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Abstract

Collecting data for conversational semantic
parsing is a time-consuming and demanding
process. In this paper we consider, given an
incomplete dataset with only a small amount
of data, how to build an AI-powered human-
in-the-loop process to enable efficient data col-
lection. A guided K-best selection process is
proposed, which (i) generates a set of possible
valid candidates; (ii) allows users to quickly
traverse the set and filter incorrect parses; and
(iii) asks users to select the correct parse, with
minimal modification when necessary. We
investigate how to best support users in effi-
ciently traversing the candidate set and locat-
ing the correct parse, in terms of speed and ac-
curacy. In our user study, consisting of five an-
notators labeling 300 instances each, we find
that combining keyword searching, where key-
words can be used to query relevant candidates,
and keyword suggestion, where representative
keywords are automatically generated, enables
fast and accurate annotation.1

1 Introduction

Conversational Semantic Parsing (CSP), which
aims to turn an utterance into a meaning repre-
sentation such as an executable program or logical
form, plays an important role in task-oriented di-
alogue systems (Zettlemoyer and Collins, 2009;
Cheng et al., 2020; Platanios et al., 2021). In
practice, building a complete task-oriented dia-
logue system requires back-and-forth revision of
the meaning representation design. Such a muta-
ble nature makes the data collection process dif-
ficult and costly. Depending on the complexity
of the meaning representation, annotators might
even need further training to equip them with ba-
sic domain knowledge about the task. Inspired by
Computer Assisted Translation (CAT) (Green et al.,

*Equal contribution. Work performed during an intern-
ship at Microsoft Semantic Machines.

1Demo video: https://youtu.be/AtbCCYxjKIY

When’s the lecture 

scheduled for in May?

Natural utterance

start time of find event called something 
like “lecture” during May

(Yield :output (:start (singleton 
(:results (FindEventWrapperWithDefaults 
:constraint (EventDuringRange :event 

(Constraint[Event] :subject (?~= 
#(String "lecture"))) :range 

(FullMonthofMonth :month #(Month 
"MAY"))))))))

Canonical utterance

Meaning representation

Interchangeable using an SCFG

Low-Resource Semantic Parsing Model

Model trained on 1k Dialogues:  
Accuracy@1 = 0.63

Guided K-best Selection

Model trained on 1k Dialogues + K-Best UI:  
Accuracy@1 = 0.74

Candidate #1

Candidate #2

Candidate #100

…

Figure 1: Guided K-best selection approaches achieve
accuracy up to 74% when applied to VACSP-1k (Pla-
tanios et al., 2021), a conversational semantic parsing
model trained on only 1k dialogues. The canonical ut-
terance, used as the annotation target, is interchange-
able with the meaning representation using an SCFG.

2013, 2014), we would like to know if we can ac-
celerate the annotation process with AI-powered
human-in-the-loop interfaces. The main difference
between our task and the traditional CAT task lies
in the facts that (i) only a prototype model trained
on a small amount of initial data is available (low-
resource setting), leading to limited prediction per-
formance; and (ii) annotators have relatively little
or no knowledge about the meaning representation.

Because neither the model nor the annotators
are 100% accurate in our scenario, we propose the
K-best selection approach as shown in Figure 1,
where we (i) generate a set of candidates using a
low-resource model; and (ii) ask annotators to tra-
verse the set to select the correct parse and only
modify it if necessary. This formulation allows an-
notators to focus on reading and verification and
thus minimizes the need for annotators to write the
complicated meaning representation. While the no-
tion of K-best selection is established (Duan et al.,
2016; He et al., 2016), to our knowledge there has
been no investigation into optimizing this approach
beyond a simple enumeration of candidates ranked
by model score. In addition, a standard K-best
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Natural Utterance Canonical Utterance

Okay, I’ll get in touch with them. Can you tell me if
Sqirl in Los Angeles has waiter service?

Does “Sqirl in Los Angeles” have waiter service

What do I have on my calendar after 12 pm tomorrow? find event tomorrow after 12 PM

Can you add a workout with Kim between the sales
meeting and dinner?

create event called “workout” starting between find event called
something like “sales meeting” to find event called something
like “dinner” with recipient “Kim”

The first one. Also make a Stand-up meeting for early
next Monday

Yes, create the first one and then create event called “Stand-up
meeting” starting next Monday early morning

Yes please do so. Looks good!

Is it cloudy in Florida? weather at “Florida” now is cloudy

Table 1: Examples of natural and canonical utterances extracted from the SMCalFlow training set (Semantic
Machines et al., 2020). The canonical utterances are generated by the SCFG defined by Shin et al. (2021a)2.

selection approach may face challenges such as:

• Annotation speed: as K grows larger, an annota-
tor needs to spend more time reading the candi-
date list. Can we organize the candidates list in a
way that allows for fast filtering?

• Annotation accuracy: early plausible candidates
in a ranked list may bias interpretation; an annota-
tor may commit early to a less-than-perfect result
without exploring further. Can we encourage
exploration without adversely affecting speed?

In this work we demonstrate the validity of these
concerns and propose a solution called guided K-
best selection, consisting of: (i) a search interface
that allows annotators to type keywords and nar-
row down the K choices, (ii) a keyword suggestion
method that guides the exploration of K-best lists
for less experienced users. We show that it is the
combination of efficient search and guidance that
strikes the optimal balance between accuracy and
speed while achieving high annotator satisfaction.

2 Conversational Semantic Parsing

For our study we focus on a version of Conver-
sational Semantic Parsing (Figure 1), where we
are given a user’s natural utterance, and the goal
of the task is to annotate it into a canonical utter-
ance. The use of canonical utterances formulates
semantic parsing as a paraphrasing task that para-
phrases a natural utterance into a “canonical” utter-
ance in a constrained language (Berant and Liang,
2014; Marzoev et al., 2020; Shin et al., 2021a; Wu
et al., 2021). A synchronous context-free grammar
(SCFG) defines a mapping between task-specific
meaning representations and their corresponding

constrained languages. That is to say, using such an
SCFG, a complicated meaning representation can
be presented as a human-readable canonical utter-
ance (more similar to natural language) so models
can focus on learning how to paraphrase a natu-
ral utterance to a canonical utterance. We choose
to annotate canonical utterances also because it
substantially reduces the task complexity, since an-
notators no longer need to learn the syntax of the
meaning representation itself. We use canonical ut-
terances induced by an SCFG defined in (Shin et al.,
2021a). The corresponding meaning representation
is defined in the SMCalFlow dataset (Semantic
Machines et al., 2020), which contains 41.5K task-
oriented dialogues about calendar events, weather,
places, and people. Examples of natural and canon-
ical utterances are shown in Table 1.

3 Guided K-best Selection Interfaces

In this section, we describe three proposed and
two baseline annotation interfaces. Figure 2 shows
their basic components. The user utterance and its
context are given in (A) and the K-best candidate
list is provided in (C). (C) and its variants provide
different functions to help users efficiently get to
the correct parse. Note that (A), (B), (D), and (E)
are shared across all UIs.

no-kbest This interface, shown on Figure 2
(C-1), is an “annotate from scratch” baseline. Users
need to type the canonical utterance without see-
ing the K-best list. They can use (D) to validate
whether the current utterance is grammatical.

2SCFG implementation is available on the Github reposi-
tory (Shin et al., 2021b).
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Figure 2: The main components of search-keywords and other interfaces. (A), (B), (D) and (E) are shared
across all interfaces. (A) shows the dialog context and the target user utterance to annotate; (B) shows the top 5
candidates to serve as the options and hints; (D) indicates whether the current input is grammatical, i.e. can be
parsed with an SCFG (the latency of the grammar verification function is around 70 ms, which is quick enough
for real-time querying); (E) presents buttons for submitting the current task, “skipping” it to work on later, or
“escalating” it for manual annotation (via the “I can’t find the answer” button, which declares that the correct parse
is not in the top K). Search-keywords (C) suggests a set of keywords for users to query relevant candidates
on. No-kbest (C-1) only provides an input box for manually entering the annotation. Scroll (C-2) simply
presents all the candidates for users to select. Autocomplete (C-3) shows both a full sentence completion and
possible next chunks of the tokens. Search (C-4) allows users to enter keywords to query relevant candidates.

scroll Figure 2 (C-2) shows the scroll in-
terface. scroll serves as another baseline in our
experiments. We simply present all the candidates
ordered by their model scores. Users are able to
use their mouse or keyboard to traverse the list.

autocomplete As shown in Figure 2 (C-3),
autocomplete shows a full sentence comple-
tion above the input area and possible next chunks
of tokens next to the cursor. To generate the sugges-
tions, we insert all candidates into a trie (Browning,
2021). The full sentence completion is the one that
satisfies the prefix constraint and has the highest
model score; and the next chunks of tokens are
generated by traversing the trie until different to-
kens appear. The red box serves as a cursor around
the current token in the full sentence completion.
When using autocomplete, users essentially
explore the K candidates by traversing the trie.

search Figure 2 (C-4) shows the search in-
terface. It aims to break the left-to-right nature
of autocomplete, where users need to traverse

the trie in a certain order. search allows users
to enter keywords in arbitrary order to remove ir-
relevant candidates. After entering the keywords,
valid candidates ordered by the model scores will
be shown below the input area. The matched key-
words are highlighted in bold and underlined for
quick reference. We use flexsearch (Wilkerling,
2021) to index the candidate list in the frontend UI
to further reduce the latency.

search-keywords As shown in Figure 2 (C),
search-keywords extends the search inter-
face by showing a list of top 5 discriminative key-
words. These keywords are used to narrow down
the current candidates. They also give users a rough
overview of the candidate list and the annotation
grammar. Users can choose to include (+) or ex-
clude (−) the keyword in the correct parse.

To provide suggestions, we develop a Keyword
Suggestion (KS) method inspired by post-decoding
clustering (PDC) from (Ippolito et al., 2019). We
similarly perform k-means clustering over the K-
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Figure 3: KS example. We generate an explanation tree
over a k-means clustering (k=7) and use k′ = 5 unique
intermediate nodes’ n-grams as suggested keywords.

Top-5 Top-20 Top-100 Escalate

Stratified 25% 25% 25% 25%
True 76% 6% 4% 14%

Table 2: We apply stratified sampling to control the dis-
tribution of gold answers. Escalate is the case where
the gold parse is not in top 100. The True distribution
gives each stratum’s real distribution in the dev set.

best list and choose the candidate with the highest
model score to represent each cluster. This distills
the original K candidates into fewer but more di-
verse candidates, where k � K. In addition, we
employ a cluster explanation technique recently
proposed by Dasgupta et al. (2020) to further distill
the k diverse candidates into k′ keywords. This
is done by approximating the k clusters’ decision
boundaries (which are arbitrarily shaped) with k
axis-aligned rectangles. As a result, this approxi-
mated k-means clustering can be summarized with
a binary tree, consisting of k leaf nodes and at most
k − 1 intermediate split nodes. Split nodes corre-
spond to n-grams (n = 1, 2, 3) formed from the
canonical representations of candidate parses. We
use the set of all unique split nodes’ n-grams to
form a set of suggested keywords. Thus, the k di-
verse candidates are distilled even further into k′

keywords, k′ < k � K. An example of this pro-
cess is given on Figure 3. Finally, the k′ keywords
are re-ranked based on their discriminativeness, or
how evenly they split the current candidates, and
the 5 most discriminative keywords are shown in
the interface. This allows combining keyword sug-
gestion with the search interface. In Section 4.3,
we compare keyword suggestion with other mecha-
nisms to guide annotators.

4 Experiments

4.1 Protocol

Data 300 utterances were sampled from the SM-
CalFlow development set (Semantic Machines
et al., 2020). For each utterance, we used
the state-of-the-art conversational semantic parser
VACSP (Platanios et al., 2021) to generate K =
100 candidate parses.3 To simulate a low-resource
setting, we used the variant of VACSP trained on
1k dialogues (VACSP-1k). We sampled utterances
according to the stratified distribution from Table 2
in order to represent multiple rank settings equally.
For Escalate samples, where the gold answer was
not presented in the candidate list, we expected the
participants to either choose the “I can’t find the
answer” option,4 or edit one of the candidates to
obtain the correct parse.

Participants A total of 5 participants joined the
experiment. All participants were not previously
exposed to the canonical language and the proposed
interfaces. To help annotators get familiar with the
canonical grammar, they were asked to read 300
(user utterance, canonical utterance) pairs.5 Partici-
pants were then randomly assigned to a particular
interface and data split. Each interface was used
along with a different data split to reduce potential
bias. After finishing, participants filled out a ques-
tionnaire, evaluating (i) interface preference on a
5-point Likert scale, (ii) cognitive load using the
NASA Task Load Index (Hart, 2006) on a 7-point
Likert scale, and (iii) free-text suggestions.

4.2 Interface Comparison

We compare interfaces from (i) the requester’s per-
spective by evaluating annotation accuracy and
time and (ii) the annotator’s perspective by evaluat-
ing their UI preference across multiple criteria.

Accuracy and time Table 3 shows the exact
match accuracy and the time usage per utterance.

To verify how accuracy and time differ depend-
ing on the difficulty of each instance, we measure
the rank of the gold parse in the K-best list, and ag-
gregate the results over three non-overlapping set-

3We used Accuracy@K as a proxy to decide the best K.
We chose K = 100 since larger values of K did not substan-
tially improve Accuracy@K with our prototype model: e.g.
Accuracy@200 was only 0.8% higher than Accuracy@100.

4Practically, Escalate means sending this hard instance
to experienced and knowledgeable annotators to handle.

5The 300 pairs were selected to represent a diverse set of
functions in the canonical and meaning representations.
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Exact Match Accuracy ↑ Median Time (sec) ↓
Top-5 Top-20 Top-100 Escalate Escalatem All True Top-5 Top-20 Top-100 Escalate All

No-KBest .411 .189 .123 .400 .067 .197 .339 56.13 73.17 97.48 74.29 69.43
Scroll .880 .320 .213 .453 .067 .370 .706 13.00 25.84 26.47 30.23 24.73

Autocomplete .919 .370 .333 .427 .067 .422 .743 13.71 26.01 30.02 31.47 25.53
Search .878 .320 .213 .400 .080 .373 .707 8.48 19.09 17.16 19.55 16.02
Search-Keywords .880 .419 .213 .480 .093 .401 .716 12.78 24.51 36.26 31.15 23.91

Table 3: Accuracy and time usage of the baseline and proposed interfaces. In the last stratum, Escalate, in which
answer is not provided, we present two values: Escalatem, where only matching the gold answer is correct, and
Escalate, where in addition to that selecting “I Can’t Find The Answer” is also treated as correct. All is the
mean accuracy over all the strata. True stands for the true accuracy weighted by the true distribution in the dev
set (Table 2). Note All and True are computed using Escalatem. Bolded is the best result; underlined is the
second-best result. Autocomplete achieves the highest accuracy and Search help reduce time usage up to
35% compared to Scroll. Search-keywords strikes the balance between accuracy and time usage.

Figure 4: Summary of the user feedback on the interface preference. Across six evaluation criteria, the users
preferred the proposed UIs over baselines, with search-keywords being their top choice across all criteria.

tings: “Top-5”, “Top-20”, and “Top-100”,6 which
correspond to varying difficulties of instances.

We further compute the true accuracy by estimat-
ing the real distribution of the strata in our dataset
to compare with Platanios et al. (2021)’s VACSP-
1k results. As shown in the True accuracy column
in Table 3, by introducing humans into the semantic
parsing process, no matter which K-best interface
they use, the performance always improves (the
True accuracy of the VACSP-1k model is 0.630).
When comparing each interface, autocomplete
achieves the highest accuracy overall but it also
takes a longer time. We hypothesize that the ac-
curacy gain comes from the fact that annotators
are required to review tokens individually. Com-
pared to scroll, search does not substantially
improve the accuracy, but it does reduce the overall

6“Top-5” corresponds to the rank in [1, 5] “Top-20” cor-
responds to [6, 20], and “Top-100” corresponds to [21, 100].

time usage by up to 35%. No-KBest shows that,
with only the grammar verification, annotators are
much slower (69s vs 25s) and less accurate (.339 vs
.706) even compared to scroll (see Appendix B
for more analysis on annotation time distribution).
Overall, search-keywords strikes a balance
between the trade-offs, being generally either best
or close to best in both accuracy and time usage.

User feedback Figure 4 summarizes user an-
swers to UI preference questions from the ques-
tionnaire.7 Annotators generally preferred the pro-
posed interfaces to the no-kbest and scroll
baselines: they found that the proposed UIs enable
them to be more accurate (A) and faster (B), as well
as requiring less unnecessary reading (D). The level
of confusion was roughly the same across UIs (C),
perhaps due to non-UI related factors (such as an-

7More feedback, incl. excerpts of free-form suggestions
and NASA task load index results, is provided in Appendix C.
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Oracle simulation results (k = 5) Human annotation results (k = 5)
Average number of turns ↓ Median time (sec) ↓

Top-5 Top-20 Top-100 All Top-5 Top-20 Top-100 All

KS (ours) 1.10 2.39 2.80 1.24 15.30 46.99 48.20 36.71

PDC (k-means, canonical) 1.11 2.40 2.84 1.24 25.09 73.23 55.42 52.94
PDC (agglomerative, canonical) 1.16 2.73 3.10 1.31 — — — —
PDC (agglomerative, meaning) 1.15 2.68 2.91 1.29 — — — —

Scroll 1.00 2.63 7.75 1.33 24.18 42.30 56.37 37.21

Table 4: Comparison of K-best guidance strategies: by suggesting keywords (top row), diverse candidates (middle
rows), or all K candidates (bottom row). In both oracle and human settings, k = 5 candidates are displayed per
each interaction turn. Bolded is the best result, underlined is the second-best result. While KS and PDC perform
similarly in the oracle setting, the former leads to faster annotation when tested with real human annotators.

notation grammar or stratified distribution of exam-
ples). The annotators also preferred the proposed
UIs for future use (F), with search-keywords
being the most preferred one by a large margin.

4.3 Guidance Comparison

We compare our keyword suggestion (KS) method,
based on explainable k-means clustering, with the
PDC algorithm from (Ippolito et al., 2019) and
the scroll baseline from Section 3. We com-
pare multiple variants of PDC, exploring whether
agglomerative clustering (based on string edit dis-
tance) or k-means is better, and whether canonical
or meaning representation is better. All algorithms
are used interactively: e.g., during one turn of PDC,
a user would pick one out of k clusters (represented
by the top scoring parse each) that looks most cor-
rect to them, and on the next turn, they would only
see candidates from the cluster chosen previously.
In KS, one turn corresponds to choosing whether
a single suggested keyword (e.g. “create event”)
should or should not be included in the correct
parse while seeing the currently best scoring k
candidates. Finally, in scroll the user simply
scrolls over K candidates using a size-k window.
To achieve a fair comparison and manageable work-
load, all methods display k = 5 candidates per
interaction turn.

We evaluate guidance methods in two ways:
with a simulated (oracle) user, and with a pool
of human annotators described in Section 4.1. The
simulated user will always make the best choice
at each interaction turn: that is, pick the keyword
or the candidate parse that will be included in, or
will be closest to, the best parse. Human annota-
tors, however, might make mistakes. Thus, in all
interfaces, they are allowed to go several turns back
and fix mistakes before submitting. We report the

number of turns for the simulated user and the wall
annotation time for human annotators in Table 4.

Oracle simulation results Table 4 (left) shows
several trends: first, adding explanations and
“coarsening” clusters’ decision boundary in KS
does not hurt annotation speed, compared to the
otherwise similar “PDC (k-means, canonical)”.
Second, both KS and PDC substantially decrease
the gap between the easiest Top-5 and the hardest
Top-100 settings observed for scroll, contribut-
ing to a more predictable annotator experience. Fi-
nally, comparing the results across PDC variants,
we can conclude that k-means over canonical rep-
resentation is a reasonable default setting, and we
lock on to it for human annotation experiments.

Human annotation results Table 4 (right)
agrees with the simulation finding that KS and PDC
help decrease the gap between Top-5 and Top-100
settings, albeit to a lesser extent than in the simula-
tion experiment. Most notable is the difference in
speed between KS and PDC: while in simulation
it was only marginal, here the lack of explanations
substantially slows the human annotators down.
In addition, in the post-experiment survey, the an-
notators were confused by “non-intuitive similar-
ity relations” and “too much extra reading” of the
clustering-based PDC while praising the keyword-
based KS for being “intuitive” and “engaging”.

5 Related Work

5.1 Interactive Semantic Parsing

K-best selection is aligned with interactive seman-
tic parsing. These approaches assume access to an
existing parsing model, and to a user that provides
corrections in binary (Clarke et al., 2010; Artzi
and Zettlemoyer, 2013; Iyer et al., 2017), multiple-
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choice (Iyer et al., 2017; Gur et al., 2018; Yao
et al., 2019), or natural language form (Elgohary
et al., 2021). Many of these methods also rely on
separate trainable modules or parsing model’s pa-
rameters to identify inference steps the parser is
most uncertain about. In contrast, K-best selec-
tion is parameter-free (making it well-suited for
low-resource settings).

5.2 Computer-Assisted Translation

Our search and autocomplete UIs are motivated
by computer-assisted translation. There are three
main directions in CAT. Post-Editing (PE) asks
users to revise and verify a machine translated
text (Green et al., 2013; Aranberri et al., 2014;
Toral et al., 2018; Herbig et al., 2020; Lee et al.,
2021). Interactive Translation Prediction (ITP)
suggests translations dynamically based on users’
input (Langlais et al., 2000; Foster et al., 2002;
Bender et al., 2005; Barrachina et al., 2009; Koehn,
2009; Alabau et al., 2014; Green et al., 2014; Cheng
et al., 2016). Both PE and ITP assume users’ trans-
lations are nearly perfect which is not always the
case in CSP. Iterative translation (IT) asks two
groups of monolingual speakers to iterate over
the translation back and forth to improve trans-
lation quality (Morita and Ishida, 2009; Hu et al.,
2010, 2011). Although IT ensures quality, its low
throughput (2.5 to 6 times slower compared to pro-
fessional translators (Hu et al., 2011)) prevents us
from using it.

5.3 Diverse Generation

Our keyword suggestion mechanism is motivated
by diverse text generation. Typical strategies for
improving the collective diversity (Hu et al., 2019)
of the output candidates include: modifications to
beam search (Vijayakumar et al., 2018; Tam, 2020),
modifications to the sampling method (Fan et al.,
2018; Holtzman et al., 2020), stratified sampling
based on semantic codes (Weir et al., 2020), and
post-decoding clustering (Kriz et al., 2019; Ippolito
et al., 2019). The latter approach involves over-
generating candidates by using a large beam size,
clustering the final candidates, and selecting one or
a few representative candidates per cluster.

6 Conclusion

In this paper, we tackled the challenge of efficient
data collection for conversational semantic parsing.
In the presence of little available training data, we

propose human-in-the-loop interfaces for guided
K-best selection, using a prototype model trained
on limited data. Guided K-best selection interfaces
generate a set of possible candidates with functions
for fast traversal and ask annotators to select the
correct parse. User studies show that combining
keyword search functionality with a keyword sug-
gestion system strikes an optimal balance between
annotation accuracy and speed.
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A Discussion

In this section, we share additional lessons we
learned while interacting with expert annotators in
the preliminary experiments and adapting our final
proposed interfaces according to their feedback.

Latency is a critical issue when generating com-
pletions dynamically. We initially experimented
with the autocomplete interface suggesting comple-
tions fully dynamically, similar to recent works on
CAT (Green et al., 2014; Knowles et al., 2019). To
achieve this, we periodically sent users’ inputs to
the backend BART model (Shin et al., 2021a) that
would perform completions using beam search de-
coding. We found the latency of the BART model
to be around 300-600 ms even with the beam size
of one and constrained decoding turned off (turn-
ing the constrained decoding on ensures the gen-
erated completions are grammatical but doubles
the latency). In a small preliminary study, par-
ticipants generally noted the dynamic interface to
be “laggy”. Similar issues also happened in prior
studies, e.g. Green et al. (2014) noticed that users
deemed the interface as “sluggish” unless the la-
tency was reduced to less than 300 ms by using
the phrase-based decoding algorithm to reduce the
search space; Chen et al. (2019) examined the la-
tency of LSTM as well as Transformer and con-
cluded that Transformer’s high latency was not
suitable for production despite the performance
gain. We thus concluded that generating comple-
tions dynamically is infeasible and directed our
study towards K-best selection.

Figure 5: KDE plot of the time usage for the baseline
and proposed interfaces. Search has a higher distri-
bution between 5-20 seconds; The long tail is merged
and forms another peak in 100+ where we can clearly
see that no-kbest � scroll > autocomplete
> search-keywords > search.

Users are not able to produce a full canonical ut-
terance from scratch. Compared to CAT tasks
(Section 5.2), one of the difficulties of annotating
semantic representations is that the canonical lan-
guage is hard and subject to change. In CAT, peo-
ple assume that the produced translation is always
valid which is not always true for semantic rep-
resentation annotation tasks. Annotators found it
substantially harder to author a complete annota-
tion from scratch using the no-kbest interface
(Figure 4), as compared to selecting from a list of
K options with all other UIs. We thus believe that a
K-best framework should be a preferred approach
as it relies on people’s ability to read and verify
the candidates rather than producing an answer
from scratch.

B Additional Experiments

Oracle simulation results In addition to k = 5
(Section 4.3), we experiment with displaying less
(k = 2) and more (k = 10) items per turn. The
results are shown on Table 5. When displaying
k = 2 (left) items per turn, the difference between
Top-100 “tail” performance of the scroll baseline
vs proposed methods is very high, thus making pro-
posed methods more predictable on the tail. For
k = 10 (right) items per turn, this difference is
more leveled and the overall performance is essen-
tially the same across all methods, at the expense
of increased reading per turn. In the human experi-
ments, we chose k = 5 to strike balance between
workload per turn and reasonable number of turns.

Overall time usage distribution In addition to
the user study results presented in Section 4.2, we
show the kernel density estimation (KDE) plot of
the time usage distribution in Figure 5. The KDE
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Oracle simulation results (k = 2) Oracle simulation results (k = 10)
Average number of turns ↓ Average number of turns ↓

Top-5 Top-20 Top-100 All Top-5 Top-20 Top-100 All

KS (ours) 1.19 4.22 5.90 1.53 1.06 1.79 2.09 1.14

PDC (k-means, canonical) 1.19 4.19 5.85 1.52 1.06 1.81 2.11 1.14
PDC (agglomerative, canonical) 1.24 5.38 7.14 1.68 1.10 1.92 2.10 1.18
PDC (agglomerative, meaning) 1.23 5.00 6.55 1.63 1.10 1.94 2.03 1.18

Scroll 1.09 5.65 18.58 1.96 1.00 1.45 4.15 1.14

Table 5: Additional oracle simulation results with k = 2 (left) and k = 10 (right) candidates displayed per turn.
Bolded is the best result, underlined is the second-best result.

plots are produced using seaborn8 with bandwidth
adjustment bw_adjust = 3 and clip = (0, 100).
Note that we clip the time to the range [0, 100] to
better display the distribution tail. We find that a
huge portion of search locates within 5–20 sec-
onds showing that users indeed can finish the task
much faster. In another peak (100+ seconds), the
distribution clearly shows no-kbest� scroll
> autocomplete > search-keywords >
search meaning that no-kbest takes much
longer time in general; and a higher portion from
scroll and autocomplete takes much longer
time to finish; whereas search-keywords and
search have fewer such cases. This peak is con-
tributed almost evenly by the four different strata,
perhaps because users tend to read through all can-
didates to make sure they get the right answer.

Time usage distribution per interface We plot
the time usage distribution using KDE for the pro-
posed interfaces to illustrate the time usage for each
stratum. Again, the KDE plots are produced using
seaborn with bandwidth adjustment bw_adjust
= 3 and clip = (0, 100). The plots shown on Fig-
ure 6 tell us that, for K-best interfaces, only Top-
5 shows a different behavior where tasks can be
mostly finished within 10 seconds; while Top-20,
Top-100, and Escalate have very similar distribu-
tions. We hypothesize this is because we explicitly
show the top 5 candidates in the interface (Figure 2
(B)). When the gold parse is not in the top 5 can-
didate list, annotators go through a similar process
to find the answer, resulting in a similar time us-
age distribution for Top-20, Top-100, and Escalate.
The no-kbest shows that without any supports,
a huge portion of the tasks took more than 100
seconds to finish.

8https://seaborn.pydata.org

C Additional User Feedback

NASA Task Load Index Figure 7 summarizes
user responses to a NASA Task Load Index
questionnaire (Hart, 2006) that evaluates partici-
pants’ subjective workload across six dimensions.
The original 7-point Likert scale was mapped
to a 5-point scale for conciseness: “very low”,
“very high”, and “medium” labels were preserved,
and the four intermediate labels were mapped
into two. This feedback was not collected for
search-keywords; for autocomplete and
search we observe that, compared to baselines,
users report lower temporal demand and higher per-
formance, which correspond to higher perceived
speed and accuracy, respectively. This agrees with
the interface preference feedback (Figure 4) and
quantitative results of our user study (Table 3).

Free-form suggestions We collected partici-
pants’ free-form suggestions by asking four ques-
tions: (i) “I like the provided function because ...”,
(ii) “I do not like the provided function because ...”,
(iii) “I think provided function can be improved by
...”, and (iv) “I would like to have some other func-
tions such as ...”. Tables 6 to 9 summarize the re-
sponses. In general, participants expressed positive
impression towards autocomplete, search,
and search-keywords. Users especially like
search-keywords as it helps quickly narrow
down the options; gives insights into grammar;
and even when the suggestions fail, it can be fig-
ured out very quickly and do not cause a huge
negative impact (Table 6). Participants suggested
to add more keywords and allow pulling key-
words from natural utterances to further improve
search-keywords (Table 8). We also found
that participants believe a grammar guide would
improve their annotation process (Table 9) which
might be infeasible in a rapid prototyping setup.
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(a) Time usage for no-kbest. (b) Time usage for scroll.

(c) Time usage for autocomplete. (d) Time usage for search.

(e) Time usage for search-keywords.

Figure 6: For interfaces with K-best supports ((a), (b), (c), (d)), only Top-5 has a different shape of distribution
where there is a much higher peak around 10 seconds; Top-20, Top-100, and Escalate have very similar time
distribution which suggests that annotators might need to go through the same searching process no matter which
stratum it is. The distribution of no-kbest is relatively flat with a huge peak in 100+, meaning that it takes much
more time to finish in general.

Figure 7: Summary of the user feedback on NASA Task Load Index (Hart, 2006) across six different criteria.
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I like the provided function because ...

scroll “You can easily comb through the many variations of grammar.”

autocomplete

“... the ability to create the correct grammar with assistance was very helpful and lowered the
frustration overall”
“... it has enough context/information to quickly determine the right path forward.”
“It seemed to be focused and direct ... It seemed to give the right amount of predictive assistance.”

search
“Being able to narrow down the options based on a keyword is nice, especially in cases where
the bot mostly gets it wrong right at the start”
“... nicely and succinctly. It seems more intuitive to use ...”

search-keywords

“... the suggested keywords can very quickly narrow down the list of displayed options (without
having to type in a single search parameter myself) so that the correct one is easy to locate.”
“It was useful for narrowing things down quicker and helped minimize typos in the search.”
“It gave insight into the grammar, but was also very efficient. It allowed myself more control
over the options I was seeing, meaning it was much more streamlined and was very fast.”
“Even in those cases where the suggested keywords don’t end up helping much, it only takes a
few second to figure that out. It has minimal impact on the interface, too, so its presence doesn’t
hurt even when it doesn’t help.”

Table 6: Free-form suggestions for question “I like the provided function because ...”.

I do not like the provided function because ...

scroll
“the scrollable list is just annoying to look at.”
“It is hard to navigate. And makes little sense.”

autocomplete “... sometimes it presenting two options that both look like they could be valid side-by-side ...”

search “... it sometimes highlights in odd ways that decreases readability.”

search-keywords “They weren’t usually presented in an order that I would immediately search by.”

Table 7: Free-form suggestions for question “I do not like the provided function because ...”.

I think the provided function can be improved by ...

scroll

“It would be nice if the options displayed in the list respected what you had in the answer line.
For example, I type "update" and all the ones which aren’t that disappear.”
“Have the top 5 candidates be attached to the scrollable list function, but frozen as the top 5
results (in the same way you can freeze rows or columns in excel).”

autocomplete
“Maybe the ability to hide the top 5 suggestions or hide specific options would be nice for some
users.”

search
“It would be nice if the list were a little more readable, especially when it constantly changes
the boldness/underlines.”

search-keywords

“If we could add more suggest words to help us find the answer even faster.”
“the ability to pull "must include" elements of the utterance into the initial set of suggested
keywords would be helpful.”
“the main thing that would make it work better is just the model being improved so predictions
are better in general.”
“the way matched terms are both bolded and underlined changes the list of predictions in a way
that sometimes confuses the eyes as you’re matching things.”

Table 8: Free-form suggestions for question “I think provided function can be improved by ...”.

I would like to have some other functions such as ...

scroll
“... change suggestions based on the text in the annotation box.”
“the displayed list respecting the contents of the type-box would be nice.”

autocomplete “A searchable dictionary or index listing common translation.”

search “An accompanying lexicon or index of common translations.”

search-keywords “A method of manually filtering out words ...”

Table 9: Free-form suggestions for question “I would like to have some other functions such as ...”.
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