ag
e

FL
R

(m
s)

[TreeDST] Execution Time: 100 ms

Best Possible Reduction: 225.36 ms

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

0 1 2 3 4 5 6
Average # Excessive Function Calls

0

100

200

300

400

500

Av
er

ag
e

FL
R

(m
s)

[TreeDST] Execution Time: 500 ms

Best Possible Reduction: 1065.30 ms

offline full-to-graph
prefix with full-to-graph
LM-completion + full-to-graph
prefix-to-graph

Figure 12: Extrinsic latency reduction vs. cost as we vary the selection threshold τ , with utterance timing estimated
as a linear function of length in characters. Columns show different execution times ∆. The upper left region is de-
sired for better tradeoff. The top row shows results on SMCalFlow dataset, and bottom row is on TreeDST dataset,
both on the whole validation data. There are on average 1.93 and 2.28 “slow” gold function calls, respectively.

2019) large model for contextualized embeddings
(averaged over all RoBERTa layers) to be input
to our encoder. For both parsers, FULLTOGRAPH

and PREFIXTOGRAPH, we train with the Adam
optimizer with batch size 2048 tokens and gradient
accumulation of 4 steps. Learning rate is 5e−4 for
FULLTOGRAPH and 1e−4 for PREFIXTOGRAPH

as there is more data, both with 4000 warm-up
steps using the inverse-sqrt scheduling scheme
(Vaswani et al., 2017). They are trained for 50
epochs and we use the last checkpoint for all evalu-
ations without model averaging and ensemble de-
coding. Training takes about 3 hours on a single
Nvidia Titan RTX GPU with 24 GB memory with
floating-point 16 mixed precision training for the
FULLTOGRAPH parser, and the time increases pro-
portionally for PREFIXTOGRAPH with the prefix
data size when combining different prefix lengths.
For the LMCOMPLETE model, we fine-tune BART-
large for 12 epochs and take the best checkpoint,
following the standard recipe from FAIRSEQ. For
all the models, we use greedy decoding at inference
time. All the models are implemented and trained
with the FAIRSEQ toolkit (Ott et al., 2019).

F Example of Parsing and Execution

Table 4 illustrates the behavior of our
PREFIXTOGRAPH system on an utterance
from the SMCalFlow dataset, showing the detailed
parsing and execution process for each step. The
utterance timings in milliseconds were obtained
from real ASR output on a human-spoken version
of the utterance. The program graphs are printed
in the Lispress format.18

We implicitly add an extra root node to the top
of every graph G, representing the function that
shows the result to the user. Since this function has
side effects, it can only be selected for execution
after time t, when the utterance is complete (see
Section 3.4). As a result, the graph’s completion
time r(G) ≥ t. However, this root node is not
shown in our graphs—and in this dataset, the re-
maining nodes are safe since any other side effects
(such as adding the requested event to the calendar)
are actually deferred until the root node executes.
As a result, all nodes that are shown in Table 4 can
be selected at any time.

At each time when a new prefix token arrives,
our model first proposes a full graph and then
uses a thresholding heuristic to select more proba-
ble subgraphs (marked as blue). The threshold is
τ = exp(−1.0) ≈ 0.368 in this example. In our

1569

experiments, the score of a subgraph is computed
as the minimum action-level probability among all
actions that construct the subgraph (footnote 16).
Hence if a larger subgraph is selected, all its sub-
graphs must have also been selected.

F.1 Simulated Execution Process
The program execution process (simulated) hap-
pens in the background as the user speaks. At the
end of the execution the benefit (final latency re-
duction) is known, along with its cost (count of
excessive function calls). We review here some de-
tails about the execution process that were already
explained in the main paper:

• We assume a constant execution time ∆ for all
non-trivial (“slow”) function calls. All other
graph nodes are assumed to have 0 execution
time.

• The execution of a selected function must wait
until all its dependent functions have finished
executing.21

• Identical subgraphs that are predicted at dif-
ferent times are treated as the same: there is
no need to execute both of them.22 (E.g., the
predicted graphs after seeing the token friday
and after seeing the token for are considered
to be the same graph.)

• The selected set is refreshed every time when
a new prefix u[m] arrives, as the new prefix
provides new information that may change
the predicted subgraphs or their probabilities.
Therefore, unexecuted calls in the old selec-
tion will be discarded: e.g., after the token
night arrives, the previously selected functions
are no longer selected in the new predicted
graph.

21In future work, however, we should relax this requirement
to allow short-circuit evaluation. A node can sometimes be
executed when some but not all of its children have returned.
Examples include if-then-else once the boolean condition has
returned, a multiplication when one argument has returned
with a zero value, or any function when one argument has
returned with an exception that is not caught by the func-
tion. (Exceptions can be regarded as special return values, as
described by Semantic Machines et al. (2020).)

22A predicted node v ∈ Ĝm has a well-defined return
value provided that it is the root of a sub-DAG. Any other
predicted node that is the root of an identical sub-DAG can
be rapidly identified, for example by the technique of hash
consing, allowing it to share this return value. (Ordinarily
v is indeed the root of a sub-DAG; indeed, the decoder can
optionally ensure this by disallowing edge actions that would
create a cycle in Ĝm, on the grounds that G∗ is acyclic.)

• Despite this, ongoing executions are never
interrupted or canceled.

• Our method does not affect the accuracy of
the semantic parser, but only its latency. This
is because our final result is derived from the
root node of our parse of the complete utter-
ance u, just as it was for the offline parser.23

The earlier parses based on prefixes are only
used for speculative pre-execution of subpro-
grams, whose results will only be used if they
appear in the final parse.

• However, the FLR metric does reflect accu-
racy to some degree. Recall that it is com-
puted on the gold program calls. In the ex-
ample, our parser predicts the gold graph G∗

successfully—but when it does not, our FLR
metric will still require the system to execute
any remaining nodes of G∗ once the utterance
completes. A consequence is that FLR gener-
ally suffers somewhat when the parser is inac-
curate, since subgraphs of G∗ that are never
predicted cannot be pre-executed to reduce
final latency; indeed, they must be correctly
predicted before t in order to be pre-executed.

Following the data descriptions in
https://github.com/microsoft/
task_oriented_dialogue_as_
dataflow_synthesis, we consider the
following function calls to be non-trivial (“slow”)
function calls. They are marked with colored
background in the graphs when they are selected.

SMCalFlow: Yield,

RecipientAvailability, FindReports,

FindManager, UpdatePreflightEventWrapper,

CreatePreflightEventWrapper,

DeletePreflightEventWrapper,

FindEventWrapperWithDefaults,

RecipientWithNameLike,

DeleteCommitEventWrapper,

UpdateCommitEventWrapper,

CreateCommitEventWrapper,

EventAttendance.
23It is true that our first approach (Section 3.2) parses

u using a different parser than the offline parser—it
uses PREFIXTOGRAPH rather than FULLTOGRAPH—which
could have a slight effect on accuracy. If it had harmed ac-
curacy, then we would have had our online parser switch to
using FULLTOGRAPH at the final step when it finally sees the
complete utterance u. We did not do this because Figure 4
shows that in practice, the various PREFIXTOGRAPH parsers
are as accurate as FULLTOGRAPH on complete utterances.

1570

https://github. com/microsoft/task_oriented_dialogue_as_ dataflow_synthesis
https://github. com/microsoft/task_oriented_dialogue_as_ dataflow_synthesis
https://github. com/microsoft/task_oriented_dialogue_as_ dataflow_synthesis

TreeDST: plan, Create, Find, Update,

Delete, Book, CheckExistence, reference,

revise, refer, someSalient.

F.2 Discussion of the Example

In the example, the function execution time (500
ms) spans 1 to 2 utterance token times. We could
expect faster execution time to result in an earlier
finish time.

Our approach achieves an FLR of 880 ms (see
the very end of Table 4). This is largely due to
the fact that we predict the correct program before
the utterance ends, at prefix steps for, 2, and hours.
The PREFIXTOGRAPH model learns to anticipate
the correct information even before seeing it. For
example, 2 hours is predicted in the program as the
duration even before seeing the last two tokens 2
hours, and friday and 7 pm are predicted after see-
ing only Add date night for next _. Therefore, these
function calls can be successfully pre-executed in
the background, reducing the final latency of the
response.

Not all of our speculative executions were use-
ful. We executed 4 excess functions that are not in
the gold program, which induces a computational
cost. These were due to overconfident early pre-
dictions, when we lacked most of the information
in the utterance. Future work could attempt to im-
prove selection by better assessing the probability,
expected cost, and expected future benefit of each
speculative execution (see footnotes 6 and 21).

An interesting phenomenon is that as new words
arrive, subgraphs are often corrected to incorporate
the new information. In our example, consider how
the graph is updated after the token for: the call to
CreatePreflightEventWrapper is almost
identical, but a (guessed) duration has been added.
Our present system would execute a whole new call
to CreatePreflightEventWrapper, dis-
carding the results of the previous call. However,
as the change to the call was small, a future oppor-
tunity would be to keep and modify the result of the
previous call, which might be faster than executing
a new call from scratch.

The execution ¬ invokes the
PersonName.apply function on an ar-
gument that is the special token MASK (see
Section 3.2). As MASK denotes a value that is
not yet known from the prefix, we define such
function invocations to return an exception value
(see footnote 21).

Indeed, any subgraph that contains MASK—such
as all of the selected subgraphs at the time of ¬—
is guaranteed to return an exception value. These
subgraphs are also guaranteed to be wrong, as G∗

never contains MASK, so we could have assigned
them probability 0, overriding the heuristic of Sec-
tion 3.4. This would have reduced our execution
cost—that is, the number of excessive function
calls.

1571

Table 4: An example of simultaneous parsing and pre-execution from our PREFIXTOGRAPH system, for the
utterance Add date night for next friday at 7 for 2 hours. For this particular example, we achieve FLR of 880
ms with 4 excess function calls. For subgraph selection a constant threshold of τ = exp(−1.0) ≈ 0.368 is used.
The source prefix timing is from real ASR outputs of human speaking (Appendix C): the “DUR” column shows
token duration, and the “Time” column shows the total time elapsed so far. We assume that non-trivial function
calls execute in ∆ = 500 time. We use circled numbers (e.g. ¬, , · · ·) to denote unique function calls being
executed (in exec. means ongoing execution, done means finished execution). The selected set of subgraphs
for execution is refreshed every time a new prefix token arrives, but ongoing executions are allowed to finish.

Prefix
token

DUR
(ms)

Time
(ms)

Proposed Graph, Subgraph Selection, and
Executable Function Calls (non-zero exec. time)

Execution Status

∅ 0 0
(GenericPleasantry)

Selection Refresh
∅

Add 390 390
(Yield
(CreateCommitEventWrapper
(CreatePreflightEventWrapper
(&
(Event.subject_? (?= "<mask>"))
(Event.start_? (DateTime.date_?
(?= (NextDOW (Friday)))))))))

Selection Refresh
∅

date 320 710
(Yield

(CreateCommitEventWrapper

(CreatePreflightEventWrapper

(&
(&
(Event.subject_? (?= "date"))
(Event.start_? (DateTime.date_?
(?= (NextDOW (Friday))))))

(Event.attendees_?
(AttendeeListHasRecipient
(Execute (refer
(extensionConstraint

(RecipientWithNameLike

(̂Recipient) EmptyStructConstraint)
(PersonName.apply "<mask>")))))))))))

Selection Refresh
(RecipientWithNameLike...)

(CreatePreflightEventWrapper...)

(CreateCommitEventWrapper...)

(Yield...)

Start executing ¬

(RecipientWithNameLike...)

Selected Set
(CreatePreflightEventWrapper...)

(CreateCommitEventWrapper...)

(Yield...)

night 370 1080
(Yield
(CreateCommitEventWrapper
(CreatePreflightEventWrapper
(& (&
(Event.subject_? (?= "date night"))
(Event.start_? (?=
(DateAtTimeWithDefaults
(NextDOW (Friday)) (NumberPM 7L)))))

(Event.attendees_?
(AttendeeListHasRecipient
(Execute (refer
(extensionConstraint

(RecipientWithNameLike [in exec.¬]

((̂Recipient)
EmptyStructConstraint)

(PersonName.apply
"<mask>")))))))))))

Selection Refresh
∅

1210 Finish executing ¬

(RecipientWithNameLike...)

(To be continued next page)

1572

Prefix
token

DUR
(ms)

Time
(ms)

Proposed Graph, Subgraph Selection, and
Executable Function Calls (non-zero exec. time)

Execution Status

for 290 1370
(Yield

(CreateCommitEventWrapper

(CreatePreflightEventWrapper

(&
(Event.subject_? (?= "date night"))
(Event.start_?
(?=
(DateAtTimeWithDefaults
(NextDOW (Friday))
(NumberPM 7L))))))))

Selection Refresh
(CreatePreflightEventWrapper...)

(CreateCommitEventWrapper...)

(Yield...)

Start executing

(CreatePreflightEventWrapper...)

Selected Set
(CreateCommitEventWrapper...)

(Yield...)

next 330 1700
(Yield
(CreateCommitEventWrapper
(CreatePreflightEventWrapper
(&
(Event.subject_? (?= "date night"))
(Event.start_? (DateTime.date_?
(?= (NextDOW (Friday)))))))))

Selection Refresh
∅

1870 Finish executing

(CreatePreflightEventWrapper...)

friday 630 2330
(Yield

(CreateCommitEventWrapper

(CreatePreflightEventWrapper [done]

(&
(Event.subject_? (?= "date night"))
(Event.start_?
(?=
(DateAtTimeWithDefaults
(NextDOW (Friday))
(NumberPM 7L))))))))

Selection Refresh
(CreateCommitEventWrapper...)

(Yield...)

Start executing ®

(CreateCommitEventWrapper...)

Selected Set
(Yield...)

at 200 2530
(Yield

(CreateCommitEventWrapper [in exec.®]

(CreatePreflightEventWrapper [done]

(&
(Event.subject_? (?= "date night"))
(Event.start_?
(?=
(DateAtTimeWithDefaults
(NextDOW (Friday))
(NumberPM 7L))))))))

Selection Refresh
(Yield...)

2830 Finish executing ®

(CreateCommitEventWrapper...)

Start executing ¯

(Yield...)

Selected Set
∅

(To be continued next page)

1573

Prefix
token

DUR
(ms)

Time
(ms)

Proposed Graph, Subgraph Selection, and
Executable Function Calls (non-zero exec. time)

Execution Status

7 590 3120
(Yield [in exec.¯]

(CreateCommitEventWrapper [done ®]

(CreatePreflightEventWrapper [done]

(&
(Event.subject_? (?= "date night"))
(Event.start_?
(?=
(DateAtTimeWithDefaults
(NextDOW (Friday))
(NumberPM 7L))))))))

Selection Refresh
∅

for 210 3330
(Yield

(CreateCommitEventWrapper

(CreatePreflightEventWrapper

(& (&
(Event.subject_? (?= "date night"))
(Event.start_?
(?=
(DateAtTimeWithDefaults
(NextDOW (Friday))
(NumberPM 7L)))))

(Event.duration_? (?= (toHours 2)))))))

Finish executing ¯

(Yield...)

Selection Refresh
(CreatePreflightEventWrapper...)

(CreateCommitEventWrapper...)

(Yield...)

Start executing °

(CreatePreflightEventWrapper...)

Selected Set
(CreateCommitEventWrapper...)

(Yield...)

2 320 3650
(Yield

(CreateCommitEventWrapper

(CreatePreflightEventWrapper [in exec.°]

(& (&
(Event.subject_? (?= "date night"))
(Event.start_?
(?=
(DateAtTimeWithDefaults
(NextDOW (Friday))
(NumberPM 7L)))))

(Event.duration_? (?= (toHours 2)))))))

Selection Refresh
(CreateCommitEventWrapper...)

(Yield...)

3830 Finish executing °

(CreatePreflightEventWrapper...)

Start executing ±

(CreateCommitEventWrapper...)

Selected Set
(Yield...)

hours 560 4210
(Yield

(CreateCommitEventWrapper [in exec.±]

(CreatePreflightEventWrapper [done °]

(& (&
(Event.subject_? (?= "date night"))
(Event.start_?
(?=
(DateAtTimeWithDefaults
(NextDOW (Friday))
(NumberPM 7L)))))

(Event.duration_? (?= (toHours 2)))))))

Selection Refresh
(Yield...)

(To be continued next page)

1574

Prefix
token

DUR
(ms)

Time
(ms)

Proposed Graph, Subgraph Selection, and
Executable Function Calls (non-zero exec. time)

Execution Status

4330
Finish executing ±

(CreateCommitEventWrapper...)

Start executing ²

(Yield...)

Selected Set
∅

4830 Finish executing ²

(Yield...)

Finish All

(To be continued next page)
Offline Base System

Prefix
token

DUR
(ms)

Time
(ms)

Gold Graph, and
Executable Function Calls (non-zero exec. time)

Execution Status

∅ 0 0
Add 390 390

...
...

...
for 210 3330
2 320 3650

hours 560 4210
(Yield

(CreateCommitEventWrapper

(CreatePreflightEventWrapper

(& (&
(Event.subject_? (?= "date night"))
(Event.start_?
(?=
(DateAtTimeWithDefaults
(NextDOW (Friday))
(NumberPM 7L)))))

(Event.duration_? (?= (toHours 2)))))))

Selection Refresh
(CreatePreflightEventWrapper...)

(CreateCommitEventWrapper...)

(Yield...)

Start executing ¬

(CreatePreflightEventWrapper...)

Selected Set
(CreateCommitEventWrapper...)

(Yield...)

4710 Finish executing ¬

(CreatePreflightEventWrapper...)

Start executing

(CreateCommitEventWrapper...)

Selected Set
(Yield...)

5210 Finish executing

(CreateCommitEventWrapper...)

Start executing ®

(Yield...)

Selected Set
∅

5710 Finish executing ®

(Yield...)

Finish All

(To be continued next page)

1575

Final Latency Reduction (FLR)
Utterance

Finish (ms)
Gold Graph & Finish time (ms) of

Executable Function Calls (non-zero execution time)
Execution

Finish (ms)
Final

Latency (ms)
#

Calls

4210

Online
System

(Yield [² Finished @ 4830]

(CreateCommitEventWrapper [± Finished @ 4330]

(CreatePreflightEventWrapper [° Finished @ 3830]

(& (&
(Event.subject_? (?= "date night"))
(Event.start_?

(?=
(DateAtTimeWithDefaults (NextDOW (Friday))

(NumberPM 7L)))))
(Event.duration_? (?= (toHours 2)))))))

4830 620 7

Offline
System

(Yield [® Finished @ 5710]

(CreateCommitEventWrapper [Finished @ 5210]

(CreatePreflightEventWrapper [¬ Finished @ 4710]

(& (&
(Event.subject_? (?= "date night"))
(Event.start_?

(?=
(DateAtTimeWithDefaults (NextDOW (Friday))

(NumberPM 7L)))))
(Event.duration_? (?= (toHours 2)))))))

5710 1500 3

FLR 1500 - 620 = 880 ms (59% reduction)

1576

