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Abstract

In this paper, we present the details of the sys-
tems that we have submitted for the WAT 2021
MultiIndicMT: An Indic Language Multilin-
gual Task. We have submitted two separate
multilingual NMT models: one for English to
10 Indic languages and another for 10 Indic
languages to English. We discuss the imple-
mentation details of two separate multilingual
NMT approaches, namely one-to-many and
many-to-one, that makes use of a shared de-
coder and a shared encoder, respectively. From
our experiments, we observe that the multilin-
gual NMT systems outperforms the bilingual
baseline MT systems for each of the language
pairs under consideration.

1 Introduction

In recent years, the Neural Machine Translation
(NMT) systems (Vaswani et al., 2017; Bahdanau
et al., 2014; Sutskever et al., 2014; Cho et al., 2014)
have consistently outperformed the Statistical Ma-
chine Translation (SMT) (Koehn, 2009) systems.
One of the major problems with NMT systems is
that they are data hungry, which means that they
require a large amount of parallel data to give better
performance. This becomes a very challenging task
while working with low-resource language pairs
for which a very less amount of parallel corpora
is available. Multilingual NMT (MNMT) systems
(Dong et al., 2015; Johnson et al., 2017) allevi-
ate this issue by using the phenomenon of transfer
learning among related languages, which are the
languages that are related by genetic and contact
relationships. (Kunchukuttan and Bhattacharyya,
2020) have shown that the lexical and orthographic
similarity among languages can be utilized to im-
prove translation quality between Indic languages
when limited parallel corpora is available. Another
advantage of using MNMT systems is that they
support zero-shot translation, that is, translation

among two languages for which no parallel cor-
pora is available during training.

A MNMT system can also drastically reduce
the total number of models required for a large
scale translation system by making use of a single
many-to-many MNMT model instead of having to
train a separate translation system for each of the
language pairs. This reduces the amount of com-
putation and time required for training. Among
various MNMT approaches, using a single shared
encoder and decoder will further reduce the num-
ber of parameters and allow related languages to
share vocabulary. In this paper, we describe the
two MNMT systems that we have submitted for
the WAT 2021 MultiIndicMT: An Indic Language
Multilingual Task (Nakazawa et al., 2021) as team
’CFILT’, namely one-to-many for English to Indic
languages and many-to-one for Indic languages to
English. This task covers 10 Indic languages which
are Bengali, Gujarati, Hindi, Kannada, Malayalam,
Marathi, Oriya, Punjabi, Tamil and Telugu.

2 Related Work

Dong et al. (2015) was the first to introduce MNMT.
The authors used a one-to-many model where a
separate decoder and an attention mechanism was
used for each target language. Firat et al. (2016)
extended this to a many-to-many setting using a
shared attention mechanism. In Zoph and Knight
(2016) a multi-source translation approach was pro-
posed where multiple encoders were used, each
having a separate attention mechanism. Lee et al.
(2017) proposed a CNN-based character level ap-
proach where a single encoder was shared across
all the source languages.

A second line of work on MNMT uses a sin-
gle shared encoder and decoder (Ha et al., 2016;
Johnson et al., 2017) irrespective of the number
of languages on the source or the target side. An
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en-bn en-gu en-hi en-kn en-ml en-mr en-or en-pa en-ta en-te

ALT 20 - 20 - - - - - - -
Bible-uedin - 16 62 61 61 61 - - - 62
CVIT-PIB 92 58 267 - 43 114 94 101 116 45
IITB 3.0 - - 1603 - - - - - - -
MTEnglish2Odia - - - - - - 35 - - -
NLPC - - - - - - - - 31 -
OdiEnCorp 2.0 - - - - - - 91 - - -
OpenSubtitles 411 - 92 - 383 - - - 32 27
PMIndia 23 41 50 29 27 29 32 28 33 33
TED2020 - - - 2 - - - 0.7 - -

Total 546 115 2094 92 514 204 252 130 212 167

Table 1: Statistics of number of parallel sentences for each of the English-Indic language pairs across different
datasets used for training. All the numbers are in thousands. (bn:Bengali, gu:Gujarati, hi:Hindi, kn:Kannada,
ml:Malayalam, mr:Marathi, or:Oriya, pa:Punjabi, ta:Tamil, te:Telugu)

advantage of this approach is that the number of
parameters are drastically reduced. Dabre et al.
(2019) gives a summary of various techniques that
can be used to implement MNMT systems. The
MNMT systems that we have implemented are
based on Johnson et al. (2017)’s approach where in
one-to-many and many-to-many models a language
specific token is prepended to the input sentence to
indicate the target language that the model should
translate to. We use transformer (Vaswani et al.,
2017) architecture which has proven to give su-
perior performance over the RNN based models
(Bahdanau et al., 2014; Sutskever et al., 2014; Cho
et al., 2014).

3 Our Approach

The various types of multilingual models that we
have implemented are one-to-many and many-to-
one, each of which are discussed below.

3.1 One-to-Many

In a one-to-many multilingual model, the trans-
lation task involves a single source language and
two or more target languages. One of the ways to
achieve this is by making use of a single encoder
for the source language and separate decoders for
each of the target languages. The disadvantage of
this method is that, as there are multiple decoders,
the size of the model increases. Another way to
achieve this is to use a single encoder and a single
shared decoder. An advantage of this method is that
the representations learnt by some language pair
can further be utilized by the some other language

pair. For example, the representations learnt during
the training of the English-Hindi language pair can
help training the English-Marathi language pair.
Also, in this approach, a language specific token
is prepended to the input sentence to indicate the
model to which target language the input sentence
should be translated.

3.2 Many-to-One

This approach is similar to the one-to-many ap-
proach. The major point of difference is that there
are multiple source languages and a single target
language. As a result, here we use a single shared
encoder and a single decoder. Also, as the target
language is same for all the source languages, it is
optional to prepend a token to the input sentence
unlike in the one-to-many approach which has mul-
tiple target languages for a given source language.

4 Experiments

In this section, we discuss the details of the system
architecture, dataset, preprocessing, models and
the training setup.

4.1 System Architecture

Table 4 lists the details of the transformer architec-
ture used for all the experiments.

4.2 Data

The dataset provided for the shared task by WAT
2021 was used for all the experiments. We did not
use any additional data to train the models. Table 1
lists the datasets used for each of the English-Indic
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Baseline One-to-Many
BLEU RIBES BLEU RIBES AMFM

en → bn 12.14 0.691941 13.24 0.710664 0.777074
en → gu 18.26 0.745845 24.56 0.806649 0.817681
en → hi 33.06 0.836683 35.39 0.843969 0.821713
en → kn 11.43 0.666605 17.98 0.747233 0.816981
en → ml 10.56 0.668024 12.79 0.707437 0.805291
en → mr - - 18.47 0.759182 0.811499
en → or 11.19 0.644931 18.22 0.738397 0.768399
en → pa 29.00 0.810395 31.16 0.826367 0.813658
en → ta 10.97 0.662236 12.99 0.715699 0.802920
en → te - - 15.52 0.725496 0.789820

Table 2: Results for the one-to-many MNMT model. To obtain the baseline results, we performed the same auto-
matic evaluation procedures as those performed in WAT 2021. The one-to-many results are the official evaluation
results provided by the organizers of WAT 2021. (bn:Bengali, gu:Gujarati, hi:Hindi, kn:Kannada, ml:Malayalam,
mr:Marathi, or:Oriya, pa:Punjabi, ta:Tamil, te:Telugu)

Baseline Many-to-One
BLEU RIBES BLEU RIBES AMFM

bn → en 24.38 0.772800 25.98 0.760268 0.766461
gu → en 31.92 0.799512 35.31 0.807849 0.797069
hi → en 37.72 0.847265 39.71 0.837668 0.822034
kn → en 21.30 0.738755 30.23 0.772913 0.778602
ml → en 26.80 0.786290 29.28 0.784424 0.789095
mr → en - - 29.71 0.786570 0.789075
or → en - - 30.46 0.772850 0.793769
pa → en 37.89 0.827826 38.01 0.818396 0.804561
ta → en - - 29.34 0.784291 0.785098
te → en - - 30.10 0.778981 0.783349

Table 3: Results for the many-to-one MNMT model. To obtain the baseline results, we performed the same auto-
matic evaluation procedures as those performed in WAT 2021. The many-to-one results are the official evaluation
results provided by the organizers of WAT 2021.(bn:Bengali, gu:Gujarati, hi:Hindi, kn:Kannada, ml:Malayalam,
mr:Marathi, or:Oriya, pa:Punjabi, ta:Tamil, te:Telugu)

language pairs along with the number of parallel
sentences. The validation and test sets have 1,000
and 2,390 sentences, respectively and are 11-way
parallel.

4.3 Preprocessing

We used Byte Pair Encoding (BPE) (Sennrich et al.,
2016) technique for data segmentation, that is,
break up the words into sub-words. This technique
is especially helpful for Indic languages as they are
morphologically rich. Separate vocabularies are
used for the source and target side languages. For
training the one-to-many and many-to-one models,
the data of all the 10 Indic languages is combined
before learning the BPE codes. 48000, 48000 and

8000 merge operations are used for learning the
BPE codes of the one-to-many, many-to-one and
bilingual baseline models, respectively.

4.4 Baseline Models

The baseline MT models are bilingual MT models
based on the vanilla transformer architecture. We
have trained 20 separate bilingual MT models, 10
for English to each Indic language and 10 for each
Indic language to English.

4.5 Models and Training

For this task, we built two separate MNMT systems,
a one (English) to many (10 Indic languages) model
and a many (10 Indic languages) to one (English)
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Encoder Decoder

No. of layers 6 6
No. of attention heads 8 8

Embedding dimensions 512 512
FFNN hidden layer dim 2048 2048

Table 4: System architecture details

model. In our one-to-many model, we used the
transformer architecture with a single encoder and
a single shared decoder. The encoder used the
English vocabulary and the decoder used a shared
vocabulary of all the Indic languages. In our many-
to-one model, we used the transformer architecture
with a single shared encoder and a single decoder.
Here the encoder used a shared vocabulary of all
the Indic languages and English vocabulary is used
for the decoder. In both of these MNMT models,
we prepended a language specific token to the input
sentence.

We used the fairseq (Ott et al., 2019) library
for implementing the multilingual systems. For
training, we used Adam optimizer with betas
’(0.9,0.98)’. The initial learning rate used was
0.0005 and the inverse square root learning rate
scheduler was used with 4000 warm-up updates.
The dropout probability value used was 0.3 and the
criterion used was label smoothed cross entropy
with label smoothing of 0.1. We used an update
frequency, that is, after how many batches the back-
ward pass is performed, of 8 for the multilingual
models and 4 for the bilingual baseline models.

During decoding we used the beam search algo-
rithm with a beam length of 5 and length penalty
of 1. The many-to-one model was trained for 160
epochs and the one-to-many model was trained
for 145 epochs. The model with the best average
BLEU score was chosen as the best model. The
average BLEU score for a MNMT model was cal-
culated by taking the average of the BLEU scores
obtained across all the language pairs.

5 Results and Analysis

The Bilingual Evaluation Understudy (BLEU) (Pa-
pineni et al., 2002) metric, the Rank-based Intu-
itive Bilingual Evaluation Score (RIBES) (Isozaki
et al., 2010) metric and Adequacy-Fluency Metrics
(AMFM) (Banchs et al., 2015) are used to report
the results. Table 2 and 3 lists the results for all our
experiments.

The baseline results are obtained by training
bilingual models and then we have used automatic
evaluation procedures same as those performed in
WAT 2021. The one-to-many and many-to-one
results are those reported by WAT 2021 on our
submitted translation files.

We observe that for all language pairs in both
the translation directions, the MNMT models give
superior performance as compared to the bilingual
NMT models. For relatively high resource lan-
guage pairs like English-Hindi and English-Bengali
the increase in BLEU score is less while for rel-
atively low resource language pairs like English-
Kannada and English-Oriya the increase in BLEU
score is substantial. From the above observation
it follows that low resource language pairs benefit
much more from multilingual training than high
resource language pairs. An increase of up to 8.93
BLEU scores (for Kannada to English) is observed
using MNMT systems over the bilingual baseline
NMT systems.

6 Conclusion

In this paper, we have discussed our submission to
the WAT 2021 MultiIndicMT: An Indic Language
Multilingual Task. We have submitted two sepa-
rate MNMT models: a one-to-many (English to
10 Indic languages) model and a many-to-one (10
Indic languages to English) model. We evaluated
our models using BLEU and RIBES scores and
observed that the MNMT models outperform the
separately trained bilingual NMT models across all
the language pairs. We also observe that for the
lower resource language pairs the improvement in
performance is much more as compared to that for
the higher resource language pairs.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Rafael E. Banchs, Luis F. D’Haro, and Haizhou Li.
2015. Adequacy–fluency metrics: Evaluating mt in
the continuous space model framework. IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing, 23(3):472–482.

KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. CoRR, abs/1409.1259.

https://doi.org/10.1109/TASLP.2015.2405751
https://doi.org/10.1109/TASLP.2015.2405751
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259


237

Raj Dabre, Chenhui Chu, and Anoop Kunchukuttan.
2019. A survey of multilingual neural machine
translation. CoRR, abs/1905.05395.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1723–1732, Beijing,
China. Association for Computational Linguistics.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine trans-
lation with a shared attention mechanism. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
866–875, San Diego, California. Association for
Computational Linguistics.

Thanh-Le Ha, Jan Niehues, and Alexander H. Waibel.
2016. Toward multilingual neural machine trans-
lation with universal encoder and decoder. CoRR,
abs/1611.04798.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval-
uation of translation quality for distant language
pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Process-
ing, pages 944–952, Cambridge, MA. Association
for Computational Linguistics.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Anoop Kunchukuttan and Pushpak Bhattacharyya.
2020. Utilizing language relatedness to im-
prove machine translation: A case study on lan-
guages of the indian subcontinent. arXiv preprint
arXiv:2003.08925.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2017. Fully character-level neural machine trans-
lation without explicit segmentation. Transactions
of the Association for Computational Linguistics,
5:365–378.

Toshiaki Nakazawa, Hideki Nakayama, Chenchen
Ding, Raj Dabre, Shohei Higashiyama, Hideya
Mino, Isao Goto, Win Pa Pa, Anoop Kunchukut-
tan, Shantipriya Parida, Ondřej Bojar, Chenhui
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