
Proceedings of Recent Advances in Natural Language Processing, pages 684–691
Sep 1–3, 2021.

https://doi.org/10.26615/978-954-452-072-4_078

684

Abstract

Translation Memory (TM) system, a major
component of computer-assisted
translation (CAT), is widely used to
improve human translators’ productivity by
making effective use of previously
translated resource. We propose a method
to achieve high-speed retrieval from a large
translation memory by means of similarity
evaluation based on vector model, and
present the experimental result. Through
our experiment using Lucene, an open
source information retrieval search engine,
we conclude that it is possible to achieve
real-time retrieval speed of about tens of
microseconds even for a large translation
memory with 5 million segment pairs.

1 Introduction

Translation memory technique is a key
functionality being widely used in the field of CAT.
Translation Memories (TMs) are “structured
archives of past translations” which store pairs of
corresponding text segments in source and target
languages known as “translation units” (Simard,
2020). The size of translation memories and the
quality of their contents are major impact factors
crucial to the effectivity of the translation memory
system which uses them. Due to the importance of
translation memories, there has been done lots of
research work for building large TMs on world-
wide scale, not just in individual countries
(Steinberger et al. 2012).

What plays an important role for TM system is
also the similarity evaluation between the input
sentence to be translated and the source segment in
the TM. The main task of TM system is to get a
translation unit whose source segment is the most
similar to the input sentence out of TM. There are
two possible solutions in performing the task: One
solution is to adopt an intelligent TM matching

mechanism which is able to correctly calculate the
similarity between the input sentence and the
source segment in the translation memory. The
other solution is to increase the size of TM by
collecting translated resources as much as possible.
No matter how intelligent the TM matching
mechanism is, small-size TM cannot afford rich
performance. Of course, the choice of TM
matching method is important for improving the
effectivity of TM system. But what is no less
important than any TM matching method is to use
a reasonable size TM. The larger the TM, the
higher the possibility to get a translation unit whose
source segment is very similar to the input sentence
out of the TM. In general, the main value of a TM
consists in the number of segments - its size.
However, large TMs automatically lead to slow
response times. A slow TM might actually slow
down a translator, so that fast response time is an
essential characteristic of any TM. Many research
works have been reported to improve TM
matching and retrieval, but the majority of those
approaches were just evaluated on relatively small
TMs. To our best knowledge, the largest TM tested
so far in previous research works is the first five
parts of the 2013 DGT-TM (which consisted of
305,324 segment pairs) used in (Weitz 2017) and
the 2018 Volume 1 of the DGT-TM (which had
230,000 segment pairs) used in (Ranasinghe et al.
2020).

The main problem we are going to solve in this
paper is to provide a TM retrieval mechanism to
ensure real-time performance on very large TMs,
e.g. with millions of segment pairs. We propose a
TM retrieval method based on Vector Model (VM),
which is widely used in information retrieval (IR),
and implement our proposal using Lucene, an open
source IR search engine. The rest of the paper is
organized as follows: Section 2 briefly reviews
previous research works related to TM matching
and retrieval. Section 3 describes TM retrieval

Translation Memory Retrieval Using Lucene

Kwang-hyok Kim1, Myong-ho Cho1, Chol-ho Ryang1, Ju-song Im1,
Song-yong Cho1, Yong-jun Han2

1Faculty of Information Science Kim Il Sung University Pyongyang, DPRK
{kh.kim0107,ch.ryang0415,sy.jo1020}@ryongnamsan.edu.kp

2Faculty of Foregin Language and Literature, Kim Il Sung University Pyongyang, DPRK
flit1@ryongnamsan.edu.kp

685

method based on VM, and Section 4 presents
experiment result. Finally, Section 5 discusses the
result and draws a conclusion.

2 Previous Work on Translation
Memory Matching and Retrieval

2.1 Research Work to Improve Translation
Memory Matching

The mission of TM matching is to evaluate how
similar the source segment in the TM is to the input
sentence to be translated. Hence most of research
work on TM matching focuses on how to calculate
the similarity between the input sentence and the
source segment in the TM.

(Planas and Furuse 2000) introduces edit
distance based similarity vector whose coordinates
refer to the levels of analysis of the segments. Their
Multi-level Similar Segment Matching (MSSM)
algorithm uses 3 different levels of data (surface
words, lemmas, parts of speech (POS)) in a
combined and uniform way.

There are studies for improving TM matching
by segmenting source sentences. It is less likely for
exact matches to be found in most text types, and
even less so for complex sentences. MetaMorpho
TM (Hodász and Pohl 2005) also divides sentences
into smaller chunks. Moreover, it uses a multi-level
linguistic features (surface form, lemma, and word
class) to determine similarity between two source-
language segments, especially for morphologically
rich languages like Hungarian. The so-called
‘second generation’ TM system SIMILIS (Planas
2005) performs chunking to split sentences into
syntagmas to allow sub-sentence matching.
(Timonera and Mitkov 2015) suggests improving
translation memory matching by performing
clause splitting on the source segment as a pre-
processing step for TM match retrieval, since
clauses both contain a subject and a verb, hence a
“complete thought”, and therefore clause matches
are more likely to be in context and to be actually
used by the translator.

(Vanallemeersch and Vandeghinste, 2014) also
proposes a method which performs matching at
level of syntactic trees. The authors notice that tree
matching method is “prohibitively slow”.

(Pekar and Mitkov 2007) proposes the ‘third-
generation translation memory’ which introduces
the concept of semantic matching. They employ
syntactic and semantic analysis of segments stored
in a TM to produce a generalized representation of

segments which reduces equivalent lexical,
syntactic and lexicosyntactic constructions into a
single representation. Then, a retrieval mechanism
operating on these generalized representations is
used to search for useful previous translations in
the TM.

(Chatzitheodorou 2015) presents an approach to
match sentences having different words but the
same meaning. They use NooJ to create
paraphrases of Support Verb Constructions (SVC)
of all source translation units to expand the fuzzy
matching capabilities when searching in the
translation memory.

(Ranasinghe et al. 2020) introduces a TM
matching and retrieval method based on Universal
Sentence Encoder. They argue that their method is
an effective and efficient solution to replace edit
distance based algorithms.

2.2 Research Work to Improve Translation
Memory Matching

The mission of translation unit retrieval is to filter
translation units out of TM which are to be
matched against the input sentence. In general, the
time consumed for translation unit retrieval is
linear to the size of TM. Levenshtein distance,
which is widely being used and one of the simplest
means for TM matching, can be computed with
dynamic programming in O(mn) time, where m is
the length of the input sentence, and n the length of
the source segment of a translation unit in the
translation memory. However, in case of a large
TM with more than tens of millions of segment
pairs, computing edit distance against the whole
TM is too slow for real-time use. This is why the
preliminary retrieval is necessary.

(Dandapat et al. 2012) uses an open-source IR
engine SMART to retrieve a potential set of
candidate sentences (likely to contain the closest
match sentence) from the example base. Unigrams
extracted from the sentences of the example-base
are indexed using the language model and
complete sentences are considered as retrievable
units. They reported that finding a set of candidate
sentences took only 0.3 seconds and 116 seconds,
respectively, for 414 and 10,000 example input
sentences given 20k and 250k sentence example
base on a 3GHz Core 2 Duo machine with 4GB
RAM. In order to find the closest matching
sentences efficiently, (Dandapat et al. 2012) also
proposes a heuristic-based grouping method which
divides the example-base into bins based on

686

sentence length and considers only the segments
which has comparable length to the length of the
input sentence.

(Wäschle and Riezler 2015) uses MinHash
signatures, an efficient way to estimate the
similarity of two documents, to efficiently
approximate the n-gram overlap of the input
sentence and the source segment by representing
each sentence as a set of n-grams in that n-gram
overlap is a good predictor of TM match quality.

In order to reduce the search space size for
Korean-Chinese TM retrieval, (Ryang 2018) builds
a structured index using as features the sentence
length and the sequence of Korean particles which
is included in the sentence.

3 Vector Model-based Similarity
Evaluation for Translation Memory
Retrieval

3.1 Primary and Secondary Retrieval of
Translation Memory

When retrieving from a large TM, it is common
and reasonable to use the two-stage approach in
which the TM system, firstly, filters candidates
likely to be related to the input sentence for TM
matching and then finds the most similar segments
by fine-grained matching. The filtering is referred
to the primary retrieval and the fine-grained
finding is referred to the secondary retrieval.
(Figure 1)

The primary retrieval is intended to filter
translation units whose source segment is likely to
be close matched with the input sentence. The
secondary retrieval returns as reference translation

the target segments of the translation units whose
source segment is best matched with the input
sentence. The main difference between the primary
and secondary retrieval lies in the fact that the
secondary retrieval uses a certain similarity
threshold, 𝜇 , and the count of the secondary
retrieval output should be much smaller than the
primary one, because the secondary retrieval
output is for human. The primary and secondary
retrieval can be formulated respectively as follows:

𝑇𝑀(𝑆0,𝐾1) = argmax
𝑡𝑚⊂𝑇𝑀
|𝑡𝑚|=𝐾1

∑ 𝐹𝑀𝑆1(𝑆0, 𝑆𝑖)(𝑆𝑖,𝑇𝑖)∈𝑡𝑚

𝑇𝑀𝜇(𝑆0,𝐾2) = argmax
𝑡𝑚⊂𝑇𝑀(𝑆0,𝐾1)

|𝑡𝑚|≤𝐾2

∑ 𝐹𝑀𝑆2(𝑆0, 𝑆𝑖)
(𝑆𝑖,𝑇𝑖)∈𝑡𝑚

𝐹𝑀𝑆2(𝑆0,𝑆𝑖)≥𝜇

where

𝐹𝑀𝑆1(𝑆0, 𝑆𝑖): similarity score of the input sentence
𝑆0 and the source segment 𝑆𝑖, used in the primary

retrieval

𝐹𝑀𝑆2(𝑆0, 𝑆𝑖): similarity score of the input sentence
𝑆0 and the source segment 𝑆𝑖, used in the secondary

retrieval

𝑇𝑀 = {(𝑆𝑖 ,𝑇𝑖)|𝑖 = 1,𝑁}: Translation Memory

(𝑆𝑖 ,𝑇𝑖): Translation Unit,
𝑆𝑖: Source Segment, 𝑇𝑖:Target Segment

𝑁: the number of translation units in the translation
memory

𝐾1,𝐾2: the limit count of the primary/secondary
retrieval output

One of the essential requirements which the
similarity measure should meet for the primary
retrieval of TM is to allow partial match. A useful
solution to this requirement is to use vector model

Figure 1: Two-stage Translation Memory Retrieval

Input
Sentence

Secondary
 Retrieval

Translation
Memory

Primary
Retrieval

Candidates for
TM Matching

Retrieval
Result

T
ran

slatio
n

M
em

o
ry

 S
y

stem

687

by representing as vectors the input sentence and
the source segments in the translation memory. We
adopt vector model based similarity evaluation for
the primary retrieval of TM.

3.2 Primary and Secondary Retrieval of
Translation Memory

For the vector representation of the input sentence
and the source segments in the TM, we use word-
sentence relation matrix which is widely used in IR.
Let 𝑊 be the set of words occurring in the source
segments.

𝑊 = {𝑤𝑖|𝑖 = 1,𝑇}, 𝑇: The total number of words
occurring in the source segments

Let 𝑉 be the word-sentence relation matrix.
Then 𝑉 is a 𝑁 × 𝑇 dimensional matrix:

𝑉 = (

𝑣11 𝑣12 … 𝑣1𝑇
𝑣21 𝑣22 … 𝑣2𝑇
… … … … … …
𝑣𝑁1 𝑣𝑁2 … 𝑣𝑁𝑇

)

The i-th row of 𝑉 is a vector representing the
source segment, 𝑆𝑖:

𝑉𝑆𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑇)

𝑣𝑖𝑗: The weight indicating how important the word

𝑤𝑗 ∈ 𝑊 is for the source segment 𝑆𝑖

Let 𝑈𝑆0 be the vector of the input sentence 𝑆0:

𝑈𝑆0 = (𝑢1,𝑢2, … ,𝑢𝑇)

𝑢𝑗: The weight indicating how important the word

𝑤𝑗 ∈ 𝑊 is for the input sentence 𝑆0

Given two vectors, 𝑉𝑆𝑖 and 𝑈𝑆0 , the similarity
score of the input sentence 𝑆0 and the source
segment 𝑆𝑖 used for the primary retrieval can be
defined as follows:

𝐹𝑀𝑆1(𝑆0, 𝑆𝑖) =
𝑈𝑆0 ∙ 𝑉𝑆𝑖

‖𝑈𝑆0‖ ‖𝑉𝑆𝑖‖

𝑈𝑆0 ∙ 𝑉𝑆𝑖: Dot product of two vectors, 𝑈𝑆0 and 𝑉𝑆𝑖

‖𝑈𝑆0‖: Euclidean norm of the vector 𝑈𝑆0

‖𝑉𝑆𝑖‖: Euclidean norm of the vector 𝑉𝑆𝑖

We suggest using TF-IDF weight of the words,
which is commonly used feature for IR. But there
is one problem in using TF-IDF weight for TM
retrieval.

In IR, the length of a query is very short than
documents. However, in case of TM retrieval, the
lengths of the input sentence and the source
segment, two objects to be compared, don’t make

such contrastive difference as in the relationship
between the query and document in IR. It can
rather be assumed that the length of the input
sentence is similar to the source segment in the TM.
Even when the length of the input sentence is short
than the source segment, as in IR, if a word occurs
only once in the input sentence, it is not true that a
source segment, in which that word occurs two or
three times, is more similar to the input sentence
than any other source segment in which that word
occurs once. When a word occurs twice in the
input sentence, it can be assumed that a source
segment, in which that word occurs twice, is more
similar than any other source segment in which that
word occurs once. Based on this consideration, we
define the elements of the vectors 𝑈𝑆0 and 𝑉𝑆𝑖 as:

𝑣𝑖𝑗 = min {𝑡𝑓(𝑤𝑗 , 𝑆0), 𝑡𝑓(𝑤𝑗 , 𝑆𝑖)}

𝑢𝑗 = {
𝑖𝑑𝑓(𝑤𝑗), 𝑤𝑗 ∈ 𝑆0

 0 , 𝑤𝑗 ∉ 𝑆0

Consequently, the similarity score of the input
sentence 𝑆0 and the source segment 𝑆𝑖becomes:

𝐹𝑀𝑆1(𝑆0, 𝑆𝑖) =

=
∑ min {𝑡𝑓(𝑤𝑗 , 𝑆0), 𝑡𝑓(𝑤𝑗 , 𝑆𝑖)} × 𝑖𝑑𝑓(𝑤𝑗)𝑤𝑗∈𝑆0

‖𝑈𝑆0‖ ‖𝑉𝑆𝑖‖

In the calculation of the above similarity score
function, the elimination of the term ‖𝑈𝑆0‖ from
the denominator doesn’t affect the final result. So
the practical similarity score function can be
written as:

𝐹𝑀𝑆1(𝑆0, 𝑆𝑖) =

=
∑ min {𝑡𝑓(𝑤𝑗 , 𝑆0), 𝑡𝑓(𝑤𝑗 , 𝑆𝑖)} × 𝑖𝑑𝑓(𝑤𝑗)𝑤𝑗∈𝑆0

‖𝑉𝑆𝑖‖

3.3 Semantic Similarity for the Primary
Retrieval of TM

There are many previous research works taking
into account semantic similarity for TM matching.
For example, given two sentences, “What is the
actual aim of this practice?” and “What is the real
goal of this mission?”, it is possible to judge that
these two sentences are very similar, based on the
linguistic analysis that the words “actual” and
“goal” are similar to the words “real” and “aim,”
respectively. When implementing two-stage TM
retrieval which consists of primary and secondary
retrieval for a large TM, it is very important to
ensure that the output of the primary retrieval
might contain the segments likely to be
semantically similar to the input sentence for any

688

semantic similarity measure to be applied at the
secondary retrieval stage. We are going to use
linguistic knowledge like synonym for
accommodating semantic similarity evaluation in
the primary retrieval of TM.

Our solution to evaluate semantic similarity
taking into account the synonym knowledge in the
primary retrieval of TM, is to change the input
sentence 𝑆0 into a pseudo sentence 𝑆0

′ which
includes all the words of 𝑆0 and also their synonym
words, and then calculate the similarity score of the
pseudo sentence 𝑆0

′ and the source segments of TM.
The pseudo expansion of the input sentence and the
similarity score calculation is trivial since the
vector representation is based on TF-IDF weights.
The similarity score of the pseudo sentence 𝑆0

′ and
the source segment 𝑆𝑖 is:

𝐹𝑀𝑆1(𝑆0
′ , 𝑆𝑖)

=
∑ min (𝑡𝑓(𝑤𝑗 , 𝑆0

′), 𝑡𝑓(𝑤𝑗 , 𝑆𝑖)) × 𝑖𝑑𝑓(𝑤𝑗)𝑤𝑗∈𝑆0
′

‖𝑉𝑆𝑖‖

where

𝑡𝑓(𝑤𝑗 , 𝑆0
′) =

= {
𝑡𝑓(𝑤𝑗 , 𝑆0), 𝑤𝑗 ∈ 𝑆0

 𝛼, 𝑤𝑗 ∉ 𝑆0 ∧ ∃𝑘,𝑤𝑘 ∈ 𝑆0 ∧ 𝑤𝑗 ∈ 𝑆𝑌𝑁(𝑤𝑘)
 0, 𝑤𝑗 ∉ 𝑆0 ∧ 𝑤𝑗 ∉ 𝑆𝑌𝑁(𝑆0)

𝑆𝑌𝑁(𝑆0) = ⋃ 𝑆𝑌𝑁(𝑤𝑖)𝑤𝑖∈𝑆0 , 𝑆𝑌𝑁(𝑤𝑖): The set of

synonym words of 𝑤𝑖

In the above expression, 𝛼 is a real number
between 0 and 1, which is introduced as a weight
of the synonym word added into the pseudo input
sentence 𝑆0

′ .
The knowledge database for synonym are not

always available for every language, and even if
available, they are qualitatively and quantitatively
different from each other. For English, WordNet
developed by Princeton University is a useful
knowledge database for finding synonym.

As a matter of fact, it is not quite easy to find
correctly the synonym of any word in the input
sentence. To speed up the primary retrieval on a
large TM while avoiding complex linguistic
analysis, we establish the following principle for
building synonym dictionary which will be used in
the similarity evaluation for TM retrieval.

First, for any word 𝑤𝑖 which has only one part-
of-speech (POS), its all synonym words will be
included in the synonym dictionary 𝑆𝑌𝑁(𝑊).

1 (http://wordnetcode.princeton.edu/3.0/WNprolog-

Second, when the word 𝑤𝑖 has several POSes,
only if 𝑤𝑖 doesn’t have verb POS, its synonym
words will be included in the synonym dictionary
𝑆𝑌𝑁(𝑊).

Third, if the word 𝑤𝑖 has both general synonym
and special synonym, only the general synonym
words with more high frequency will be included
in the synonym dictionary 𝑆𝑌𝑁(𝑊).

Our principles are based on the linguistic
consideration that the synonym of any word can be
discussed only when its POS is determined, that
there exist two categories of synonym, absolute
synonym and relative synonym, and that there are
also general synonym and special synonym in
terms of use frequency.

We don’t use synonym of multi-POS words with
verb POS, because a verb is the core of the
statement unit which can determine the meaning of
a sentence from a linguistic point of view and
linguistic analysis like POS tagging is not applied
in the primary retrieval of TM.

According to our analysis on WordNet 3.01, it
has a total of 117,659 senses with 147,306 words
related to each other. Among those words, there are
49,754 words which does not have any synonym at
all. Using above-mentioned principles for
synonym selection, we selected 36,185 senses with
90,258 words related to each other to build an
English synonym dictionary for TM retrieval.

4 Experimental Result

We use Lucene, an open source IR engine in Java,
to implement the TM retrieval system using the
vector model based similarity evaluation we
proposed. As the data structure of a translation unit
of TM, the Document class of Lucene is used
which has two fields corresponding to the source
and target segment of TM, respectively. The
version number of Lucene used is 8.5.1.
Levenshtein Distance based similarity score is
applied for the secondary retrieval of TM. The TM
used for the evaluation of the proposed TM
retrieval system is an English-to-Korean TM
which is made of about 5,000,000 English
segments and their automatic Korean translation
by English-to-Korean machine translator
“Ryongnamsan” 2.0. In the experiment, we use
parameter settings for the primary search of TM
such that 𝐾1 = 100 , and 𝛼 = 0.5 . All
measurement was carried out on a desktop PC with

3.0.tar.gz)

689

Intel® Core™ i3-3240 CPU @ 3.40GHz and 2GB
of RAM. The operating system installed is
Windows 7, 64bit.

4.1 Evaluation Method of Retrieval
Performance

First of all, the retrieval performance on the
English-to-Korean TM using Lucene can be
evaluated with the retrieval time on varying size of
TM. We randomly selected 1,000 sentences which
are not included in the English-to-Korean TM, and
then measured the total time consumed for
retrieving all those sentences on different size of
TM. The time consumed for retrieving was
measured 5 times, and the fastest, slowest and
averaged time were all recorded. Next, the
relevance of retrieval result was automatically
tested. Finally, we compare the retrieving
performance of our proposal with the retrieving
performance when using MongoDB’s full text
search API.

4.2 Result

– Relation between the size of TM and the
retrieving time

.
Figure 2 shows the relation between the size of

TM and the retrieving time.
As the size of TM increases, so does the

retrieving time on the TM.
– Relation between the length of the input
sentence and the retrieving time

We also investigate the influence of the length
of the input sentence on the retrieving time on TM.

For 1,000 input sentences being tested, the
retrieving time for each sentence on the largest TM
with 5,000,000 segments was measured and
averaged according to the length of those sentences.
Figure 3 and Figure 4 show the sentence length-
frequency distribution on the test sentences and the
average retrieving time according to the sentence
length, respectively.

The result shows that the longer the input
sentence, the longer its retrieving time of TM.

Figure 2: Retrieving time according to the size of
TM

Figure 3: Sentence frequency according to its
length

Figure 4: Average retrieving time according to the
sentence length

0

20,000

40,000

60,000

80,000

100,000

120,000

0 200 400 600

R
et

ri
ev

in
g

T
im

e
(m

s)

Size of TM (×10,000)

Retrieving Performance

Slowest Fastest Averaged

Size of
TM

(×10,000)

Retrieving time (milliseconds)
(Number of Measurement)

1 2 3 4 5

50 14,289 6,284 6,349 6,379 6,284

100 25,506 8,703 8,659 8,551 8,767

150 33,215 10,581 10,481 10,578 10,470

200 42,523 12,526 12,433 12,306 12,447

250 47,191 14,914 14,899 14,851 14,743

300 59,027 17,375 17,379 17,473 17,459

350 72,304 18,998 19,077 19,063 18,940

400 78,106 21,199 21,408 21,231 21,214

450 85,019 23,479 23,446 23,211 23,290

500 96,876 27,112 25,414 25,448 25,411

Table 1: Retrieving time according to the size of
TM

690

– Relevance of the primary retrieval result of
TM

For evaluating the relevance of the primary
retrieval result of TM, we checked the ranking
result of the primary retrieval when retrieving
1,000 English sentences randomly selected from
the largest TM of 5,000,000 segments. According
to an automatic checking of the ranking result, the
translation unit whose source segment is the input
sentence ranked at the first place all the time. This
implies that the proposed primary retrieval of TM
is relevant for exact match of TM.

The relevance of the primary retrieval result for
the sentences which is not included in the TM is
impossible to automatically evaluate, and is also
related to the secondary retrieval of TM. We did a
small manual test but the result was not fully
reliable, so we didn’t present the result here.
– Comparison with the retrieving performance
of TM using MongoDB

MongoDB, a NoSQL database management
system, supports textual data indexing and
searching which allows partial matching. For
comparison with our proposal, we implemented a
TM retrieval module using the full text search API
of MongoDB, and evaluated its performance on a
desktop PC with Intel® Core™ i7-7700 CPU @
3.6 GHz and 16 GB of RAM. The version of
MongoDB used is 4.4. It took about 18 minutes to
insert into the MongoDB collection the English-to-
Korean TM of 5 million segment pairs. It also took
about 5 minutes to index the source language field
and about 1 hour and 38 minutes to retrieve a set of
candidate sentences for the same 1,000 English
sentences as in the previous experiment. The size
of the set of candidate sentences was limited to 10.
By automatically checking the relevance of the
retrieval result, the translation unit whose source
segment is the input sentence ranked at the first
place all the time, too. Obviously, the retrieving
speed when using Lucene is incomparably superior
to when using MongoDB.

5 Conclusion and Future Work

Through a series of experiments on the primary
retrieval of English-to-Korean TM using vector
model based similarity evaluation, we conclude
that:

 The time and space complexity of
indexing the TM increases linear to the
size of the TM. The indexing time

consumed for a large-scale English-to-
Korean TM with about 5,000,000
segments is about 5 minutes, and the
indexed data size is 1.84 GB with an
increase of about 29 % compared to the
text file size of the TM.

 The time complexity of the primary
retrieval of TM increases linear to the size
of the TM and the length of the input
length. The fact that the retrieving time of
TM is in linear proportion to the size of
the TM and the length of the input
sentence fully accords with Lucene’s
inverted indexing principle and the
ranking process of our vector model
based similarity evaluation.

 When there is a translation unit whose
source segment is the same as the input
sentence, the translation unit ranks at the
first place in the primary retrieval result
of TM. The automatic checking result of
the source segments included in the TM
shows that Lucene is an effective means
for exact match, as well as fuzzy
matching.

The effect of the vector model based similarity
evaluation for the primary retrieval of TM wholly
depends on the correctness of the morphological
analysis and the richness of the synonym
knowledge. Since the difficulty of the
morphological analysis and the availability of the
synonym knowledge like WordNet is all different
for each language, we plan to do more research
work on these aspects. Furthermore, we also plan
to evaluate more comprehensively the relevance of
the primary retrieval of TM.

References

Emmanuel Planas and Osamu Furuse. (2000) Multi-
level Similar Segment Matching Algorithm for
Translation Memories and Example-Based
Machine Translation. In: COLING 2000,
proceedings of the 18th international conference on
computational linguistics, Saarbrücken, Germany,
pages 621–627

Emmanuel Planas. (2005) SIMILIS - Second
generation TM software, In Proceedings of the 27th
International Conference on Translating and the
Computer (TC27). London, UK.

Gábor Hodász and Gábor Pohl. (2005) MetaMorpho
TM: A Linguistically Enriched Translation Memory.

691

In Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP-05). Borovets, Bulgaria.

Katerina Timonera and Ruslan Mitkov. (2015)
Improving Translation Memory Matching through
Clause Splitting. In Proceedings of the Workshop on
Natural Language Processing for Translation
Memories (NLP4TM), pages 17–23, Hissar,
Bulgaria

Katharina Wäschle and Stefan Riezler. (2015)
Integrating a Large, Monolingual Corpus as
Translation Memory into Statistical Machine
Translation, In Proceedings of the 18th Annual
Conference of the European Association for
Machine Translation, pages 169-176

Konstantinos Chatzitheodorou. (2015) Improving
translation memory fuzzy matching by
paraphrasing, In Proceedings of the Workshop on
Natural Language Processing for Translation
Memories (NLP4TM), pages 24–30, Hissar,
Bulgaria

Kum-Chol Ryang. (2018) Improving fuzzy search on
translation memory, (In Korean) Technology
Innovation, Volume 2018(5), page 39

Melanie Weitz. (2017) Improving retrieval
performance of translation memories using
morphosyntactic analyses and generalized suffix
arrays, Machine Translation (2017) 31: 117-146

Ralf Steinberger, Andreas Eisele, Szymon Klocek,
Spyridon Pilos, and Patrick Schlu ter. (2012) DGT-
TM: A freely available Translation Memory in 22
languages. LREC, pages 454–459.

Sandipan Dandapat, Sara Morrissey, Andy Way, and
Joseph van Genabith. (2012) Combining EBMT,
SMT, TM and IR Technologies for Quality and Scale,
In Proceedings of the 13th Conference of the
European Chapter of the Association for
Computational Linguistics, pages 48–58, Avignon,
France

Simard Michel. 2020. Building and using parallel text
for translation. In O’Hagan, Minako, editor, The
Routledge Handbook of Translation and
Technology, chapter 5, pages 78-90. Routledge.

Tharindu Ranasinghe, Constantin Orasan, and Ruslan
Mitkov. (2020) Intelligent Translation Memory
Matching and Retrieval with Sentence Encoders.
ArXiv, abs/2004.12894.

Tom Vanallemeersch and Vincent Vandeghinste. (2014)
Improving fuzzy matching through syntactic
knowledge. In Translating and the Computer 36,
volume 36, pages 90 – 99, London, UK.

Viktor Pekar and Ruslan Mitkov. (2007) New
Generation Translation Memory: ContentSensitive

Matching. In Proceedings of the 40th Anniversary
Congress of the Swiss Association of Translators,
Terminologists and Interpreters, 29-30 September
2006, Bern.

