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Abstract

Contextual embedding-based language mod-
els trained on large data sets, such as BERT
and RoBERTa, provide strong performance
across a wide range of tasks and are ubiq-
uitous in modern NLP. It has been observed
that fine-tuning these models on tasks involv-
ing data from domains different from that on
which they were pretrained can lead to subop-
timal performance. Recent work has explored
approaches to adapt pretrained language mod-
els to new domains by incorporating additional
pretraining using domain-specific corpora and
task data. We propose an alternative approach
for transferring pretrained language models
to new domains by adapting their tokeniz-
ers. We show that domain-specific subword se-
quences can be efficiently determined directly
from divergences in the conditional token dis-
tributions of the base and domain-specific cor-
pora. In datasets from four disparate domains,
we find adaptive tokenization on a pretrained
RoBERTa model provides>97% of the perfor-
mance benefits of domain specific pretraining.
Our approach produces smaller models and
less training and inference time than other ap-
proaches using tokenizer augmentation. While
adaptive tokenization incurs a 6% increase in
model parameters in our experimentation, due
to the introduction of 10k new domain-specific
tokens, our approach, using 64 vCPUs, is 72x
faster than further pretraining the language
model on domain-specific corpora on 8 TPUs.

1 Introduction

Pretrained language models (PLMs) trained on
large “base” corpora, oftentimes >100GB of un-
compressed text Liu et al. (2019); Brown et al.
(2020), are used in many NLP tasks. These models
first learn contextual representations in an unsuper-
vised manner by minimizing a masked language
modeling objective over a base corpus. This stage
of unsupervised language model training is referred
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to as "pretraining". Subsequently, for supervised
classification tasks, the output head of this pre-
trained model is swapped for a lightweight classi-
fier and trained further on a classification objective
over labeled data, referred to as “fine-tuning”.

Recent work has examined the transferability of
PLMs Gururangan et al. (2020) and their contex-
tual representations to domains differing from their
base corpora. On text classification tasks from four
different domains, it was shown that continuing to
pretrain RoBERTa’s contextual embeddings on ad-
ditional domain (DAPT) and/or task-specific data
(TAPT) resulted in performance gains over only
fine-tuning a baseline RoBERTa model. These per-
formance gains, however, were inferior to each
task’s start-of-the-art metrics which were largely
based on training versions of RoBERTa, or other
LMs, from scratch on a large sample of in-domain
data.

These performance gains come at substantial fi-
nancial, time, and environmental costs in the form
of increased computation, with pretraining an LM
from scratch being the most expensive, using ad-
ditional pretraining in the middle, and only fine-
turning an off-the-shelf model the most economi-
cal.

One observed advantage Gu et al. (2020) that
pretraining from scratch on in-domain data has
over continual pretraining is that the tokenizer’s
vocabulary captures domain-specific terms. This al-
lows semantics of those terms to be directly learned
in their fixed embeddings, and relieves the lan-
guage model from having to encode these seman-
tics through the contextual embeddings of these
domain-specific term’s subwords. Recent work
Zhang et al. (2020); Poerner et al. (2020) has shown
adding whole words common to the target domain
but absent from a PLM’s tokenizer improves perfor-
mance on single tasks. In this work, we show that
augmenting an PLM with statistically derived sub-
word tokens selected for domain association with
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simple embedding initializations and no further
pretraining provide an effective means of adapt-
ing a PLM across tasks and domains. In contrast,
both Zhang et al. (2020) and Poerner et al. (2020)
add inefficiencies by respectively requiring further
masked language model (MLM) pretraining and
doubling the resources needed for inference.

In this paper, we efficiently adapt a PLM by
simply augmenting its vocabulary with domain-
specific token sequences. We find that this adap-
tation, which requires no further pretraining, ri-
vals the accuracy of domain and task-adapted pre-
training approaches proposed in Gururangan et al.
(2020) but requires only a small fraction of the
compute cost.

2 Related work

Gururangan et al. (2020) describes two comple-
mentary methods using a task’s training data or a
separate unlabeled domain-specific corpus to fur-
ther pretrain an LM, denoted as Task-Adaptive Pre-
training (TAPT) and Domain-Adaptive Pretraining
(DAPT) respectively. This paper shows the value of
employing additional in-domain data in pretraining
on four domains relative to only fine-tuning a PLM.
Our approach is directly comparable to DAPT, as
we only use in-domain corpora for adaptation.

Zhang et al. (2020) augment RoBERTa’s vocab-
ulary with in-domain OOV whole words. The most
frequently occurring whole words are added un-
til the OOV rate drops to 5% on the task corpus.
They randomly initialize weights and pretrain a
model. This improves performance on TechQA
and AskUbuntu. Tai et al. (2020) also augmented
BERT with tokens selected by frequency (12k OOV
wordpieces were used) and pretrained a modified
version of BERT which allowed for only new to-
ken’s embeddings to be modified while the original
embeddings remained fixed. They found that using
more than 12k augmented tokens didn’t improve
their biomed NER and relation extraction perfor-
mance, and that, once augmented, performance
improved with more pretraining (4-24 hours were
studied.)

Poerner et al. (2020) augment BERT’s vocabu-
lary with all in-domain OOV whole words, adding
31K tokens to bert-base-cased’s 29K wordpieces.
They trained a word2vec model on an in-domain
corpus and fit a linear transformation to project
the word embeddings into the model’s input em-
bedding space. No further pretraining is done, but

during finetuning, the original tokenizer and the
adapted tokenizer are both used. For inference, the
finetuned model is run with both the original tok-
enizer and the adapted tokenizer and the outputs
are averaged. Their F1 score outperforms BERT
on all eight biomedical NER tasks studied. The
approach has the disadvantage of increasing the
parameter size of bert-base-cased by 2.2x due to
the embeddings of added tokens and doubles the
resources needed for inference.

Hofmann et al. (2021) demonstrates how Word-
piece tokenization does not capture the semantics
of derivationally complex words as well as an ap-
proach using a modified version of Wordpiece de-
signed to produce subword segmentations consist-
ing of linguistic prefixes, suffixes and affixes Hof-
mann et al. (2020). This subword tokenizer outper-
formed WordPiece in determining words’ polarity
or their source domains. Experiments were con-
ducted on novel embedding tokens in BERT via
approaches including a projection-based method
and mean pooling (both similar to §3.3).

Training language models from scratch in the
domain of interest has been shown to provide im-
proved in-domain performance when compared to
out-of-domain PLMs Huang et al. (2019). In ad-
dition to Gururangan et al. (2020), prior work has
shown the effectiveness of continued pretraining
for domain adaptation of PLMs Alsentzer et al.
(2019); Chakrabarty et al. (2019); Lee et al. (2019).
For the task of Aspect-Target Sentiment Classi-
fication, Rietzler et al. (2020) uses both DAPT
and task-specific fine-tuning in order to adapt lan-
guage models representations. Identifying domain-
characteristic words is a well-studied problem, and
many metrics have been proposed for this task
through comparing the distributions of tokens in
contrasting corpora Rayson et al. (1997); Monroe
et al. (2008); Kessler (2017). Muthukrishnan et al.
(2008) used the pointwise KL-divergence to distin-
guish informativeness of key phrase candidates in
a domain corpus relative to a background.

3 Adaptive tokenization of contextual
embeddings

We define adaptive tokenization (AT) as the pro-
cess of augmenting a PLM’s tokenizer and fixed
subword embeddings with new entries taken from
a novel corpus. AT consists of two goals which
must be achieved for domain adaptation. First, se-
lection of domain-specific tokens, with which to
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augment a pretrained tokenizer, from an in-domain
corpus must be determined. Second, an appropriate
initialization in the input space of the contextual
embedding models needs to be determined for ad-
ditions to the tokenizer vocabulary. In this section,
we detail approaches for each of these linked tasks.

3.1 Tokenizer vocabulary augmentation

In this section, we detail approaches for identify-
ing domain-specific token sequences to be added
during tokenizer augmentation. Common tokeniza-
tion schemes such as Byte Pair Encoding Sennrich
et al. (2016) and WordPiece Schuster and Nakajima
(2012); Wu et al. (2016) are greedy algorithms and,
as a result, merge subwords into individual tokens
if such a sequence occurs with high relative fre-
quency. When adapting a tokenizer our goal is
to identify subword sequences which occur with
high relative frequency in a domain specific corpus
compared to the pretraining corpus. In Table 1,
we provide the corpora for each domain in which
experimentation is conducted. Next, we show how
to operationalize this framework to find domain-
specific token sequences.

3.2 Identifying domain-specific token
sequences

In this section, we detail our approach for selection
of token sequences which are both difficult to rep-
resent in a base tokenizer and have large disparities
in occurrence between domain-specific and base
corpora. Conceptually, we would like to add new
tokens to the source tokenizer which are sequences
of existing tokens and, in the in-domain corpus, are
extensions of existing token sequences.
(I) Computing Empirical Token Sequence Dis-
tributions We first compute counts of sequences
of [1, λ] subword tokens (s) in each corpus C,
namely the source corpus for RoBERTa (S) and
the in-domain corpus which is the target of our
adaptation (D). The source language model’s tok-
enizer (namely Roberta-base) is used as the source
of subword tokens. The counts of each subtoken
sequences are represented as Cs, where C is the
corpus and ss is the subword sequence. If s does
not appear in C, Cs = 0. We only retain sequences
occurring at least φ = 20 times in one corpus. The
maximum subword token sequence length (λ) is 10.
We limit subtoken sequences to word boundaries
as detected through whitespace tokenization.

Next, we predict how “phrase-like” a sequence

of tokens Cs is, using a probability PC(s). Define

PC(s) =
Cs

Ct

where t is first |s|−1 subtoken sequence of s. These
probabilities should be thought of as the surprise
of the sequence s in the corpus being counted and
are indicative of the how phrase-like s is.

As an example, consider a hypothetical corpus
consisting of documents written about classical mu-
sic. Roberta-base’s tokenizer splits “oboe” into the
subtokens 〈ob, oe〉. In this classical music corpus,
the portion of tokens following “ob” which are “oe”
(composing in the word “oboe”) is surely much
higher than in a general base corpus where other
words staring with the “ob” subtoken like “obama”
(tokenized as 〈ob, ama〉) are much more frequent
and “oboe” much less.
(II) Domain shift scoring of Token Sequence
Distributions with Conditional KL Divergence
In order to characterize these differences in proba-
bilities, we use the pointwise KL-divergence. Let-
ting p and q be probabilities, the pointwise KL-
divergence is defined as:

DKL(p ‖ q)) = p log
p

q

Let the sequence relevance score R(s) be de-
fined as

R(s) = DKL(PD(s) ‖ PS(s)).

R(s) indicates how much the phrase-like proba-
bility of sequence s in the in-domain corpus D
(PD(s)) diverges from the baseline phrase-like
probability of s in the base corpus S.
(III) Selection of Token Sequences for Tok-
enizer Augmentation For all experiments, we add
the η = 10K sequences with the largest R, sorted
irrespective of sequence length, to the domain-
augmented tokenizer.

This introduces of 7.68M parameters (embed-
ding size 768 × 10K new tokens), a 6% increase
over Roberta-base’s 125M.1

3.3 Initialization approaches for AT
In this section, we provide two approaches to im-
pute contextual embedding input representations
for tokens added in §3.1.
Subword-based initialization In this common ini-
tialization Casanueva et al. (2020); Vulić et al.

1github.com/pytorch/fairseq/tree/master/examples/roberta



158

Algorithm 1 Selection of Domain-Specific Token Sequences for Tokenizer Augmentation
Require: Base Tokenizer Tok,Base LM LMbase, Base and Domain Unigram Dists. Ubase, Udomain,

Base and Domain Seq. Dists. Tbase= {}, Tdomain= {} Min. Seq. Frequency Fmin, # Aug. to make N,
Max Aug. Length L, Augmentations = []
(I) Computing Empirical Token Sequence Distributions
for word, count (w, count) in Ubase do . Do the same for Domain Corpus

Seq[t0, t1, ..., tn] := Tok(w)
for i in [1,n] do

Tbase[Seq[: i]] += count
end for

end for
Tdomain.values() /= sum(Udomain.values()) . Normalize Sequence Distributions
Tbase.values() /= sum(Ubase.values())
(II) Domain shift scoring of Token Seq. Dists. with Conditional KL Divergence
ScoreDKL = {}
for Seq in Tbase

⋂
Tdomain do

ScoreDKL[Seq] := Tdomain[Seq] ∗ log Tdomain[Seq]
Tbase[Seq]

end for
(III) Selection of Token Sequences for Augmentation
SortDescending(ScoreDKL)
for Seq in ScoreDKL do

if Len(Augmentations) = N then
break

end if
if Len(Seq) < L AND Tdomain > Fmin AND Tbase > Fmin then

Augmentations.append(Seq)
end if

end for
return Augmentations

(2020); Hofmann et al. (2021), additions to the tok-
enizer are embedded as the mean of their Roberta-
base fixed subword embeddings. In cases where all
a novel word’s subwords are unrelated to its spe-
cific, in-domain meaning, this initialization may
cause unwanted model drift in fine-tuning for unre-
lated tokens with similar fixed embeddings.

Algorithm 2 Projection-Based Initialization of
Augmented Tokens
Require: LM Input Embeddings Cs,Base and

Domain Learned Input Embeddings Xs, Xt,
and Embedding Size d.
(I) Learn Mapping M̂: Cs → Xs with SGD:
M̂ = argminM∈Rd×d ‖MXs − Cs‖F
(II) Get Inits. for Aug. Tokens using M̂:
Ct = M̂Xt

return Ct

Projection-based initialization To mitigate pos-

sible issues with averaging subword embeddings,
we also consider projections between static token
embeddings to the input space of contextual em-
beddings, similar to Poerner et al. (2020).

To summarize this approach, our goal is to learn
a mapping between the input token embeddings in
RoBERTa, Cbase, and word2vec token embeddings
learned independently on the base2 and domain
specific corpora, Xbase, Xdomain. The tokens in
Cbase include the original RoBERTa tokens while
those in Xbase and Xdomain include both the orig-
inal RoBERTa tokens and the augmented tokens
found using adaptive tokenization detailed in §3.2.
First, a mapping M , parametrized as a single layer
fully connected network, from Xbase to Cbase is
learned which minimizes distances, on the origi-
nal set of tokens in RoBERTa. The goal of this
mapping is to learn a function which can translate

2See §5.4 for how the RoBERTa source corpora is approx-
imated to form our base corpus.
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Domain Pretrain Corpus [# Tokens] Task Task Type Train (Lab.) Dev. Test Classes

BioMed 1.8M papers from S2ORC [5.1B] ChemProt relation classification 4169 2427 3469 13
RCT abstract sent. roles 18040 30212 30135 5

CS 580K papers from S2ORC [2.1B] ACL-ARC citation intent 1688 114 139 6
SciERC relation classification 3219 455 974 7

News 11.9M articles [6.7B] HyperPartisan partisanship 515 65 65 2

Reviews 24.75M Amazon reviews [2.1B] IMDB review sentiment 20000 5000 25000 2

Table 1: Specifications of the various target task and pretraining datasets to replicate experiments in Gururangan
et al. (2020). Due to the restrictions on accessible papers in S2ORC, we are using versions of BioMed and CS
which are approximately 33% and 74% smaller than were used in Gururangan et al. (2020). Sources: S2ORC
Lo et al. (2020), News Zellers et al. (2019), Amazon reviews He and McAuley (2016), CHEMPROT Kringelum
et al. (2016), RCT Dernoncourt and Lee (2017), ACL-ARC Jurgens et al. (2018), SCIERC Luan et al. (2018),
HYPERPARTISAN Kiesel et al. (2019), and IMDB Maas et al. (2011).

word2vec token embeddings to the input space of
RoBERTa. Then, the learned mapping M is ap-
plied to Xdomain in order to obtain initializations
in the input space of RoBERTa for the augmented
tokens found using the approach in §3.2. The op-
erations involved in this approach are detailed in
Algorithm 2.

4 Experimentation

In this section, we perform evaluation of our adap-
tation approach on six natural language process-
ing tasks in four domains, BioMedical, Computer
Science, News, and Reviews, following the eval-
uations in Gururangan et al. (2020). Due to re-
source constraints, we perform experimentation on
all datasets in Gururangan et al. (2020) excluding
the Helpfulness dataset from the reviews domain
and the Hyperpartisan dataset in the news domain.
Each of the excluded datasets contain greater than
100K training examples, resulting in greater than
12 hours of time required for finetuning on 8 Tesla
V100 GPUs for a single seed.
Approaches Roberta-base, a commonly used PLM
with high performance, is used as a baseline on
which supervised finetuning is performed sepa-
rately for each dataset. Additionally, we compare
AT to the DAPT method from Gururangan et al.
(2020). As we do not make use of task specific
data (i.e., the training data used in fine-tuning), AT
is comparable to DAPT in terms of the data uti-
lized. We focus on using large, in-domain data sets
which are commonly used in further pretraining
(rather than variably sized task-data) since their
size both allows for reliable extraction of charac-
teristic subtoken sequences to use in tokenizer aug-
mentation. Adaptive tokenization for task-specific
data is future work.

Classification Architecture We use the same clas-
sification architecture as in Gururangan et al.
(2020), originally proposed in Devlin et al. (2019),
in which the final layer’s [CLS] token representa-
tion is passed to a task-specific feed forward layer
for prediction. All hyperaparameters used in ex-
perimentation are equivalent to either the "mini",
"small", or "big" hyperparameter sets from Guru-
rangan et al. (2020).
Results We find that adaptive tokenization im-
proves performance when compared to the base-
line RoBERTa model in all four of the domains
on which experimentation is performed. AT pro-
vides 97% of the aggregate relative improvement
attained by DAPT respectively over Roberta-base
while providing an order of magnitude efficiency
gain detailed in Table 3. We do not see a significant
difference in the performance of AT models based
on the Mean or Proj initialization schemes. Given
that Mean initialization required half the time as
Proj, we recommend its use over Proj.

5 Discussion

5.1 Resource Efficiency in LM Adaptation

Current approaches for training and adapting LMs
have resulted in negative environmental impact
and high computational resource budgets for re-
searchers. PLMs incur significant compute time
during pretraining, typically requiring numerous
days of training on ≥ 8 GPUs or TPUs Liu et al.
(2019); Devlin et al. (2019); Gururangan et al.
(2020). In Table 3, we provide a runtime com-
parison between continued pretraining and AT. We
find that AT provides a 72x speedup compared to
DAPT and does not require a GPU or TPU to run.
The most resource-intensive portion of this proce-
dure involves indexing the corpora and conducting
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Domain Task RoBERTa DAPT TAPT DAPT + TAPT AT (Mean) AT (Proj) State-of-the-art (in 2020)

BioMed∗ ChemProt 81.91.0 84.20.2 82.60.4 84.40.4 83.60.4 83.10.3 84.6
RCT 87.20.1 87.60.1 87.70.1 87.80.1 87.50.4 87.60.3 92.9

CS∗ ACL-ARC 63.05.8 75.42.5 67.41.8 75.63.8 70.12.0 68.91.6 71.0
SciERC 77.31.9 80.81.5 79.31.5 81.31.8 81.40.4 81.21.2 81.8

News HyperPartisan 86.60.9 88.25.9 90.45.2 90.06.6 93.14.2 91.65.5 94.8

Reviews IMDB 95.00.2 95.40.1 95.50.1 95.60.1 95.40.1 95.50.1 96.2

Table 2: Results of different adaptive pretraining methods compared to the baseline RoBERTa. AT with mean
subword and projective initializations are denoted as AT (Mean) and AT (Proj) respectively. Stddevs are from 5
seeds. Results for DAPT, TAPT, DAPT+TAPT, and state-of-the-arts are quoted from Gururangan et al. (2020). The
highest non-state-of-the-art result is bolded, since the state-of-the-art functions as a performance ceiling, leverag-
ing both domain-specific pretraining and an adapted tokenizer. The best of the three approaches which utilize only
source and domain domain data before fine-tuning (i.e., DAPT and AT) is underlined. *Due to restrictions on ac-
cessible papers in S2ORC, The BioMed and CS pretraining corpora used were respectively 33% and 74% smaller
than the versions in Gururangan et al. (2020). Note that state-of-the-art numbers are current at the time of Gururan-
gan et al. (2020), and are from the following works: ChemProt: S2ORC-BERT Lo et al. (2020), RCT: Sequential
Sentence Classification Cohan et al. (2019), ACL-ARC: SciBert Beltagy et al. (2019), SciERC: S2ORC-BERT Lo
et al. (2020), HyperPartisan: Longformer Beltagy et al. (2020), IMDB: XLNet Large Yang et al. (2019).

Method Hardware Specs. Runtime [h:m:s]

DAPT 8x TPU V-3 94 hours
AT (Mean) 64x vCPUs 1:17:35
AT (Projection) 64x vCPUs 4:54:58

Table 3: Runtime and hardware specifications for AT
compared to DAPT. The vast majority of the time is
spent reading the corpus and creating token distribu-
tions. Runtimes are based on the CS 8.1B token corpus.
The DAPT runtime is mentioned in Github Issue 16 in
Gururangan et al. (2020) and the AT runtimes are lin-
early extrapolated (an overestimate) from our observed
runtime on the open version of CS, a 2.1B token corpus.
We needed to perform this extrapolation since the full
CS corpus which was used to benchmark Gururangan
et al. (2020) is unavailable in S2ORC. “64x vCPUs” in-
dicate the equivalent of an AWS ml.m5.16xlarge EC2
instance was used to determine which subtoken se-
quences to use for vocabulary augmentation and com-
pute their embeddings. The times reported for AT
(Mean) and AT (Projection) where from a single run,
with precomputed base corpus token counts and embed-
dings.

subtoken sequence counts.
In addition to time and resources, the environ-

mental impact of pretraining BERT with a single
set of hyperparameters incurs a carbon footprint
of approximately 1.5K pounds of CO2 emissions,
more than the average monthly emissions of an indi-
vidual Strubell et al. (2019). Continued pretraining,
which has a similar resource budget to BERT, exac-
erbates this problem Schwartz et al. (2019). Lastly,
we find that the cloud computing costs associated
with continual pretraining for both a single domain
and set of hyperparameters are $750 compared

to around $4.77 (using a ml.m5.16xlarge EC2 in-
stance for 1:17) for AT on cloud computing plat-
forms when using non-preemptible instances. High
costs associated with the training of NLP models
has led to inequity in the research community in
favor of industry labs with large research budgets
Strubell et al. (2019).

5.2 Augmented Token Sequences selected in
each domain

In Table 4, we provide examples of augmented vo-
cabulary selected by our adaptive tokenization al-
gorithm for each of the four domains used in exper-
imentation. In each domain, the augmented tokens
identified by AT correspond to domain-specific lan-
guage. For instance, augmented tokens in the Re-
views domain token sequences often contain con-
tractions such as “I’ve” and “it’s”, which are fre-
quently used in informal language. In the News
domain, augmented tokens include financial terms
such as “NYSE” and “Nasdaq” along with media
outlets such as “Reuters” and “Getty”. Many of
the augmented tokens in the Computer Science
domain are mathematical and computing terms
such as “Theorem”, “Lemma”, “Segmentation”,
and “Gaussian”. Lastly, augmented tokens in the
BioMedical domain are largely concerned with bi-
ological mechanisms and medical procedures such
as “phosphorylation”, “assays”, and “transfect”.

5.3 Future directions
While we have evaluated this approach on Roberta-
base, it can be used on any PLM which uses sub-
word tokenization. It would be interesting future
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BioMed CS News Reviews

[inc, ub, ated] → incubated [The, orem] → Theorem [t, uesday] → tuesday [it, ’s] → it’s
[trans, fect] → transfect [L, em, ma] → Lemma [ob, ama] → obama [that, ’s] → that’s
[ph, osph, ory] → phosphory [vert, ices] → vertices [re, uters] → reuters [sh, oes] → shoes
[mi, R] → miR [E, q] → Eq [iph, one] → iphone [doesn, ’t] → doesn’t
[st, aining] → staining [cl, ust, ering] → clustering [ny, se] → nyse [didn, ’t] → didn’t
[ap, opt, osis] → apoptosis [H, ence] → Hence [get, ty] → getty [can, ’t] → can’t
[G, FP] → GFP [Seg, mentation] → Segmentation [inst, agram] → instagram [I, ’ve] → I’ve
[pl, asm] → plasm [class, ifier] → classifier [bre, xit] → brexit [b, ought] → bought
[ass, ays] → assays [Ga, ussian] → Gaussian [nas, daq] → nasdaq [you, ’ll] → you’ll
[ph, osph, ory, lation] → phosphorylation [p, olyn] → polyn [ce, o] → ceo [kind, le] → kindle

Table 4: Samples of token sequences with large JSD between base and domain corpora sequence distributions; all
of these sequences were added during AT to the Roberta-Base tokenizer.

work to see if the performance gain will hold on
larger PLMs with richer vocabularies or on smaller
PLMs. One may speculate the benefit of AT is due
to encoding non-compositional subword tokens in
the input embedding space. And furthermore, this
lifts some of the responsibility for encoding their
semantics from the LM’s interior weights. Since
these non-compositional tokens are characteristic
to the domain corpus, their representations may be
important to the end task and and need to be learned
or improved during fine-tuning. If this is the case,
then perhaps models with fewer interior weights
benefit more from AT since the connection between
the non-compositional tokens would be built into
the input, allowing interior weights to better learn
the semantics of novel non-compositional tokens
and opposed to also having to learn the component
tokens’ connection.

While this work tests AT on an English language
PLM, it can hypothetically be applied to any PLM
regardless of its source language(s). Exploring how
AT can work with additional pretraining on domain
data is clear future work. Tai et al. (2020) show
that specialized further pretraining on domain data
on using a model augmented with domain charac-
teristic whole word tokens results in an improved
performance/pretraining time curve. It would also
be fruitful to explore how that curve changes when
using more efficient pretraining techniques such as
in Clark et al. (2020).

While we compared different novel token se-
quence embedding techniques, we did not study
different ways of identifying subtoken sequences
to add. Comparing AT to approaches such adding
whole word tokens Tai et al. (2020) would confirm
our hypothesis that phrase-like token sequences are
useful.

Experimenting with the number of subtoken se-
quences added to the tokenizer (η fixed at 10K)
may also be worthwhile. While Tai et al. (2020)

found 12K tokens additions optimal, Poerner et al.
(2020) added 310K tokens. Seeing the trade-off
between added tokens and performance would be
useful, as each additional parameter increases the
model size.

Our approach requires new tokens to appear φ
times in both the source and domain corpora. While
this was necessary in order to produce source-
corpus word embeddings in Proj, it does not al-
low for domain-exclusive subtoken sequences to
be added to the tokenizer. Abandoning this require-
ment for Mean may lead to a better set of token
augmentations.

We can also experiment with other subtoken can-
didate selection techniques. For example, Schwartz
et al. (2013) used pointwise mutual information
(PMI) to determine how phrase-like candidates
word sequences were. PMI is the log ratio of
the probability of a phrase vs. the product of
the probability of its component unigrams. While
our approach considers the probability of a subto-
ken given a preceding sequence, it, unlike PMI,
does not consider the probability of that following
subtoken in isolation. This may lead to domain-
specific subtokens sneaking into augmented token
sequences, such as the contraction tokens added to
the reviews Reviews tokenizer in Table 4.

5.4 Implementation details

The code is in preparation for release.
The hyperparameter search used was
ROBERTA_CLASSIFIER_MINI from Gururan-
gan et al. (2020) from their codebase https://

github.com/allenai/dont-stop-pretraining.
Token counts for RoBERTa-base were estimated
using English Wikipedia 20200501.en and an
open source book corpus from https://storage.

googleapis.com/huggingface-nlp/datasets/

bookcorpus/bookcorpus.tar.bz2. Word2vec
embeddings were computed with Gensim (Rehurek

https://github.com/allenai/dont-stop-pretraining
https://github.com/allenai/dont-stop-pretraining
https://storage.googleapis.com/huggingface-nlp/datasets/bookcorpus/bookcorpus.tar.bz2
https://storage.googleapis.com/huggingface-nlp/datasets/bookcorpus/bookcorpus.tar.bz2
https://storage.googleapis.com/huggingface-nlp/datasets/bookcorpus/bookcorpus.tar.bz2
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and Sojka, 2011), using the following parameters:
Word2Vec(..., size=768, window=5,
min_count=100, epochs=2,
sample=1e-5)

6 Conclusion

In this paper, we introduced adaptive tokenization
(AT) a method for efficiently adapting pretrained
language models utilizing subword tokenization
to new domains. AT augments a PLM’s tokeniza-
tion vocabulary to include domain-specific token
sequences. We provide two approaches for ini-
tializing augmented tokens: mean subword and
projections from static subword embeddings. AT
requires no further language model pretraining on
domain-specific corpora, resulting in a 38x speedup
over pretraining on the corpora without specialized
hardware. Across four domains, AT provides >97%
of the performance improvement of further pre-
training on domain-specific data over Roberta-base.
This initial work suggests that adapting the sub-
word tokenization scheme of PLMs is an effective
means of transferring models to new domains. Fu-
ture work entails hybrid approaches using both AT
and small amounts of LM pretraining, alternative
metrics for augmented token selection, improved
initialization of augmented token representations,
and the use of task data.
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As mentioned in §5, pretrained language models
incur significant costs with respect to time, compu-
tational resources and environmental impact. Con-
tinued domain specific pretraining, which has a
similar resource budget to BERT, exacerbates this
problem Schwartz et al. (2019). In this work, we
provide approaches for adapting pretrained lan-
guage models to new domains with an approach,
Adaptive Tokenization, which seeks to minimize
costs associated with continued domain specific
pretraining. It should be noted that we do not de-
crease the resource and environmental associated
with pretraining, only the costs for domain adaptive
pretraining which are nevertheless sizable (e.g. 32
TPU days for DAPT).

Additionally, we find that the cloud computing
costs associated with continued domain specific
pretraining on a single domain and set of hyperpa-
rameters are around $750 compared to around $5
for AT on a cloud computing platform. High costs
associated with the training of NLP models has led
to inequity in the research community in favor of
industry labs with large research budgets Strubell
et al. (2019), a problem we seek to ameliorate.

This work does not address the high resource
cost in fine-tuning PLMs. Risks associated with
this paper are that this work may encourage the use
of PLMs in more settings, such as domains with
small amounts of data, and introduce potentially
harmful inductive biases which have been found in
many commonly used PLMs.

We include statistics about the data sets used in
Table 1, these data sets were introduced in Guru-
rangan et al. (2020) and open source.
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