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Abstract

This paper describes our system (Team ID: nic-
trb) for participating in the WAT’21 restricted
machine translation task. In our submitted sys-
tem, we designed a new training approach for
restricted machine translation. By sampling
from the translation target, we can solve the
problem that ordinary training data does not
have a restricted vocabulary. With the further
help of constrained decoding in the inference
phase, we achieved better results than the base-
line, confirming the effectiveness of our so-
lution. In addition, we also tried the vanilla
and sparse Transformer as the backbone net-
work of the model, as well as model ensem-
bling, which further improved the final transla-
tion performance.

1 Introduction

The performance of machine translation has been
greatly improved since it entered the era of Neu-
ral Machine Translation (NMT) (Bahdanau et al.,
2015; Sutskever et al., 2014; Wu et al., 2016). Dif-
ferent from traditional statistical machine transla-
tion (SMT) (Koehn et al., 2003), NMT models
are trained end-to-end with contextualized repre-
sentations to alleviate the locality problem and
dense representations to mitigate the sparsity is-
sue. The incorporation of novel structures such
as CNN (Gehring et al., 2017) and Transformer
(Vaswani et al., 2017) into NMT has brought the
performance one step closer to practical translation.

Though NMT can more effectively exploit large
parallel corpora, the performance is still insufficient
to meet the requirements in some special translation
scenarios. The end-to-end NMT models remove
many approaches in the SMT paradigm for manu-
ally guiding the translation process. One attractive-
ness of the SMT method is that it provides explicit
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control over translation output, which is effective
in a variety of translation settings, including inter-
active machine translation (Peris et al., 2017) and
domain adaptation (Chu and Wang, 2018), which
is also crucial for the practical application of NMT.

Since there is still a need for manual interven-
tions for the new NMT paradigm, much effort
is spent in studying how to incorporate this ex-
plicit control into the end-to-end neural translation
(Arthur et al., 2016). Among these efforts, Con-
strained Decoding (CD) has gained a lot of atten-
tion in this research field, which is a modification to
commonly adopted beam search in ordinary NMT
models. Hokamp and Liu (2017) proposed grid
beam search, which expands beam search to in-
clude pre-specified lexical constraints. Anderson
et al. (2017) used constrained beam search to force
the inclusion of restricted words in the output, and
employed fixed pre-trained word embeddings to
facilitate vocabulary expansion to unseen words in
training.

While these works accomplish the goal of ex-
plicit translation control, the time complexity of
their decoding algorithm and resultant decoding
speed falls short of the expectations. The com-
plexity of grid beam search and constrained beam
search is linear and exponential to the number of
constraints, respectively. These algorithms are thus
too inefficient to be practical for large-scale use. To
alleviate the shortcomings in constrained decoding,
Post and Vilar (2018) proposed a new constrained
decoding algorithm with a claimed complexity of
O(1) in the number of constraints - dynamic beam
allocation which allocates the slots in a fixed-size
beam. However, their approach still processes sen-
tence constraints sequentially rather than batch pro-
cessing, limiting the GPU’s parallel processing
capabilities. Based on Post and Vilar (2018), a
vectorized dynamic beam allocation approach was
proposed in Hu et al. (2019), which which vector-
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izes the dynamic beam allocation for batching and
thus leading to improvement in throughput with
parallelization. Based on Post and Vilar (2018), Hu
et al. (2019) proposed a vectorized dynamic beam
allocation approach, which vectorizes the dynamic
beam allocation for batching, resulting in increased
throughput with parallelization.

Constrained decoding is a very general method
for incorporating additional translation knowledge
into the output without modifying the model param-
eters or training data. However, the model’s predic-
tion distribution can be skewed during the decod-
ing process with hard constraints, resulting in poor
translation results. When the model is exposed to
the restricted translation paradigm during training,
the gap between training and inference can be re-
duced, potentially improving performance. There-
fore, in this paper, we propose a training method
of Sampled Constraints as Concentration (SCC).
In this method, training data is the same as the
ordinary NMT; only minor modifications on the
loss calculation are required to adapt the model to
restricted translation.

In our submission to WAT’21 (Nakazawa et al.,
2021) restricted translation task, we chose Trans-
former (Vaswani et al., 2017) as our baseline be-
cause of its high performance and scalability. Al-
though there are some variants, our previous ex-
periments have shown there are not too many ap-
proaches that can be both concise and effective. At
the same time, though multi-head self-attention in
Transformer can model extremely long dependen-
cies, deep layer attention tends to overconcentrate
on a single token, resulting in inadequate use of
local information and difficulty representing long
sequences. To address this disadvantage, we em-
ploy the PRIME Transformer (Zhao et al., 2019)
with a multi-scale sparse attention mechanism as
a second baseline. The models in the two architec-
tures are ensembled to improve the overall results.
Our final system uses a combination of the SCC
training method and the constrained decoding of
Hu et al. (2019), which makes our system lever-
ages soft constrained (inside the model) and benefit
from hard restrictions (external decoding).

2 Our System

In this section, we describe the methods used in
our system in detail. Our system is made up
of four components: the Transformer model, the
Sparse Transformer model, the SCC training ap-

proach, and the constrained decoding algorithm.
In translation, given the source input sequence
X = {w1, w2, ..., wm}, its target translation is
Y = {y1, y2, ..., yn}, the parameter of the NMT
model is θ, then the probability form of the transla-
tion process can be written as:

P (Y |X, θ) =
n∏

i=1

P (yi|y<i, X, θ),

where y<i denotes the tokens generated before time
step i.

2.1 Transformer Model
Transformer model (Li et al., 2021) is a encoder-
decoder architecture entirely built on multi-head
self-attention which is responsible for learning rep-
resentations of global context. With an input rep-
resentation H , a multi-head self-attention (MHA)
layer first projects H into three representations,
key K, query Q, and value V . Then, it uses a
self-attention mechanism to get the output repre-
sentation:

headk = Attn(H) = σ(QWQ,KWK , V WV )WO

MHA(H) = Concat(head1, · · · , headK)WO,

where Q = LinearQ(H), K = LinearK(H),
V = LinearV (H), WO, WQ, WK , and W V are
projection parameters. The self-attention operation
σ is the dot-production between key, query, and
value pairs:

σ(Q1,K1, V1) = Softmax(
Q1K

T
1√

dk
)V1,

where dk = dmodel/K is the dimension of each
head. The encoder of the Transformer model con-
sists of a stack of multiple layers with MHA struc-
ture (Self-MHAenc) where the residual mechanism
and layer normalization are used to connect two ad-
jacent layers. Similar to the encoder, each decoder
layer decoder is composed of two MHA structures:
Self-MHAdec and Cross-MHA, since it not only
encodes the input sequence but also incorporates
the source representation. Then the processing flow
of the model can be written as:

Henc = Self-MHAenc(X),

Hdec = Self-MHAdec(IncMask([BOS, y1, · · · , yn−1])),

P (Y |X) = Softmax(Linear(Cross-MHA(Hdec, Henc)))),

where IncMask(·) represents the incremental mask-
ing strategy.
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2.2 Sparse Transformer Model
According to the evaluation in recent re-
search (Tang et al., 2018), it has shown that the
vanilla Transformer has surprising shortcomings in
long sequence encoding even the Transformer is
designed to modeling long dependencies. Vanilla
Transformer works well for short sequence trans-
lation, but performance drops as the source sen-
tence length increases because only a small num-
ber of tokens are represented by self-attention, re-
sulting in difficulty for translation. Replacing the
dense self-attention mechanism with a sparse at-
tention mechanism will alleviate the difficulties in
long sentence translation; we chose the PRIME
Transformer (Zhao et al., 2019) as our another base
model. Compared to vanilla Transformer, PRIME
Transformer generates the output representation of
layer i in a fusion way:

Hi = Hi−1 + MHA(Hi−1)

+ Conv(Hi−1) + Pointwise(Hi−1),

where H i−1 is the output of layer i − 1. Conv(·)
refers to dynamic convolution with multiple kernel
sizes, which is employed to capture local context:

Convk(H) = DepthConvk(HW
V )W out

DepthConvk(H) =

k∑
j=1

(
Softmax(

d∑
c=1

WQ
j,cHi,c)

·H
i+j−d k+1

2
e,c

)
,

Conv(H) =

K∑
i=1

exp (αi)
n∑

j=1

exp (αj)
Convki(X)

in which DepthConv(·) is the depth convolution
structure proposed in Wu et al. (2019). And
Pointwise(·) refers to a position-wise feed-forward
network:

Pointwise(H) = max(0, HW1 + b1)W2 + b2.

where W1, b1, W2, and b2 are learnable parameters.

2.3 Sampled Constraints as Concentration
Training

The predicted probability in ordinary NMT is
yi ∼ P (yi|X, θ). Because of the inclusion of
the constrained word sequence C in restricted
translation, the probability distribution becomes
yi ∼ P (yi|X,C, θ). To adapt the restricted transla-
tion for the NMT model rather than just influencing
the search process, we expose the constrained word
sequence C as additional context like source input.

Since the parallel training data only contains the
source and target language sequences, we obtain
the constrained word sequence for training via ran-
dom dynamic sampling from the reference target
translation. This not only alleviates the burden of
constrained word annotation but also has the poten-
tial to minimize overfitting.

Specifically, in the model, we use the
Self-MHAdec to encode the input constrained se-
quence to obtain its representation:

Hcst = Self-MHAdec(C).

It is worth noting that we remove the positional
encoding of constrained sequence since the order
of restricted word sequence is usually inconsistent
with the target translation; additionally, we also
remove the incremental mask because the whole
sequence is exposed to the decoder as an additional
context at the same time. The probabilistic form of
restricted translation accordingly changes to:

P (Y |X) = Softmax(Linear(Cross-MHA(Hdec, Henc)+

Cross-MHA(Hdec, Hcst)))).

Because sampled constrained words are exposed to
the decoder, to enforce the inclusion of these words
in the translation, we place additional penalties on
the loss of these sampled positions to achieve the
goal of restrict translation with soft constraints on
the model:

LSCC = −
m∑
i=1

(
(1 + γ1(yi ∈ C))

logP (yi|X;C; y<i; θ)
)
,

where 1(·) is the indicator function and γ is the
penalty factor.

2.4 Lexically Constrained Decoding
Beam search (Koehn, 2010) is a common approx-
imate search algorithm for sequence generation
task. Lexically constrained decoding is a modi-
fication to the beam search algorithm, which is
proposed to enforce hard constraints that force a
given constrained sequence to appear in the gener-
ated sequence. Specifically, beam search maintains
a beam Bt on time step t, which contains only the
b most likely partial sequences, where b is known
as the beam size. The beam Bt is updated by re-
taining the b most likely sequences in the candidate
set Et generated by considering all possible next
word predictions:

Et =
{
(Ŷt−1, w) | Ŷt−1 ∈ Bt−1, w ∈ V

}
,
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Model BLEU RIBES AMFM
jum kyt mec jum kyt mec −

Transformer-big 41.67 41.82 41.84 81.05 81.32 81.50 74.95
Transformer-big + SCC + CD∗ 48.92 49.24 49.25 82.79 83.15 83.57 79.15
Sparse Transformer-big + SCC + CD∗ 50.93 51.18 51.21 83.27 83.52 84.00 79.91
Ensemble∗ 51.07 51.32 51.36 83.68 83.99 84.41 79.99

Table 1: Results on ASPECT En→Ja test sets. ∗ indicates that the official evaluation results are reported.

Dataset Sentences

ParaCrawl-v5.1 10.12M
Wiki Titles v2 3.64M

ASPEC 3.01M

Table 2: Training data statistics.

where Ŷt−1 is the generated sequence in time step
t− 1 and V is the target vocabulary.

In lexically constrained decoding, a finite-state
machine (FSM) is used to impose the constraints.
For each state s ∈ S in the FSM, a corresponding
search beam Bs is maintained similar to the beam
search:

Es
t =

⋃
s′∈S

{
(Ŷt−1, w) | Ŷt−1 ∈ Bs′

t−1, w ∈ V,

δ(s′, w) = s
}
,

where δ : S × V 7→ S is the FSM state-transition
function that maps states and predicted words to
states.

2.5 System Details
Our implementation of the Transformer models
and lexically constrained decoding algorithm are
based on the Fairseq toolkit1. We follow the set-
tings and pre-processing methods in our previous
models and systems (He et al., 2018; Li et al., 2018;
He et al., 2019; Li et al., 2019; Zhou et al., 2020;
Li et al., 2020b,d,c; Zhang et al., 2020). We use
Transformer-big as our basic model, which has 6
layers in both the encoder and decoder, respectively.
For each layer, it consists of a multi-head attention
sublayer with 16 heads and a feed-forward sublayer
with an inner dimension 4096. The word embed-
ding dimensions and the hidden state dimensions
are set to 1024 for both the encoder and decoder.
In the training phase, the dropout rate is set to 0.1.

Our model training consists of two phases. In
the first NMT pre-training phase, the ParaCrawl-
v5.1 (Esplà et al., 2019) and Wiki Titles v2 datasets
are used. Then we finetune the model using the

1https://github.com/pytorch/fairseq

Model BLEU RIBES AMFM

Transformer-big 28.18 67.79 58.69
Transformer-big + SCC
+ CD∗

35.26 74.44 64.16

Sparse Transformer-big
+ SCC + CD∗

36.83 75.84 65.29

Ensemble∗ 37.01 75.38 65.15

Table 3: Results on ASPECT Ja→En test sets. ∗ indi-
cates that the official evaluation results are reported.

ASPEC training data in the second domain finetune
phase. Table 2 shows the data statistics for each
dataset. In both phases, cross-entropy with label
smoothing of 0.1 and D2GPo (Li et al., 2020a) are
employed as the training loss criterions. We use
Adam (Kingma and Ba, 2015) as our optimizer,
with parameters settings β1 = 0.9, β2 = 0.98 and
ε = 10−8. The initial learning rate is set to 10−4

for NMT pre-training and 10−5 for domain fine-
tuning. The models are trained on 8 GPUs for about
500,000 steps. In our systems, we follow standard
practice and learn a subword (Sennrich et al., 2016)
encoding with 40K joint merge operations.

3 Results

Table 1 shows the official results evaluated on
ASPEC En→Ja test set. Comparing the re-
sults of the vanilla Transformer-big model and
Transformer-big+SCC+CD, restricted translation
under +SCC+CD has brought a very large perfor-
mance improvement, which illustrates the perfor-
mance advantage of restricted translation. Similar
to ordinary NMT, sparse Transformer achieves bet-
ter results than Transformer-big in restricted trans-
lation, which demonstrates that Sparse Transformer
is a general model structure. A further increase in
performance is achieved after ensembling on these
two models. This benefits from the models of the
distinct architectures of the two models. In gen-
eral, the improvement brought about by the same
architecture is less. We show the results of ASPEC
En→Ja test set in Table 3. By comparison, the
conclusion is essentially consistent with Table 2.

https://github.com/pytorch/fairseq
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4 Conclusion

In this paper, we present our NMT systems for
WAT21 restricted translation shared tasks in En-
glish↔ English. By integrating the following tech-
niques: Sparse Transformer, Sampled Constraints
as Concentration, and Lexically Constrained De-
coding, our final system achieves substantial im-
provement over baseline systems which show the
effectiveness of our approaches.
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