
Proceedings of the 8th Workshop on Asian Translation, pages 68–73
Bangkok, Thailand (online), August 5-6, 2021. ©2021 Association for Computational Linguistics

68

Machine Translation with Pre-specified Target-side Words
Using a Semi-autoregressive Model

Seiichiro Kondo Aomi Koyama Tomoshige Kiyuna
Tosho Hirasawa Mamoru Komachi

Tokyo Metropolitan University
kondo-seiichiro@ed.tmu.ac.jp, koyama-aomi@ed.tmu.ac.jp

kiyuna-tomoshige@ed.tmu.ac.jp, hirasawa-tosho@ed.tmu.ac.jp
komachi@tmu.ac.jp

Abstract

We introduce our TMU Japanese-to-English
system, which employs a semi-autoregressive
model, to tackle the WAT 2021 (Nakazawa
et al., 2021) restricted translation task. In this
task, we translate an input sentence with the
constraint that some words, called restricted
target vocabularies (RTVs), must be contained
in the output sentence. To satisfy this con-
straint, we use a semi-autoregressive model,
namely, RecoverSAT (Ran et al., 2020), due
to its ability (known as “forced translation”) to
insert specified words into the output sentence.
When using “forced translation,” the order of
inserting RTVs is a critical problem. In our
system, we obtain word alignment between a
source sentence and the corresponding RTVs
and then sort the RTVs in the order of their
corresponding words or phrases in the source
sentence. Using the model with sorted order
RTVs, we succeeded in inserting all the RTVs
into output sentences in more than 96% of the
test sentences. Moreover, we confirmed that
sorting RTVs improved the BLEU score com-
pared with random order RTVs.

1 Introduction

In this study, we tackle a machine translation task
called “restricted translation.” This task requires
the output sentence to contain all the pre-specified
restricted target vocabularies (RTVs)1. In other
words, we are given a source sentence and a set of
RTVs, and we are supposed to generate an output
sentence that contains all the RTVs in the set2.

Since the emergence of neural machine transla-
tion (NMT) models (Sutskever et al., 2014; Bah-
danau et al., 2015; Vaswani et al., 2017), several

1Each RTV is either a word or a phrase.
2For details of the task description, see

https://sites.google.com/view/
restricted-translation-task/.

studies have been conducted to explore NMT sys-
tems capable of decoding translations under ter-
minological constraints (Hasler et al., 2018; Dinu
et al., 2019; Chen et al., 2020; Song et al., 2020).
However, these previous studies were conducted
under the condition that a bilingual dictionary is
given. Moreover, these challenges are limited to
autoregressive NMT systems, and scant research
has been conducted on non-autoregressive or semi-
autoregressive NMT systems, which have received
more attention recently.

To accomplish restricted translation, where only
target terminologies are given, we used a semi-
autoregressive model called RecoverSAT (Ran
et al., 2020), which generates a sentence as a se-
quence of segments. In this model, the segments
are generated simultaneously, and each segment is
predicted token-by-token. Ran et al. (2020) also
attempted to force the model to generate a certain
token at the beginning of a segment and showed
that the model could generate valid sentences un-
der the constraint. Then, we considered whether
this model could be applied to generate sentences
containing RTVs.

When tackling this task using this model, the in-
sertion order of RTVs is a critical issue. To address
this issue, we used GIZA++ (Och and Ney, 2003)
to obtain word alignments and then identify the
source position corresponding to the RTVs. Sub-
sequently, we inserted them in the order in which
their corresponding source tokens appear. We con-
firmed that sorting RTVs with GIZA++ improved
the BLEU (Papineni et al., 2002) score. Finally, by
using this model, we achieved all the RTVs outputs
in more than 96% of the test sentences.

2 System Overview

2.1 Corpus Refinement

Morishita et al. (2019) reported that the synthetic

https://sites.google.com/view/restricted-translation-task/
https://sites.google.com/view/restricted-translation-task/
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data generated by back-translation (Sennrich et al.,
2016) degraded the performance in the Japanese-
to-English translation setting. The reason for this
phenomenon was that the ASPEC (Nakazawa et al.,
2016) training sentences are ordered by sentence
alignment scores, and so the sentences with lower
scores are considered relatively noisy data. There-
fore, Morishita et al. (2019) attempted to gener-
ate synthetic data using forward-translation instead
of standard back-translation and confirmed that
forward-translation improved the performance of
the Japanese-to-English translation setting.

Following Morishita et al. (2019), we used
forward-translation to refine the latter half of the
ASPEC training data. In the same manner as
their method, we first trained a Japanese-to-English
translation model on the first 1.5M sentences of the
ASPEC training data. Subsequently, we used the
trained model to translate the latter 1.5M Japanese
sentences of the ASPEC training data and obtained
refined English sentences. Finally, we combined
the first 1.5M training data and the refined 1.5M
training data and trained a Japanese-to-English
translation model.

2.2 RecoverSAT

RecoverSAT (Ran et al., 2020) is a semi-
autoregressive model that performs generation au-
toregressively in local and non-autoregressively in
global. At each decoding step, the model generates
a token in each segment, with paying attention to
not only all the previous tokens in the segment but
also those in all the other segments. The model
continues decoding in each segment until either
a special token, EOS or DEL, is generated, or the
length of the generated token reaches the maximum
token number. The final translation is a concatena-
tion of all the segments except those that end with
DEL.

RecoverSAT is also known for its capability to
generate a translation under a word constraint (Ran
et al., 2020), which is called the “forced translation”
approach. In this approach, the model generates
the constraint word (or phrases) at the beginning of
an arbitrary segment. Once the constraint word (or
phrase) has been generated, the model predicts the
remainder of the segment in a semi-autoregressive
manner.

In contrast to the original “forced translation,”
which only takes one constrained word (or phrase),
we are required to place multiple RTVs in a transla-

tion. To compensate for this gap, we place the i-th
RTV at the Pi-th segment as follows3:

Pi = bNS

NV
c · i (1)

where NS is the number of segments and NV is
the number of RTVs. When the RTVs have more
phrases than segments during inference, we cut
off phrases in the RTVs from the tail to fit the
placeholder.

2.3 Sorting RTVs Using Source Alignment

RecoverSAT outputs RTVs in the order where they
are inserted, so the order of inserting RTVs is im-
portant for accurate translation. We determined
the order of the RTVs under the assumption that it
correlated with the order of the aligned words in
the input sentence.

We used GIZA++ to align each RTV with a word
in the input sentence and sorted the RTVs in the
order of their corresponding input words. When the
RTV was a phrase, we first obtained a source word
that was most aligned with each word in the RTV
and then selected the source word with the highest
alignment score as the aligned word for the entire
RTV. If there was a tie, the first aligned word in the
input sentence was selected as the corresponding
word.

3 Experimental Setup

3.1 Dataset

We used the ASPEC (Nakazawa et al., 2016)
dataset for Japanese-to-English translation. This
dataset contains 3M sentences as training data,
1,790 sentences as validation data, and 1,812 sen-
tences as test data. As explained in Section 2.1,
we refined the latter half of the training data using
forward-translation.

We used SentencePiece (Kudo and Richardson,
2018) to tokenize the training data for both the
source and target sentences, where the vocabulary
size was set to 4K. Note that we used Sentence-
Piece models obtained from the first 1.5M training
data through all the experiments. When determin-
ing the insertion order of RTVs using GIZA++, we
used MeCab4 with IPADIC to tokenize Japanese
sentences before computing the alignment.

3Note that both Pi and i start from 0.
4https://taku910.github.io/mecab/

https://taku910.github.io/mecab/
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3.2 Evaluation
We evaluated system outputs using the following
two distinct metrics.

BLEU score. The BLEU score is a metric evalu-
ated by the n-gram matching rate with the reference.
We calculated it using multi-bleu.perl in the
Moses toolkit (Koehn et al., 2007).

Consistency score. The consistency score is the
ratio of translations that satisfy the exact match
of all the given constraints over the entire test cor-
pus. The exact match is determined as follows.
We simply lowercased hypotheses and constraints
and then judged character-level sequence matching
(including whitespaces) for each constraint.

For the final score, we calculated the BLEU
score using only the translations that exactly
matched their RTVs. In other words, first, we cal-
culated the exact match, and then, we replaced the
translations that did not satisfy the constraint with
an empty string. Subsequently, we calculated the
BLEU score with the modified translations.

3.3 Model
Transformer. We used “Transformer (base)”
(Vaswani et al., 2017) for forward-translation and a
baseline model. The hyperparameter settings were
the same as described in Vaswani et al. (2017).

In the baseline model, we inserted the RTVs at
the tail of the output sentence without sorting.

RecoverSAT. We use the encoder of the Trans-
former to initialize the encoder of RecoverSAT, and
share the parameters of the embedding layers and
the pre-softmax linear layer in the same way as
Ran et al. (2020). We adopted the same model
and hyperparameters that were used in the previ-
ous study (Ran et al., 2020)5, where dmodel = 512,
dhidden = 512, nlayer = 6, and nhead = 8. How-
ever, we did not share the source and target vocab-
ularies.

Moreover, we changed the number of segments
from the original paper (i.e., 10) because some
examples had more than 10 (up to 14) RTVs in the
test data. We also expanded the length of a segment
to be able to insert all the tokens of the RTV if the
RTV has more tokens than allowed by default. We
examined four RecoverSAT models with different
numbers of segments: 10 is the default value in

5We used the implementation at https://github.
com/ranqiu92/RecoverSAT and minimally modified it
for inserting RTVs.

BLEU RIBES AMFM

RecoverSAT 25.29 0.653597 0.612290

Table 1: Results of the official score using RecoverSAT
with 14 segments and forced translation with sorted or-
der.

Figure 1: Results of our experiments using Recover-
SAT. The solid line represents the BLEU score, and the
dotted line represents the consistency score. The dot
marker represents RecoverSAT without RTVs. The tri-
angle marker represents forced translation without sort-
ing RTVs. The square marker represents forced trans-
lation with sorted order. The cross marker represents
forced translation with oracle order.

Ran et al. (2020) and 14 is the maximum number
of RTVs among the development data. The models
with 21 and 29 segments have more free segments
than the previous models, which are supposed to be
lubricating segments to improve the overall output.

4 Results

4.1 Official Evaluation
Table 1 presents the official BLEU, RIBES (Isozaki
et al., 2010), and AMFM (Banchs et al., 2015)
scores, calculated in the evaluation server, for the
model in which the number of segments is 14. As
shown in Table 1, the BLEU, RIBES, and AMFM
scores were 25.29, 0.653597, and 0.612290 points,
respectively.

4.2 Our Evaluation
Table 2 presents the scores obtained in our evalu-
ation. Moreover, Figure 1 shows the BLEU score
and consistency scores for different numbers of
segments {10, 14, 21, 29}.

BLEU score. Figure 1 shows that the translation
accuracy decreases as the number of segments in-

https://github.com/ranqiu92/RecoverSAT
https://github.com/ranqiu92/RecoverSAT
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Model BLEU score Consistency score Final score

Transformer 27.78 0.220 0.27
+ Append RTVs 25.57 1.000 26.75

RecoverSAT 25.76 0.197 0.16
+ Forced translation with random order 26.93 0.962 26.98
+ Forced translation with sorted order 27.16 0.961 27.10
+ Forced translation with oracle order 31.14 0.966 31.02

Table 2: Results of the experiments in our evaluation. The number of segments of RecoverSAT is 10. The
consistency score is the ratio of sentences satisfying the exact match of the given constraints. The final score is the
constraint-aware BLEU score. “random order”: we insert RTVs without sorting. “sorted order”: we insert RTVs
in the order of the corresponding source words. “oracle order”: we insert RTVs in the same order as that in the
reference.

creases, similar to the previous study (Ran et al.,
2020). This may be because the model predicts
the target tokens more independently as the num-
ber of segments increases. As the number of seg-
ments increases, the length of each segment be-
comes shorter, and the model becomes closer to the
non-autoregressive model.

Table 2 shows that sorting the RTVs using
GIZA++ improves the BLEU score. However,
there is still a significant gap in the scores com-
pared with those obtained using the oracle order.
This is because the word order between Japanese
and English is different.

Consistency score. Figure 1 shows that Recover-
SAT with forced translation reliably outputs RTVs
in almost all the cases. When the number of seg-
ments was 10, we could not insert all the RTVs
in some test sentences with more than 10 RTVs6.
On the other hand, when the number of segments
was 14 or more, it was expected that all the RTVs
could be inserted into all the test sentences. How-
ever, some output sentences did not contain all the
RTVs, even if the number of segments was 14 or
more. This result indicates that the model generates
a special token, DEL, to delete segments beginning
with the RTVs.

The final BLEU score of the model with 10 seg-
ments, which gives up to generate some RTVs on
occasion, was the highest. This is because it is rare
to have more than 10 RTVs for a single sentence7.
Additionally, we confirmed that the insertion of
RTVs was effective in improving not only the con-

6As mentioned in Section 3.3, the maximum number of
RTVs in the test set was 14.

7Only 14 out of 1,812 (0.8%) sentences were given more
than 10 RTVs in the test data.

sistency score but also the BLEU score.

5 Related Work

Previously, some NMT with terminology con-
straints have been studied (Hasler et al., 2018;
Alkhouli et al., 2018; Dinu et al., 2019; Chen et al.,
2020; Song et al., 2020). For example, Song et al.
(2020) proposed a dedicated head in a multi-head
Transformer architecture to learn explicit word
alignment and use it to guide the constrained de-
coding process. When the source-aligned word
matches a dictionary, the model outputs the corre-
sponding target word. However, these models are
not available for the “restricted translation” task
because we can only access the target-side vocabu-
laries.

In this study, we used the semi-autoregressive
model RecoverSAT (Ran et al., 2020). Originally,
this model was not intended to output forcibly more
than one constrained word. A non-autoregressive
model can decode target tokens simultaneously, re-
sulting in faster decoding. However, its output sen-
tence suffers from the multi-modality problem caus-
ing token repetitions or missing by not using the
dependency between the output words (Gu et al.,
2018; Ran et al., 2020). Thus, Ran et al. (2020) pro-
posed RecoverSAT to alleviate this problem. Their
model could maintain the accuracy of the autore-
gressive model while achieving a faster processing
speed. They also mentioned that, as the number of
segments increases, the closer the model becomes
to a non-autoregressive model. In other words,
when the number of segments increases, the de-
coding process is faster, but the accuracy is lower.
Moreover, they attempted to force the model to
generate a pre-specified token at the beginning of
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a segment and showed that the model could avoid
repetitive output and translate properly.

6 Conclusions

We introduced a semi-autoregressive approach to
tackle the restricted translation task. In our experi-
ments, we showed that RecoverSAT could output
almost all the RTVs. Additionally, we used source
sentence alignment to determine the insertion posi-
tion and observed that it improved the BLEU score.
Moreover, the importance of the order of the RTVs
was confirmed by the fact that the score was con-
siderably improved by inserting RTVs in the order
in which they appear in the reference translations.
However, there is still room for improvement in
determining the insertion order. In future work,
investigating how to determine the best order to
insert RTVs will be necessary.
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