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Abstract

This paper describes a method for learning
from a teacher’s potentially unreliable correc-
tive feedback in an interactive task learning
setting. The graphical model uses discourse
coherence to jointly learn symbol grounding,
domain concepts and valid plans. Our exper-
iments show that the agent learns its domain-
level task in spite of the teacher’s mistakes.

1 Introduction

Interactive Task Learning (ITL) aims to develop
agents that can learn arbitrary new tasks through
a combination of their own actions in the environ-
ment and an ongoing interaction with a teacher (see
Laird et al. (2017) for a survey). Because the agent
continues to learn after deployment, ITL allows an
agent to learn in an ever changing environment in
a natural manner.

One goal of ITL is to have the interactions be as
natural as possible for a human teacher, and many
different modes of interaction have been studied:
non-verbal through demonstration or teleoperation
(Argall et al., 2009), or natural language: an embod-
ied extended dialogue between teacher and agent,
like between a teacher and apprentice. Our interest
lies in natural language interactions where teach-
ers can provide instructions (She et al., 2014), de-
scribe current states (Hristov et al., 2017) and de-
fine concepts (Scheutz et al., 2017), goals (Kirk and
Laird, 2019), and actions (She et al., 2014), while
the agent asks clarifying questions (She and Chai,
2017) and executes instructed commands. Teachers
can also use corrective feedback (Appelgren and
Lascarides, 2020). These approaches all assume
that the teacher offers information that is both cor-
rect and timely. However, humans are error prone,
and so in this paper we study how agents can learn
successfully from corrective feedback even when
the teacher makes mistakes.

Appelgren and Lascarides’ model exploits dis-
course coherence (Hobbs, 1985; Kehler, 2002;
Asher and Lascarides, 2003): that is, constraints on
how a current move relates to its context. But their
models assume that the teacher follows perfectly a
specific dialogue strategy: she corrects a mistake
as and when the agent makes it. However, humans
may fail to perceive mistakes when they occur,.
They also may, as a result, utter a correction much
later than when the agent made the mistake, and
thanks to the teacher being confident, but wrong,
about the agent’s capacity to ground NL descrip-
tions to their referents, the agent may miscalculate
which salient part of the context the teacher is cor-
recting. In this paper, we present and evaluate an
ITL model that copes with such errors.

In §2, we use prior work to motivate the task
we tackle, as described in §3. We present our ITL
model in §4 and §5, focusing on coping with situa-
tions where the teacher makes mistakes of the type
we just described. We show in §6 that by making
the model separate the appearance that the teacher’s
utterance coherently connects to the agent’s latest
action with the chance that it is not so connected,
our agent can still learn its domain-level task effec-
tively.

2 Background

Interactive Task learning (ITL) exploits interac-
tion to support autonomous decision making dur-
ing planning (Laird et al., 2017). Similar to Kirk
and Laird (2019), our aim is to provide the agent
with information about goals, actions, and concepts
that allow it to construct a formal representation
of the decision problem, which can thereafter be
solved with standard decision making algorithms.
Rather than teaching a specific sequence of ac-
tions (as in e.g., Nicolescu and Mataric (2001);
She et al. (2014)), the teacher provides the infor-
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mation needed to infer a valid plan for a goal in
a range of specific situations. In this work we fo-
cus on learning goals, which express constraints
on a final state. The agent learns these goals by
receiving corrective dialogue moves that highlight
an aspect of the goal which the agent has violated
(Appelgren and Lascarides, 2020).

Natural language (NL) can make ITL more data
efficient than non-verbal demonstration alone: even
simple yes/no feedback can be used to learn a re-
ward function (Knox and Stone, 2009) or to trig-
ger specific algorithms for improving behaviour
(Nicolescu and Mataric, 2003). More extended
NL phrases must map to semantic representations
or logical forms that support inference (eg, Wang
et al., 2016; Zettlemoyer and Collins, 2007). Like
prior ITL systems, (eg, Forbes et al., 2015; Lau-
ria et al., 2002) we assume our agent can analyse
sentential syntax, restricting the possible logical
forms to a finite set. But disambiguated syntax
does not resolve semantic scope ambiguities or lex-
ical senses (Copestake et al., 1999), and so the
agent must use context to identify which logical
form matches the speaker’s intended meaning.

Recovering from misunderstandings has been
addressed in dialogue systems (eg, Skantze, 2007),
and ITL systems cope with incorrect estimates
of denotations of NL descriptions (eg, Part and
Lemon, 2019). Here, we address new sources of
misunderstanding that stem quite naturally from the
teacher attempting, but failing, to abide by a par-
ticular dialogue strategy: ie, to correct the agent’s
mistakes as and when they’re made. This can lead
to the learner misinterpreting the teacher’s silence
(silence might not mean the latest action was cor-
rect) or misinterpreting which action is being cor-
rected (it might be an earlier action than the agent’s
latest one). We propose a model that copes with
this uncertainty.

3 Task

In our task an agent must build towers in a blocks
world. The agent begins knowing two PDDL ac-
tion descriptions: put(x, y) for putting an object
x on another y; and unstack(x, y) for removing
an object x from another object y and placing x
back on the table. Further, it knows the initial state
consists of 10 individual blocks that are clear (i.e.,
nothing on them) and on the table, and that the goal
G contains the fact that all the 10 blocks must be
in a tower.

Figure 1: The colours of objects fit into different
colour terms. Each individual hue is generated from
a Gaussian distribution, with mean and variance se-
lected to produce hues described by the chosen colour
term. There are high level categories like “red” and
“green” and more specific ones like “maroon”. This fig-
ure shows examples of hues generated in each category,
including one that is both red and maroon.

However, putting the blocks in a tower is only
a partial description of the true planning problem,
and the agent lacks vital knowledge about the prob-
lem in the following ways. First, the true goal
G includes further constraints (e.g., that each red
block must be on a blue block) and the agent is
unaware of which such constraints are truly in the
goal. Further, and perhaps more fundamentally, the
agent is also unaware of the colour terms used to
define the constraints. I.e. the word “red” is not
a part of the agent’s natural language vocabulary,
and so the agent does not know what “red” means
or what particular set of RGB values the word de-
notes. Instead, the agent can only observe the RGB
value of an object and must learn to recognise the
colour through interaction with the teacher, and in
particular the corrective dialogue moves that the
teacher utters.

The possible goal constraints are represented in
equations (1–2), where C1 and C2 are colour terms;
e.g., “red” (r for short) and “blue” (b).

rc1,c21 = ∀x.c1(x)→ ∃y.c2(y) ∧ on(x, y) (1)

rc1,c22 = ∀y.c2(y)→ ∃x.c1(x) ∧ on(x, y) (2)

In words, rr,b1 expresses that every red block must
be on a blue block; rr,b2 that every blue block should
have a red one on it. These rules constrain the
final tower, but thanks to the available actions, if a
constraint is violated by a put action then it remains
violated in all subsequent states unless that put
action is undone by unstack.

In our experiments (see §6), a simulated teacher
observes the agent attempting to build the tower,
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and when the agent executes an action that breaks
one or more of the rules in the goal G, the
teacher provides NL feedback—e.g., “no, red
blocks should be on blue blocks”. The feedback
corrects the agent’s action and provides an explana-
tion as to why it was incorrect. However, linguis-
tic syntax makes the sentence ambiguous between
two rules—“red blocks should be on blue blocks”
could mean rr,b1 or rr,b2 . Thus, the agent must disam-
biguate the teacher’s message while simultaneously
learning to ground new terms in the embodied en-
vironment, in this example the terms “red” and
“blue”. This latter task amounts to learning which
RGB values are members of which colour concepts
(see Figure 1).

4 Coherence

To learn from the teacher’s feedback the agent rea-
sons about how an utterance is coherent. In dis-
course each utterance must connect to a previous
part of the discourse through a coherence relation,
and the discourse relation which connects the two
informs us what the contribution adds to the dis-
course. In our multimodal discourse each of the
teacher’s utterances u connect to one of the agent’s
actions a through the discourse relation “correc-
tion”. The semantics of correction stipulate that the
content of the correction is true and negates some
part of the corrected action (Asher and Lascarides,
2003). In our domain, this means that the teacher
will utter u if the agent’s latest action a violates
the rule that she intended u to express. If u = “no,
red blocks should be on blue blocks” then, as previ-
ously stated, this is ambiguous between is rr,b1 and
rr,b2 . So, a must violate one of these two rules:

CC(a, u)↔ (rr,b1 ∈ G ∧ V (rr,b1 , a))∨

(rr,b2 ∈ G ∧ V (rr,b2 , a)) (3)

where CC(a, u) represents that u coherently cor-
rects action a, G is the (true) goal, and V (rr,b1 , a)

represents that a violated rr,b1 (similarly for
V (rr,b2 , a)). Since the semantics of correction is
satisfied only if the correction is true, the rule the
speaker intended to express must also be part of the
true goal G; that is why (3) features rr,b1 ∈ G (and
rr,b2 ∈ G) in the two disjuncts.

There are two ways in which these rules can
be violated. Either directly or indirectly. For rr,b1

the rule requires every red block to be on a blue
block, therefore it is directly violated by action

a = put(o1, o2) if o1 is red and o2 is not blue
(illustrated in S1 of Figure 2):

VD(r
r,b
1 , a)↔ red(o1) ∧ ¬blue(o2) (4)

The rule rr,b2 requires all blue blocks to have red
blocks on them, meaning that S1 in Figure 2 does
not directly violate the rule, but S2 does because it
is only violated when a blue block does not have a
red block on it:

VD(r
r,b
2 , a)↔ ¬red(o1) ∧ blue(o2) (5)

So rr,b1 is not directly violated in S2 and rr,b2 is not
directly violated in S1 but it would still be impos-
sible to complete a rule compliant tower without
undoing the progress that has been made on tower
building. This is because the block which is cur-
rently not in the tower cannot be placed into the
current tower in a rule compliant manner. For rr,b1

in S2 the red block needs a blue block to be placed
on, but no such blue block exists. Similarly, for
rr,b2 in S1 the blue block needs a red block to place
on it, but no additional red blocks are available. In
this way the rules are Indirectly violated in these
states, which occurs when the number of available
blocks of each colour makes it impossible to place
all of those blocks:

VI(r
r,b
1 , a)↔ ¬red(o1) ∧ blue(o2)

|{o3 : red(o3) ∧ on(o3, table)}| >
|{o4 : blue(o4) ∧ on(o4, table)}|

(6)

VI(r
r,b
2 , a)↔ red(o1) ∧ ¬blue(o2)∧
|{o3 : blue(o3) ∧ on(o3, table)}| >
|{o4 : blue(o4) ∧ on(o4, table)}|

(7)

Our teacher signals if the error is due to a direct
violation VD by pointing at the tower or an indirect
violation VI by pointing at a block which cannot be
placed in the tower any more (e.g., the blue block
in S1 or the red block in S2).

When the agent observes the teacher say u =
”no, put red blocks on blue blocks” it can make in-
ferences about the world, with confidence in those
inferences depending on its current knowledge. For
example, if it knows with confidence which blocks
are “red” or “blue”, then it can infer via equations
(4–7) which of the rules the teacher intended to con-
vey. Alternatively, if the agent knows which rule
was violated then the agent can infer the colour
of the blocks. We use this in §5 to learn the task.
However, if the agent is completely ignorant about
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Figure 2: These two states would both be corrected if
either r(r,b)1 or r(r,b)2 were in the goal.

the referents of the colour terms, it may not be able
to make an inference at all. In this case it will ask
for help by asking the colour of one of the blocks:
“is the top block red?”. Either answer to this ques-
tion is suffiicent for the agent to disambiguate the
intended message and also gain training exemplars
(both positive and negative) for grounding the rele-
vant colour terms.

If the teacher’s dialogue strategy is to always cor-
rect an action which violates a rule (either directly
or indirectly) directly after this incorrect action is
executed, then the teacher’s silence implies that the
latest executed action does not violate a rule. This
means that if the agent knows, for example, that if
a green block is placed on a blue block then either
green blocks must always be placed on blue blocks
(rg,b1 ) or no rule constraining green blocks exists.
In this way the teacher’s silence implies assent.

4.1 Faulty Teacher

We’ve laid out the what it means for something
to be coherent, assuming that the teacher always
acts in the most optimal way, correcting any ac-
tion which violates a rule as soon as that action is
performed. However, in general a human teacher
will be unlikely to perfectly follow this strategy.
Despite this, an agent would still have to attempt to
learn from the teacher’s utterances even though
some of those utterances may not fit with the
agent’s expectations and understanding of coher-
ence. In this paper we introduce two types of errors
the teacher can make: (a) she fails to utter a correc-
tion when the latest action a violates a rule; and (b)
she utters a correction when the most recent action
does not violate a rule (perhaps because she notices
a previous action she should have corrected). We
think of (b) as adding a correction at the ‘wrong’
time.

Since a rule can violate an action in two ways—

either Directly or Indirectly—teacher errors of type
(a) and (b) lead to four kinds of ‘imperfect’ dia-
logue moves:

1. Missing Direct Violations (MD)
2. Adding Direct Violations (AD)
3. Missing Indirect Violations (MI)
4. Adding Indirect Violations (AI)

In our experiments we control in what way the
teacher is faulty by assigning a probability with
which the teacher performs each type of mistake,
e.g. PMD represents the probability that the teacher
misses a direct violation. Controlling these proba-
bilities allows us to create different types of faulty
teachers.

Due to the teacher’s faultiness the agent must
now reason about whether or not it should update
its knowledge of the world given a teacher utterance
or silence. In the following section we describe
how we deal with this by creating graphical models
which capture the semantics of coherence as laid
out in this section.

5 System Description

An agent for learning from correction to perform
the task described in §3 must be able to update
its knowledge given the corrective feedback and
then use that updated knowledge to select and exe-
cute a plan. The system we have built consists of
two main parts: Action Selection and Correction
Handling.

5.1 Action Selection
To generate a valid plan, the agent uses the Met-
ricFF symbolic planner (Hoffmann and Nebel,
2001; Hoffmann, 2003)). It requires as input a
representation of the current state, the goal, and
the action descriptions (here, put(x, y) and
unstack(x, y). The agent knows the posi-
tion of objects, including which blocks are on each
other, and it knows that the goal is to build a tower.
However, the agent begins unaware of predicate
symbols such as red and blue and ignorant of
the rules r ∈ G that constrain the completed tower.

The aim of our system is to learn to recognise the
colours—and so estimate the current state S∗—and
to identify the correct goal G, given the evidence
X which it has observed so far. We describe how
shortly. The agent uses its current knowledge to
construct S∗ and G which are given as input to
the planner to find a valid plan. Due to errors in
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the grounding models or goal estimate, this may
fail: eg, if the agent estimates rr,b1 ∈ G but there
are more red blocks than blue blocks in S∗, mak-
ing it impossible to place all of the red blocks. In
such cases, the agent recovers by searching in the
probabilistic neighbourhood of S∗ for alternatives
from which a valid plan for achieving G can be con-
structed (Appelgren and Lascarides, 2020). The
agent executes each action in its plan until it’s com-
pleted or the teacher gives corrective feedback. The
latter triggers the Correction Handling system (see
§5.2).

5.1.1 Grounding Models

The grounding models construct a representation
of the current state S∗ by predicting the colour of
blocks, given their visual features. Binary classi-
fiers represent the probability of an object being
a particular colour, e.g. P (Redx|Fx) where Fx

are the visual features of object x. We use binary
classifiers over a categorical distribution for colour
since the set of possible colours is unknown and
colours aren’t all mutually exclusive (e.g., maroon
and red). We estimate the the probability using
Bayes Rule:

P (Redx)|Fx) =

P (Fx|Redx)P (Redx)∑
i∈{0,1} P (Fx|Redx = i)P (Redx = i)

(8)

For P (Fx|Redx = 0) we use a uniform
distribution—we expect colours that are not
red to be distributed over the entire spectrum.
P (Fx|Redx = 1) is estimated with weighted Ker-
nel Density Estimation (wKDE). wKDE is a non-
parametric model that puts a kernel around ev-
ery known data point {(w1, Fx1), ...(wm, Fxm)}
(where wi are weights) and calculates the probabil-
ity of a new data point via a normalised weighted
sum of the values of the kernels at that point. With
kernel ϕ (we use a diagonal Gaussian kernel), this
becomes:

P (Fx|Redx = 1) =

1
m∑
i=1

wi

m∑
i=1

wi · ϕ(Fx − Fxi) (9)

The pairs (wi, Fxi) are generated by the Correction
Handling system (see §5.2).

Figure 3: The agent consists of an Action Selection
system (yellow) and a Learning System (green). The
former uses a symbolic planner to find a plan given the
most likely goal and symbol grounding. The latter uses
coherence to learn the goal and grounding.

5.1.2 The Goal
In order to estimate G the agent begins with the
(correct) knowledge that it must place all blocks
in a tower. However, it must use the teacher’s
feedback X to find the most likely set of additional
rules which are also conjuncts in G (see §5.2):

G = arg max
r1,...,rn

P (r1 ∈ G, . . . , rn ∈ G|X) (10)

R = {r1 . . . rn} is the set of possible rules that the
agent is currently aware of, as determined by the
colour terms it’s aware of (soR gets larger during
learning). For each r ∈ R, the agent tracks its
probabilistic belief that r ∈ G. Due to the belief
that any one rule being in the goal is unlikely, the
priors for all r ∈ G are low: P (r ∈ G) = 0.1. And
due to the independence assumption (11), the goal
G is constructed by adding r ∈ R as a conjunct iff
P (r ∈ G|X) > 0.5.

P (r ∈ G, r′ ∈ G|X) = P (r ∈ G|X)P (r′ ∈ G|X)
(11)

5.2 Handling Corrections
When the teacher corrects the agent by uttering, for
example, u = “no, red blocks should be on blue
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blocks” the agent must update its knowledge of the
world in two ways: it must update its beliefs about
what rules are in the goal, as described in §5.1.2
and it must update its models for grounding colour
terms. To perform these inferences the agent builds
a probabilistic model which allows it to perform
these two inference. For the goal it uses the in-
ference in equation (10). To learn the colours it
performs this inference:

w = P (Red(o1)|X) (12)

And adds the data point (w, F (o1)) to its grounding
model for red objects.

We base our graphical model on the model pre-
sented in Appelgren and Lascarides (2020) which
we extend to deal with the fact that the teacher’s
utterance may be faulty. The model is a Bayes Net
consisting of a number off different factors which
are multiplied together to produce the final output
probability. The model from Appelgren and Las-
carides (2020) is shown in Figure 4. Grey nodes are
observable while white nodes are latent. Arrows
show conditional dependence between nodes. If
the teacher is faultless then the agent observes that
a coherent correction occurred: CC(a, u). The
factor for this in the graphical model:

P (CC(a, u)|rr,b1 ∈ G,V (rr,b1 , a),

rr,b2 ∈ G,V (rr,b2 , a)) (13)

captures equation (3), which stipulates that a co-
herent correction occurs when a rule which is in
the goal is violated. In the graphical model the
factor has a value of 1 any time this is true and 0
otherwise.

The violation factors V (rr,b1 , a) and V (rr,b2 , a)
represent whether or not a particular rule was vio-
lated by the action a. The agent cannot observe this
directly, but must instead infer this from whether or
not the objects are red and blue. As such the factor:

P (V (rr,bi , a)|Redo1 , Blueo2) (14)

captures equation (4) for i = 1 and (5) for i = 2.
The value of the factor is 1 if the relevant equa-
tion holds and 0 otherwise. So, for example,
when V (rr,b1 , a) = True, Redo1 = True, and
Blueo1 = False the value of the factor is 1.

The remaining nodes P (Redo1 |Fo1) and
P (Blueo2 |Fo2) are defined by the agent’s ground-
ing models. P (Foi) is a prior which is assumed to
be a constant for all oi. Finally, P (rr,bi ∈ G) is the

Redo1

Fo1

Blueo2

Fo2

rr,b1 ∈ G V (rr,b1 , a) rr,b2 ∈ GV (rr,b2 , a1)

CC(a, u)

Figure 4: The nodes added to the graphical model after
a correction u = “no, red blocks should be on blue
blocks”.

agent’s prior belief that rr,bi is in the goal (i = 1, 2).
As we mentioned earlier, this is initially set to 0.1;
however, the prior is updated each time the agent
encounters a new planning problem instance. The
prior is then set simply to the agent’s current belief
given the available evidence.

When the teacher designates a block o3 on the
table (thereby signaling that violation is indirect),
the graphical model this generates is similar to Fig-
ure 4, save there are two additional nodes Fo3 and
Redo3 ∨ Blueo3 (see (Appelgren and Lascarides,
2020) for details).

When the teacher stays silent the agent can make
an inference which implies that no rule which is
in the goal was violated. It can therefore build a
model similar to Figure 4 which captures this nega-
tion of equation (3). The agent can then update its
knowledge by making the same inferences when a
correction occurs, but with the observed evidence
being that no correction occurred. For further de-
tails on how this inference works see (Appelgren
and Lascarides, 2020).

5.3 Uncertain Inferences

In this paper we assume that the teacher may
make mistakes as described in §4. This intro-
duces a novel problem for the agent since it can
no longer assume that when the teacher says u that
that means the utterance coherently attaches to the
most recent action a. In other words, CC(a, u)
becomes latent, rather than observable. What
is observable is that the teacher did in fact ut-
ter correction u immediately after action a. We
capture this by adding a new (observable) fac-
tor TeacherCorrection(a, u) (or TC(a, u) for
short) to the graphical model. When the teacher is
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infallible TC(a, u) ≡ CC(a, u) but not when the
teacher is fallible.

The updated model is shown in Figure 5.
TC(a, u) is added as an observable node with
CC(a, u) made latent. The factor for CC(a, u)
still works in the same way as before, conform-
ing to equation (3). TC(a, u) imposes no se-
mantic constraints on a or on u. However, we
can use the evidence of TC(a, u) to inform the
agent’s belief about whether CC(a, u) is true or
not, i.e. whether it was actually coherent to ut-
ter u in response to a. The newly added factor
P (TC(a, u)|CC(a, u) captures the agent’s belief
about how faulty the teacher is and allows the agent
to therefore reason about whether TC(a, u) actu-
ally means that CC(a, u). In essence, it answers
the question “if it is coherent to correct a with u,
how likely is it that the teacher actually says u”.
So, if the agent believes that the teacher forgets
to utter a correction with probability p = 0.1 then
P (TC(a, u) = False|CC(a, u) = True) = 0.1.
Or if the agent believes that the teacher will falsely
correct an action which was actually correct 5% of
the time then P (TC(a, u) = True|CC(a, u) =
False) = 0.05. This allows the agent to make
use of the fact that the teacher did (or didn’t) utter
something to still update its beliefs about which
rules are in the goal and what the colour of objects
are.

The agents beliefs about the teacher’s fallibility
could be estimated from data or could potentially
be updated on the fly given the agent’s observation
of the interaction. However, for the purpose of the
experiments in this paper we have direct access
to the true probability of teacher fallibility since
we explicitly set this probability ourselves. We
therefore set the agent’s belief about the teacher’s
fallibility to the true value.

The final change made to the system compared
to Appelgren and Lascarides (2020) is to the way
inference is done. In their paper they perform ex-
act inference in a manner which was optimised
for the structure of the graphical model and the
incremental nature of the inference. However, the
method relied on the fact that the majority of prob-
ability states had zero probability due to the deter-
ministic factors in the model. When the teacher
is fallible the number of zero probability states
greatly falls. This leads to a situation where ex-
act inference becomes impractical. To deal with
this we deploy approximate inference, based on

Red(o1)

F (o1)

Blue(o2)

F (o2)

rr,b1 ∈ G V (rr,b1 , a) rr,b2 ∈ GV (rr,b2 , a)

CC(a, u)

TC(a, u)

Figure 5: The nodes added to the graphical model after
a correction u = “no, red blocks should be on blue
blocks”. Grey is observed and white latent.

a simple Bayesian Update together with a beam
search method which relies on the fact that the
model grows incrementally. We first find the prob-
ability for every atomic state in the newly added
model chunk. This establishes a set of possible non-
zero probability atomic states. These are combined
with atomic states from the previous inference steps
which we call the beam. The beam is the N most
likely states from the previous state. Each new non-
zero atomic state is combined with states from the
beam if they are compatible, determined by both
states having the same value for any overlapping
variables. These new combined atomic states are
evaluated on the full model and the N most likely
are kept as a new beam, which is normalised to cre-
ate a consistent probability distribution. Specific
probabilities can then be calculated by summing
all atomic states that match the chosen value, eg,
where Redo1 = True.

6 Experiments

In §4 we mentioned four types of teacher error
and in our experiments we vary the level of the
teacher’s error in these different types. We be-
lieve the most likely is missing indirect errors (MI)
since spotting these requires search on all possible
future actions. So our first faulty teacher varies
PMI ∈ {0.0, 0.1, 0.25, 0.5, 1.0}: ie, from no er-
rors to never correcting any indirect violations at
all. Our second teacher makes mistakes with di-
rect violations. We believe missing and adding
direct violations will be linked, so we experiment
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Figure 6: Cumulative regret for teachers making mis-
takes with direct violations. The dotted lines show the
baseline agent while the solid lines show the mistake
aware agent.

Figure 7: Cumulative regret for teachers making mis-
takes with indirect violations. The dotted lines show
the baseline agent while the solid lines show the mis-
take aware agent.

with: PD = PMD = PAD ∈ {0.0, 0.1, 0.25}. We
study two types of agents in our experiments. The
first, baseline agent, BA, ignores the fact that the
teacher may be faulty. It simply uses the model de-
scribed in Appelgren and Lascarides (2020). The
only difference is that since the teacher is actu-
ally making mistakes, sometimes the agent may be
given contradictory evidence which would cause
the inference to fail. In such a situation the agent
would simply ignore everything that was said in the
current scenario and move on to the next planning
problem instance. The second agent is a mistake-
aware agent, MA, which makes inferences using
the model from §5.3, matching its belief about the
teacher’s faultiness to the true probability.

In our experiments each agent is given 50 plan-
ning problems. Each planning problem has a differ-
ent goal and a different set of 50 planning problem
instances. The agent is reset between each plan-
ning problem, but retains knowledge between the

50 problem instances. We measure the number of
mistakes the agent makes, which we call regret. A
mistake is counted when an action takes a tower
from a state where it is possible to complete it in a
rule compliant way to one where it isn’t without un-
stacking blocks. In Figures 6 and 7 we present the
mean performance over the 50 planning problems,
and we use paired t-tests to establish significance.

Let’s begin by looking at the results for agents
learning from teachers that fail to make corrections
for indirect violations, shown in Figure 7. Clearly
when the teacher is faulty the agent performs worse
(a result which is shown significant through a pair-
wise t-test and significance threshold p < 0.01).
However, two interesting things can be observed.
First, the slope of the curves are about the same
for the agents learning from the faulty teacher and
those learning from the faultless teacher. What this
implies is that although the agent takes longer to
learn the task when the teacher misses indirect vio-
lations it does seem to reach an equal proficiency
by the end. We can explain the fact that the agent
makes more mistakes by the fact that it is unaware
of several mistakes it is making, however, when it
is made aware of a mistake it still manages to learn.
The second point is that the BA and MA agents
are equally good at learning at all levels of teacher
error. There is a good reason for this. When the
teacher misses indirect violations the agent can ac-
tually trust all other information it receives. If it is
given a direct correction then it knows for certain
that the teacher give a coherent correction. This is
true for all the feedback the agent receives when
the only error the teacher makes is missing indi-
rect violations. For this reason there isn’t actually
any need to change the way in which the agent
learns, which is reassuring given that we believe
the indirect violations to be more likely to happen
in practice.

Looking at the results when the teacher will
both miss and add corrections for direct violations,
shown in Figure 6, we see that the agent’s per-
formance is much worse, both compared to the
faultless agent and to the agents learning from the
teachers making direct violations (these results are
also significant given a pairwise t-test and signifi-
cance threshold p < 0.01). The big difference in
this case is that the agent BA performs much worse
than MA, especially when the likelihood of failure
is higher. This is true both if we look at the final
number of mistakes, but also at the slope of the
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Figure 8: The difference in terminal regret when deal-
ing with a faulty teacher vs. a faultless teacher, compar-
ing the baseline BA to the mistake-aware agent MA.

curve, indicating that the agent is still making more
mistakes by the end of training. Figure 8 shows
why: it compares the difference between the termi-
nal regret for the faultless teacher vs. the faulty one.
For BA there is a much larger spread of outcomes,
with a long tail of very high regrets. The results
for MA reside in a much narrower region. This im-
plies that in contrast to MA, BA performs extremely
badly in a significant number of cases. The high re-
gret scenarios can be explained by situations where
the agent has failed to learn the task successfully
and is therefore acting almost randomly. So, mak-
ing the agent mistake-aware stabilises the learning
process, allowing the agent to recover from the
teacher’s mistakes without completely failing to
learn the task, as seen in the baseline.

7 Conclusion

In this paper we present an ITL model where the
agent learns constraints and concepts in a tower
building task from a teacher uttering corrections
to its actions. The teacher can make mistakes, and
to handle this we introduce a separation between
the teacher uttering a correction (observable) vs.
whether that correction coherently relates to the
latest action (latent). Our experiments showed that
this separation significantly reduces the proportion
of situations where the agent fails to learn; with-
out the separation, learning can go catastrophically
wrong when the teacher’s mistakes involve direct
violations.
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funded TAS Governance Node (grant number
EP/V026607/1) for their support, and three
anonymous reviewers for helpful feedback. All
remaining errors are our own.
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