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Abstract

Multimodal aspect-based sentiment analysis
(MABSA) aims to extract the aspect terms from
text and image pairs, and then analyze their
corresponding sentiment. Recent studies typi-
cally use either a pipeline method or a unified
transformer based on a cross-attention mecha-
nism. However, these methods fail to explicitly
and effectively incorporate the alignment be-
tween text and image. Supervised finetuning
of the universal transformers for MABSA still
requires a certain number of aligned image-text
pairs. This study proposes a dual-encoder trans-
former with cross-modal alignment (DTCA).
Two auxiliary tasks, including text-only extrac-
tion and text-patch alignment are introduced
to enhance cross-attention performance. To
align text and image, we propose an unsuper-
vised approach which minimizes the Wasser-
stein distance between both modalities, forc-
ing both encoders to produce more appropriate
representations for the final extraction. Experi-
mental results on two benchmarks demonstrate
that DTCA consistently outperforms existing
methods. For reproducibility, the code for
this paper is available at: https://github.
com/windforfurture/DTCA.

1 Introduction

Human experience of the world is multimodal, e.g.,
seeing objects, hearing sounds, feeling textures,
and tasting flavors. Multimodal experiences are
usually mutually associated to some extent. For ex-
ample, images are usually associated with tags and
text explanations, and text often contains images to
more clearly express the main intent of the author.

With the widespread availability of smart phones
with digital cameras, social media posts have be-
come increasingly multimodal . To practically ap-
ply the existing aspect-based sentiment analysis,
one must be able to interpret such multimodal at-
tributes together (Yu et al., 2022; Ling et al., 2022).
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[ Kevin Durant ]  says [ Kyrie 
Irving ]  has more skill than 
[Allen Iverson].

What do health heroes look like 
? [ Dr Lucille Corti ]  died 
[ AIDS ]  1996, [ Dr Lukwiya ] 
died [Ebola] 2000.

(a)

(Kevin Durant, Neutral)
(Kyrie Irving, Positive)
(Allen Iverson, Negative)

(Dr Lucille Corti, Positive)
(AIDS, Negative)
(Dr Lukwiya, Positive)
(Ebola, Negative)

(b)

Figure 1: Two examples of joint multimodal aspect
sentiment analysis.

Figure 1 (a) shows an example: What do health
heroes look like? Dr Lucille Corti died AIDS 1996,
Dr Lukwiya died Ebola 2000. An intelligent sys-
tem is expected to extract four aspect-sentiment
pairs from this text, i.e., (Dr Lucille Corti, posi-
tive), (AIDS, negative), (Dr Lukwiya, positive) and
(Ebola, negative). Notably, if only the language
modality is used for inference, the model tends to
predict (Dr Lucille Corti, negative) and (Dr Luk-
wiya, negative). Related to the vision modality,
the expression of the text will become more ironic,
and thus tends to be positive. Figure 1 (b) shows
another example: Kevin Durant says Kyrie Irving
has more skill than Allen Iverson. It is difficult to
infer from the image that this person is necessarily
good at basketball, while a direct understanding
of the text seems to recognize the attitude of the
author towards Kyrie Irving and Allen Iverson.

Based on this, existing methods for multimodal
aspect-based sentiment analysis are typically com-
posed of two subtasks in a pipeline model, includ-
ing multimodal aspect term extraction (MATE)
and multimodal aspect sentiment classification
(MASC). The former tries to identify all the as-
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pect terms from texts (Wang et al., 2021), while the
latter aims to classify the sentiment for each identi-
fied aspect term (Hosseini-Asl et al., 2022; Zhang
et al., 2021b; Yuan et al., 2022). Unfortunately,
the pipeline approach ignores the innate relation-
ship between the two subtasks and is prone to error
propagation.

Alternatively, another obvious solution is to ap-
ply multitasked learning to integrate both subtasks
into a joint framework (Vazan and Razmara, 2021).
Combining different modalities or types of informa-
tion to improve performance seems intuitively ap-
pealing, but it is challenging in practice to reconcile
the varying levels of noise and conflicts between
modalities. A series of convolution-based mod-
els are usually applied to extract image features,
including VGG (Simonyan and Zisserman, 2015)
and ResNet (He et al., 2015). To extract region-of-
interest (ROI) features, several subsequent works
have used a Fast R-CNN (Girshick, 2015) to learn
the image representation (Zhang et al., 2021a). For
text, Transformer-based models, such as BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019) ,
XLNet (Yang et al., 2019) and ELECTRA (Clark
et al., 2020) have greatly improved the capability
of language understanding and generation.

Taking the obtained representation of both
modalities as input, recent studies applied different
attentions to compose the features for the final clas-
sification. For examples, Ju et al. (2021) and Xu
et al. (2022) applied a cross-modal self-attention
approach to learn text-image interaction and obtain
image-aware text representations and text-aware
image representations. However, the image-text
pairs present different kinds of knowledge. Thus,
different modalities may contribute differently to
the final classification, and do not have equivalent
amounts of information in each modality, with the
language modality tending to dominate with more
information. For training, the gradients from the
dominant modality will overwhelm the other, ef-
fectively preventing the entire model from being
trained. It is difficult to encode explicit cross-modal
information by superficially measuring the atten-
tion distribution.

Based on the universal Transformer architec-
ture, the unified vision-and-language pretrained
models can simultaneously encode both modalities,
e.g., OSCAR (Li et al., 2020) and UNITER (Chen
et al., 2020). However, they are insensitive to as-
pect extraction and sentiment detection from both

language and vision modalities. Finetuning these
models with a supervised learning still require a
certain number of aligned image-text pairs.

In this study, a dual-encoder transformer with
cross-modal alignment (DTCA) is proposed for
multimodal aspect-based sentiment analysis. In-
stead of extracting ROI features, we apply the
ViT strategy (Dosovitskiy et al., 2021), which to-
kenizes the image by slicing it into a sequence
of patches. Both ViT and RoBERTa are initial-
ized from pretrained checkpoints, and were used
to encode the vision and language modalities. To
align the learned features, a multitask learning ar-
chitecture containing three subtasks was applied,
including text-only extraction, co-attention inter-
action, and token-patch matching. Aside from the
co-attention module, we propose minimizing the
Wasserstein distance between tokens and images to
improve the training effectiveness of the proposed
model.

Comparative experiments were conducted on
two different benchmarks. The empirical results
show that the proposed model outperforms the
existing unimodal and multimodal models for
MABSA tasks. The effects on different subtasks
were further evaluated, finding that the different
subtasks all play an indispensable role in perfor-
mance improvement.

The remainder of this paper is organized as fol-
lows. Section 2 presents a detailed description of
the proposed DTCA model. Section 3 summarizes
the implementation details and experimental results.
Conclusions are drawn in Section 4.

2 Dual-Encoder Transformers

Figure 2 shows the overall architecture of the pro-
posed dual-encoder transformers with cross-modal
alignment. Two individual transformer-based mod-
els, i.e., RoBERTa (Liu et al., 2019) and ViT (Doso-
vitskiy et al., 2021), were respectively applied for
text and image encoding. Notably, both RoBERTa
and ViT share the same encoder architecture, which
is initialized from a well pretrained checkpoint.
Three subtasks were applied for cross-modal align-
ment to enhance the performance of cross-modal
attention for MABSA.

2.1 Modality-specific Encoder

Tokenizer. An input sample x consists of two
modalities, including an image v and a text s.The
objective of MABSA is to perform sequence la-
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Figure 2: The overall architecture of the proposed dual-encoder Transformers with cross-modal alignment for
MABSA.

beling to predict the labels y = {y1, y2, . . . , yN}
where N is the length of the text. Following the
ViT, the image was first sliced into a sequence
of patches v = [v1, v2, . . . , vM ] ∈ ℜM×(P 2×C),
where (P, P ) is the resolution of each patch, C
is the number of channels, and M = HW/P 2

is the resulting number of patches. Each patch
was then flattened and prepended with a special
token, i.e., v[CLS], followed by a linear projection
V ∈ ℜ(P 2×C)×dh . The result patch embeddings
v̄ ∈ ℜ(M+1)×dh can be formulated as,

v̄ = [v[CLS], v1V, v2V, ..., vMV ] + V pos (1)

where dh is the dimensionality and
V pos ∈ ℜ(M+1)×dh is the position embeddings.

For language modality, the input text is tok-
enized by the WordPiece (Wu et al., 2016) tok-
enizer as same as in the RoBERTa model to obtain
a sequence of token embeddings t̄ ∈ ℜ(N+1)×dh

with a word embedding matrix T ∈ ℜN×|V̂ | as fol-
lows,

t̄ = [t[CLS], t1T, t2T, ..., tNT, t[SEP]]+T pos+T seg

(2)
where T pos ∈ ℜ(N+1)×dh and T seg ∈ ℜ(N+1)×dh

are respectively the position and segment embed-
dings, and |V̂ | is the number of the vocabulary
items. Here, the [CLS] and [SEP] tokens respec-
tively respond to <s> and </s> tokens in the
RoBERTa model. We did not apply any extra em-
beddings to annotate the type of modality, since
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Figure 3: The conceptual diagram of the proposed Token-Patch Alignment.

doing so brings no additional improvement to the
proposed model.
Encoders. Both RoBERTa and ViT consist of
stacked Transformer blocks including a multi-head
self-attention (MHSA) layer and an MLP layer.
The MLP consists of two dense connection layers
with a GELU non-linear activation. Before both
MHSA and MLP, layer normalization (LayerNorm)
was applied, which can be formulated as,

z(0) = v̄ or t̄ (3)

z̃(l) = MHSA(LayerNorm(z(l−1)))+z(l−1) (4)

z(l) = MLP(LayerNorm(z̃(l)))+z̃(l) (5)

where l is the index of the layer of RoBERTa or
ViT. The final output of transformer encoder is a
hidden representation z

(L)
V = [v̂1, v̂2, ..., v̂M ] and

z
(L)
T = [t̂1, t̂2, ..., t̂N ] at the last, i.e., the L-th layer,

which is used for multitask learning and the final
extraction.

For all experiments, the weights of
RoBERTa and ViT were respectively initial-
ized from pretrained roberta-base and
vit-base-patch16-224-in21k. The
hidden size dh is 768, the number of layers of
encoder L is 12, patch size P is 14, MLP size is
3,072 and the number of attention heads is 12.

2.2 Cross-modal Alignment

To align the features of both the vision and lan-
guage modalities, we propose a cross-modal align-
ment to train both the image and text encoders for
the final cross-modal extraction. It mainly consists
of three subtasks: text-only extraction, co-attention
interaction, and token-patch matching.

Text-only Extraction. The textual represen-
tation obtained from RoBERTa, i.e., z

(L)
T =

[t̂[CLS], t̂1, t̂2, ..., t̂N , t̂[SEP]] was fed to a fully-
connected layer with softmax activation to predict
the auxiliary tags for the tokens, defined as,

ŷn = softmax(W tt̂n + bt) (6)

where W t ∈ ℜK×dh and bt ∈ ℜK are trainable
parameters, and K is the number of the candidate
tags. Given a training dataset of {x(j),y(j)}Jj=1 ,
the loss function is a categorical cross-entropy,

LTO = − 1

J ×N

J∑
j=1

N∑
n=1

I(y(j)n ) ◦ log ŷ(j)
n (7)

where y
(j)
n is the ground-truth label, I(yn) denotes

a one-hot vector with the y-th component being one,
and ◦ represents the element-wised multiplication
operation.

For token classification, BIO schema was ap-
plied. Instead of using 7 tags as in previous
works, we used only 5 tags, i.e., B-POS, B-NEU,
B-NEG, I and O. For example, the sequence of
{B-POS, I-POS} can be converted to {B-POS,
I}, so that the number of class K can be com-
pressed by half, thus decrease the prediction error
caused by sentiment analysis.

Vision-aware Text Extraction. Multi-head cross-
attention was applied to integrate the textual and vi-
sual features, where the text representation z

(L)
T =

[t̂1, t̂2, ..., t̂N ] is regarded as the query, while the
image representation z

(L)
V = [v̂1, v̂2, ..., v̂M ] was
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Datasets #S #A #Pos #Neu #Neg MA MS Mean Max

Twitter-2015
Train 2100 3179 928 1883 368 800 278 15 35
Dev 727 1122 303 670 149 286 119 16 40
Test 674 1037 317 607 113 258 104 16 37

Twitter-2017
Train 1745 3562 1508 1638 416 1159 733 15 39
Dev 577 1176 515 517 144 375 242 16 31
Test 587 1234 493 573 168 399 263 15 38

Table 1: Statistics of datasets (#S, #A, #Pos, #Neu, #Neg, MA, MS, Mean and Max denote numbers of sentences,
aspects, positive aspects, neural aspects, positive aspects, multi aspects in each sentence, multi sentiments in each
sentence, mean length and max length).

used as the key and the value,

Attu(z
(L)
T , z

(L)
V , z

(L)
V )

= softmax

(
(Wu

Qz
(L)
T )

⊤
(Wu

Kz
(L)
V )√

dh/u

)
(W u

V z
(L)
V )

(8)
where W u

Q ∈ ℜdh/u×N and {W u
K ,W u

V } ∈
ℜdh/u×M are matrices of the query, key and value.
With multi-head cross-attention, the final repre-
sentation of vision-aware text extraction p̄ =
[p1, p2, .., pN ] can be formulated as,

p̄ = W p[Att1, Att2, ..., AttU ]
⊤ (9)

where W p ∈ ℜdh×dh refers to the weight matrix
for the multi-head cross-attention.

By passing a MLP and two-layer normalization
with two residual connections, the resulting rep-
resentation is p̂ = [p̂1, p̂2, ..., p̂N ] . To ensure the
consistency of representation size, the first residual
added the text-only representation.

Different from the text-only tasks, the output
layer is a CRF to predict layer sequence y as fol-
lows,

P (ỹ|x) = exp(score(x,y))∑
y′∈Yx

exp(score(x,y′))
(10)

score(x,y) =

N∑
n=0

Ayn,yn+1 +

N∑
n=0

wyn p̂n (11)

where A is a transition matrix, and its element Ai,j

represents the score of a transition from tag i to tag
j, wyn ∈ ℜ2×dh is the weights. The loss function
is the negative log-probability of the ground truth
label,

LCM =

− 1
J

J∑
j=1

(
s(x(j),y(j))− logadd

y′∈Y
(j)
x

exp(s(x(j),y′(j)))

)
(12)

Token-Patch Alignment. For matching tokens and
patches, there are no annotated labels to supervise
the training. Thus, we propose minimizing the
Wasserstein distance, also called the earth mover
distance (EMD), a measure of the distance between
two probability distributions, as shown in Figure
3. Regarding the distribution as a certain amount
of earth, the EMD is the minimum cost of turning
one pile into another; where the cost is assumed
to be the amount of dirt moved times the distance
by which it is moved. Based on this, the hidden
representation of both text and image for the j-th
sample can be assigned with a moving weight,

t(j) = [(t̂
(j)
1 , wt

1), (t̂
(j)
2 , wt

2), ..., (t̂
(j)
N , wt

N )] (13)

v(j) = [(v̂
(j)
1 , wv

1 ), (v̂
(j)
2 , wv

2 ), ..., (v̂
(j)
M , wv

M )]
(14)

where wt
n and wv

m denote the moving weight, re-
spectively initialized as 1/N and 1/M . The cost
of moving t̂n to v̂m is a normalized mean squared
error (MSE), denoted as,

δm,n = MSE(t̂n, v̂m)

=
1

dh

∑
dh

∥∥∥∥ t̂n

||t̂n||22
− v̂m

||v̂m||22

∥∥∥∥2
2

(15)

According to Rubner et al. (2000), the target of the
token-patch alignment is to find a transfer flow F
that maps the features from t̂n to v̂m by minimizing
the cumulative cost, defined as,

WORK(t̂n, v̂m,F) =

N∑
n=1

M∑
m=1

fm,nδm,n (16)

s.t. fm,n ≥ 0 (17)
N∑

n=1

fm,n ≤ wt
n (18)

M∑
m=1

fm,n ≤ wv
m (19)
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Figure 4: Hyper-parameters fine-tuning on different datasets.

N∑
n=1

M∑
m=1

fm,n = min

(
N∑

n=1

wv
n ,

M∑
m=1

wv
m

)
(20)

where 1 ≤ n ≤ M and 1 ≤ m ≤ M respectively
denote the indices of the tokens and image patches.
Here, Eq. (17) ensures there is no negative value to
impact the result. Eqs. (17) and (18) limit that the
number of features which can be sent and received
were less than their weights. Eq. (19) ensures the
maximum number of features possible are moved.
The optimal problem can be solved by the optimal
transportation problem, and the cost of token-patch
alignment is then defined as the work normalized
by the total flow,

LWD =

N∑
n=1

M∑
m=1

fm,nδm,n

N∑
n=1

M∑
m=1

fm,n

(21)

2.3 Joint Training
The final objective is a combination over the main
task and two auxiliary tasks as follows,

L = LCM + αLTO + βLWD (22)

where α and β are tradeoff hyper-parameters to
control the contribution of each task. For inference,
the output of vision-aware text extraction was ap-
plied as the results.

3 Experiments

3.1 Datasets and Evaluation Metrics
To evaluate the performance of the dual-encoder
transformer with cross-modal alignment, two

MABSA benchmark datasets are used, mainly con-
sisting of reviews on Twitter. These datasets are
Twitter-2015 and Twitter-2017, originally provided
by Zhang et al. (2018) for multimodal named en-
tity recognition and annotated with the sentiment
polarity for each aspect by Lu et al. (2018). Table
1 summarizes the statistical characteristics of these
two datasets.

Precision, recall, and micro F1-score are used
as evaluation metrics for MABSA. An aspect is
regarded as correctly predicted only if the aspect
term and polarity respectively match the ground-
truth aspect term and corresponding polarity.

3.2 Implementation Details

To evaluate the proposed DTCA model, several
baseline models are implemented for compari-
son, including text-based methods and multimodal
methods.

1) Textual methods

• SPAN (Hu et al., 2019) is a span-based extract-
then-classify framework, where targets are di-
rectly extracted from the sentence under the
supervision of target span boundaries.

• D-GCN (Chen et al., 2020) is a directional
graph convolutional network to jointly per-
form aspect extraction and sentiment analysis
with encoding syntactic information.

• RoBERTa (Liu et al., 2019) is a pretrained
transformer-based model, used as text encoder
in the proposed DTCA model.

2) Multimodal methods
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Modality Approaches Twitter-2015 Twitter-2017
F P R F P R

Text
SPAN 53.8 53.7 53.9 60.6 59.6 61.7
D-GCN 59.4 58.3 58.8 64.1 64.2 64.1
RoBERTa 63.3 62.9 63.7 65.6 65.1 66.2

Text+ Image

UMT-collapse 59.8 58.4 61.3 62.4 62.3 62.4
OSCGA-collapse 62.5 61.7 63.4 63.7 63.4 64.0
JML 64.1 65.0 63.2 66.0 66.5 65.5
DTCA 68.4 67.3 69.5 70.4 69.6 71.2

Table 2: The results of the DTCA model and other models with comparison.

• UMT-collapse (Yu et al., 2020) is a direc-
tional graph convolutional network used to
jointly perform aspect extraction and senti-
ment analysis with encoding syntactic infor-
mation.

• OSCGA-collapse (Wu et al., 2020) combines
object-level image information and character-
level text information to predict entities.

• JML (Ju et al., 2021) uses a hierarchical
framework to bridge the multi-modal connec-
tion between MATE and MASC with an auxil-
iary text-image relation module to ensure the
proper exploitation of visual information.

The hyperparameters of all models were finetuned
using a grid-search strategy according to the per-
formance on the development set. The hidden size
dh is 768 for both RoBERTa and ViT model. The
number of heads in cross-modal self-attention is 8.
AdamW optimizer (Loshchilov and Hutter, 2019)
with a base learning rate of 2e-5 and warmup decay
of 0.1 was used to update all trainable parameters.
The maximum length and batch size were respec-
tively set to 60 and 4. For training epochs, we lever-
aged an early stopping strategy with a patience of
3 to avoid overfitting.

3.3 Hyper-parameters Finetuning
The tradeoff hyper-parameters α and β may im-
pact the final performance of the proposed DTCA
method for MABSA. Figure 4 shows the optimal
settings according to the final performance on the
dev set. We successively fine-tuned each parameter
in turn by fixing the other to 1. For both α and β,
we used a candidate set of {0.1, 0.3, 0.6, 0.9, 1.0}.

The performance of the proposed DTCA model
is optimized when α and β are respectively 0.6 and
0.6 on the Twitter-2015 dataset and 0.3 and 0.9
on the Twitter-2017 dataset, the performance of

Model Twitter-2015 Twitter-2017
F1 P R F1 P R

DTCA 67.8 66.9 68.7 70.0 69.5 70.6
w/o TE 67.0 65.9 68.2 68.8 68.6 69.0
w/o TPA 66.5 64.1 68.4 69.1 68.7 69.5
w/o Both 65.6 65.3 65.9 68.7 68.4 69.0

Table 3: The result of ablation. TE: text-only extraction,
TPA: token-patch alignment.

the proposed DTCA model is the best. The results
indicate that the use of appropriate parameters can
improve the performance.

3.4 Comparative Results

Table 2 summarizes the comparative results of the
proposed DTCA model against several previous
methods in terms of precision (P), recall (R), and
F1-score. As indicated, the proposed model outper-
forms all the baseline models. Compared with the
multi-modal baseline with the best performance,
i.e. JML, DTCA still shows absolute F1-score
increases of 6.71% and 6.67%. Compared with
text-based models, DTCA provides far better re-
sults. The F1-score of the DTCA model on the test
set outperforms RoBERTa by 8.06% and 7.32%
respectively on Twitter-2015 and Twitter-2017.
This indicates that vision-aware text extraction can
enable the proposed DTCA model to learn an ap-
propriate representation for MABSA.

3.5 Ablation Study

Table 3 shows the results of an ablation study to
further demonstrate the effectiveness of the two
auxiliary subtasks, i.e., text-only extraction (TE)
and token-patch alignment (TPA). By doing so, we
remove TE (w/o TE) and set hyperparameter β as
1.0. Then, we remove TPA (w/o TPA) and set α as
1.0. As indicated, the removal of either one or both
subtasks (w/o Both) produce varying degrees of
performance decline, indicating that both text-only
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Figure 5: Two results of different modality encoders.
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tive.

extraction and token-patch alignment play indis-
pensable roles in performance improvement.

3.6 Effect of Different Encoder

To investigate the effect of using different en-
coders, Figure 5 shows the performance of differ-
ent transform-based encoders for the DTCA model.
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019), ALBERT (Lan et al., 2020) and ELEC-
TRA (Clark et al., 2020) were applied as text en-
coder, while ViT (Dosovitskiy et al., 2021), Swin-
Transformer (Liu et al., 2021) and DeiT (Touvron
et al., 2021) were applied as image encoder. As
shown, RoBERTa achieved the best performance
for language modality. For vision modality, the
performance margins between different encoders
were not obvious, indicating that the text contains
enough features to identify the aspect-sentiment

pairs, whereas the image sometimes fails to provide
complementary information and may even induce
noise.

3.7 Case Study

Figure 6 shows a case study of two randomly se-
lected examples. For comparison, both text-only
RoBERTa and JML were introduced as baselines.
For example (a), although JML can accurately pre-
dict the correct aspect term Chris Sale, the sen-
timent of the Chris Sale aspect was wrongly pre-
dicted. The main reason is the misleading influence
of the image. For example (b), RoBERTa only pre-
dicts some aspect terms correctly because of the
lack of the image relation. In contrast, DTCA can
obtain all correct aspect terms and aspect-related
sentiment using cross-modal alignment between
text and image.

4 Conclusion

This work proposes a dual-encoder transformer
with cross-modal alignment for encoding text-
image features into the representations for MABSA
tasks. A multitask learning architecture contain-
ing three subtasks was applied to integrate both
text and image modalities. In addition to the co-
attention module, the token-patch alignment was
introduced to improve model training effectiveness.
Empirical experiments show the model improved
the performance for MABSA in the Twitter-2015
and Twitter-2017 datasets. In addition, ablation
and case studies further indicate the effectiveness
of the proposed model.

Future work will extend the proposed method
to more multi-modal tasks, such as multi-modal
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MRC, ASTE and dialogue.
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