
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 458–466
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

458

The University of Arizona at SemEval-2021 Task 10: Applying
Self-training, Active Learning and Data Augmentation to Source-free

Domain Adaptation

Xin Su
School of Information
University of Arizona

xinsu@email.arizona.edu

Yiyun Zhao
Department of Linguistics

University of Arizona
yiyunzhao@email.arizona.edu

Steven Bethard
School of Information
University of Arizona
bethard@arizona.edu

Abstract

This paper describes our systems for negation
detection and time expression recognition in
SemEval 2021 Task 10, Source-Free Domain
Adaptation for Semantic Processing. We show
that self-training, active learning and data aug-
mentation techniques can improve the general-
ization ability of the model on the unlabeled
target domain data without accessing source
domain data. We also perform detailed ab-
lation studies and error analyses for our time
expression recognition systems to identify the
source of the performance improvement and
give constructive feedback on the temporal
normalization annotation guidelines.

1 Introduction

Unsupervised Domain Adaptation (UDA) is a task
that generalizes knowledge acquired from a model
trained on labeled data in one domain (source
domain) to unlabeled data in a different domain
(target domain). Conventional UDA algorithms
usually require access to both source-domain and
target-domain data (Ganin et al., 2016; Glorot et al.,
2011; Chen et al., 2012; Louizos et al., 2016). How-
ever, sharing source-domain data is often not prac-
tical for clinical texts due to their highly sensitive
personal information and complex data use agree-
ment procedures (Laparra et al., 2020). To over-
come this difficulty, Laparra et al. (2020) propose a
new task of source free domain adaptation (SFDA)
where only models trained on source-domain data
are shared, which allows the possibility of using
the information from the source-domain while re-
ducing private information leakage. The biggest
challenge of this task is to transfer task-related in-
formation embedded in the trained models.

Our team participated in both subtasks of Sem-
Eval 2021 Task 10 (Laparra et al., 2021), Source
Free Domain Adaptation for Semantic Processing:
negation detection and time expression recognition.

For both tasks, participants were given a RoBERTa
model (Liu et al., 2019) fine-tuned on the source-
domain, and asked to make predictions in the target-
domain.

The goal of the negation detection task is to pre-
dict whether an event in a sentence is negated by
its context. This is a binary sentence classification
task. For example, given the event diarrhea and
the sentence Has no diarrhea and no new lumps
or masses, the goal is to predict that diarrhea is
negated by its context.

The goal of time expression recognition sub-task
(Laparra et al., 2018) is to recognize time expres-
sions in the target domain. This is a named entity
recognition (NER) task. The number of entity types
(inside–outside–beginning format) is 65. Entity
types in this task are formally defined time entity
types from the Semantically Compositional Anno-
tation of Time Expressions (SCATE) (Bethard and
Parker, 2016) annotation schema. For example, in
2021-02-19, 2021 will be labeled as Year, 02 will
be labeled as Month-Of-Year and 19 will be labeled
as Day-Of-Month.

We investigate self-training, active learning, and
data augmentation techniques on negation detec-
tion and time expression recognition under the
SFDA setting. Our contributions are:

1. We demonstrate that simple self-training over
a small portion of the target domain data can
effectively improve the performance of the
negation detection model.

2. We demonstrate that active learning with data
augmentation can significantly improve time
expression recognition performance when se-
lected examples are accurately annotated.

3. We perform ablation studies for the time ex-
pression recognition systems to analyze where
the performance improvement comes from.

4. We analyze our annotation errors for the time
recognition task and give constructive feed-

459

back on the annotation guideline and schema.

2 System Description

The source-domain models for both subtasks are
RoBERTa-base models with linear classification
output layers, implemented via the Huggingface
Transformers library (Wolf et al., 2020), using
RobertaForSequenceClassification for negation,
and RobertaForTokenClassification for time.

The input to the models is a sequence tokenized
by Byte-Pair Encoding (BPE). Following the con-
ventions of the RoBERTa model input format, two
special tokens <s> and </s> are inserted at the
beginning and end of the sequence, respectively.
In the negation detection task, targeted events are
denoted with two special tokens <e> and </e>
that are inserted before and after the event. For
example, the sentence Has no diarrhea and no new
lumps or masses with event diarrhea will be con-
verted to <s>Has no <e>diarrhea</e> and no
new lumps or masses.</s>. The model output for
negation detection is whether the target event is
negated and the model output for time expression
detection is the labels for each input tokens.

2.1 Negation Detection System

We employ a simple self-training (Yarowsky, 1995)
approach that fine-tunes the model with its own
predictions on the unlabeled dataset. We start with
the pre-trained source-domain model, M . Then,
for each self-training iteration:

1. We initialize an empty training set, L.
2. We use M to label the target domain data.
3. If an instance is labeled with a probability

above a threshold τ , we add it to L with the
predicted label as its pseudo label.

4. We fine-tune M on L.
When the source-domain model predictions are the
same for two consecutive iterations or the num-
ber of iterations of self-training is greater than the
predefined maximum number, self-training stops.
Note that the training set L is reinitialized at each
iteration, and the model is iteratively fine-tuned.

2.2 Time Expression Detection System

Our approach combines active-learning (Cohn
et al., 1996) and data-augmentation (Simard et al.,
2003). We start with the pre-trained source-domain
model, M0, a copy of the pre-trained source-
domain model, M , and initialize an empty training
set L. Then, for each iteration:

1. We select the k instances where M is most
uncertain, manually annotate them, and add
them to L. (Details in section 2.2.1.)

2. We augment each manually annotated in-
stance with n new examples and add them
to L. (Details in section 2.2.2.)

3. We re-initialize M to M0 and fine-tune on L.
We repeat this process i times. Note that the train-
ing set L is built cumulatively, and M is reinitial-
ized on each iteration.

2.2.1 Active Learning
We use active learning methods to manually label
the most uncertain examples of the model in the
target domain. We believe that it is not practical to
manually label the entire target domain dataset dur-
ing the test phase. This requires sufficient expertise
and time from annotators (we show later that it is
very difficult to understand annotation guidelines
in a short time). Otherwise, low-quality annota-
tions will hurt the performance of the model. In
each iteration, we select the top k target domain
sentences with the highest uncertainty scores to
manually annotate. We define the uncertainty score
of an example as the sum of the model’s predic-
tion’s entropy for each token within the sentence.
Manual annotation follows the SCATE annotation
guidelines released by the organizers.

The annotators were the first two authors of this
paper, a Linguistic PhD student and a Information
PhD student. During the annotation process, we
first individually annotated examples and then re-
solved annotation differences through discussion.
Our first exposure to the SCATE annotation schema
was approximately 10 days before the start of the
test phase, when we began reading the guidelines
and posting questions on the Google forum. We
used gold annotations from the development set (on
the news domain) to simulate the annotation pro-
cess during the practice phase. We believe this is
similar to most real-world SFDA situations, where
the person applying the model on the target domain
is unfamiliar with the annotation guidelines and
has limited time to learn them.

2.2.2 Data Augmentation
Inspired by Miao et al. (2020), we applied data aug-
mentation to increase the size of our training set
beyond what can be achieved by manual annotation,
and to improve the generalization of the model. For
each time entity that we manually annotated, we
automatically generated new training examples by

460

Task Type Domain # # of labeled Open to participants

Negation Train - - all %

Negation Dev Clinical 8431 sentences 5545 sentences !

Negation Test Clinical 622703 sentences 9580 sentences !

Time Train - - all %

Time Dev news 99 documents all !

Time Test food security 48 documents 17 documents !

Table 1: Data summary for negation detection and time expression recognition tasks

substituting original time entities with entities of
the same type randomly sampled from a predefined
entity candidates pool. We generate up to n new se-
quences (the size of the pool may be less than n for
some entities). For example, if we manually anno-
tate the three time entities from 2021-02-19 (2021:
Year, 02: Month-Of-Year, 19: Day-Of-Month) in
a sentence, after data augmentation, it can gener-
ate up to n× 3 additional sequences with different
years, months and days (e.g., 2020-10-05). The
entity candidates pool is created based on the time
entities in the development set and the annotation
guideline. We filtered out entities that do not ap-
pear in the unlabeled test set data during the testing
phase. See appendix A.1 for the final pool.

3 Data

All data used is in English. Both subtasks had
training, development and test data, each repre-
senting different domains. As participants, we did
not have access to the training set. The training
sets are used by organizers to fine-tune the pre-
trained RoBERTa-base models to obtain the source-
domain models. We used the source-domain mod-
els and development sets to develop source-free do-
main adaptation systems during the practice phase,
and tested our systems during test phase. We sum-
marize the data in table 1.

4 Experiments

The organizers provided two baseline models for
each task: the source-domain model, and the
source-domain model fine-tuned on the develop-
ment set. The official evaluation metric is the F1
score. Precision and recall scores are also reported.

4.1 Negation Detection
In the testing phase, we first fine-tuned the source-
domain model on the labeled development set. Al-
though the domains of the development set and

Strategy F1 Precision Recall

Test Phase

SD 0.660 0.917 0.516
SD + FT 0.730 0.908 0.611
SD + FT + ST 0.767 0.880 0.680

Table 2: The performance of the negation detection sys-
tems during test phase. SD is the source-domain model.
FT is fine-tuning on the development set. ST is self-
training on test set.

the test set are different, they are both clinically
relevant data, so we believed that fine-tuning the
model on the development set could improve its
performance on the test set. Because of time and
hardware constraints, we randomly sampled 3000
instances from the 622,703 test set instances as un-
labeled data for self-training. We used the same
hyperparameters for fine-tuning the source-domain
model on the development set and self-training the
fine-tuned model on the randomly sampled test
data. All the hyperparameters are shown in table 4
in appendix A.2. Our submission ranked 2nd. Ta-
ble 2 shows that our system outperformed both
baseline models provided by the organizers.

4.2 Time Expression Recognition

We did not fine-tune the source-domain model on
the development set during the test phase. The de-
velopment set is from the newswire domain, while
the test set is from the food security domain. We
though that there might be a large difference be-
tween these two domains. Fine-tuning on a differ-
ent domain may hurt the performance of the model
on the test set. As with the code provided by the or-
ganizer, we used the sentencizer from Spacy (Hon-
nibal et al., 2020) to split the input documents into
sentences and used them as inputs to the model.
All the hyperparameters are shown in table 5 in

461

Strategy F P R

Test Phase

1 SD (baseline) 0.794 0.849 0.746
2 SD + FT (baseline) 0.804 0.827 0.782
3 SD + AL (32*5) + DA (5) + Manual Annotations 0.795 0.783 0.807

Post-Evaluation

4 SD + AL (32*5) + DA (5) + Manual Annotations (fixed seasonal(ly)) 0.837 0.824 0.850
5 SD + AL (32*5) + DA (5) + Gold Annotations 0.955 0.945 0.965
6 SD + FT + AL (32*5) + DA (5) + Gold Annotations 0.959 0.949 0.969
7 SD + AL (32*5) + Gold Annotations 0.890 0.893 0.887
8 SD + AL (16*5) + DA + Gold Annotations 0.929 0.918 0.941
9 SD + AL (8*5) + DA + Gold Annotations 0.900 0.880 0.920
10 SD + AL (4*5) + DA + Gold Annotations 0.877 0.860 0.894
11 SD + AL (4*5) + Gold Annotations 0.851 0.846 0.855

Table 3: The performance of the time expression recognition systems during the test and post-evaluation phases.
SD is the source-domain model. FT is fine-tuning on the development set. AL (k*i) is active learning with k
samples and i iterations. DA (n) is data augmentation with n generated examples.

appendix A.2. Our submitted system ranked 6th.
Table 3 shows that our submitted system’s perfor-
mance (row 3) is no better than the best baseline
model (row 2) provided by the organizers.

To investigate the reasons for the lower-than-
expected test performance, we used the gold anno-
tations in the test set for our post-evaluation runs
(row 5-11 in table 3). Note that performance for
these rows will be artificially inflated, since up to
160 of the 926 test sentences were included in the
system’s training data. Nonetheless, we see that by
using the gold annotations instead of our manual
annotations (row 5 vs row 3 in table 3), the perfor-
mance of our system improved by 0.160 F1 score.
This seems to suggest that our system can improve
its generalization ability if we can accurately label
the target domain data.

We further analyze where the performance im-
provement comes from in section 5 and provide a
detailed analysis of our annotation errors and give
feedback on annotation guidelines in section 6.

5 Time Expressions Ablation Study

Effect of Fine-Tuning on Dev Data From the
baseline models’ performances (row 1 vs row 2 in
table 3), we can see that the test performance of the
model fine-tuned on the development set is slightly
better than the pure source-domain model (+.010
F1 score). To verify if this is also true for our active
learning system, we add the fine-tuning strategy to

our system (row 6 in table 3) and run the system on
the labeled portion of the test set. The results (row
5 vs row 6 in 3) indicate that fine-tuning on the
additional domain continues to help a bit (+.004 F1
score) even when followed by active learning.

Effect of Data Augmentation We also investi-
gate the contribution of our data augmentation strat-
egy, removing it from our system and running on
the labeled test set. The result shows that data aug-
mentation brings a +.065 F1 score improvement to
our system (row 7 vs row 5 in table 3). This indi-
cates that data augmentation was a major source of
performance improvements.

Effect of Size of Annotation Data In real-world
use cases, we often want to keep the size of anno-
tated data as small as possible, since annotation is
time consuming and error-prone. To understand
how our system performs with less manual anno-
tated examples, we reduce the number of sentences
to be annotated at each active learning iteration
to 16, 8 and 4 resulting in rows 8, 9 and 10 in
table 3. The results show that with only 20 cor-
rectly annotated sentences but incorporating data
augmentation (row 10), our system outperform the
best baseline model (row 2) by .073 F1. If we re-
move data augmentation from this model (row 11)
its performance declines, but still outperforms the
best baseline model by .047 F1.

462

6 Time Expressions Annotation Analysis

Though gold annotations led to large performance
improvements, the annotation for this task is chal-
lenging for untrained people. Through reading the
SCATE annotation guidelines and posting ques-
tions on the share task google group, our team an-
notated 160 sentences of which 48 sentences were
in the labeled portion of the test set. We annotated
13008 tokens in total (including padding tokens)
and our overall accuracy on the gold 48 sentences
is 0.991 for all categories and 0.785 excluding the
category O. We report detailed performance for
each of the entity types in table 6 in appendix A.3.

We found several annotation patterns where our
team consistently disagreed with the gold annota-
tions. Our errors can be broadly attributed to two
reasons: misinterpretation/underspecification of an-
notation guidelines, and ambiguity of the phrases.

Errors from misinterpretations/underspecifica-
tion of annotation schema : We annotated the
token seasonal(ly) (e.g., seasonal progress, sea-
sonal rainfall) as Calendar-Interval instead of
Season-Of-Year as we thought Season-Of-Year is
applied to seasons that are explicitly specified (such
as summer). We considered seasonal similar to
weekly, both referring to an interval unspecified.
However, Season-Of-Year could be applied to very
broad categories such as dry seasons and rainfall
seasons including seasons that are not specified.
Also, seasonal unlike weekly/monthly/yearly only
refers to one season of a year instead of every sea-
son of a year. Due to the ubiquity of this token
in the dataset, this error affects our overall perfor-
mance. Correcting the annotation of this particular
token leads to +.042 F1 score improvement (row 4
vs row 3 in table 3). Another erroneous pattern is
that we double-annotated the phrase such as from
. . . to . . . and between . . . to Specifically,
we annotated both adpositions instead of choosing
the first adposition only. Finally, we also annotated
more modifiers than the gold annotations. For in-
stance, we annotated marketing in marketing year
and long in long dry Jiaal Season as ‘Modifier’
instead of the category ‘O’. It turns out that the
category of modifier in the gold annotation is a
closed category, and only a specific set of tokens
are considered modifiers.

Errors from ambiguity within phrases Some
phrases allow multiple interpretations that lead to
different ways of annotations. For instance, con-

fusion between ‘Period’ and ‘Calendar Interval’
occurred frequently (e.g., we annotated weeks in
recent weeks as ‘Period’ rather than ‘Calendar-
Interval’). Although “/” between seasons is com-
monly annotated as ‘I-Season-Of-Year’ in the gold
annotations, we found different roles it might play
in specific contexts. For example, if “/” is used be-
tween two terms that refer to the same season, then
it should be annotated as ‘I-Season-Of-Year’; if it is
used between two non-adjacent seasons, it should
be annotated as ‘Union’; and if it is used between
two adjacent seasons, then it could be annotated as
‘Between’ or ‘Union’. Thus, the correct annotation
requires a surprising amount of external knowledge
about Ethiopian season terms. In fact, there are
still cases that remained uncertain: For example,
Xaran refers to seasonal rains from April through
September and Xagaa refers to the second dry sea-
son (July to September) and when the two tokens
joined by “/” it is difficult to interpret the meaning
of “/”. We also found the conjunction and causes
ambiguity. For example, and in rains in May and
August could be considered as an operator over
months (i.e., rains in Union(May, August)) or an
operator over rains (i.e., Union(rains in May, rains
in August)). The former understanding requires
annotating and whereas the latter does not despite
the fact that the two interpretations are essentially
semantically equivalent. Lastly, we also found the
particle the is difficult to annotate. For instance,
the in the month depending on the context may be
annotated as this or last and sometimes the context
may not be clear enough to tell the differences.

Our annotation analysis leads to several sugges-
tions for the annotation schema and the documenta-
tion. Our errors in the first category indicate some
potential helpful updates can be made such as in-
cluding more examples in categories (e.g., ‘Season-
Of-Year’), explicit documentation of whether the
certain category is closed or open as well as the
specific manner to deal with multi-word phrases or
even circumpositions. The second category of er-
rors, however, might involve the refinement of the
annotation schema. For example, maybe ‘Between’
and ‘Union’ can be unified together, and ‘Period’
can be merged into ‘Calendar Interval’ or confined
to an explicit set of circumstances.

7 Conclusion

Our overall rank (by F1 score) for negation detec-
tion task was 2nd and for time expression recogni-

463

tion was 6th.
Our results suggest that simple self-training can

be used in sentence-level SFDA tasks to improve
a trained model’s performance on a new domain.
As for token-level tasks, our analysis shows that
both active learning and data augmentation can
bring significant performance improvements, but
the premise is that the data in active learning can
be correctly annotated. Our analysis and feedback
could also be used to improve the SCATE annota-
tion guidelines/schema in future work.

Acknowledgments

Research reported in this publication was supported
by the National Library of Medicine of the Na-
tional Institutes of Health under Award Numbers
R01LM012918 and R01LM010090. The content
is solely the responsibility of the authors and does
not necessarily represent the official views of the
National Institutes of Health.

References
Steven Bethard and Jonathan Parker. 2016. A seman-

tically compositional annotation scheme for time
normalization. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 3779–3786, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Minmin Chen, Zhixiang Xu, Kilian Q. Weinberger,
and Fei Sha. 2012. Marginalized denoising autoen-
coders for domain adaptation. In Proceedings of
the 29th International Coference on International
Conference on Machine Learning, ICML’12, page
1627–1634, Madison, WI, USA. Omnipress.

David A. Cohn, Zoubin Ghahramani, and Michael I.
Jordan. 1996. Active learning with statistical mod-
els. J. Artif. Int. Res., 4(1):129–145.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavio-
lette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. J.
Mach. Learn. Res., 17(1):2096–2030.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale senti-
ment classification: A deep learning approach. In
Proceedings of the 28th International Conference
on International Conference on Machine Learning,
ICML’11, page 513–520, Madison, WI, USA. Om-
nipress.

Matthew Honnibal, Ines Montani, Sofie Van Lan-
deghem, and Adriane Boyd. 2020. spaCy:
Industrial-strength Natural Language Processing in
Python.

Egoitz Laparra, Steven Bethard, and Timothy A Miller.
2020. Rethinking domain adaptation for machine
learning over clinical language. JAMIA Open,
3(2):146–150.

Egoitz Laparra, Xin Su, Yiyun Zhao, Ozlem
Uzuner, Timothy Miller, and Steven Bethard. 2021.
SemEval-2021 task 10: Source-free domain adap-
tation for semantic processing. In Proceedings of
the 15th International Workshop on Semantic Evalu-
ation (SemEval).

Egoitz Laparra, Dongfang Xu, Ahmed Elsayed, Steven
Bethard, and Martha Palmer. 2018. SemEval 2018
task 6: Parsing time normalizations. In Proceedings
of The 12th International Workshop on Semantic
Evaluation, pages 88–96, New Orleans, Louisiana.
Association for Computational Linguistics.

Y. Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, M. Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. ArXiv, abs/1907.11692.

Christos Louizos, Kevin Swersky, Yujia Li, Max
Welling, and Richard S. Zemel. 2016. The varia-
tional fair autoencoder. In 4th International Confer-
ence on Learning Representations, ICLR 2016, San
Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings.

Zhengjie Miao, Yuliang Li, Xiaolan Wang, and Wang-
Chiew Tan. 2020. Snippext: Semi-Supervised Opin-
ion Mining with Augmented Data, page 617–628.
Association for Computing Machinery, New York,
NY, USA.

Patrice Y. Simard, Dave Steinkraus, and John C. Platt.
2003. Best practices for convolutional neural net-
works applied to visual document analysis. In Pro-
ceedings of the Seventh International Conference on
Document Analysis and Recognition - Volume 2, IC-
DAR ’03, page 958, USA. IEEE Computer Society.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language process-
ing. In Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

David Yarowsky. 1995. Unsupervised word sense dis-
ambiguation rivaling supervised methods. In 33rd
Annual Meeting of the Association for Computa-
tional Linguistics, pages 189–196, Cambridge, Mas-
sachusetts, USA. Association for Computational
Linguistics.

https://www.aclweb.org/anthology/L16-1599
https://www.aclweb.org/anthology/L16-1599
https://www.aclweb.org/anthology/L16-1599
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.1093/jamiaopen/ooaa010
https://doi.org/10.1093/jamiaopen/ooaa010
https://doi.org/10.18653/v1/S18-1011
https://doi.org/10.18653/v1/S18-1011
http://arxiv.org/abs/1511.00830
http://arxiv.org/abs/1511.00830
https://doi.org/10.1145/3366423.3380144
https://doi.org/10.1145/3366423.3380144
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.3115/981658.981684
https://doi.org/10.3115/981658.981684

464

A Appendix

A.1 Entity Candidates Pool

Second-Of-Minute: 00, 01, 02, 03, 04, 05, 06,
07, 08, 09, 10, 11, 12, 13, 14, 15,16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60.

Day-Of-Month: 00, 01, 02, 03, 04, 05, 06, 07,
08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 0, 1, 2, 3,
4, 5, 6, 7, 8, 9.

This: today, these, this, the, now, current, These,
This, The, Current.

Minute-Of-Hour: 00, 01, 02, 03, 04, 05, 06, 07,
08, 09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
60.

Year: 1970, 1971, 1973, 1974, 1975, 1980, 1981,
1982, 1984, 1990, 1992, 1995, 2000, 2001, 2002,
2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,
2020.

Month-Of-Year: January, February, March,
April, May, June, July, August, September, Oc-
tober, November, December, Jan, Feb, Mar, Apr,
Aug, Sept, Sep, Oct, Nov, Dec, 01, 02, 03, 04, 05,
06, 07, 08, 09, 10, 11, 12, may.

Next: later, future, following, next, coming, up-
coming, Following.

Hour-Of-Day: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 01,
02, 03, 04, 05, 06, 07, 08, 09.

Time-Zone: ART, CT, EGT, EST, MART, MMT,
NT, TOT, WIT.

Two-Digit-Year: 01, 02, 03, 04, 05, 06, 07, 08,
09, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99,
tens, Tens.

Calendar-Interval: minute, minutes, day, days,
daily, today, eve, week, weekly, weeks, months,
month, monthly, quarter, quarterly, year, years, an-
nual, annually, Daily, Eve, Month, Monthly, Year,
Annual.

Modifier: more than, approx, less than, start,
mid, middle, end, over, early, around, late, older,
financial, fiscal, nearly, longer than, almost, at least,
or so, about, beginning, More than, Approx, Less
than, Mid, Middle, End, Over, Early, Around, Late,
Nearly, At least, About, Beginning.

Last: before, last, latest, previously, recent, re-
cently, the past, ever, previous, past, earlier, pre,
Before, Last, Recent, Ever, Previous, Past, Earlier,
Pre.

Between: from, since, until, between, From,
Since, Until, Between.

Day-Of-Week: Tuesday, Wednesday, Mon,
Tues, Tue, Wed, Sat, Sun.

Period: period, periods, week, months, minute,
year, term, day, time, years, second, moment,
minutes, long-term, decades, decade, short-term,
month, weeks, days, Year, Term, Time, Second,
Short-term, Month.

Part-Of-Day: night, Noon.

Before: previously, prior, before, ago, pre, by,
earlier, next, Prior, Before, Ago, Pre, By, Earlier.

NthFromStart: second, first, fourth, third, sev-
enth, Second, 3rd, 5th, 7th, 25th, 47th, 75th.

After: after, from, later, post, After, From, Post.

Season-Of-Year: winter, spring, summer, fall,
season, autumn, Summer, Fall, Season.

AMPM-Of-Day: pm, am, PM, AM.

465

A.2 Hyperparameters

Hyperparameter Value

number of examples from the test set used for
self-training

3000

maximum number of self-training iterations 30
actual number of self-training iterations 2
self-training threshold (τ) 0.95
maximum sequence length 128
batch size 32
epochs 10
learning rate 5e-5
learning rate schedule type linear
learning rate warm up steps 0
weight decay 0.0
maximum gradient norm 1.0

Table 4: Hyperparameters for negation detection sys-
tem

Hyperparameter Value

number of active learning iterations (i) 5
number of sentences to annotate at each active
learning iteration (k)

32

number of new sequence to augment for each
annotated time entity (n)

5

maximum sequence length 271
batch size 32
epochs 8
learning rate 3e-5
learning rate schedule type linear
learning rate warm up steps 0
weight decay 0.0
maximum gradient norm 1.0

Table 5: Hyperparameters for time expression recogni-
tion system.

A.3 Manual Annotation Performance

466

Type F P R # in gold annotations # in our annotations

I-Calendar-Interval 0.000 0.000 0.000 0 5
I-Last 0.000 0.000 0.000 2 5
I-Between 0.000 0.000 0.000 1 0
I-Modifier 0.000 0.000 0.000 1 4
B-This 0.154 0.333 0.100 10 3
B-Before 0.222 0.250 0.200 5 4
B-Union 0.250 0.143 1.000 1 7
B-Period 0.400 0.308 0.571 7 13
B-After 0.500 1.000 0.333 9 3
I-Frequency 0.500 1.000 0.333 3 1
B-Modifier 0.519 0.389 0.778 9 18
I-Period 0.588 1.000 0.417 12 5
B-Last 0.615 0.800 0.500 8 5
B-Calendar-Interval 0.632 0.529 0.783 23 34
B-Intersection 0.667 1.000 0.500 2 1
B-Frequency 0.750 0.750 0.750 4 4
I-Number 0.769 1.000 0.625 8 5
B-Season-Of-Year 0.792 0.864 0.731 52 44
B-NthFromStart 0.800 0.667 1.000 2 3
B-Between 0.831 0.750 0.931 29 36
I-Season-Of-Year 0.896 0.972 0.831 83 71
B-Number 0.909 0.909 0.909 11 11
O 0.997 0.997 0.998 12627 12632
B-Year 1.000 1.000 1.000 36 36
B-Month-Of-Year 1.000 1.000 1.000 57 57
B-Part-Of-Day 1.000 1.000 1.000 1 1
B-Two-Digit-Year 1.000 1.000 1.000 4 4
B-Next 1.000 1.000 1.000 1 1

Table 6: Performance of each annotated entity types. Please note that when the number in gold annotation is 0, it
means that we annotate this entity type, but it does not appear in the gold annotations (test labels).

