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Abstract
Screenplay summarization is the task of ex-
tracting informative scenes from a screenplay.
The screenplay contains turning point (TP)
events that change the story direction and thus
define the story structure decisively. Accord-
ingly, this task can be defined as the TP iden-
tification task. We suggest using dialogue in-
formation, one attribute of screenplays, moti-
vated by previous work that discovered that
TPs have a relation with dialogues appearing
in screenplays. To teach a model this charac-
teristic, we add a dialogue feature to the input
embedding. Moreover, in an attempt to im-
prove the model architecture of previous stud-
ies, we replace LSTM with Transformer. We
observed that the model can better identify TPs
in a screenplay by using dialogue information
and that a model adopting Transformer outper-
forms LSTM-based models.

1 Introduction

Text summarization is one major task in NLP that
seeks to produce concise texts containing only the
essential information in the original texts. Al-
though most researches have been focusing on
summarizing news articles (Narayan et al., 2018;
See et al., 2017), as various contents with different
structures increase these days, there has been grow-
ing interests in applying text summarization to var-
ious domains, including social media (Sharifi et al.,
2010; Kim and Monroy-Hernandez, 2016), dia-
logue (Goo and Chen, 2018), scientific articles (Co-
han and Goharian, 2017; Yasunaga et al., 2019),
books (Mihalcea and Ceylan, 2007), screenplays
(or scripts) (Gorinski and Lapata, 2015; Papalam-
pidi et al., 2020a). Among them, this paper focuses
on screenplay summarization.

A screenplay is a type of literary text, which typ-
ically contains around 120 pages and has a strictly
structured format (Figure 1). It usually contains
various storytelling elements, such as a story, dia-
logues, characters’ actions, and what the camera

INT. SID'S ROOM

WOODY
We're gonna get outta here, Buzz –
Buzz? 

Buzz is not there. Woody looks down at the floor. 
Buzz is sitting on the floor, playing "bombs away" with
his
broken arm.

EXT. ANDY'S BEDROOM WINDOW/SID'S WINDOW 

The rest of Andy's toys gather around the window to see
Woody. 

REX 
Hey, look! 

BO PEEP 
Woody! 

WOODY 
Boy, am I glad to see you guys! 

Dialogue

Character

Scene heading

Action description

Scene #1

Scene #2

Figure 1: An excerpt from "Toy Story." A screenplay
consists of scenes. A scene is an event that takes place
at the same time or place. Every scene starts with a
scene heading (starts with "INT." or "EXT.") and is fol-
lowed by action descriptions and dialogues. ‘Scene
heading’ denotes when and where actions take place.
‘Action description’ explains who and what are in the
scene. ‘Character’ is the speaker. ‘Dialogue’ is a spo-
ken utterance.

sees, thereby elaborating a complex story. In a
real-life situation, filmmakers and directors hire
script readers to select a script that seems to be a
popular movie among numerous candidate scripts.
They create a coverage per script, a report of about
four pages containing a logline (the indicative sum-
mary), a synopsis (the informative summary), rec-
ommendations, ratings, and comments.

The goal of screenplay summarization is to
help speeding up script browsing; to provide an
overview of the script’s contents and storyline; and
to reduce the reading time (Gorinski and Lapata,
2015). As shown in Figure 2, to make this long
narrative-text summarization feasible, early work
in screenplay summarization (Gorinski and Lapata,
2015; Papalampidi et al., 2020a) defined the task
as extracting a sequence of scenes that represents
informative summary (i.e., scene-level extractive
summarization).

To this end, Papalampidi et al. (2019, 2020b)
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Figure 2: Screenplay summarization is defined as
scene-level extractive summarization (Gorinski and La-
pata, 2015; Papalampidi et al., 2020a).

①
Setup

②
New situation

⑤
The final push

④
Complications ⑥

Aftermath

③
Progress Story 

Progression
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Figure 3: A well-structured story consists of six stages.
TPs divide a story into multiple sections and define
the screenplay’s structure. There are five TPs in a
story (Cutting, 2016; Hauge, 2017; Papalampidi et al.,
2019).

assumed that such scenes compose a set of events,
called turning points (TPs), which change the
story’s direction and thus determine the progres-
sion of the story (Figure 3). The definition of each
TP is shown in Table 1.

Following their assumption, we propose two
methods to identify TPs better: 1) we suggest us-
ing dialogue information included in screenplays
(Figure 1) as a training feature, considering one pre-
vious study revealed that there is a relation between
TPs and the frequency of conversations (Cutting,
2016) in a screenplay; 2) we attempt to use Trans-
former (Vaswani et al., 2017) instead of LSTM,
which have been dominantly used in previous stud-
ies (Papalampidi et al., 2019, 2020b), because
Transformer has generally shown to be beneficial in
capturing long-term dependencies; we can expect
that Transformer will summarize long and complex
screenplays better.

� TP1: Opportunity
Introductory event that occurs after presentation
of setting and background of main characters

� TP2: Change of Plans
Main goal of story is defined;
action begins to increase

� TP3: Point of No Return
Event that pushes the main characters
to fully commit to their goal

� TP4: Major Setback
Event where everything falls apart,
temporarily or permanently

� TP5: Climax
Final event of the main story,
moment of resolution and "biggest spoiler"

Table 1: Definition of TPs (Papalampidi et al., 2019).

2 Background and Related Work

2.1 Topic-Aware Model

Topic-Aware Model (TAM) (Papalampidi et al.,
2019) is one screenplay summarization model that
identifies TPs to use them for an informative sum-
mary. The key feature of this model is that it takes
sentence-level inputs and uses Bi-LSTM to gener-
ate their latent representations; it produces scene
representations by applying self-attention to the
sentence representations belonging to each scene
and applying a context-interaction layer to capture
the similarity among scenes. At last, TPs are se-
lected among all scene representations. Our pro-
posed model is also inspired by this work, and our
work aims to improve this study.

2.2 GraphTP

Another TP identification model is GraphTP (Pa-
palampidi et al., 2020b), which uses Bi-LSTM and
Graph Convolution Network (GCN) (Duvenaud
et al., 2015) to encode direct interactions among
scenes, thereby better capturing long-term depen-
dencies. Specifically, they represent a screenplay as
a sparse graph, and then the GCN produces scene
representations that reflect information of neigh-
boring scenes. It shows comparable performance
with TAM. In our experiments, we adopt TAM and
GraphTP as baselines.
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3 Method

3.1 Input Augmentation
Recall that screenplay summarization can be de-
fined as identifying TPs, where the story stage’s
transition occurs. Therefore, we suggest using dia-
logue information related to the story stage’s tran-
sition to identify TPs better. The motivation for
this method is that a previous study (Cutting, 2016)
that analyzed movies found that there is a pattern
in which the frequency of conversations changes
according to the story stage (Figure 3); there are
few conversations until the end of the setup; then
the frequency of conversations stay constant for
the progress and complication; and finally, it de-
creases during the beginning of the final push but
increases again in the aftermath. This study im-
plies that dialogue information can be a good hint
to capture screenplays’ story stage transition. How-
ever, to our knowledge, there has been no previous
work that attempts to utilize such information for
screenplay summarization, that is, most previous
studies (Papalampidi et al., 2019, 2020b) do not
consider employing various elements included in a
screenplay.

We expect that adding dialogue information as
an additional training feature will help a model pre-
dict TP scenes from screenplays better. Therefore,
we first extract the binary label di from a screen-
play by inspecting whether a specific sentence is
notated as a dialogue. We then concatenated the
sentence embedding (xi) and the binary label (di)
to design a new augmented input [xi; di].

3.2 Architecture
It has been generally known that RNN-based archi-
tectures, which were used also in aforementioned
previous studies (Papalampidi et al., 2019, 2020b),
do not capture long-range dependencies well due to
the vanishing gradient problem. Also in the case of
screenplay summarization, because screenplays are
normally long and complex, we speculate that there
is a limit to generating a summary by using LSTM.
Therefore, we propose a screenplay-summarization
model to which Transformer (Vaswani et al., 2017)
is applied, which is widely used for various NLP
tasks and well known for having less computational
complexity and better capturing long-term depen-
dencies.

In detail, we propose a hierarchical screenplay
encoder using Transformer (Figure 4). First, it
receives a sentence-level input; we use Universal

Sentence 
Representation

Scene 
Representation

Positional
Encoding

x1 x2 x3 xk-1 xk…

s1 s2 s3 sN-1 sN…

x1 x2 x3 xk-1 xk…

Linear Linear Linear Linear Linear

Softmax

Transformer Encoder

s1 s2 s3 sN-1 sN…

Positional
Encoding

Transformer Encoder

all sentences in s1

Figure 4: Proposed architecture using Transformer en-
coders.

Sentence Encoder (USE) (Cer et al., 2018) as in
TAM. After the sentence representations become
contextualized by the first Transformer encoder, all
the sentence representations belonging to the scene
are added up to form the scene representation that is
fed into the second Transformer encoder. The sec-
ond Transformer encoder produces the final scene
vectors and inputs them into five different linear
layers, one classifier per TP, each of which projects
the vectors to a scalar value. Lastly, a softmax
layer produces five probability distributions over
all scenes that indicate how relevant each scene is
to the TPs. We then select one scene with the high-
est probability per TP; each selected scene joins
together with its neighbors into three consecutive
scenes, which compose the final summary.

4 Experiments

4.1 Dataset

For both training and evaluating our model, we
use TRIPOD (Papalampidi et al., 2019) dataset.
This dataset contains screenplays and their TPs;
the TPs in the test set are manually annotated by
human experts whereas those in the training set are
pseudo-TPs. Statistics of the dataset are presented
in Table 2.
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TRIPOD Train Test

screenplays 84 15
scenes 11,320 2,083
turning points 420 75
per screenplay
tokens 23.0k (6.6) 20.9k (4.5)
sentences 3.0k (0.9) 2.8k (0.6)
scenes 133.0 (61.1) 138.9 (50.7)
per scene
tokens 173.0 (235.0) 150.5 (198.3)
sentences 22.2 (31.5) 19.9 (26.9)
sentence tokens 7.8 (6.0) 7.6 (6.4)

Table 2: Statistics of TRIPOD (Papalampidi et al.,
2019).

4.2 Experimental Setting

For our experiments, we adapted source codes in
two repositories1 2 Papalampidi et al. (2020b); Liu
and Lapata (2019) to implement our model. We
set the training hyperparameters as follows: L = 1,
H = 128, A = 4, and Pdrop = 0.0, where L
is the number of layers, H is the hidden size, A
is the number of heads, and Pdrop is the dropout
rate. We consider two previous methods that re-
ceive raw sentence representations as inputs as the
baseline systems: TAM (Papalampidi et al., 2019)
and GraphTP (Papalampidi et al., 2020b). During
training, because TRIPOD does not contain a val-
idation set, we conducted n-fold cross-validation
with n = 5 to extract the validation set from the
existing test set. Finally, we averaged out the test
results of the five models to obtain the final test
results.

4.3 Evaluation Metric

To evaluate our model, we used the TP identifica-
tion evaluation metrics proposed by Papalampidi
et al. (2019): Total Agreement (TA), Partial Agree-
ment (PA), and Distance (D). Those Metrics are
defined as follows.
TA is the ratio of TP scenes that are correctly

identified (Eq. 1). In the equation, Si is a set
of scenes that is predicted as a certain TP in a
screenplay, Gi is the ground-truth set of scenes
corresponding to that TP event, T is the number
of TPs, in our case T = 5, and L is the number of

1https://github.com/ppapalampidi/
GraphTP

2https://github.com/nlpyang/PreSumm

Input Model TA ↑ PA ↑ D ↓

sentence
TAM 8.15 9.33 10.59
GraphTP 7.41 10.67 9.24
Transformer 10.37 10.67 9.12

sentence + dialogue
TAM 7.41 9.33 9.97
GraphTP 13.33 14.67 11.61
Transformer 11.11 12.00 9.82

Table 3: Total Agreement (TA), Partial Agreement
(PA), and mean distance (D). The first two rows are
the baselines. A boldface score is the best score in its
column.

Model # of parameters Training time (ratio)

TAM 40.1k 1.12
GraphTP 41.6k 1.45
Transformer 46.3k 1.00

Table 4: The number of parameters and training time
of models. Numbers in ‘Training time’ are ratios to the
training time of our proposed model set at 1.

screenplays contained in the test set.

TA =
1

T · L

T ·L∑
i=1

|Si ∩Gi|
|Si ∪Gi|

(1)

PA is the ratio of TP events about which more
than one ground-truth TP scenes are identified (Eq.
2).

PA =
1

T · L

T ·L∑
i=1

[|Si ∩Gi| 6= φ] (2)

D is the average distance between all pairs
of predicted TP scenes (Si) and ground-truth TP
scenes (Gi) (Eq. 3, 4), where N is the number of
scenes in a screenplay.

d [Si, Gi] =
1

N
min

s∈Si,g∈Gi

|s− g| (3)

D =
1

T · L

T ·L∑
i=1

d [Si, Gi] (4)

TA and PA indicate how correctly a model pre-
dicts TPs, and D indicates how well the model has
learned TP positions. It can be seen that TA and
PA represent the model’s prediction bias, and D
represents variance, so we can suppose that there is
a trade-off between D and TA or PA. Also, when
the TA and PA scores are similar, it means that the
model has a high accuracy.

https://github.com/ppapalampidi/GraphTP
https://github.com/ppapalampidi/GraphTP
https://github.com/nlpyang/PreSumm
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4.4 Result Analysis
Input Augmentation It is revealed that the mod-
els trained with augmented inputs outperform those
trained only with raw inputs by the TA and PA
scores (Table 3). This result supports our assump-
tion that dialogue information will be helpful in
finding TPs because the TA and PA scores, which
indicate whether TPs are correctly identified, have
improved. As aforementioned in Section 4.3, the
D score has an inverse relationship with TA in that
it represents the variance of model predictions. On
the other hand, TAM shows a relatively poor TA
score; it seems that dialogue information hardly
improves the performance of a model that does not
capture long-term dependencies well. One possi-
ble reason is that dialogue information provides
the model with information that the model already
knows even though it does not capture long-term
dependencies well. For more accurate explanation,
further analyses are required.

Architecture In the case of raw sentence inputs,
our proposed architecture based on Transformer
outperforms the two baseline systems consistently.
The result implies that the model that captures long-
term dependencies well can improve the perfor-
mance of summarizing long and complex texts, as
we have expected. Because the model’s perfor-
mance has improved over the baseline by all met-
rics, our proposed architecture can be considered as
an adequate model for TP identification, compared
to the baselines. Also, even though our model con-
tains a few more parameters than the two baselines,
it has faster training speed, especially compared to
GraphTP, showing a difference of almost 40% or
more (Table 4).

When we fed dialogue-augmented inputs into
the model, the TA and PA scores have improved.
Although, when we used dialogue-augmented in-
puts, GraphTP recorded better performance by TA
and PA, for D, our model shows much better re-
sults. This result means that the model predicts
whether a given scene is a TP or not becomes more
accurately whereas it does not predict well across
all TPs (i.e., TP1 to TP5), but for a given scene,
the model predicts certain TPs very well and some
other TPs very bad. Therefore, the dialogue feature
provides helpful information for TP identification
that GraphTP lacks even though it is helpful for
some TPs but redundant and even disturbing for
some other TPs. This suggests that there is high
possibility that not all TPs (i.e., TP1 to TP5) are

included in the output summary. In this regard, we
can conclude that our proposed model makes more
confident predictions.

5 Conclusion

In this paper, we suggest using dialogue informa-
tion as an additional training feature and propose
a Transformer-based architecture for TP identifi-
cation. Our experimental results present that di-
alogue information has a positive effect on the
prediction accuracy on whether the scene is TP
or not. However, the opposite was the case for the
sequence-based model; further analyses are needed.
In addition, the results indicate that using Trans-
former instead of LSTM significantly improves the
overall performance in identifying TP scenes by
encoding long-term dependencies among scenes
better. We believe that using unique attributes in
screenplays, such as dialogues, can help improv-
ing the model performance and when summarizing
texts that have complex structures including screen-
plays, Transformer , which handles long histories
robustly, is effective. In the future, we plan to go
through the human evaluating process to see how
dialogue information affects the output summary’s
informativeness, especially which one is identified
better than another, and how the trade-off among
automatic evaluation metrics affects the summary
output.
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